Sample records for lightning electromagnetic fields

  1. Electromagnetic field radiation model for lightning strokes to tall structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motoyama, H.; Janischewskyj, W.; Hussein, A.M.

    1996-07-01

    This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.

  2. The electric field changes and UHF radiations caused by the triggered lightning in Japan

    NASA Technical Reports Server (NTRS)

    Kawasaki, Zen-Ichiro; Kanao, Tadashi; Matsuura, Kenji; Nakano, Minoru; Horii, Kenji; Nakamura, Koichi

    1991-01-01

    In the rocket triggered lightning experiment of fiscal 1989, researchers observed electromagnetic field changes and UHF electromagnetic radiation accompanying rocket triggered lightning. It was found that no rapid changes corresponding to the return stroke of natural lightning were observed in the electric field changes accompanying rocket triggered lightning. However, continuous currents were present. In the case of rocket triggered lightning to the tower, electromagnetic field changes corresponding to the initiation of triggered lightning showed a bipolar pulse of a relatively large amplitude. In contrast, the rocket triggered lightning to the ground did not have such a bipolar pulse. The UHF radiation accompanying the rocket triggered lightning preceded the waveform portions corresponding to the first changes in electromagnetic fields. The number of isolated pulses in the UHF radiation showed a correlation with the time duration from rocket launching up to triggered lightning. The time interval between consecutive isolated pulses tended to get shorter with the passage of time, just like the stepped leaders of natural lightning.

  3. Measurement of Electromagnetic Properties of Lightning with 10 Nanosecond Resolution

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Oneill, J. P.; Moore, C. B.; Hall, D. L.

    1980-01-01

    Electromagnetic data recorded from lightning strikes are presented. The data analysis reveals general characteristics of fast electromagnetic fields measured at the ground including rise times, amplitudes, and time patterns. A look at the electromagnetic structure of lightning shows that the shortest rise times in the vicinity of 30 ns are associated with leader leader streamers. Lightning location is based on electromagnetic field characteristics and is compared to a nearby sky camera. The fields from both leaders and return strokes were measured and are discussed. The data were obtained during 1978 and 1979 from lightning strikes occuring within 5 kilometers of an underground metal instrumentation room located on South Baldy peak near Langmuir Laboratory, New Mexico. The computer controlled instrumentation consisted of sensors previously used for measuring the nuclear electromagnetic pulse (EMP) and analog-digital recorders with 10 ns sampling, 256 levels of resolution, and 2 kilobytes of internal memory.

  4. The 1981 direct strike lightning data. [utilizing the F-106 aircraft

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Thomas, M. E.

    1982-01-01

    Data waveforms obtained during the 1981 direct strike lightning tests, utilizing the NASA F-106B aircraft specially instrumented for lightning electromagnetic measurements are presented. The aircraft was operated in a thunderstorm environment to elicit strikes. Electromagnetic field data were recorded for both attached lightning and free field excitation of the aircraft.

  5. Department of Defense Interface Standard Electromagnetic Environmental Effects Requirements for Systems

    DTIC Science & Technology

    2002-12-19

    effective tool in evaluating IMI. A5.2.2 Shipboard internal electromagnetic environment (EME). For ship applications, electric fields (peak V/m-rms...effects waveform parameters ........................................ 9 MIL-STD-464A v CONTENTS Page TABLES 2B Electromagnetic fields from near...blasting of hardware. 3.8 Lightning indirect effects. Electrical transients induced by lightning due to coupling of electromagnetic fields . 3.9

  6. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Peer, J.; Kendl, A.

    2010-06-01

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  7. Description of an aircraft lightning and simulated nuclear electromagnetic pulse (NEMP) threat based on experimental data

    NASA Technical Reports Server (NTRS)

    Rustan, Pedro L., Jr.

    1987-01-01

    Lightning data obtained by measuring the surface electromagnetic fields on a CV-580 research aircraft during 48 lightning strikes between 1500 and 18,000 feet in central Florida during the summers of 1984 and 1985, and nuclear electromagnetic pulse (NEMP) data obtained by surface electromagnetic field measurements using a 1:74 CV-580 scale model, are presented. From one lightning event, maximum values of 3750 T/s for the time rate of change of the surface magnetic flux density, and 4.7 kA for the peak current, were obtained. From the simulated NEMP test, maximum values of 40,000 T/s for the time rate of change of the surface magnetic flux density, and 90 A/sq m for the total normal current density, were found. The data have application to the development of a military aircraft lightning/NEMP standard.

  8. The 1983 direct strike lightning data, part 1

    NASA Technical Reports Server (NTRS)

    Thomas, Mitchel E.

    1985-01-01

    Data waveforms are presented which were obtained during the 1983 direct strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. Part 1 contains 435 pages of lightning strike data in chart form.

  9. The 1983 direct strike lightning data, part 2

    NASA Technical Reports Server (NTRS)

    Thomas, Mitchel E.

    1985-01-01

    Data waveforms are presented which were obtained during the 1983 direct strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. Part 2 contains 443 pages of lightning strike data in chart form.

  10. Broadband electromagnetic sensors for aircraft lightning research. [electromagnetic effects of lightning on aircraft digital equipment

    NASA Technical Reports Server (NTRS)

    Trost, T. F.; Zaepfel, K. P.

    1980-01-01

    A set of electromagnetic sensors, or electrically-small antennas, is described. The sensors are designed for installation on an F-106 research aircraft for the measurement of electric and magnetic fields and currents during a lightning strike. The electric and magnetic field sensors mount on the aircraft skin. The current sensor mounts between the nose boom and the fuselage. The sensors are all on the order of 10 cm in size and should produce up to about 100 V for the estimated lightning fields. The basic designs are the same as those developed for nuclear electromagnetic pulse studies. The most important electrical parameters of the sensors are the sensitivity, or equivalent area, and the bandwidth (or rise time). Calibration of sensors with simple geometries is reliably accomplished by a geometric analysis; all the sensors discussed possess geometries for which the sensitivities have been calculated. For the calibration of sensors with more complex geometries and for general testing of all sensors, two transmission lines were constructed to transmit known pulsed fields and currents over the sensors.

  11. The 1984 direct strike lightning data, part 3

    NASA Technical Reports Server (NTRS)

    Thomas, Mitchel E.; Carney, Harold K.

    1986-01-01

    Data waveforms are presented which were obtained during the 1984 direct-strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. This is part 3, consisting entirely of charts and graphs.

  12. Electromagnetic Methods of Lightning Detection

    NASA Astrophysics Data System (ADS)

    Rakov, V. A.

    2013-11-01

    Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

  13. Oceanic Lightning versus Continental Lightning: VLF Peak Current Discrepancies

    NASA Astrophysics Data System (ADS)

    Dupree, N. A., Jr.; Moore, R. C.

    2015-12-01

    Recent analysis of the Vaisala global lightning data set GLD360 suggests that oceanic lightning tends to exhibit larger peak currents than continental lightning (lightning occurring over land). The GLD360 peak current measurement is derived from distant measurements of the electromagnetic fields emanated during the lightning flash. Because the GLD360 peak current measurement is a derived quantity, it is not clear whether the actual peak currents of oceanic lightning tend to be larger, or whether the resulting electromagnetic field strengths tend to be larger. In this paper, we present simulations of VLF signal propagation in the Earth-ionosphere waveguide to demonstrate that the peak field values for oceanic lightning can be significantly stronger than for continental lightning. Modeling simulations are performed using the Long Wave Propagation Capability (LWPC) code to directly evaluate the effect of ground conductivity on VLF signal propagation in the 5-15 kHz band. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-Ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. Furthermore, we evaluate the effect of return stroke speed on these results.

  14. Electromagnetic sensors for general lightning application

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.

    1980-01-01

    Electromagnetic sensors for general lightning applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to lightning measurements, but there are some special cases of lightning measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on lightning at South Baldy peak in central New Mexico during the 1978 and 1979 lightning seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.

  15. The measurement of lightning environmental parameters related to interaction with electronic systems

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Pitts, F. L.; Thomas, M. E.; Sower, G. D.

    1982-01-01

    The measurement of electromagnetic fields and related quantities in a lightning environment is a challenging problem, especially at high frequencies and/or in the immediate vicinity of the lightning arcs and corona. This paper reviews the techniques for accomplishing such measurements in these regimes with examples. These sensors are often the same as for the nuclear electromagnetic pulse (EMP), but significant differences also appear.

  16. A study on the influence of corona on currents and electromagnetic fields predicted by a nonlinear lightning return-stroke model

    NASA Astrophysics Data System (ADS)

    De Conti, Alberto; Silveira, Fernando H.; Visacro, Silvério

    2014-05-01

    This paper investigates the influence of corona on currents and electromagnetic fields predicted by a return-stroke model that represents the lightning channel as a nonuniform transmission line with time-varying (nonlinear) resistance. The corona model used in this paper allows the calculation of corona currents as a function of the radial electric field in the vicinity of the channel. A parametric study is presented to investigate the influence of corona parameters, such as the breakdown electric field and the critical electric field for the stable propagation of streamers, on predicted currents and electromagnetic fields. The results show that, regardless of the assumed corona parameters, the incorporation of corona into the nonuniform and nonlinear transmission line model under investigation modifies the model predictions so that they consistently reproduce most of the typical features of experimentally observed lightning electromagnetic fields and return-stroke speed profiles. In particular, it is shown that the proposed model leads to close vertical electric fields presenting waveforms, amplitudes, and decay with distance in good agreement with dart leader electric field changes measured in triggered lightning experiments. A comparison with popular engineering return-stroke models further confirms the model's ability to predict consistent electric field waveforms in the close vicinity of the channel. Some differences observed in the field amplitudes calculated with the different models can be related to the fact that current distortion, while present in the proposed model, is ultimately neglected in the considered engineering return-stroke models.

  17. Electromagnetic fields radiated from a lightning return stroke - Application of an exact solution to Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Meneghini, R.

    1978-01-01

    A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.

  18. Measurement of electromagnetic waves in ELF and VLF bands to monitor lightning activity in the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Yamashita, Kozo; Takahashi, Yukihiro; Ohya, Hiroyo; Tsuchiya, Fuminori; Sato, Mitsuteru; Matsumoto, Jun

    2013-04-01

    Data of lightning discharge has been focused on as an effective way for monitoring and nowcasting of thunderstorm activity which causes extreme weather. Spatial distribution of lightning discharge has been used as a proxy of the presence or absence of deep convection. Latest observation shows that there is extremely huge lightning whose scale is more than hundreds times bigger than that of averaged event. This result indicates that lightning observation should be carried out to estimate not only existence but also scale for quantitative evaluation of atmospheric convection. In this study, lightning observation network in the Maritime Continent is introduced. This network is consisted of the sensors which make possible to measure electromagnetic wave radiated from lightning discharges. Observation frequency is 0.1 - 40 kHz for the measurement of magnetic field and 1 - 40 kHz for that of electric field. Sampling frequency is 100 kHz. Waveform of electromagnetic wave is recorded by personal computer. We have already constructed observation stations at Tainan in Taiwan (23.1N, 121.1E), Saraburi in Thailand (14.5N, 101.0E), and Pontianak in Indonesia (0.0N, 109.4E). Furthermore, we plan to install the monitoring system at Los Banos in Philippines (14.18, 121.25E) and Hanoi in Viet Nam. Data obtained by multipoint observation is synchronized by GPS receiver installed at each station. By using data obtained by this network, location and scale of lightning discharge can be estimated. Location of lightning is determined based on time of arrival method. Accuracy of geolocation could be less than 10km. Furthermore, charge moment is evaluated as a scale of each lightning discharge. It is calculated from electromagnetic waveform in ELF range (3-30 kHz). At the presentation, we will show the initial result about geolocation for source of electromagnetic wave and derivation of charge moment value based on the measurement of ELF and VLF sferics.

  19. Analysis of electromagnetic fields on an F-106B aircraft during lightning strikes

    NASA Technical Reports Server (NTRS)

    Trost, T. F.; Pitts, F. L.

    1982-01-01

    Information on the exterior electromagnetic environment of an aircraft when it is struck by lightning has been obtained during thunderstorm penetrations with an F-106B aircraft. Electric and magnetic fields were observed, using mainly time-derivative type sensors, with bandwidths to 50 MHz. Lightning pulse lengths ranging from 25 ns to 7 microsec have been recorded. Sufficient high-frequency content was present to excite electromagnetic resonances of the aircraft, and peaks in the frequency spectra of the waveforms in the range 7 to 23 MHz are in agreement with the resonant frequencies determined in laboratory scale-model tests. Both positively and negatively charged strikes were experienced, and most of the data suggest low values of peak current.

  20. Validation of GEMACS (General Electromagnetic Model for the Analysis of Complex Systems) for Modeling Lightning-Induced Electromagnetic Fields.

    DTIC Science & Technology

    1987-12-01

    0 00 I DTIC"ELECTE. ~FEB 0 911988< " H VALIDATION OF GEMACS FOR MODELING ’LIGHTNING-INDUCED ELECTROMAGNETIC FIELDS THESIS David S. Mabee Captain...THESIS David S. Mabee . Captain, USAFD T C ’::, AFIT/GE/ENG/87D-39 ELECTFE r C:’., ~FEB 0 91988 J Approved for public release; distribution unlimited...Electrical Engineering David S. Mabee , B.S. ’- ,. . Captain, USAF December 1987 A o fr p.. ’ Approved for public release; distribution unlimited ,12

  1. Seismo-Electromagnetic Emissions Related to Seismic Waves can Trigger TLEs

    NASA Astrophysics Data System (ADS)

    Sorokin, Leonid V.

    2009-04-01

    This paper deals with the rare high intensity electromagnetic pulses associated with earthquakes, whose spectrum signature differs from that of atmospherics produced by lightning discharges. On the basis of actual data records, cases of the generation of anomalous seismo-electromagnetic emissions are described. These natural sub-millisecond electromagnetic pulses were associated with the passage of seismic waves from earthquakes to Moscow, the place where the electromagnetic field observations were made. Space-time coupling has been revealed between exact seismic waves from the earthquakes, lightning triggering and Transient Luminous Events triggering.

  2. Magnetic field generated by lightning protection system

    NASA Astrophysics Data System (ADS)

    Geri, A.; Veca, G. M.

    1988-04-01

    A lightning protection system for today's civil buildings must be electromagnetically compatible with the electronic equipment present in the building. This paper highlights a mathematic model which analyzes the electromagnetic effects in the environment in which the lightning protection system is. This model is developed by means of finite elements of an electrical circuit where each element is represented by a double pole circuit according to the trapezoidal algorithm developed using the finite difference method. It is thus possible to analyze the electromagnetic phenomena associated with the transient effects created by the lightning stroke even for a high-intensity current. Referring to an elementary system comprised of an air terminal, a down conductor, and a ground terminal, numerical results are here laid out.

  3. Three-dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter, and Saturn

    NASA Astrophysics Data System (ADS)

    Pérez-Invernón, F. J.; Luque, A.; Gordillo-Vázquez, F. J.

    2017-07-01

    While lightning activity in Venus is still controversial, its existence in Jupiter and Saturn was first detected by the Voyager missions and later on confirmed by Cassini and New Horizons optical recordings in the case of Jupiter, and recently by Cassini on Saturn in 2009. Based on a recently developed 3-D model, we investigate the influence of lightning-emitted electromagnetic pulses on the upper atmosphere of Venus, Saturn, and Jupiter. We explore how different lightning properties such as total energy released and orientation (vertical, horizontal, and oblique) can produce mesospheric transient optical emissions of different shapes, sizes, and intensities. Moreover, we show that the relatively strong background magnetic field of Saturn can enhance the lightning-induced quasi-electrostatic and inductive electric field components above 1000 km of altitude producing stronger transient optical emissions that could be detected from orbital probes.

  4. A comparison of lightning and nuclear electromagnetic pulse response of a helicopter

    NASA Technical Reports Server (NTRS)

    Easterbrook, C. C.; Perala, R. A.

    1984-01-01

    A numerical modeling technique is utilized to investigate the response of a UH-60A helicopter to both lightning and nuclear electromagnetic pulses (NEMP). The analytical approach involves the three-dimensional time domain finite-difference solutions of Maxwell's equations. Both the external currents and charges as well as the internal electromagnetic fields and cable responses are computed. Results of the analysis indicate that, in general, the short circuit current on internal cables is larger for lightning, whereas the open-circuit voltages are slightly higher for NEMP. The lightning response is highly dependent upon the rise time of the injected current as was expected. The analysis shows that a coupling levels to cables in a helicopter are 20 to 30 dB larger than those observed in fixed-wing aircraft.

  5. Models for electromagnetic coupling of lightning onto multiconductor cables in underground cavities

    NASA Astrophysics Data System (ADS)

    Higgins, Matthew Benjamin

    This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of lightning strokes, are then used to predict electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of lightning current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of lightning (< 100 kHz), electromagnetic energy can readily propagate through hundreds of feet of earth. Indirect transfer function measurements compare extremely well with analytical and computational models developed for the Sago site which take into account measured soil properties.

  6. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.

  7. Coincident Observation of Lightning using Spaceborne Spectrophotometer and Ground-Level Electromagnetic Sensors

    NASA Technical Reports Server (NTRS)

    Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong; hide

    2012-01-01

    The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.

  8. Thunderstorm monitoring and lightning warning, operational applications of the Safir system

    NASA Technical Reports Server (NTRS)

    Richard, Philippe

    1991-01-01

    During the past years a new range of studies have been opened by the application of electromagnetic localization techniques to the field of thunderstorm remote sensing. VHF localization techniques were used in particular for the analysis of lightning discharges and gave access to time resolved 3-D images of lightning discharges within thunderclouds. Detection and localization techniques developed have been applied to the design of the SAFIR system. This development's main objective was the design of an operational system capable of assessing and warning in real time for lightning hazards and potential thunderstorm hazards. The SAFIR system main detection technique is the long range interferometric localization of thunderstorm electromagnetic activity; the system performs the localization of intracloud and cloud to ground lightning discharges and the analysis of the characteristics of the activity.

  9. Design of an optical fiber cable link for lightning instrumentation. [wideband pulse recording system

    NASA Technical Reports Server (NTRS)

    Grove, C. H.; Phillips, R. L.; Wojtasinski, R. J.

    1975-01-01

    A lightning instrumentation system was designed to record current magnitudes of lightning strikes that hit a launch pad service structure at NASA's Kennedy Space Center. The instrumentation system consists of a lightning ground rod with a current sensor coil, an optical transmitter, an optical fiber cable link, a detector receiver, and a recording system. The transmitter is a wideband pulse transformer driving an IR LED emitter. The transmitter operates linearly as a transducer. A low loss fiber bundle provides isolation of the recorder system from the electromagnetic field of the lightning strike. The output of an optical detector receiver module is sampled and recorded in digital format. The significant factors considered in the design were dynamic range, linearity, mechanical configuration, electromagnetic isolation, and temperature compensation.

  10. Scientific Lightning Detection Network for Kazakhstan

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Lozbin, A.; Inchin, A.; Shpadi, Y.; Inchin, P.; Shpadi, M.; Ayazbayev, G.; Bykayev, R.; Mailibayeva, L.

    2015-12-01

    In the frame of grant financing of the scientific research in 2015-2017 the project "To Develop Electromagnetic System for lightning location and atmosphere-lithosphere coupling research" was found. The project was start in January, 2015 and should be done during 3 years. The purpose is to create a system of electromagnetic measurements for lightning location and atmosphere-lithosphere coupling research consisting of a network of electric and magnetic sensors and the dedicated complex for data processing and transfer to the end user. The main tasks are to set several points for electromagnetic measurements with 100-200 km distance between them, to develop equipment for these points, to develop the techniques and software for lightning location (Time-of-arrival and Direction Finding (TOA+DF)) and provide a lightning activity research in North Tien-Shan region with respect to seismicity and other natural and manmade activities. Also, it is planned to use lightning data for Global Electric Circuit (GEC) investigation. Currently, there are lightning detection networks in many countries. In Kazakhstan we have only separate units in airports. So, we don't have full lightning information for our region. It is planned, to setup 8-10 measurement points with magnetic and electric filed antennas for VLF range. The final data set should be including each stroke location, time, type (CG+, CG-, CC+ or CC-) and waveform from each station. As the magnetic field lightning antenna the ferrite rod VLF antenna will be used. As the electric field antenna the wide range antenna with specific frequencies filters will be used. For true event detection TOA and DF methods needs detected stroke from minimum 4 stations. In this case we can get location accuracy about 2-3 km and better.

  11. Modeling transient luminous events produced by cloud to ground lightning and narrow bipolar pulses: detailed spectra and chemical impact

    NASA Astrophysics Data System (ADS)

    Perez-Invernon, F. J.; Luque, A.; Gordillo-Vazquez, F. J.

    2017-12-01

    The electromagnetic field generated by lightning discharges can produce Transient Luminous Events (TLEs) in the lower ionosphere, as previously investigated by many authors. Some recent studies suggest that narrow bipolar pulses (NBP), an impulsive and not well-established type of atmospheric electrical discharge, could also produce TLEs. The characterization and observation of such TLEs could be a source of information about the physics underlying NBP. In this work, we develop two different electrodynamical models to study the impact of lightning-driven electromagnetic fields in the lower ionosphere. The first model calculates the quasi-electrostatic field produced by a single cloud to ground lightning in the terrestrial atmosphere and its influence in the electron transport. This scheme allows us to study halos, a relatively frequent type of TLE. The second model solves the Maxwell equations for the electromagnetic field produced by a lightning discharge coupled with the Langevin's equation for the induced currents in the ionosphere. This model is useful to investigate elves, a fast TLE produced by lightning or by NBP. In addition, both models are coupled with a detailed chemistry of the electronically and vibrationally excited states of molecular nitrogen, allowing us to calculate synthetic spectra of both halos and elves. The models also include a detailed set of kinetic reactions to calculate the temporal evolution of other species. Our results suggest an important enhancement of some molecular species produced by halos, as NOx , N2 O and other metastable species. The quantification of their production could be useful to understand the role of thunderstorms in the climate of our planet. In the case of TLEs produced by NBP, our model confirms the appearance of double elves and allows us to compute their spectral characteristics.

  12. A comparison of lightning and nuclear electromagnetic pulse response of tactical shelters

    NASA Technical Reports Server (NTRS)

    Perala, R. A.; Rudolph, T. H.; Mckenna, P. M.

    1984-01-01

    The internal response (electromagnetic fields and cable responses) of tactical shelters is addressed. Tactical shelters are usually well-shielded systems. Apart from penetrations by signal and power lines, the main leakage paths to the interior are via seams and the environment control unit (ECU) honeycomb filter. The time domain in three-dimensional finite-difference technique is employed to determine the external and internal coupling to a shelter excited by nuclear electromagnetic pulses (NEMP) and attached lightning. The responses of interest are the internal electromagnetic fields and the voltage, current, power, and energy coupled to internal cables. Leakage through the seams and ECU filter is accomplished by their transfer impedances which relate internal electric fields to external current densities. Transfer impedances which were experimentally measured are used in the analysis. The internal numerical results are favorably compared to actual shelter test data under simulated NEMP illumination.

  13. Development and Application of a Low Frequency Near-Field Interferometric-TOA 3D Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    Lyu, F.; Cummer, S. A.; Weinert, J. L.; McTague, L. E.; Solanki, R.; Barrett, J.

    2014-12-01

    Lightning processes radiated extremely wideband electromagnetic signals. Lightning images mapped by VHF interferometry and VHF time of arrival lightning mapping arrays enable us to understand the lightning in-cloud detail development during the extent of flash that can not always be captured by cameras because of the shield of cloud. Lightning processes radiate electromagnetically over an extremely wide bandwidth, offering the possibility of multispectral lightning radio imaging. Low frequency signals are often used for lightning detection, but usually only for ground point location or thunderstorm tracking. Some recent results have demonstrated lightning LF 3D mapping of discrete lightning pulses, but imaging of continuous LF emissions have not been shown. In this work, we report a GPS-synchronized LF near field interferometric-TOA 3D lightning mapping array applied to image the development of lightning flashes on second time scale. Cross-correlation, as used in broadband interferometry, is applied in our system to find windowed arrival time differences with sub-microsecond time resolution. However, because the sources are in the near field of the array, time of arrival processing is used to find the source locations with a typical precision of 100 meters. We show that this system images the complete lightning flash structure with thousands of LF sources for extensive flashes. Importantly, this system is able to map both continuous emissions like dart leaders, and bursty or discrete emissions. Lightning stepped leader and dart leader propagation speeds are estimated to 0.56-2.5x105 m/s and 0.8-2.0x106 m/s respectively, which are consistent with previous reports. In many aspects our LF images are remarkably similar to VHF lightning mapping array images, despite the 1000 times difference in frequency, which may suggest some special links between the LF and VHF emission during lightning processes.

  14. Analysis and measurements of low frequency lightning component penetration through aerospace vehicle metal and graphite skins

    NASA Technical Reports Server (NTRS)

    Robb, J. D.; Chen, T.

    1980-01-01

    An analysis of the shielding properties of mixed metal and graphite composite structures has illustrated some important aspects of electromagnetic field penetration into the interior. These include: (1) that graphite access doors on metallic structures will attenuate lightning magnetic fields very little; conversely, metal doors on a graphite structure will also attenuate fields from lightning strike currents very little, i.e., homogeneity of the shield is a critical factor in shielding and (2) that continuous conductors between two points inside a graphite skin such as an air data probe metallic tubing connection to an air data computer can allow large current penetrations into a vehicle interior. The true weight savings resulting from the use of composite materials can only be evaluated after the resulting electromagnetic problems such as current penetrations have been solved, and this generally requires weight addition in the form of cable shields, conductor bonding or external metallization.

  15. Interaction of Electromagnetic Fields with Magnetized Plasmas

    DTIC Science & Technology

    1994-03-31

    ref. 1) and by Golde 3 (ref. 2). Two additional books, entirely on the subject of ball lightning, have been written by Singer (ref. 3) and by Barry...References 1. Martin A. Uman: Lightning, McGraw Hill Book Co. New York, N2Y. (1969), pp. £ 243-248. 2. R. H. Golde , Editor: Lightning: Vol. I. Physics of...ratio& moans with 9. A microwave aborpt ~on system. as defined in said varying .84118W field and absorb smid micro. claim X. wheretin said microwave

  16. The Cloud Effects Phase of the Laser Induced Lightning Investigation.

    DTIC Science & Technology

    1980-04-01

    electromagnetic sensors: Magnetic field derivative signals in excess of 17 Teslas /second were observed in one of the triggered discharges. Our studies on this...largest electromagnetic signals that we have ever measured with values of dB/dt in excess of 17 Teslas / second at distances in excess of 500 m...Natural lightning strikes to earth within 100 m of our measuring instruments have produced peak signals of only 5 Teslas /second during our measuring window

  17. Transient interaction model of electromagnetic field generated by lightning current pulses and human body

    NASA Astrophysics Data System (ADS)

    Iváncsy, T.; Kiss, I.; Szücs, L.; Tamus, Z. Á.

    2015-10-01

    The lightning current generates time-varying magnetic field near the down- conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated.

  18. UAVEMI Project: Numerical and Experimental EM Immunity Assessment of UAV for HIRF and Lightning Indirect Effects

    NASA Astrophysics Data System (ADS)

    Garcia, Salvador G.; Silvia, Ferran; Escot, David; Pascual, Enrique; Pantoja, Mario F.; Riu, Pere; Anon, Manuel; Alvarez, Jesus; Cabello, M.; Pous, Marc; Fernandez, Sergio; Trallero, Rafael; Poyatos, David; Nuno, Luis

    2016-05-01

    The UAVEMI project, funded by the Spanish Ministry of Economy and Competitiveness, gathers a consortium formed by several research and development institutions and one industrial partner. The main goal is to develop innovative experimental and numerical approaches for the assessment of the electromagnetic compatibility of unmanned air vehicles, under high intensity radiated fields, lightning indirect effects and non-nuclear electromagnetic pulses. This contribution describes the capabilities currently being developed under the project.

  19. Measurement and modeling of transfer functions for lightning coupling into the Sago mine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Marvin E.; Higgins, Matthew B.

    2007-04-01

    This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.

  20. A theoretical analysis of the electromagnetic environment of the AS330 super Puma helicopter external and internal coupling

    NASA Technical Reports Server (NTRS)

    Flourens, F.; Morel, T.; Gauthier, D.; Serafin, D.

    1991-01-01

    Numerical techniques such as Finite Difference Time Domain (FDTD) computer programs, which were first developed to analyze the external electromagnetic environment of an aircraft during a wave illumination, a lightning event, or any kind of current injection, are now very powerful investigative tools. The program called GORFF-VE, was extended to compute the inner electromagnetic fields that are generated by the penetration of the outer fields through large apertures made in the all metallic body. Then, the internal fields can drive the electrical response of a cable network. The coupling between the inside and the outside of the helicopter is implemented using Huygen's principle. Moreover, the spectacular increase of computer resources, as calculations speed and memory capacity, allows the modellization structures as complex as these of helicopters with accuracy. This numerical model was exploited, first, to analyze the electromagnetic environment of an in-flight helicopter for several injection configurations, and second, to design a coaxial return path to simulate the lightning aircraft interaction with a strong current injection. The E field and current mappings are the result of these calculations.

  1. 3D modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Pérez-Invernón, Francisco J.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.

    2017-04-01

    Atmospheric electricity is a common phenomenon in some planets of The Solar System. We know that atmospheric discharges exist on Earth and gaseous planets; however, some characteristics of lightning on Saturn and Jupiter as well as their relevance on the effects of lightning in the atmospheres of these planets are still unknown. In the case of Venus, there exist some radio evidences of lightning, but the lack of optical observations suggests exploring indirect methods of detection, such as searching for lightning-induced transient optical emissions from the upper atmosphere. The Akatsuki probe, currently orbiting Venus, is equipped with a camera whose temporal resolution is high enough to detect optical emissions from lightning discharges and to measure nightglow enhancements. In this work, we extend previous models [1,2] to investigate the chemical impact and transient optical emissions produced by possible lightning-emitted electromagnetic pulses (EMP) in Venus, Saturn and Jupiter. Using a 3D FDTD ("Finite Differences Time Domain") model we solve the Maxwell equations coupled with the Langevin equation for electrons [3] and with a kinetic scheme, different for each planetary atmosphere. This method is useful to investigate the temporal and spatial impact of lightning-induced electromagnetic fields in the atmosphere of each planet for different lightning characteristics (e.g. energy released, orientation). This 3D FDTD model allows us to include the saturnian and jovian background magnetic field inclination and magnitude at different latitudes, and to determine the effects of different lightning channel inclinations. Results provide useful information to interpret lightning observations on giant gaseous planets and in the search for indirect optical signals from atmospheric discharge on Venus such as fast nightglow transient enhancements related to lightning as seen on Earth. Furthermore, we underline the observation of electrical discharges characteristics as a powerful tool to obtain information about planetary atmospheres, such as density profiles of electrons or other components. Our model may also be useful to extend some studies about the chemical impact of EMP pulses in the terrestrial atmosphere [4]. References [1] Luque, A., D. Dubrovin, F. J. Gordillo-Vázquez, U. Ebert, F. C. Parra-Rojas, Y. Yair, and C. Price (2014), Coupling between atmospheric layers in gaseous giant planets due to lightning-generated electromagnetic pulses, J. Geophys. Res. (Space Phys), 119, 8705, doi: 10.1002/2014JA020457. [2] Pérez-Invernón, F. J., A. Luque, and F. J. Gordillo-Vázquez (2016), Mesospheric optical signatures of possible lightning on Venus, J. Geophys. Res. (Space Phys), 121, 7026, doi: 10.1029/2016JA022886. [3] Lee, J. H., and D. K. Kalluri (1999), Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma, IEEE Transactions on Antennas and Propagation, 47, 1146, doi:10.1109/8.785745. [4] Marshall, R. A., U. S. Inan, and V. S. Glukhov (2010), Elves and associated electron density changes due to cloud-to-ground and in-cloud lightning discharges, J. Geophys. Res. (Space Phys), 115, A00E17, doi:10.1029/2009JA014469.

  2. Toward a Time-Domain Fractal Lightning Simulation

    NASA Astrophysics Data System (ADS)

    Liang, C.; Carlson, B. E.; Lehtinen, N. G.; Cohen, M.; Lauben, D.; Inan, U. S.

    2010-12-01

    Electromagnetic simulations of lightning are useful for prediction of lightning properties and exploration of the underlying physical behavior. Fractal lightning models predict the spatial structure of the discharge, but thus far do not provide much information about discharge behavior in time and therefore cannot predict electromagnetic wave emissions or current characteristics. Here we develop a time-domain fractal lightning simulation from Maxwell's equations, the method of moments with the thin wire approximation, an adaptive time-stepping scheme, and a simplified electrical model of the lightning channel. The model predicts current pulse structure and electromagnetic wave emissions and can be used to simulate the entire duration of a lightning discharge. The model can be used to explore the electrical characteristics of the lightning channel, the temporal development of the discharge, and the effects of these characteristics on observable electromagnetic wave emissions.

  3. Aircraft Lightning Electromagnetic Environment Measurement

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  4. Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Smith, D. A.; LeVine, D. M.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The morphological difference between the electromagnetic radiation-field waveforms of "first" and "subsequent" return strokes in cloud-to-ground lightning flashes is well known and can be used to identify the formation of new channels to ground. This difference is generally believed due to the existence of branches on first-stroke channels, whereas subsequent strokes re-illuminate only the main channel of a previous stroke; but experimental evidence for this hypothesis is relatively weak. It has been argued for the influence of channel geometry on the fine structure of radiation from subsequent return strokes by comparing the field-change waveforms recorded at the same station from strokes within the same flash and between different flashes of both natural and triggered lightning. The present paper introduces new evidence for both of these hypotheses from a comparison of waveforms between sensors in different directions from the same stroke.

  5. Horizontal fields generated by return strokes

    NASA Technical Reports Server (NTRS)

    Cooray, Vernon

    1991-01-01

    Horizontal fields generated by return strokes play an important role in the interaction of lightning generated electric fields with power lines. In many of the recent investigations on the interaction of lightning electromagnetic fields with power lines, the horizontal field was calculated by employing the expression for the tilt of the electric field of a plane wave propagating over finitely conducting earth. The method is suitable for calculating horizontal fields generated by return strokes at distances as close as 200m. At these close ranges, the use of the wavetilt expression can cause large errors.

  6. Studies of the low-energy quasiparticle excitations in high-temperature superconducting cuprates with scanning tunneling spectroscopy and magnetization measurements

    NASA Astrophysics Data System (ADS)

    Boev, Ivan Krasimirov

    In the present PhD work, three sophisticated models based on the "Engineering" modeling approach have been utilized to conveniently describe and thoroughly analyze details of Lightning events at the CN Tower. Both the CN Tower and the Lightning Channel are represented by a number of connected in series Transmission Line sections in order to account for the variations in the shape of the tower and for plasma processes that take place within the Lightning Channel. A sum of two Heidler functions is used to describe the "uncontaminated" Return Stroke current, which is injected at the attachment point between the CN Tower and the Lightning Channel. Reflections and refractions at all points of mismatched impedances are considered until their contribution becomes less than 1% of the originally injected current wave. In the proposed models, the problem with the current discontinuity at the Lightning Channel front, commonly taken care of by introducing a "turn-on" term when computing radiation fields, is uniquely treated by introducing reflected and transmitted components. For the first time, variable speed of propagation of the Return Stroke current front has been considered and its influence upon the predicted current distributions along the whole Lightning Channel path and upon the radiated distant fields analyzed. Furthermore, as another novelty, computation of the electromagnetic field is accomplished in Cartesian Coordinates. This fact permits to relax the requirement on the verticality of the Lightning Channel, normally imposed in Cylindrical Coordinates. Therefore, it becomes possible to study without difficulty the influence of a slanted Lightning Channel upon the surrounding electromagnetic field. Since the proposed sophisticated Five-Section Model has the capability to represent very closely the structure of the CN Tower and to emulate faithfully the shape of, as well as physical processes within the Lightning Channel, it is believed to have the potential of truthfully reproducing observed fields. The developed modeling approach can be easily adapted to study the anticipated radiated fields at tall structures even before construction.

  7. The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions

    NASA Technical Reports Server (NTRS)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A self consistent and fully kinetic simulation of the interaction of lightning radiated electromagnetic (EM) pulses with the nighttime lower ionosphere indicates that optical emissions observable with conventional instruments would be excited. For example, emissions of the 1st and 2nd positive bands of N2 occur at rates reaching 7 x 10(exp 7) and 10(exp 7) cu cm/s respectively at 92 km altitude for a lightning discharge with an electric field E(sub 100) = 20 V/m (normalized to a 100 km distance). The maximum height integrated intensities of these emissions are 4 x 10(exp 7) and 6 x 10(exp 6) R respectively, lasting for approx. 50 micrometers.

  8. Electromagnetic Effects Harmonization Working Group (EEHWG) - Lightning Task Group : report on aircraft lightning strike data

    DOT National Transportation Integrated Search

    2002-07-01

    In 1995, in response to the lightning community's desire to revise the zoning criteria on aircraft, the Electromagnetic Effects Harmonization Working Group (EEHWG) decided that lightning attachments to aircraft causing damage should be studied and co...

  9. The state of technology in electromagnetic (RF) sensors (for lightning detection)

    NASA Technical Reports Server (NTRS)

    Shumpert, T. H.; Honnell, M. A.

    1979-01-01

    A brief overview of the radio-frequency sensors which were applied to the detection, isolation, and/or identification of the transient electromagnetic energy (sferics) radiated from one or more lightning discharges in the atmosphere is presented. Radio frequency (RF) characteristics of lightning discharges, general RF sensor (antenna) characteristics, sensors and systems previously used for sferic detection, electromagnetic pulse sensors are discussed. References containing extensive bibliographies concerning lightning are presented.

  10. Lightning electromagnetic radiation field spectra in the interval from 0.2 to 20 MHz

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Bailey, J. C.; Leteinturier, C.; Krider, E. P.

    1990-01-01

    New Fourier transforms of wideband time-domain electric fields (E) produced by lightning (recorded at the Kennedy Space Center during the summers of 1985 and 1987) were recorded in such a way that several different events in each lightning flash could be captured. Average HF spectral amplitudes for first return strokes, stepped-leader steps, and 'characteristic pulses' are given for significantly more events, at closer ranges, and with better spectral resolution than in previous literature reports. The method of recording gives less bias toward the first large event in the flash and thus yields a large sample of a wide variety of lightning processes. As a result, reliable composite spectral amplitudes are obtained for a number of different processes in cloud-to-ground lightning over the frequency interval from 0.2 to 20 MHz.

  11. Test Report: Direct and Indirect Lightning Effects on Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.

  12. Evidence for lightning on Venus

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.

    1992-01-01

    Lightning is an interesting phenomenon both for atmospheric and ionospheric science. At the Earth lightning is generated in regions where there is strong convection. Lightning also requires the generation of large charge-separation electric fields. The energy dissipated in a lightning discharge can, for example, result in chemical reactions that would not normally occur. From an ionospheric point of view, lightning generates a broad spectrum of electromagnetic radiation. This radiation can propagate through the ionosphere as whistler mode waves, and at the Earth the waves propagate to high altitudes in the plasmasphere where they can cause energetic particle precipitation. The atmosphere and ionosphere of Venus are quite different from those on the Earth, and the presence of lightning at Venus has important consequences for our knowledge of why lightning occurs and how the energy is dissipated in the atmosphere and ionosphere. As discussed here, it now appears that lightning occurs in the dusk local time sector at Venus.

  13. State-of-the-art methods for computing the electromagnetic interaction of lightning with aircraft

    NASA Technical Reports Server (NTRS)

    Eriksen, F. J.; Perala, R. A.; Corbin, J. C., Jr.

    1980-01-01

    Nuclear electromagnetic pulse (NEMP) coupling codes and methods are evaluated and summarized. The differences between NEMP and lightning interaction with aircraft are discussed and critical parameters peculiar to lightning are examined.

  14. A Ball Lightning Model as a Possible Explanation of Recently Reported Cavity Lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryberger, David; /SLAC

    The salient features of cavity lights, in particular, mobile luminous objects (MLO's), as have been experimentally observed in superconducting accelerator cavities, are summarized. A model based upon standard electromagnetic interactions between a small particle and the 1.5 GHz cavity excitation field is described. This model can explain some features of these data, in particular, the existence of particle orbits without wall contact. While this result is an important success for the model, it is detailed why the model as it stands is incomplete. It is argued that no avenues for a suitable extension of the model through established physics appearmore » evident, which motivates an investigation of a model based upon a more exotic object, ball lightning. As discussed, further motivation derives from the fact that there are significant similarities in many of the qualitative features of ball lightning and MLO's, even though they appear in quite different circumstances and differ in scale by orders of magnitude. The ball lightning model, which incorporates electromagnetic charges and currents, is based on a symmetrized set of Maxwell's equations in which the electromagnetic sources and fields are characterized by a process called dyality rotation. It is shown that a consistent mathematical description of dyality rotation as a physical process can be achieved by adding suitable (phenomenological) current terms to supplement the usual current terms in the symmetrized Maxwell's equations. These currents, which enable the conservation of electric and magnetic charge, are called vacuum currents. It is shown that the proposed ball lightning model offers a good qualitative explanation of the perplexing aspects of the MLO data. Avenues for further study are indicated.« less

  15. International Aerospace and Ground Conference on Lightning and Static Electricity, 10th, and Congres International Aeronautique, 17th, Paris, France, June 10-13, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    1985-12-01

    The conference presents papers on statistical data and standards, coupling and indirect effects, meteorology and thunderstorm studies, lightning simulators, fuel ignition hazards, the phenomenology and characterization of lightning, susceptibility and protection of avionics, ground systems protection, lightning locators, aircraft systems protection, structures and materials, electrostatics, and spacecraft protection against static electricity. Particular attention is given to a comparison of published HEMP and natural lightning on the surface of an aircraft, electromagnetic interaction of external impulse fields with aircraft, of thunderstorm currents and lightning charges at the NASA Kennedy Space Center, the design of a fast risetime lightning generator, lightning simulation tests in FAA CV-580 lightning research aircraft, and the energy requirements of an aircraft triggered discharge. Papers are also presented on aircraft lightning attachment at low altitudes, a new form of transient suppressor, a proving ground for lightning research, and a spacecraft materials test in a continuous, broad energy-spectrum electron beam.

  16. Electromagnetic environmental criteria for US Army missile systems - EMC, EMR, EMI, EMP, ESD, and lightning

    NASA Astrophysics Data System (ADS)

    Ponds, Charles D.; Knaur, James A.

    1988-01-01

    This paper presents the design and test requirements in developing an electromagnetic compatibility missile system. Environmental levels are presented for electromagnetic radiation hazards, electromagnetic radiation operational, electrostatic discharge, lightning, and electromagnetic pulse (nuclear). Testing techniques and facility capabilities are presented for research and development testing of missile systems.

  17. An automatic locating system for cloud-to-ground lightning. [which utilizes a microcomputer

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Pifer, A. E.; Uman, M. A.

    1980-01-01

    Automatic locating systems which respond to cloud to ground lightning and which discriminate against cloud discharges and background noise are described. Subsystems of the locating system, which include the direction finder and the position analyzer, are discussed. The direction finder senses the electromagnetic fields radiated by lightning on two orthogonal magnetic loop antennas and on a flat plate electric antenna. The position analyzer is a preprogrammed microcomputer system which automatically computes, maps, and records lightning locations in real time using data inputs from the direction finder. The use of the locating systems for wildfire management and fire weather forecasting is discussed.

  18. A statistical study over Europe of the relative locations of lightning and associated energetic burst of electrons from the radiation belt

    NASA Astrophysics Data System (ADS)

    Bourriez, F.; Sauvaud, J.-A.; Pinçon, J.-L.; Berthelier, J.-J.; Parrot, M.

    2016-02-01

    The DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) spacecraft detects short bursts of lightning-induced electron precipitation (LEP) simultaneously with newly injected upgoing whistlers. The LEP occurs within < 1 s of the causative lightning discharge. First in situ observations of the size and location of the region affected by the LEP precipitation are presented on the basis of a statistical study made over Europe using the DEMETER energetic particle detector, wave electric field experiment, and networks of lightning detection (Météorage, the UK Met Office Arrival Time Difference network (ATDnet), and the World Wide Lightning Location Network (WWLLN)). The LEP is shown to occur significantly north of the initial lightning and extends over some 1000 km on each side of the longitude of the lightning. In agreement with models of electron interaction with obliquely propagating lightning-generated whistlers, the distance from the LEP to the lightning decreases as lightning proceed to higher latitudes.

  19. Experimental and analytic studies of the triggered lightning environment of the F106B

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence; Easterbrook, Calvin C.; Ng, Poh H.; Haupt, Robert W.; Perala, Rodney A.

    1987-01-01

    The triggered lightning environment of the F106B aircraft is investigated. Scale modeling of the F106B with a metallized model was done to measure electric field enhancement factors on the aircraft and on canonically shaped conducting objects. These are then compared to numerically determined quantities. Detailed numerical modeling is done of the development of the triggered lightning channel. This is done using nonlinear air chemistry models to model a variety of physical phenomena which occur in a triggered lightning event. The effect of a triggered lightning strike on internal wires in the F106B is investigated using finite difference models and transmission line models to calculate the electromagnetic coupling of lightning currents through seams and joints of the aircraft to internal cables. Time domain waveforms are computed and compared to measured waveforms. The effect of thunderstorm particles on the initial triggering of a lightning strike is investigated. The electric field levels needed to cause air breakdown in the presence and absence of thunderstorm particles are calculated. This is done as a function of the size, shape, and density of the particles.

  20. Lightning and middle atmospheric discharges in the atmosphere

    NASA Astrophysics Data System (ADS)

    Siingh, Devendraa; Singh, R. P.; Kumar, Sarvan; Dharmaraj, T.; Singh, Abhay K.; Singh, Ashok K.; Patil, M. N.; Singh, Shubha

    2015-11-01

    Recent development in lightning discharges including transient luminous events (TLEs) and global electric circuit are discussed. Role of solar activity, convective available potential energy, surface temperature and difference of land-ocean surfaces on convection process are discussed. Different processes of discharge initiation are discussed. Events like sprites and halos are caused by the upward quasi-electrostatic fields associated with intense cloud-to-ground discharges while jets (blue starter, blue jet, gigantic jet) are caused by charge imbalance in thunderstorm during lightning discharges but they are not associated with a particular discharge flash. Elves are generated by the electromagnetic pulse radiated during lightning discharges. The present understanding of global electric circuit is also reviewed. Relation between lightning activity/global electric circuit and climate is discussed.

  1. Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters

    NASA Astrophysics Data System (ADS)

    Price, Colin; Melnikov, Alexander

    2004-09-01

    The Schumann resonances (SR) represent an electromagnetic phenomenon in the Earth's atmosphere related to global lightning activity. The spectral characteristics of the SR modes are defined by their resonant mode amplitude, center frequency and half-width (Q-factor). Long-term (4 years) diurnal and seasonal variations of these parameters are presented based on measurements at a field site in the Negev desert, Israel. Variations of the different modes (8, 14 and 20Hz) and the different electromagnetic components (Hns, Hew and Ez) are presented. The power variations of the various modes and components show three dominant maxima in the diurnal cycle related to lightning activity in south-east Asia (0800UT), Africa (1400UT) and South America (2000UT). The largest global lightning activity occurs during the northern hemisphere summer (JJA) with the southern hemisphere summer (DJF) having the least lightning around the globe. The frequency and half-width (Q-factor) variations of the different modes and SR components are fairly complicated in structure, and will need additional theoretical work to explain their variations. However, the frequency variations are in excellent agreement with previous studies, implying that the frequency variations are robust features of the SR. The inter-annual variability of global lightning activity is shown to vary differently for each of the three major source regions of global lightning.

  2. Application of triggered lightning numerical models to the F106B and extension to other aircraft

    NASA Technical Reports Server (NTRS)

    Ng, Poh H.; Dalke, Roger A.; Horembala, Jim; Rudolph, Terence; Perala, Rodney A.

    1988-01-01

    The goal of the F106B Thunderstorm Research Program is to characterize the lightning environment for aircraft in flight. This report describes the application of numerical electromagnetic models to this problem. Topics include: (1) Extensive application of linear triggered lightning to F106B data; (2) Electrostatic analysis of F106B field mill data; (3) Application of subgrid modeling to F106B nose region, including both static and nonlinear models; (4) Extension of F106B results to other aircraft of varying sizes and shapes; and (5) Application of nonlinear model to interaction of F106B with lightning leader-return stroke event.

  3. The Sandia transportable triggered lightning instrumentation facility

    NASA Technical Reports Server (NTRS)

    Schnetzer, George H.; Fisher, Richard J.

    1991-01-01

    Development of the Sandia Transportable Triggered Lightning Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of a munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a lightning response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered lightning test site. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck of by aircraft, and its instrumentation for measuring incident lightning channel currents and the responses of the systems under test. Measurements of return-stroke current peaks obtained with the SATTLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within approximately 7 percent. Continuing currents were measured with a resolution of approximately 2.5 A. This field trial demonstrated the practicality of using a transportable triggered lightning facility for specialized test applications.

  4. Electromagnetic Model Of A Lightning Dart Leader In The Earth Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordeev, A. V.; Losseva, T. V.

    2006-01-15

    The fundamentally new approach to the lightning step and dart leaders structure model is suggested, which shows a possibility of the drift propagation for the electrons in a plasma channel. Appearance of the strong Hall electric field in the current channel by the account of the magnetic field can result in the generation of the relativistic drifting electrons to be held in the channel due to the magnetic self-insulation effect. The range of the measured x-ray emission from the lightning channel 30-250 keV, which corresponds to the measured current value 4-11 kA, is in a reasonably good agreement with themore » estimates made in the framework of presented model.« less

  5. D region disturbances caused by electromagnetic pulses from lightning

    NASA Technical Reports Server (NTRS)

    Rodriguez, Juan V.; Inan, Umran S.; Bell, Timothy F.

    1992-01-01

    Attention is given to a simple formulation of the propagation and absorption in a magnetized collisional plasma of EM pulses from lightning which describes the effect of discharge orientation and radiated electric field on the structure and magnitude of heating and secondary ionization in the D region. Radiation from most lightning discharges can heat substantially, but only the most intense (not less than 20 V/m) are likely to cause ionization enhancements not less than 10 percent of the ambient in a single ionization cycle. This dependence on the radiated electric field is modified by the discharge radiation pattern: a horizontal cloud discharge tends to cause larger heating and ionizaton maxima while a vertical return stroke causes disturbances of a larger horizontal extent.

  6. The likelihood of winter sprites over the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Price, Colin; Burrows, William; King, Patrick

    2002-11-01

    With the recent introduction of the Canadian Lightning Detection Network (CLDN), it was revealed that during the winter months every year, the highest lightning activity within the network occurs over the Gulf Stream, southeast of Nova Scotia. These storms over the Gulf Stream, in addition to being of importance to trans-Atlantic shipping and aviation, have an unusually high fraction of positive polarity lightning, with unusually large peak currents. Such intense positive lightning flashes are known to generate transient luminous events (TLEs) such as sprites and elves in the upper atmosphere. It is found that many of these large positive discharges produce extremely low frequency (ELF) electromagnetic radiation detected at a field station in the Negev Desert, Israel, 8000 km away, in agreement with previously documented sprite observations. Since these winter storms occur in the same location every year, it provides a good opportunity for field experiments focused on studying winter sprites and oceanic thunderstorms.

  7. Thunderstorm hazards flight research: Storm hazards 1980 overview

    NASA Technical Reports Server (NTRS)

    Deal, P. L.; Keyser, G. L.; Fisher, B. D.; Crabill, N. L.

    1981-01-01

    A highly instrumented NASA F-106B aircraft, modified for the storm hazards mission and protected against direct lightning strikes, was used in conjunction with various ground based radar and lightning measurement systems to collect data during thunderstorm penetration flights. During 69 thunderstorm penetrations, there were 10 direct lightning strikes to the aircraft. No problems were encountered with any of the aircraft's systems as a result of the strikes and the research instrumentation performed as designed. Electromagnetic characteristics of nine strikes were recorded, and the results of other experiments confirm the theory that X-ray radiation and nitrous oxide gas are being produced by processes associated directly with thunderstorm electric fields and lightning discharges. A better understanding of aircraft lightning attachment mechanisms and strike zones is being accomplished by careful inspection, identification, and documentation of lightning attachment points and swept stroke paths following each strike to the aircraft.

  8. Lightning Technology: Proceedings of a Technical Symposium

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several facets of lightning technology are considered including phenomenology, measurement, detection, protection, interaction, and testing. Lightning electromagnetics, protection of ground systems, and simulated lightning testing are emphasized. The lightning-instrumented F-106 aircraft is described.

  9. Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Defining the electromagnetic environment inside a graphite composite fairing due to near-by lightning strikes is of interest to spacecraft developers. This effort develops a transmission-line-matrix (TLM) model with a CST Microstripes to examine induced voltages. on interior wire loops in a composite fairing due to a simulated near-by lightning strike. A physical vehicle-like composite fairing test fixture is constructed to anchor a TLM model in the time domain and a FEKO method of moments model in the frequency domain. Results show that a typical graphite composite fairing provides adequate shielding resulting in a significant reduction in induced voltages on high impedance circuits despite minimal attenuation of peak magnetic fields propagating through space in near-by lightning strike conditions.

  10. The peak electromagnetic power radiated by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Guo, C.

    1983-01-01

    Estimates of the peak electromagnetic (EM) power radiated by return strokes have been made by integrating the Poynting vector of measured fields over an imaginary hemispherical surface that is centered on the lightning source, assuming that ground losses are negligible. Values of the peak EM power from first and subsequent strokes have means and standard deviations of 2 + or - 2 x 10 to the 10th and 3 + or - 4 x 10 to the 9th W, respectively. The average EM power that is radiated by subsequent strokes, at the time of the field peak, is about 2 orders of magnitude larger than the optical power that is radiated by these strokes in the wavelength interval from 0.4 to 1.1 micron; hence an upper limit to the radiative efficiency of a subsequent stroke is of the order of 1 percent or less at this time.

  11. Development of a monitoring network for lightning stokes accompanying the eruptions of the Northern group of volcanoes on Kamchatka peninsula

    NASA Astrophysics Data System (ADS)

    Mochalov, V. A.; Firstov, P. P.; Cherneva, N. V.; Sannikov, D. V.; Akbashev, R. R.; Uvarov, V. N.; Shevtsov, B. M.; Druzhin, G. I.; Mochalova, A. V.

    2017-11-01

    In the region of the Northern group of volcanoes in Kamchatka peninsula, a distributed network is being planned to monitor the VLF range electromagnetic radiation and to locate the lightning strokes. It will allow the researchers to register weaker electromagnetic pulses from lightning strokes in comparison to the World Wide Lightning Location Network. The hardware-software complex of the network under construction is presented. The capabilities of the available and the developing hardware and software to investigate natural phenomena associated with lightning activity are described.

  12. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  13. F-106 data summary and model results relative to threat criteria and protection design analysis

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Finelli, G. B.; Perala, R. A.; Rudolph, T. H.

    1986-01-01

    The NASA F-106 has acquired considerable data on the rates-of-change of electromagnetic parameters on the aircraft surface during 690 direct lightning strikes while penetrating thunderstorms at altitudes ranging from 15,000 to 40,000 feet. These in-situ measurements have provided the basis for the first statistical quantification of the lightning electromagnetic threat to aircrat appropriate for determining lightning indirect effects on aircraft. The data are presently being used in updating previous lightning criteria and standards developed over the years from ground-based measurements. The new lightning standards will, therefore, be the first which reflect actual aircraft responses measured at flight altitudes. The modeling technique developed to interpret and understand the direct strike electromagnetic data acquired on the F-106 provides a means to model the interaction of the lightning channel with the F-106. The reasonable results obtained with the model, compared to measured responses, yield confidence that the model may be credibly applied to other aircraft types and uses in the prediction of internal coupling effects in the design of lightning protection for new aircraft.

  14. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  15. Estimation of the Lithospheric Component Share in the Earth Natural Pulsed Electromagnetic Field Structure

    NASA Astrophysics Data System (ADS)

    Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.

    2017-04-01

    Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.

  16. New methods and results for quantification of lightning-aircraft electrodynamics

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.; Lee, Larry D.; Perala, Rodney A.; Rudolph, Terence H.

    1987-01-01

    The NASA F-106 collected data on the rates of change of electromagnetic parameters on the aircraft surface during over 700 direct lightning strikes while penetrating thunderstorms at altitudes from 15,000 t0 40,000 ft (4,570 to 12,190 m). These in situ measurements provided the basis for the first statistical quantification of the lightning electromagnetic threat to aircraft appropriate for determining indirect lightning effects on aircraft. These data are used to update previous lightning criteria and standards developed over the years from ground-based measurements. The proposed standards will be the first which reflect actual aircraft responses measured at flight altitudes. Nonparametric maximum likelihood estimates of the distribution of the peak electromagnetic rates of change for consideration in the new standards are obtained based on peak recorder data for multiple-strike flights. The linear and nonlinear modeling techniques developed provide means to interpret and understand the direct-strike electromagnetic data acquired on the F-106. The reasonable results obtained with the models, compared with measured responses, provide increased confidence that the models may be credibly applied to other aircraft.

  17. Monitoring lightning from space with TARANIS

    NASA Astrophysics Data System (ADS)

    Farges, T.; Blanc, E.; Pinçon, J.

    2010-12-01

    Some recent space experiments, e.g. OTD, LIS, show the large interest of lightning monitoring from space and the efficiency of optical measurement. Future instrumentations are now defined for the next generation of geostationary meteorology satellites. Calibration of these instruments requires ground truth events provided by lightning location networks, as NLDN in US, and EUCLID or LINET in Europe, using electromagnetic observations at a regional scale. One of the most challenging objectives is the continuous monitoring of the lightning activity over the tropical zone (Africa, America, and Indonesia). However, one difficulty is the lack of lightning location networks at regional scale in these areas to validate the data quality. TARANIS (Tool for the Analysis of Radiations from lightNings and Sprites) is a CNES micro satellite project. It is dedicated to the study of impulsive transfers of energy, between the Earth atmosphere and the space environment, from nadir observations of Transient Luminous Events (TLEs), Terrestrial Gamma ray Flashes (TGFs) and other possible associated emissions. Its orbit will be sun-synchronous at 10:30 local time; its altitude will be 700 km. Its lifetime will be nominally 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths: X and gamma-ray detectors, optical cameras and photometers, electromagnetic wave sensors from DC to 30 MHz completed by high energy electron detectors. The optical instrument includes 2 cameras and 4 photometers. All sensors are equipped with filters for sprite and lightning differentiation. The filters of cameras are designed for sprite and lightning observations at 762 nm and 777 nm respectively. However, differently from OTD or LIS instruments, the filter bandwidth and the exposure time (respectively 10 nm and 91 ms) prevent lightning optical observations during daytime. The camera field of view is a square of 500 km at ground level with a spatial sampling frequency of about 1 km. One of the photometers will measure precisely the lightning radiance in a wide spectral range from 600 to 900 nm with a sampling frequency of 20 kHz. We suggest using the Event and mainly Survey mode of MCP instrument to monitor lightning activity and compare it to the geostationary satellite lightning mapper data. In the Event mode, data are recorded with their highest resolution. In the camera survey mode, every image is archived using a specific compression algorithm. The photometer Survey mode consists in decimating the data by a factor of 10 and to reduce the data dynamic. However, it remains well adapted to provide a good continuous characterization of lightning activity. The use of other instruments for example 0+ whistler detector will complete the lightning characterization.

  18. Elves and associated electron density changes due to cloud-to-ground and in-cloud lightning discharges

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Inan, U. S.; Glukhov, V. S.

    2010-04-01

    A 3-D finite difference time domain model is used to simulate the lightning electromagnetic pulse (EMP) and its interaction with the lower ionosphere. Results agree with the frequently observed, doughnut-shaped optical signature of elves but show that the structure exhibits asymmetry due to the presence of Earth's ambient magnetic field. Furthermore, in-cloud (horizontal) lightning channels produce observable optical emissions without the doughnut shape and, in fact, produce a much stronger optical output for the same channel current. Electron density perturbations associated with elves are also calculated, with contributions from attachment and ionization. Results presented as a function of parameters such as magnetic field direction, dipole current orientation, altitude and amplitude, and ambient ionospheric density profile demonstrate the highly nonlinear nature of the EMP-ionosphere interaction. Ionospheric effects of a sequence of in-cloud discharges are calculated, simulating a burst of in-cloud lightning activity and resulting in large density changes in the overlying ionosphere.

  19. Lightning on Venus inferred from whistler-mode waves in the ionosphere.

    PubMed

    Russell, C T; Zhang, T L; Delva, M; Magnes, W; Strangeway, R J; Wei, H Y

    2007-11-29

    The occurrence of lightning in a planetary atmosphere enables chemical processes to take place that would not occur under standard temperatures and pressures. Although much evidence has been reported for lightning on Venus, some searches have been negative and the existence of lightning has remained controversial. A definitive detection would be the confirmation of electromagnetic, whistler-mode waves propagating from the atmosphere to the ionosphere. Here we report observations of Venus' ionosphere that reveal strong, circularly polarized, electromagnetic waves with frequencies near 100 Hz. The waves appear as bursts of radiation lasting 0.25 to 0.5 s, and have the expected properties of whistler-mode signals generated by lightning discharges in Venus' clouds.

  20. Ionospheric density perturbations recorded by DEMETER above intense thunderstorms

    NASA Astrophysics Data System (ADS)

    Parrot, M.; Sauvaud, J. A.; Soula, S.; PinçOn, J. L.; Velde, O.

    2013-08-01

    (Detection of Electromagnetic Emissions Transmitted From Earthquake Regions) was a three-axis stabilized Earth-pointing spacecraft launched on 29 June 2004 into a low-altitude (710 km) polar and circular orbit that was subsequently lowered to 650 km until the end of the mission in December 2010. DEMETER measured electromagnetic waves all around the Earth, except in the auroral zones (invariant latitude >65°). The frequency range for the electric field was from DC up to 3.5 MHz, and for the magnetic field, it was from a few hertz up to 20 kHz. At its altitude, the phenomena observed on the E field and B field spectrograms recorded during nighttime by the satellite in the very low frequency range are mainly dominated by whistlers. In a first step, the more intense whistlers have been searched. They correspond to the most powerful lightning strokes occurring below DEMETER. Then, it is shown that this intense lightning activity is able to perturb the electron and ion densities at the satellite altitude (up to 133%) during nighttime. These intense lightning strokes are generally associated with transient luminous events, and one event with many sprites recorded on 17 November 2006 above Europe is reported. Examining the charged particle precipitation, it is shown that this density enhancement in the high ionosphere can be related to the energetic particle precipitation induced by the strong whistlers emitted during a long-duration thunderstorm activity at the same location.

  1. Mini Array for TLE Detection

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Liu, Z.; Koh, K.; Mezentsev, A.; Pedeboy, S.; Soula, S.; Sugier, J.; Enno, S. E.; Rycroft, M. J.

    2016-12-01

    Transient Luminous Events (TLEs) can generate electromagnetic radiation at frequencies 100 kHz (Qin et al., 2012, Fullekrug et al., 2013) and <1 kHz (Pasko et al., GRL, 1998, Cummer et al., GRL, 1998)as a result of the splitting and exponential growth of streamer discharges (Pasko, JGR, 2010, McHarg, JGR, 2010). The electromagnetic radiation results from the coherent superposition of the very weak signalsfrom thousands of small scale streamer discharges at 40 km height for frequencies 100 kHz and at 80 km height for frequencies <1 kHz. It seems therefore plausible that TLEs can also generate electromagnetic waves at intermediate heights, e.g. 60 km with frequencies between 1-100 kHz, e.g., 10 kHz. However, this frequency range is dominated by the powerful electromagnetic radiation from return strokes and it is hence commonly thought that this radiation can not easily be detectedwith single radio receivers. This study proposes to search for electromagnetic radiation from TLEsabove thunderclouds by use of a mini array that has the ability to determine the elevation angle toward the radiation source. Mini arrays with small apertures are used for infrasonic and seismic studies to determine source mechanisms and properties of the medium through which the waves propagate. For the detection of electromagneticradiation, the array processing is adapted for the fast propagationat the speed of light. Here we report for the first time the detection and mapping of distant lightning strokes in the sky with a mini array located near Bath in the UK. The array has a baseline to wavelength ratio 4.2 10^{-2} to record electromagnetic waves from 2-18 kHz. It is found that the mini array detects 69 lightning strokes per second from cloud-to-ground and in-cloud discharges, even though the parent thunderstorms are 900-1,100 km away and a rigorous selection criterion based on the spatial coherency of the electromagnetic source field across the array is used. About 14% of the lightning strokes appear at larger elevation angles in the sky than the remaining 86% of lightning strokes as the result of birefringent subionospheric wave propagation attributed to ordinary and extra-ordinary waves. These results imply that mini arrays can be used to detect electromagnetic radiation from TLEs above thunderclouds in different frequency ranges.

  2. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, K. P.

    1986-01-01

    Data obtained from UHF Radar observation of direct-lightning strikes to the NASA F-106B airplane have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero volts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The new system was implemented with four shutter-type field mills located at strategic points on the airplane. The bandwidth of the new system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 Hz to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite-difference time-domain electromagnetic computer code.

  3. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, Klaus P.

    1989-01-01

    Data obtained from UHF radar observation of direct-lightning strikes to the NASA F-106B aircraft have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero bolts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The system was implemented with four shutter-type field mills located at strategic points on the aircraft. The bandwidth of the system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite difference time-domain electromagnetic computer code.

  4. A method for estimating the probability of lightning causing a methane ignition in an underground mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacks, H.K.; Novak, T.

    2008-03-15

    During the past decade, several methane/air explosions in abandoned or sealed areas of underground coal mines have been attributed to lightning. Previously published work by the authors showed, through computer simulations, that currents from lightning could propagate down steel-cased boreholes and ignite explosive methane/air mixtures. The presented work expands on the model and describes a methodology based on IEEE Standard 1410-2004 to estimate the probability of an ignition. The methodology provides a means to better estimate the likelihood that an ignition could occur underground and, more importantly, allows the calculation of what-if scenarios to investigate the effectiveness of engineering controlsmore » to reduce the hazard. The computer software used for calculating fields and potentials is also verified by comparing computed results with an independently developed theoretical model of electromagnetic field propagation through a conductive medium.« less

  5. Data and results of a laboratory investigation of microprocessor upset caused by simulated lightning-induced analog transients

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.

    1984-01-01

    Advanced composite aircraft designs include fault-tolerant computer-based digital control systems with thigh reliability requirements for adverse as well as optimum operating environments. Since aircraft penetrate intense electromagnetic fields during thunderstorms, onboard computer systems maya be subjected to field-induced transient voltages and currents resulting in functional error modes which are collectively referred to as digital system upset. A methodology was developed for assessing the upset susceptibility of a computer system onboard an aircraft flying through a lightning environment. Upset error modes in a general-purpose microprocessor were studied via tests which involved the random input of analog transients which model lightning-induced signals onto interface lines of an 8080-based microcomputer from which upset error data were recorded. The application of Markov modeling to upset susceptibility estimation is discussed and a stochastic model development.

  6. Lightning induced inappropriate ICD shock: an unusual case of electromagnetic interference.

    PubMed

    Anderson, Daniel R; Gillberg, Jeffrey M; Torrey, Jeffrey W; Koneru, Jayanthi N

    2012-06-01

    An unusual case of electromagnetic interference is presented. As a result of a lightning shock to a Shower House, our patient received two shocks. An elucidation of the different mechanisms for the two shocks is presented. ©2010, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  7. Relationship Between the Electromagnetic Wave Energy Coupled by Overhead Lines and the Radiation Source Current Explored in the Laboratory

    NASA Astrophysics Data System (ADS)

    Li, Xiangchao; Wan, Zhicheng

    2018-04-01

    In order to solve the damage and interference problems to the electronic devices, which are induced by overvoltage excited by the coupling process between lightning electromagnetic wave and overhead lines, the lightning channel is set to be equivalent to a radiant wire antenna. Based on the integration model of lightning return stroke channel, transmission line, and ground, we take advantage of the derived formula gotten from the transmission line model. By combing the theoretical and experimental methods, we conduct a comparative analysis on the coupling process between natural/simulated lightning and overhead line. Besides, we also calculate the amplitude and energy of overvoltage, which is caused by the coupling process between lightning electromagnetic wave and overhead lines. Upon these experimental results, we can draw several conclusions as follows: when the amplitude of the lightning current in the channel is between 5 kA and 41 kA, it takes on an excellent linear relation between the amplitude of overvoltage and the magnitude of the lightning current, the relation between coupling energy and magnitude of the lightning current takes on an exponential trend. When lightning wave transmits on the transmission lines, the high-order mode will be excited. Through analysis on the high-order mode's characteristics, we find that the theoretical analysis is consistent with the experimental results, which has a certain reference value to the protection on overhead lines.

  8. Physical mechanism of initial breakdown pulses and narrow bipolar events in lightning discharges

    NASA Astrophysics Data System (ADS)

    da Silva, Caitano L.; Pasko, Victor P.

    2015-05-01

    To date the true nature of initial breakdown pulses (IBPs) and narrow bipolar events (NBEs) in lightning discharges remains a mystery. Recent experimental evidence has correlated IBPs to the initial development of lightning leaders inside the thundercloud. NBE wideband waveforms resemble classic IBPs in both amplitude and duration. Most NBEs are quite peculiar in the sense that very frequently they occur in isolation from other lightning processes. The remaining fraction, 16% of positive polarity NBEs, according to Wu et al. (2014), happens as the first event in an otherwise regular intracloud lightning discharge. These authors point out that the initiator type of NBEs has no difference with other NBEs that did not start lightning, except for the fact that they occur deeper inside the thunderstorm (i.e., at lower altitudes). In this paper, we propose a new physical mechanism to explain the source of both IBPs and NBEs. We propose that IBPs and NBEs are the electromagnetic transients associated with the sudden (i.e., stepwise) elongation of the initial negative leader extremity in the thunderstorm electric field. To demonstrate our hypothesis a novel computational/numerical model of the bidirectional lightning leader tree is developed, consisting of a generalization of electrostatic and transmission line approximations found in the literature. Finally, we show how the IBP and NBE waveform characteristics directly reflect the properties of the bidirectional lightning leader (such as step length, for example) and amplitude of the thunderstorm electric field.

  9. The propagation of GPS signals through electrically charged plumes

    NASA Astrophysics Data System (ADS)

    Méndez Harper, J.; Steffes, P. G.; Dufek, J.

    2017-12-01

    Probing the interior dynamics of eruptive columns using electrostatic processes generated within the flows themselves has garnered much interest in the recent years. Indeed, large eruptions are often accompanied by brilliant displays of lightning, testifying to the high potentials that can be accumulated by a diverse set of electrification mechanisms. Unfortunately, lightning on its own cannot be used as a general remote sensing tool because not all volcanic eruptions produce spark discharges. As pointed out by McNutt and Williams, 2010, only 30-35% of volcanoes maintain lightning storms. The absence of lightning in two thirds of all eruptions indicates that most volcanoes produce flows with 1) inefficient or limited granular charging processes or 2) dynamics that do not promote the charge separation that sets up coherent electric fields needed for lightning. Yet, even if the prerequisites for spark discharges are not met, it is difficult to argue for plumes which are completely electrostatically neutral. The problems permeating passive electromagnetic sensing may be overcome through the use of active methods which involve interrogating charged volcanic plumes with electromagnetic radiation. The scattering of electromagnetic waves has been a common method to retrieve the physical properties of collections of particles, specifically those which cannot be accessed directly. By modifying the standard Mie formulation, Klavcka et al., 2007 showed that surface charge may influence the extinction properties of grains if such particles are much smaller than the wavelength of the incident radiation. Based on this model, we posit that the properties of charged clouds of particles can be readily assessed using robust, existing infrastructure-the Global Positioning System. In the present work, we numerically explore the manner in which electrostatic charge on particles affect the propagation of electromagnetic waves through volcanic plumes. We show that, for the range of complex dielectric constants measured in volcanic ash, the extinction efficiency of a charged particle is significantly larger than that associated with an equivalent neutral particle. Thus, this work represents the theoretical framework for a new method to explore charging in volcanic plumes.

  10. Evaluation of Transient Pin-Stress Requirements for Spacecraft Launching in Lightning Environments. Pain Free Analysis to Alleviate Those Pin Stress Headaches

    NASA Technical Reports Server (NTRS)

    Edwards, Paul; Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.

  11. Laboratory modeling and analysis of aircraft-lightning interactions

    NASA Technical Reports Server (NTRS)

    Turner, C. D.; Trost, T. F.

    1982-01-01

    Modeling studies of the interaction of a delta wing aircraft with direct lightning strikes were carried out using an approximate scale model of an F-106B. The model, which is three feet in length, is subjected to direct injection of fast current pulses supplied by wires, which simulate the lightning channel and are attached at various locations on the model. Measurements are made of the resulting transient electromagnetic fields using time derivative sensors. The sensor outputs are sampled and digitized by computer. The noise level is reduced by averaging the sensor output from ten input pulses at each sample time. Computer analysis of the measured fields includes Fourier transformation and the computation of transfer functions for the model. Prony analysis is also used to determine the natural frequencies of the model. Comparisons of model natural frequencies extracted by Prony analysis with those for in flight direct strike data usually show lower damping in the in flight case. This is indicative of either a lightning channel with a higher impedance than the wires on the model, only one attachment point, or short streamers instead of a long channel.

  12. Nonlinear FDTD Analysis of Lightning-Generated Sferics

    NASA Astrophysics Data System (ADS)

    Erdman, A.; Moore, R. C.

    2017-12-01

    Lightning strikes are extremely powerful natural events producing wideband electromagnetic waves. The EMP radiation and quasi-electrostatic field changes from powerful lightning discharges are capable of directly heating and ionizing the lower ionosphere. These changes to the electrical parameters of the lower ionosphere in turn modify the way different components of the wideband sferic propagate through and reflect from the lower ionosphere. Here we present the results of a new FDTD model that utilizes a 2D cylindrically symmetric grid with second-order accurate centered-difference differentials to evaluate a large number of chemical reactions pertinent to the D-region in order to update the electron density and conductivity every iteration. Using this model, we are able to evaluate the impact of lightning strikes of varying magnitude and analyze the role of ionospheric self-action in changing in the sferic waveform observed on the ground.

  13. New Physical Mechanism for Lightning

    NASA Astrophysics Data System (ADS)

    Artekha, Sergey N.; Belyan, Andrey V.

    2018-02-01

    The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm activity is analyzed. It helps to identify a possible physical mechanism of lightning flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in lightning channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and development of the lightning channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.

  14. Characterization of infrasound from lightning

    NASA Astrophysics Data System (ADS)

    Assink, J. D.; Evers, L. G.; Holleman, I.; Paulssen, H.

    2008-08-01

    During thunderstorm activity in the Netherlands, electromagnetic and infrasonic signals are emitted due to the process of lightning and thunder. It is shown that correlating infrasound detections with results from a electromagnetic lightning detection network is successful up to distances of 50 km from the infrasound array. Infrasound recordings clearly show blastwave characteristics which can be related to cloud-ground discharges, with a dominant frequency between 1-5 Hz. Amplitude measurements of CG discharges can partly be explained by the beam pattern of a line source with a dominant frequency of 3.9 Hz, up to a distance of 20 km. The ability to measure lightning activity with infrasound arrays has both positive and negative implications for CTBT verification purposes. As a scientific application, lightning studies can benefit from the worldwide infrasound verification system.

  15. Synthetic electromagnetic knot in a three-dimensional skyrmion

    PubMed Central

    Lee, Wonjae; Gheorghe, Andrei H.; Tiurev, Konstantin; Ollikainen, Tuomas; Möttönen, Mikko; Hall, David S.

    2018-01-01

    Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion—a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system. PMID:29511735

  16. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect.

    PubMed

    Urbieta, Mattin; Barbry, Marc; Zhang, Yao; Koval, Peter; Sánchez-Portal, Daniel; Zabala, Nerea; Aizpurua, Javier

    2018-01-23

    Plasmonic gaps are known to produce nanoscale localization and enhancement of optical fields, providing small effective mode volumes of about a few hundred nm 3 . Atomistic quantum calculations based on time-dependent density functional theory reveal the effect of subnanometric localization of electromagnetic fields due to the presence of atomic-scale features at the interfaces of plasmonic gaps. Using a classical model, we explain this as a nonresonant lightning rod effect at the atomic scale that produces an extra enhancement over that of the plasmonic background. The near-field distribution of atomic-scale hot spots around atomic features is robust against dynamical screening and spill-out effects and follows the potential landscape determined by the electron density around the atomic sites. A detailed comparison of the field distribution around atomic hot spots from full quantum atomistic calculations and from the local classical approach considering the geometrical profile of the atoms' electronic density validates the use of a classical framework to determine the effective mode volume in these extreme subnanometric optical cavities. This finding is of practical importance for the community of surface-enhanced molecular spectroscopy and quantum nanophotonics, as it provides an adequate description of the local electromagnetic fields around atomic-scale features with use of simplified classical methods.

  17. An experimental test of the 'transmission-line model' of electromagnetic radiation from triggered lightning return strokes

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Idone, V. P.; Orville, R. E.; Leteinturier, C.; Eybert-Berard, A.

    1988-01-01

    Peak currents, two-dimensional average propagation speeds, and electric field waveforms for a number of subsequent return strikes in rocket-triggered lightning flashes were measured in order to test the 'transmission-line model' of return-stroke radiation of Uman and McLain (1970). Reasonable agreement is found between the propagation speeds measured with the streak camera and those deduced from the transmission-line model. A modification of the model is proposed in which two wave fronts travel upward and downward away from a junction point a short distance above the ground.

  18. An experimental test of the 'transmission-line model' of electromagnetic radiation from triggered lightning return strokes

    NASA Astrophysics Data System (ADS)

    Willett, J. C.; Idone, V. P.; Orville, R. E.; Leteinturier, C.; Eybert-Berard, A.

    1988-04-01

    Peak currents, two-dimensional average propagation speeds, and electric field waveforms for a number of subsequent return strikes in rocket-triggered lightning flashes were measured in order to test the 'transmission-line model' of return-stroke radiation of Uman and McLain (1970). Reasonable agreement is found between the propagation speeds measured with the streak camera and those deduced from the transmission-line model. A modification of the model is proposed in which two wave fronts travel upward and downward away from a junction point a short distance above the ground.

  19. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight, complex shapes, large structure dimension, large current, and low frequency capabilities are important considerations.

  20. Generalization of the lightning electromagnetic equations of Uman, McLain, and Krider based on Jefimenko equations

    DOE PAGES

    Shao, Xuan-Min

    2016-04-12

    The fundamental electromagnetic equations used by lightning researchers were introduced in a seminal paper by Uman, McLain, and Krider in 1975. However, these equations were derived for an infinitely thin, one-dimensional source current, and not for a general three-dimensional current distribution. In this paper, we introduce a corresponding pair of generalized equations that are determined from a three-dimensional, time-dependent current density distribution based on Jefimenko's original electric and magnetic equations. To do this, we derive the Jefimenko electric field equation into a new form that depends only on the time-dependent current density similar to that of Uman, McLain, and Krider,more » rather than on both the charge and current densities in its original form. The original Jefimenko magnetic field equation depends only on current, so no further derivation is needed. We show that the equations of Uman, McLain, and Krider can be readily obtained from the generalized equations if a one-dimensional source current is considered. For the purpose of practical applications, we discuss computational implementation of the new equations and present electric field calculations for a three-dimensional, conical-shape discharge.« less

  1. Electromagnetic fields of a relativistic electron avalanche with special attention to the origin of lightning signatures known as narrow bipolar pulses

    NASA Astrophysics Data System (ADS)

    Cooray, Vernon; Cooray, Gerald; Marshall, Thomas; Arabshahi, Shahab; Dwyer, Joseph; Rassoul, Hamid

    2014-11-01

    In the present study, electromagnetic fields of accelerating charges were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This model of the avalanche was utilized to test the idea whether the source of the lightning signatures known as narrow bipolar pulses could be relativistic avalanches. The idea was tested by using the simultaneously measured electric fields of narrow bipolar pulses at two distances, one measured far away from the source and the other in the near vicinity. The avalanche parameters were extracted from the distant field and they are used to evaluate the close field. The results show that the source of the NBP can be modeled either as a single or a multiple burst of relativistic avalanches with speed of avalanches in the range of 2-3 × 108 m/s. The multiple avalanche model agrees better with the experimental data in that it can also generate the correct signature of the time derivatives and the HF and VHF radiation bursts of NBP.

  2. Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Defining the electromagnetic environment inside a graphite composite fairing due to lightning is of interest to spacecraft developers. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is developed and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately predict the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the development of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is developed in the time domain to study how the composite fairing affects lightning induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately predict the test and industry results.

  3. International Aerospace and Ground Conference on Lightning and Static Electricity. 1984 technical papers. Supplement

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The indirect effects of lightning on digital systems, ground system protection, and the corrosion properties of conductive materials are addressed. The responses of a UH-60A helicopter and tactical shelters to lightning and nuclear electromagnetic pulses are discussed.

  4. Joint Electromagnetic Spectrum Management Operations

    DTIC Science & Technology

    2012-03-20

    electromagnetic radiation to ordnance ( HERO ), hazards of electromagnetic radiation to fuels (HERF), and natural phenomena effects of lightning and...fuels HERO hazards of electromagnetic radiation to ordnance HERP hazards of electromagnetic radiation to personnel HF high frequency HN host... electromagnetic pulse (EMP); hazards of EM radiation to personnel, ordnance ,

  5. Effects of Lightning in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Sentman, Davis D.; Pasko, Victor P.; Morrill, Jeff S.

    2010-02-01

    AGU Chapman Conference on Effects of Thunderstorms and Lightning in the Upper Atmosphere; University Park, Pennsylvania, 10-14 May 2009; The serendipitous observation in 1989 of electrical discharge in the high atmosphere induced by thundercloud lightning launched a new field of geophysical investigation. From this single unexpected observation sprang a vigorous and fertile new research field that simultaneously encompasses geophysical disciplines that are normally pursued independently, such as meteorology and lightning, plasma and gas discharge physics, atmospheric chemistry, ionospheric physics, and energetic particle physics. Transient electrical discharge in the upper atmosphere spans the full range of altitudes between the tropopause and the ionosphere and takes a variety of forms that carry the whimsical names red sprites, blue jets, gigantic jets, elves (emissions of light and very low frequency perturbations from electromagnetic pulse sources), and sprite halos, collectively known as transient luminous events (TLEs). To date, TLEs have been observed from ground and airborne or spaceborne platforms above thunderstorm systems worldwide, and radio observations made concomitantly with optical observations have shown that they are produced by the transient far fields of thundercloud lightning. TLEs appear to be large-scale (tens of kilometers in dimension), upper atmospheric versions of conventional gas discharge akin to weakly ionized, collision-dominated systems found in laboratory discharge devices (millimeter-centimeter dimensions), with characteristic energies of a few electron volts. The dominant physical processes have been identified as described by the familiar kinetic theory of the photochemistry of the upper atmosphere, but with electric field-driven electron impact ionization playing the role of photolysis or energetic precipitating particle-induced ionization.

  6. ON THE ACCURACY OF THE PROPAGATION THEORY AND THE QUALITY OF BACKGROUND OBSERVATIONS IN A SCHUMANN RESONANCE INVERSION PROCEDURE Vadim MUSHTAK, Earle WILLIAMS PARSONS LABORATORY, MIT

    NASA Astrophysics Data System (ADS)

    Mushtak, V. C.

    2009-12-01

    Observations of electromagnetic fields in the Schumann resonance (SR) frequency range (5 to 40 Hz) contain information about both the major source of the electromagnetic radiation (repeatedly confirmed to be global lightning activity) and the source-to-observer propagation medium (the Earth-ionosphere waveguide). While the electromagnetic signatures from individual lightning discharges provide preferable experimental material for exploring the medium, the properties of the world-wide lightning process are best reflected in background spectral SR observations. In the latter, electromagnetic contributions from thousands of lightning discharges are accumulated in intervals of about 10-15 minutes - long enough to present a statistically significant (and so theoretically treatable) ensemble of individual flashes, and short enough to reflect the spatial-temporal dynamics of global lightning activity. Thanks to the small (well below 1 dB/Mm) attenuation in the SR range and the accumulated nature of background SR observations, the latter present globally integrated information about lightning activity not available via other (satellite, meteorological) techniques. The most interesting characteristics to be extracted in an inversion procedure are the rates of vertical charge moment change (and their temporal variations) in the major global lightning “chimneys”. The success of such a procedure depends critically on the accuracy of the propagation theory (used to carry out “direct” calculations for the inversion) and the quality of experimental material. Due to the nature of the problem, both factors - the accuracy and the quality - can only be estimated indirectly, which requires specific approaches to assure that the estimates are realistic and more importantly, that the factors could be improved. For the first factor, simulations show that the widely exploited theory of propagation in a uniform (spherically symmetrical) waveguide provides unacceptable (up to several tens of percent) errors when used to extract the rates of charge moment change in the major “chimneys”. A comparative analysis carried out on the basis of a more accurate two-dimensional telegraph equation (TDTE) technique shows that the above inaccuracy results mainly from neglecting the major non-uniformity of the Earth-ionosphere waveguide due to the electrodynamic contrast between its day- and nighttime hemispheres. To estimate improve the quality of observations, several approaches are presented. Generally, the approaches are based on dividing the observation interval into shorter (10-sec) segments and collecting their Fourier transforms via an “accept/reject” criterion dependent on both the statistics of the segments’ energy contents within the given interval and the observational history. Such a procedure allows the removal of “bad” segments contaminated by either cultural interference or local lightning activity, instead of rejecting the whole interval as a “bad” one. Several criteria are presented, their efficiencies demonstrated, compared, and tested on actual SR observations from various stations for various seasons and times; the effect of using improved (rectified) SR data in an actual multi-station inversion procedure is demonstrated.

  7. The argument for a unified approach to non-ionizing radiation protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perala, R.A.; Rigden, G.J.; Pfeffer, R.A.

    1993-12-01

    In the next decade military equipment will be required to operate in severe electromagnetic environments. These environments are expected to contain most non-ionizing frequencies (D.C. to GHz), from hostile and/or non-hostile sources, and be severe enough to cause temporary upset or even catastrophic failure of electronic equipment. Over the past thirty years considerable emphasis has been placed on hardening critical systems to one or more of these non-ionizing radiation environments, the most prevalent being the nuclear-induced electromagnetic pulse (EMD). From this technology development there has evolved a hardening philosophy that applies to most of these non-ionizing radiation environments. The philosophy,more » which stresses the application of zonal shields plus penetration protection, can provide low-cost hardening against such diverse non-ionizing radiation as p-static, lightning, electromagnetic interference (EMI), EMP, high intensity radiated fields (HIRF), electromagnetic radiation (EMR), and high power microwaves (HPM). The objective in this paper is to describe the application of this philosophy to Army helicopters. The authors develop a unified specification complete with threat definitions and test methods which illustrates integration of EMP, lightning, and HIRF at the box qualification level. This paper is a summary of the effort documented in a cited reference.« less

  8. Lightning Magnetic Field Measurements around Langmuir Laboratory

    NASA Astrophysics Data System (ADS)

    Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.

    2010-12-01

    In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.

  9. Analysis of electrical transients created by lightning

    NASA Technical Reports Server (NTRS)

    Nanevicz, J. E.; Vance, E. F.

    1980-01-01

    A series of flight tests was conducted using a specially-instrumented NASA Learjet to study the electrical transients created on an aircraft by nearby lightning. The instrumentation included provisions for the time-domain and frequency-domain recording of the electrical signals induced in sensors located both on the exterior and on the interior of the aircraft. The design and calibration of the sensors and associated measuring systems is described together with the results of the flight test measurements. The results indicate that the concept of providing instrumentation to follow the lightning signal from propagation field, to aircraft skin current, to current on interior wiring is basically sound. The results of the measurement indicate that the high frequency signals associated with lightning stroke precursor activity are important in generating electromagnetic noise on the interior of the aircraft. Indeed, the signals produced by the precursors are often of higher amplitude and of longer duration that the pulse produced by the main return stroke.

  10. Advanced Electromagnetic Methods for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polycarpou, Anastasis; Birtcher, Craig R.; Georgakopoulos, Stavros; Han, Dong-Ho; Ballas, Gerasimos

    1999-01-01

    The imminent destructive threats of Lightning on helicopters and other airborne systems has always been a topic of great interest to this research grant. Previously, the lightning induced currents on the surface of the fuselage and its interior were predicted using the finite-difference time-domain (FDTD) method as well as the NEC code. The limitations of both methods, as applied to lightning, were identified and extensively discussed in the last meeting. After a thorough investigation of the capabilities of the FDTD, it was decided to incorporate into the numerical method a subcell model to accurately represent current diffusion through conducting materials of high conductivity and finite thickness. Because of the complexity of the model, its validity will be first tested for a one-dimensional FDTD problem. Although results are not available yet, the theory and formulation of the subcell model are presented and discussed here to a certain degree. Besides lightning induced currents in the interior of an aircraft, penetration of electromagnetic fields through apertures (e.g., windows and cracks) could also be devastating for the navigation equipment, electronics, and communications systems in general. The main focus of this study is understanding and quantifying field penetration through apertures. The simulation is done using the FDTD method and the predictions are compared with measurements and moment method solutions obtained from the NASA Langley Research Center. Cavity-backed slot (CBS) antennas or slot antennas in general have many applications in aircraft-satellite type of communications. These can be flushmounted on the surface of the fuselage and, therefore, they retain the aerodynamic shape of the aircraft. In the past, input impedance and radiation patterns of CBS antennas were computed using a hybrid FEM/MoM code. The analysis is now extended to coupling between two identical slot antennas mounted on the same structure. The predictions are performed using both the hybrid FEM/MoM and the FDTD NEWS code. The results are compared with each other as well as with measurements performed in the ElectroMagnetic Anechoic Chamber (EMAC) of ASU. In addition to self and mutual impedances versus frequency, the comparisons include mutual coupling S(sub 12) as a function of distance for various slot orientations.

  11. Ionospheric effects of thunderstorms and lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Erin H.

    2014-02-03

    Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm.more » We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.« less

  12. Estimated intensity of the EMP from lightning discharges necessary for elves initiation based on balloon experiment

    NASA Astrophysics Data System (ADS)

    Kondo, S.; Yoshida, A.; Takahashi, Y.; Chikada, S.; Adachi, T.; Sakanoi, T.

    2007-12-01

    Transient optical phenomena in the mesosphere and lower ionosphere called transient luminous events (TLEs) have been investigated extensively since the first discovery in 1989. In the lower ionosphere, elves are generated by the electromagnetic pulses (EMPs) radiated from the intense lightning current. On the ground-based observation, cameras can not always identify the occurrence of elves because elves emission is sometimes reduced significantly by the atmosphere and blocked by clouds. Therefore, it has been difficult to determine the threshold of intensity of EMPs necessary for initiation of elves. We simultaneously carried out optical and sferics measurements for TLEs and lightning discharges using a high altitude balloon launched at Sanriku Balloon Center on the night of August 25 / 26 in 2006. We fixed four CCD cameras on the gondola, each of which had horizontal FOV of ~100 degree. They cover 360 degree in horizontal direction and imaged the TLEs without atmospheric extinction nor blocking by clouds. The frame rate is 30 fps. We installed three dipole antennas at the gondola, which received the vertical and horizontal electric fields radiated from lightning discharges. The frequency range of the VLF receiver is 1-25 kHz. We also make use of VLF sferics data obtained by ground-based antennas located at Tohoku University in Sendai. We picked up six elves from the image data set obtained by the CCD cameras, and examined the maximum amplitudes of the vertical electric field for 22 lightning discharge events including the six elves events observed both at the balloon and at Sendai. It is found that the maximum amplitudes of the vertical electric field in the five elves events are much larger than those in the other lightning events. We estimate the intensity of the radiated electric field necessary for elves. About one elves event, we don't see intense vertical electric field in the balloon data.

  13. ELVES Research at the Pierre Auger Observatory: Optical Emission Simulation and Time Evolution, WWLLN-LIS-Auger Correlations, and Double ELVES Observations and Simulation.

    NASA Astrophysics Data System (ADS)

    Merenda, K. D.

    2016-12-01

    Since 2013, the Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina, extended its trigger algorithm to detect emissions of light consistent with the signature from very low frequency perturbations due to electromagnetic pulse sources (ELVES). Correlations with the World Wide Lightning Location Network (WWLLN), the Lightning Imaging Sensor (LIS) and simulated events were used to assess the quality of the reconstructed data. The FD is a pixel array telescope sensitive to the deep UV emissions of ELVES. The detector provides the finest time resolution of 100 nanoseconds ever applied to the study of ELVES. Four eyes, separated by approximately 40 kilometers, consist of six telescopes and span a total of 360 degrees of azimuth angle. The detector operates at night when storms are not in the field of view. An existing 3D EMP Model solves Maxwell's equations using a three dimensional finite-difference time-domain model to describe the propagation of electromagnetic pulses from lightning sources to the ionosphere. The simulation also provides a projection of the resulting ELVES onto the pixel array of the FD. A full reconstruction of simulated events is under development. We introduce the analog signal time evolution comparison between Auger reconstructed data and simulated events on individual FD pixels. In conjunction, we will present a study of the angular distribution of light emission around the vertical and above the causative lightning source. We will also contrast, with Monte Carlo, Auger double ELVES events separated by at most 5 microseconds. These events are too short to be explained by multiple return strokes, ground reflections, or compact intra-cloud lightning sources. Reconstructed ELVES data is 40% correlated to WWLLN data and an analysis with the LIS database is underway.

  14. Simulation of radiation from lightning return strokes - The effects of tortuosity

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.

    1978-01-01

    A Monte Carlo simulation has been developed for the electromagnetic fields radiated from a tortuous lightning channel. This was done using a piecewise linear model for the channel and employing for each element the field radiated by a traveling wave on an arbitrarily oriented filament over a conducting plane. The simulation reproduces experimental data reasonably well and has been used to study the effects of tortuosity on the fields radiated by return strokes. Tortuosity can significantly modify the radiated waveform, tending to render it less representative of the current pulse and more nearly unipolar than one would expect based on the theory for a long straight channel. In the frequency domain the effect of tortuosity is an increase in high frequency energy as compared with an equivalent straight channel. The extent of this increase depends on the mean length of the elements comprising the channel and can be significant.

  15. Statistical analysis of storm electrical discharges reconstituted from a lightning mapping system, a lightning location system, and an acoustic array

    NASA Astrophysics Data System (ADS)

    Gallin, Louis-Jonardan; Farges, Thomas; Marchiano, Régis; Coulouvrat, François; Defer, Eric; Rison, William; Schulz, Wolfgang; Nuret, Mathieu

    2016-04-01

    In the framework of the European Hydrological Cycle in the Mediterranean Experiment project, a field campaign devoted to the study of electrical activity during storms took place in the south of France in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within the coverage of a Lightning Mapping Array network. On the 26 October 2012, a thunderstorm passed just over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes, were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz, of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent detections from the European Cooperation for Lightning Detection lightning location system were also used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but also from the horizontal discharges which occur inside the clouds. The huge amount of observation data leads to a statistical analysis of lightning discharges acoustically recorded. Especially, the distributions of altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the source on these distributions is established. The capacity of the acoustic method to describe precisely the lower part of nearby cloud-to-ground discharges, where the Lightning Mapping Array network is not effective, is also highlighted.

  16. University Hospital Struck Deaf and Silent by Lightning: Lessons to Learn.

    PubMed

    Dami, Fabrice; Carron, Pierre-Nicolas; Yersin, Bertrand; Hugli, Olivier

    2015-08-01

    We describe how an electromagnetic wave after a lightning strike affected a university hospital, including the communication shutdown that followed, the way it was handled, and the lessons learned from this incident.

  17. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  18. A fiber-optic current sensor for lightning measurement applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-05-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  19. Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes

    NASA Technical Reports Server (NTRS)

    Willett, John C.; Smith, David A.; LeVine, David M.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Los Alamos National Laboratory (LANL) Sferic Array has recorded electric-field-change waveforms simultaneously at several stations surrounding the ground-strike points of numerous return strokes in cloud-to-ground lightning flashes. Such data are available from the five-station sub-networks in both Florida and New Mexico. With these data it has been possible for the first time to compare the waveforms radiated in different directions by a given stroke. Such comparisons are of interest to assess both the effects of channel geometry on the fine structure of subsequent-stroke radiation fields and the role of branches in the more jagged appearance of first-stroke waveforms. This paper presents multiple-station, time-domain waveforms with a 200 Hz to 500 kHz pass-band from both first and subsequent return strokes at ranges generally between 100 and 200 km. The differences among waveforms of the same stroke received at stations in different directions from the lightning channel are often obvious. These differences are illustrated and interpreted in the context of channel tortuosity and branches.

  20. Open Circuit Resonant (SansEC) Sensor Technology for Lightning Mitigation and Damage Detection and Diagnosis for Composite Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N.; Dudley, Kenneth L.; Smith, Laura J.; Wang, Chuantong; Ticatch, Larry A.

    2014-01-01

    Traditional methods to protect composite aircraft from lightning strike damage rely on a conductive layer embedded on or within the surface of the aircraft composite skin. This method is effective at preventing major direct effect damage and minimizes indirect effects to aircraft systems from lightning strike attachment, but provides no additional benefit for the added parasitic weight from the conductive layer. When a known lightning strike occurs, the points of attachment and detachment on the aircraft surface are visually inspected and checked for damage by maintenance personnel to ensure continued safe flight operations. A new multi-functional lightning strike protection (LSP) method has been developed to provide aircraft lightning strike protection, damage detection and diagnosis for composite aircraft surfaces. The method incorporates a SansEC sensor array on the aircraft exterior surfaces forming a "Smart skin" surface for aircraft lightning zones certified to withstand strikes up to 100 kiloamperes peak current. SansEC sensors are open-circuit devices comprised of conductive trace spiral patterns sans (without) electrical connections. The SansEC sensor is an electromagnetic resonator having specific resonant parameters (frequency, amplitude, bandwidth & phase) which when electromagnetically coupled with a composite substrate will indicate the electrical impedance of the composite through a change in its resonant response. Any measureable shift in the resonant characteristics can be an indication of damage to the composite caused by a lightning strike or from other means. The SansEC sensor method is intended to diagnose damage for both in-situ health monitoring or ground inspections. In this paper, the theoretical mathematical framework is established for the use of open circuit sensors to perform damage detection and diagnosis on carbon fiber composites. Both computational and experimental analyses were conducted to validate this new method and system for aircraft composite damage detection and diagnosis. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. This paper also presents the shielding effectiveness along with the lightning direct effect test results from several different SansEC LSP and baseline protected and unprotected carbon fiber reinforced polymer (CFRP) test panels struck at 40 and 100 kiloamperes following a universal common practice test procedure to enable damage comparisons between SansEC LSP configurations and common practice copper mesh LSP approaches. The SansEC test panels were mounted in a LSP test bed during the lightning test. Electrical, mechanical and thermal parameters were measured during lightning attachment and are presented with post test nondestructive inspection comparisons. The paper provides correlational results between the SansEC sensors computed electric field distribution and the location of the lightning attachment on the sensor trace and visual observations showing the SansEC sensor's affinity for dispersing the lightning attachment.

  1. Toroidal plasmoid generation via extreme hydrodynamic shear

    PubMed Central

    Gharib, Morteza; Mendoza, Sean; Rosenfeld, Moshe; Beizai, Masoud

    2017-01-01

    Saint Elmo’s fire and lightning are two known forms of naturally occurring atmospheric pressure plasmas. As a technology, nonthermal plasmas are induced from artificially created electromagnetic or electrostatic fields. Here we report the observation of arguably a unique case of a naturally formed such plasma, created in air at room temperature without external electromagnetic action, by impinging a high-speed microjet of deionized water on a dielectric solid surface. We demonstrate that tribo-electrification from extreme and focused hydrodynamic shear is the driving mechanism for the generation of energetic free electrons. Air ionization results in a plasma that, unlike the general family, is topologically well defined in the form of a coherent toroidal structure. Possibly confined through its self-induced electromagnetic field, this plasmoid is shown to emit strong luminescence and discrete-frequency radio waves. Our experimental study suggests the discovery of a unique platform to support experimentation in low-temperature plasma science. PMID:29146825

  2. Bioelectromagnetic effects of EMP: Preliminary findings

    NASA Astrophysics Data System (ADS)

    Aldrich, T. E.; Easterly, C. E.; Gailey, P. C.; Hamilton, C. B.

    1988-06-01

    Facilities to simulate electromagnetic pulses (EMPs) are used to test military equipment and electrical communications devices for resistance to the effects of an EMP caused by an upper-atmospheric nuclear detonation. The rapid rise time and high field strengths (0.1 to 50 kV/m) of an EMP distinguish it from other electromagnetic phenomena. Certain types of EMP simulators also expose facility operators and members of the public to electromagnetic fields of varying intensity as do other natural sources such as the fields produced near a lightning bolt. Limited biological effects data have been collected to assess the potential EMP health hazards to humans. Evidence from the available database does not establish that EMPs represent either an occupational or a public health hazard. A critique is presented of the EMP research published to date in order to explore its limitations and similarities with related outcome experience from other electromagnetic field research. Laboratory research and multiple years of observations on workers in existing EMP manufacturing and simulation facilities suggest that there are no acute or short-term health effects. The occupational exposure guideline for EMP is 100 kV/m, which is far in excess of usual exposures with EMP simulators.

  3. Giant elves: Lightning-generated electromagnetic pulses in giant planets.

    NASA Astrophysics Data System (ADS)

    Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin

    2015-04-01

    We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of lightning on Jupiter, Icarus, 142, 306-323, doi:10.1006/icar.1999.6195. [3] Dyudina, U. A., A. D. Del Genio, A. P. Ingersoll, C. C. Porco, R. A. West, A. R. Vasavada, and J. M. Barbara (2004), Lightning on Jupiter observed in the Hα line by the Cassini imaging science subsystem, Icarus, 172, 24-36, doi:10.1016/j.icarus.2004.07.014. [4] Baines, K. H., et al. (2007), Polar lightning and decadal-scale cloud variability on Jupiter, Science, 318, 226-229, doi:10.1126/science.1147912. [5] Dyudina, U. A., A. P. Ingersoll, S. P. Ewald, C. C. Porco, G. Fischer, W. S. Kurth, and R. A. West (2010), Detection of visible lightning on Saturn, Geophys. Res. Lett., 37, L09205, doi:10.1029/2010GL043188. [6] Zarka, P., and B. M. Pedersen (1986), Radio detection of Uranian lightning by Voyager 2, Nature, 323, 605-608, doi:10.1038/323605a0. [7] Gurnett, D. A., W. S. Kurth, I. H. Cairns, and L. J. Granroth (1990), Whistlers in Neptune's magnetosphere'Evidence of atmospheric lightning, J. Geophys. Res., 95, 20,967-20,976, doi:10.1029/JA095iA12p20967. [8] Yair, Y., Y. Takahashi, R. Yaniv, U. Ebert, and Y. Goto (2009), A study of the possibility of sprites in the atmospheres of other planets, J. Geophys. Res., 114, E09002, doi:10.1029/2008JE003311. [9] Dubrovin, D., A. Luque, F. J. Gordillo-Vázquez, Y. Yair, F. C. Parra-Rojas, U. Ebert, and C. Price (2014), Impact of lightning on the lower ionosphere of Saturn and possible generation of halos and sprites, Icarus, 241, 313-328, doi:10.1016/j.icarus.2014.06.025. [10] Luque, A., D. Dubrovin, F. J. Gordillo-Vázquez, U. Ebert, F. C. Parra-Rojas, Y. Yair, and C. Price (2014), Coupling between atmospheric layers in gaseous giant planets due to lightning-generated electromagnetic pulses, J. Geophys. Res. Space Physics, 119, doi:10.1002/2014JA020457.

  4. Lightning Effects in the Payload Changeout Room

    NASA Technical Reports Server (NTRS)

    Thomas, Garland L.; Fisher, Franklin A.; Collier, Richard S.; Medelius, Pedro J.

    1997-01-01

    Analytical and empirical studies have been performed to provide better understanding of the electromagnetic environment inside the Payload Changeout Room and Orbiter payload bay resulting from lightning strikes to the launch pad lightning protection system. The analytical studies consisted of physical and mathematical modeling of the pad structure and the Payload Changeout Room. Empirical testing was performed using a lightning simulator to simulate controlled (8 kA) lightning strikes to the catenary wire lightning protection system. In addition to the analyses and testing listed above, an analysis of the configuration with the vehicle present was conducted, in lieu of testing, by the Finite Difference, Time Domain method.

  5. A statistical study of whistler waves observed by Van Allen Probes (RBSP) and lightning detected by WWLLN

    NASA Astrophysics Data System (ADS)

    Zheng, Hao; Holzworth, Robert H.; Brundell, James B.; Jacobson, Abram R.; Wygant, John R.; Hospodarsky, George B.; Mozer, Forrest S.; Bonnell, John

    2016-03-01

    Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to lightning producing regions. The prediction method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these predicted times for magnetic conjugacy to lightning activity regions, we recorded high time resolution, burst mode waveform data. Here we show that whistlers are observed by the satellites in more than 80% of downloaded waveform data. About 22.9% of the whistlers observed by RBSP are one-to-one coincident with source lightning strokes detected by WWLLN. About 40.1% more of whistlers are found to be one-to-one coincident with lightning if source regions are extended out 2000 km from the satellites footpoints. Lightning strokes with far-field radiated VLF energy larger than about 100 J are able to generate a detectable whistler wave in the inner magnetosphere. One-to-one coincidences between whistlers observed by RBSP and lightning strokes detected by WWLLN are clearly shown in the L shell range of L = 1-3. Nose whistlers observed in July 2014 show that it may be possible to extend this coincidence to the region of L≥4.

  6. Detection and characterization of lightning-based sources using continuous wavelet transform: application to audio-magnetotellurics

    NASA Astrophysics Data System (ADS)

    Larnier, H.; Sailhac, P.; Chambodut, A.

    2018-01-01

    Atmospheric electromagnetic waves created by global lightning activity contain information about electrical processes of the inner and the outer Earth. Large signal-to-noise ratio events are particularly interesting because they convey information about electromagnetic properties along their path. We introduce a new methodology to automatically detect and characterize lightning-based waves using a time-frequency decomposition obtained through the application of continuous wavelet transform. We focus specifically on three types of sources, namely, atmospherics, slow tails and whistlers, that cover the frequency range 10 Hz to 10 kHz. Each wave has distinguishable characteristics in the time-frequency domain due to source shape and dispersion processes. Our methodology allows automatic detection of each type of event in the time-frequency decomposition thanks to their specific signature. Horizontal polarization attributes are also recovered in the time-frequency domain. This procedure is first applied to synthetic extremely low frequency time-series with different signal-to-noise ratios to test for robustness. We then apply it on real data: three stations of audio-magnetotelluric data acquired in Guadeloupe, oversea French territories. Most of analysed atmospherics and slow tails display linear polarization, whereas analysed whistlers are elliptically polarized. The diversity of lightning activity is finally analysed in an audio-magnetotelluric data processing framework, as used in subsurface prospecting, through estimation of the impedance response functions. We show that audio-magnetotelluric processing results depend mainly on the frequency content of electromagnetic waves observed in processed time-series, with an emphasis on the difference between morning and afternoon acquisition. Our new methodology based on the time-frequency signature of lightning-induced electromagnetic waves allows automatic detection and characterization of events in audio-magnetotelluric time-series, providing the means to assess quality of response functions obtained through processing.

  7. Implementation of the FAA research and development electromagnetic database

    NASA Technical Reports Server (NTRS)

    Mcdowall, R. L.; Grush, D. J.; Cook, D. M.; Glynn, M. S.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has been assisting the FAA in developing a database of information about lightning. The FAA Research and Development Electromagnetic Database (FRED) will ultimately contain data from a variety of airborne and ground-based lightning research projects. An outline of the data currently available in FRED is presented. The data sources which the FAA intends to incorporate into FRED are listed. In addition, it describes how the researchers may access and use the FRED menu system.

  8. Penetration of ELF currents and electromagnetic fields into the Earth's equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Papadopoulos, K.

    2009-10-01

    The penetration of extremely low frequency (ELF) transient electromagnetic fields and associated currents in the Earth's equatorial E-region plasma is studied theoretically and numerically. In the low-frequency regime, the plasma dynamics of the E-region is characterized by helicon waves since the ions are viscously coupled to neutrals while the electrons remain mobile. For typical equatorial E-region parameters, the plasma is magnetically insulated from penetration of very long timescale magnetic fields by a thin diffusive sheath. Wave penetration driven by a vertically incident pulse localized in space and time leads to both vertical penetration and the triggering of ELF helicon/whistler waves that carry currents obliquely to the magnetic field lines. The study presented here may have relevance for ELF wave generation by lightning discharges and seismic activity and can lead to new concepts in ELF/ULF injection in the earth-ionosphere waveguide.

  9. On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Krider, E. P.

    1992-01-01

    The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.

  10. High speed imaging, lightning mapping arrays and thermal imaging: a synergy for the monitoring of electrical discharges at the onset of volcanic explosions

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Cimarelli, Corrado; Behnke, Sonja; Cigala, Valeria; Edens, Harald; McNutt, Stefen; Smith, Cassandra; Thomas, Ronald; Van Eaton, Alexa

    2017-04-01

    Volcanic lightning is being increasingly studied, due to its great potential for the detection and monitoring of ash plumes. Indeed, it is observed in a large number of ash-rich volcanic eruptions and it produces electromagnetic waves that can be detected remotely in all weather conditions. Electrical discharges in volcanic plume can also significantly change the structural, chemical and reactivity properties of the erupted material. Although electrical discharges are detected in various regions of the plume, those happening at the onset of an explosion are of particular relevance for the early warning and the study of volcanic jet dynamics. In order to better constrain the electrical activity of young volcanic plumes, we deployed at Sakurajima (Japan) in 2015 a multiparametric set-up including: i) a lightning mapping array (LMA) of 10 VHF antennas recording the electromagnetic waves produced by lightning at a sample rate of 25 Msps; ii) a visible-light high speed camera (5000 frames per second, 0.5 m pixel size, 300 m field of view) shooting short movies (approx. duration 1 s) at different stages of the plume evolution, showing the location of discharges in relation to the plume; and iii) a thermal camera (25 fps, 1.5 m pixel size, 800 m field of view) continuously recording the plume and allowing the estimation of its main source parameters (volume, rise velocity, mass eruption rate). The complementarity of these three setups is demonstrated by comparing and aggregating the data at various stages of the plume development. In the earliest stages, the high speed camera spots discrete small discharges, that appear on the LMA data as peaks superimposed to the continuous radio frequency (CRF) signal. At later stages, flashes happen less frequently and increase in length. The correspondence between high speed camera and LMA data allows to define a direct correlation between the length of the flash and the intensity of the electromagnetic signal. Such correlation is used to estimate the evolution of the total discharges within a volcanic plume, while the superimposition of thermal and high speed videos allows to contextualize the flashes location in the scope of the plume features and dynamics.

  11. 40 CFR Appendix A to Subpart Gg of... - Specialty Coating Definitions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electromagnetic energy spectrum, such as the ultraviolet, visible, infrared, or microwave regions. Uses include, but are not limited to, lightning strike protection, electromagnetic pulse (EMP) protection, and radar.... Electrostatic discharge and electromagnetic interference (EMI) coating—A coating applied to space vehicles...

  12. 40 CFR Appendix A to Subpart Gg of... - Specialty Coating Definitions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electromagnetic energy spectrum, such as the ultraviolet, visible, infrared, or microwave regions. Uses include, but are not limited to, lightning strike protection, electromagnetic pulse (EMP) protection, and radar.... Electrostatic discharge and electromagnetic interference (EMI) coating—A coating applied to space vehicles...

  13. 40 CFR Appendix A to Subpart Gg of... - Specialty Coating Definitions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electromagnetic energy spectrum, such as the ultraviolet, visible, infrared, or microwave regions. Uses include, but are not limited to, lightning strike protection, electromagnetic pulse (EMP) protection, and radar.... Electrostatic discharge and electromagnetic interference (EMI) coating—A coating applied to space vehicles...

  14. 40 CFR Appendix A to Subpart Gg of... - Specialty Coating Definitions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electromagnetic energy spectrum, such as the ultraviolet, visible, infrared, or microwave regions. Uses include, but are not limited to, lightning strike protection, electromagnetic pulse (EMP) protection, and radar.... Electrostatic discharge and electromagnetic interference (EMI) coating—A coating applied to space vehicles...

  15. 40 CFR Appendix A to Subpart Gg of... - Specialty Coating Definitions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electromagnetic energy spectrum, such as the ultraviolet, visible, infrared, or microwave regions. Uses include, but are not limited to, lightning strike protection, electromagnetic pulse (EMP) protection, and radar.... Electrostatic discharge and electromagnetic interference (EMI) coating—A coating applied to space vehicles...

  16. Merging Infrasound and Electromagnetic Signals as a Means for Nuclear Explosion Detection

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Joseph; Lipshtat, Azi; Kesar, Amit S.; Pistinner, Shlomo; Ben Horin, Yochai

    2016-04-01

    The infrasound monitoring network of the CTBT consists of 60 stations. These stations are capable of detecting atmospheric events, and may provide approximate location within time scale of a few hours. However, the nature of these events cannot be deduced from the infrasound signal. More than two decades ago it was proposed to use the electromagnetic pulse (EMP) as a means of discriminating nuclear explosion from other atmospheric events. An EMP is a unique signature of nuclear explosion and is not detected from chemical ones. Nevertheless, it was decided to exclude the EMP technology from the official CTBT verification regime, mainly because of the risk of high false alarm rate, due to lightning electromagnetic pulses [1]. Here we present a method of integrating the information retrieved from the infrasound system with the EMP signal which enables us to discriminate between lightning discharges and nuclear explosions. Furthermore, we show how spectral and other characteristics of the electromagnetic signal emitted from a nuclear explosion are distinguished from those of lightning discharge. We estimate the false alarm probability of detecting a lightning discharge from a given area of the infrasound event, and identifying it as a signature of a nuclear explosion. We show that this probability is very low and conclude that the combination of infrasound monitoring and EMP spectral analysis may produce a reliable method for identifying nuclear explosions. [1] R. Johnson, Unfinished Business: The Negotiation of the CTBT and the End of Nuclear Testing, United Nations Institute for Disarmament Research, 2009.

  17. A practical, low-noise coil system for magnetotellurics

    USGS Publications Warehouse

    Stanley, William D.; Tinkler, Richard D.

    1983-01-01

    Magnetotellurics is a geophysical technique which was developed by Cagnaird (1953) and Tikhonov (1950) and later refined by other scientists worldwide. The technique is a method of electromagnetic sounding of the Earth and is based upon the skin depth effect in conductive media. The electric and magnetic fields arising from natural sources are measured at the surface of the earth over broad frequency bands. An excellent review of the technique is provided in the paper by Vozoff (1972). The sources of the natural fields are found in two basic mechanisms. At frequencies above a few hertz, most of the energy arises from lightning in thunderstorm belts around the equatorial regions. This energy is propagated in a wave-guide formed by the earthionospheric cavity. Energy levels are higher at fundamental modes for this cavity, but sufficient energy exists over most of the audio range to be useful for sounding at these frequencies, in which case the technique is generally referred to as audio-magnetotellurics or AMT. At frequencies lower than audio, and in general below 1 Hz, the source of naturally occuring electromagnetic energy is found in ionospheric currents. Current systems flowing in the ionosphere generate EM waves which can be used in sounding of the earth. These fields generate a relatively complete spectrum of electromagnetic energy that extends from around 1 Hz to periods of one day. Figure 1 shows an amplitude spectrum characteristic of both the ionospheric and lightning sources, covering a frequency range from 0.0001 Hz to 1000 Hz. It can be seen that there is a minimum in signal levels that occurs at about 1 Hz, in the gap between the two sources, and that signal level increases with a decrease in frequency.

  18. Interpretation methodology and analysis of in-flight lightning data

    NASA Technical Reports Server (NTRS)

    Rudolph, T.; Perala, R. A.

    1982-01-01

    A methodology is presented whereby electromagnetic measurements of inflight lightning stroke data can be understood and extended to other aircraft. Recent measurements made on the NASA F106B aircraft indicate that sophisticated numerical techniques and new developments in corona modeling are required to fully understand the data. Thus the problem is nontrivial and successful interpretation can lead to a significant understanding of the lightning/aircraft interaction event. This is of particular importance because of the problem of lightning induced transient upset of new technology low level microcircuitry which is being used in increasing quantities in modern and future avionics. Inflight lightning data is analyzed and lightning environments incident upon the F106B are determined.

  19. Low-Frequency Electromagnetic Exploration for Groundwater on Mars

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.

    2002-01-01

    Water with even a small amount of dissolved solids has an electrical conductivity orders of magnitude higher than dry rock and is therefore a near-ideal exploration target on Mars for low frequency, diffusive electromagnetic methods. Models of the temperature- and frequency-dependent electrical properties of rock-ice-water mixtures are used to predict the electromagnetic response of the Martian subsurface. Detection of ice is difficult unless it is massively segregated. In contrast, liquid water profoundly affects soundings, and even a small amount of adsorbed water in the cryosphere can be detected. Subcryospheric water is readily distinguishable at frequencies as low as 100 Hz for fresh water to 10 mHz for brines. These responses can be measured using either natural or artificial sources. Ultra low frequency signals from solar wind and diurnal-heating perturbations of the ionosphere are likely, and disturbances of regional crustal magnetic fields may also be observable. Spherics, or extremely to very low frequency signals from lightning discharge, would provide optimal soundings; however, lightning may be the least likely of the possible natural sources. Among the active techniques, only the time-domain electromagnetic (TDEM) method can accommodate a closely spaced transmitter and receiver and sound to depths of hundreds of meters or more. A ground- or aircraft-based TDEM system of several kilograms can detect water to a depth of several hundred meters, and a system of tens of kilograms featuring a large, fixed, rover- or ballistically deployed loop can detect water to several kilometers depth.

  20. Multi-instrument Observations of Transient Luminous Events Associated with a Small-scale Winter Thunderstorm

    NASA Astrophysics Data System (ADS)

    Kolmasova, I.; Santolik, O.; Spurny, P.; Borovicka, J.; Mlynarczyk, J.; Popek, M.; Lan, R.; Uhlir, L.; Diendorfer, G.; Slosiar, R.

    2017-12-01

    We present observations of transient luminous events (TLEs) produced by a small-scale winter thunderstorm which occurred on 2 April 2017 in the southwest of Czechia. Elves, sprites and associated positive lightning strokes have been simultaneously recorded by different observational techniques. Optical data include video recordings of TLEs from Nydek (Czechia) and data recorded by high time-resolution photometers at several stations of the Czech fireball network which measured the all-sky brightness originating from lightning return strokes. Electromagnetic data sets include 3-component VLF measurements conducted in Rustrel (France), 2-component ELF measurements recorded at the Hylaty station (Poland) and signal intensity variations of a VLF transmitter (DHO38, Rhauderfehn, Germany) recorded in Bojnice (Slovakia). Optical and electromagnetic data are completed by positions and peak currents of all strokes recorded during the observed thunderstorm by the EUCLID lightning detection network. We focus our analysis on positive lightning discharges with high peak currents and we compare properties of those which produced TLE with properties of discharges for which TLE was not detected. The current moment waveforms and charge moment changes associated with the TLE events are reconstructed from the ELF electromagnetic signals. Obtained current moment waveforms show excellent agreement with high time-resolution optical data.

  1. Map of low-frequency electromagnetic noise in the sky

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Smith, Nathan; Evans, Adrian

    2015-06-01

    The Earth's natural electromagnetic environment is disturbed by anthropogenic electromagnetic noise. Here we report the first results from an electromagnetic noise survey of the sky. The locations of electromagnetic noise sources are mapped on the hemisphere above a distributed array of wideband receivers that operate in a small aperture configuration. It is found that the noise sources can be localized at elevation angles up to ˜60° in the sky, well above the horizon. The sky also exhibits zones with little or no noise that are found toward the local zenith and the southwest of the array. These results are obtained by a rigorous analysis of the residuals from the classic dispersion relation for electromagnetic waves using an array analysis of electric field measurements in the frequency range from ˜20 to 250 kHz. The observed locations of the noise sources enable detailed observations of ionospheric modification, for example, caused by particle precipitation and lightning discharges, while the observed exclusion zones enable the detection of weak natural electromagnetic emissions, for example, from streamers in transient luminous events above thunderclouds.

  2. Implementation of the FAA research and development electromagnetic database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowall, R.L.; Grush, D.J.; Cook, D.M.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has been assisting the Federal Aviation Administration (FAA) in developing a database of information about lightning. The FAA Research and Development Electromagnetic Database (FRED) will ultimately contain data from a variety of airborne and groundbased lightning research projects. This paper contains an outline of the data currently available in FRED. It also lists the data sources which the FAA intends to incorporate into FRED. In addition, it describes how the researcher may access and use the FRED menu system. 2 refs., 12 figs.

  3. Venus Express Contributions to the Study of Planetary Lightning

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Hart, R. A.; Zhang, T. L.

    2014-04-01

    Jupiter, and Saturn are expected to generate the electrical potential differences in their clouds sufficient to cause a breakdown in the atmosphere,creating a conducting path for the electric potential to discharge. This high-energy phenomenon creates a hot, high-pressure channel that enables chemical reactions not possible under usual local thermodynamic conditions. Thus it is of some interest to determine if lightning occurs in an atmosphere. While Venus is not usually considered one of the wet planets, lightning has been an object of interest since the Venera landers. It was observed with electromagnetic coils on Venera 11, 12, 13, 14 landers [2]. It was observed with a visible spectrometer on the Venera 9 orbits [1]. It was mapped during solar occultations by the electric antenna on the Pioneer Venus Orbiter [4]. These measurements revealed extensive lightning activity with an electromagnetic energy flux similar to that on Earth. However, the observations were limited in number in the atmosphere and to the nightside from orbit. In order to improve the understanding of Venus lightning, the Venus Express magnetometer was given a 128-Hz sampling rate that could cover much of the ELF frequencies at which lightning could be observed in the weak magnetic fields of the Venus ionosphere [5]. This investigation was immediately successful [3], but mastering the cleaning of the broadband data took several years to accomplish. Furthermore, the high polar latitudes of VEX periapsis were not the ideal locations to conduct the more global survey that was desired. Fortunately, after precessing poleward over the first few years the latitude of periapsis has returned to lower latitudes(Figures 1 and 2) and active electrical storms are now being studied. The charged constituent of the Venus atmosphere need not be water. In fact, we believe it is H2SO4 which polarizes much as water does and which freezes and melts at similar temperatures. If it is H2SO4, we would expect the constituent to be sensitive to the rate of Venus volcanism releasing sulfur and sulfur dioxide into the atmosphere. This is one correlation we are anxious to pursue on future missions.

  4. Noise and interference study for satellite lightning sensor

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1981-01-01

    The use of radio frequency techniques for the detection and monitoring of terrestrial thunderstorms from space are discussed. Three major points are assessed: (1) lightning and noise source characteristics; (2) propagation effects imposed by the atmosphere and ionosphere; and (3) the electromagnetic environment in near space within which lightning RF signatures must be detected. A composite frequency spectrum of the peak of amplitude from lightning flashes is developed. Propagation effects (ionospheric cutoff, refraction, absorption, dispersion and scintillation) are considered to modify the lightning spectrum to the geosynchronous case. It is suggested that in comparing the modified spectrum with interfering noise source spectra RF lightning pulses on frequencies up to a few GHz are detectable above the natural noise environment in near space.

  5. Predicting the characteristics of thunder on Titan: A framework to assess the detectability of lightning by acoustic sensing

    NASA Astrophysics Data System (ADS)

    Petculescu, Andi; Kruse, Roland

    2014-10-01

    The search for lightning is an important item on the agenda for the future exploration of Titan. Thunder, as a direct lightning signature, can be used, together with electromagnetic signals, to corroborate and quantify lightning. Using Cassini-Huygens data and model predictions, the main characteristics of thunder produced by a potential 20 km cloud-to-ground tortuous discharge are obtained and discussed. The acoustic power released right after the discharge decreases with increasing altitude, owing to the ambient pressure and temperature gradients. Ray tracing is used to propagate sound waves to the far field. Simulated thunder waveforms are characterized by fairly long codas—on the order of tens of seconds—arising from the small acoustic absorption (˜10-4dB/km). In the low-loss environment, the principal thunder arrival will likely have a large signal-to-noise ratio ensuring a high detection selectivity. The spectral content depends on the amount of energy released during the discharge. For an energy density of 5 kJ/m, the dominant contribution lies between 50 and 80 Hz; for 500 kJ/m, it shifts to lower frequencies between 10 and 30 Hz.

  6. An improved ray theory and transfer matrix method-based model for lightning electromagnetic pulses propagating in Earth-ionosphere waveguide and its applications

    NASA Astrophysics Data System (ADS)

    Qin, Zilong; Chen, Mingli; Zhu, Baoyou; Du, Ya-ping

    2017-01-01

    An improved ray theory and transfer matrix method-based model for a lightning electromagnetic pulse (LEMP) propagating in Earth-ionosphere waveguide (EIWG) is proposed and tested. The model involves the presentation of a lightning source, parameterization of the lower ionosphere, derivation of a transfer function representing all effects of EIWG on LEMP sky wave, and determination of attenuation mode of the LEMP ground wave. The lightning source is simplified as an electric point dipole standing on Earth surface with finite conductance. The transfer function for the sky wave is derived based on ray theory and transfer matrix method. The attenuation mode for the ground wave is solved from Fock's diffraction equations. The model is then applied to several lightning sferics observed in central China during day and night times within 1000 km. The results show that the model can precisely predict the time domain sky wave for all these observed lightning sferics. Both simulations and observations show that the lightning sferics in nighttime has a more complicated waveform than in daytime. Particularly, when a LEMP propagates from east to west (Φ = 270°) and in nighttime, its sky wave tends to be a double-peak waveform (dispersed sky wave) rather than a single peak one. Such a dispersed sky wave in nighttime may be attributed to the magneto-ionic splitting phenomenon in the lower ionosphere. The model provides us an efficient way for retrieving the electron density profile of the lower ionosphere and hence to monitor its spatial and temporal variations via lightning sferics.

  7. Lightning Detection Efficiency Analysis Process: Modeling Based on Empirical Data

    NASA Technical Reports Server (NTRS)

    Rompala, John T.

    2005-01-01

    A ground based lightning detection system employs a grid of sensors, which record and evaluate the electromagnetic signal produced by a lightning strike. Several detectors gather information on that signal s strength, time of arrival, and behavior over time. By coordinating the information from several detectors, an event solution can be generated. That solution includes the signal s point of origin, strength and polarity. Determination of the location of the lightning strike uses algorithms based on long used techniques of triangulation. Determination of the event s original signal strength relies on the behavior of the generated magnetic field over distance and time. In general the signal from the event undergoes geometric dispersion and environmental attenuation as it progresses. Our knowledge of that radial behavior together with the strength of the signal received by detecting sites permits an extrapolation and evaluation of the original strength of the lightning strike. It also limits the detection efficiency (DE) of the network. For expansive grids and with a sparse density of detectors, the DE varies widely over the area served. This limits the utility of the network in gathering information on regional lightning strike density and applying it to meteorological studies. A network of this type is a grid of four detectors in the Rondonian region of Brazil. The service area extends over a million square kilometers. Much of that area is covered by rain forests. Thus knowledge of lightning strike characteristics over the expanse is of particular value. I have been developing a process that determines the DE over the region [3]. In turn, this provides a way to produce lightning strike density maps, corrected for DE, over the entire region of interest. This report offers a survey of that development to date and a record of present activity.

  8. Direct-strike lightning photographs, swept-flash attachment patterns, and flight conditions for storm hazards 1982

    NASA Technical Reports Server (NTRS)

    Zaepfel, K. P.; Fisher, B. D.; Ott, M. S.

    1985-01-01

    As part of the NASA Langley Research Center Storm Hazards Program, 241 thunderstorm penetrations were made in 1982 with an F-106B airplane in order to record direct-strike lightning data and the associated flight conditions. During these penetrations, the airplane received 156 direct lightning strikes; in addition, lightning transient data were recorded from 26 nearby lightning flashes. The tests were conducted within 150 nautical miles of Hampton, Virginia, assisted by ground-based weather-radar guidance from the NASA Wallops Flight Facility. The photographs of the lightning attachments taken from two onboard 16-mm color movie cameras and the associated strike attachment patterns are presented. A table of the flight conditions recorded at the time of each lightning event, and a table in which the data are cross-referenced with the previously published lightning electromagnetic waveform data are included.

  9. Mapping the African thunderstorm center in absolute units using Schumann resonance spectral decomposition method

    NASA Astrophysics Data System (ADS)

    Dyrda, Michal; Kulak, Andrzej; Mlynarczyk, Janusz

    2015-04-01

    Monitoring of the global lightning activity provides a very useful tool to study the global warming phenomenon and the other longer-scale climate changes induced by humans. The lightning activity is measured using various observational methods form space (optical satellite observations) as well as from the ground mostly by VLF /LF lightning detection networks, i.e. World Wide Lightning Location Network (WWLLN) or lightning detection network (LINET) in Europe. However, the global lightning activity measurements are possible only in the ELF range. Here we examine the African thunderstorm activity center, which is the most violent and active one. In a spherical damped resonator, such as the Earth-ionosphere cavity, the electromagnetic field is described by the solution of an inhomogeneous wave equation. For such equation the general solution can be expressed by the superposition of the solutions of the homogeneous equation, describing the resonance field, and the component, which is quite strong close to the source and weakens with source-observer separation. Thus, the superposition of the standing wave field with the field of traveling waves, which supply the energy from the lighting discharges to the global resonator, is a main reason for an asymmetric shape of the observational Schumann resonance (SR) power spectra, which highly deviate from the Lorentz curves. It is possible to separate this component from the signal using the spectrum decomposition method proposed by Kułak et al. [2006]. In our approach, we apply the inverse problem solution for determining the distance of the dominant lightning source. The distances to the thunderstorm centers are calculated using the analytical models for the electromagnetic waves propagation in the Earth-ionosphere cavity. Such forms of analytic solutions of the resonant field in the spherical cavity is the zonal harmonic series representation, described by Mushtak and Williams [2002] and we calculated the sets of such curves for different source-observer separations, starting at 1 Mm up to 20 Mm with a step of 0.1 Mm. We selected two observational data sets, collected during different seasons of the year, from our Hylaty station, located in Poland. The data were binned in 10-minute files for which the SR power spectra were derived. In the next step a decomposition curve describing 7 asymmetric SR modes was fitted to the observational data. To compare the resulted decomposed power spectra with analytic model we use chi-squared test and hence we obtained the distances to the dominant thunderstorm center, located in Africa. We computed the monthly lighting activity maps and possible locations on the African continent with the spatial resolution of 1 degree and temporal resolution of 10 minute. Moreover we calculated the thunderstorm intensities in physical units, which are of the order of 2 × 1011 [C2 m2 s-1]. We also notice the seasonal variations of the African thunderstorm centers distributions and as well as intensities. Finally, we compared our results with satellite data recorded by the Lighting Imaging Sensor (LIS) and we obtained very high correlation. Acknowledgements. This work has been supported by the National Science Centre grant 2012/04/M/ST10/00565. The numerical computations were done using the PL-Grid infrastructure.

  10. Electromagnetic emission from terrestrial lightning in the 0.1-30 MHz frequency range

    NASA Astrophysics Data System (ADS)

    Karashtin, A. N.; Gurevich, A. V.

    Results of measurements carried out at SURA facility of Radiophisical Research Institute and at Tien-Shan Mountain Scientific Station of Lebedev Physical Institute using specially designed installations for short electromagnetic pulse observation in the frequency range from 0.1 to 30 MHz are presented. Specific attention is paid to initial stage of the lightning discharge. It is shown that lightning can be initiated by extensive atmospheric showers caused by high energy cosmic ray particles. Analysis of emission of few thousand lightning discharges showed that • Short wave radio emission of lightning consists of a series of short pulses with duration from less than 100 nanoseconds to several microseconds separated well longer gaps. • Background noise between lightning discharges is not differ from one observed without thunderstorm activity (at given sensitivity). Usually it is the same between lightning pulses at least at the initial stage. • Each lightning discharge radio emission starts with a number of very short (less than 100 nanoseconds at 0.7 level) bi-polar pulses. Gaps between initial pulses vary from several microseconds to few hundreds of microseconds. No radio emission was observed before the first pulse during at least 500 milliseconds. Both positive and negative polarity of the first pulses occur in approximately equal proportion in different lightning discharges while the polarity was the same in any individual lightning. • First pulse amplitude, width and waveform are consistent with predicted by the theory of combined action of runaway breakdown and extensive atmospheric shower caused by cosmic ray particle of 1016 eV energy. Lightning discharges at other planets can be initiated by cosmic ray particles as well. This work was partly supported by ISTC grant # 2236p. The work of one of the authors (A. N. Karashtin) was also partly supported by INTAS grant # 03-51-5727.

  11. Diverse Eruptive Activity Revealed by Acoustic and Electromagnetic Observations of the 14 July 2013 Intense Vulcanian Eruption of Tungurahua Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Anderson, J. F.; Johnson, J. B.; Steele, A. L.; Ruiz, M. C.; Brand, B. D.

    2018-04-01

    During the powerful July 2013 eruption of Tungurahua volcano, Ecuador, we recorded exceptionally high amplitude, long-period infrasound (1,600-Pa peak-to-peak amplitude, 5.5-s period) on sensors within 2 km of the vent alongside electromagnetic signals from volcanic lightning serendipitously captured as interference. This explosion was one of Tungurahua's most powerful vulcanian eruptions since recent activity began in 1999, and its acoustic wave is among the most powerful volcanic infrasound ever recorded anywhere. We use these data to quantify erupted volume from the main explosion and to classify postexplosive degassing into distinct emission styles. Additionally, we demonstrate a highly effective method of recording lightning-related electromagnetic signals alongside infrasound. Detailed chronologies of powerful vulcanian eruptions are rare; this study demonstrates that diverse eruptive processes can occur in such eruptions and that near-vent infrasound and electromagnetic data can elucidate them.

  12. Q-Burst Origins in Africa

    NASA Astrophysics Data System (ADS)

    Boldi, R.; Hobara, Y.; Yamashita, K.; Hayakawa, M.; Satori, G.; Bor, J.; Lyons, W. A.; Nelson, T.; Russell, B.; Williams, E.

    2006-12-01

    The generation of electromagnetic transient signatures in the SR frequency range (Q-bursts) from the energetic lightning originating in Africa were intensively studied during the AMMA (African Monsoon Multidisciplinary Analysis) field program centered on Niamey, Niger in 2006. During this wet season many active westward- moving MCSs were observed by the MIT C-band Doppler radar. The MCSs exhibited a gust front, a leading squall line and a large spatially-extended (100-200 km) stratiform region that often passed over the observation site. Many transient events were recorded in association with local lightning both with a slow antenna and a DC electric field mill installed near the radar. During the gust front and squall line traverse, the majority of lightning exhibited normal polarity. A remarkable transition of polarity is observed once the radar site is under the stratiform region and a pronounced radar bright band has had time to develop. The majority of the ground flashes then exhibit a positive polarity (positive ground flash). In particular, very intense positive ground flashes (often topped with spider lightning structure) are registered when the radar "hbright band"h is most strongly developed. These positive flashes exhibit a large DC field change in comparison to ones observed during the earlier squall line passage. Video observations of nighttime events support the existence of the lateral extensive spider lightning. Daytime events exhibit thunder durations of a few minutes. ELF Q-bursts were recorded at MIT's Schumann resonance station in Rhode Island U.S.A. (about 8 Mm distance from Niamey) associated with several large well-established positive ground flashes observed locally near Niamey. The event identification is made by accurate GPS timing and arrival direction of the waves. The onset times of the Q-burst are in good agreement with the electric field measurement near Niamey. The arrival directions of the waves are also in good agreement assuming the lightning source near Niamey. Those Q- bursts were generated when the radar observed the bright band in the stratiform region. Africa stands out among the three tropical chimneys in its production of large and energetic positive ground flashes in several independently produced maps of global lightning activity. Comparison of the morphology of convection in radar field programs in Niamey and in Brazil (LBA Program, 1999) have shown far more squall line activity with accompanying stratiform regions in Africa. A large ratio of positive to negative ground flashes in Africa has been documented by the global mapping of Q-bursts, and is consistent with production of positive lightning in the prevalent stratiform regions behind active squall lines. In contrast, a predominance of large negative ground flashes is observed in the Maritime Continent where many lightning sources are located close to (or over) the ocean, and where vigorous continental-style squall lines are relatively scarce. The global maps from Rhode Island U.S. and Moshiri Japan show similar tendency in the distribution of lightning polarity.

  13. Relativistic runaway breakdown in low-frequency radio

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  14. The effects of lightning on digital flight control systems

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Malloy, W. A.; Craft, J. B.

    1976-01-01

    Present practices in lightning protection of aircraft deal primarily with the direct effects of lightning, such as structural damage and ignition of fuel vapors. There is increasing evidence of troublesome electromagnetic effects, however, in aircraft employing solid-state microelectronics in critical navigation, instrumentation and control functions. The potential impact of these indirect effects on critical systems such as digital fly by wire (DFBW) flight controls was studied. The results indicate a need for positive steps to be taken during the design of future fly by wire systems to minimize the possibility of hazardous effects from lightning.

  15. The physics of lightning

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.; Uman, Martin A.

    2014-01-01

    Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field. By what physical mechanism or mechanisms is lightning initiated in the thundercloud? What is the maximum cloud electric field magnitude and over what volume of the cloud? What, if any, high energy processes (runaway electrons, X-rays, gamma rays) are involved in lightning initiation and how? What is the role of various forms of ice and water in lightning initiation? What physical mechanisms govern the propagation of the different types of lightning leaders (negative stepped, first positive, negative dart, negative dart-stepped, negative dart-chaotic) between cloud and ground and the leaders inside the cloud? What is the physical mechanism of leader attachment to elevated objects on the ground and to the flat ground? What are the characteristics of upward connecting leaders from those objects or from the ground? What is the physics of compact intra-cloud discharges (CIDs) (that produce a narrow bipolar wideband electric field pulse, a narrow bipolar event or NBE, apparently multiple-reflecting propagating waves within 1 km height, and copious HF and VHF radiation)? How are CIDs related to other types of preliminary breakdown pulses? Are CIDs related to the Terrestrial Gamma-Ray Flashes (TGFs) observed on orbiting satellites or to the Transient Luminous Events (TLEs) photographed above cloud tops, particularly to so-called “gigantic jets”? By what physical mechanisms do lightning leaders emit pulses of X-rays? Do the X-rays play a role in lightning propagation? By what mechanism do thunderclouds generate relatively-steady internal X-rays? Do X-rays and other high energy radiation affect cloud electrification and play a role in lightning initiation? By what physical mechanisms are Terrestrial Gamma-Ray Flashes (TGFs) produced? Do TGFs pose a hazard to individuals in aircraft? How do cloud-to-ground and intra-cloud lightning affect the upper atmosphere and ionosphere? What are the physics of the Transient Luminous Events (TLEs), “Sprites”, “jets”, and “elves”? What is the energy input into the ionosphere/magnetosphere from lightning? How exactly does rocket-and-wire (“classical” with a grounded wire and “altitude” with a floating wire) triggering of lightning work? Are there other possible and practical triggering techniques such as laser triggering? Can triggering reduce or eliminate the local occurrence of natural lightning? What are the power and energy of the component processes of lightning flashes and how are they distributed among electromagnetic processes (DC to light), thermal processes, mechanical (acoustic) processes, and relativistic (high energy) processes (runaway electrons, runaway positrons, X-ray, and gamma rays)? What is the physics of ball lightning? Is there more than one type of ball lightning? Questions 1, 2, 4, 5, 6, and 7 will be addressed directly in the following sections of this paper: Section 3. The Lightning Initiation Problem; Section 4. Lightning Propagation; Section 5. High-Energy Atmospheric Physics; Section 6. CIDs; and Section 7. TLEs.

  16. Coupling between atmospheric layers in gaseous giant planets due to lightning-generated electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Luque, A.; Dubrovin, D.; Gordillo-Vázquez, F. J.; Ebert, U.; Parra-Rojas, F. C.; Yair, Y.; Price, C.

    2014-10-01

    Atmospheric electricity has been detected in all gaseous giants of our solar system and is therefore likely present also in extrasolar planets. Building upon measurements from Saturn and Jupiter, we investigate how the electromagnetic pulse emitted by a lightning stroke affects upper layers of a gaseous giant. This effect is probably significantly stronger than that on Earth. We find that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial "elve."

  17. Effects of shields on cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aircraft wiring subjected to rapidly changing electromagnetic fields was considered. The ways in which shielded cables reduce surge voltages were studied along with the ways in which common practice regarding the use of shields may be at variance with the use required for the control of lightning effects. Courses in which this apparent conflict of use may be resolved were suggested. Noise currents flowing on shields of cables related to the noise signals coupled onto signal conductors were also investigated.

  18. Lightning driven EMP in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Rowland, H. L.; Fernsler, R. F.; Huba, J. D.; Bernhardt, P. A.

    1995-01-01

    Large lightning discharges can drive electromagnetic pulses (EMP) that cause breakdown of the neutral atmosphere between 80 and 95 km leading to order of magnitude increases in the plasma density. The increase in the plasma density leads to increased reflection and absorption, and limits the pulse strength that propagates higher into the ionosphere.

  19. Indirect Lightning Safety Assessment Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, M M; Perkins, M P; Brown, C G

    2009-04-24

    Lightning is a safety hazard for high-explosives (HE) and their detonators. In the However, the current flowing from the strike point through the rebar of the building The methodology for estimating the risk from indirect lighting effects will be presented. It has two parts: a method to determine the likelihood of a detonation given a lightning strike, and an approach for estimating the likelihood of a strike. The results of these two parts produce an overall probability of a detonation. The probability calculations are complex for five reasons: (1) lightning strikes are stochastic and relatively rare, (2) the quality ofmore » the Faraday cage varies from one facility to the next, (3) RF coupling is inherently a complex subject, (4) performance data for abnormally stressed detonators is scarce, and (5) the arc plasma physics is not well understood. Therefore, a rigorous mathematical analysis would be too complex. Instead, our methodology takes a more practical approach combining rigorous mathematical calculations where possible with empirical data when necessary. Where there is uncertainty, we compensate with conservative approximations. The goal is to determine a conservative estimate of the odds of a detonation. In Section 2, the methodology will be explained. This report will discuss topics at a high-level. The reasons for selecting an approach will be justified. For those interested in technical details, references will be provided. In Section 3, a simple hypothetical example will be given to reinforce the concepts. While the methodology will touch on all the items shown in Figure 1, the focus of this report is the indirect effect, i.e., determining the odds of a detonation from given EM fields. Professor Martin Uman from the University of Florida has been characterizing and defining extreme lightning strikes. Using Professor Uman's research, Dr. Kimball Merewether at Sandia National Laboratory in Albuquerque calculated the EM fields inside a Faraday-cage type facility, when the facility is struck by lightning. In the following examples we will use Dr. Merewether's calculations from a poor quality Faraday cage as the input for the RF coupling analysis. coupling of radio frequency (RF) energy to explosive components is an indirect effect of currents [1]. If HE is adequately separated from the walls of the facility that is struck by disassembled have been turned into Faraday-cage structures to protect against lightning is initiation of the HE. last couple of decades, DOE facilities where HE is manufactured, assembled, stored or lightning. The most sensitive component is typically a detonator, and the safety concern lightning, electrons discharged from the clouds should not reach the HE components. radio receiver, the metal cable of a detonator can extract energy from the EM fields. This to the earth will create electromagnetic (EM) fields in the facility. Like an antenna in a« less

  20. Electronic Warfare

    DTIC Science & Technology

    2012-02-08

    EMOE is the background electromagnetic environment and the friendly, neutral, and adversarial electronic order of battle within the...X-RayELF VLF MF VHF SHFLF HF Radio Spectrum Visible Spectrum UHF EHF Gamma Ray Cosmic Ray The top bar shows how the electromagnetic spectrum is...effects of sunspots, lightning, and precipitation static. Essentially, the EME is the global EM background . Figure I-2. Electromagnetic Environment

  1. Interpretation of F-106B in-flight lightning signatures

    NASA Technical Reports Server (NTRS)

    Trost, T. F.; Grothaus, M. G.; Wen, C. T.

    1985-01-01

    Various characteristics of the electromagnetic data obtained on a NASA F-106B aircraft during direct lightning strikes are presented. Time scales of interest range from 10 ns to 400 microsecond. The following topics are discussed: (1) Lightning current, I, measured directly versus I obtained from computer integration of measured I-dot; (2) A method of compensation for the low frequency cutoff of the current transformer used to measure I; (3) Properties of fast pulses observed in the lightning time-derivative waveforms; (4) The characteristic D-dot signature of the F-106B aircraft; (5) An RC-discharge interpretation for some lightning waveforms; (6) A method for inferring the locations of lightning channel attachment points on the aircraft by using B-dot data; (7) Simple, approximate relationships between D-dot and I-dot and between B and I; and (8) Estimates of energy, charge, voltage, and resistance for a particular lightning event.

  2. Analysis and Assessment of Peak Lightning Current Probabilities at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Vaughan, W. W.

    1999-01-01

    This technical memorandum presents a summary by the Electromagnetics and Aerospace Environments Branch at the Marshall Space Flight Center of lightning characteristics and lightning criteria for the protection of aerospace vehicles. Probability estimates are included for certain lightning strikes (peak currents of 200, 100, and 50 kA) applicable to the National Aeronautics and Space Administration Space Shuttle at the Kennedy Space Center, Florida, during rollout, on-pad, and boost/launch phases. Results of an extensive literature search to compile information on this subject are presented in order to answer key questions posed by the Space Shuttle Program Office at the Johnson Space Center concerning peak lightning current probabilities if a vehicle is hit by a lightning cloud-to-ground stroke. Vehicle-triggered lightning probability estimates for the aforementioned peak currents are still being worked. Section 4.5, however, does provide some insight on estimating these same peaks.

  3. Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations

    NASA Astrophysics Data System (ADS)

    Compston, A. J.; Cohen, M.; Lehtinen, N. G.; Inan, U.; Linscott, I.; Said, R.; Parrot, M.

    2014-12-01

    Terrestrial Very Low Frequency (VLF) electromagnetic radiation, which strongly impacts the Van Allen radiation belt electron dynamics, is injected across the ionosphere into the Earth's plasmasphere from two primary sources: man-made VLF transmitters and lightning discharges. Numerical models of trans-ionospheric propagation of such waves remain unvalidated, and early models may have overestimated the absorption, hindering a comprehensive understanding of the global impact of VLF waves in the loss of radiation belt electrons. In an attempt to remedy the problem of a lack of accurate trans-ionospheric propagation models, we have used a full electromagnetic wave method (FWM) numerical code to simulate the propagation of lightning-generated whistlers into the magnetosphere and compared the results with whistlers observed on the DEMETER satellite and paired with lightning stroke data from the National Lightning Detection Network (NLDN). We have identified over 20,000 whistlers occuring in 14 different passes of DEMETER over the central United States during the summer of 2009, and 14,000 of those occured within the 2000 km x 2000 km simulation grid we used. As shown in the attached figure, which shows a histogram of the ratio of the simulated whistler energy to the measured whistler energy for the 14,000 whistlers we compared, the simulation tends to slightly underestimate the total whistler energy injected by about 5 dB. However, the simulation underestimates the DEMETER measurements more as one gets further from the source lightning stroke, so since the signal to noise ratio of more distant whistlers will be smaller, possibly additive noise in the DEMETER measurements (which of course is not accounted for in the model) may explain some of the observed discrepancy.

  4. Searching for possible effects on midlatitude sporadic E layer, caused by tropospheric lightning.

    NASA Astrophysics Data System (ADS)

    Barta, Veronika; Haldoupis, Christos; Sátori, Gabriella; Buresova, Dalia

    2016-07-01

    Thunderstorms in the troposphere may affect the overlying ionosphere through electrodynamic and/or neutral atmosphere wave coupling processes. For example, it is well known that lightning discharges may impact upper atmosphere through quasi-electrostatic fields and strong electromagnetic pulses, leading to transient luminous phenomena, such as sprites and elves, along with electron heating and ionization changes in the upper D and lower E-region ionosphere that have been detected in VLF transmissions propagating in the earth-ionosphere waveguide. On the other hand, mechanical coupling between the troposphere and the ionosphere may be caused by neutral atmosphere gravity waves which are known to have their origin in massive thunderstorms. The effects of troposphere-ionosphere coupling during thunderstorms, are not yet fully established and understood, therefore there is need for more correlative studies, for example by using concurrent ionospheric and lightning observations. In the present work an effort is made to investigate a possible relationship between tropospheric lighting and sporadic E layer, which are known to dominate at bottomside ionosphere and at middle latitudes during summer. For this, a correlative analysis was undertaken using lightning data obtained with the LINET lightning detection network in Central Europe, and E region ionospheric parameters (fmin, foE, foEs, fbEs) measured with the Pruhonice (50° N, 14.5° E) DPS-4D digisonde in the summer of 2009. For direct correlation with the digisonde data, the lightning activity was quantified every 15 minutes in coincidence with the measured ionogram parameters. In the search for relation between lightning and sporadic E, the digisonde observations during lightning were also compared with those taken during a number of tropospheric storm-free days in Pruhonice. The results of this correlative study did not provide evidence of significance that favors a relationship between tropospheric lightning and midlatitude sporadic E layer.

  5. An Approach to the Lightning Overvoltage Protection of Medium Voltage Lines in Severe Lightning Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omidiora, M. A.; Lehtonen, M.

    2008-05-08

    This paper deals with the effect of shield wires on lightning overvoltage reduction and the energy relief of MOV (Metal Oxide Varistor) arresters from direct strokes to distribution lines. The subject of discussion is the enhancement of lightning protection in Finnish distribution networks where lightning is most severe. The true index of lightning severity in these areas is based on the ground flash densities and return stroke data collected from the Finnish meteorological institute. The presented test case is the IEEE 34-node test feeder injected with multiple lightning strokes and simulated with the Alternative Transients Program/Electromagnetic Transients program (ATP/EMTP). Themore » response of the distribution line to lightning strokes was modeled with three different cases: no protection, protection with surge arresters and protection with a combination of shield wire and arresters. Simulations were made to compare the resulting overvoltages on the line for all the analyzed cases.« less

  6. Development Status of Optical and Electromagnetic Instruments onboard JEM-GLIMS

    NASA Astrophysics Data System (ADS)

    Sato, Mitsuteru; Ushio, Tomoo; Morimoto, Takeshi; Suzuki, Makoto; Yamazaki, Atsushi; Ishida, Ryohei; Takahashi, Yukihiro; Hobara, Yasuhide; Sakamoto, Yuji; Yoshita, Kengo

    In order to study the generation mechanism of Transient Luminous Events (TLEs), global oc-currence rates and distributions of lightning and TLEs, and the relationship between lightning, TLEs and Terrestrial Gamma-ray Flashes (TGFs), we will carry out the lightning and TLE observation at Exposed Facility of Japanese Experiment Module (JEM-EF) of International Space Station (ISS). In this mission named JEM-GLIMS (Global Lightning and sprIte Mea-surementS on JEM-EF) two kinds of optical instruments and two sets of radio receivers will be integrated into the Multi mission Consolidated Equipment (MCE) which is the bus system and will be installed at JEM-EF. The optical instruments consist of two wide FOV CMOS cameras and six wide FOV photometers, and all these optical instruments are pointed to the nadir direction. CMOS cameras named LSI (Lightning and Sprite Imager) use the STAR-250 device as a detector, which has 512x512 pixels and 25x25 µm pixel size, and have 28.3x28.3 deg. FOV. One CMOS camera with a wide band filter (730-830 nm) mainly measures lightning emission, while another camera with a narrowband filter (766+/-6 nm) mainly measures TLE emission. Five of six photometers named as PH have 42.7 deg. FOV and use photomultiplier tube (PMT) as a photon detector. They equip band-pass filters (150-280 nm, 316+/-5 nm, 337+/-5 nm, 392+/-5 nm, and 762+/-5 nm) for the absolute intensity measurement of the TLE emission. One of six photometers equips a wide-band filter (600-900 nm) to detect light-ning occurring within 86.8 deg. FOV. These output signals will be recorded with the sampling frequency of 20 kHz with a 12-bit resolution. One of two electromagnetic instruments is a VLF receiver (VLFR), which measures electromagnetic waves in the frequency range of 1-40 kHz with 16-bit resolution. Another instrument is VHF interferometer (VITF), which measures VHF pulses generated lightning discharge in the frequency range of 70-100 MHz. JEM-GIMS will be launched in 2011. We have passed the critical design review (CDR) on January and February and have started the fabrication of the proto-flight model. We will present the devel-opment status of the JEM-GLISM optical instruments and discuss the scientific outputs derived from this mission more in detail.

  7. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  8. Observation of Schumann Resonances in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Freudenreich, Henry

    2011-01-01

    The surface of the Earth and the lower edge of the ionosphere define a cavity in which electromagnetic waves propagate. When the cavity is excited by broadband electromagnetic sources, e.g., lightning, a resonant state can develop provided the average equatorial circumference is approximately equal to an integral number of wavelengths of the electromagnetic waves. This phenomenon, known as Schumann resonance, corresponds to electromagnetic oscillations of the surface-ionosphere cavity, and has been used extensively to investigate atmospheric electricity. Using measurements from the Communications/Navigation Outage Forecasting System (C/NOFS) satellite, we report, for the first time, Schumann resonance signatures detected well beyond the upper boundary of the cavity. These results offer new means for investigating atmospheric electricity, tropospheric-ionospheric coupling mechanisms related to lightning activity, and wave propagation in the ionosphere. The detection of Schumann resonances in the ionosphere calls for revisions to the existing models of extremely low frequency wave propagation in the surface-ionosphere cavity. Additionally, these measurements suggest new remote sensing capabilities for investigating atmospheric electricity at other planets.

  9. Diurnal variations of ELF transients and background noise in the Schumann resonance band

    NASA Astrophysics Data System (ADS)

    Greenberg, Eran; Price, Colin

    2007-02-01

    Schumann resonances (SR) are resonant electromagnetic waves in the Earth-ionosphere cavity, induced primarily by lightning discharges, with a fundamental frequency of about 8 Hz and higher-order modes separated by approximately 6 Hz. The SR are made up of the background signal resulting from global lightning activity and extremely low frequency (ELF) transients resulting from particularly intense lightning discharges somewhere on the planet. Since transients within the Earth-ionosphere cavity due to lightning propagate globally in the ELF range, we can monitor and study global ELF transients from a single station. Data from our Negev Desert (Israel) ELF site are collected using two horizontal magnetic induction coils and a vertical electric field ball antenna, monitored in the 5-40 Hz range with a sampling frequency of 250 Hz. In this paper we present statistics related to the probability distribution of ELF transients and background noise in the time domain and its temporal variations during the day. Our results show that the ELF signal in the time domain follows the normal distribution very well. The σ parameter exhibits three peaks at 0800, 1400, and 2000 UT, which are related to the three main global lightning activity centers in Asia, Africa, and America, respectively. Furthermore, the occurrence of intense ELF events obeys the Poisson distribution, with such intense events occurring every ~10 s, depending on the time of the day. We found that the diurnal changes of the σ parameter are several percent of the mean, while for the number of intense events per minute, the diurnal changes are tens of percent about the mean. We also present the diurnal changes of the SR intensities in the frequency domain as observed at our station. To better understand the diurnal variability of the observations, we simulated the measured ELF background noise using space observations as input, as detected by the Optical Transient Detector (OTD). The most active center which is reflected from both ELF measurements and OTD observations is in Africa. However, the second most active center on the basis of ELF measurements appears to be Asia, while OTD observations show that the American center is more active than the Asian center. These differences are discussed. This paper contributes to our understanding of the origin of the SR by comparing different lightning data sets: background electromagnetic radiation and optical emission observed from space.

  10. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger A; Wilgen, John B; Ewing, Paul D

    2006-01-01

    Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance tomore » licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.« less

  11. Regulatory guidance for lightning protection in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.

    2006-07-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees andmore » applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)« less

  12. Investigations into the triggered lightning response of the F106B thunderstorm research aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence H.; Perala, Rodney A.; Mckenna, Paul M.; Parker, Steven L.

    1985-01-01

    An investigation has been conducted into the lightning characteristics of the NASA F106B thunderstorm research aircraft. The investigation includes analysis of measured data from the aircraft in the time and frequency domains. Linear and nonlinear computer modelling has also been performed. In addition, new computer tools have been developed, including a new enhanced nonlinear air breakdown model, and a subgrid model useful for analyzing fine details of the aircraft's geometry. Comparison of measured and calculated electromagnetic responses of the aircraft to a triggered lightning environment are presented.

  13. Fusion of a FBG-based health monitoring system for wind turbines with a fiber-optic lightning detection system

    NASA Astrophysics Data System (ADS)

    Krämer, Sebastian G. M.; Wiesent, Benjamin; Müller, Mathias S.; Puente León, Fernando; Méndez Hernández, Yarú

    2008-04-01

    Wind turbine blades are made of composite materials and reach a length of more than 42 meters. Developments for modern offshore turbines are working on about 60 meters long blades. Hence, with the increasing height of the turbines and the remote locations of the structures, health monitoring systems are becoming more and more important. Therefore, fiber-optic sensor systems are well-suited, as they are lightweight, immune against electromagnetic interference (EMI), and as they can be multiplexed. Based on two separately existing concepts for strain measurements and lightning detection on wind turbines, a fused system is presented. The strain measurement system is based on a reflective fiber-Bragg-grating (FBG) network embedded in the composite structure of the blade. For lightning detection, transmissive &fiber-optic magnetic field sensors based on the Faraday effect are used to register the lightning parameters and estimate the impact point. Hence, an existing lightning detection system will be augmented, due to the fusion, by the capability to measure strain, temperature and vibration. Load, strain, temperature and impact detection information can be incorporated into the turbine's monitoring or SCADA system and remote controlled by operators. Data analysis techniques allow dynamic maintenance scheduling to become a reality, what is of special interest for the cost-effective maintenance of large offshore or badly attainable onshore wind parks. To prove the feasibility of this sensor fusion on one optical fiber, interferences between both sensor systems are investigated and evaluated.

  14. Electromagnetic Calculation of Combined Earthing System with Ring Earth Electrode and Vertical Rods for Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki

    With the worldwide spread of wind turbine installations, various problems such as landscape issues, bird strikes and grid connections have arisen. Protection of wind turbines from lightning is cited as one of the main problems. Wind turbines are often struck by lightning because of their open-air locations, such as in mountainous areas, and their special configuration and very-high construction. Especially, low-voltage and control circuits can fail or suffer burnout while blades can incur serious damage if struck by lightning. Wind turbine failures caused by lightning strikes account for approximately 25% of all failures. The problem is regarded as a global one that needs immediate resolution. It is important to understand the impedance characteristics of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC TR61400-24 recommends a “ring earth electrode”. This was originally defined in IEC 61024 (currently revised and re-numbered as IEC 62305), where such an electrode is recommended to reduce touch and step voltages in households and buildings. IEC TR61400-24 also recommended additional electrodes of vertical or horizontal rods. However, these concepts have not been fully discussed from the viewpoint of its application to wind turbines. To confirm the effect of a combination of a ring earth electrode and additional vertical rods for protection of a wind turbine, this report uses the Finite Difference Time Domain (FDTD) method to present an electromagnetic transient analysis on such a wind turbine earthing system. The results show that an optimal combination can be arranged from viewpoints of lightning protection and construction cost. Thus, this report discusses how to establish a quantitative design methodology of the wind turbine earthing system to provide effective lightning protection.

  15. Lightning swept-stroke attachment patterns and flight conditions for storm hazards 1981

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.

    1984-01-01

    As part of the NASA Langley Research Center Storm Hazards Program, 111 thunderstorm penetrations were made in 1981 with an F-106B airplane in order to record direct-strike lightning data and the associated flight conditions. Ground-based weather radar measurements in conjunction with these penetrations were made by NOAA National Severe Storms Laboratory in Oklahoma and by NASA Wallops Flight Facility in Virginia. In 1981, the airplane received 10 direct lightning strikes; in addition, lightning transient data were recorded from 22 nearby flashes. Following each flight, the airplane was thoroughly inspected for evidence of lightning attachment, and the individual lightning attachment points were plotted on isometric projections of the airplane to identify swept-flash patterns. This report shows the strike attachment patterns that were found, and tabulates the flight conditions at the time of each lightning event. Finally, this paper contains a table in which the data in this report are cross-referenced with the previously published electromagnetic waveform data recorded onboard the airplane.

  16. Interaction with the lower ionosphere of electromagnetic pulses from lightning - Heating, attachment, and ionization

    NASA Technical Reports Server (NTRS)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A Boltzmann formulation of the electron distribution function and Maxwell's equations for the EM fields are used to simulate the interaction of lightning radiated EM pulses with the lower ionosphere. Ionization and dissociative attachment induced by the heated electrons cause significant changes in the local electron density, N(e). Due to 'slow' field changes of typical lightning EM pulses over time scales of tens of microsec, the distribution function follows the quasi-equilibrium solution of the Boltzmann equation in the altitude range of interest (70 to 100 km). The EM pulse is simulated as a planar 100 microsec long single period oscillation of a 10 kHz wave injected at 70 km. Under nighttime conditions, individual pulses of intensity 10-20 V/m (normalized to 100 km horizontal distance) produce changes in N(e) of 1-30 percent while a sequence of pulses leads to strong modification of N(e) at altitudes less than 95 km. The N(e) changes produce a 'sharpening' of the lower ionospheric boundary by causing a reduction in electron density at 75-85 km (due to attachment) and a substantial increase at 85-95 km (due to ionization) (e.g., the scale height decreases by a factor of about 2 at about 85 km for a single 20 V/m EM pulse). No substantial N(e) changes occur during daytime.

  17. Lightning electromagnetic radiation field spectra in the interval from 0. 2 to 20 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willett, J.C.; Bailey, J.C.; Leteinturier, C.

    1990-11-20

    Average energy spectral densities are presented for the fast transitions in most of the components that produce large radiation field impulses from cloud-to-ground lightning; first and subsequent return strokes; stepped, dart-stepped, and 'chaotic' leaders; and 'characteristic' cloud pulses. A disagreement in the previous literature about the spectral energy radiated by return strokes at high frequencies is noted and explained. The authors show that the spectral amplitudes are not seriously distorted by propagation over less than 35 km of seawater, although as much as 45 km of such propagation does appear to produce significant attenuation above about 10 MHz. First andmore » subsequent return strokes produce identical spectra between 0.2 and 20 MHz. The spectra of stepped and dart-stepped leader steps are nearly identical and are very similar to that of characteristic pulses. The spectra of leader steps also match return stroke spectra above 2-3 MHz after the former are increased by about 7 dB. The shapes of individual spectra do not depend on their amplitude, so the shapes of the average spectra are probably not distorted by the trigger thresholds used in the data acquisition. Return strokes are the strongest sources of radiation from cloud-to-ground lightning in the 0.2- to 20-MHz frequency range, although certain intracloud processes are stronger radiators above 8 MHz.« less

  18. Electric field studies: TLE-induced waveforms and ground conductivity impact on electric field propagation

    NASA Astrophysics Data System (ADS)

    Farges, Thomas; Garcia, Geraldine; Blanc, Elisabeth

    2010-05-01

    We review in this paper main results obtained from electric field (from VLF to HF) measurement campaigns realized by CEA in the framework of the Eurosprite program [Neubert et al., 2005, 2008] from 2003 to 2009 in France in different configurations. Two main topics have been studied: sprite or elve induced phenomena (radiation or perturbation) and wave propagation. Using a network of 4 stations, VLF radiations from sprite have been successfully located at 10 km from the sprite parent lightning, in agreement with possible sprite location, generally displaced from the parent lightning. The MF (300 kHz - 3 MHz) source bursts were identified simultaneously with the occurrence of sprites observed with cameras [Farges et al., 2004; Neubert et al., 2008]. These observations are compared to recent broadband measurements, assumed to be due to relativistic electron beam radiation related to sprites [Fullekrug et al., 2009]. Recently, in 2009, with a new instrumentation, an ELF tail has been clearly measured after the lightning waveform, while sprites were observed at about 500 km from our station. This ELF tail is usually observed at distances higher than thousand km and is associated to sprite generation. This opens the capacity to measure the charge moment of the parent-lightning, using such measurement close to the source. Farges et al. [2007] showed that just after a lightning return stroke, a strong transient attenuation is very frequently observed in the MF waves of radio transmissions. They showed that this perturbation is due to heating of the lower ionosphere by the lightning-induced EMP during few milliseconds. These perturbations are then the MF radio signature of the lightning EMP effects on the lower ionosphere, in the same way as elves correspond to their optical signature. The experiment also provided the electric field waveforms directly associated to elves, while lightning were not detected by Météorage. Many of them present a double peak feature. The propagation of the electromagnetic waves generated by lightning has also been studied in the frequency range 1 kHz-1MHz at distances lower than 1000 km from the lightning source. A propagation model has been developed to determine the ground waves which propagate in a homogenous medium using the analytical expression given by Maclean and Wu [1993]. This approach takes into account the electric finite conductivity and the fact that the Earth is spherical, which allow us to deal with over-the-horizon propagation. We installed in 2008 four stations which were more or less aligned - the maximum distance between two stations was about 870 km. Two stations were located close to the Mediterranean Sea and the two others inside the continent, at the centre of France. This station distribution and the observation period (from August to December) allowed statistical and physical studies, such as the influence of the electric conductivity on wave propagation. Comparison of electric field spectra, measured after propagation only over sea and only over ground, showed clearly the effects of ground conductivity on propagation. Comparison between observations and modelling has been used to evaluate the ground conductivity. In the future we will implement the sky-wave inside our model and validate it with the database.

  19. Brain electromagnetic activity and lightning: potentially congruent scale-invariant quantitative properties

    PubMed Central

    Persinger, Michael A.

    2012-01-01

    The space-time characteristics of the axonal action potential are remarkably similar to the scaled equivalents of lightning. The energy and current densities from these transients within their respective volumes or cross-sectional areas are the same order of magnitude. Length–velocity ratios and temporal durations are nearly identical. There are similar chemical consequences such as the production of nitric oxide. Careful, quantitative examination of the characteristics of lightning may reveal analogous features of the action potential that could lead to a more accurate understanding of these powerful correlates of neurocognitive processes. PMID:22615688

  20. Atmospheric electrical modeling in support of the NASA F106 Storm Hazards Project

    NASA Technical Reports Server (NTRS)

    Helsdon, J. H.

    1986-01-01

    With the use of composite (non-metallic) and microelectronics becoming more prevalent in the construction of both military and commercial aircraft, the control systems have become more susceptible to damage or failure from electromagnetic transients. One source of such transients is the lightning discharge. In order to study the effects of the lightning discharge on the vital components of an aircraft, NASA Langley Research Center has undertaken a Storm Hazards Program in which a specially instrumented F106B jet aircraft is flown into active thunderstorms with the intention of being struck by lightning. One of the specific purposes of the program is to quantify the environmental conditions which are conductive to aircraft lightning strikes.

  1. Characteristics of long recovery early VLF events observed by the North African AWESOME Network

    NASA Astrophysics Data System (ADS)

    Naitamor, S.; Cohen, M. B.; Cotts, B. R. T.; Ghalila, H.; Alabdoadaim, M. A.; Graf, K.

    2013-08-01

    Lightning strokes are capable of initiating disturbances in the lower ionosphere, whose recoveries persist for many minutes. These events are remotely sensed via monitoring subionospherically propagating very low frequency (VLF) transmitter signals, which are perturbed as they pass through the region above the lightning stroke. In this paper we describe the properties and characteristics of the early VLF signal perturbations, which exhibit long recovery times using subionospheric VLF transmitter data from three identical receivers located at Algiers (Algeria), Tunis (Tunisia), and Sebha (Libya). The results indicate that the observation of long recovery events depends strongly on the modal structure of the signal electromagnetic field and the distance from the disturbed region and the receiver or transmitter locations. Comparison of simultaneously collected data at the three sites indicates that the role of the causative lightning stroke properties (e.g., peak current and polarity), or that of transient luminous events may be much less important. The dominant parameter which determines the duration of the recovery time and amplitude appears to be the modal structure of the subionospheric VLF probe signal at the ionospheric disturbance, where scattering occurs, and the subsequent modal structure that propagates to the receiver location.

  2. Lightning Current Measurement with Fiber-Optic Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2014-01-01

    A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.

  3. Shipborne LF-VLF oceanic lightning observations and modeling

    NASA Astrophysics Data System (ADS)

    Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Lehtinen, N. G.; Inan, U. S.

    2015-10-01

    Approximately 90% of natural lightning occurs over land, but recent observations, using Global Lightning Detection (GLD360) geolocation peak current estimates and satellite optical data, suggested that cloud-to-ground flashes are on average stronger over the ocean. We present initial statistics from a novel experiment using a Low Frequency (LF) magnetic field receiver system installed aboard the National Oceanic Atmospheric Agency (NOAA) Ronald W. Brown research vessel that allowed the detection of impulsive radio emissions from deep-oceanic discharges at short distances. Thousands of LF waveforms were recorded, facilitating the comparison of oceanic waveforms to their land counterparts. A computationally efficient electromagnetic radiation model that accounts for propagation over lossy and curved ground is constructed and compared with previously published models. We include the effects of Earth curvature on LF ground wave propagation and quantify the effects of channel-base current risetime, channel-base current falltime, and return stroke speed on the radiated LF waveforms observed at a given distance. We compare simulation results to data and conclude that previously reported larger GLD360 peak current estimates over the ocean are unlikely to fully result from differences in channel-base current risetime, falltime, or return stroke speed between ocean and land flashes.

  4. Fiber-Optic Current Sensor Validation with Triggered Lightning Measurements

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2013-01-01

    A fiber optic current sensor based on the Faraday Effect is developed that is highly suitable for aircraft installation and can measure total current enclosed in a fiber loop down to DC. Other attributes include being small, light-weight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate when exposed to a magnetic field in the direction of light propagation. Measuring the induced light polarization rotation in fiber loops yields the total current enclosed. Two sensor systems were constructed and installed at Camp Blanding, Florida, measuring rocket-triggered lightning. The systems were similar in design but with different laser wavelengths, sensitivities and ranges. Results are compared to a shunt resistor as reference. The 850nm wavelength system tested in summer 2011 showed good result comparison early. However, later results showed gradual amplitude increase with time, attributed to corroded connections affecting the 50-ohm output termination. The 1550nm system also yielded good results in the summer 2012. The successful measurements demonstrate the fiber optic sensor's accuracies in capturing real lightning currents, and represent an important step toward future aircraft installation.

  5. Modeling Techniques Used to Analyze Safety of Payloads for Generic Missile Type Weapons Systems During an Indirect Lightning Strike

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, M P; Ong, M M; Crull, E W

    2009-07-21

    During lightning strikes buildings and other structures can act as imperfect Faraday Cages, enabling electromagnetic fields to be developed inside the facilities. Some equipment stored inside these facilities may unfortunately act as antenna systems. It is important to have techniques developed to analyze how much voltage, current, or energy dissipation may be developed over valuable components. In this discussion we will demonstrate the modeling techniques used to accurately analyze a generic missile type weapons system as it goes through different stages of assembly. As work is performed on weapons systems detonator cables can become exposed. These cables will form differentmore » monopole and loop type antenna systems that must be analyzed to determine the voltages developed over the detonator regions. Due to the low frequencies of lightning pulses, a lumped element circuit model can be developed to help analyze the different antenna configurations. We will show an example of how numerical modeling can be used to develop the lumped element circuit models used to calculate voltage, current, or energy dissipated over the detonator region of a generic missile type weapons system.« less

  6. Environmental Assessment for AFRL/RY Research & Development Activities & Area B Laser Test Area, Wright-Patterson AFB, Ohio

    DTIC Science & Technology

    2008-10-01

    732) 866-2821 Hazards of Electromagnetic Radiation to Ordnance ( HERO ) Mr. Charles Denham/Rick Magrogan Naval Surface Warfare Center, Dahlgren...with a lightning strike; thus the requirements of paragraph C7.4.1 of reference (b) are met. (4) There are no electromagnetic radiation hazards to...the other hazardous material requirements of 49 CFR. This includes, but is not limited to, the packaging, electromagnetic radiation , and

  7. Laboratory-produced ball lightning

    NASA Astrophysics Data System (ADS)

    Golka, Robert K., Jr.

    1994-05-01

    For 25 years I have actively been searching for the true nature of ball lightning and attempting to reproduce it at will in the laboratory. As one might expect, many unidentified lights in the atmosphere have been called ball lightning, including Texas Maffa lights (automobile headlights), flying saucers (UFOs), swamp gas in Ann Arbor, Michigan, etc. For 15 years I thought ball lightning was strictly a high-voltage phenomenon. It was not until 1984 when I was short-circuiting the electrical output of a diesel electric railroad locomotive that I realized that the phenomenon was related more to a high current. Although I am hoping for some other types of ball lightning to emerge such as strictly electrostatic-electromagnetic manifestations, I have been unlucky in finding laboratory provable evidence. Cavity-formed plasmodes can be made by putting a 2-inch burning candle in a home kitchen microwave oven. The plasmodes float around for as long as the microwave energy is present.

  8. Electromagnetic Compatibility for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2004-01-01

    This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.

  9. Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-06-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  10. Lightning-Generated Whistler Waves Observed by Probes On The Communication/Navigation Outage Forecast System Satellite at Low Latitudes

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-01-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning ]related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401.867 km). Lightning ]generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  11. Lightning charge moment changes estimated by high speed photometric observations from ISS

    NASA Astrophysics Data System (ADS)

    Hobara, Y.; Kono, S.; Suzuki, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.; Suzuki, M.

    2017-12-01

    Optical observations by the CCD camera using the orbiting satellite is generally used to derive the spatio-temporal global distributions of the CGs and ICs. However electrical properties of the lightning such as peak current and lightning charge are difficult to obtain from the space. In particular, CGs with considerably large lightning charge moment changes (CMC) and peak currents are crucial parameters to generate red sprites and elves, respectively, and so it must be useful to obtain these parameters from space. In this paper, we obtained the lightning optical signatures by using high speed photometric observations from the International Space Station GLIMS (Global Lightning and Sprit MeasurementS JEM-EF) mission. These optical signatures were compared quantitatively with radio signatures recognized as truth values derived from ELF electromagnetic wave observations on the ground to verify the accuracy of the optically derived values. High correlation (R > 0.9) was obtained between lightning optical irradiance and current moment, and quantitative relational expression between these two parameters was derived. Rather high correlation (R > 0.7) was also obtained between the integrated irradiance and the lightning CMC. Our results indicate the possibility to derive lightning electrical properties (current moment and CMC) from optical measurement from space. Moreover, we hope that these results will also contribute to forthcoming French microsatellite mission TARANIS.

  12. Implications of Electron Momentum Relaxation Time Scales for Modeling of Transient Electric Fields in the Lower Ionosphere

    NASA Astrophysics Data System (ADS)

    Pasko, V. P.

    2009-12-01

    Thomas et al. [JGR, A12306, 2008] has reported lightning-driven electric (E) field pulses at 75-130 km altitude recorded during rocket experiment in 1995 from Wallops Island, Virginia. The measurements were compared to a 2D electromagnetic model of Cho and Rycroft [JASTP, 60,871,1998]. Thomas et al.[2008] indicated that the observed field magnitudes were an order of magnitude lower than predicted by the model and questioned validity of the electromagnetic pulse mechanism of elves. The goal of the present work, which utilizes Monte Carlo and FDTD electromagnetic modeling, is to emphasize range of validity of the local field approximation (LFA) employed in the Cho and Rycroft's [1998] model and other similar models for the cases when weak (~10 mV/m as reported in [Thomas et al., 2008]) E field pulses are considered. Glukhov et al. [GRL, 23, 2193, 1996] and Sukhorukov et al. [GRL, 23, 2911, 1996] performed Monte Carlo simulations for large E fields ~10V/m at typical altitudes of elves, which fully confirmed validity of models of elves based on LFA [Taranenko et al., GRL, 20, 2675, 1993; Inan et al., GRL, 23, 133, 1996]. We demonstrate that the time of relaxation of the momentum of the electron distributions subjected to the external E field scales approximately as 1/E and exceeds 10s of microseconds for E<1V/m at typical altitudes of elves and sprite halos. The weak, ~10mV/m (<18kHz), E field transients observed in the lower ionosphere [Thomas et al., 2008] can not be accurately described in the framework of the self-consistent electron mobility model based on the LFA [e.g.,Cho and Rycroft, 1998]. At lower ionospheric altitudes LFA in which electron mobility reaches equilibrium value defined by the magnitude of the reduced applied E field is only valid for relatively large fields E>1 V/m when fast (10 kHz) processes are considered. The models of elves relying on LFA [e.g., Taranenko et al., 1993; Inan et al., 1996] generally require E>1 V/m for production of observable optical emissions at lower ionospheric altitudes and therefore remain valid, in agreement with original conclusions reached by Glukhov et al. [1996] and Sukhorukov et al. [1996]. Two additional factors may have contributed to the low field magnitudes reported in [Thomas et al., 2008]: 1) The measurements were conducted on September 2, 1995 around evening hours (9:22 PM local time) at which the lower ionosphere likely exhibited enhancement of electron density in comparison with night time conditions employed in modeling; 2) The NLDN deduced peak currents were employed in modeling with lightning current rise time 60 microseconds while NLDN is generally sensitive to LF radiation, which for a typical -CG is emitted during the initial 1-5 microseconds from a vertical part of the return stroke channel a few tens to a few hundreds of meters above the ground [Krider et al., J. Appl. Meteorol., 15, 301, 1976; Orville, BAMS, 2, 180, 2008]. The low pass filtering with 18 kHz cutoff applied to data reported in [Thomas et al., 2008] may contributed to underestimation of magnitudes of observed lightning induced pulses. Modeling results will be presented which illustrate these effects and allow to reach a good agreement with observations in a subset of the cases reported in [Thomas et al., 2008].

  13. Lightning and plasma wave observations from the galileo flyby of venus.

    PubMed

    Gurnett, D A; Kurth, W S; Roux, A; Gendrin, R; Kennel, C F; Bolton, S J

    1991-09-27

    During the Galileo flyby of Venus the plasma wave instrument was used to search for impulsive radio signals from lightning and to investigate locally generated plasma waves. A total of nine events were detected in the frequency range from 100 kilohertz to 5.6 megahertz. Although the signals are weak, lightning is the only known source of these signals. Near the bow shock two types of locally generated plasma waves were observed, low-frequency electromagnetic waves from about 5 to 50 hertz and electron plasma oscillation at about 45 kilohertz. The plasma oscillations have considerable fine structure, possibly because of the formation of soliton-like wave packets.

  14. Lightning electromagnetics

    NASA Technical Reports Server (NTRS)

    Wahid, Parveen

    1995-01-01

    This project involved the determination of the effective radiated power of lightning sources and the polarization of the radiating source. This requires the computation of the antenna patterns at all the LDAR site receiving antennas. The known radiation patterns and RF signal levels measured at the antennas will be used to determine the effective radiated power of the lightning source. The azimuth and elevation patterns of the antennas in the LDAR system were computed using flight test data that was gathered specifically for this purpose. The results presented in this report deal with the azimuth patterns for all the antennas and the elevation patterns for three of the seven sites.

  15. Lightning and plasma wave observations from the Galileo flyby of Venus

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Roux, A.; Gendrin, R.; Kennel, C. F.; Bolton, S. J.

    1991-01-01

    Durig the Galileo flyby of Venus the plasma wave instrument was used to search for impulsive radio signals from lightning and to investigate locally generated plasma waves. A total of nine events were detected in the frequency range from 100 kilohertz to 5.6 megahertz. Although the signals are weak, lightning is the only known source of these signals. Near the bow shock two types of locally generated plasma waves were observed, low-frequency electromagnetic waves from about 5 to 50 hertz and electron plasma oscillation at about 45 kilohertz. The plasma oscillations have considerable fine structure, possibly because of the formation of soliton-like wave packets.

  16. Characteristics of VLF/LF Sferics from Elve-producing Lightning Discharges

    NASA Astrophysics Data System (ADS)

    Blaes, P.; Zoghzoghy, F. G.; Marshall, R. A.

    2013-12-01

    Lightning return strokes radiate an electromagnetic pulse (EMP) which interacts with the D-region ionosphere; the largest EMPs produce new ionization, heating, and optical emissions known as elves. Elves are at least six times more common than sprites and other transient luminous events. Though the probability that a lightning return stroke will produce an elve is correlated with the return stroke peak current, many large peak current strokes do not produce visible elves. Apart from the lightning peak current, elve production may depend on the return stroke speed, lightning altitude, and ionospheric conditions. In this work we investigate the detailed structure of lightning that gives rise to elves by analyzing the characteristics of VLF/LF lightning sferics in conjunction with optical elve observations. Lightning sferics were observed using an array of six VLF/LF receivers (1 MHz sample-rate) in Oklahoma, and elves were observed using two high-speed photometers pointed over the Oklahoma region: one located at Langmuir Laboratory, NM and the other at McDonald Observatory, TX. Hundreds of elves with coincident LF sferics were observed during the summer months of 2013. We present data comparing the characteristics of elve-producing and non-elve producing lightning as measured by LF sferics. In addition, we compare these sferic and elve observations with FDTD simulations to determine key properties of elve-producing lightning.

  17. Electromagnetic Compatibility Analysis Group VA-H3

    NASA Technical Reports Server (NTRS)

    Armanda, Carlos A.

    2008-01-01

    During the eight weeks working at NASA, I was fortunate enough to work with the Expendable Launch Vehicle's (ELV) Electromagnetic Compatibility (EMC) Team, who is responsible for the evaluation and analysis of any EMI risk an ELV mission might face. This group of people concern themselves with practically any form of electromagnetic interference that may risk the safety of a rocket, a mission, or even people. Taking this into consideration, the group investigates natural forms of interference, such as lightning, to manmade interferences, such as antennas.

  18. Discrimination between pre-seismic electromagnetic anomalies and solar activity effects

    NASA Astrophysics Data System (ADS)

    Koulouras, G.; Balasis, G.; Kiourktsidis, I.; Nannos, E.; Kontakos, K.; Stonham, J.; Ruzhin, Y.; Eftaxias, K.; Cavouras, D.; Nomicos, C.

    2009-04-01

    Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kilohertz (kHz) to very high megahertz (MHz) frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only in the laboratory but also at a geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We should bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated with earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to be related to a few sources, including atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, the lithospheric effect, namely pre-seismic activity. We focus on this point in this paper. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the set of criteria presented herein, these anomalies could be considered as candidate precursory phenomena of an impending earthquake.

  19. Discrimination between preseismic electromagnetic anomalies and solar activity effects

    NASA Astrophysics Data System (ADS)

    Koulouras, Gr; Balasis, G.; Kontakos, K.; Ruzhin, Y.; Avgoustis, G.; Kavouras, D.; Nomicos, C.

    2009-04-01

    Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kHz to very high MHz frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only at laboratory but also at geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated to earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to related to a few sources, i.e., they might be atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, lithospheric effect, namely pre-seismic activity. We focus on this point. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the herein presented set of criteria these anomalies could be considered as candidate precursory phenomena of an impending earthquake.

  20. Wavelet-like bases for thin-wire integral equations in electromagnetics

    NASA Astrophysics Data System (ADS)

    Francomano, E.; Tortorici, A.; Toscano, E.; Ala, G.; Viola, F.

    2005-03-01

    In this paper, wavelets are used in solving, by the method of moments, a modified version of the thin-wire electric field integral equation, in frequency domain. The time domain electromagnetic quantities, are obtained by using the inverse discrete fast Fourier transform. The retarded scalar electric and vector magnetic potentials are employed in order to obtain the integral formulation. The discretized model generated by applying the direct method of moments via point-matching procedure, results in a linear system with a dense matrix which have to be solved for each frequency of the Fourier spectrum of the time domain impressed source. Therefore, orthogonal wavelet-like basis transform is used to sparsify the moment matrix. In particular, dyadic and M-band wavelet transforms have been adopted, so generating different sparse matrix structures. This leads to an efficient solution in solving the resulting sparse matrix equation. Moreover, a wavelet preconditioner is used to accelerate the convergence rate of the iterative solver employed. These numerical features are used in analyzing the transient behavior of a lightning protection system. In particular, the transient performance of the earth termination system of a lightning protection system or of the earth electrode of an electric power substation, during its operation is focused. The numerical results, obtained by running a complex structure, are discussed and the features of the used method are underlined.

  1. Prevalent lightning sferics at 600 megahertz near Jupiter's poles

    NASA Astrophysics Data System (ADS)

    Brown, Shannon; Janssen, Michael; Adumitroaie, Virgil; Atreya, Sushil; Bolton, Scott; Gulkis, Samuel; Ingersoll, Andrew; Levin, Steven; Li, Cheng; Li, Liming; Lunine, Jonathan; Misra, Sidharth; Orton, Glenn; Steffes, Paul; Tabataba-Vakili, Fachreddin; Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William; Hospodarsky, George; Gurnett, Donald; Connerney, John

    2018-06-01

    Lightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures1-6. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning7-9. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies10,11, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range12. Strong ionospheric attenuation or a lightning discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy13,14. Here we report observations of Jovian lightning sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer15 onboard the Juno spacecraft. These detections imply that Jovian lightning discharges are not distinct from terrestrial lightning, as previously thought. In the first eight orbits of Juno, we detected 377 lightning sferics from pole to pole. We found lightning to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of lightning is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet16,17, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles9,16,18. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.

  2. Electrification processes and lightning generation in volcanic plumes—observations from recent eruptions

    NASA Astrophysics Data System (ADS)

    Van Eaton, A. R.; Smith, C. M.; Schneider, D. J.

    2017-12-01

    Lightning in volcanic plumes provides a promising way to monitor ash-producing eruptions and investigate their dynamics. Among the many methods of lightning detection are global networks of sensors that detect electromagnetic radiation in the very low frequency band (3-30 kHz), including the World Wide Lightning Location Network. These radio waves propagate thousands of kilometers at the speed of light, providing an opportunity for rapid detection of explosive volcanism anywhere in the world. Lightning is particularly valuable as a near real-time indicator of ash-rich plumes that are hazardous to aviation. Yet many fundamental questions remain. Under what conditions does electrical activity in volcanic plumes become powerful, detectable lightning? And conversely, can we use lightning to illuminate eruption processes and hazards? This study highlights recent observations from the eruptions of Redoubt (Alaska, 2009), Kelud (Indonesia, 2014), Calbuco (Chile, 2015), and Bogoslof (Alaska, 2017) to examine volcanic lighting from a range of eruption styles (Surtseyan to Plinian) and mass eruption rates from 10^5 to 10^8 kg/s. It is clear that lightning stroke-rates do not scale in a simple way with mass eruption rate or plume height across different eruptions. However, relative changes in electrical activity through individual eruptions relate to changes in eruptive intensity, ice content, and volcanic plume processes (fall vs. flow).

  3. Low-cost modular array-field designs for flat-panel and concentrator photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Post, H. N.; Carmichael, D. C.; Alexander, G.; Castle, J. A.

    1982-09-01

    Described are the design and development of low-cost, modular array fields for flat-panel and concentrator photovoltaic (PV) systems. The objective of the work was to reduce substantially the cost of the array-field Balance-of-System (BOS) subsystems and site-specific design costs as compared to previous PV installations. These subsystems include site preparation, foundations, support structures, electrical writing, grounding, lightning protection, electromagnetic interference considerations, and controls. To reduce these BOS and design costs, standardized modular (building-block) designs for flat-panel and concentrator array fields have been developed that are fully integrated and optimized for lowest life-cycle costs. Using drawings and specifications now available, these building-block designs can be used in multiples to install various size array fields. The developed designs are immediately applicable (1982) and reduce the array-field BOS costs to a fraction of previous costs.

  4. Lightning may pose a danger to patients receiving deep brain stimulation: case report.

    PubMed

    Prezelj, Neža; Trošt, Maja; Georgiev, Dejan; Flisar, Dušan

    2018-05-01

    Deep brain stimulation (DBS) is an established treatment option for advanced stages of Parkinson's disease and other movement disorders. It is known that DBS is susceptible to strong electromagnetic fields (EMFs) that can be generated by various electrical devices at work, home, and in medical environments. EMFs can interfere with the proper functioning of implantable pulse generators (IPGs). Very strong EMFs can generate induction currents in implanted electrodes and even damage the brain. Manufacturers of DBS devices have issued a list of warnings on how to avoid this danger. Strong EMFs can result from natural forces as well. The authors present the case of a 66-year-old woman who was being treated with a rechargeable DBS system for neck dystonia when her apartment was struck by lightning. Domestic electronic devices that were operating during the event were burned and destroyed. The woman's IPG switched off but remained undamaged, and she suffered no neurological consequences.

  5. Transmission of electric fields due to distributed cloud charges in the atmosphere-ionosphere system

    NASA Astrophysics Data System (ADS)

    Paul, Suman; De, S. S.; Haldar, D. K.; Guha, G.

    2017-10-01

    The transmission of electric fields in the lower atmosphere by thunder clouds with a suitable charge distribution profile has been modeled. The electromagnetic responses of the atmosphere are presented through Maxwell's equations together with a time-varying source charge distribution. The conductivities are taken to be exponentially graded function of altitude. The radial and vertical electric field components are derived for isotropic, anisotropic and thundercloud regions. The analytical solutions for the total Maxwell's current which flows from the cloud into the ionosphere under DC and quasi-static conditions are obtained for isotropic region. We found that the effect of charge distribution in thunderclouds produced by lightning discharges diminishes rapidly with increasing altitudes. Also, it is found that time to reach Maxwell's currents a maximum is higher for higher altitudes.

  6. Formulation of a strategy for monitoring control integrity in critical digital control systems

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1991-01-01

    Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.

  7. Thunderstorm related variations of the ionospheric sporadic E layer over Rome

    NASA Astrophysics Data System (ADS)

    Barta, Veronika; Scotto, Carlo; Pietrella, Marco

    2013-04-01

    Meteorological events in the lower atmosphere can affect the ionosphere by electromagnetic and mechanical processes. One type of the latter ones is the internal atmospheric gravity waves (AGWs) which can often be generated by thunderstorms. According to a Superposed Epoch Analyses (SEA) using the time series of the critical frequency (foEs) and virtual height (h'Es) of the sporadic E layer and WWLLN (World Wide Lightning Location Network) lightning data over the ionospheric station of Rome (41.9° 12.5°) there is a statistically significant decrease in the foEs of the sporadic E layer after the time of the lightnings. This may indicate a sudden decrease in the electron density of the sporadic E layer associated to lightnings. In order to understand the physical explanation for this phenomenon further studies are performed as follows: a SEA for different seasons and for daytime - nightime lightnings separately. Direction of arrival of thunderstorms is also taken into account.

  8. Mapping lightning in the sky with a mini array

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Liu, Zhongjian; Koh, Kuang; Mezentsev, Andrew; Pedeboy, Stéphane; Soula, Serge; Enno, Sven-Erik; Sugier, Jacqueline; Rycroft, Michael J.

    2016-10-01

    Mini arrays are commonly used for infrasonic and seismic studies. Here we report for the first time the detection and mapping of distant lightning discharges in the sky with a mini array. The array has a baseline to wavelength ratio ˜4.2·10-2 to record very low frequency electromagnetic waves from 2 to 18 kHz. It is found that the mini array detects ˜69 lightning pulses per second from cloud-to-ground and in-cloud discharges, even though the parent thunderstorms are ˜900-1100 km away and a rigorous selection criterion based on the quality of the wavefront across the array is used. In particular, lightning pulses that exhibit a clockwise phase progression are found at larger elevation angles in the sky as the result of a birefringent subionospheric wave propagation attributed to ordinary and extraordinary waves. These results imply that long range lightning detection networks might benefit from an exploration of the wave propagation conditions with mini arrays.

  9. Linear and nonlinear interpretation of the direct strike lightning response of the NASA F106B thunderstorm research aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, T. H.; Perala, R. A.

    1983-01-01

    The objective of the work reported here is to develop a methodology by which electromagnetic measurements of inflight lightning strike data can be understood and extended to other aircraft. A linear and time invariant approach based on a combination of Fourier transform and three dimensional finite difference techniques is demonstrated. This approach can obtain the lightning channel current in the absence of the aircraft for given channel characteristic impedance and resistive loading. The model is applied to several measurements from the NASA F106B lightning research program. A non-linear three dimensional finite difference code has also been developed to study the response of the F106B to a lightning leader attachment. This model includes three species air chemistry and fluid continuity equations and can incorporate an experimentally based streamer formulation. Calculated responses are presented for various attachment locations and leader parameters. The results are compared qualitatively with measured inflight data.

  10. Magnetic Field Control of the Entry into the Ionosphere of Whistler-Mode Waves Produced by Venus Lightning

    NASA Astrophysics Data System (ADS)

    Russell, Christopher; Wei, Hanying; Zhang, Tielong

    The sampling rate of the Venus Express fluxgate magnetometer was set so that it could register the 100 Hz signals previously reported by the electric antenna on the Pioneer Venus Orbiter. At least two minutes of each periapsis pass is devoted to recording at 128 Hz. Many of these passes do observe signals near 100 Hz, and these signals invariably have the properties expected for whistler-mode waves. They are nearly circularly polarized, and they propagate very closely to along the magnetic field. The waves are also only a fraction of a second in duration. They do not occur every orbit. The magnetic field is often nearly horizontal throughout the periapsis pass. When it is, no signals are seen. When the field deviates more than 15o from the horizontal, signals can reach the spacecraft but they again are not always present. The number 15o is quite similar to the size of the cone of non-propagation of the whistler-mode perpendicular to the magnetic field. Thus this observation, too, is consistent with a cloud level source of electric discharges whose electromagnetic radiation is refracted along the vertical upon entering the ionosphere. Only when and where this field is inclined to the horizontal can the signal enter the ionosphere. We continue to refine our estimate of the rate of lightning on Venus, but it is clear that the rate is very significant, comparable to activity in the terrestrial atmosphere.

  11. Experimental Validation of Lightning-Induced Electromagnetic (Indirect) Coupling to Short Monopole Antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crull, E W; Brown Jr., C G; Perkins, M P

    2008-07-30

    For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less

  12. A first look at lightning energy determined from GLM

    NASA Astrophysics Data System (ADS)

    Bitzer, P. M.; Burchfield, J. C.; Brunner, K. N.

    2017-12-01

    The Geostationary Lightning Mapper (GLM) was launched in November 2016 onboard GOES-16 has been undergoing post launch and product post launch testing. While these have typically focused on lightning metrics such as detection efficiency, false alarm rate, and location accuracy, there are other attributes of the lightning discharge that are provided by GLM data. Namely, the optical energy radiated by lightning may provide information useful for lightning physics and the relationship of lightning energy to severe weather development. This work presents initial estimates of the lightning optical energy detected by GLM during this initial testing, with a focus on observations during field campaign during spring 2017 in Huntsville. This region is advantageous for the comparison due to the proliferation of ground-based lightning instrumentation, including a lightning mapping array, interferometer, HAMMA (an array of electric field change meters), high speed video cameras, and several long range VLF networks. In addition, the field campaign included airborne observations of the optical emission and electric field changes. The initial estimates will be compared with previous observations using TRMM-LIS. In addition, a comparison between the operational and scientific GLM data sets will also be discussed.

  13. Lightning and its association with the frequency of headache in migraineurs: an observational cohort study.

    PubMed

    Martin, Geoffrey V; Houle, Timothy; Nicholson, Robert; Peterlin, Albert; Martin, Vincent T

    2013-04-01

    The aim of this article is to determine if lightning is associated with the frequency of headache in migraineurs. Participants fulfilling diagnostic criteria for International Headache Society-defined migraine were recruited from sites located in Ohio ( N  = 23) and Missouri ( N  = 67). They recorded headache activity in a daily diary for three to six months. A generalized estimating equations (GEE) logistic regression determined the odds ratio (OR) of headache on lightning days compared to non-lightning days. Other weather factors associated with thunderstorms were also added as covariates to the GEE model to see how they would attenuate the effect of lightning on headache. The mean age of the study population was 44 and 91% were female. The OR for headache was 1.31 (95% confidence limits (CL); 1.07, 1.66) during lighting days as compared to non-lightning days. The addition of thunderstorm-associated weather variables as covariates were only able to reduce the OR for headache on lightning days to 1.18 (95% CL; 1.02, 1.37). The probability of having a headache on lightning days was also further increased when the average current of lightning strikes for the day was more negative. This study suggests that lightning represents a trigger for headache in migraineurs that cannot be completely explained by other meteorological factors. It is unknown if lightning directly triggers headaches through electromagnetic waves or indirectly through production of bioaerosols (e.g. ozone), induction of fungal spores or other mechanisms. These results should be interpreted cautiously until replicated in a second dataset.

  14. Acoustic Manifestations of Natural versus Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.; Aulich, G. D.; Trueblood, J.

    2010-12-01

    Positive leaders are rarely detected by VHF lightning detection systems; positive leader channels are usually outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped. The goal of this work is to study the types of thunder produced by natural versus triggered lightning and to assess which types of thunder signals have electromagnetic activity detected by the lightning mapping array (LMA). Towards this end we are investigating the lightning detection capabilities of acoustic techniques, and comparing them with the LMA. In a previous study we used array beam forming and time of flight information to locate acoustic sources associated with lightning. Even though there was some mismatch, generally LMA and acoustic techniques saw the same phenomena. To increase the database of acoustic data from lightning, we deployed a network of three infrasound arrays (30 m aperture) during the summer of 2010 (August 3 to present) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered lightning. The arrays were located at a range of distances (60 to 1400 m) surrounding the triggering site, called the Kiva, used by Langmuir Laboratory to launch rockets. We have continuous acoustic measurements of lightning data from July 20 to September 18 of 2009, and from August 3 to September 1 of 2010. So far, lightning activity around the Kiva was higher during the summer of 2009. We will present acoustic data from several interesting lightning flashes including a comparison between a natural and a triggered one.

  15. Atmospheric electricity. [lightning protection criteria in spacecraft design

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1973-01-01

    Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.

  16. Lightning-driven electric and magnetic fields measured in the stratosphere: Implications for sprites

    NASA Astrophysics Data System (ADS)

    Thomas, Jeremy Norman

    A well accepted model for sprite production involves quasi-electrostatic fields (QSF) driven by large positive cloud-to-ground (+CG) strokes that can cause electrical breakdown in the middle atmosphere. A new high voltage, high impedance, double Langmuir probe instrument is designed specifically for measuring these large lightning-driven electric field changes at altitudes above 30 km. This High Voltage (HV) Electric Field Detector measured 200 nearby (<75 km) lightning-driven electric field changes, up to 140 V/m in magnitude, during the Brazil Sprite Balloon Campaign 2002--03. A numerical QSF model is developed and compared to the in situ measurements. It is found that the amplitudes and relaxation times of the electric fields driven by these nearby lightning events generally agree with the numerical QSF model, which suggests that the QSF approach is valid for modeling lightning-driven fields. Using the best fit parameters of this comparison, it is predicted that the electric fields at sprite altitudes (60--90 km) never surpass conventional breakdown in the mesosphere for each of these 200 nearby lightning events. Lightning-driven ELF to VLF (25 Hz--8 kHz) electric field changes were measured for each of the 2467 cloud-to-ground lightning (CGs) detected by the Brazilian Integrated Lightning Network (BIN) at distances of 75--600 km, and magnetic field changes (300 Hz--8 kHz) above the background noise were measured for about 35% (858) of these CGs. ELF pulses that occur 4--12 ms after the retarded time of the lightning sferic, which have been previously attributed to sprites, were found for 1.4% of 934 CGs examined with a strong bias towards +CGs (4.9% or 9/184) compared to -CGs (0.5% or 4/750). These results disagree with results from the Sprites99 Balloon Campaign [Bering et al., 2004b], in which the lightning-driven electric and magnetic field changes were rare, while the CG delayed ELF pulses were frequent. The Brazil Campaign results thus suggest that mesospheric currents are likely the result of the QSF driven by large charge moment strokes, which are usually +CG strokes, initiating breakdown in the middle atmosphere.

  17. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    NASA Astrophysics Data System (ADS)

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model (IRI) [Bilitza, Radio Sci., 36, 261, 2001] and account for the medium anisotropy due to the geomagnetic field above approximately 70 km altitude. The realistic three-dimensional geomagnetic field distributions are loaded from the international geomagnetic field model (IGRF) [Barton, J. Geomag. Geoelectr., 49, 123, 1997]. In this talk we will compare the model results with available analytical solutions for electric and magnetic field distributions in the earth-ionosphere cavity excited by a strong positive cloud-to-ground lightning discharge. We will also discuss known sources of variability in Schumann resonance frequencies and present results illustrating model response under conditions of high-energy particle precipitation events in the polar regions [e.g., Morente et al., JGR, 108, doi:10.1029/2002JA009779, 2003, and references cited therein].

  18. Comparison of lighting activity and inner radiation belt particle fluxes perturbations

    NASA Astrophysics Data System (ADS)

    Martinez Calderon, C.; Bortnik, J.; Li, W.; Spence, H. E.; Rodger, C. J.

    2016-12-01

    Lightning discharges are known to inject whistlers into the inner magnetosphere over a wide range of latitudes around their source. When a discharge occurs, it radiates electromagnetic energy, some of which propagates in the whistler-mode wave through the ionospheric plasma travelling away from the Earth. Previous studies have discussed the effects of whistler-induced electron precipitation and radiation belt losses associated with lightning but there has been little research on the long term effects of these precipitation on the inner radiation belts [Rodger et al. (2004), Clilverd et al. (2004)].Here, we use data from the World Wide Lightning Location Network (WWLLN), which has continuously monitored global lightning since 2004, to examine one year of lightning data and locate the L-shells with high lighting activity. We use Van Allen Probes' Energetic Particle, Composition, and Thermal Plasma Suite (ECT) from both satellites (RBSP-A/B) to measure electron fluxes in the inner radiation belt at the L-shells of interest. We compare these fluxes to a globally-integrated count of lightning strikes and investigate the relationship between global lightning occurrence and RBSP electron fluxes. We examine several factors, such as different energy ranges, timescales ranging from a few weeks to the entire year and seasonal changes in order to quantify the loss process driven by lightning in the inner radiation belts.

  19. Lightning energetics: Estimates of energy dissipation in channels, channel radii, and channel-heating risetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovsky, J.E.

    1998-05-01

    In this report, several lightning-channel parameters are calculated with the aid of an electrodynamic model of lightning. The electrodynamic model describes dart leaders and return strokes as electromagnetic waves that are guided along conducting lightning channels. According to the model, electrostatic energy is delivered to the channel by a leader, where it is stored around the outside of the channel; subsequently, the return stroke dissipates this locally stored energy. In this report this lightning-energy-flow scenario is developed further. Then the energy dissipated per unit length in lightning channels is calculated, where this quantity is now related to the linear chargemore » density on the channel, not to the cloud-to-ground electrostatic potential difference. Energy conservation is then used to calculate the radii of lightning channels: their initial radii at the onset of return strokes and their final radii after the channels have pressure expanded. Finally, the risetimes for channel heating during return strokes are calculated by defining an energy-storage radius around the channel and by estimating the radial velocity of energy flow toward the channel during a return stroke. In three appendices, values for the linear charge densities on lightning channels are calculated, estimates of the total length of branch channels are obtained, and values for the cloud-to-ground electrostatic potential difference are estimated. {copyright} 1998 American Geophysical Union« less

  20. Lightning Threat Analysis for the Space Shuttle Launch Pad and the Payload Changeout Room Using Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Collier, Richard S.

    1997-01-01

    This report describes finite difference computer calculations for the Space Shuttle Launch Pad which predict lightning induced electric currents and electric and magnetic fields caused by a lightning strike to the Lightning Protection System caternary wire. Description of possible lightning threats to Shuttle Payload components together with specifications for protection of these components, result from the calculation of lightning induced electric and magnetic fields inside and outside the during a lightning event. These fields also induce currents and voltages on cables and circuits which may be connected to, or a part of, shuttle payload components. These currents and voltages are also calculated. These threat levels are intended as a guide for designers of payload equipment to specify any shielding and/or lightning protection mitigation which may be required for payload components which are in the process of preparation or being transferred into the Shuttle Orbiter.

  1. E-CANES: A Research Network dedicated to Electromagnetic Coupling of the Atmosphere With Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Hanuise, C.; Blanc, E.; Crosby, N.; Ebert, U.; Mareev, E.; Neubert, T.; Rothkaehl, H.; Santolik, O.; Yair, Y.; Gille, P.

    2008-12-01

    Transient luminous events in the stratosphere and mesosphere, the sprites, elves, blue jets and gigantic jets, are observed above intense thunderstorms in association with particularly intense lightning discharges. Their recent discovery (1989) offers an opportunity to study the fundamental process of the electric discharge under the different conditions of the troposphere (lightning), stratosphere (blue jets) and the mesosphere (sprites) and the coupling between these regions by electric and magnetic fields. It further facilitates studies of the more general questions of thunderstorm effects on the atmosphere and the role of thunderstorms in a changing climate. New space missions will be launched in the coming years to study the various effects of thunderstorms. They will focus on transient luminous events, the generation of relativistic electron beams in discharges, and the perturbation to the atmosphere, ionosphere and magnetosphere of lightning, transient luminous events, water vapour transport and gravity waves. The missions are the French micro-satellite TARANIS, the ESA ASIM payload on board the International Space Station and the Japanese Sprite Sat mission. These highly interdisciplinary missions will result in a wealth of new data, which require knowledge based capacity building to underpin the observations with improved statistical data analysis and theoretical modelling. We are therefore establishing a global framework for research on thunderstorm processes and their effect on the atmosphere, in particular (1) the fundamental process of the electric discharge as manifested in the stratosphere and mesosphere as sprites and jets, (2) the relationship between cosmic rays, lightning discharges, transient luminous events and terrestrial gamma ray flashes, and (3) the environmental impact of the above physical processes, and thunderstorms in general, on the atmosphere and near-Earth space. The first step has been the creation of the European research group (GDRE) dubbed E-CANES (Electromagnetic Coupling of the Atmosphere with the Near-Earth Space). It complements in a synergistic way the former EU Research Training Network 'Coupling of Atmospheric Layers', the existing COST action on 'The physics of lightning flash and its effects', the ASIM Topical Team, and other programs. The main objective of E-CANES is to initiate and promote coordination activities towards a global research community on the subject. The first actions include the establishment of an organization for coordinating ground, balloon and aircraft observation campaigns, the creation of a community-wide mailing list and website, and the promotion and coordination of joint activities with other structures - to include new communities and to avoid the duplication of meetings and workshops.

  2. A three-station lightning detection system

    NASA Technical Reports Server (NTRS)

    Ruhnke, L. H.

    1972-01-01

    A three-station network is described which senses magnetic and electric fields of lightning. Directional and distance information derived from the data are used to redundantly determine lightning position. This redundancy is used to correct consistent propagation errors. A comparison is made of the relative accuracy of VLF direction finders with a newer method to determine distance to and location of lightning by the ratio of magnetic-to-electric field as observed at 400 Hz. It was found that VLF direction finders can determine lightning positions with only one-half the accuracy of the method that uses the ratio of magnetic-to-electric field.

  3. Peculiar transient events in the Schumann resonance band and their possible explanation

    NASA Astrophysics Data System (ADS)

    Ondrásková, Adriena; Bór, József; S[Breve]Evcík, Sebastián; Kostecký, Pavel; Rosenberg, Ladislav

    2008-04-01

    Superimposed on the continuous Schumann resonance (SR) background in the extremely low frequency (ELF) band, transient signals (e.g. bursts) can be observed, which originate from intense lightning discharges occurring at different locations on the globe. From the many transients that were observed at the Astronomical and Geophysical Observatory (AGO) of Comenius University near Modra, western Slovakia, in the vertical electric field component mainly during May and June of 2006, a peculiar group of events could be recognized. According to the waveform analysis, these peculiar events in most cases consist of two overlapping transients with a characteristic time difference of 0.13-0.15 s between the onsets. On the other hand, the spectrum of these peculiar transients showed discernible SR peaks for higher modes as well (n>7). The same events could be found in the records of the Széchenyi István Geophysical Observatory of the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences near Nagycenk, Hungary (NCK). The natural origin of the peculiar events was verified from the NCK data and the source location was determined from the second transient. The results suggest that the two consecutive transients originated in the same thunderstorm. Furthermore, the phase spectrum analysis indicates that the sources have coherently excited the Earth-ionosphere cavity. These findings seem to support the idea that electromagnetic waves orbiting the Earth might trigger lightning discharges. The possibility that electromagnetic waves may trigger discharges was first considered by Nikola Tesla.

  4. Measurements of Ozone, Lightning, and Electric Fields within Thunderstorms over Langmuir Laboratory, New Mexico

    NASA Astrophysics Data System (ADS)

    Eack, K. B.; Winn, W. P.; Rust, W. D.; Minschwaner, K.; Fredrickson, S.; Kennedy, D.; Edens, H. E.; Kalnajs, L. E.; Rabin, R. M.; Lu, G. P.; Bonin, D.

    2008-12-01

    A field project was conducted at the Langmuir Laboratory for Atmospheric Research during the summer of 2008 in an effort to better understand the direct production of ozone within electrically active storms. Five balloon flights were successfully launched into thunderstorms during this project. In situ measurements from the balloon instrument package included ozone mixing ratio, electric field strength, meteorological variables, and GPS location and timing. Lightning discharges were identified within each storm using a ground based lightning mapping array. The data show that the instruments ascended through regions of high electric fields within the sampled storms, and in some cases the balloon was in very close proximity to lightning. Relationships between electric field, lightning, and ozone observed during these flights will be discussed.

  5. Testing of Unmanned Ground Vehicle (UGV) Systems

    DTIC Science & Technology

    2009-02-12

    Emissions - Intra-system EMC TOP 1-2-51253 TOP 1-2-51154 TOP 2-2-61355 Determines whether the item tested meets the electromagnetic radiation ...effects, static electricity, and lightning criteria and the maximum electromagnetic radiation environment to which the test item may be exposed...Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 2-2-540 Testing of Unmanned Ground Vehicle (UGV) Systems 5c. PROGRAM ELEMENT NUMBER 5d

  6. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  7. Triggered-Lightning Interaction with a Lightning Protective System: Current Distribution and Electromagnetic Environment

    NASA Technical Reports Server (NTRS)

    Mata, C. T.; Rakov, V. A.; Mata, A. G.

    2010-01-01

    A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC3913) at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras; currents through the nine downconductors of the new lightning protection system for LC3913; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. A 20:1 scaled down model of the new Lightning Protection System (LPS) of LC39B was built at the International Center for Lightning Research and Testing, Camp Blanding, FL. This scaled down lightning protection system was instrumented with the transient recorders, digitizers, and sensors to be used in the final instrumentation installation at LC3913. The instrumentation used at the ICLRT is also a scaled-down instrumentation of the LC39B instrumentation. The scaled-down LPS was subjected to seven direct lightning strikes and six (four triggered and two natural nearby flashes) in 2010. The following measurements were acquired at the ICLRT: currents through the nine downconductors; two dl-/dt, 3-axis stations, one at the center of the LPS (underneath the catenary wires), and another 40 meters south from the center of the LPS; ten dE/dt stations, nine of them on the perimeter of the LPS and one at the center of the LPS (underneath the catenary wire system); and the incident current. Data from representative events are presented and analyzed in this paper.

  8. The SEM description of interaction of a transient electromagnetic wave with an object

    NASA Technical Reports Server (NTRS)

    Pearson, L. W.; Wilton, D. R.

    1980-01-01

    The singularity expansion method (SEM), proposed as a means for determining and representing the transient surface current density induced on a scatterer by a transient electromagnetic wave is described. The resulting mathematical description of the transient surface current on the object is discussed. The data required to represent the electromagnetic scattering properties of a given object are examined. Experimental methods which were developed for the determination of the SEM description are discussed. The feasibility of characterizing the surface current induced on aircraft flying in proximity to a lightning stroke by way of SEM is examined.

  9. Method and apparatus for determining return stroke polarity of distant lightning

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard J. (Inventor); Brook, Marx (Inventor)

    1992-01-01

    A method is described for determining the return stroke polarity of distant lightning for distances beyond 600 km by detecting the electric field associated with a return stroke of distant lightning, and processing the electric field signal to determine the polarity of the slow tail of the VLF waveform signal associated with the detected electric field. The polarity of the return stroke of distant lightning is determined based upon the polarity of the slow tail portion of the waveform.

  10. Method and apparatus for determining return stroke polarity of distant lightning

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard J. (Inventor); Brook, Marx (Inventor)

    1990-01-01

    A method is described for determining the return stroke polarity of distant lightning for distances beyond 600 km by detecting the electric field associated with a return stroke of distant lightning, and processing the electric field signal to determine the polarity of the slow tail of the VLF waveform signal associated with the detected electric field. The polarity of the return stroke of distant lightning is determined based upon the polarity of the slow tail portion of the waveform.

  11. Confining the angular distribution of terrestrial gamma ray flash emission

    NASA Astrophysics Data System (ADS)

    Gjesteland, T.; Østgaard, N.; Collier, A. B.; Carlson, B. E.; Cohen, M. B.; Lehtinen, N. G.

    2011-11-01

    Terrestrial gamma ray flashes (TGFs) are bremsstrahlung emissions from relativistic electrons accelerated in electric fields associated with thunder storms, with photon energies up to at least 40 MeV, which sets the lowest estimate of the total potential of 40 MV. The electric field that produces TGFs will be reflected by the initial angular distribution of the TGF emission. Here we present the first constraints on the TGF emission cone based on accurately geolocated TGFs. The source lightning discharges associated with TGFs detected by RHESSI are determined from the Atmospheric Weather Electromagnetic System for Observation, Modeling, and Education (AWESOME) network and the World Wide Lightning Location Network (WWLLN). The distribution of the observation angles for 106 TGFs are compared to Monte Carlo simulations. We find that TGF emissions within a half angle >30° are consistent with the distributions of observation angle derived from the networks. In addition, 36 events occurring before 2006 are used for spectral analysis. The energy spectra are binned according to observation angle. The result is a significant softening of the TGF energy spectrum for large (>40°) observation angles, which is consistent with a TGF emission half angle (<40°). The softening is due to Compton scattering which reduces the photon energies.

  12. A comparison between initial continuous currents of different types of upward lightning

    NASA Astrophysics Data System (ADS)

    Wang, D.; Sawada, N.; Takagi, N.

    2009-12-01

    We have observed the lightning to a wind turbine and its lightning-protection tower for four consecutive winter seasons from 2005 to 2009. Our observation items include (1) thunderstorm electrical fields and lightning-caused electric field changes at multi sites around the wind turbine, (2) electrical currents at the bottom of the wind turbine and its lightning protection tower, (3) normal video and high speed image of lightning optical channels. Totally, we have obtained the data for 42 lightning that hit either on wind turbine or its lightning protection tower or both. Among these 42 lightning, 38 are upward lightning and 2 are downward lightning. We found the upward lightning can be sub-classified into two types. Type 1 upward lightning are self-triggered from a high structure, while type 2 lightning are triggered by a discharge occurred in other places which could be either a cloud discharge or a cloud-to-ground discharge (other-triggered). In this study, we have compared the two types of upward lightning in terms of initial continuous current rise time, peak current and charge transferred to the ground. We found that the initial current of self-triggered lightning tends to rise significantly faster and to a bigger peak value than the other-triggered lightning, although both types of lightning transferred similar amount of charge to the ground.

  13. Rocket-triggered lightning strikes and forest fire ignition

    NASA Technical Reports Server (NTRS)

    Fenner, James H.

    1989-01-01

    Background information on the rocket-triggered lightning project at Kennedy Space Center (KSC), a summary of the forecasting problem there, the facilities and equipment available for undertaking field experiments at KSC, previous research activity performed, a description of the atmospheric science field laboratory near Mosquito Lagoon on the KSC complex, methods of data acquisition, and present results are discussed. New sources of data for the 1989 field experiment include measuring the electric field in the lower few thousand feet of the atmosphere by suspending field measuring devices below a tethered balloon. Problems encountered during the 1989 field experiment are discussed. Future prospects for both triggered lightning and lightning-kindled forest fire research at KSC are listed.

  14. COMSOL based Simulation on the Effect of Electric Field changes due to Lightning on Ground

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Joby, N. E.; Sabu, S.

    2017-12-01

    The phenomenon of lightning is accompanied by localised changes in atmospheric electric fields. In cloud-to-ground strike locations, changes in atmospheric electric fields can even be observed at the ground a few minutes prior to a strike. A lot of research has been done already on the electrostatic changes prior to lightning in the region above ground. Through this work, we investigate into the effects of lightning electric fields on/under ground with the aid of simulations done in COMSOL Multiphysics. Horizontal and vertical profiles of voltage gradient, electric field, polarisation etc. are investigated. Simulation experiments were conducted using a general model of lightning electric fields formed using data recorded by the Electric Field Mills(EFMs) from three diverse parts of the world- Kennedy Space Centre (KSC),Florida (Using GHRC datasets),Sonnblick Observatory, Austria and National Centre for Earth Science Studies Trivandrum (NCESS),India. COMSOL models of the global electric circuit were developed using Sandstone as the base model for ground. Similar works in literature have only dealt with lightning electric fields above the ground. This work is the first step towards a high-level simulation on the effects of atmospheric electric field on/below ground. The results of this simulation work can aid lightning forecasting and preparedness by opening new doors for voltage based prediction methods at ground. It is also a tool to understand phenomena such as fulgurites, corona effect etc. It also helps in the design of buried cables and improved grounding systems. This work can also be a first step towards understanding localised potential variations at the ground during lightning.

  15. An investigation of the generation and properties of laboratory-produced ball lightning

    NASA Astrophysics Data System (ADS)

    Oreshko, A. G.

    2015-06-01

    The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning - in an external spherical layer that rotates around the axis - there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is `embedded' in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.

  16. The Lightning Electromagnetic Pulse Coupling Effect Inside the Shielding Enclosure With Penetrating Wire

    NASA Astrophysics Data System (ADS)

    Jiao, Xue; Yang, Bo

    2017-10-01

    To study the lightning electromagnetic pulse (LEMP) coupling and protection problems of shielding enclosure with penetrating wire, we adopt the model with proper size which is close to the practical engineering and the two-step finite-difference time-domain (FDTD) method is used for calculation in this paper. It is shown that the coupling voltage on the circuit lead inside the enclosure increases about 34 dB, when add 1.0 m long penetrating wire at the aperture, comparing with the case without penetrating wire. Meanwhile, the waveform, has the same wave outline as the lightning current source, shows that the penetrating wire brings a large number of low frequency component into the enclosure. The coupling effect in the enclosure will reduce greatly when penetrating wire has electrical connection with the enclosure at the aperture and the coupling voltage increase only about 12 dB than the case without penetrating wire. Moreover, the results show that though the waveguide pipe can reduce the coupling effect brought by the penetrating wire, the exposing part of penetrating wire can increase the coupling when the penetrating wire outside the enclosure is longer than the waveguide pipe and the longer the exposing part is, the stronger the coupling is.

  17. Electric Field Sensor for Lightning Early Warning System

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Mohammed, R.; Sabu, S.; Joby, N. E.

    2017-12-01

    Electric field mills are used popularly for atmospheric electric field measurements. Atmospheric Electric Field variation is the primary signature for Lightning Early Warning systems. There is a characteristic change in the atmospheric electric field before lightning during a thundercloud formation.A voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. A varactor based mini electric field measurement system is developed, to detect any change in the atmospheric electric field and to issue lightning early warning system. Since this is a low-cost device, this can be used for developing countries which are facing adversities. A network of these devices can help in forming a spatial map of electric field variations over a region, and this can be used for more improved atmospheric electricity studies in developing countries.

  18. Mapping thunder sources by inverting acoustic and electromagnetic observations

    NASA Astrophysics Data System (ADS)

    Anderson, J. F.; Johnson, J. B.; Arechiga, R. O.; Thomas, R. J.

    2014-12-01

    We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is considered to consist of a weighted superposition of these acoustic signals. We calculate the posterior distribution of acoustic source energy for each channel with a Markov Chain Monte Carlo inversion that fits power envelopes of modeled and recorded thunder; these results show which parts of the flash carry current and produce thunder. We examine the effects of RF pulse location imprecision and atmospheric winds on quality of results and apply this method to several lightning flashes over the Magdalena Mountains in New Mexico, USA. This method will enable more detailed study of lightning phenomena by allowing researchers to map current flow in addition to leader propagation.

  19. Analysis of Lightning-induced Impulse Magnetic Fields in the Building with an Insulated Down Conductor

    NASA Astrophysics Data System (ADS)

    Du, Patrick Y.; Zhou, Qi-Bin

    This paper presents an analysis of lightning-induced magnetic fields in a building. The building of concern is protected by the lightning protection system with an insulated down conductor. In this paper a system model for metallic structure of the building is constructed first using the circuit approach. The circuit model of the insulated down conductor is discussed extensively, and explicit expressions of the circuit parameters are presented. The system model was verified experimentally in the laboratory. The modeling approach is applied to analyze the impulse magnetic fields in a full-scale building during a direct lightning strike. It is found that the impulse magnetic field is significantly high near the down conductor. The field is attenuated if the down conductor is moved to a column in the building. The field can be reduced further if the down conductor is housed in an earthed metal pipe. Recommendations for protecting critical equipment against lightning-induced magnetic fields are also provided in the paper.

  20. Microsecond-scale electric field pulses in cloud lightning discharges

    NASA Technical Reports Server (NTRS)

    Villanueva, Y.; Rakov, V. A.; Uman, M. A.; Brook, M.

    1994-01-01

    From wideband electric field records acquired using a 12-bit digitizing system with a 500-ns sampling interval, microsecond-scale pulses in different stages of cloud flashes in Florida and New Mexico are analyzed. Pulse occurrence statistics and waveshape characteristics are presented. The larger pulses tend to occur early in the flash, confirming the results of Bils et al. (1988) and in contrast with the three-stage representation of cloud-discharge electric fields suggested by Kitagawa and Brook (1960). Possible explanations for the discrepancy are discussed. The tendency for the larger pulses to occur early in the cloud flash suggests that they are related to the initial in-cloud channel formation processes and contradicts the common view found in the atmospheric radio-noise literature that the main sources of VLF/LF electromagnetic radiation in cloud flashes are the K processes which occur in the final, or J type, part of the cloud discharge.

  1. Investigating lightning-to-ionosphere energy coupling based on VLF lightning propagation characterization

    NASA Astrophysics Data System (ADS)

    Lay, Erin Hoffmann

    In this dissertation, the capabilities of the World-Wide Lightning Location Network (WWLLN) are analyzed in order to study the interactions of lightning energy with the lower ionosphere. WWLLN is the first global ground-based lightning location network and the first lightning detection network that continuously monitors lightning around the world in real time. For this reason, a better characterization of the WWLLN could allow many global atmospheric science problems to be addressed, including further investigation into the global electric circuit and global mapping of regions of the lower ionosphere likely to be impacted by strong lightning and transient luminous events. This dissertation characterizes the World-Wide Location Network (WWLLN) in terms of detection efficiency, location and timing accuracy, and lightning type. This investigation finds excellent timing and location accuracy for WWLLN. It provides the first experimentally-determined estimate of relative global detection efficiency that is used to normalize lightning counts based on location. These normalized global lightning data from the WWLLN are used to map intense storm regions around the world with high time and spatial resolution as well as to provide information on energetic emissions known as elves and terrestrial gamma-ray flashes (TGFs). This dissertation also improves WWLLN by developing a procedure to provide the first estimate of relative lightning stroke radiated energy in the 1-24 kHz frequency range by a global lightning detection network. These characterizations and improvements to WWLLN are motivated by the desire to use WWLLN data to address the problem of lightning-to-ionosphere energy coupling. Therefore, WWLLN stroke rates are used as input to a model, developed by Professor Mengu Cho at the Kyushu Institute of Technology in Japan, that describes the non-linear effect of lightning electromagnetic pulses (EMP) on the ionosphere by accumulating electron density changes resulting from the interaction of the EMP of ten successive lightning strokes with the lower ionosphere. Further studies must be completed to narrow uncertainties in the model, but the qualitative ionospheric response to successive EMPs is presented. Results from this study show that the non-linear effect of lightning EMP due to successive lightning strokes must be taken into account, and varies with altitude, such that the most significant electron density enhancement occurs at 88 km altitude.

  2. Statistical analysis of lightning electric field measured under Malaysian condition

    NASA Astrophysics Data System (ADS)

    Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain

    2014-02-01

    Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.

  3. Numerical Simulation of the Variation of Schumann Resonance Associated with Seismogenic Processe in the Lithosphere-Atmosphere-Ionosphere system

    NASA Astrophysics Data System (ADS)

    Liu, L.; Huang, Q.; Wang, Y.

    2012-12-01

    The variations in the strength and frequency shift of the Schumann resonance (SR) of the electromagnetic (EM) field prior to some significance earthquakes were reported by a number of researchers. As a robust physical phenomenon constantly exists in the resonant cavity formed by the lithosphere-atmosphere-ionosphere system, irregular variations in SR parameters can be naturally attributed to be the potential precursory observables for forecasting earthquake occurrences. Schumann resonance (SR) of the EM field between the lithosphere and the ionosphere occurs because the space between the surface of the Earth and the conductive ionosphere acts as a closed waveguide. The cavity is naturally excited by electric currents generated by lightning. SR is the principal background in the electromagnetic spectrum at extremely low frequencies (ELF) between 3-69 Hz. We simulated the EM field in the lithosphere-ionosphere waveguide with a 2-dimensional (2D), cylindrical whole-earth model by the hybrid pseudo-spectral and finite difference time domain method. Considering the seismogensis as a fully coupled seismoelectric process, we simulate the seismic wave and EM wave in this 2D model. The excitation of SR in the background EM field are generated by the electric-current impulses due to lightning thunderstorms within the lowest 10 kilometers of the atmosphere . The diurnal variation and the latitude-dependence in ion concentration in the ionosphere are included in the model. After the SR has reached the steady state, the impulse generated by the seismogenic process (pre-, co- and post-seismic) in the crust is introduced to assess the possible precursory effects on SR strength and frequency. The modeling results explain the observed fact of why SR has a much more sensitive response to continental earthquakes, and much less response to oceanic events; the reason is simply due to the shielding effect of the conductive ocean that prevents effective radiation of the seismoelectric signals into the lithosphere- ionosphere waveguide.; Resonance cavity model formed by the lithosphere-atmosphere-ionosphere system (illustrative, not to the scale of the Earth).

  4. Submicrosecond risetimes in lightning return-stroke fields

    NASA Technical Reports Server (NTRS)

    Weidman, C. D.; Krider, E. P.

    1980-01-01

    Measurements of lightning electric field, E, and dE/dt signatures have been made near Tampa Bay, Florida, under conditions where the lightning locations were known and where the results were not significantly affected by the response time of the measuring system or groundwave propagation. The fast transitions found on the initial portion of return-stroke fields have 10-90% risetimes ranging from 40 to 200 nsec, with a mean of 90 nsec. The maximum field derivatives during return strokes range from 5 to 75 V/m per microsec with a mean of 29 V/m per microsec when normalized to a distance of 100 km. These field risetime and derivative values suggest that return-stroke currents contain large, submicrosecond components, and this in turn suggests that it may be necessary to reevaluate the possible effects of lightning and the performance of lightning-protection devices in many situations.

  5. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. This excellent agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 0.7 kA (ocean) and 1.1 kA (land) from lightning-producing storms, and 0.22 kA (ocean) and 0.04 (land) from electrified shower clouds, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Breaking the results down into mean storm counts reveals 1100 for land storms with lightning, 530 for ocean storms without lightning, 390 for ocean storms with lightning, and 330 for land storms without lightning.

  6. Lightning protection of distribution systems

    NASA Astrophysics Data System (ADS)

    Darveniza, M.; Uman, M. A.

    1982-09-01

    Research work on the lightning protection of distribution systems is described. The rationale behind the planning of the first major phase of the work - the field experiments conducted in the Tampa Bay area during August 1978 and July to September 1979 is explained. The aims of the field work were to characterize lightning in the Tampa Bay area, and to identify the lightning parameters associated with the occurrence of line outages and equipment damage on the distribution systems of the participating utilities. The equipment developed for these studies is fully described. The field work provided: general data on lightning - e.g., electric and magnetic fields of cloud and ground flashes; data from automated monitoring of lightning activity; stroke current waveshapes and peak currents measured at distribution arresters; and line outage and equipment damage on 13 kV networks in the Tampa Bay area. Computer aided analyses were required to collate and to process the accumulated data. The computer programs developed for this work are described.

  7. Lightning criteria relative to space shuttles: Currents and electric field intensity in Florida lightning

    NASA Technical Reports Server (NTRS)

    Uman, M. A.; Mclain, D. K.

    1972-01-01

    The measured electric field intensities of 161 lightning strokes in 39 flashes which occurred between 1 and 35 km from an observation point at Kennedy Space Center, Florida during June and July of 1971 have been analyzed to determine the lightning channel currents which produced the fields. In addition, typical channel currents are derived and from these typical electric fields at distances between 0.5 and 100 km are computed and presented. On the basis of the results recommendations are made for changes in the specification of lightning properties relative to space vehicle design as given in NASA TMX-64589 (Daniels, 1971). The small sample of lightning analyzed yielded several peak currents in the 100 kA range. Several current rise-times from zero to peak of 0.5 microsec or faster were found; and the fastest observed current rate-of-rise was near 200 kA/microsec. The various sources of error are discussed.

  8. Use of Vertically Integrated Ice in WRF-Based Forecasts of Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., jr.; Goodman, S. J.

    2008-01-01

    Previously reported methods of forecasting lightning threat using fields of graupel flux from WRF simulations are extended to include the simulated field of vertically integrated ice within storms. Although the ice integral shows less temporal variability than graupel flux, it provides more areal coverage, and can thus be used to create a lightning forecast that better matches the areal coverage of the lightning threat found in observations of flash extent density. A blended lightning forecast threat can be constructed that retains much of the desirable temporal sensitivity of the graupel flux method, while also incorporating the coverage benefits of the ice integral method. The graupel flux and ice integral fields contributing to the blended forecast are calibrated against observed lightning flash origin density data, based on Lightning Mapping Array observations from a series of case studies chosen to cover a wide range of flash rate conditions. Linear curve fits that pass through the origin are found to be statistically robust for the calibration procedures.

  9. Extreme ball lightning event of August 6, 1868 in County Donegal, Ireland.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanDevender, J. Pace; McGinley, Niall; van Doorn, Peter

    2008-04-01

    Although laboratory experiments have produced glowing balls of light that fade in <1 s after external power is removed and theories have been proposed to explain low-energy events, energetic ball lightning is not understood. A seminal event that illuminates the fundamental nature of ball lightning is needed to advance our understanding of the phenomenon. We report such a seminal event: the energetic ball lightning event of August 6, 1868, in County Donegal, Ireland, extensively reported to the Royal Society by M. Fitzgerald. It lasted for 20 minutes, left a 6 m square hole and a 100 m long by 1.2more » m deep trench, tore away a 25 m long and 1.5 m deep stream bank that diverted the course of the stream, and terminated by producing a shallow cave in the opposite bank of the stream. We found and characterized the site and show that the geomorphology and carbon dating support the account by M. Fitzgerald. We find that the excavation is not consistent with chemical, nuclear, or electrostatic forces but is consistent with Analysis of the event and the local conditions in 2006 is consistent with magnetic induction at {approx} 1 MHz frequency expelling the moderately conductive, water saturated peat down to the underlying clay/rock layer. The 60-cm diameter--which diminished to 10 cm diameter without reducing the impact of the ball lightning on the environment--and the size of the depressions, the yield strength of the peat, and the lack of any mention of smoke or steam in Fitzgerald's report would be consistent with the core of the ball lightning being a magnetically levitated mini black hole weighing more than 20,000 kg. The results suggest that such energetic ball lightning should be detectable at great distances by its electromagnetic emissions, which might provide a characteristic signature to reveal the source of the energy and the equilibrium configuration of the contained currents. Unexplained intermittent emissions in the MHz range are necessary but not sufficient indicators of such emissions. We report on over fifty 1 to >1000-s bursts of electromagnetic energy between 3 MHz and 350 MHz that were recorded by the FORTE satellite in October of 1997 and that are not consistent with known sources.Ground-based time-resolved observations should help identify the origin of the FORTE emissions and may help find and understand modern energetic ball lightning events to move us beyond glowing balls of light.« less

  10. Electron kinetic effects in atmosphere breakdown by an intense electromagnetic pulse.

    PubMed

    Solovyev, A A; Terekhin, V A; Tikhonchuk, V T; Altgilbers, L L

    1999-12-01

    A physical model is proposed for description of electron kinetics driven by a powerful electromagnetic pulse in the Earth's atmosphere. The model is based on a numerical solution to the Boltzmann kinetic equation for two groups of electrons. Slow electrons (with energies below a few keV) are described in a two-term approximation assuming a weak anisotropy of the electron distribution function. Fast electrons (with energies above a few keV) are described by a modified macroparticle method, taking into account the electron acceleration in the electric field, energy losses in the continuous deceleration approximation, and the multiple pitch angle scattering. The model is applied to a problem of the electric discharge in a nitrogen, which is preionized by an external gamma-ray source. It is shown that the runaway electrons have an important effect on the energy distribution of free electrons, and on the avalanche ionization rate. This mechanism might explain the observation of multiple lightning discharges observed in the Ivy-Mike thermonuclear test in the early 1950's.

  11. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    NASA Technical Reports Server (NTRS)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey; Chronis, Themis

    2015-01-01

    Using satellite-based methods that provide accurate 0-1 hour convective initiation (CI) nowcasts, and rely on proven success coupling satellite and radar fields in the Corridor Integrated Weather System (CIWS; operated and developed at MIT-Lincoln Laboratory), to subsequently monitor for first-flash lightning initiation (LI) and later period lightning trends as storms evolve. Enhance IR-based methods within the GOES-R CI Algorithm (that must meet specific thresholds for a given cumulus cloud before the cloud is considered to have an increased likelihood of producing lightning next 90 min) that forecast LI. Integrate GOES-R CI and LI fields with radar thresholds (e.g., first greater than or equal to 40 dBZ echo at the -10 C altitude) and NWP model data within the WDSS-II system for LI-events from new convective storms. Track ongoing lightning using Lightning Mapping Array (LMA) and pseudo-Geostationary Lightning Mapper (GLM) data to assess per-storm lightning trends (e.g., as tied to lightning jumps) and outline threat regions. Evaluate the ability to produce LI nowcasts through a "lightning threat" product, and obtain feedback from National Weather Service forecasters on its value as a decision support tool.

  12. Oceanic Storm Characteristics Off the Kennedy Space Center Coast

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Simpson, A. A.; Cummins, K. L.; Kiriazes, J. J.; Brown, R. G.; Mata, C. T.

    2014-01-01

    Natural cloud-to-ground lightning may behave differently depending on the characteristics of the attachment mediums, including the peak current (inferred from radiation fields) and the number of ground strike locations per flash. Existing literature has raised issues over the yea"rs on the behavior of lightning over ocean terrain and these phenomena are not yet well understood. To investigate lightning characteristics over differing terrain we will obtain identical observations over adjacent land and ocean regions during both clear air and thunderstorm periods comparing the electric field behavior over these various terrains. For this, a 3-meter NOAA buoy moored 20NM off the coast of the Kennedy Space Center was instrumented with an electric field mill and New Mexico Tech's slow antenna to measure the electric fields aloft and compared to the existing on-shore electric field mill suite of 31 sensors and a coastal slow antenna. New Mexico Tech's Lightning Mapping Array and the Eastern Range Cloud-to-Ground Lightning Surveillance System, along with the network of high-speed cameras being used to capture cloud-to-ground lightning strikes over the terrain regions to identify a valid data set and verify the electric fields. This is an on-going project with the potential for significant impact on the determination of lightning risk to objects on the ground. This presentation will provide results and instrumentation progress to date.

  13. Use of High-Resolution WRF Simulations to Forecast Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; LaCasse, K.; Goodman, S. J.; Cecil, D. J.

    2008-01-01

    Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors aloft in storms. This relationship is exploited, in conjunction with the capabilities of cloud-resolving forecast models such as WRF, to forecast explicitly the threat of lightning from convective storms using selected output fields from the model forecasts. The simulated vertical flux of graupel at -15C and the shape of the simulated reflectivity profile are tested in this study as proxies for charge separation processes and their associated lightning risk. Our lightning forecast method differs from others in that it is entirely based on high-resolution simulation output, without reliance on any climatological data. short [6-8 h) simulations are conducted for a number of case studies for which three-dmmensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity fields, and METAR and ACARS data y&eld satisfactory simulations. __nalyses of the lightning threat fields suggests that both the graupel flux and reflectivity profile approaches, when properly calibrated, can yield reasonable lightning threat forecasts, although an ensemble approach is probably desirable in order to reduce the tendency for misplacement of modeled storms to hurt the accuracy of the forecasts. Our lightning threat forecasts are also compared to other more traditional means of forecasting thunderstorms, such as those based on inspection of the convective available potential energy field.

  14. Development of Lightning Observation Network in the Western Pacific Region for the Intensity Prediction of Severe Weather

    NASA Astrophysics Data System (ADS)

    Sato, M.; Takahashi, Y.; Yamashita, K.; Kubota, H.; Hamada, J. I.; Momota, E.; Marciano, J. J.

    2017-12-01

    Lightning activity represents the thunderstorm activity, that is, the precipitation and/or updraft intensity and area. Thunderstorm activity is also an important parameter in terms of the energy inputs from the ocean to the atmosphere inside tropical cyclone, which is one of severe weather events. Recent studies suggest that it is possible to predict the maximum wind velocity and minimum pressure near the center of the tropical cyclone by one or two days before if we monitor the lightning activities in the tropical cyclone. Many countries in the western Pacific region suffer from the attack of tropical cyclone (typhoon) and have a strong demand to predict the intensity development of typhoons. Thus, we started developing a new lightning observation system and installing the observation system at Guam, Palau, and Manila in the Philippines from this summer. The lightning observation system consists of a VLF sensor detecting lightning-excited electromagnetic waves in the frequency range of 1-5 kHz, an automatic data-processing unit, solar panels, and batteries. Lightning-excited pulse signals detected by the VLF sensor are automatically analyzed by the data-processing unit, and only the extracted information of the trigger time and pulse amplitude is transmitted to a data server via the 3G data communications. In addition, we are now developing an upgraded lightning and weather observation system, which will be installed at 50 automated weather stations in Metro Manila and 10 radar sites in the Philippines under the 5-year project (SATREPS) scheme. At the presentation, we will show the initial results derived from the lightning observation system in detail and will show the detailed future plan of the SATREPS project.

  15. A low-frequency near-field interferometric-TOA 3-D Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    Lyu, Fanchao; Cummer, Steven A.; Solanki, Rahulkumar; Weinert, Joel; McTague, Lindsay; Katko, Alex; Barrett, John; Zigoneanu, Lucian; Xie, Yangbo; Wang, Wenqi

    2014-11-01

    We report on the development of an easily deployable LF near-field interferometric-time of arrival (TOA) 3-D Lightning Mapping Array applied to imaging of entire lightning flashes. An interferometric cross-correlation technique is applied in our system to compute windowed two-sensor time differences with submicrosecond time resolution before TOA is used for source location. Compared to previously reported LF lightning location systems, our system captures many more LF sources. This is due mainly to the improved mapping of continuous lightning processes by using this type of hybrid interferometry/TOA processing method. We show with five station measurements that the array detects and maps different lightning processes, such as stepped and dart leaders, during both in-cloud and cloud-to-ground flashes. Lightning images mapped by our LF system are remarkably similar to those created by VHF mapping systems, which may suggest some special links between LF and VHF emission during lightning processes.

  16. Rock-Magnetic Method for Post Nuclear Detonation Diagnostics

    NASA Astrophysics Data System (ADS)

    Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.

    2011-12-01

    A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.

  17. Overview and early results of the Global Lightning and Sprite Measurements mission

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ushio, T.; Morimoto, T.; Kikuchi, M.; Kikuchi, H.; Adachi, T.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; Inan, U.; Linscott, I.; Ishida, R.; Sakamoto, Y.; Yoshida, K.; Hobara, Y.; Sano, T.; Abe, T.; Nakamura, M.; Oda, H.; Kawasaki, Z.-I.

    2015-05-01

    Global Lightning and Sprite Measurements on Japanese Experiment Module (JEM-GLIMS) is a space mission to conduct the nadir observations of lightning discharges and transient luminous events (TLEs). The main objectives of this mission are to identify the horizontal distribution of TLEs and to solve the occurrence conditions determining the spatial distribution. JEM-GLIMS was successfully launched and started continuous nadir observations in 2012. The global distribution of the detected lightning events shows that most of the events occurred over continental regions in the local summer hemisphere. In some events, strong far-ultraviolet emissions have been simultaneously detected with N2 1P and 2P emissions by the spectrophotometers, which strongly suggest the occurrence of TLEs. Especially, in some of these events, no significant optical emission was measured by the narrowband filter camera, which suggests the occurrence of elves, not sprites. The VLF receiver also succeeded in detecting lightning whistlers, which show clear falling-tone frequency dispersion. Based on the optical data, the time delay from the detected lightning emission to the whistlers was identified as ˜10 ms, which can be reasonably explained by the wave propagation with the group velocity of whistlers. The VHF interferometer conducted the spaceborne interferometric observations and succeeded in detecting VHF pulses. We observed that the VHF pulses are likely to be excited by the lightning discharge possibly related with in-cloud discharges and measured with the JEM-GLIMS optical instruments. Thus, JEM-GLIMS provides the first full set of optical and electromagnetic data of lightning and TLEs obtained by nadir observations from space.

  18. Mathematical physics approaches to lightning discharge problems

    NASA Technical Reports Server (NTRS)

    Kyrala, A.

    1985-01-01

    Mathematical physics arguments useful for lightning discharge and generation problems are pursued. A soliton Ansatz for the lightning stroke is treated including a charge generation term which is the ultimate source for the phenomena. Equations are established for a partially ionized plasma inding the effects of pressure, magnetic field, electric field, gravitation, viscosity, and temperature. From these equations is then derived the non-stationary generalized Ohm's Law essential for describing field/current density relationships in the horizon channel of the lightning stroke. The discharge initiation problem is discussed. It is argued that the ionization rate drives both the convective current and electric displacement current to increase exponentially. The statistical distributions of charge in the thundercloud preceding a lightning dischage are considered. The stability of the pre-lightning charge distributions and the use of Boltzmann relaxational equations to determine them are discussed along with a covered impedance path provided by the aircraft.

  19. Horizontal electric fields from lightning return strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, E.M.; Uman, M.A.; Johnson, J.

    1985-01-01

    Measurements are presented of simultaneous horizontal and vertical electric fields from both close and distant lightning return strokes. The data were obtained during summer 1984 at the Kennedy Space Center, Florida, using an electrically isolated spherical antenna having a system bandwidth of 3 Hz to 5 MHz. Lightning signals were obtained from flashes at distances from a few to 100 kilometers. Since the horizontal electric field is in part determined by the local ground conductivity, that parameter was measured as a function of depth. The horizontal fields from lightning return strokes had typically 1/50 the peak amplitude of the verticalmore » fields and waveshapes which were consistant with available theory, as expressed by the ''wavetilt'' formula.« less

  20. Upward electrical discharges observed above Tropical Depression Dorian

    PubMed Central

    Liu, Ningyu; Spiva, Nicholas; Dwyer, Joseph R.; Rassoul, Hamid K.; Free, Dwayne; Cummer, Steven A.

    2015-01-01

    Observation of upward electrical discharges from thunderstorms has been sporadically reported in the scientific literature. According to their terminal altitudes, they are classified as starters (20–30 km), jets (40–50 km) and gigantic jets (70–90 km). They not only have a significant impact on the occupied atmospheric volumes but also electrically couple different atmospheric regions. However, as they are rare and unpredictable, our knowledge of them has been built on observations that typically record only one type of such discharges. Here we report a close-distance observation of seven upward discharges including one starter, two jets and four gigantic jets above Tropical Depression Dorian. Our optical and electromagnetic data indicate that all events are of negative polarity, suggesting they are initiated in the same thundercloud charge region. The data also indicate that the lightning-like discharge channel can extend above thunderclouds by about 30 km, but the discharge does not emit low-frequency electromagnetic radiation as normal lightning. PMID:25607345

  1. A review of natural lightning - Experimental data and modeling

    NASA Technical Reports Server (NTRS)

    Uman, M. A.; Krider, E. P.

    1982-01-01

    A critical review is presented of the currents and the electric and magnetic fields characteristic of each of the salient discharge processes which make up cloud-to-ground and intracloud lightning. Emphasis is placed on the more recent work in which measured waveform variation is in the microsecond and submicrosecond range, since it is this time-scale that is of primary importance in lightning/aircraft interactions. The state-of-the-art of the modeling of lightning currents and fields is discussed in detail. A comprehensive bibliography is given of all literature relating to both lightning measurements and models.

  2. Low-frequency RF Coupling To Unconventional (Fat Unbalanced) Dipoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, M M; Brown, C G; Perkins, M P

    2010-12-07

    The report explains radio frequency (RF) coupling to unconventional dipole antennas. Normal dipoles have thin equal length arms that operate at maximum efficiency around resonance frequencies. In some applications like high-explosive (HE) safety analysis, structures similar to dipoles with ''fat'' unequal length arms must be evaluated for indirect-lightning effects. An example is shown where a metal drum-shaped container with HE forms one arm and the detonator cable acts as the other. Even if the HE is in a facility converted into a ''Faraday cage'', a lightning strike to the facility could still produce electric fields inside. The detonator cable concentratesmore » the electric field and carries the energy into the detonator, potentially creating a hazard. This electromagnetic (EM) field coupling of lightning energy is the indirect effect of a lightning strike. In practice, ''Faraday cages'' are formed by the rebar of the concrete facilities. The individual rebar rods in the roof, walls and floor are normally electrically connected because of the construction technique of using metal wire to tie the pieces together. There are two additional requirements for a good cage. (1) The roof-wall joint and the wall-floor joint must be electrically attached. (2) All metallic penetrations into the facility must also be electrically connected to the rebar. In this report, it is assumed that these conditions have been met, and there is no arcing in the facility structure. Many types of detonators have metal ''cups'' that contain the explosives and thin electrical initiating wires, called bridge wires mounted between two pins. The pins are connected to the detonator cable. The area of concern is between the pins supporting the bridge wire and the metal cup forming the outside of the detonator. Detonator cables usually have two wires, and in this example, both wires generated the same voltage at the detonator bridge wire. This is called the common-mode voltage. The explosive component inside a detonator is relatively sensitive, and any electrical arc is a concern. In a safety analysis, the pin-to-cup voltage, i.e., detonator voltage, must be calculated to decide if an arc will form. If the electric field is known, the voltage between any two points is simply the integral of the field along a line between the points. Eq. 1.1. For simplicity, it is assumed that the electric field and dipole elements are aligned. Calculating the induced detonator voltage is more complex because of the field concentration caused by metal components. If the detonator cup is not electrically connected to the metal HE container, the portion of the voltage generated by the dipole at the detonator will divide between the container-to-cup and cup-to-pin gaps. The gap voltages are determined by their capacitances. As a simplification, it will be assumed the cup is electrically attached, short circuited, to the HE container. The electrical field in the pin-to-cup area is determined by the field near the dipole, the length of the dipole, the shape of the arms, and the orientation of the arms. Given the characteristics of a lightning strike and the inductance of the facility, the electric fields in the ''Faraday cage'' can be calculated. The important parameters for determining the voltage in an empty facility are the inductance of the rebars and the rate of change of the current, Eq. 1.3. The internal electric fields are directly related to the facility voltages, however, the electric fields in the pin-to-cup space is much higher than the facility fields because the antenna will concentrate the fields covered by the arms. Because the lightning current rise-time is different for every strike, the maximum electric field and the induced detonator voltage should be described by probability distributions. For pedantic purposes, the peak field in the simulations will be simply set to 1 V/m. Lightning induced detonator voltages can be calculated by scaling up with the facility fields. Any metal object around the explosives, such as a work stand, will also distort the electric fields. A computer simulation of the electric fields in a facility with a work stand and HE container is shown. In this configuration, the work stand is grounded, and the intensity of field around the HE (denoted in dark blue) is reduced relative to the rest of the work bay (denoted lighter blue). The area above work stand posts has much higher fields indicated by red. The fields on top of the container are also affected. Without an understanding of how the electric fields are distributed near the detonator cable and container, it is not possible to calculate the induced detonator voltage. The average lightning current has rise- and fall-times of 3 us and 50 us respectively, and this translates to a wavelength that is long when compared with the length of the HE container or detonator cable.« less

  3. A review of advances in lightning observations during the past decade in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Lü, Weitao; Chen, Shaodong; Zheng, Dong; Zhang, Yang; Yan, Xu; Chen, Lüwen; Dong, Wansheng; Dan, Jianru; Pan, Hanbo

    2016-08-01

    This paper reviews recent advances in understanding the physical processes of artificially triggered lightning and natural lightning as well as the progress in testing lightning protection technologies, based on a series of lightning field campaigns jointly conducted by the Chinese Academy of Meteorological Sciences and Guangdong Meteorological Bureau since 2006. During the decade-long series of lightning field experiments, the technology of rocket-wire artificially triggered lightning has been improved, and has successfully triggered 94 lightning flashes. Through direct lightning current waveform measurements, an average return stroke peak current of 16 kA was obtained. The phenomenon that the downward leader connects to the lateral surface of the upward leader in the attachment process was discovered, and the speed of the upward leader during the connection process being significantly greater than that of the downward leader was revealed. The characteristics of several return strokes in cloud-to-ground lighting have also been unveiled, and the mechanism causing damage to lightning protection devices (i.e., ground potential rise within the rated current) was established. The performance of three lightning monitoring systems in Guangdong Province has also been quantitatively assessed.

  4. Thunderclouds and Lightning Conductors

    ERIC Educational Resources Information Center

    Martin, P. F.

    1973-01-01

    Discusses the historical background of the development of lightning conductors, describes the nature of thunderclouds and the lightning flash, and provides a calculation of the electric field under a thundercloud. Also discussed are point discharge currents and the attraction theory of the lightning conductor. (JR)

  5. Electro-optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewicz, Richard J.

    1996-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in northern Alabama.

  6. Electro-Optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, Willliam; Solakiewicz, Richard

    1998-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are then related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during 4 thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in Northern Alabama.

  7. Science of Ball Lightning (Fire Ball)

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Yoshi-Hiko

    1989-08-01

    The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Ball Lightning -- The Continuing Challenge * Hungarian Ball Lightning Observations in 1987 * Nature of Ball Lightning in Japan * Phenomenological and Psychological Analysis of 150 Austrian Ball Lightning Reports * Physical Problems and Physical Properties of Ball Lightning * Statistical Analysis of the Ball Lightning Properties * A Fluid-Dynamical Model for Ball Lightning and Bead Lightning * The Lifetime of Hill's Vortex * Electrical and Radiative Properties of Ball Lightning * The Candle Flame as a Model of Ball Lightning * A Model for Ball Lightning * The High-Temperature Physico-Chemical Processes in the Lightning Storm Atmosphere (A Physico-Chemical Model of Ball Lightning) * New Approach to Ball Lightning * A Calculation of Electric Field of Ball Lightning * The Physical Explanation to the UFO over Xinjiang, Northern West China * Electric Reconnection, Critical Ionization Velocity, Ponderomotive Force, and Their Applications to Triggered and Ball Lightning * The PLASMAK™ Configuration and Ball Lightning * Experimental Research on Ball Lightning * Performance of High-Voltage Test Facility Designed for Investigation of Ball Lightning * List of Participants

  8. Utilizing Four Dimensional Lightning and Dual-Polarization Radar to Develop Lightning Initiation Forecast Guidance

    DTIC Science & Technology

    2015-03-26

    Electrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Lightning Discharge ...charge is caused by falling graupel that is positively charged (Wallace and Hobbs 2006). 2.3 Lightning Discharge Lightning occurs when the electric...emission of positive corona from the surface of precipitation particles, causing the electric field to become locally enhanced and supporting the

  9. A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges

    NASA Astrophysics Data System (ADS)

    Inan, U. S.; Cummer, S. A.; Marshall, R. A.

    2010-06-01

    Extremely low frequency (ELF) and very low frequency (VLF) observations have formed the cornerstone of measurement and interpretation of effects of lightning discharges on the overlying upper atmospheric regions, as well as near-Earth space. ELF (0.3-3 kHz) and VLF (3-30 kHz) wave energy released by lightning discharges is often the agent of modification of the lower ionospheric medium that results in the conductivity changes and the excitation of optical emissions that constitute transient luminous events (TLEs). In addition, the resultant ionospheric changes are best (and often uniquely) observable as perturbations of subionospherically propagating VLF signals. In fact, some of the earliest evidence for direct disturbances of the lower ionosphere in association with lightning discharges was obtained in the course of the study of such VLF perturbations. Measurements of the detailed ELF and VLF waveforms of parent lightning discharges that produce TLEs and terrestrial gamma ray flashes (TGFs) have also been very fruitful, often revealing properties of such discharges that maximize ionospheric effects, such as generation of intense electromagnetic pulses (EMPs) or removal of large quantities of charge. In this paper, we provide a review of the development of ELF and VLF measurements, both from a historical point of view and from the point of view of their relationship to optical and other observations of ionospheric effects of lightning discharges.

  10. Laboratory-Scale Evidence for Lightning-Mediated Gene Transfer in Soil

    PubMed Central

    Demanèche, Sandrine; Bertolla, Franck; Buret, François; Nalin, Renaud; Sailland, Alain; Auriol, Philippe; Vogel, Timothy M.; Simonet, Pascal

    2001-01-01

    Electrical fields and current can permeabilize bacterial membranes, allowing for the penetration of naked DNA. Given that the environment is subjected to regular thunderstorms and lightning discharges that induce enormous electrical perturbations, the possibility of natural electrotransformation of bacteria was investigated. We demonstrated with soil microcosm experiments that the transformation of added bacteria could be increased locally via lightning-mediated current injection. The incorporation of three genes coding for antibiotic resistance (plasmid pBR328) into the Escherichia coli strain DH10B recipient previously added to soil was observed only after the soil had been subjected to laboratory-scale lightning. Laboratory-scale lightning had an electrical field gradient (700 versus 600 kV m−1) and current density (2.5 versus 12.6 kA m−2) similar to those of full-scale lightning. Controls handled identically except for not being subjected to lightning produced no detectable antibiotic-resistant clones. In addition, simulated storm cloud electrical fields (in the absence of current) did not produce detectable clones (transformation detection limit, 10−9). Natural electrotransformation might be a mechanism involved in bacterial evolution. PMID:11472916

  11. Early prediction of eruption site using lightning location data: Estimates of accuracy during past eruptions

    NASA Astrophysics Data System (ADS)

    Nína Petersen, Guðrún; Arason, Þórður; Bjornsson, Halldór

    2013-04-01

    Eruption of subglacial volcanoes may lead to catastrophic floods and therefore early determination of the exact eruption site may be critical to civil protection evacuation plans. Poor visibility due to weather or darkness often inhibit positive identification of exact eruption location for many hours. However, because of the proximity and abundance of water in powerful subglacial volcanic eruptions, they are probably always accompanied by early lightning activity in the volcanic column. Lightning location systems, designed for weather thunderstorm monitoring, based on remote detection of electromagnetic waves from lightning, can provide valuable real-time information on location of eruption site. Important aspect of such remote detection is its independence of weather, apart from thunderstorms close to the volcano. Individual lightning strikes can be 5-10 km in length and are sometimes tilted and to the side of the volcanic column. This adds to the lightning location uncertainty, which is often a few km. Furthermore, the volcanic column may be swayed by the local wind to one side. Therefore, location of a single lightning can be misleading but by calculating average location of many lightning strikes and applying wind correction a more accurate eruption site location can be obtained. In an effort to assess the expected accuracy, the average lightning locations during the past five volcanic eruptions in Iceland (1998-2011) were compared to the exact site of the eruption vent. Simultaneous weather thunderstorms might have complicated this analysis, but there were no signs of ordinary thunderstorms in Iceland during these eruptions. To identify a suitable wind correction, the vector wind at the 500 hPa pressure level (5-6 km altitude) was compared to mean lightning locations during the eruptions. The essential elements of a system, which predicts the eruption site during the first hour(s) of an eruption, will be described.

  12. Extensive air showers, lightning, and thunderstorm ground enhancements

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Hovsepyan, G.; Kozliner, L.

    2016-09-01

    For lightning research, we monitor particle fluxes from thunderclouds, the so-called thunderstorm ground enhancements (TGEs) initiated by runaway electrons, and extensive air showers (EASs) originating from high-energy protons or fully stripped nuclei that enter the Earth's atmosphere. We also monitor the near-surface electric field and atmospheric discharges using a network of electric field mills. The Aragats "electron accelerator" produced several TGEs and lightning events in the spring of 2015. Using 1-s time series, we investigated the relationship between lightning and particle fluxes. Lightning flashes often terminated the particle flux; in particular, during some TGEs, lightning events would terminate the particle flux thrice after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of a TGE or in its decay phase; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just at the peak of its development. We discuss the possibility of a huge EAS facilitating lightning leader to find its path to the ground.

  13. A search for optical evidence for lightning on Venus with VIRTIS on Venus Express

    NASA Astrophysics Data System (ADS)

    Abildgaard, Sofie; Cardesin, Alejandro; Garcia Múnoz, Antonio; Piccioni, Giuseppe

    2015-04-01

    Lightning is known to occur on the atmospheres of Earth, Jupiter, Saturn, Uranus and Neptune, but although the occurrence of lightning in the Venusian atmosphere has been published several times in the past years, always on the basis of detected electromagnetic pulses, the subject is still controversial. It is generally agreed that an optical observation of the phenomenon would settle the issue. In this work we analyse the data collection of hyper-spectral images produced by the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) on Venus Express, that has been observing the Venusian atmosphere continuously since 2006. A dedicated search algorithm for transient events was developed and a detailed analysis of the archive was performed in all wavelengths. The first preliminary analysis have been performed and we have proven that transient events can easily be identified in the data. Work is ongoing for optimizing search parameters and performing a statistical analysis. In this contribution, we will present a summary of the data analysis process and some of the preliminary conclusion in the lightning detection/nondetection.

  14. Further investigations of lightning-induced transient emissions in the OH airglow layer

    NASA Astrophysics Data System (ADS)

    Huang, Tai-Yin; Kuo, C. L.; Chiang, C. Y.; Chen, A. B.; Su, H. T.; Hsu, R. R.

    2010-10-01

    A previous study of lightning-induced transient emissions in and below the OH airglow layer using observations by the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) CCD camera onboard the FORMOSAT-II satellite showed that intensity enhancements occurred more frequently in the OH airglow layer. Here we show the results of new observations made in December 2009 and January 2010 using a narrowband 630 nm filter and spectrophotometer and present further analysis. We estimated the N21P intensity enhancements to be ˜65% and 53% of the total intensity enhancements for the two events we analyzed using ISUAL and the spectrophotometer data in conjunction with a model for emissions of light and VLF perturbations from electromagnetic pulse sources (elves). Our analysis indicates that there is still somewhat considerable intensity enhancement (˜1.25 kR) unaccounted for after the N21P contribution has been removed. Our study suggests that there might be OH emissions in elves and that OH species might also be involved in the lightning-induced process and contribute to the intensity enhancements that we observed.

  15. a review and an update on the winter lightning that occurred on a rotating windmill and its standalone lightning protection tower

    NASA Astrophysics Data System (ADS)

    Wang, D.; Takagi, N.

    2012-12-01

    We have observed the lightning occurred on a 100 m high windmill and its 105 m high standalone lightning-protection tower about 45 m separated from the windmill in the Hokuriku area of Japan for 7 consecutive winter seasons from 2005 to 2012. Our main observation items include: (1) Lightning current at the bottom of both the windmill and the tower. (2) Thunderstorm electric fields and the electric field changes caused by lightning at multiple sites. (3) Optical images by both low and high speed imaging systems. During the 7 winter seasons, over 100 lightning have hit either the tower or the windmill or both. All the lightning but two observed are of upward lightning. Those upward lightning can be sub-classified into self-initiated types and other-triggered types according to whether there is a discharge activity prior to the upward leaders or not. Self-initiated and other-triggered upward lightning tend to have biased percentages in terms of striking locations (windmill versus tower) and thunderstorm types (active versus weak). All the upward lightning but one contained only initial continuous current stages. In the presentation, we will first give a review on those results we have reported before [1-3]. As an update, we will report the following results. (1) The electric field change required for triggering a negative upward leader is usually more than twice bigger than that for triggering a positive upward leader. (2) An electric current pulse with an amplitude of several tens of Amperes along a high structure has been observed to occur in response to a rapid electric change generated by either a nearby return stroke or K-change. References [1] D.Wang, N.Takagi, T.Watanebe, H. Sakurano, M. Hashimoto, Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower, Geophys. Res. Lett., Vol.35, L02803, doi:10.1029/2007GL032136, 2008. [2] W. Lu, D.Wang, Y. Zhang and N. Takagi, Two associated upward lightning flashes that produced opposite polarity electric field changes, Geophys. Res. Lett., Vol.36, L05801, doi:10.1029/2008GL036598, 2009. [3] D. Wang, N. Takagi, Characteristics of Winter Lightning that Occurred on a Windmill and its Lightning Protection Tower in Japan, IEEJ Trans. on Power and Energy, Vol. 132, No.6, pp.568-572, Doi:10.1541/ieejpes.132.568, 2012.

  16. Oceanic Storm Characteristics off the Kennedy Space Center Coast

    NASA Technical Reports Server (NTRS)

    Wilson, J. G.; Simpson, A. A.; Cummins, K. L.; Kiriazes, J. J.; Brown, R. G.; Mata, C. T.

    2014-01-01

    Natural cloud-to-ground lightning may behave differently depending on the characteristics of the attachment mediums, including the peak current (inferred from radiation fields) and the number of ground strike locations per flash. Existing literature has raised questions over the years on these characteristics of lightning over oceans, and the behaviors are not yet well understood. To investigate this we will obtain identical electric field observations over adjacent land and ocean regions during both clear air and thunderstorm periods. Oceanic observations will be obtained using a 3-meter NOAA buoy that has been instrumented with a Campbell Scientific electric field mill and New Mexico Techs slow antenna, to measure the electric fields aloft. We are currently obtaining measurements from this system on-shore at the Florida coast, to calibrate and better understand the behavior of the system in elevated-field environments. Sometime during winter 2013, this system will be moored 20NM off the coast of the Kennedy Space Center. Measurements from this system will be compared to the existing on-shore electric field mill suite of 31 sensors and a coastal slow antenna. Supporting observations will be provided by New Mexico Techs Lightning Mapping Array, the Eastern Range Cloud to Ground Lightning Surveillance System, and the National Lightning Detection Network. An existing network of high-speed cameras will be used to capture cloud-to-ground lightning strikes over the terrain regions to identify a valid data set for analysis. This on-going project will demonstrate the value of off-shore electric field measurements for safety-related decision making at KSC, and may improve our understanding of relative lightning risk to objects on the ground vs. ocean. This presentation will provide an overview of this new instrumentation, and a summary of our progress to date.

  17. The Lightning Discharge

    ERIC Educational Resources Information Center

    Orville, Richard E.

    1976-01-01

    Correspondence of Benjamin Franklin provides authenticity to a historical account of early work in the field of lightning. Present-day theories concerning the formation and propagation of lightning are expressed and photographic evidence provided. (CP)

  18. Lightning burns.

    PubMed

    Russell, Katie W; Cochran, Amalia L; Mehta, Sagar T; Morris, Stephen E; McDevitt, Marion C

    2014-01-01

    We present the case of a lightning-strike victim. This case illustrates the importance of in-field care, appropriate referral to a burn center, and the tendency of lightning burns to progress to full-thickness injury.

  19. High-Resolution WRF Forecasts of Lightning Threat

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; McCaul, E. W., Jr.; LaCasse, K.

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM)lightning and precipitation observations have confirmed the existence of a robust relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of the Weather Research and Forecast (WRF) model, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Initial experiments using 6-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. The WRF has been initialized on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data. An array of subjective and objective statistical metrics is employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  20. The structure of the magnetosphere as deduced from magnetospherically reflected whistlers

    NASA Technical Reports Server (NTRS)

    Edgar, B. C.

    1972-01-01

    Very low frequency (VLF) electromagnetic wave phenomenon called the magnetospherically reflected (MR) whistler was investigated. VLF (0.3 to 12.5 kHz) data obtained from the Orbiting Geophysical Observatories 1 and 3 from October 1964 to December 1966 were used. MR whistlers are produced by the dispersive propagation of energy from atmospheric lightning through the magnetosphere to the satellite along ray paths which undergo one or more reflections due to the presence of ions. The gross features of MR whistler frequency-time spectrograms are explained in terms of propagation through a magnetosphere composed of thermal ions and electrons and having small density gradients across L-shells. Irregularities observed in MR spectra were interpreted in terms of propagation through field-aligned density structures. Trough and enhancement density structures were found to produce unique and easily recognizable signatures in MR spectra. Sharp cross-field density dropoff produces extra traces in MR spectrograms.

  1. Lightning on Venus

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1985-01-01

    On the night side of Venus, the plasma wave instrument on the Pioneer-Venus Orbiter frequently detects strong and impulsive low-frequency noise bursts when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere. The signals have characteristics of lightning whistlers, and an attempt was made to identify the sources by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with additional significant clustering near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  2. Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection

    NASA Technical Reports Server (NTRS)

    Gurecki, Jay; Scully, Robert; Davis, Allen; Kirkendall, Clay; Bucholtz, Frank

    2011-01-01

    A fiber-optic sensor system is designed to measure magnetic fields associated with a lightning stroke. Field vector magnitudes are detected and processed for multiple locations. Since physical limitations prevent the sensor elements from being located in close proximity to highly conductive materials such as aluminum, the copper wire sensor elements (3) are located inside a 4-cubic-in. (.66-cubic-cm) plastic housing sensor head and connected to a fiber-optic conversion module by shielded cabling, which is limited to the shortest length feasible. The signal path between the conversion module and the avionics unit which processes the signals are fiber optic, providing enhanced immunity from electromagnetic radiation incident in the vicinity of the measurements. The sensors are passive, lightweight, and much smaller than commercial B-dot sensors in the configuration which measures a three-dimensional magnetic field. The system is expandable, and provides a standard-format output signal for downstream processing. Inside of the sensor head, three small search coils, each having a few turns on a circular form, are mounted orthogonally inside the non-metallic housing. The fiber-optic conversion module comprises three interferometers, one for each search coil. Each interferometer has a high bandwidth optical phase modulator that impresses the signal received from its search coil onto its output. The output of each interferometer travels by fiber optic cable to the avionics unit, and the search coil signal is recovered by an optical phase demodulator. The output of each demodulator is fed to an analog-to-digital converter, whose sampling rate is determined by the maximum expected rate of rise and peak signal magnitude. The output of the digital processor is a faithful reproduction of the coil response to the incident magnetic field. This information is provided in a standard output format on a 50-ohm port that can be connected to any number of data collection and processing instruments and/or systems. The measurement of magnetic fields using fiber-optic signal processing is novel because it eliminates limitations of a traditional B-dot system. These limitations include the distance from the sensor to the measurement device, the potential for the signal to degrade or be corrupted by EMI from lightning, and the size and weight of the sensor and associated plate.

  3. The Effect of a Corona Discharge on a Lightning Attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.

    2005-01-15

    The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strikemore » to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed.« less

  4. Evaluating lightning hazards to building environments using explicit numerical solutions of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Collier, Richard S.; McKenna, Paul M.; Perala, Rodney A.

    1991-08-01

    The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.

  5. Evaluating lightning hazards to building environments using explicit numerical solutions of Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Collier, Richard S.; Mckenna, Paul M.; Perala, Rodney A.

    1991-01-01

    The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.

  6. Lightning measurements from the Pioneer Venus Orbiter

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Russell, C. T.

    1983-01-01

    The plasma wave instrument on the Pioneer Venus Orbiter frequently detects strong and impulsive low-frequency signals when the spacecraft traverses the nightside ionosphere near periapsis. These particular noise bursts appear only when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere thus; the signals have all characteristics of lightning whistlers. We have tried to identify lightning sources between the cloud layers and the planet itself by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set, consisting of measurements through Orbit 1185, strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with an additional significant cluster near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  7. Relation Between Sprite Distribution and Source Locations of VHF Pulses Derived From JEM- GLIMS Measurements

    NASA Astrophysics Data System (ADS)

    Sato, Mitsuteru; Mihara, Masahiro; Ushio, Tomoo; Morimoto, Takeshi; Kikuchi, Hiroshi; Adachi, Toru; Suzuki, Makoto; Yamazaki, Atsushi; Takahashi, Yukihiro

    2015-04-01

    JEM-GLIMS is continuing the comprehensive nadir observations of lightning and TLEs using optical instruments and electromagnetic wave receivers since November 2012. For the period between November 20, 2012 and November 30, 2014, JEM-GLIMS succeeded in detecting 5,048 lightning events. A total of 567 events in 5,048 lightning events were TLEs, which were mostly elves events. To identify the sprite occurrences from the transient optical flash data, it is necessary to perform the following data analysis: (1) a subtraction of the appropriately scaled wideband camera data from the narrowband camera data; (2) a calculation of intensity ratio between different spectrophotometer channels; and (3) an estimation of the polarization and CMC for the parent CG discharges using ground-based ELF measurement data. From a synthetic comparison of these results, it is confirmed that JEM-GLISM succeeded in detecting sprite events. The VHF receiver (VITF) onboard JEM-GLIMS uses two patch-type antennas separated by a 1.6-m interval and can detect VHF pulses emitted by lightning discharges in the 70-100 MHz frequency range. Using both an interferometric technique and a group delay technique, we can estimate the source locations of VHF pulses excited by lightning discharges. In the event detected at 06:41:15.68565 UT on June 12, 2014 over central North America, sprite was distributed with a horizontal displacement of 20 km from the peak location of the parent lightning emission. In this event, a total of 180 VHF pulses were simultaneously detected by VITF. From the detailed data analysis of these VHF pulse data, it is found that the majority of the source locations were placed near the area of the dim lightning emission, which may imply that the VHF pulses were associated with the in-cloud lightning current. At the presentation, we will show detailed comparison between the spatiotemporal characteristics of sprite emission and source locations of VHF pulses excited by the parent lightning discharges of sprites.

  8. Wide-Area Soil Moisture Estimation Using the Propagation of Lightning Generated Low-Frequency Electromagnetic Signals 1977

    USDA-ARS?s Scientific Manuscript database

    Land surface moisture measurements are central to our understanding of the earth’s water system, and are needed to produce accurate model-based weather/climate predictions. Currently, there exists no in-situ network capable of estimating wide-area soil moisture. In this paper, we explore an alterna...

  9. Forecasting Lightning Threat using Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; Goodman, S. J.; LaCasse, K. M.; Cecil, D. J.

    2009-01-01

    As numerical forecasts capable of resolving individual convective clouds become more common, it is of interest to see if quantitative forecasts of lightning flash rate density are possible, based on fields computed by the numerical model. Previous observational research has shown robust relationships between observed lightning flash rates and inferred updraft and large precipitation ice fields in the mixed phase regions of storms, and that these relationships might allow simulated fields to serve as proxies for lightning flash rate density. It is shown in this paper that two simple proxy fields do indeed provide reasonable and cost-effective bases for creating time-evolving maps of predicted lightning flash rate density, judging from a series of diverse simulation case study events in North Alabama for which Lightning Mapping Array data provide ground truth. One method is based on the product of upward velocity and the mixing ratio of precipitating ice hydrometeors, modeled as graupel only, in the mixed phase region of storms at the -15\\dgc\\ level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domainwide statistics of the peak values of simulated flash rate proxy fields against domainwide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. A blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Weather Research and Forecast Model simulations of selected North Alabama cases show that this model can distinguish the general character and intensity of most convective events, and that the proposed methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because models tend to have more difficulty in correctly predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models, the techniques proposed herein should continue to be applicable as newer and more accurate physically-based model versions, physical parameterizations, initialization techniques and ensembles of cloud-allowing forecasts become available.

  10. Determining distance to lightning strokes from a single station

    NASA Technical Reports Server (NTRS)

    Ruhnke, L. H. (Inventor)

    1973-01-01

    Apparatus is described for determining the distance to lightning strokes from a single station. The apparatus includes a first loop antenna system for sensing the magnetic field produced by the lightning which is filtered, square rooted, and fed into a peak voltage holding circuit. A second antenna is provided for sensing the electric field produced by the lightning which is fed into a filter, an absolute value meter, and to a peak voltage holding circuit. A multivibrator gates the magnetic and electric signals through the peak holding circuits to a ratio meter which produces a signal corresponding to the ratio between the magnetic component and the electric component. The amplitude of this signal is proportional to the distance from the apparatus to the lightning stroke.

  11. Electromagnetic phenomena in granular flows in the laboratory and dusty plasmas in geophysics and astrophysics

    NASA Astrophysics Data System (ADS)

    Lathrop, Daniel; Eiskowitz, Skylar; Rojas, Ruben

    2017-11-01

    In clouds of suspended particles, collisions electrify particles and the clouds produce electric potential differences over large scales. This is seen in the atmosphere as lightning in thunderstorms, thundersnow, dust storms, and volcanic ash plumes, but it is a general phenomena in granular systems. The electrification process is not well understood. To investigate the relative importance of particle material properties and collective phenomena in granular and atmospheric electrification, we used several tabletop experiments that excite particle-laden flows. Various electromagnetic phenomena ensue. Measured electric fields result from capacitive and direct charge transfer to electrodes. These results suggest that while particle properties do matter (as previous investigations have shown), macroscopic electrification of granular flows is somewhat material independent and large-scale collective phenomena play a major role. As well, our results on charge separation and Hall effects suggest a very different view of the dynamics of clouds, planetary rings, and cold accretion disks in proto-planetary systems. We gratefully acknowledge past funding from the Julian Schwinger Foundation as well as the Ph.D. work of Freja Nordsiek.

  12. Nova Scotia: ``Feu Follet" At Cheticamp, and Also the Phenomena At L'Sitkuk of the Mi'Kmaw, May Be Electromagnetic In Nature.

    NASA Astrophysics Data System (ADS)

    Ochs, Michael Ann; McLeod, Roger D.

    2001-11-01

    There is a strong tradition that ``feu follet" exists at the cemetery associated with the Acadian French at Cheticamp. It is described as a blue light, and may actually be the equivalent of an ascending, positively charged stream of ions in the atmosphere, just like the blue-light column that is often a precursor of a storm's lightning-strike. Similar phenomena are at America's Stonehenge, at a stone serpent effigy site in Ohio, and just north of the Lakes Memphremagog and Magog of Vermont and Canada. At the Bear River L'sitkuk Reservation area, which seems to us to have been a most unsuitable site, was deliberately chosen by the Mi'kmaw for their living area. Was this because certain properties of the electromagnetic field (EMF) are evident to them there, which also seem to be reflected in their legends? We hope to establish that these disparate cultures and their separate worldviews can be confirmed by the presence of particular EMF signatures. *This paper does not represent the views of the United States Environmental Protection Agency.

  13. Electric Field and Lightning Observations in the Core of Category 5 Hurricane Emily

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Mach, Doug M.; Bateman, Monte G.; Bailey, Jeff C.

    2007-01-01

    Significant electric fields and lightning activity associated with Hurricane Emily were observed from a NASA high-altitude ER-2 aircraft on July 17, 2005 while this storm developed as a compact but intense category 5 hurricane in the Caribbean south of Cuba. The electrical measurements were acquired as part of the NASA sponsored Tropical Cloud Systems and Processes (TCSP) experiment. In addition to the electrical measurements, the aircraft's remote sensing instrument complement also included active radars, passive microwave, visible and infrared radiometers, and a temperature sounder providing details on the dynamical, microphysical, and environmental structure, characteristics and development of this intense storm. Cloud-to-ground lightning location data from Vaisala's long range lightning detection network were also acquired and displayed in real-time along with electric fields measured at the aircraft. These data and associated display also supported aircraft guidance and vectoring during the mission. During the observing period, flash rates in excess of 3 to 5 flashes per minute, as well as large electric field and field change values were observed as the storm appeared to undergo periods of intensification, especially in the northwest quadrant in the core eyewall regions. This is in contrast to most hurricanes that tend to be characterized by weak electrification and little or no lightning activity except in the outer rain bands. It should be noted that this storm also had significant lightning associated with its rain bands.

  14. Modulation of UK lightning by heliospheric magnetic field polarity

    NASA Astrophysics Data System (ADS)

    Owens, M. J.; Scott, C. J.; Lockwood, M.; Barnard, L.; Harrison, R. G.; Nicoll, K.; Watt, C.; Bennett, A. J.

    2014-11-01

    Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40-60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.

  15. Power spectra at radio frequency of lightning return stroke waveforms

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.

    1989-01-01

    The power spectra of the wideband (10 Hz to 100 kHz) magnetic field signals in a number of lightning return strokes (primarily first return strokes) measured during a lightning storm which occurred in Lindau, West Germany in August, 1984 have been calculated. The RF magnetic field data were obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks appearing in the spectra of many of the waveforms. An enhancement of power at frequencies of about 60-70 kHz is often seen in the spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.

  16. Using the VAHIRR Radar Algorithm to Investigate Lightning Cessation

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Schultz, Elise V.; Petersen, Walter A.

    2012-01-01

    Accurately determining the threat posed by lightning is a major area for improved operational forecasts. Most efforts have focused on the initiation of lightning within a storm, with far less effort spent investigating lightning cessation. Understanding both components, initiation and cessation, are vital to improving lightning safety. Few organizations actively forecast lightning onset or cessation. One such organization is the 45th Weather Squadron (45WS) for the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45WS has identified that charged anvil clouds remain a major threat of continued lightning and can greatly extend the window of a potential lightning strike. Furthermore, no discernable trend of total lightning activity has been observed consistently for all storms. This highlights the need for more research to find a robust method of knowing when a storm will cease producing lightning. Previous lightning cessation work has primarily focused on forecasting the cessation of cloud-to -ground lightning only. A more recent, statistical study involved total lightning (both cloud-to-ground and intracloud). Each of these previous works has helped the 45WS take steps forward in creating improved and ultimately safer lightning cessation forecasts. Each study has either relied on radar data or recommended increased use of radar data to improve cessation forecasts. The reasoning is that radar data is able to either directly or by proxy infer more about dynamical environment leading to cloud electrification and eventually lightning cessation. The authors of this project are focusing on a two ]step approach to better incorporate radar data and total lightning to improve cessation forecasts. This project will utilize the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm originally developed during the Airborne Field Mill II (ABFM II) research project. During the project, the VAHIRR product showed a trend of increasing values with increases in the electric field magnitude above 3 kV/m. An extreme value analysis showed that VAHIRR values less than or equal to 10 dBZ-km showed that the probability of having an electric field magnitude larger than 3 kV/m was less than one in ten thousand. VAHIRR also was found to be sensitive at indicating anvil clouds that posed a threat of initiating a lightning flash. This project seeks to use VAHIRR to analyze its utility as a lightning cessation tool, particularly dealing with the threat posed by detached anvils. The results from this project will serve as a baseline effectiveness of radar ]based lightning cessation algorithms. This baseline will be used in the second, and concurrent work by the co ]author fs who are developing a lightning cessation algorithm based on dual ]polarimetric radar data. Ultimately, an accurate method for identifying lightning cessation can save money on lost manpower time as well as greatly improve lightning safety.

  17. Analytical study of the effects of clouds on the light produced by lightning

    NASA Technical Reports Server (NTRS)

    Phanord, Dieudonne D.

    1990-01-01

    Researchers consider the scattering of visible and infrared light due to lightning by cubic, cylindrical and spherical clouds. The researchers extend to cloud physics the work by Twersky for single and multiple scattering of electromagnetic waves. They solve the interior problem separately to obtain the bulk parameters for the scatterer equivalent to the ensemble of spherical droplets. With the interior solution or the equivalent medium approach, the multiple scattering problem is reduced to that of a single scatterer in isolation. Hence, the computing methods of Wiscombe or Bohren specialized to Mie scattering with the possibility for absorption were used to generate numerical results in short computer time.

  18. Exploring the Use of Radar for a Physically Based Lightning Cessation Nowcasting Tool

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.

    2011-01-01

    NASA s Marshall Space Flight Center (MSFC) and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and hydrometeors. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far, our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature encompassed the period of the polarimetric negative phase shift signature. To the extent this behavior is repeatable in other cases, even if only in a substantial fraction of those cases, the case analyses suggests that differential propagation phase may prove to be a useful parameter for future lightning cessation algorithms. Indeed, analysis of 15+ cases has shown additional indications of the weakening and disappearance of this ice alignment signature with lightning cessation. A summary of results will be presented.

  19. Atmospheric Electrical Modeling in Support of the NASA F-106 Storm Hazards Project

    NASA Technical Reports Server (NTRS)

    Helsdon, John H., Jr.

    1988-01-01

    A recently developed storm electrification model (SEM) is used to investigate the operating environment of the F-106 airplane during the NASA Storm Hazards Project. The model is 2-D, time dependent and uses a bulkwater microphysical parameterization scheme. Electric charges and fields are included, and the model is fully coupled dynamically, microphysically and electrically. One flight showed that a high electric field was developed at the aircraft's operating altitude (28 kft) and that a strong electric field would also be found below 20 kft; however, this low-altitude, high-field region was associated with the presence of small hail, posing a hazard to the aircraft. An operational procedure to increase the frequency of low-altitude lightning strikes was suggested. To further the understanding of lightning within the cloud environment, a parameterization of the lightning process was included in the SEM. It accounted for the initiation, propagation, termination, and charge redistribution associated with an intracloud discharge. Finally, a randomized lightning propagation scheme was developed, and the effects of cloud particles on the initiation of lightning investigated.

  20. Measuring Effects Of Lightning On Power And Telephone Lines

    NASA Technical Reports Server (NTRS)

    Jafferis, William; Thompson, E. M.; Medelius, P.; Rubinstein, M.; Tzeng, A.

    1992-01-01

    Spherical antenna senses both horizontal and vertical fields simultaneously. Measures "fast" components of electric field used in conjunction with other equipment, including antenna measuring "slow" vertical component of electric field; microphone that senses thunder; cameras making visual records, which locate lightning; magnetic-field sensor; optical sensors; and instruments measuring speed and direction of wind.

  1. Combining GOES-16 Geostationary Lightning Mapper with the ground based Earth Networks Total Lightning Network

    NASA Astrophysics Data System (ADS)

    Stock, M.; Lapierre, J. L.; Zhu, Y.

    2017-12-01

    Recently, the Geostationary Lightning Mapper (GLM) began collecting optical data to locate lightning events and flashes over the North and South American continents. This new instrument promises uniformly high detection efficiency (DE) over its entire field of view, with location accuracy on the order of 10 km. In comparison, Earth Networks Total Lightning Networks (ENTLN) has a less uniform coverage, with higher DE in regions with dense sensor coverage, and lower DE with sparse sensor coverage. ENTLN also offers better location accuracy, lightning classification, and peak current estimation for their lightning locations. It is desirable to produce an integrated dataset, combining the strong points of GLM and ENTLN. The easiest way to achieve this is to simply match located lightning processes from each system using time and distance criteria. This simple method will be limited in scope by the uneven coverage of the ground based network. Instead, we will use GLM group locations to look up the electric field change data recorded by ground sensors near each GLM group, vastly increasing the coverage of the ground network. The ground waveforms can then be used for: improvements to differentiation between glint and lightning for GLM, higher precision lighting location, current estimation, and lightning process classification. Presented is an initial implementation of this type of integration using preliminary GLM data, and waveforms from ENTLN.

  2. Horizontal electric fields from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Thomson, E. M.; Medelius, P. J.; Rubinstein, M.; Uman, M. A.; Johnson, J.

    1988-01-01

    An experiment to measure simultaneously the wideband horizontal and vertical electric fields from lightning return strokes is described. Typical wave shapes of the measured horizontal and vertical fields are presented, and the horizontal fields are characterized. The measured horizontal fields are compared with calculated horizontal fields obtained by applying the wavetilt formula to the vertical fields. The limitations and sources of error in the measurement technique are discussed.

  3. MicroCameras and Photometers (MCP) on board the TARANIS satellite

    NASA Astrophysics Data System (ADS)

    Farges, T.; Hébert, P.; Le Mer-Dachard, F.; Ravel, K.; Gaillac, S.

    2017-12-01

    TARANIS (Tool for the Analysis of Radiations from lightNing and Sprites) is a CNES micro satellite. Its main objective is to study impulsive transfers of energy between the Earth atmosphere and the space environment. It will be sun-synchronous at an altitude of 700 km. It will be launched in 2019 for at least 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths (from gamma-rays to radio waves including optical). TARANIS instruments are currently in calibration and qualification phase. The purpose is to present the MicroCameras and Photometers (MCP) design, to show its performances after its recent characterization and at last to discuss the scientific objectives and how we want to answer it with the MCP observations. The MicroCameras, developed by Sodern, are dedicated to the spatial description of TLEs and their parent lightning. They are able to differentiate sprite and lightning thanks to two narrow bands ([757-767 nm] and [772-782 nm]) that provide simultaneous pairs of images of an Event. Simulation results of the differentiation method will be shown. After calibration and tests, the MicroCameras are now delivered to the CNES for integration on the payload. The Photometers, developed by Bertin Technologies, will provide temporal measurements and spectral characteristics of TLEs and lightning. There are key instrument because of their capability to detect on-board TLEs and then switch all the instruments of the scientific payload in their high resolution acquisition mode. Photometers use four spectral bands in the [170-260 nm], [332-342 nm], [757-767 nm] and [600-900 nm] and have the same field of view as cameras. The on-board TLE detection algorithm remote-controlled parameters have been tuned before launch using the electronic board and simulated or real events waveforms. After calibration, the Photometers are now going through the environmental tests. They will be delivered to the CNES for integration on the payload in September 2017.

  4. The Monitoring Of Thunderstorm In Sao Paulo's Urban Areas, Brazil

    NASA Astrophysics Data System (ADS)

    Gin, R. B.; Pereira, A.; Beneti, C.; Jusevicius, M.; Kawano, M.; Bianchi, R.; Bellodi, M.

    2005-12-01

    A monitoring of thunderstorm in urban areas occurred in the vicinity of Sao Bernardo do Campo, Sao Paulo from November 2004 to March 2005. Eight thunderstorms were monitored by local electric field, video camera, Brazilian Lightning Location Network (RINDAT) and weather radar. The most of these thunderstorms were associated with the local convection and cold front. Some of these events presented floods in the vicinity of Sao Bernardo and in the Metropolitan Area of Sao Paulo (MASP) being associated with local sea breeze circulation and the heat island effect. The convectives cells exceeding 100km x 100 km of area, actives between 2 and 3 hours. The local electric field identified the electrification stage of thunderstorms, high transients of lightning and total lightning rate of above 10 flashes per minute. About 29.5 thousands of cloud-to-ground lightning flashes were analyzed . From the total set of CG flashes analyzed, about 94 percent were negative strokes and presented average peak current of above 25kA, common for this region. Some lightning images were obtained by video camera and compared with transients of lightning and lightning detection network data. The most of these transients of lightning presented continuing current duration between 100ms and 200ms. A CG lightning occurred on 25th February was visually observed 3.5km from FEI campus, Sao Bernardo do Campo. This lightning presented negative polarity and estimed peak current of above 30kA. A spider was visually observed over FEI Campus at 17th March. No transients of lightning and recording by lightning location network were found.

  5. Measured close lightning leader-step electric-field-derivative waveforms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Doug M.; Hill, Dustin; Biagi, Christopher J.

    2010-12-01

    We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak andmore » becomes dominant as range decreases. The initial peak is often preceded by a 'slow front,' similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 {micro}s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m{sup -1} {micro}s{sup -1} (standard deviation (S.D.), 3.7 V m{sup -1} {micro}s{sup -1}, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA {micro}s{sup -1}, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of {approx}3 mC. As part of the modeling, those currents were propagated upward at 1.5 x 10{sup 8} m s{sup -1}, with their amplitudes decaying exponentially with a decay height constant of 25 m.« less

  6. Predicting cloud-to-ground lightning with neural networks

    NASA Technical Reports Server (NTRS)

    Barnes, Arnold A., Jr.; Frankel, Donald; Draper, James Stark

    1991-01-01

    A neural network is being trained to predict lightning at Cape Canaveral for periods up to two hours in advance. Inputs consist of ground based field mill data, meteorological tower data, lightning location data, and radiosonde data. High values of the field mill data and rapid changes in the field mill data, offset in time, provide the forecasts or desired output values used to train the neural network through backpropagation. Examples of input data are shown and an example of data compression using a hidden layer in the neural network is discussed.

  7. Electric field at the ground in a large tornado

    NASA Astrophysics Data System (ADS)

    Winn, W. P.; Hunyady, S. J.; Aulich, G. D.

    2000-08-01

    A number of observers have reported lightning, diffuse luminosity, or other manifestations of electrical activity in tornadoes. To try to quantify these observations, eight instruments with sensors for electric field and other parameters were placed in front of a large tornado that passed by Allison, Texas, on June 8, 1995. The edge of the tornado vortex passed over two of the instruments and near other instruments. When the two instruments were in the low-pressure region near the edge of the vortex, they indicated electric field amplitudes less than about 3 kV/m, which is low compared with amplitudes of 10 kV/m or greater that are often present below thunderclouds. The thunderstorm produced frequent lightning, but there is no evidence from the measurements or from visual observations of lightning in the vortex. However, there was one interesting electrical effect associated with the tornado: the electric field at the two instruments in the vortex relaxed to zero quickly after lightning flashes, whereas the electric field at nearby instruments outside the vortex did not relax quickly after the same lightning flashes. The most likely cause of the rapid relaxation is shielding of the electric field at the ground by charge induced on soil, leaves, grass, and other debris lofted by the strong winds.

  8. Numerical Simulation of Electromagnetic Field Variation in the Lithosphere-Atmosphere-Ionosphere Associated with Seismogenic Process in a Curvature Coordinate System

    NASA Astrophysics Data System (ADS)

    Liu, L.; Zhao, Z.; Wang, Y.; Huang, Q.

    2013-12-01

    The lithosphere-atmosphere- ionosphere (LAI) system formed an electromagnetic (EM) cavity that hosts the EM field excited by electric currents generated by lightning and other natural sources. There have also been numerous reports on variations of the EM field existing in LAI system prior to some significance earthquakes. We simulated the EM field in the lithosphere-ionosphere waveguide with a whole-earth model using a curvature coordinate by the hybrid pseudo-spectral and finite difference time domain method. Considering the seismogensis as a fully coupled seismoelectric process, we simulate the seismic wave and the EM wave in this 2D model. In the model we have observed the excitation of the Schumann Resonance (SR) as the background EM field generated by randomly placed electric-current impulses within the lowest 10 kilometers of the atmosphere. The diurnal variation and the latitude-dependence in ion concentration in the ionosphere are included in the model. After the SR reaching a steady state, an electric impulse is introduced in the shallow lithosphere to mimic the seismogenic process (pre-, co- and post-seismic) to assess the possible precursory effects on SR strength and frequency. The modeling results can explain the observed fact of why SR has a much more sensitive response to continental earthquakes, and much less response to oceanic events. The fundamental reason is simply due to the shielding effect of the conductive ocean that prevents effective radiation of the seismoelectric signals from oceanic earthquake events into the LAI waveguide.

  9. A space-based classification system for RF transients

    NASA Astrophysics Data System (ADS)

    Moore, K. R.; Call, D.; Johnson, S.; Payne, T.; Ford, W.; Spencer, K.; Wilkerson, J. F.; Baumgart, C.

    The FORTE (Fast On-Orbit Recording of Transient Events) small satellite is scheduled for launch in mid 1995. The mission is to measure and classify VHF (30-300 MHz) electromagnetic pulses, primarily due to lightning, within a high noise environment dominated by continuous wave carriers such as TV and FM stations. The FORTE Event Classifier will use specialized hardware to implement signal processing and neural network algorithms that perform onboard classification of RF transients and carriers. Lightning events will also be characterized with optical data telemetered to the ground. A primary mission science goal is to develop a comprehensive understanding of the correlation between the optical flash and the VHF emissions from lightning. By combining FORTE measurements with ground measurements and/or active transmitters, other science issues can be addressed. Examples include the correlation of global precipitation rates with lightning flash rates and location, the effects of large scale structures within the ionosphere (such as traveling ionospheric disturbances and horizontal gradients in the total electron content) on the propagation of broad bandwidth RF signals, and various areas of lightning physics. Event classification is a key feature of the FORTE mission. Neural networks are promising candidates for this application. The authors describe the proposed FORTE Event Classifier flight system, which consists of a commercially available digital signal processing board and a custom board, and discuss work on signal processing and neural network algorithms.

  10. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials

    NASA Astrophysics Data System (ADS)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier

    2014-02-01

    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  11. Explaining Polarization Reversals in STEREO Wave Data

    NASA Technical Reports Server (NTRS)

    Breneman, A.; Cattell, C.; Wygant, J.; Kersten, K.; Wilson, L, B., III; Dai, L.; Colpitts, C.; Kellogg, P. J.; Goetz, K.; Paradise, A.

    2012-01-01

    Recently Breneman et al. reported observations of large amplitude lightning and transmitter whistler mode waves from two STEREO passes through the inner radiation belt (L<2). Hodograms of the electric field in the plane transverse to the magnetic field showed that the transmitter waves underwent periodic polarization reversals. Specifically, their polarization would cycle through a pattern of right-hand to linear to left-hand polarization at a rate of roughly 200 Hz. The lightning whistlers were observed to be left-hand polarized at frequencies greater than the lower hybrid frequency and less than the transmitter frequency (21.4 kHz) and right-hand polarized otherwise. Only righthand polarized waves in the inner radiation belt should exist in the frequency range of the whistler mode and these reversals were not explained in the previous paper. We show, with a combination of observations and simulated wave superposition, that these polarization reversals are due to the beating of an incident electromagnetic whistler mode wave at 21.4 kHz and linearly polarized, symmetric lower hybrid sidebands Doppler-shifted from the incident wave by +/-200 Hz. The existence of the lower hybrid waves is consistent with the parametric decay mechanism of Lee and Kuo whereby an incident whistler mode wave decays into symmetric, short wavelength lower hybrid waves and a purely growing (zero-frequency) mode. Like the lower hybrid waves, the purely growing mode is Doppler-shifted by 200 Hz as observed on STEREO. This decay mechanism in the upper ionosphere has been previously reported at equatorial latitudes and is thought to have a direct connection with explosive spread F enhancements. As such it may represent another dissipation mechanism of VLF wave energy in the ionosphere and may help to explain a deficit of observed lightning and transmitter energy in the inner radiation belts as reported by Starks et al.

  12. Lightning Prediction using Electric Field Measurements Associated with Convective Events at a Tropical Location

    NASA Astrophysics Data System (ADS)

    Jana, S.; Chakraborty, R.; Maitra, A.

    2017-12-01

    Nowcasting of lightning activities during intense convective events using a single electric field monitor (EFM) has been carried out at a tropical location, Kolkata (22.65oN, 88.45oE). Before and at the onset of heavy lightning, certain changes of electric field (EF) can be related to high liquid water content (LWC) and low cloud base height (CBH). The present study discusses the utility of EF observation to show a few aspects of convective events. Large convective cloud showed by high LWC and low CBH can be detected from EF variation which could be a precursor of upcoming convective events. Suitable values of EF gradient can be used as an indicator of impending lightning events. An EF variation of 0.195 kV/m/min can predict lightning within 17.5 km radius with a probability of detection (POD) of 91% and false alarm rate (FAR) of 8% with a lead time of 45 min. The total number of predicted lightning strikes is nearly 9 times less than that measured by the lightning detector. This prediction technique can, therefore, give an estimate of cloud to ground (CG) and intra cloud (IC) lighting occurrences within the surrounding area. This prediction technique involving POD, FAR and lead time information shows a better prediction capability compared to the techniques reported earlier. Thus an EFM can be effectively used for prediction of lightning events at a tropical location.

  13. Terrestrial gamma-ray flash production by lightning

    NASA Astrophysics Data System (ADS)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared to the results of Monte Carlo simulations of the physics of energetic photon production and propagation in air. These comparisons are used to constrain the TGF source altitude, energy, and directional distribution, and indicate a broadly-beamed low-altitude source inconsistent with production far above thunderstorms as previously suggested. The details of energetic electron production by electric fields in air are then examined. In particular, the source of initial high-energy electrons that are accelerated and undergo avalanche multiplication to produce bremsstrahlung is studied and the properties of these initial seed particles as produced by cosmic rays are determined. The number of seed particles available indicates either extremely large amplification of the number of seed particles or an alternate source of seeds. The low-altitude photon source and alternate source of seed particles required by these studies suggest a production mechanism closely-associated with lightning. A survey of lightning physics in the context of TGF emission indicates that current pulses along lightning channels may trigger TGF production by both producing strong electric fields and a large population of candidate seed electrons. The constraints on lightning physics, thunderstorm physics, and TGF physics all allow production by this mechanism. A computational model of this mechanism is then presented on the basis of a method of moments simulation of charge and current on a lightning channel. Calculation of the nearby electric fields then drives Monte Carlo simulations of energetic electron dynamics which determine the properties of the resulting bremsstrahlung. The results of this model compare quite well with satellite observations of TGFs subject to requirements on the ambient electric field and the current pulse magnitude and duration. The model makes quantitative predictions about the TGF source altitude, directional distribution, and lightning association that are in overall agreement with existing TGF observations and may be tested in more detail in future experiments.

  14. Development of Design Standards and Guidelines for Electromagnetic Compatibility and Lightning Protection for Spacecraft Utilizing Composite Materials

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Preliminary design guidelines necessary to assure electromagnetic compatibility (EMC) of spacecraft using composite materials, are presented. A database of electrical properties of composite materials which may have an effect on EMC is established. The guidelines concentrate on the composites that are conductive but may require enhancement to be adequate for EMC purposes. These composites are represented by graphite reinforced polymers. Methods for determining adequate conductivity levels for various EMC purposes are defined, along with the methods of design which increase conductivity of composite materials and joints to adequate levels.

  15. Three-dimensional time domain model of lightning including corona effects

    NASA Technical Reports Server (NTRS)

    Podgorski, Andrew S.

    1991-01-01

    A new 3-D lightning model that incorporates the effect of corona is described for the first time. The new model is based on a Thin Wire Time Domain Lightning (TWTDL) Code developed previously. The TWTDL Code was verified during the 1985 and 1986 lightning seasons by the measurements conducted at the 553 m CN Tower in Toronto, Ontario. The inclusion of corona in the TWTDL code allowed study of the corona effects on the lightning current parameters and the associated electric field parameters.

  16. Air traffic controller lightning strike.

    PubMed Central

    Spieth, M. E.; Kimura, R. L.; Schryer, T. D.

    1994-01-01

    Andersen Air Force Base in Guam boasts the tallest control tower in the Air Force. In 1986, an air traffic controller was struck by lightning as the bolt proceeded through the tower. Although he received only a backache, the lightning left a hole with surrounding scorch marks on his fatigue shirt and his undershirt. The lightning strike also ignited a portion of the field lighting panel, which caused the runway lights to go out immediately. Lack of a lightning rod is the most likely reason the controller was struck. Proper precautions against lightning strikes can prevent such occupational safety hazards. PMID:7966436

  17. Exploring the Use of Radar for Physically-Based Nowcasting of Lightning Cessation

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.

    2011-01-01

    NASA's Marshall Space Flight Center and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically-based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms driven primarily by trending in the actual total lightning flash rate, we believe that dual polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and ice-microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can propagation phase-based ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature was encompassed in the period of the polarimetric negative phase shift signature. To the extent this behavior is repeatable in other cases, even if only in a substantial fraction of those cases, the analysis suggests that differential propagation phase may prove to be a useful parameter for future lightning cessation algorithms. Indeed, a preliminary analysis of 15+ cases has shown additional indications of the weakening and disappearance of this ice alignment signature with lightning cessation. A summary of these case-study results is presented.

  18. Natural Electrotransformation of Lightning-Competent Pseudomonas sp. Strain N3 in Artificial Soil Microcosms

    PubMed Central

    Cérémonie, Hélène; Buret, François; Simonet, Pascal; Vogel, Timothy M.

    2006-01-01

    The lightning-competent Pseudomonas sp. strain N3, recently isolated from soil, has been used to study the extent of natural electrotransformation (NET) or lightning transformation as a horizontal gene transfer mechanism in soil. The variation of electrical fields applied to the soil with a laboratory-scale lightning system provides an estimate of the volume of soil affected by NET. Based on the range of the electric field that induces NET of Pseudomonas strain N3, the volume of soil, where NET could occur, ranges from 2 to 950 m3 per lightning strike. The influence of DNA parameters (amount, size, and purity) and DNA soil residence time were also investigated. NET frequencies (electrotransformants/recipient cells) ranged from 10−8 for cell lysate after 1 day of residence in soil to 4 × 10−7 with a purified plasmid added immediately before the lightning. The electrical field gradient (in kilovolts per cm) also played a role as NET frequencies ranging from 1 × 10−5 at 2.3 kV/cm to 1.7 × 10−4 at 6.5 kV/cm. PMID:16597934

  19. Use of High-resolution WRF Simulations to Forecast Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, William E.; LaCasse, K.; Goodman, S. J.

    2006-01-01

    Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of recent forecast models such as WRF, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Six-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data yield the most realistic simulations. An array of subjective and objective statistical metrics are employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  20. Resistance and internal electric field in cloud-to-ground lightning channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cen, Jianyong; Yuan, Ping, E-mail: yuanp@nwnu.edu.cn; Xue, Simin

    2015-02-02

    Cloud-to-ground lightning with six return strokes has been recorded by slitless spectrograph and the system of fast antenna and slow antenna. The physical parameters of the discharge channel have been obtained based on the combination of spectra and synchronous radiated electric field. The resistance and internal electric field of the channel are studied as the focus in this paper. The results show that the resistances per unit length of the lightning channel are in the order of 10{sup −2}–10{sup −1 }Ω/m and the internal electric field strengths are in the order of 10{sup 3 }V/m.

  1. Does Wilson's cloud chamber offer clues on lightning initiation in thunderclouds?

    NASA Astrophysics Data System (ADS)

    Cooray, V.; Rakov, V.

    2007-12-01

    The experimental evidence indicates that the large scale electric field in the cloud at the time of lightning initiation is about 100 kV/m [1], which is an order of magnitude lower than the expected conventional breakdown field. One important problem in atmospheric physics is to understand how lightning flashes are initiated in such low fields. Some scientists suggest that the electric field could reach higher values momentarily in small regions and this combined with the field enhancing action of hydrometeors in the cloud could provide trigger for lightning initiation [2, 3]. Others suggest that energetic electrons produced by cosmic rays could give rise to runaway electron avalanches generating the initial ionization necessary for lightning initiation [4]. Nguyen and Michnowski [2] suggested that in small cloud regions the electric field may exceed 200 to 400 kV/m and in these locations the discharges between hydrometeors could facilitate lightning initiation. This mechanism was further investigated by Cooray et al. [3] who showed that interaction between adjacent hydrometeors cannot produce a streamer discharge, a prerequisite for electric breakdown, unless the field exceeds about 830 kV/m. They also found that long chains of hydrometeors could initiate streamer discharges in relatively low electric fields. For example, in order to generate a streamer discharge in 100 kV/m electric field the length of the chain of hydrometeors of 0.1 mm radius should be about 65 mm with more than 100 particles constituting the chain. However, the question remains on how such long chains of hydrometeors can be produced in the cloud. We suggest the following possibility. Consider an energetic particle passing through the cloud producing ionization in its wake. The passage of such a particle will lead to a stream of positive ions and electrons with the latter being captured within a few tens of nanoseconds by oxygen molecules to form negative ions. If the water vapor in the region under consideration is supersaturated, water molecules will condense on the ions and the resulting droplets can grow to tens of micrometers in a fraction of a second. This is the mechanism utilized in Wilson's cloud chamber to visualize the tracks of ionizing particles. If the track of ionizing particle is aligned with the direction of the electric field in the cloud, the resultant drift of the oppositely charged particles in opposite directions will facilitate collisions among them leading to production of larger droplets. This process can potentially generate long chains of droplets in the cloud which may provide the trigger necessary for the initiation of lightning flashes. [1] Marshall, T. C., M. P. McCarthy and W. D. Rust, Electric field magnitudes and lightning initiation in thunderstorms, J. Geophys. Res., vol. 100, pp. 7097 - 7103, 1995. [2] Nguyen, M. D. and S. Michnowski, On the initiation of lightning discharges in a cloud, 2. The lightning initiation on precipitation particles, J. Geophys. Res., vol. 101, pp. 26 675 - 26 680, 1996. [3] Cooray, V., M. Berg, M. Akyuz and A. Larsson, Initiation of ground flashes: some microscopic electrical processes associated with precipitation particles, Proc. International Conference on Lightning Protection, Birmingham, UK, 2002. [4] Gurevich, A. V., G. M. Milikh and J. A. Valdivia, Model of X-ray emission and fast preconditioning during a thunderstorm, Phys. Lett., A 231, pp. 402 - 408, 1997.

  2. Initiation of Positive Streamers near Uncharged Ice Hydrometeors in the Thundercloud Field

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.

    2018-05-01

    Since the threshold electric field required for breakdown of air is much higher than the maximum field strength measured in thunderstorm clouds, the problem of lightning initiation still remains unsolved. According to the popular hypothesis, lightning can be initiated by a streamer discharge in the field enhanced near a hydrometeor. To verify the adequacy of this hypothesis, the development of a positive streamer propagating along the thunderstorm electric field in the vicinity of an ice needle at an air pressure corresponding to an altitude of 5 km (which is typical of the lightning initiation conditions) was simulated numerically. The hydrometeor dimensions are determined at which streamers can be initiated at different strengths of the thunderstorm electric field.

  3. The start of lightning: Evidence of bidirectional lightning initiation.

    PubMed

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R

    2015-10-16

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.

  4. The VLF fingerprint of elves: Step-like and long-recovery early VLF perturbations caused by powerful ±CG lightning EM pulses

    NASA Astrophysics Data System (ADS)

    Haldoupis, Christos; Cohen, Morris; Arnone, Enrico; Cotts, Benjamin; Dietrich, Stefano

    2013-08-01

    Subionospheric VLF recordings are investigated in relation with intense cloud-to-ground (CG) lightning data. Lightning impacts the lower ionosphere via heating and ionization changes which produce VLF signal perturbations known as early VLF events. Typically, early events recover in about 100 s, but a small subclass does not recover for many minutes, known as long-recovery early events (LORE). In this study, we identify LORE as a distinct category of early VLF events, whose signature may occur either on its own or alongside the short-lived typical early VLF event. Since LORE onsets coincide with powerful lightning strokes of either polarity (±), we infer that they are due to long-lasting ionization changes in the uppermost D region ionosphere caused by electromagnetic pulses emitted by strong ± CG lightning peak currents of typically > 250 kA, which are also known to generate elves. The LORE perturbations are detected when the discharge is located within ~250 km from the great circle path of a VLF transmitter-receiver link. The probability of occurrence increases with stroke intensity and approaches unity for discharges with peak currents ≥ ~300 kA. LOREs are nighttime phenomena that occur preferentially, at least in the present regional data set, during winter when strong ± CG discharges are more frequent and intense. The evidence suggests LORE as a distinct signature representing the VLF fingerprint of elves, a fact which, although was predicted by theory, it escaped identification in the long-going VLF research of lightning effects in the lower ionosphere.

  5. Electric field mill network products to improve detection of the lightning hazard

    NASA Technical Reports Server (NTRS)

    Maier, Launa M.

    1987-01-01

    An electric field mill network has been used at Kennedy Space Center for over 10 years as part of the thunderstorm detection system. Several algorithms are currently available to improve the informational output of the electric field mill data. The charge distributions of roughly 50 percent of all lightning can be modeled as if they reduced the charged cloud by a point charge or a point dipole. Using these models, the spatial differences in the lightning induced electric field changes, and a least squares algorithm to obtain an optimum solution, the three-dimensional locations of the lightning charge centers can be located. During the lifetime of a thunderstorm, dynamically induced charging, modeled as a current source, can be located spatially with measurements of Maxwell current density. The electric field mills can be used to calculate the Maxwell current density at times when it is equal to the displacement current density. These improvements will produce more accurate assessments of the potential electrical activity, identify active cells, and forecast thunderstorm termination.

  6. Experimental observations of strengthening the neutron flux during negative lightning discharges of thunderclouds with tripolar configuration

    NASA Astrophysics Data System (ADS)

    Toropov, A. A.; Kozlov, V. I.; Mullayarov, V. A.; Starodubtsev, S. A.

    2013-03-01

    We consider neutron bursts (Yakutsk cosmic ray spectrograph,105 m above sea level) and the electric field during lightning discharges. It was found that the neutron bursts are observed in the negative lightning discharg only. We discuss the possibility of generation of neutrons in the lower part (the point of impact into the ground) lightning discharge.

  7. Cross-Referencing GLM and ISS-LIS with Ground-Based Lightning Networks

    NASA Astrophysics Data System (ADS)

    Virts, K.; Blakeslee, R. J.; Goodman, S. J.; Koshak, W. J.

    2017-12-01

    The Geostationary Lightning Mapper (GLM), in geostationary orbit aboard GOES-16 since late 2016, and the Lightning Imaging Sensor (LIS), installed on the International Space Station in February 2017, provide observations of total lightning activity from space. ISS-LIS samples the global tropics and mid-latitudes, while GLM observes the full thunderstorm life-cycle over the Americas and surrounding oceans. The launch of these instruments provides an unprecedented opportunity to compare lightning observations across multiple space-based optical lightning sensors. In this study, months of observations from GLM and ISS-LIS are cross-referenced with each other and with lightning detected by the ground-based Earth Networks Global Lightning Network (ENGLN) and the Vaisala Global Lightning Dataset 360 (GLD360) throughout and beyond the GLM field-of-view. In addition to calibration/validation of the new satellite sensors, this study provides a statistical comparison of the characteristics of lightning observed by the satellite and ground-based instruments, with an emphasis on the lightning flashes uniquely identified by the satellites.

  8. A self-similar magnetohydrodynamic model for ball lightnings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsui, K. H.

    2006-07-15

    Ball lightning is modeled by magnetohydrodynamic (MHD) equations in two-dimensional spherical geometry with azimuthal symmetry. Dynamic evolutions in the radial direction are described by the self-similar evolution function y(t). The plasma pressure, mass density, and magnetic fields are solved in terms of the radial label {eta}. This model gives spherical MHD plasmoids with axisymmetric force-free magnetic field, and spherically symmetric plasma pressure and mass density, which self-consistently determine the polytropic index {gamma}. The spatially oscillating nature of the radial and meridional field structures indicate embedded regions of closed field lines. These regions are named secondary plasmoids, whereas the overall self-similarmore » spherical structure is named the primary plasmoid. According to this model, the time evolution function allows the primary plasmoid expand outward in two modes. The corresponding ejection of the embedded secondary plasmoids results in ball lightning offering an answer as how they come into being. The first is an accelerated expanding mode. This mode appears to fit plasmoids ejected from thundercloud tops with acceleration to ionosphere seen in high altitude atmospheric observations of sprites and blue jets. It also appears to account for midair high-speed ball lightning overtaking airplanes, and ground level high-speed energetic ball lightning. The second is a decelerated expanding mode, and it appears to be compatible to slowly moving ball lightning seen near ground level. The inverse of this second mode corresponds to an accelerated inward collapse, which could bring ball lightning to an end sometimes with a cracking sound.« less

  9. On the field-to-current conversion factors for large bipolar lightning discharge events in winter thunderstorms in Japan

    NASA Astrophysics Data System (ADS)

    Chen, Long; Zhang, Qilin; Hou, Wenhao; Tao, Yulang

    2015-07-01

    In this paper we have simulated the far-field waveform characteristic of large bipolar events (LBEs) occurred in winter thunderstorms in Japan and compared the field-to-current conversion factors (FCCFs) of LBEs with that of the lightning cloud-to-ground (CG) return stroke (RS) in summer thunderstorm. As for the physical process of LBEs, Wu et al. (2014) considered that LBEs may be very similar to the typical lightning RS (RS-like process) or caused by an initial continuous current pulse (ICC-like process) in upward lightning flashes. We assume that the lightning channel length of LBEs ranges from 500 m to 1000 m, and the height of tall object struck by LBEs is from 100 m to 300 m. By using the bouncing wave model, we found that only when the injected current waveform of LBEs is characterized with a symmetric Gaussian pulse, the simulated far-field waveform of LBEs both for RS-like process and ICC-like process is similar to that observed by Wu et al. (2014). For striking tall objects with heights from 100 m and 300 m, the FCCFs of LBEs are positively correlated with its channel length and derivatives of injected current waveform, and the FCCF for RS-like process is about similar to that for ICC-like process. However, the FCCFs of LBEs are very different from lightning RS in summer thunderstorm; that is to say, the FCCFs developed for the well-known lightning RS in summer thunderstorm are not suitable for LBEs.

  10. Improving Lightning and Precipitation Prediction of Severe Convection Using Lightning Data Assimilation With NCAR WRF-RTFDDA

    NASA Astrophysics Data System (ADS)

    Wang, Haoliang; Liu, Yubao; Cheng, William Y. Y.; Zhao, Tianliang; Xu, Mei; Liu, Yuewei; Shen, Si; Calhoun, Kristin M.; Fierro, Alexandre O.

    2017-11-01

    In this study, a lightning data assimilation (LDA) scheme was developed and implemented in the National Center for Atmospheric Research Weather Research and Forecasting-Real-Time Four-Dimensional Data Assimilation system. In this LDA method, graupel mixing ratio (qg) is retrieved from observed total lightning. To retrieve qg on model grid boxes, column-integrated graupel mass is first calculated using an observation-based linear formula between graupel mass and total lightning rate. Then the graupel mass is distributed vertically according to the empirical qg vertical profiles constructed from model simulations. Finally, a horizontal spread method is utilized to consider the existence of graupel in the adjacent regions of the lightning initiation locations. Based on the retrieved qg fields, latent heat is adjusted to account for the latent heat releases associated with the formation of the retrieved graupel and to promote convection at the observed lightning locations, which is conceptually similar to the method developed by Fierro et al. Three severe convection cases were studied to evaluate the LDA scheme for short-term (0-6 h) lightning and precipitation forecasts. The simulation results demonstrated that the LDA was effective in improving the short-term lightning and precipitation forecasts by improving the model simulation of the qg fields, updrafts, cold pool, and front locations. The improvements were most notable in the first 2 h, indicating a highly desired benefit of the LDA in lightning and convective precipitation nowcasting (0-2 h) applications.

  11. Modulation of UK lightning and the atmospheric electric circuit by heliospheric magnetic field polarity

    NASA Astrophysics Data System (ADS)

    Owens, Mathew; Scott, Chris; Lockwood, Mike; Barnard, Luke; Harrison, Giles; Nicoll, Keri; Watt, Clare; Bennett, Alec

    2015-04-01

    Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40 to 60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.

  12. The induced electric field due to a current transient

    NASA Astrophysics Data System (ADS)

    Beck, Y.; Braunstein, A.; Frankental, S.

    2007-05-01

    Calculations and measurements of the electric fields, induced by a lightning strike, are important for understanding the phenomenon and developing effective protection systems. In this paper, a novel approach to the calculation of the electric fields due to lightning strikes, using a relativistic approach, is presented. This approach is based on a known current wave-pair model, representing the lightning current wave. The model presented is one that describes the lightning current wave, either at the first stage of the descending charge wave from the cloud or at the later stage of the return stroke. The electric fields computed are cylindrically symmetric. A simplified method for the calculation of the electric field is achieved by using special relativity theory and relativistic considerations. The proposed approach, described in this paper, is based on simple expressions (by applying Coulomb's law) compared with much more complicated partial differential equations based on Maxwell's equations. A straight forward method of calculating the electric field due to a lightning strike, modelled as a negative-positive (NP) wave-pair, is determined by using the special relativity theory in order to calculate the 'velocity field' and relativistic concepts for calculating the 'acceleration field'. These fields are the basic elements required for calculating the total field resulting from the current wave-pair model. Moreover, a modified simpler method using sub models is represented. The sub-models are filaments of either static charges or charges at constant velocity only. Combining these simple sub-models yields the total wave-pair model. The results fully agree with that obtained by solving Maxwell's equations for the discussed problem.

  13. Ted Madden's Network Methods: Applications to the Earth's Schumann Resonances

    NASA Astrophysics Data System (ADS)

    Williams, E. R.; Yu, H.

    2014-12-01

    Ted Madden made clever use of electrical circuit concepts throughout his long career in geophysical research: induced polarization, DC resistivity, magnetotellurics, Schumann resonances, the transport properties of rocks and even elasticity and the brittle failure of stressed rocks. The general methods on network analogies were presented in a terse monograph (Madden, 1972) which came to be called "The Grey Peril" by his students, named more for the challenge of deciphering the material as for the color of its cover. This talk will focus on Ted's first major use of the transmission line analogy in treating the Earth's Schumann resonances. This approach in Madden and Thompson (1965) provided a greatly simplified two-dimensional treatment of an electromagnetic problem with a notable three-dimensional structure. This skillful treatment that included the role of the Earth's magnetic field also led to predictions that the Schumann resonance energy would leak into space, predictions that have been verified nearly 50 years later in satellite observations. An extension of the network analogy by Nelson (1967) using Green's function methods provides a means to treat the inverse problem for the background Schumann resonances for the global lightning activity. The development of Madden's methods will be discussed along with concrete results based on them for the monitoring of global lightning.

  14. In situ measurements of the Runaway Breakdown (RB) on Aragats mountain

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Hovsepyan, G.; Mailyan, B.

    2017-12-01

    Acceleration and multiplication of the cosmic ray electrons by strong electric fields in the thundercloud are well-established phenomena comprising the core of the atmospheric high-energy physics. The majority of experimental data on particle acceleration in the thunderclouds comes from space-born experiments detecting Terrestrial Gamma flashes (TGFs) and from networks of particle detectors located on the earth's surface observing Thunderstorm Ground Enhancements (TGEs). Models for explaining both TGF and TGE are based on the concept of a Runaway Breakdown (RB) introduced by A. Gurevich. Prove of these models requires registration of the electromagnetic avalanches developing in the thundercloud and reaching the earth's surface. Unfortunately due to high location of cloud and fast attenuation of electrons in the atmosphere the registration of such an avalanches are very rare. On Aragats mountain in Armenia, where the cloud location is very low we observe several TGE events with sizable electron contribution. We present direct measurements of such an avalanches lasting less than a microsecond; hundreds of such avalanches comprise a TGE lasting few minutes. We recovered as well the differential energy spectra of electron and gamma ray content of avalanches. The abrupt termination of the particle flux by nearby lightning indicates that RB process precedes (initiates) the lightning flash.

  15. Nowcasting and forecasting of lightning activity: the Talos project.

    NASA Astrophysics Data System (ADS)

    Lagouvardos, Kostas; Kotroni, Vassiliki; Kazadzis, Stelios; Giannaros, Theodore; Karagiannidis, Athanassios; Galanaki, Elissavet; Proestakis, Emmanouil

    2015-04-01

    Thunder And Lightning Observing System (TALOS) is a research program funded by the Greek Ministry of Education with the aim to promote excellence in the field of lightning meteorology. The study focuses on exploring the real-time observations provided by the ZEUS lightning detection system, operated by the National Observatory of Athens since 2005, as well as the 10-year long database of the same system. More precisely the main research issues explored are: - lightning climatology over the Mediterranean focusing on lightning spatial and temporal distribution, on the relation of lightning with topographical features and instability and on the importance of aerosols in lightning initiation and enhancement. - nowcasting of lightning activity over Greece, with emphasis on the operational aspects of this endeavour. The nowcasting tool is based on the use of lightning data complemented by high-time resolution METEOSAT imagery. - forecasting of lightning activity over Greece based on the use of WRF numerical weather prediction model. - assimilation of lightning with the aim to improve the model precipitation forecast skill. In the frame of this presentation the main findings of each of the aforementioned issues are highlighted.

  16. Case Report: Mass Casualty Lightning Strike at Ranger Training Camp.

    PubMed

    Thompson, Shannon N; Wilson, Zachary W; Cole, Christopher B; Kennedy, Andrew R; Aycock, Ryan D

    2017-05-01

    Although lightning strikes are a rare occurrence, their significance cannot be ignored given military operations in the field during all types of weather. With proper medical management, patients with lightning injuries can return to duty. Information for this case report comes from eyewitness account at the 6th Ranger Training Battalion and from review of physician documentation from the 96th Medical Group, Eglin Air Force Base, Florida. A lightning strike injured 44 Ranger School participants during a training exercise on August 12, 2015, at Camp Rudder, Florida. These patients were triaged in the field and transported to emergency department of Eglin Air Force Base. Of the 44 casualties, 20 were admitted. All were returned to duty the following day. One patient had cardiac arrest. This patient, along with two others, was admitted to the intensive care unit. Seventeen other patients were admitted for observation for rhabdomyolysis and/or cardiac arrhythmias. One patient was admitted with suspected acute kidney injury indicated by an elevated creatinine. All patients, including those admitted to the intensive care unit, were released on the day following the lightning strike without restrictions and were allowed to return to duty with increased medical monitoring. This case report highlights the need for proper triage and recognition of lightning strike injury, coordination of care between field operations and emergency department personnel, and close follow-up for patients presenting with lightning injury. Symptoms, physical exam, and laboratory findings from rigorous training can be difficult to distinguish from those resulting from lightning injury. Secondary injuries resulting from blunt trauma from falls may have been prevented by the use of the lightning strike posture. Further analysis of procedures and standard operating protocols to mitigate risk during thunderstorms may be required to prevent lightning's effects on large groups of military personnel. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  17. First and subsequent return stroke properties of cloud-to-ground lightning

    NASA Technical Reports Server (NTRS)

    Namasivayam, S.; Lundquist, Stig

    1991-01-01

    Lightning properties obtained by a network of magnetic direction finders and by electric field measurements for distances from 50 to 500 km are compared for three summer thunderstorms in Sweden. The data from direct field recordings indicate 31, 17, and 26 pcts. of negative subsequent return strokes with peak current (as inferred from the peak electric field) higher than the first. Electric fields from first strokes are compared with normalized amplitudes registered by the magnetic direction finding system. The efficiency of detection by the magnetic direction finding system is discussed in terms of the percentage of lightning flashes observed by electric field measurements that are not localized. Statistics of the number of strokes per flash and the interstroke time intervals are presented.

  18. Theory of the Motion of Ball Lightning

    NASA Astrophysics Data System (ADS)

    Handel, Peter

    2008-04-01

    The Maser-Soliton Theory of BL predicts the dynamics of each of the harmonic waves in the wave packet that feeds and in fact defines the Langmuir plasma soliton that is observed as BL. The frequencies in the wave packet are in a narrow window f that corresponds in the case of open air BL to the diameter of the area in which the damage caused by the final explosion of the BL is observed. This is usually of the order of δx=30 m roughly, in rms. The corresponding wave vector interval is δk=(1/2)(1/30m)=0.017/m in rms. At the same time, k is of the order of 6/m, yielding k/δk=360. This pronounced line-narrowing is obtained due to the large gain of the atmospheric maser when it generates the Kapitsa standing wave. Phase differences between the waves that make up the electromagnetic field that couples with the electrostatic field of the soliton are determined by the frequency dependence of gain and dissipation. They are influenced less by the motion of the air, than by the maser dynamics and by the boundary conditions shaping the electromagnetic field, i.e. the individual photonic wave-packet. The paper presents the equations that determine the phase dynamics and therefore also the observed motion of BL. A similar phase dynamics is expected to be applicable to the special case of UFO motions.

  19. 11th International Conference on Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Christian, H. J. (Compiler)

    1999-01-01

    This document contains the proceedings from the 11th International Conference on Atmospheric Electricity (ICAE 99), held June 7-11, 1999. This conference was attended by scientists and researchers from around the world. The subjects covered included natural and artificially initiated lightning, lightning in the middle and upper atmosphere (sprites and jets), lightning protection and safety, lightning detection techniques (ground, airborne, and space-based), storm physics, electric fields near and within thunderstorms, storm electrification, atmospheric ions and chemistry, shumann resonances, satellite observations of lightning, global electrical processes, fair weather electricity, and instrumentation.

  20. Radio Frequency Signals in Jupiter's Atmosphere

    PubMed

    Lanzerotti; Rinnert; Dehmel; Gliem; Krider; Uman; Bach

    1996-05-10

    During the Galileo probe's descent through Jupiter's atmosphere, under the ionosphere, the lightning and radio emission detector measured radio frequency signals at levels significantly above the probe's electromagnetic noise. The signal strengths at 3 and 15 kilohertz were relatively large at the beginning of the descent, decreased with depth to a pressure level of about 5 bars, and then increased slowly until the end of the mission. The 15-kilohertz signals show arrival direction anisotropies. Measurements of radio frequency wave forms show that the probe passed through an atmospheric region that did not support lightning within at least 100 kilometers and more likely a few thousand kilometers of the descent trajectory. The apparent opacity of the jovian atmosphere increases sharply at pressures greater than about 4 bars.

  1. Electro-Optic Lighting Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewicz, Richard J.

    1999-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate electro-optic crystal that is attached in series to a flat-plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center in northern Alabama.

  2. Lightning protection: challenges, solutions and questionable steps in the 21st century

    NASA Astrophysics Data System (ADS)

    Berta, István

    2011-06-01

    Besides the special primary lightning protection of extremely high towers, huge office and governmental buildings, large industrial plants and resident parks most of the challenges were connected to the secondary lightning protection of sensitive devices in Information and Communication Technology. The 70 year history of Budapest School of Lightning Protection plays an important role in the research and education of lightning and development of lightning protection. Among results and solutions the Rolling Sphere designing method (RS) and the Probability Modulated Attraction Space (PMAS) theory are detailed. As a new field Preventive Lightning Protection (PLP) has been introduced. The PLP method means the use of special preventive actions only for the duration of the thunderstorm. Recently several non-conventional lightning protection techniques have appeared as competitors of the air termination systems formed of conventional Franklin rods. The questionable steps, non-conventional lightning protection systems reported in the literature are the radioactive lightning rods, Early Streamer Emission (ESE) rods and Dissipation Arrays (sometimes called Charge Transfer Systems).

  3. RSRM top hat cover simulator lightning test, volume 2. Appendix A: Resistance measurements. Appendix B: Lightning test data plots

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Resistance measurements are given in graphical for when a simulated lightning discharge strikes on an exposed top hat cover simulator. The test sequence was to measure the electric and magnetic fields induced inside a redesigned solid rocket motor case.

  4. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: II. The formation of 'lightnings'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Istomin, Ya. N., E-mail: istomin@lpi.ru; Sob'yanin, D. N., E-mail: sobyanin@lpi.ru

    2011-10-15

    The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning-a lengthening and simultaneously expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number ofmore » electron-positron pairs produced in the lightning in its lifetime reaches 10{sup 28}. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).« less

  5. Calibration tests on magnetic tape lightning current detectors

    NASA Technical Reports Server (NTRS)

    Crouch, K. E.

    1980-01-01

    The low cost, passive, peak lightning current detector (LCD) invented at the NASA/Kennedy Space Center, uses magnetic audio recording tape to sense the magnitude of the peak magnetic field around a conductor carrying lightning currents. Test results show that the length of audio tape erased was linearly related to the peak simulated lightning currents in a round conductor. Accuracies of + or - 10% were shown for measurements made using a stopwatch readout technique to determine the amount of tape erased by the lightning current. The stopwatch technique is a simple, low cost means of obtaining LCD readouts and can be used in the field to obtain immediate results. Where more accurate data are desired, the tape is played and the output recorded on a strip chart, oscilloscope, or some other means so that measurements can be made on that recording. Conductor dimensions, tape holder dimensions, and tape formulation must also be considered to obtain a more accurate result. If the shape of the conductor is other than circular (i.e., angle, channel, H-beam), an analysis of the magnetic field is required to use an LCD, especially at low current levels.

  6. Lightning spectra at 100,000 fps

    NASA Astrophysics Data System (ADS)

    McHarg, M. G.; Harley, J.; Haaland, R. K.; Edens, H. E.; Stenbaek-Nielsen, H.

    2016-12-01

    A fundamental understanding of lightning can be inferred from the spectral emissions resulting from the leader and return stroke channel. We examine an event recorded at 00:58:07 on 19 July 2015 at Langmuir Laboratory. We recorded lightning spectra using a 100 line per mm grating in front of a Phantom V2010 camera with an 85mm Nikon lens recording at 100,000 frames per second. Coarse resolution spectra (approximately 5nm resolution) are produced from approximately 400 nm to 800 nm for each frame. Electric field data from the Langmuir Electric Field Array for the 03:19:19 event show 10 V/m changes in the electric field associated with multiple return strokes visible in the spectral data. We used the spectral data to compare temperatures at the top, middle and bottom of the lightning channel. Lightning Mapping Array data at Langmuir for the 00:58:07 event show a complex flash extending 10 km in the East-West plane and 6 km in the North-South plane. The imagery data imply that this is a bolt-from-the-blue event.

  7. First Ground-Based Observation of Sprites Over Southern Africa and Estimation of Their Physical and Optical Characteristics

    NASA Astrophysics Data System (ADS)

    Nnadih, O.; Martinez, P.; Kosch, M.; Lotz, S.; Fullekrug, M.

    2016-12-01

    We present the first ground-based observations of sprites over convective thunderstorms in southern Africa. The observations, acquired during the austral summer of 2015/16. show sprites with dendritic, carrot, angel and jellyfish-like shapes. The sprite locations are compared with lightning locations and peak amplitudes determined from the lightning detection network operated by the South African Weather Service, and also with the lightning locations reported by the World Wide Lightning Location Network (WLLN) and Low Frequency radio waveforms of the electric field strength recorded in the conjugate hemisphere in South-West England. The charge moment of the lightning discharges causing sprites is inferred from Extremely Low Frequency magnetic field measurements recorded at remote distances. These measurements reveal that a number of the sprites that we observed were triggered below and above the charge moment threshold for sprite production.

  8. Automated Identification of Initial Storm Electrification and End-of-Storm Electrification Using Electric Field Mill Sensors

    NASA Technical Reports Server (NTRS)

    Maier, Launa M.; Huddleston, Lisa L.

    2017-01-01

    Kennedy Space Center (KSC) operations are located in a region which experiences one of the highest lightning densities across the United States. As a result, on average, KSC loses almost 30 minutes of operational availability each day for lightning sensitive activities. KSC is investigating using existing instrumentation and automated algorithms to improve the timeliness and accuracy of lightning warnings. Additionally, the automation routines will be warning on a grid to minimize under-warnings associated with not being located in the center of the warning area and over-warnings associated with encompassing too large an area. This study discusses utilization of electric field mill data to provide improved warning times. Specifically, this paper will demonstrate improved performance of an enveloping algorithm of the electric field mill data as compared with the electric field zero crossing to identify initial storm electrification. End-of-Storm-Oscillation (EOSO) identification algorithms will also be analyzed to identify performance improvement, if any, when compared with 30 minutes after the last lightning flash.

  9. MUSIC for localization of thunderstorm cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, J.C.; Lewis, P.S.; Rynne, T.M.

    1993-12-31

    Lightning represents an event detectable optically, electrically, and acoustically, and several systems are already in place to monitor such activity. Unfortunately, such detection of lightning can occur too late, since operations need to be protected in advance of the first lightning strike. Additionally, the bolt itself can traverse several kilometers before striking the ground, leaving a large region of uncertainty as to the center of the storm and its possible strike regions. NASA Kennedy Space Center has in place an array of electric field mills that monitor the (effectively) DC electric field. Prior to the first lightning strike, the surfacemore » electric fields rise as the storm generator within a thundercloud begins charging. Extending methods we developed for an analogous source localization problem in mangnetoencephalography, we present Cramer-Rao lower bounds and MUSIC scans for fitting a point-charge source model to the electric field mill data. Such techniques can allow for the identification and localization of charge centers in cloud structures.« less

  10. DEVELOPMENT OF A METHOD FOR THE OBSERVATION OF LIGHTNING IN PROTOPLANETARY DISKS USING ION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muranushi, Takayuki; Akiyama, Eiji; Inutsuka, Shu-ichiro

    2015-12-20

    In this paper, we propose observational methods for detecting lightning in protoplanetary disks. We do so by calculating the critical electric field strength in the lightning matrix gas (LMG), the parts of the disk where the electric field is strong enough to cause lightning. That electric field accelerates multiple positive ion species to characteristic terminal velocities. In this paper, we present three distinct discharge models with corresponding critical electric fields. We simulate the position–velocity diagrams and the integrated emission maps for the models. We calculate the measure-of-sensitivity values for detection of the models and for distinguishing between the models. Atmore » the distance of TW Hya (54 pc), LMG that occupies 2π in azimuth and has 25 AU < r < 50 AU is detectable at 1200σ to 4000σ. The lower limits of the radii of 5σ-detectable LMG clumps are between 1.6 AU and 5.3 AU, depending on the models.« less

  11. Automated Studies of Continuing Current in Lightning Flashes

    NASA Astrophysics Data System (ADS)

    Martinez-Claros, Jose

    Continuing current (CC) is a continuous luminosity in the lightning channel that lasts longer than 10 ms following a lightning return stroke to ground. Lightning flashes following CC are associated with direct damage to power lines and are thought to be responsible for causing lightning-induced forest fires. The development of an algorithm that automates continuing current detection by combining NLDN (National Lightning Detection Network) and LEFA (Langmuir Electric Field Array) datasets for CG flashes will be discussed. The algorithm was applied to thousands of cloud-to-ground (CG) flashes within 40 km of Langmuir Lab, New Mexico measured during the 2013 monsoon season. It counts the number of flashes in a single minute of data and the number of return strokes of an individual lightning flash; records the time and location of each return stroke; performs peak analysis on E-field data, and uses the slope of interstroke interval (ISI) E-field data fits to recognize whether continuing current (CC) exists within the interval. Following CC detection, duration and magnitude are measured. The longest observed C in 5588 flashes was 631 ms. The performance of the algorithm (vs. human judgement) was checked on 100 flashes. At best, the reported algorithm is "correct" 80% of the time, where correct means that multiple stations agree with each other and with a human on both the presence and duration of CC. Of the 100 flashes that were validated against human judgement, 62% were hybrid. Automated analysis detects the first but misses the second return stroke in many cases where the second return stroke is followed by long CC. This problem is also present in human interpretation of field change records.

  12. Database Design for the Evaluation of On-shore and Off-Shore Storm Characteristics over East Central Florida

    NASA Technical Reports Server (NTRS)

    Simpson, Amy A.; Wilson, Jennifer G.; Brown, Robert G.

    2015-01-01

    Data from multiple sources is needed to investigate lightning characteristics over differing terrain (on-shore vs. off-shore) by comparing natural cloud-to-ground lightning behavior differences depending on the characteristics of attachment mediums. The KSC Lightning Research Database (KLRD) was created to reduce manual data entry time and aid research by combining information from various data sources into a single record for each unique lightning event of interest. The KLRD uses automatic data handling functions to import data from a lightning detection network and identify and record lighting events of interest. Additional automatic functions import data from the NASA Buoy 41009 (located approximately 20 miles off the coast) and the KSC Electric Field Mill network, then match these electric field mill values to the corresponding lightning events. The KLRD calculates distances between each lightning event and the various electric field mills, aids in identifying the location type for each stroke (i.e., on-shore vs. off-shore, etc.), provides statistics on the number of strokes per flash, and produces customizable reports for quick retrieval and logical display of data. Data from February 2014 to date covers 48 unique storm dates with 2295 flashes containing 5700 strokes, of which 2612 are off-shore and 1003 are on-shore. The number of strokes per flash ranges from 1 to 22. The ratio of single to subsequent stroke flashes is 1.29 for off-shore strokes and 2.19 for on-shore strokes.

  13. A leader-return-stroke consistent macroscopic model for calculations of return stroke current and its optical and electromagnetic emissions

    NASA Astrophysics Data System (ADS)

    Cai, Shuyao; Chen, Mingli; Du, Yaping; Qin, Zilong

    2017-08-01

    A downward lightning flash usually starts with a downward leader and an upward connecting leader followed by an upward return stroke. It is the preceding leader that governs the following return stroke property. Besides, the return stroke property evolves with height and time. These two aspects, however, are not well addressed in most existing return stroke models. In this paper, we present a leader-return stroke consistent model based on the time domain electric field integral equation, which is a growth and modification of Kumar's macroscopic model. The model is further extended to simulate the optical and electromagnetic emissions of a return stroke by introducing a set of equations relating the return stroke current and conductance to the optical and electromagnetic emissions. With a presumed leader initiation potential, the model can then simulate the temporal and spatial evolution of the current, charge transfer, channel size, and conductance of the return stroke, furthermore the optical and electromagnetic emissions. The model is tested with different leader initiation potentials ranging from -10 to -140 MV, resulting in different return stroke current peaks ranging from 2.6 to 209 kA with different return stroke speed peaks ranging from 0.2 to 0.8 speed of light and different optical power peaks ranging from 4.76 to 248 MW/m. The larger of the leader initiation potential, the larger of the return stroke current and speed. Both the return stroke current and speed attenuate exponentially as it propagates upward. All these results are qualitatively consistent with those reported in the literature.

  14. Ball Lightning–Aerosol Electrochemical Power Source or A Cloud of Batteries

    PubMed Central

    2007-01-01

    Despite numerous attempts, an adequate theoretical and experimental simulation of ball lightning still remains incomplete. According to the model proposed here, the processes of electrochemical oxidation within separate aerosol particles are the basis for this phenomenon, and ball lightning is a cloud of composite nano or submicron particles, where each particle is a spontaneously formed nanobattery which is short-circuited by the surface discharge because it is of such a small size. As free discharge-shorted current loops, aerosol nanobatteries are exposed to a powerful mutual magnetic dipole–dipole attraction. The gaseous products and thermal energy produced by each nanobattery as a result of the intra-particle self-sustaining electrochemical reactions, cause a mutual repulsion of these particles over short distances and prevent their aggregation, while a collectivization of the current loops of separate particles, due to the electric arc overlapping between adjacent particles, weakens their mutual magnetic attraction over short distances. Discharge currents in the range of several amperes to several thousand amperes as well as the pre-explosive mega ampere currents, generated in the reduction–oxidation reactions and distributed between all the aerosol particles, explain both the magnetic attraction between the elements of the ball lightning substance and the impressive electromagnetic effects of ball lightning.

  15. Current Distribution Characteristics of CFRP Panels

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuo

    CFRP (Carbon Fiber Reinforced Plastic) is widely used in the structures of aircrafts, automobiles, wing turbines, and rockets because of its qualities of high mechanical strength, low weight, fatigue resistance, and dimensional stability. However, these structures are often at risk of being struck by lightning. When lightning strikes such structures and lightning current flows through the CFRP, it may be structurally damaged because of the impact of the lightning strike or ignitions between layers. If there are electronic systems near the CFRP, they may break down or malfunction because of the resulting electromagnetic disturbance. In fact, the generation mechanisms of these breakdowns and malfunctions depend on the current distribution in the CFRP. Hence, it is critical to clarify the current distribution in various kinds of CFRPs. In this study, two kinds of CFRP panels—one composed of quasi-isotropic lamination layers and the other composed of 0°/90° lamination layers of unidirectional CFRP prepregs—are used to investigate the dependence of current distribution on the nature of the lamination layers. The current distribution measurements and simulations for CFRP panels are compared with those for a same-sized aluminum plate. The knowledge of these current distribution characteristics would be very useful for designing the CFRP structures of aircrafts, automobiles, wing turbines, rockets, etc. in the future.

  16. NASA Shuttle Lightning Research: Observations of Nocturnal Thunderstorms and Lightning Displays as Seen During Recent Space Shuttle Missions

    NASA Technical Reports Server (NTRS)

    Vaughan, Otha H., Jr.

    1994-01-01

    A number of interesting lightning events have been observed using the low light level TV camera of the space shuttle during nighttime observations of thunderstorms near the limb of the Earth. Some of the vertical type lightning events that have been observed will be presented. Using TV cameras for observing lightning near the Earth's limb allows one to determine the location of the lightning and other characteristics by using the star field data and the shuttle's orbital position to reconstruct the geometry of the scene being viewed by the shuttle's TV cameras which are located in the payload bay of the shuttle.

  17. Voltages induced on a power distribution line by overhead cloud lightning

    NASA Technical Reports Server (NTRS)

    Yacoub, Ziad; Rubinstein, Marcos; Uman, Martin A.; Thomson, Ewen M.; Medelius, Pedro J.

    1991-01-01

    Voltages induced by overhead cloud lightning on a 448 m open circuited power distribution line and the corresponding north-south component of the lightning magnetic field were simultaneously measured at the NASA Kennedy Space Center during the summer of 1986. The incident electric field was calculated from the measured magnetic field. The electric field was then used as an input to the computer program, EMPLIN, that calculated the voltages at the two ends of the power line. EMPLIN models the frequency domain field/power coupling theory found, for example, in Ianoz et al. The direction of the source, which is also one of the inputs to EMPLIN, was crudely determined from a three station time delay technique. The authors found reasonably good agreement between calculated and measured waveforms.

  18. Rocket-triggered lightning strikes and forest fire ignition

    NASA Technical Reports Server (NTRS)

    Fenner, James

    1990-01-01

    The following are presented: (1) background information on the rocket-triggered lightning project an Kennedy Space Center (KSC); (2) a summary of the forecasting problem; (3) the facilities and equipment available for undertaking field experiments at KSC; (4) previous research activity performed; (5) a description of the atmospheric science field laboratory near Mosquito Lagoon on the KSC complex; (6) methods of data acquisition; and (7) present results. New sources of data for the 1990 field experiment include measuring the electric field in the lower few thousand feet of the atmosphere by suspending field measuring devices below a tethered balloon, and measuring the electric field intensity in clouds and in the atmosphere with aircraft. The latter program began in July of 1990. Also, future prospects for both triggered lightning and forest fire research at KSC are listed.

  19. Flash Detection Efficiencies of Long Range Lightning Detection Networks During GRIP

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Bateman, Monte G.; Blakeslee, Richard J.

    2012-01-01

    We flew our Lightning Instrument Package (LIP) on the NASA Global Hawk as a part of the Genesis and Rapid Intensification Processes (GRIP) field program. The GRIP program was a NASA Earth science field experiment during the months of August and September, 2010. During the program, the LIP detected lighting from 48 of the 213 of the storms overflown by the Global Hawk. The time and location of tagged LIP flashes can be used as a "ground truth" dataset for checking the detection efficiency of the various long or extended range ground-based lightning detection systems available during the GRIP program. The systems analyzed included Vaisala Long Range (LR), Vaisala GLD360, the World Wide Lightning Location Network (WWLLN), and the Earth Networks Total Lightning Network (ENTLN). The long term goal of our research is to help understand the advantages and limitations of these systems so that we can utilize them for both proxy data applications and cross sensor validation of the GOES-R Geostationary Lightning Mapper (GLM) sensor when it is launched in the 2015 timeframe.

  20. Lightning Behavior and its Dependence on Storm Kinematic and Precipitation Processes in Northern Alabama

    NASA Technical Reports Server (NTRS)

    Johnson, Elsie V.; Petersen, W. A,

    2009-01-01

    Numerous case studies and recent modeling studies have found that various metrics of updraft intensity appear to be reasonably well correlated to lightning production in thunderstorms, particularly severe thunderstorms. Indeed, the relationship between updraft and lightning flash rate is hypothesized to be the physical connection between a lightning "jump" signature and manifestations of severe weather such as tornadic activity. This study further examines this connection using a combination of dual Doppler wind retrievals made with the UAH ARMOR dual polarimetric and KHTX WSR 88D Doppler radar pair, together with northern Alabama Lightning Mapping Array (LMA) data. The dual Doppler data were used to construct three dimensional wind fields and the retrieved vertical velocity fields were subsequently compared to collocated total lightning flash rates observed by the LMA. Particular attention was paid to the timing of updraft pulses relative to changes in the flash rate, with the goal of assessing impacts on warning decision lead time. Results from the analysis of severe and non severe thunderstorms in Northern Alabama will be presented including the EF 4 tornado producing supercell on 6 February 2008.

  1. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: II. The formation of "lightnings"

    NASA Astrophysics Data System (ADS)

    Istomin, Ya. N.; Sob'yanin, D. N.

    2011-10-01

    The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning—a lengthening and simultaneously expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number of electron-positron pairs produced in the lightning in its lifetime reaches 1028. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).

  2. Analysis on the spectra and synchronous radiated electric field observation of cloud-to-ground lightning discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cen Jianyong; Yuan Ping; Qu Haiyan

    2011-11-15

    According to the spectra of cloud-to-ground (CG) lightning discharge plasma captured by a slit-less spectrograph and the information of synchronous radiated electric field, the temperatures, the total intensity of spectra, the peak value of current and its action integral of discharge plasma channel have been calculated. Furthermore, the correlativity of these parameters has been analyzed for the first time. The results indicate that the total intensity of spectra has a positive correlation to the discharge current in different strokes of one CG lightning, and the temperature of discharge plasma is direct proportion to the action integral in the first returnmore » strokes of different lightning.« less

  3. Lightning mapper sensor design study

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Poon, C. W.; Shelton, J. C.; Laverty, N. P.; Cook, R. D.

    1983-01-01

    World-wide continuous measurement of lightning location, intensity, and time during both day and night is to be provided by the Lightning Mapper (LITMAP) instrument. A technology assessment to determine if the LITMAP requirements can be met using existing sensor and electronic technologies is presented. The baseline concept discussed in this report is a compromise among a number of opposing requirements (e.g., ground resolution versus array size; large field of view versus narrow bandpass filter). The concept provides coverage for more than 80 percent of the lightning events as based on recent above-cloud NASA/U2 lightning measurements.

  4. Lightning characterization through acoustic and electromagnetic measurements recorded during the HyMeX SOP1 and simulation of the acoustic nonlinear propagation in realistic thunderstorm meteorological conditions

    NASA Astrophysics Data System (ADS)

    Gallin, L.; Coulouvrat, F.; Farges, T.; Marchiano, R.; Defer, E.; Rison, W.; Schulz, W.; Nuret, M.

    2013-12-01

    The goal is to study the transformation of the thunder (amplitude, spectrum) during its travel from the lightning channel towards a detector (microphone, microbarometer), considering propagation distances of less than 50 km and complex local meteorological properties. Inside the European HyMeX project, the SOP1 campaign (2012) took place from September 2012 to November 2012 in South of France. An acoustic station (center: 4.39° E, 44.08° N) composed of a microphone array placed inside a microbarometer array was installed by CEA near city of Uzès. It was located in the center of an LMA network coming with two slow antennas. This network was deployed in France for the first time by the New Mexico Tech and LERMA laboratory. The detections from the European lightning location system EUCLID complete this dataset. During the SOP1 period several storms passed over the station. The post-processings of the records point out days with interesting thunderstorms. Especially during the 26th of October 2012 in the evening (around 8 pm) a thunderstorm passed just over the acoustic station. Not too many lightning strokes are detected by EUCLID, the corresponding flashes are then well characterized by the LMA network. Slow antennas present good electric field measurements. The acoustic records have excellent quality. We present for some selected flashes a comparative study of the different measurements (LMA, slow antenna, EUCLID, microphones, microbarometers): focusing on amplitude and spectrum of the thunder waveforms, and on propagation effects due to the meteorological conditions. To quantify the impact of these meteorological conditions on the propagating thunder (from the lightning sources to the acoustic array), a code named Flhoward is used [Dagrau et al., J. Acoust. Soc. Am., 130, 20-32, 2011][Coulouvrat, Wave Motion, 49, 50--63, 2012]. It is designed to simulate the nonlinear propagation of acoustic shock waves through a realistic atmosphere model (including temperature gradients, rigid ground, and wind flows). The meteorological conditions are extracted from the data calculated by Météo-France weather forecast model AROME-WMED for the chosen days. Some cases where numerical simulation helps to understand the observations are presented.

  5. Statistical patterns in the location of natural lightning

    NASA Astrophysics Data System (ADS)

    Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Inan, U. S.

    2013-01-01

    Lightning discharges are nature's way of neutralizing the electrical buildup in thunderclouds. Thus, if an individual discharge destroys a substantial fraction of the cloud charge, the probability of a subsequent flash is reduced until the cloud charge separation rebuilds. The temporal pattern of lightning activity in a localized region may thus inherently be a proxy measure of the corresponding timescales for charge separation and electric field buildup processes. We present a statistical technique to bring out this effect (as well as the subsequent recovery) using lightning geo-location data, in this case with data from the National Lightning Detection Network (NLDN) and from the GLD360 Network. We use this statistical method to show that a lightning flash can remove an appreciable fraction of the built up charge, affecting the neighboring lightning activity for tens of seconds within a ˜ 10 km radius. We find that our results correlate with timescales of electric field buildup in storms and suggest that the proposed statistical tool could be used to study the electrification of storms on a global scale. We find that this flash suppression effect is a strong function of flash type, flash polarity, cloud-to-ground flash multiplicity, the geographic location of lightning, and is proportional to NLDN model-derived peak stroke current. We characterize the spatial and temporal extent of the suppression effect as a function of these parameters and discuss various applications of our findings.

  6. Investigations in thunderstorm energetics using satellite instrumentation and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Brunner, K. N.; Bitzer, P. M.

    2017-12-01

    The electrical energy dissipated by lightning is a fundamental question in lightning physics and may be used in severe weather applications. However, the electrical energy, flash area/extent and spectral energy density (radiance) are all influenced by the geometry of the lightning channel. We present details of a Monte Carlo based model simulating the optical emission from lightning and compare with observations. Using time-of-arrival techniques and the electric field change measurements from the Huntsville Alabama Marx Meter Array (HAMMA), the 4D lightning channel is reconstructed. The located sources and lightning channel emit optical emission, calibrated by the ground based electric field, that scatters until absorbed or a cloud boundary is reached within the model. At cloud top, the simulation is gridded as LIS pixels (events) and contiguous events (groups). The radiance is related via the LIS calibration and the estimated lightning electrical energy is calculated at the LIS/GLM time resolution. Previous Monte Carlo simulations have relied on a simplified lightning channel and scattering medium. This work considers the cloud a stratified medium of graupel/ice and inhomogeneous at flash scale. The impact of cloud inhomogeneity on the scattered optical emission at cloud top and at the time resolution of LIS and GLM are also considered. The simulation results and energy metrics provide an estimation of the electrical energy using GLM and LIS on the International Space Station (ISS-LIS).

  7. Exploring a Physically Based Tool for Lightning Cessation: A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter a.; Carey, Lawrence D.; Deierling, Wiebke

    2010-01-01

    The University of Alabama in Huntsville (UA Huntsville) and NASA's Marshall Space Flight Center are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. The project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UA Huntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. A summary of preliminary results will be presented.

  8. Exploring a Physically Based Tool for Lightning Cessation: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Schultz, Elsie V.; Petersen, Walter A.; Carey, Lawrence D.; Buechler, Dennis E.; Gatlin, Patrick N.

    2010-01-01

    The University of Alabama in Huntsville (UAHuntsville) and NASA s Marshall Space Flight Center are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. The project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. A summary of preliminary results will be presented.

  9. The Case for Using Blunt-Tipped Lightning Rods as Strike Receptors.

    NASA Astrophysics Data System (ADS)

    Moore, C. B.; Aulich, G. D.; Rison, William

    2003-07-01

    Conventional lightning rods used in the United States have sharp tips, a practice derived from Benjamin Franklin's discovery of a means to obtain protection from lightning. However, the virtue of sharp tips for strike reception has never been established. An examination of the relevant physics shows that very strong electric fields are required above the tips of rods in order that they function as strike receptors but that the gradients of the field strength over sharp-tipped rods are so great that, at distances of a few millimeters, the local fields are often too weak for the development of upward-going streamers. In field tests, rods with rounded tips have been found to be better strike receptors than were nearby sharp-tipped rods.

  10. The feasibility of inflight measurement of lightning strike parameters

    NASA Technical Reports Server (NTRS)

    Crouch, K. E.; Plumer, J. A.

    1978-01-01

    The appearance of nonmetallic structural materials and microelectronics in aircraft design has resulted in a need for better knowledge of hazardous environments such as lightning and the effects these environments have on the aircraft. This feasibility study was performed to determine the lightning parameters in the greatest need of clarification and the performance requirements of equipment necessary to sense and record these parameters on an instrumented flight research aircraft. It was found that electric field rate of change, lightning currents, and induced voltages in aircraft wiring are the parameters of greatest importance. Flat-plate electric field sensors and resistive current shunts are proposed for electric field and current sensors, to provide direct measurements of these parameters. Six bit analog-to-digital signal conversion at a 5 nanosecond sampling rate, short-term storage of 85000 bits and long term storage of 5 x 10 to the 7th power bits of electric field, current and induced voltage data on the airplane are proposed, with readout and further analysis to be accomplished on the ground. A NASA F-106B was found to be suitable for use as the research aircraft because it has a minimum number of possible lightning attachment points, space for the necessary instrumentation, and appears to meet operational requirements. Safety considerations are also presented.

  11. Electric Field Measurements During the Genesis and Rapid Intensification Processes (GRIP) Field Program

    NASA Technical Reports Server (NTRS)

    Bateman, Monte G.; Blakeslee, Richard J.; Mach, Douglas M.

    2010-01-01

    During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. American

  12. The comparison of SRs' variation affected by solar events observed in America and in China

    NASA Astrophysics Data System (ADS)

    Yu, H.; Williams, E.

    2017-12-01

    Schumann Resonances(SRs) are the electromagnetic resonance wave propagating in the earth-ionosphere cavity. Its characteristic of propagation are modified by the variation of ionosphere. So SRs can be the tools of monitoring the ionosphere which is often perturbed by solar events, x-ray emission and some other space-weather events (Roldugin et.al., 2004, De et al., 2010; Satori et.al., 2015). In present work, the amplitude and intrinsic frequencies of SRs observed at RID station in America and YSH station in China are compared. The variation of SRs during the solar flare on Feb. 15, 2011 are analyzed. Two-Dimensional Telegraph Equation(TDTE) method is used to simulate the perturbation of ionosphere by solar proton events. From the simulation and observation, the asymmetric construction of ionoshphere which is perturbed by the solar event will affect the amplitudes and frequencies of SRs. Due to the interfere influence of forward and backward propagation of electromagnetic field, the SR amplitude on different station will present different variation. The distance among the lightning source, observer and perturbed area will produce the different variation of amplitude and frequency for different station' SR.

  13. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babich, L. P., E-mail: babich@elph.vniief.ru; Bochkov, E. I.; Kutsyk, I. M.

    2011-05-15

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  14. Lightning electric field measurements which correlate with strikes to the NASA F-106B aircraft, 22 July 1980

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1981-01-01

    Ground-based data collected on lightning monitoring equipment operated by Goddard Space Flight Center at Wallops Island, Virginia, during a storm being monitored by NASA's F-106B, are presented. The slow electric field change data and RF radiation data were collected at the times the lightning monitoring equipment on the aircraft was triggered. The timing of the ground-based events correlate well with events recorded on the aircraft and provide an indication of the type of flash with which the aircraft was involved.

  15. Electro-Optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewica, R. J.

    1998-01-01

    Electric field measurements are fundamental to the study of thunderstorm electrification, thundercloud charge structure, and the determination of the locations and magnitudes of charges deposited by lightning. Continuous field observations can also be used to warn of impending electrical hazards. For example, the USAF Eastern Range (ER) and NASA Kennedy Space Center (KSC) in Florida currently operate a ground-based network of electric field mill sensors to warn against lightning hazards to space vehicle operations/launches. The sensors provide continuous recordings of the ambient field. Others investigators have employed flat-plate electric field antennas to detect changes In the ambient field due to lightning. In each approach, electronic circuitry is used to directly detect and amplify the effects of the ambient field on an exposed metal conductor (antenna plate); in the case of continuous field recordings, the antenna plate is alternately shielded and unshielded by a grounded conductor. In this work effort, an alternate optical method for detecting lightning-caused electric field changes is Introduced. The primary component in the detector is an anisotropic electro-optic crystal of potassium di-hydrogen phosphate (chemically written as KH2PO4 (KDP)). When a voltage Is placed across the electro-optic crystal, the refractive Indices of the crystal change. This change alters the polarization state of a laser light beam that is passed down the crystal optic axis. With suitable application of vertical and horizontal polarizers, a light transmission measurement is related to the applied crystal voltage (which in turn Is related to the lightning caused electric field change). During the past two years, all critical optical components were procured, assembled, and aligned. An optical housing, calibration set-up, and data acquisition system was integrated for breadboard testing. The sensor was deployed at NASA Marshall Space Flight Center (MSFC) in the summer of 1998 to collect storm data. Because solid-state technology is used, future designs of the sensor will be significantly scaled down In physical dimension and weight compared to the present optical breadboard prototype. The use of fiber optics would also provide significant practical improvements.

  16. Flash ionization signature in coherent cyclotron emission from brown dwarfs

    NASA Astrophysics Data System (ADS)

    Vorgul, I.; Helling, Ch.

    2016-05-01

    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  17. Coupling of ELF/ULF energy from lightning and MeV particles to the middle atmosphere, inosphere, and global circuit

    NASA Technical Reports Server (NTRS)

    Hale, Leslie C.

    1994-01-01

    In an attempt to explain numerous atmospheric electrical phenomena, the elements of the global electrical circuit are reexamined. In addition to being a 'quasi-static 'DC' generator' and source of radiated energy at VLF and higher, the thunderstorm is found to be a pulse generator, with most of the external energy contained in ELF and ULF pulse currents to the ionosphere (and Earth). The pulse energy is found to deposit largely in the middle atmosphere above the thunderstorm. The VLF and above components are well understood, as are the ULF components due to the conductivity gradient. However, a previously poorly understood ELF component on the millsecond timescale, or 'slow tail,' contains a large fraction of the electrical energy. This component couples strongly to the ionosphere and also launches a unipolar transverse electromagnetic (TEM) wavelet in the radial Earth-ionosphere transmission line. The increase in charge with distance associated with such wavelets, and their ensemble sum at a point, may explain some large mesospheric 'DC' fields but there are still difficulties explaining other than rare occurrences, except for antipodal reconvergence. These millisecond duration unipolar wavelets also coupled to the ionosphere and may trigger other lightning at a distance. A schema is elucidated by which the charge of MeV particles deposited in the middle atmosphere persists for much longer than the local relaxation time. This also gives rise to unipolar waves of global extent which may explain lower-latitude field perturbations associated with solar/geomagnetic events.

  18. On the controls of deep convection and lightning in the Amazon

    NASA Astrophysics Data System (ADS)

    Albrecht, R. I.; Giangrande, S. E.; Wang, D.; Morales, C. A.; Pereira, R. F. O.; Machado, L.; Silva Dias, M. A. F.

    2017-12-01

    Local observations and remote sensing have been extensively used to unravel cloud distribution and life cycle but yet their representativeness in cloud resolve models (CRMs) and global climate models (GCMs) are still very poor. In addition, the complex cloud-aerosol-precipitation interactions (CAPI), as well as thermodynamics, dynamics and large scale controls on convection have been the focus of many studies in the last two decades but still no final answer has been reached on the overall impacts of these interactions and controls on clouds, especially on deep convection. To understand the environmental and CAPI controls of deep convection, cloud electrification and lightning activity in the pristine region of Amazon basin, in this study we use long term satellite and field campaign measurements to depict the characteristics of deep convection and the relationships between lightning and convective fluxes in this region. Precipitation and lightning activity from the Tropical Rainfall Measuring Mission (TRMM) satellite are combined with estimates of aerosol concentrations and reanalysis data to delineate the overall controls on thunderstorms. A more detailed analysis is obtained studying these controls on the relationship between lightning activity and convective mass fluxes using radar wind profiler and 3D total lightning during GoAmazon 2014/15 field campaign. We find evidences that the large scale conditions control the distribution of the precipitation, with widespread and more frequent mass fluxes of moderate intensity during the wet season, resulting in less vigorous convection and lower lightning activity. Under higher convective available potential energy, lightning is enhanced in polluted and background aerosol conditions. The relationships found in this study can be used in model parameterizations and ensemble evaluations of both lightning activity and lightning NOx from seasonal forecasting to climate projections and in a broader sense to Earth Climate System Modeling.

  19. X-ray Emission from Thunderstorms and Lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, Joseph

    2009-07-08

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdownmore » plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. « less

  20. Fulgurites: a rock magnetic study of mineralogical changes caused by lightning

    NASA Astrophysics Data System (ADS)

    Begnini, G. S.; Tohver, E.; Schmieder, M.

    2013-05-01

    Fulgurites are natural glass samples produced by lightning strikes on rock or soil substrates. Instantaneous electrical discharges of 10-200 kA are typical, and the temperatures produced by lightning strikes exceed 1700C, the melting temperature of quartz. Paleomagnetic observations of lightning strikes typically include high intensity remanent magnetizations with highly-variable to random magnetic directions. Alternating field demagnetization is commonly used to remove the overprinting effects of Lightning Induced Remanent Magnetization (LIRM), indicating low coercivities of the magnetic carriers. We conducted a rock magnetic analysis of 15 specimens of natural fulgurite from South Africa including hysteresis and thermoremanent heating and cooling experiments using a Variable Field Translational Balance. The analysed specimens demonstrate two distinct ranges of Curie temperature: 440-600C and 770-778C, suggesting the presence of both iron oxides (likely Fe-rich magnetite) and a reduced iron alloy, likely kamacite. High temperature, highly reduced assemblages have been reported from petrological observations of fulgurites. Our rock magnetic observations of a metallic iron phase in the fulgurite samples from a terrestrial, surficial environment demonstrates a mineralogical resemblance to differentiated, iron-rich meteorites. We suggest that LIRMs in lightning-struck localities may include a chemical remagnetization associated with lightning-induced electrolysis or reduction of iron oxides.

  1. Lightning location relative to storm structure in a supercell storm and a multicell storm

    NASA Technical Reports Server (NTRS)

    Ray, Peter S.; Macgorman, Donald R.; Rust, W. David; Taylor, William L.; Rasmussen, Lisa Walters

    1987-01-01

    Relationships between lightning location and storm structure are examined for one radar volume scan in each of two mature, severe storms. One of these storms had characteristics of a supercell storm, and the other was a multicell storm. Data were analyzed from dual-Doppler radar and dual-VHF lightning-mapping systems. The distributions of VHF impulse sources were compared with radar reflectivity, vertical air velocity, and their respective gradients. In the supercell storm, lightning tended to occur along streamlines above and down-shear of the updraft and reflectivity cores; VHF impulse sources were most concentrated in reflectivities between 30 and 40 dBZ and were distributed uniformly with respect to updraft speed. In the multicell storm, on the other hand, lightning tended to coincide with the vertical reflectivity and updraft core and with the diverging streamlines near the top of the storm. The results suggest that the location of lightning in these severe storms were most directly associated with the wind field structure relative to updraft and reflectivity cores. Since the magnitude and vertical shear of the environmental wind are fundamental in determining the reflectivity and wind field structure of a storm, it is suggested that these environmental parameters are also fundamental in determining lightning location.

  2. X-ray Emission from Thunderstorms and Lightning

    ScienceCinema

    Dwyer, Joseph [Florida Institute of Technology, Melbourne, Florida, United States

    2017-12-09

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. 

  3. Role of lightning phenomenon over surface O3 and NOx at a semi-arid tropical site Hyderabad, India: inter-comparison with satellite retrievals

    NASA Astrophysics Data System (ADS)

    Venkanna, R.; Nikhil, G. N.; Sinha, P. R.; Siva Rao, T.; Swamy, Y. V.

    2016-08-01

    The influence of lightning over surface-level trace gases was examined for pre-monsoon and monsoon seasons in the year 2012. Lightning events were measured using ground-based electric field monitor (EFM) and space-based lightning imaging sensor (LIS). The results showed that lightning frequency was higher during pre-monsoon period compared to monsoon, which is in good agreement with the satellite retrievals. The increase in concentration of NOx on lightning event led to a subsequent decrease in surface O3 due to the titration reaction. Source apportionment study of SO2/NOx (S/N) and CO/NOx (C/N) ratios and poor correlation of NOx vs CO and NOx vs SO2 on the lightning day confirmed the emission of NOx from dissimilar sources.

  4. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  5. Television image of a large upward electrical discharge above a thunderstorm system

    NASA Technical Reports Server (NTRS)

    Franz, R. C.; Nemzek, R. J.; Winckler, J. R.

    1990-01-01

    A low light-level TV camera is used to obtain an unusual image of luminous electrical discharge over a thunderstorm 250 km from the observation site. The image is presented and the discharge in the image is described. It is suggested that the image is probably due to two localized electric charge concentrations at the cloud tops. The hazard of these discharges for aircraft and rocket launches is examined. Consideration is given to the possibility that these discharges may account for unexplained photometric observations of distant lightning events that show a low rise rate of the luminous pulse and no electromagnetic sferic pulse like that in cloud-to-earth lightning strokes. The photometric events of this type that occurred on September 22-23, 1989 during hurricane Hugo are noted.

  6. Protection of Advanced Electrical Power Systems from Atmospheric Electromagnetic Hazards.

    DTIC Science & Technology

    1981-12-01

    WORDS (Continue on reverse aide if neceeary and Identify by block number) Aircraft Induced Voltages Filters Composite Structures Lightning Transients...transients on the electrical systems of aircraft with metal or composite structures. These transients will be higher than the equipment inherent hardness... composite material in skin and structure. In addition, the advanced electrical power systems used in these aircraft will contain solid state components

  7. An improved method for predicting the lightning performance of high and extra-high-voltage substation shielding

    NASA Astrophysics Data System (ADS)

    Vinh, T.

    1980-08-01

    There is a need for better and more effective lightning protection for transmission and switching substations. In the past, a number of empirical methods were utilized to design systems to protect substations and transmission lines from direct lightning strokes. The need exists for convenient analytical lightning models adequate for engineering usage. In this study, analytical lightning models were developed along with a method for improved analysis of the physical properties of lightning through their use. This method of analysis is based upon the most recent statistical field data. The result is an improved method for predicting the occurrence of sheilding failure and for designing more effective protection for high and extra high voltage substations from direct strokes.

  8. Time Correlations of Lightning Flash Sequences in Thunderstorms Revealed by Fractal Analysis

    NASA Astrophysics Data System (ADS)

    Gou, Xueqiang; Chen, Mingli; Zhang, Guangshu

    2018-01-01

    By using the data of lightning detection and ranging system at the Kennedy Space Center, the temporal fractal and correlation of interevent time series of lightning flash sequences in thunderstorms have been investigated with Allan factor (AF), Fano factor (FF), and detrended fluctuation analysis (DFA) methods. AF, FF, and DFA methods are powerful tools to detect the time-scaling structures and correlations in point processes. Totally 40 thunderstorms with distinguishing features of a single-cell storm and apparent increase and decrease in the total flash rate were selected for the analysis. It is found that the time-scaling exponents for AF (αAF) and FF (αFF) analyses are 1.62 and 0.95 in average, respectively, indicating a strong time correlation of the lightning flash sequences. DFA analysis shows that there is a crossover phenomenon—a crossover timescale (τc) ranging from 54 to 195 s with an average of 114 s. The occurrence of a lightning flash in a thunderstorm behaves randomly at timescales <τc but shows strong time correlation at scales >τc. Physically, these may imply that the establishment of an extensive strong electric field necessary for the occurrence of a lightning flash needs a timescale >τc, which behaves strongly time correlated. But the initiation of a lightning flash within a well-established extensive strong electric field may involve the heterogeneities of the electric field at a timescale <τc, which behave randomly.

  9. A lightning multiple casualty incident in Sequoia and Kings Canyon National Parks.

    PubMed

    Spano, Susanne J; Campagne, Danielle; Stroh, Geoff; Shalit, Marc

    2015-03-01

    Multiple casualty incidents (MCIs) are uncommon in remote wilderness settings. This is a case report of a lightning strike on a Boy Scout troop hiking through Sequoia and Kings Canyon National Parks (SEKI), in which the lightning storm hindered rescue efforts. The purpose of this study was to review the response to a lightning-caused MCI in a wilderness setting, address lightning injury as it relates to field management, and discuss evacuation options in inclement weather incidents occurring in remote locations. An analysis of SEKI search and rescue data and a review of current literature were performed. A lightning strike at 10,600 feet elevation in the Sierra Nevada Mountains affected a party of 5 adults and 7 Boy Scouts (age range 12 to 17 years old). Resources mobilized for the rescue included 5 helicopters, 2 ambulances, 2 hospitals, and 15 field and 14 logistical support personnel. The incident was managed from strike to scene clearance in 4 hours and 20 minutes. There were 2 fatalities, 1 on scene and 1 in the hospital. Storm conditions complicated on-scene communication and evacuation efforts. Exposure to ongoing lightning and a remote wilderness location affected both victims and rescuers in a lightning MCI. Helicopters, the main vehicles of wilderness rescue in SEKI, can be limited by weather, daylight, and terrain. Redundancies in communication systems are vital for episodes of radio failure. Reverse triage should be implemented in lightning injury MCIs. Education of both wilderness travelers and rescuers regarding these issues should be pursued. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  10. Laboratory test methodology for evaluating the effects of electromagnetic disturbances on fault-tolerant control systems

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1989-01-01

    Control systems for advanced aircraft, especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met for adverse as well as nominal operating conditions. Adverse conditions can result from electromagnetic disturbances caused by lightning, high energy radio frequency transmitters, and nuclear electromagnetic pulses. Tools and techniques must be developed to verify the integrity of the control system in adverse operating conditions. The most difficult and illusive perturbations to computer based control systems caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. A methodology is presented for performing upset tests on a multichannel control system and considerations are discussed for the design of upset tests to be conducted in the lab on fault tolerant control systems operating in a closed loop with a simulated plant.

  11. Plasmonic Manipulation of Light for Sensing and Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Sobhani Khakestar, Heidar

    Plasmonics is a successful new field of science and technology that exploits the exclusive optical properties of metallic nanostructures to manipulate and concentrate light at nano-meter length scales. When light hits the surface of gold or silver nanoparticles it can excite collective oscillations of the conduction electrons called surface plasmons. This surface plasmon undergoes two damping processes; it can decay into photon and reemit the plasmon energy as scattered energy or decay into electron-hole pair with the excitation energy equal to the energy of the plasmon resonance, known as absorption. This high energy electron subsequently undergoes into the carrier multiplication and eventually scatters into the electrons with lower energy. We used Finite-Difference Time-Domain (FDTD) and Finite-Element Method (Comsol) to design nanoscale structures to act as nanoantenna for light harvesting and consequently manipulating radiative and absorption properties of them for Sensing and Photovoltaic applications. To manipulate near and far field we designed our structures in a way that the bright and dark plasmon modes overlap and couple to each other. This process is called Fano resonance and introduces a transparency window in the far-field spectra. At the same time it increases the near-field enhancement. We applied the changes in near-field and far-field to SERS (Surface Enhanced Raman Spectroscopy) and LSPR (Localized Surface plasmon Resonance) shift for sensing purposes. We modeled Fano resonances with classical harmonic oscillator and reproduced the same feature with a simple equation of motion. We used this model to replicate scattering spectra from different geometries and explain the cathodoluminescence results obtained from nanoscale gold clusters structure. All of these nanoantenna optical properties and applications are due to the reemission ability of the plasmon energy to the vacuum and confining optical field, but the plasmon energy can decay into a high energy carrier rather than radiation. Photons coupled into metallic nanoantenna excite resonant plasmons, which can decay into energetic, hot electrons injected over a potential barrier at the nanoantenna-semiconductor interface, resulting in a photocurrent. We design a device which the range of its potential applications is extremely diverse. As silicon based detector capable of detecting sub-band gap photons, this device could be used in photovoltaic devices to harvest solar energy. Plasmon generated hot electrons can be used in photocatalytic dissociation of H2 molecules at the room temperature as well. The hot electrons in their higher energy states can populate the antibonding orbital of H2 molecules adsorbed on the metal surface and thus trigger the H2 molecule dissociation. The goal is to demonstrate the high efficiency of metallic photocatalytic systems by detecting the formation of HD molecules from the individual dissociation of two isotopes, H2 and D2. At the end we introduce lightning rod effect in metallic nanostructures and investigated the relation between the geometry properties of micrometer rod antennas and the electromagnetic field enhancement induced due to the lightning rod effect. At long wavelength, metals behave like perfect equipotential conductors and all the field enhancement results from the drop of potentials across the junctions between individual nanoparticles. This phenomenon is called lightning rod effect. By designing proper geometry we were able to utilize this effect to obtain enough electromagnetic enhancements in MIR region of spectrum to observe SEIRA signals from few hemoglobin molecules. Our simulation shows that the field enhancement obtained from this antenna does not depend sensitively on wavelength which is another advantage for SEIRA spectroscopy. We offered an analytical model to explore the coupling between the hemoglobin molecules and the Efield. We used this model to study the location effect of the molecule on the reflection signal. This technique allows us to detect the vibrational mode of molecules such as Hemoglobin in the real time and study their changes when the molecules are exposed to different environmental circumstances.

  12. Development and application of linear and nonlinear methods for interpretation of lightning strikes to in-flight aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence; Perala, Rodney A.; Easterbrook, Calvin C.; Parker, Steven L.

    1986-01-01

    Since 1980, NASA has been collecting direct strike lightning data by flying an instrumented F-106B aircraft into thunderstorms. The continuing effort to interpret the measured data is reported here. Both linear and nonlinear finite difference modeling techniques are applied to the problem of lightning triggered by an aircraft in a thunderstorm. Five different aircraft are analyzed to determine the effect of aircraft size and shape on lightning triggering. The effect of lightning channel impedance on aircraft response is investigated. The particle environment in thunderstorms and electric field enhancements by typical ice particles is also investigated.

  13. Measurements of induced voltages and currents in a distribution power line and associated atmospheric parameters

    NASA Technical Reports Server (NTRS)

    Santiago-Perez, Julio

    1988-01-01

    The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.

  14. Measurements of induced voltages and currents in a distribution power line and associated atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Santiago-Perez, Julio

    1988-10-01

    The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.

  15. Radiation from lightning return strokes over a finitely conducting earth

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Gesell, L.; Kao, Michael

    1986-01-01

    The effects of the conductivity of the earth on radiation from lightning return strokes are examined theoretically using a piecewise linear transmission line model for the return stroke. First, calculations are made of the electric field radiated during the return stroke, and then this electric field is used to compute the response of conventional AM radio receivers and electric field change systems during the return stroke. The calculations apply to the entire transient waveform (they are not restricted to the initial portions of the return stroke) and yield fast field changes and RF radiation in agreement with measurements made during real lightning. This research was motivated by measurements indicating that a time delay exists between the time of arrival of the fast electric field change and the RF radiation from first return strokes. The time delay is on the order of 20 microsec for frequencies in the HF-UHF range for lightning in Florida. The time delay is obtained theoretically in this paper. It occurs when both the effects of attenuation due to conductivity of the earth, and the finite velocity of propagation of the current pulse up the return stroke channel, are taken into account in the model.

  16. Correlation Of Terrestrial gamma flashes, Electric fields, and Lightning strikes (COTEL) in thunderstorms using networked balloon payloads developed by university and community college students

    NASA Astrophysics Data System (ADS)

    Landry, B. J.; Blair, D.; Causey, J.; Collins, J.; Davis, A.; Fernandez-Kim, V.; Kennedy, J.; Pate, N.; Kearney, C.; Schayer, C.; Turk, E.; Cherry, M. L.; Fava, C.; Granger, D.; Stewart, M.; Guzik, T. G.

    2017-12-01

    High energy gamma ray flashes from terrestrial sources have been observed by satellites for decades, but the actual mechanism, assumed to be thunderstorm lightning, has yet to be fully characterized. The goal of COTEL, funded by NASA through the University Student Instrument Project (USIP) program, is to correlate in time TGF events, lightning strikes, and electric fields inside of thunderstorms. This will be accomplished using a small network of balloon-borne payloads suspended in and around thunderstorm environments. The payloads will detect and timestamp gamma radiation bursts, lightning strikes, and the intensity of localized electric fields. While in flight, data collected by the payloads will be transmitted to a ground station in real-time and will be analyzed post-flight to investigate potential correlations between lightning, TGFs, and electric fields. The COTEL student team is in its second year of effort having spent the first year developing the basic balloon payloads and ground tracking system. Currently the team is focusing on prototype electric field and gamma radiation detectors. Testing and development of these systems will continue into 2018, and flight operations will take place during the spring 2018 Louisiana thunderstorm season. The presentation, led by undergraduate Physics student Brad Landry, will cover the student team effort in developing the COTEL system, an overview of the system architecture, balloon flight tests conducted to date, preliminary results from prototype detectors, lessons learned for student-led science projects, and future plans.

  17. Optical Detection of Lightning from Space

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Christian, Hugh J.

    1998-01-01

    Optical sensors have been developed to detect lightning from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based lightning detection offers three unique capabilities: (1) the ability to reliably detect lightning over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) lightning, and (3) the ability to detect lightning with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite lightning research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global lightning climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed.

  18. Response of lightning energy and total electron content with sprites over Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Suparta, W.; Yusop, N.

    2017-05-01

    This paper investigates the response of the lightning energy with the total electron content (TEC) derived from GPS over Antarctic Peninsula during St Patrick’s geomagnetic storm. During this event, sprite as one of the mesospheric transient luminous events (TLEs) associated with positive cloud-to-ground (+CG) lightning discharges can be generated. In this work, GPS and lightning data for the period from 14 to 20 March 2015 is analyzed. Geomagnetic activity and electric field data are also processed to relate the geomagnetic storm and lightning. Results show that during St Patrick’s geomagnetic storm, the lighting energy was produced up to ∼257 kJ. The ionospheric TEC was obtained 60 TECU, 38 TECU and 78 TECU between 18:00 and 21:00 UT for OHI3, PALV and ROTH stations, respectively. The peak of lightning energy was observed 14 hours after peaked of TEC. Sprite possibly generated through the electrical coupling process between the top cloud, middle and upper atmosphere with the DC electric field found to be ∼10 mVm-1 which leading to the sprite generation after the return strokes on 18 March 2015.

  19. Static Electric Fields and Lightning Over Land and Ocean in Florida Thunderstorms

    NASA Technical Reports Server (NTRS)

    Wilson, J. G.; Cummins, K. L.; Simpson, A. A.; Hinckley, A.

    2017-01-01

    Natural cloud-to-ground (CG) lightning and the charge structure of the associated clouds behave differently over land and ocean. Existing literature has raised questions over the years on the behavior of thunderstorms and lightning over oceans, and there are still open scientific questions. We expand on the observational datasets by obtaining identical electric field observations over coastal land, near-shore, and deep ocean regions during both clear air and thunderstorm periods. Oceanic observations were obtained using two 3-meter NOAA buoys that were instrumented with Campbell Scientific electric field mills to measure the static electric fields. These data were compared to selected electric field records from the existing on-shore electric field mill suite of 31 sensors at Kennedy Space Center (KSC). CG lightning occurrence times, locations and peak current values for both on-shore and ocean were provided by the U.S. National Lightning Detection Network. The buoy instruments were first evaluated on-shore at the Florida coast, to calibrate field enhancements and to confirm proper behavior of the system in elevated-field environments. The buoys were then moored 20NM and 120NM off the coast of KSC in February (20NM) and August (120NM) 2014. Statistically larger CG peak currents were reported over the deep ocean for first strokes and for subsequent strokes with new contacts points. Storm-related static fields were significantly larger at both oceanic sites, likely due to decreased screening by nearby space charge. Time-evolution of the static field during storm development and propagation indicated weak or missing lower positive charge regions in most storms that initiated over the deep ocean, supporting one mechanism for the observed high peak currents in negative first strokes over the deep ocean. This project also demonstrated the practicality of off-shore electric field measurements for safety-related decision making at KSC.

  20. Microprocessors as a tool in determining correlation between sferics and tornado genesis. [Sferics = atmospheric electromagnetic radiation in the kilohertz to UHF range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, D.R.

    1978-11-01

    It is believed that sferics, a word that stands for atmospheric electromagnetic radiation, can be correlated to the genesis of tornadoes and severe weather. Sferics are generated by lightning and other atmospheric disturbances that are not yet entirely understood. The recording and analysis of the patterns in which sferic events occur, it is hoped, will lead to accurate real-time prediction of tornadoes and other severe weather. Collection of this data becomes cumbersome when correlation between at least two stations is necessary for triangulation; however, the advent of microprocessors has made the task of data collection and massaging inexpensive and manageable.

  1. Solid charged-core model of ball lightning

    NASA Astrophysics Data System (ADS)

    Muldrew, D. B.

    2010-01-01

    In this study, ball lightning (BL) is assumed to have a solid, positively-charged core. According to this underlying assumption, the core is surrounded by a thin electron layer with a charge nearly equal in magnitude to that of the core. A vacuum exists between the core and the electron layer containing an intense electromagnetic (EM) field which is reflected and guided by the electron layer. The microwave EM field applies a ponderomotive force (radiation pressure) to the electrons preventing them from falling into the core. The energetic electrons ionize the air next to the electron layer forming a neutral plasma layer. The electric-field distributions and their associated frequencies in the ball are determined by applying boundary conditions to a differential equation given by Stratton (1941). It is then shown that the electron and plasma layers are sufficiently thick and dense to completely trap and guide the EM field. This model of BL is exceptional in that it can explain all or nearly all of the peculiar characteristics of BL. The ES energy associated with the core charge can be extremely large which can explain the observations that occasionally BL contains enormous energy. The mass of the core prevents the BL from rising like a helium-filled balloon - a problem with most plasma and burning-gas models. The positively charged core keeps the negatively charged electron layer from diffusing away, i.e. it holds the ball together; other models do not have a mechanism to do this. The high electrical charges on the core and in the electron layer explains why some people have been electrocuted by BL. Experiments indicate that BL radiates microwaves upon exploding and this is consistent with the model. The fact that this novel model of BL can explain these and other observations is strong evidence that the model should be taken seriously.

  2. Cloud-to-Ground Lightning Estimates Derived from SSMI Microwave Remote Sensing and NLDN

    NASA Technical Reports Server (NTRS)

    Winesett, Thomas; Magi, Brian; Cecil, Daniel

    2015-01-01

    Lightning observations are collected using ground-based and satellite-based sensors. The National Lightning Detection Network (NLDN) in the United States uses multiple ground sensors to triangulate the electromagnetic signals created when lightning strikes the Earth's surface. Satellite-based lightning observations have been made from 1998 to present using the Lightning Imaging Sensor (LIS) on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, and from 1995 to 2000 using the Optical Transient Detector (OTD) on the Microlab-1 satellite. Both LIS and OTD are staring imagers that detect lightning as momentary changes in an optical scene. Passive microwave remote sensing (85 and 37 GHz brightness temperatures) from the TRMM Microwave Imager (TMI) has also been used to quantify characteristics of thunderstorms related to lightning. Each lightning detection system has fundamental limitations. TRMM satellite coverage is limited to the tropics and subtropics between 38 deg N and 38 deg S, so lightning at the higher latitudes of the northern and southern hemispheres is not observed. The detection efficiency of NLDN sensors exceeds 95%, but the sensors are only located in the USA. Even if data from other ground-based lightning sensors (World Wide Lightning Location Network, the European Cooperation for Lightning Detection, and Canadian Lightning Detection Network) were combined with TRMM and NLDN, there would be enormous spatial gaps in present-day coverage of lightning. In addition, a globally-complete time history of observed lightning activity is currently not available either, with network coverage and detection efficiencies varying through the years. Previous research using the TRMM LIS and Microwave Imager (TMI) showed that there is a statistically significant correlation between lightning flash rates and passive microwave brightness temperatures. The physical basis for this correlation emerges because lightning in a thunderstorm occurs where ice is first present in the cloud and electric charge separation occurs. These ice particles efficiently scatter the microwave radiation at the 85 and 37 GHz frequencies, thus leading to large brightness temperature depressions. Lightning flash rate is related to the total amount of ice passing through the convective updraft regions of thunderstorms. Confirmation of this relationship using TRMM LIS and TMI data, however, remains constrained to TRMM observational limits of the tropics and subtropics. Satellites from the Defense Meteorology Satellite Program (DMSP) have global coverage and are equipped with passive microwave imagers that, like TMI, observe brightness temperatures at 85 and 37 GHz. Unlike the TRMM satellite, however, DMSP satellites do not have a lightning sensor, and the DMSP microwave data has never been used to derive global lightning. In this presentation, a relationship between DMSP Special Sensor Microwave Imager (SSMI) data and ground-based cloud-to-ground (CG) lightning data from NLDN is investigated to derive a spatially complete time history of CG lightning for the USA study area. This relationship is analogous to the established using TRMM LIS and TMI data. NLDN has the most spatially and temporally complete CG lightning data for the USA, and therefore provides the best opportunity to find geospatially coincident observations with SSMI sensors. The strongest thunderstorms generally have minimum 85 GHz Polarized Corrected brightness Temperatures (PCT) less than 150 K. Archived radar data was used to resolve the spatial extent of the individual storms. NLDN data for that storm spatial extent defined by radar data was used to calculate the CG flash rate for the storm. Similar to results using TRMM sensors, a linear model best explained the relationship between storm-specific CG flash rates and minimum 85 GHz PCT. However, the results in this study apply only to CG lightning. To extend the results to weaker storms, the probability of CG lightning (instead of the flash rate) was calculated for storms having 85 GHz PCT greater than 150 K. NLDN data was used to determine if a CG strike occurred for a storm. This probability of CG lightning was plotted as a function of minimum 85 GHz PCT and minimum 37 GHz PCT. These probabilities were used in conjunction with the linear model to estimate the CG flash rate for weaker storms with minimum 85 GHz PCTs greater than 150 K. Results from the investigation of CG lightning and passive microwave radiation signals agree with the previous research investigating total lightning and brightness temperature. Future work will take the established relationships and apply them to the decades of available DMSP data for the USA to derive a map of CG lightning flash rates. Validation of this method and uncertainty analysis will be done by comparing the derived maps of CG lightning flash rates against existing NLDN maps of CG lightning flash rates.

  3. Neural network-based recognition of whistlers on spectrograms detected by satellite

    NASA Astrophysics Data System (ADS)

    Conti, Livio

    2016-04-01

    We present a system to automatically recognize and classify the occurrence of whistler waves on spectrograms of electric field measurements performed by satellite. Whistlers - VLF waves generated by lightning, with a specific spectral dispersion relation - can induce precipitation of trapped Van Allen particles and have a role in the chemistry of some atmospheric components (mainly NOx). Moreover, it has also been suggested that the increase of the number of anomalous whistlers (i.e. whistlers with high value of dispersion constant) could be induced by disturbances in the Earth-ionosphere wave-guide, generated by seismo-electromagnetic emissions. On satellite, the recognition of whistlers asks for analyzing high-resolution spectrograms that cannot be downloaded to Earth, due to the limits of data transmission. For this reason, a real time identification and classification must be performed on satellite, by avoiding downloading all the unprocessed data. The procedure that we have developed is based on a Time Delay Neural Network (TDNN). The TDNN, proposed some years ago for speech recognition, can be fruitfully also applied in real-time analysis of electromagnetic spectrograms in order to detect phenomena characterized by a specific shape/signature such as those of the whistler waves. Some studies have been performed by the RNF experiment on board of the DEMETER satellite and our algorithm could be adopted on board of the satellite CSES (China Seismo-Electromagnetic Satellite), launch scheduled by the end of 2016. Moreover, the procedure can be also adopted to automatic analysis of whistlers detected on ground.

  4. Elve Doublets: The Ionospheric Fingerprints of Compact Intracloud Discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Marshall, R. A.; Pasko, V. P.

    2015-12-01

    Compact intracloud discharges (CIDs) persist to date as one of the most mysterious lightning manifestations. CIDs are known to be the strongest natural sources of radio-frequency radiation on Earth. At VHF frequencies, approximately above 30 MHz, their emitted power is ten times stronger than that of other lightning processes. The well-known strength of CIDs in VHF contrasts with the lack of substantial optical measurements. CID's VLF/LF electric field change waveforms resemble one full cycle of a distorted sine function, with the first half-cycle being (a few times) larger-amplitude and shorter-duration than the second. For this reason CIDs have been dubbed narrow bipolar events (NBEs). NBE waveshapes are strikingly similar to the largest initial breakdown pulses (IBPs) that occur during the earlier stages of a conventional lightning flash, called classic IBPs. The similarity between classic IBP and NBE far-field waveforms, combined with the fact that positive-polarity NBEs frequently appear as the first event in an otherwise regular positive intracloud discharge, may be indicative that the source of these two E-field pulse types share the same physical mechanism inside thunderclouds [da Silva and Pasko, JGR, 120, 4989-5009, 2015]. In this presentation, we introduce a novel way to investigate CIDs. We show evidence that CIDs can produce an unique ionospheric signature, named "elve doublets". These signatures are characterized by a pair of elves separated in time by 80-160 microseconds. Our analysis combines fast photometric elve data, equivalent-transmission-line models to describe the dynamics of CID source currents, and FDTD modeling of electromagnetic wave propagation in the Earth-ionosphere waveguide accounting for its nonlinear interaction with the lower ionosphere [Marshall et al., GRL, 42, 2015, doi:10.1002/2015GL064862]. We show that typical (negative-polarity) CID altitudes, between 14-22 km, explain the time delay observed in elve doublets, where the first elve in the doublet is generated by the direct EMP path and the second is generated by its ground reflection. Furthermore, we show that the relative brightness of the first and second elves is likely related to the CID orientation, and angles of 5°-20° with respect to the vertical are consistent with the observed brightness ratios.

  5. A general theory for ball lightning structure and light output

    NASA Astrophysics Data System (ADS)

    Morrow, R.

    2018-03-01

    A general theory for free-floating ball lightning is presented which unifies the phantom plasma ball theory involving the production of very little light, with theories for ball lightning involving light output produced by burning particles from the soil. The mechanism for the formation of plasma balls is shown to be quite general, producing very similar plasma balls independent of initial ion densities over four orders of magnitude. All that is required is an excess of positive ions in the initial ball of ions. The central plasma density after 1 s is shown to be the reciprocal of the ion neutralization coefficient for all cases, both analytically and computationally. Further, the plasma region has zero electric field in all cases. Surrounding the plasma ball is a sphere of positive ions moving away from the centre via their own space-charge field; this space-charge field, which is the same in all cases near the plasma ball, drives negative ions and negative particles towards the plasma centre. The connection with burning particle theories is the proposition that the burning particles are highly-charged which is very likely after a lightning strike. Burning negatively charged particles would be driven into the plasma ball region and trapped while any positively charged particles would be driven away. The plasma ball structure is shown to last more than 10 s and the ‘burnout time’ for a typical coal particle (as an example) has been measured at 5-10 s this is comparable with the lifetimes observed for ball lightning. The light output from a few hundred particles is estimated to be ~1 W, a typical output for ball lightning. Finally, suggestions are made for the generation of ball lightning in the laboratory.

  6. Lightning Attachment to Wind Turbines in Central Kansas: Video Observations, Correlation with the NLDN and in-situ Peak Current Measurements

    NASA Astrophysics Data System (ADS)

    Myers, J.; Cummins, K. L.; Hutchinson, M.; Nag, A.

    2012-12-01

    Lightning attachment to tall objects has been studied for decades. The attachment of lightning to electric power transmission towers in elevated terrain has driven much of the quantitative assessment of lightning characteristics in the 1970's and 80's. This has led to the understanding that in flat terrain, the probability of upward-initiated lightning is negligible for tower heights less than 100 m. For tower heights greater than 100, the probability increases roughly linearly with the log of height, reaching 100% at a height of 400 m. Additionally, the probability of upward initiation increases when the object resides on locally-elevated terrain. Over the last decade, there has been renewed interest in the study of lightning attachment to tall objects in general, and wind turbines in particular, following the establishment of large "wind farms" in lightning-prone regions. In this study, we present video observations, radiation magnetic field, and in-situ peak current measurements of lightning from an ongoing field program in a large wind farm in north-central Kansas, located in the U.S. Central Great Plains. The terrain variations within the wind farm are small rolling hills with peak variations on the order of 25 m. All turbines had a turbine hub height of 80 m, and a blade tip maximum height of 125 m. Two digital video camera systems (60 fields-per-second) were configured to self-trigger 2-second video sequences using a sequential-field-subtraction scene analysis (ufo-Capture). The two cameras had a common field of view that included 8 of the wind turbines. Nearby NLDN sensors were configured to record information that allows reconstruction of magnetic field waveforms within the bandwidth of the NLDN sensors. Some of the turbines were equipped with semi-quantitative in-situ peak current measuring devices. To date, more than 100 cloud-to-ground (CG) flashes have terminated within the perimeter of the wind farm. Video observations of flashes that attached to turbines (all to turbine blades) include five natural (downward leader) flashes and two "upward flashes" (fully developed upward leaders lasting 10's of milliseconds). Both upward flashes appear to have been triggered by nearby positive CG flashes, resulting in upward (presumably positive) leaders. Selected video observations in conjunction with NLDN data and waveform measurements, and in situ current measurements obtained during this campaign, will be presented and discussed in the context of storm characteristics. Differences with previous findings for fixed towers (no rotating blades) will also be discussed.

  7. Nighttime observations of thunderstorm electrical activity from a high altitude airplane

    NASA Technical Reports Server (NTRS)

    Brook, M.; Rhodes, C.; Vaughan, O. H., Jr.; Orville, R. E.; Vonnegut, B.

    1984-01-01

    Photographs from a NASA U-2 airplane flying over nocturnal thunderstorms show frequent lightning activity in the upper part of the cloud. In some cases, unobscured segments of lightning channels 1 km or longer are visible in clear air around and above the cloud. Multiple images of lightning channels indicate multiple discharges in the same channel. Photographs taken through a diffraction grating show that the lightning has a spectrum similar to that observed in the lower troposphere. Lightning spectra obtained with a slitless line-scan spectrometer show strong singly ionized nitrogen emissions at 463.0 and 500.5 nm. Field changes measured with an electric field-change meter correlate with pulses measured with a photocell optical system. Optical signals corresponding to dart leader, return stroke, and continuing current events are readily distinguished in the scattered light emerging from the cloud surface. The variation of light intensity with time in lightning events is consistent with predicted modification of optical lightning signals by clouds. It appears that satellite based optical sensor measurements cannot provide reliable information on current rise times in return strokes. On the other hand, discrimination between cloud-to-ground and intracloud flashes and the counting of ground strokes is possible using the optical pulse pairs which have been identified with leader, return-stroke events in the cloud-to-ground flashes studied.

  8. Identification of Lightning Gaps in Mangrove Forests Using Airborne LIDAR Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2006-12-01

    Mangrove forests are highly dynamic ecosystems and change frequently due to tropical storms, frost, and lightning. These factors can cause gaps in mangrove forests by damaging trees. Compared to gaps generated by storms and frost, gaps caused by lightning strikes are small, ranging from 50 to 300 m2. However, these small gaps may play a critical role in mangrove forest dynamics because of the frequent occurrence of lightning in tropical areas. It has been hypothesized that the turnover of mangrove forests is mainly due to the death and regeneration of trees in lightning gaps. However, there is a lack of data for gap occurrence in mangrove forests to verify this hypothesis. It is impractical to measure gaps through a field survey on a large scale because of the logistic difficulties of muddy mangrove forests. Airborne light detection and ranging (LIDAR) technology is an effective alternative because it provides direct measurements of ground and canopy elevations remotely. This study developed a method to identify lightning gaps in mangrove forests in terms of LIDAR measurements. First, LIDAR points are classified into vegetation and ground measurements using the progressive morphological filter. Second, a digital canopy model (DCM) is generated by subtracting a digital terrain model (DTM) from a digital surface model (DSM). The DSM is generated by interpolating raw LIDAR measurements, and DTM is produced by interpolating ground measurements. Third, a black top-hat mathematical morphological transformation is used to identify canopy gaps. Comparison of identified gap polygons with raw LIDAR measurements and field surveys shows that the proposed method identifies lightning gaps in mangrove forests successfully. The area of lightning gaps in mangrove forests in Everglades National Park is about 3% of total forest area, which verifies that lightning gaps play a critical role in mangrove forest turnover.

  9. Mitigation of Mains Disturbances.

    DTIC Science & Technology

    1987-11-01

    cause of disturbance, which is of great significance, is the high-altitude electromagnetic pulse ( HEMP ) that illuminates overhead power lines. In...demonstration may leave a permanent burn mark onI the plastic insulation at the outlet.) A lightning strike raises the potential of the earth ground at...bunch the input and output cords together and secure them with a tight plastic cable tie. UPS Temporary loss of mains power can be avoided by using an

  10. Single-Fiber Optical Link For Video And Control

    NASA Technical Reports Server (NTRS)

    Galloway, F. Houston

    1993-01-01

    Single optical fiber carries control signals to remote television cameras and video signals from cameras. Fiber replaces multiconductor copper cable, with consequent reduction in size. Repeaters not needed. System works with either multimode- or single-mode fiber types. Nonmetallic fiber provides immunity to electromagnetic interference at suboptical frequencies and much less vulnerable to electronic eavesdropping and lightning strikes. Multigigahertz bandwidth more than adequate for high-resolution television signals.

  11. The Distribution of Cloud to Ground Lightning Strike Intensities and Associated Magnetic Inductance Fields Near the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Decker, Ryan

    2005-01-01

    Lightning strike location and peak current are monitored operationally in the Kennedy Space Center (KSC) Cape Canaveral Air Force Station (CCAFS) area by the Cloud to Ground Lightning Surveillance System (CGLSS). The present study compiles ten years worth of CGLSS data into a database of near strikes. Using shuffle launch platform LP39A as a convenient central point, all strikes recorded within a 20-mile radius for the period of record O R ) from January 1, 1993 to December 31,2002 were included in the subset database. Histograms and cumulative probability curves are produced for both strike intensity (peak current, in kA) and the corresponding magnetic inductance fields (in A/m). Results for the full POR have application to launch operations lightning monitoring and post-strike test procedures.

  12. Research on electrical properties of severe thunderstorms in the Great Plains

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Taylor, W. L.; Macgorman, D. R.; Arnold, R. T.

    1981-01-01

    Techniques, equipment, and results of studies (1978-1980) to determine the relationships between electrical phenomena and the dynamics and precipitation of storms are reported. Doppler and conventional radar, video tapes and movies, and VHF recording devices were used to monitor an area 200 x 100 km, aligned SW to NE. The 23 cm radar and a Doppler radar were employed to acquire radar echoes from lightning. Observations of a squall line, a severe storm, and radar echoes from electrical discharges are described. Positively charged cloud-to-ground lightning was observed during the severe and final stages of severe storms; average lightning rates and total flashes for normal and severe storms are provided. Comparisons of lightning echoes and electric field changes indicated that abrupt increases in radar reflectivity were correlated with return strokes and K-type field changes.

  13. Very low frequency radio signatures of transient luminous events above thunderstorms

    NASA Astrophysics Data System (ADS)

    Marshall, Robert Andrew

    Lightning discharges emit intense optical and acoustic energy, in the form of lightning and thunder, respectively, but a large amount of energy is emitted as radio-frequency electromagnetic pulses (EMP). These pulses can be detected thousands of kilometers away, thanks to efficient propagation in the waveguide formed by the conducting Earth and the overlying ionosphere. In addition, intense discharges interact with the overlying ionosphere at 80-100 km altitude. The EMP-ionosphere interaction is directly observed in one manifestation as the bright transient optical emissions known as "elves", but in addition, the interaction can directly modify the free electron density in the nighttime lower ionosphere. Modifications of the ionospheric electron density can be detected via subionospheric Very Low Frequency (VLF) remote sensing. In this method, coherent signals from powerful VLF transmitters, built for submarine communication and operated by the Navy, are monitored and their amplitude and phase are tracked in time. The variations of these signais are used to sense ionospheric modifications through rapid changes in the received amplitude and/or phase when the transmitted signal propagates through an ionospheric perturbation. When these perturbations are caused by lightning, they are known as "Early VLF" perturbations, due to the negligible delay between the lightning discharge and the appearance of the VLF signal change, whereas lightning-induced electron precipitation (LEP) events have a delay of 1--2 seconds. In this work, correlations between VLF signatures and optical events are used to show that these Early VLF events may be the signature of ionospheric modification by in-cloud (IC) lightning discharges. While the more impressive cloud-to-ground (CG) lightning discharges are more commonly observed and better understood, they are outnumbered in occurrence 3:1 by IC discharges, whose effects may be relatively stronger in the overlying ionosphere. We use a 3D time-domain model of the lightning EMP-ionosphere interaction to calculate expected ionospheric density changes from IC discharges. We find that bursts of IC-EMPs can significantly modify the lower ionosphere, with both increases and decreases in electron density. We then use a frequency-domain model of the VLF transmitter signal propagation in the Earth-ionosphere waveguide to a receiver to show that these density changes are consistent with measurements. Our results demonstrate that these Early VLF events, which are ubiquitous in VLF data, are signatures of the effects of in-cloud lightning, and that they can be used to quantify the effects of IC lightning on the ionosphere during an intense thunderstorm.

  14. Ground Optical Lightning Detector (GOLD)

    NASA Technical Reports Server (NTRS)

    Jackson, John, Jr.; Simmons, David

    1990-01-01

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  15. Comparison of fast electric field changes from subsequent return strokes of natural and triggered lightning

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Willett, J.

    1988-01-01

    Fast electric field changes from subsequent return strokes of natural and triggered lightning with propagation paths almost entirely over water are compared. Data were collected at the Kennedy Space Center, Florida. Comparisons have been made of the average shape, the rise time and the spectrum of the electric field changes. The electric field changes from the triggered flashes tend to rise to peak faster and decay faster than do their counterparts in natural cloud-to-ground flashes.

  16. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    NASA Technical Reports Server (NTRS)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  17. Ball lightning dynamics and stability at moderate ion densities

    NASA Astrophysics Data System (ADS)

    Morrow, R.

    2017-10-01

    A general mechanism is presented for the dynamics and structure of ball lightning and for the maintenance of the ball lightning structure for several seconds. Results are obtained using a spherical geometry for air at atmospheric pressure, by solving the continuity equations for electrons, positive ions and negative ions coupled with Poisson’s equation. A lightning strike can generate conditions in the lightning channel with a majority of positive nitrogen ions, and a minority of negative oxygen ions and electrons. The calculations are initiated with electrons included; however, at the moderate ion densities chosen the electrons are rapidly lost to form negative ions, and after 1 µs their influence on the ion dynamics is negligible. Further development after 1 µs is followed using a simpler set of equations involving only positive ions and negative ions, but including ion diffusion. The space-charge electric field generated by the majority positive ions drives them from the centre of the distribution and drives the minority negative ions and electrons towards the centre of the distribution. In the central region the positive and negative ion distributions eventually overlap exactly and their space-charge fields cancel resulting in zero electric field, and the plasma ball formed is quite stable for a number of seconds. The formation of such plasma balls is not critically dependent on the initial diameter of the ion distributions, or the initial density of minority negative ions. The ion densities decrease relatively slowly due to mutual neutralization of positive and negative ions. The radiation from this neutralization process involving positive nitrogen ions and negative oxygen ions is not sufficient to account for the reported luminosity of ball lightning and some other source of luminosity is shown to be required; the plasma ball model used could readily incorporate other ions in order to account for the luminosity and range of colours reported for ball lightning. Additionally, ‘phantom plasma balls’ may well be generated and go unnoticed due to very low luminosity; luminous ball lightning may be the exception. Finally, the mechanism described here may also be active in the dynamics of bead lightning.

  18. Atmosphere-Ionosphere Electrodynamic Coupling

    NASA Astrophysics Data System (ADS)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally observed effects as excitation of plasma density inhomogeneities, field-aligned currents, and ULF/ELF emissions and the modification of electron and ion altitude profiles in the upper ionosphere. The electrodynamic model of the ionosphere modification under the influence of some natural and man-made processes in the atmosphere is also discussed. The model is based on the satellite and ground measurements of electromagnetic field and plasma perturbations and on the data on atmospheric radioactivity and soil gas injection into the atmosphere.

  19. Radar Differential Phase Signatures of Ice Orientation for the Prediction of Lightning Initiation and Cessation

    NASA Technical Reports Server (NTRS)

    Carey, L.D.; Petersen, W.A.; Deierling, W.

    2009-01-01

    The majority of lightning-related casualties typically occur during thunderstorm initiation (e.g., first flash) or dissipation (e.g., last flash). The physics of electrification and lightning production during thunderstorm initiation is fairly well understood. As such, the literature includes a number of studies presenting various radar techniques (using reflectivity and, if available, other dual-polarimetric parameters) for the anticipation of initial electrification and first lightning flash. These radar techniques have shown considerable skill at forecasting first flash. On the other hand, electrical processes and lightning production during thunderstorm dissipation are not nearly as well understood and few, if any, successful techniques have been developed to anticipate the last flash and subsequent cessation of lightning. One promising approach involves the use of dual-polarimetric radar variables to infer the presence of oriented ice crystals in lightning producing storms. In the absence of strong vertical electric fields, ice crystals fall with their largest (semi-major) axis in the horizontal associated with gravitational and aerodynamic forces. In thunderstorms, strong vertical electric fields (100-200 kV m(sup -1)) have been shown to orient small (less than 2 mm) ice crystals such that their semi-major axis is vertical (or nearly vertical). After a lightning flash, the electric field is typically relaxed and prior radar research suggests that ice crystals rapidly resume their preferred horizontal orientation. In active thunderstorms, the vertical electric field quickly recovers and the ice crystals repeat this cycle of orientation for each nearby flash. This change in ice crystal orientation from primarily horizontal to vertical during the development of strong vertical electric fields prior to a lightning flash forms the physical basis for anticipating lightning initiation and, potentially, cessation. Research has shown that radar reflectivity (Z) and other co-polar back-scattering radar measurements like differential reflectivity (Z(sub dr)) typically measured by operational dual-polarimetric radars are not sensitive to these changes in ice crystal orientation. However, prior research has demonstrated that oriented ice crystals cause significant propagation effects that can be routinely measured by most dual-polarimetric radars from X-band (3 cm) to S-band (10 cm) wavelengths using the differential propagation phase shift (often just called differential phase, phi(sub dp)) or its range derivative, the specific differential phase (K(sub dp)). Advantages of the differential phase include independence from absolute or relative power calibration, attenuation, differential attenuation and relative insensitivity to ground clutter and partial beam occultation effects (as long as the signal remains above noise). In research mode, these sorts of techniques have been used to anticipate initial cloud electrification, lightning initiation, and cessation. In this study, we develop a simplified model of ice crystal size, shape, orientation, dielectric, and associated radar scattering and propagation effects in order to simulate various idealized scenarios of ice crystals responding to a hypothetical electric field and their dual-polarimetric radar signatures leading up to lightning initiation and particularly cessation. The sensitivity of the K(sub dp) ice orientation signature to various ice properties and radar wavelength will be explored. Since K(sub dp) is proportional to frequency in the Rayleigh- Gans scattering regime, the ice orientation signatures should be more obvious at higher (lower) frequencies (wavelengths). As a result, simulations at radar wavelengths from 10 cm down to 1 cm (Ka-band) will be conducted. Resonance effects will be considered using the T-matrix method. Since most K(sub dp) Vbased observations have been shown at S-band, we will present ice orientation signatures from C-band (UAH/NASA ARMOR) and X-bd (UAH MAX) dual-polarimetric radars located in Northern Alabama. Issues related to optimal radar scanning for the detection of oriented ice will be discussed. Preliminary suggestions on how these differential phase signatures of oriented ice could contribute to lightning initiation and cessation algorithms will be presented.

  20. Radiocarbon Production by Thunderstorms

    NASA Astrophysics Data System (ADS)

    Babich, L. P.

    2017-11-01

    In view of the neutron flux enhancements observed in thunderstorms, a contribution of thunderstorm neutrons to atmospheric radiocarbon (isotope 614C) production is analyzed in connection with the archaeometry. Herein, estimates of neutron fluence per lightning electromagnetic pulse in regions with severe thunderstorm activity, at which a local rate of the 614C production is comparable to the observed rates, are shown to be consistent with the measured magnitudes of thunderstorm neutron fluence. At present, available observations of atmospheric neutron and parent gamma ray flashes correlated with thunderstorms do not allow making final conclusions about thunderstorm contributions to 614C production. For this, numerous studies of high-energy phenomena in thunderstorms are required, especially in the tropical belt where the thunderstorm activity is especially severe and where the 614C production by galactic cosmic rays is almost independent of the solar activity disturbing the Earth's magnetic field shielding the Earth from cosmic rays.

  1. Ground level gamma-ray and electric field enhancements during disturbed weather: Combined signatures from convective clouds, lightning and rain

    NASA Astrophysics Data System (ADS)

    Reuveni, Yuval; Yair, Yoav; Price, Colin; Steinitz, Gideon

    2017-11-01

    We report coincidences of ground-level gamma-ray enhancements with precipitation events and strong electric fields typical of thunderstorms, measured at the Emilio Segre Cosmic Ray observatory located on the western slopes of Mt. Hermon in northern Israel. The observatory hosts 2 × 2″ Nal(TI) gamma ray scintillation detectors alongside a vertical atmospheric electric field (Ez) mill and conduction current (Jz) plates. During several active thunderstorms that occurred near the Mt. Hermon station in October and November 2015, we recorded prolonged periods of gamma ray enhancements, which lasted tens of minutes and coincided with peaks both in precipitation and the vertical electric field. Two types of events were detected: slow increase (up to 300 min) of atmospheric gamma ray radiation due to radon progeny washout (or rainout) along with minutes of Ez enhancement, which were not associated with the occurrences of nearby CG lightning discharges. The second type showed 30 min bursts of gamma rays, coinciding with minutes of Ez enhancement that closely matched the occurrences of nearby CG lightning discharges, and are superimposed on the radiation from radon daughters washed out to near surface levels by precipitation. We conclude that a superposition of accelerated high energy electrons by thunderstorm electric fields and radon progeny washout (or rainout) explains the relatively fast near surface gamma-ray increase, where the minutes-scale vertical electric field enhancement are presumably caused due to nearby convective clouds. Our results show that the mean exponential half-life depletion times of the residual nuclei produced during events without lightning occurrences were between 25-65 min, compared to 55-100 min when lightning was present, indicating that different types of nuclei were involved.

  2. Lightning x-rays inside thunderclouds, in-flight measurements on-board an A350

    NASA Astrophysics Data System (ADS)

    van Deursen, Alexander; Kochkin, Pavlo; de Boer, Alte; Bardet, Michiel; Boissin, Jean-François

    2015-04-01

    Thunderstorms emit bursts of energetic radiation. Moreover, lightning stepped leader produces x-ray pulses. The phenomena, their interrelation and impact on Earth's atmosphere and near space are not fully understood yet. The In-flight Lightning Strike Damage Assessment System ILDAS was developed in an EU FP6 project ( http://ildas.nlr.nl/ ) to provide information on threat that lightning poses to aircraft. It is intended to localize the lightning attachment points in order to reduce maintenance time and to build statics on lightning current. The system consists of 2 E-field sensors and a varying number of H-field sensors. It has recently been enhanced by two LaBr3 scintillation detectors inside the aircraft. The scintillation detectors are sensitive to x- and gamma-rays above 30 keV. The entire system is installed on-board of an A-350 aircraft and digitizes data with 100Msamples/sec rate when triggered by lightning. A continuously monitoring channel counts the number of occurrences that the x-ray signal exceeds a set of trigger levels. In the beginning of 2014 the aircraft flew through thunderstorm cells collecting the data from the sensors. The x-rays generated by the lightning flash are measured in synchronization better than 40 ns with the lightning current information during a period of 1 second around the strike. The continuous channel stores x-ray information with very limited time and amplitude resolution during the whole flight. That channel would allow x-rays from cosmic ray background, TGFs and continuous gamma-ray glow of thundercloud outside the 1 s time window. In the EGU2014 we presented the ILDAS system and showed that the x-ray detection works as intended. Fast x-ray bursts have been detected during stepped/dart stepped leaders and during interception of lightning. Data analysis of continuous channel recordings will be presented as well.

  3. System and Method of Locating Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)

    2002-01-01

    A system and method of determining locations of lightning strikes has been described. The system includes multiple receivers located around an area of interest, such as a space center or airport. Each receiver monitors both sound and electric fields. The detection of an electric field pulse and a sound wave are used to calculate an area around each receiver in which the lighting is detected. A processor is coupled to the receivers to accurately determine the location of the lighting strike. The processor can manipulate the receiver data to compensate for environmental variables such as wind, temperature, and humidity. Further, each receiver processor can discriminate between distant and local lightning strikes.

  4. FDTD Modeling of LEMP Propagation in the Earth-Ionosphere Waveguide With Emphasis on Realistic Representation of Lightning Source

    NASA Astrophysics Data System (ADS)

    Tran, Thang H.; Baba, Yoshihiro; Somu, Vijaya B.; Rakov, Vladimir A.

    2017-12-01

    The finite difference time domain (FDTD) method in the 2-D cylindrical coordinate system was used to compute the nearly full-frequency-bandwidth vertical electric field and azimuthal magnetic field waveforms produced on the ground surface by lightning return strokes. The lightning source was represented by the modified transmission-line model with linear current decay with height, which was implemented in the FDTD computations as an appropriate vertical phased-current-source array. The conductivity of atmosphere was assumed to increase exponentially with height, with different conductivity profiles being used for daytime and nighttime conditions. The fields were computed at distances ranging from 50 to 500 km. Sky waves (reflections from the ionosphere) were identified in computed waveforms and used for estimation of apparent ionospheric reflection heights. It was found that our model reproduces reasonably well the daytime electric field waveforms measured at different distances and simulated (using a more sophisticated propagation model) by Qin et al. (2017). Sensitivity of model predictions to changes in the parameters of atmospheric conductivity profile, as well as influences of the lightning source characteristics (current waveshape parameters, return-stroke speed, and channel length) and ground conductivity were examined.

  5. Where are the lightning hotspots on Earth?

    NASA Astrophysics Data System (ADS)

    Albrecht, R. I.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R. J.; Christian, H. J., Jr.

    2015-12-01

    The first lightning observations from space date from the early 1960s and more than a dozen spacecraft orbiting the Earth have flown instruments that recorded lightning signals from thunderstorms over the past 45 years. In this respect, the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS), having just completed its mission (1997-2015), provides the longest and best total (intracloud and cloud-to-ground) lightning data base over the tropics.We present a 16 year (1998-2013) reprocessed data set to create very high resolution (0.1°) TRMM LIS total lightning climatology. This detailed very high resolution climatology is used to identify the Earth's lightning hotspots and other regional features. Earlier studies located the lightning hotspot within the Congo Basin in Africa, but our very high resolution lightning climatology found that the highest lightning flash rate on Earth actually occurs in Venezuela over Lake Maracaibo, with a distinct maximum during the night. The higher resolution dataset clearly shows that similar phenomenon also occurs over other inland lakes with similar conditions, i.e., locally forced convergent flow over a warm lake surface which drives deep nocturnal convection. Although Africa does not have the top lightning hotspot, it comes in a close second and it is the continent with the highest number of lightning hotspots, followed by Asia, South America, North America, and Oceania. We also present climatological maps for local hour and month of lightning maxima, along with a ranking of the highest five hundred lightning maxima, focusing discussion on each continent's 10 highest lightning maxima. Most of the highest continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development. These results are especially relevant in anticipation of the upcoming availability of continuous total lightning observations from the Geostationary Lightning Mapping (GLM) aboard GOES-R. This study provides context to forecasters as to total lightning activity and locations within GLM field of view as well as around the world.

  6. National athletic trainers' association position statement: lightning safety for athletics and recreation.

    PubMed

    Walsh, K M; Bennett, B; Cooper, M A; Holle, R L; Kithil, R; López, R E

    2000-10-01

    To educate athletic trainers and others about the dangers of lightning, provide lightning-safety guidelines, define safe structures and locations, and advocate prehospital care for lightning-strike victims. Lightning may be the most frequently encountered severe-storm hazard endangering physically active people each year. Millions of lightning flashes strike the ground annually in the United States, causing nearly 100 deaths and 400 injuries. Three quarters of all lightning casualties occur between May and September, and nearly four fifths occur between 10:00 AM and 7:00 PM, which coincides with the hours for most athletic or recreational activities. Additionally, lightning casualties from sports and recreational activities have risen alarmingly in recent decades. The National Athletic Trainers' Association recommends a proactive approach to lightning safety, including the implementation of a lightning-safety policy that identifies safe locations for shelter from the lightning hazard. Further components of this policy are monitoring local weather forecasts, designating a weather watcher, and establishing a chain of command. Additionally, a flash-to-bang count of 30 seconds or more should be used as a minimal determinant of when to suspend activities. Waiting 30 minutes or longer after the last flash of lightning or sound of thunder is recommended before athletic or recreational activities are resumed. Lightning- safety strategies include avoiding shelter under trees, avoiding open fields and spaces, and suspending the use of land-line telephones during thunderstorms. Also outlined in this document are the prehospital care guidelines for triaging and treating lightning-strike victims. It is important to evaluate victims quickly for apnea, asystole, hypothermia, shock, fractures, and burns. Cardiopulmonary resuscitation is effective in resuscitating pulseless victims of lightning strike. Maintenance of cardiopulmonary resuscitation and first-aid certification should be required of all persons involved in sports and recreational activities.

  7. A comparison of two ground-based lightning detection networks against the satellite-based lightning imaging sensor (LIS)

    NASA Astrophysics Data System (ADS)

    Thompson, Kelsey B.

    We compared lightning stroke data from the ground-based World Wide Lightning Location Network (WWLLN) and lightning stroke data from the ground-based Earth Networks Total Lightning Network (ENTLN) to lightning group data from the satellite-based Lightning Imaging Sensor (LIS) from 1 January 2010 through 30 June 2011. The region of study, about 39°S to 39°N latitude, 164°E to 17°W longitude, chosen to approximate the Geostationary Lightning Mapper (GLM) field of view, was considered in its entirety and then divided into four geographical sub-regions. We found the highest 18-mon WWLLN coincidence percent (CP) value in the Pacific Ocean at 18.9% and the highest 18-mon ENTLN CP value in North America at 63.3%. We found the lowest 18-mon CP value for both WWLLN and ENTLN in South America at 6.2% and 2.2% respectively. Daily CP values and how often large radiance LIS groups had a coincident stroke varied. Coincidences between LIS groups and ENTLN strokes often resulted in more cloud than ground coincidences in North America and more ground than cloud coincidences in the other three sub-regions.

  8. Remote sensing of the lightning heating effect duration with ground-based microwave radiometer

    NASA Astrophysics Data System (ADS)

    Jiang, Sulin; Pan, Yun; Lei, Lianfa; Ma, Lina; Li, Qing; Wang, Zhenhui

    2018-06-01

    Artificially triggered lightning events from May 26, 2017 to July 16, 2017 in Guangzhou Field Experiment Site for Lightning Research and Test (GFESL) were intentionally remotely sensed with a ground-based microwave radiometer for the first time in order to obtain the features of lightning heating effect. The microwave radiometer antenna was adjusted to point at a certain elevation angle towards the expected artificially triggered lightning discharging path. Eight of the 16 successfully artificially triggered lightning events were captured and the brightness temperature data at four frequencies in K and V bands were obtained. The results from data time series analysis show that artificially triggered lightning can make the radiometer generate brightness temperature pulses, and the amplitudes of these pulses are in the range of 2.0 K to 73.8 K. The brightness temperature pulses associated with 7 events can be used to estimate the duration of lightning heating effect through accounting the number of the pulses in the continuous pulse sequence and the sampling interval between four frequencies. The maximum duration of the lightning heating effect is 1.13 s, the minimum is 0.172 s, and the average is 0.63 s.

  9. Fine structure in RF spectra of lightning return stroke wave forms

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.

    1988-01-01

    The power spectra of the wide-band (10 Hz to 100 kHz) magnetic-field signals for a number of lightning return strokes measured during a thunderstorm which occurred in Lindau in August, 1984 have been calculated. The RF magnetic field data are obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. Each return stroke data stream is passed through an adaptive filter designed to whiten its spectrum. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks in the spectra of many of the waveforms. A peak at f of about 60-70 kHz is often seen in the power spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.

  10. KSC00pp0883

    NASA Image and Video Library

    2000-06-19

    Lightning field study devices are visible on a Cessna Citation aircraft during flight over Central Florida. The center of the black circle contains one of six field mills, used to measure electric fields, located on the body of the plane. Below the circle is one of several cloud physics probes attached to the plane that measure the size, shape and number of ice and water particles in clouds. The Cessna is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00

  11. KSC-00pp0883

    NASA Image and Video Library

    2000-06-19

    Lightning field study devices are visible on a Cessna Citation aircraft during flight over Central Florida. The center of the black circle contains one of six field mills, used to measure electric fields, located on the body of the plane. Below the circle is one of several cloud physics probes attached to the plane that measure the size, shape and number of ice and water particles in clouds. The Cessna is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00

  12. Assimilation of lightning data by nudging tropospheric water vapor and applications to numerical forecasts of convective events

    NASA Astrophysics Data System (ADS)

    Dixon, Kenneth

    A lightning data assimilation technique is developed for use with observations from the World Wide Lightning Location Network (WWLLN). The technique nudges the water vapor mixing ratio toward saturation within 10 km of a lightning observation. This technique is applied to deterministic forecasts of convective events on 29 June 2012, 17 November 2013, and 19 April 2011 as well as an ensemble forecast of the 29 June 2012 event using the Weather Research and Forecasting (WRF) model. Lightning data are assimilated over the first 3 hours of the forecasts, and the subsequent impact on forecast quality is evaluated. The nudged deterministic simulations for all events produce composite reflectivity fields that are closer to observations. For the ensemble forecasts of the 29 June 2012 event, the improvement in forecast quality from lightning assimilation is more subtle than for the deterministic forecasts, suggesting that the lightning assimilation may improve ensemble convective forecasts where conventional observations (e.g., aircraft, surface, radiosonde, satellite) are less dense or unavailable.

  13. Doppler radar echoes of lightning and precipitation at vertical incidence

    NASA Technical Reports Server (NTRS)

    Zrnic, D. S.; Rust, W. D.; Taylor, W. L.

    1982-01-01

    Digital time series data at 16 heights within two storms were collected at vertical incidence with a 10-cm Doppler radar. On several occasions during data collection, lightning echoes were observed as increased reflectivity on an oscilloscope display. Simultaneously, lightning signals from nearby electric field change antennas were recorded on an analog recorder together with the radar echoes. Reflectivity, mean velocity, and Doppler spectra were examined by means of time series analysis for times during and after lightning discharges. Spectra from locations where lightning occurred show peaks, due to the motion of the lightning channel at the air speed. These peaks are considerably narrower than the ones due to precipitation. Besides indicating the vertical air velocity that can then be used to estimate hydrometeor-size distribution, the lightning spectra provide a convenient means to estimate the radar cross section of the channel. Subsequent to one discharge, we deduce that a rapid change in the orientation of hydrometeors occurred within the resolution volume.

  14. Lightning current detector

    NASA Technical Reports Server (NTRS)

    Livermore, S. F. (Inventor)

    1978-01-01

    An apparatus for measuring the intensity of current produced in an elongated electrical conductive member by a lightning strike for determining the intensity of the lightning strike is presented. The apparatus includes an elongated strip of magnetic material that is carried within an elongated tubular housing. A predetermined electrical signal is recorded along the length of said elongated strip of magnetic material. One end of the magnetic material is positioned closely adjacent to the electrically conductive member so that the magnetic field produced by current flowing through said electrically conductive member disturbs a portion of the recorded electrical signal directly proportional to the intensity of the lightning strike.

  15. Cosmic rays, solar activity, magnetic coupling, and lightning incidence

    NASA Technical Reports Server (NTRS)

    Ely, J. T. A.

    1984-01-01

    A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.

  16. Global lightning studies

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Wright, Pat; Christian, Hugh; Blakeslee, Richard; Buechler, Dennis; Scharfen, Greg

    1991-01-01

    The global lightning signatures were analyzed from the DMSP Optical Linescan System (OLS) imagery archived at the National Snow and Ice Data Center. Transition to analysis of the digital archive becomes available and compare annual, interannual, and seasonal variations with other global data sets. An initial survey of the quality of the existing film archive was completed and lightning signatures were digitized for the summer months of 1986 to 1987. The relationship is studied between: (1) global and regional lightning activity and rainfall, and (2) storm electrical development and environment. Remote sensing data sets obtained from field programs are used in conjunction with satellite/radar/lightning data to develop and improve precipitation estimation algorithms, and to provide a better understanding of the co-evolving electrical, microphysical, and dynamical structure of storms.

  17. Shuttle Communications and Tracking, Avionics, and Electromagnetic Compatibility

    NASA Technical Reports Server (NTRS)

    deSilva, K.; Hwu, Shian; Kindt, Kaylene; Kroll, Quin; Nuss, Ray; Romero, Denise; Schuler, Diana; Sham, Catherine; Scully, Robert

    2011-01-01

    By definition, electromagnetic compatibility (EMC) is the capability of components, sub-systems, and systems, to operate in their intended electromagnetic environment, within an established margin of safety, and at design levels of performance. Practice of the discipline itself incorporates knowledge of various aspects of applied physics, materials science, and engineering across the board, and includes control and mitigation of undesirable electromagnetic interaction between intentional and unintentional emitters and receivers of radio frequency energy, both within and external to the vehicle; identification and control of the hazards of non-ionizing electromagnetic radiation to personnel, ordnance, and fuels and propellants; and vehicle and system protection from the direct and indirect effects of lightning and various other forms of electrostatic discharge (ESD) threats, such as triboelectrification and plasma charging. EMC is extremely complex and far-reaching, affecting in some degree every aspect of the vehicle s design and operation. The most successful efforts incorporate EMC design features and techniques throughout design and fabrication of the vehicle s structure and components, as well as appropriate operational considerations with regard to electromagnetic threats in the operational environment, from the beginning of the design effort to the end of the life cycle of the manufactured product. This approach yields the highest design performance with the lowest cost and schedule impact.

  18. New mechanism for lightning initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roussel-Dupre, R.; Buchwald, M.; Gurevich, A.

    1996-10-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). To distinguish radio-frequency (rf) signals generated by lightning from the electromagnetic pulse produced by a nuclear explosion, it is necessary to understand the fundamental nature of thunderstorm discharges. The recent debate surrounding the origin of transionospheric pulse pairs (TIPPs) detected by the BLACKBEARD experiment aboard the ALEXIS satellite illustrates this point. We have argued that TIPP events could originate from the upward propagating discharges recently identified by optical images taken from the ground, from airplanes, and from the spacemore » shuttle. In addition, the Gamma Ray Observatory (GRO) measurements of x-ray bursts originating from thunderstorms are almost certainly associated with these upward propagating discharges. When taken together, these three measurements point directly to the runaway electron mechanism as the source of the upward discharges. The primary goal of this research effort was to identify the specific role played by the runaway-air-breakdown mechanism in the general area of thunderstorm electricity and in so doing develop lightning models that predict the optical, rf, and x-ray emissions that are observable from space.« less

  19. Common Gamma-ray Glows above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  20. Measurement of RF lightning emissions

    NASA Technical Reports Server (NTRS)

    Lott, G. K., Jr.; Honnell, M. A.; Shumpert, T. H.

    1981-01-01

    A lightning radio emission observation laboratory is described. The signals observed and recorded include HF, VHF and UHF radio emissions, optical signature, electric field measurements, and thunder. The objectives of the station, the equipment used, and the recording methods are discussed.

  1. Packaging Waste and Hitting Home Runs: How Education and Lightning Strike Detection Technology Supports Company and Community Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deecke, T.A.; Hyde, J.V.; Hylko, J.M.

    2006-07-01

    The weather is the most significant and unmanageable variable when performing environmental remediation activities. This variable can contribute to the failure of a project in two ways: 1) severe injury to an employee or employees following a cloud-to-ground lightning strike without prior visual or audible warnings; and 2) excessive 'down time' associated with mobilization and demobilization activities after a false alarm (e.g., lightning was seen in the distance but was actually moving away from the site). Therefore, in order for a project to be successful from both safety and financial viewpoints, the uncertainties associated with inclement weather, specifically lightning, needmore » to be understood to eliminate the element of surprise. This paper discusses educational information related to the history and research of lightning, how lightning storms develop, types of lightning, the mechanisms of lightning injuries and fatalities, and follow-up medical treatment. Fortunately, lightning storm monitoring does not have to be either costly or elaborate. WESKEM, LLC selected the Boltek StormTracker Lightning Detection System with the Aninoquisi Lightning 2000{sup TM} software. This fixed system, used in combination with online weather web pages, monitors and alarms WESKEM, LLC field personnel in the event of an approaching lightning storm. This application was expanded to justify the purchase of the hand-held Sky Scan Lightning/Storm Detector Model P5 used by the Heath Youth Athletic Association (HYAA) which is a non-profit, charitable organization offering sports programs for the youth and young adults in the local community. Fortunately, a lightning injury or fatality has never occurred on a WESKEM Paducah project or an HYAA-sponsored event. Using these fixed and hand-held systems will continue to prevent such injuries from occurring in the foreseeable future. (authors)« less

  2. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.

    1981-01-01

    Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.

  3. Forecasting Lightning Threat using Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Goodman, Steven J.; LaCasse, Katherine M.; Cecil, Daniel J.

    2008-01-01

    Two new approaches are proposed and developed for making time and space dependent, quantitative short-term forecasts of lightning threat, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the WRF model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed phase region at the-15 C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash rate proxy fields against domain-wide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. Our blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Exploratory tests for selected North Alabama cases show that, because WRF can distinguish the general character of most convective events, our methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models,the techniques proposed herein should continue to be applicable as newer and more accurate physically-based model versions, physical parameterizations, initialization techniques and ensembles of forecasts become available.

  4. Near surface gamma-ray and electric field enhancements during disturbed weather: combined signatures from convective clouds, lightning and rain

    NASA Astrophysics Data System (ADS)

    Reuveni, Yuval; Yair, Yoav; Price, Colin; Steinitz, Gideon

    2017-04-01

    We present correlations found between ground-level gamma-ray enhancements with precipitation and strong electric fields typical of thunderstorms. The data was obtained at the Cosmic Ray Observatory located on the western slopes of Mt. Hermon in northern Israel (altitude 2020 m ASL). During several thunderstorms in October and November 2015, we recorded extended periods of gamma ray enhancements, which lasted tens of minutes and coincided with peaks both in precipitation and the vertical electric field (Ez). We distinguish between two types of events based on the behavior of these parameters: (a) slow increase (up to 300 minutes) of atmospheric gamma ray radiation due to radon progeny washout along with minutes of Ez enhancement, which were not associated with the occurrences of near-by CG lightning discharges, and (b) rapid 30 minutes-long bursts of gamma rays, coinciding with much shorter Ez enhancements that were associated with the occurrences of near-by CG lightning discharges, and were superimposed on the radiation from radon daughters at ground level washed out by precipitation. We conclude that the superposition of accelerated high energy electrons by thunderstorm electric fields with the radon progeny washout explains the relatively fast gamma-ray increase observed at ground level, where the minutes-scale vertical electric field enhancement are presumably caused due to near-by convective clouds. Our results show that the mean half-life depletion times of the residual nuclei that were produced during events without lightning occurrences were between 25-65 minutes, compared to 55-100 minutes when lightning were present, indicating that different types of nuclei were involved.

  5. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    NASA Technical Reports Server (NTRS)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey

    2015-01-01

    Lightning one of the most dangerous weather-related phenomena, especially as many jobs and activities occur outdoors, presenting risk from a lightning strike. Cloud-to-ground (CG) lightning represents a considerable safety threat to people at airfields, marinas, and outdoor facilities-from airfield personnel, to people attending outdoor stadium events, on beaches and golf courses, to mariners, as well as emergency personnel. Holle et al. (2005) show that 90% of lightning deaths occurred outdoors, while 10% occurred indoors despite the perception of safety when inside buildings. Curran et al. (2000) found that nearly half of fatalities due to weather were related to convective weather in the 1992-1994 timeframe, with lightning causing a large component of the fatalities, in addition to tornadoes and flash flooding. Related to the aviation industry, CG lightning represents a considerable hazard to baggage-handlers, aircraft refuelers, food caterers, and emergency personnel, who all become exposed to the risk of being struck within short time periods while convective storm clouds develop. Airport safety protocols require that ramp operations be modified or discontinued when lightning is in the vicinity (typically 16 km), which becomes very costly and disruptive to flight operations. Therefore, much focus has been paid to nowcasting the first-time initiation and extent of lightning, both of CG and of any lightning (e.g, in-cloud, cloud-to-cloud). For this project three lightning nowcasting methodologies will be combined: (1) a GOESbased 0-1 hour lightning initiation (LI) product (Harris et al. 2010; Iskenderian et al. 2012), (2) a High Resolution Rapid Refresh (HRRR) lightning probability and forecasted lightning flash density product, such that a quantitative amount of lightning (QL) can be assigned to a location of expected LI, and (3) an algorithm that relates Pseudo-GLM data (Stano et al. 2012, 2014) to the so-called "lightning jump" (LJ) methodology (Shultz et al. 2011) to monitor lightning trends and to anticipate/forecast severe weather (hail > or =2.5 cm, winds > or =25 m/s, tornadoes). The result will be a time-continuous algorithm that uses GOES satellite, radar fields, and HRRR model fields to nowcast first-flash LI and QL, and subsequently monitors lightning trends on a perstorm basis within the LJ algorithm for possible severe weather occurrence out to > or =3 hours. The LI-QL-LJ product will also help prepare the operational forecast community for Geostationary Lightning Mapper (GLM) data expected in late 2015, as these data are monitored for ongoing convective storms. The LI-QL-LJ product will first predict where new lightning is highly probable using GOES imagery of developing cumulus clouds, followed by n analysis of NWS (dual-polarization) radar indicators (reflectivity at the -10 C altitude) of lightning occurrence, to increase confidence that LI is immanent. Once lightning is observed, time-continuous lightning mapping array and Pseudo-GLM observations will be analyzed to assess trends and the severe weather threat as identified by trends in lightning (i.e. LJs). Additionally, 5- and 15-min GOES imagery will then be evaluated on a per-storm basis for overshooting and other cloud-top features known to be associated with severe storms. For the processing framework, the GOES-R 0-1 hour convective initiation algorithm's output will be developed within the Warning Decision Support System - Integrated Information (WDSS-II) tracking tool, and merged with radar and lightning (LMA/Psuedo-GLM) datasets for active storms. The initial focus of system development will be over North Alabama for select lightning-active days in summer 2014, yet will be formed in an expandable manner. The lightning alert tool will also be developed in concert with National Weather Service (NWS) forecasters to meet their needs for real-time, accurate first-flash LI and timing, as well as anticipated lightning trends, amounts, continuation and cessation, so to provide key situational awareness and decision support information. The NASA Short-term Prediction Research and Transition (SPoRT) Center will provide important logistical and collaborative support and training, involving interactions with the NWS and broader user community.

  6. Summary of lightning activities by NASA for the Apollo Soyuz test project: Supplement no. 1 to Apollo Soyuz mission evaluation report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    To avoid the possibility of an unnecessary launch delay, a special program was initiated to provide aircraft measurement of electric fields at various altitudes over the Apollo vehicle launch pad. Eight aircraft, each equipped with electric field meters, were used in the program. This program and some of the more important findings are discussed. Also included is a summary of the history of manned space vehicle involvement with lightning, a brief description of the lightning instrumentation in use at KSC (Kennedy Space Center) at the time of the Apollo Soyuz mission and a discussion of the airborne instrumentation and related data.

  7. Z-M in Lightning Forecasting

    DTIC Science & Technology

    2009-03-01

    hydrometers create a charge separation. Inductive processes rely on a preexisting external electric field to induce charges on polarized particles, which...frozen hydrometers . A. FLORIDA CLIMATE Florida is often referred to as the lightning capital of the United States (Hodanish et al. 1997) or

  8. Mars' Magnetic Atmosphere: Ionospheric Currents, Lightning (or Not), E and M Subsurface Sounding, and Future Missions

    NASA Technical Reports Server (NTRS)

    Espley, J. R.; Connerney, J. E. P.

    2014-01-01

    Mars' ionosphere has no obvious magnetic signs of large-scale, dustproduced lightning. However, there are numerous interesting ionospheric currents (some associated with crustal magnetic fields) which would allow for E&M subsurface sounding.

  9. An overview of VHF lightning observations by digital interferometry from ISS/JEM-GLIMS

    NASA Astrophysics Data System (ADS)

    Morimoto, Takeshi; Kikuchi, Hiroshi; Sato, Mitsuteru; Ushio, Tomoo; Yamazaki, Atsushi; Suzuki, Makoto; Ishida, Ryohei; Sakamoto, Yuji; Yoshida, Kazuya; Hobara, Yasuhide; Sano, Takuki; Abe, Takumi; Kawasaki, Zen-Ichiro

    2016-08-01

    The Global Lightning and sprIte MeasurementS (GLIMS) mission has been conducted at the Exposed Facility of Japanese Experiment Module (JEM-EF) of the International Space Station for more than 30 months. This paper focuses on an electromagnetic (EM) payload of JEM-GLIMS mission, the very high frequency (VHF) broadband digital InTerFerometer (VITF). The JEM-GLIMS mission is designed to conduct comprehensive observations with both EM and optical payloads for lightning activities and related transient luminous events. Its nominal operation continued from November 2012 to December 2014. The extended operation followed for eight months. Through the operation period, the VITF collected more than two million VHF EM waveforms in almost 18,700 datasets. The number of VITF observations synchronized with optical signal is 8049. Active VHF radiations are detected in about 70 % of optical observations without obvious regional or seasonal dependency. Estimations of the EM direction-of-arrival (DOA) are attempted using the broadband digital interferometry. Some results agree with the optical observations, even though DOA estimation is problematic because of a very short antenna baseline and multiple pulses over a short time period, namely burst-type EM waveforms. The world's first lightning observations by means of space-borne VHF interferometry are achieved in this mission. This paper summarizes VITF instruments, the recorded VHF EM signals, and the results of DOA estimations by means of digital interferometry as a preliminary report after termination of the mission.[Figure not available: see fulltext.

  10. Long-lasting upper D-region ionospheric modifications caused by intense +/- CG lightning discharges

    NASA Astrophysics Data System (ADS)

    Haldoupis, Christos

    2013-04-01

    In a recent Geophysical Research Letter we have presented observations from a single maritime storm showing that intense positive cloud-to-ground (+CG) lightning discharges during nighttime, which trigger both an elve and a sprite, are associated with long-lasting conductivity modifications in the upper D-region ionosphere. The ionospheric disturbances can be observed as perturbations in the amplitude and phase of VLF (very low frequency) signals propagating through or near the disturbed region. They are manifested as LOng Recovery early VLF Events (LOREs) which can last up to 20 - 30 minutes. The same ionospheric modifications may also produce abrupt step-like changes in VLF transmissions which offset signal levels for longer times (>30-60 min). Here we discuss these observations supplementing them with new evidence and some statistics. Among other things, the unpublished results show that very intense (currents > 250-300 kA) CG lightning discharges of either positive or negative polarity are always accompanied mainly by step-like LOREs. The evidence suggests that the electromagnetic pulse (EMP) of a very high peak current CG lightning stroke, which is likely able to produce an elve, produces by electron impact long lasting and spatially extended elevations in electron density at VLF ionospheric reflection heights in the upper D region ionosphere. The results identify a mechanism for the LORE VLF signatures and confirm predictions and postulations that elves may be accompanied by significant and long-lasting electron density perturbations in the upper D- lower E- region ionosphere.

  11. Effects of Lightning Injection on Power-MOSFETs

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Saha, Sankalita; Wysocki, Phil; Ely, Jay; Nguyen, Truong; Szatkowski, George; Koppen, Sandra; Mielnik, John; Vaughan, Roger; Goebel, Kai

    2009-01-01

    Lightning induced damage is one of the major concerns in aircraft health monitoring. Such short-duration high voltages can cause significant damage to electronic devices. This paper presents a study on the effects of lightning injection on power metal-oxide semiconductor field effect transistors (MOSFETs). This approach consisted of pin-injecting lightning waveforms into the gate, drain and/or source of MOSFET devices while they were in the OFF-state. Analysis of the characteristic curves of the devices showed that for certain injection modes the devices can accumulate considerable damage rendering them inoperable. Early results demonstrate that a power MOSFET, even in its off-state, can incur considerable damage due to lightning pin injection, leading to significant deviation in its behavior and performance, and to possibly early device failures.

  12. A stepped leader model for lightning including charge distribution in branched channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wei; Zhang, Li; Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn

    2014-09-14

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statisticsmore » of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.« less

  13. Lightning attachment process to common buildings

    NASA Astrophysics Data System (ADS)

    Saba, M. M. F.; Paiva, A. R.; Schumann, C.; Ferro, M. A. S.; Naccarato, K. P.; Silva, J. C. O.; Siqueira, F. V. C.; Custódio, D. M.

    2017-05-01

    The physical mechanism of lightning attachment to grounded structures is one of the most important issues in lightning physics research, and it is the basis for the design of the lightning protection systems. Most of what is known about the attachment process comes from leader propagation models that are mostly based on laboratory observations of long electrical discharges or from observations of lightning attachment to tall structures. In this paper we use high-speed videos to analyze the attachment process of downward lightning flashes to an ordinary residential building. For the first time, we present characteristics of the attachment process to common structures that are present in almost every city (in this case, two buildings under 60 m in São Paulo City, Brazil). Parameters like striking distance and connecting leaders speed, largely used in lightning attachment models and in lightning protection standards, are revealed in this work.Plain Language SummarySince the time of Benjamin Franklin, no one has ever recorded high-speed video images of a lightning connection to a common building. It is very difficult to do it. Cameras need to be very close to the structure chosen to be observed, and long observation time is required to register one lightning strike to that particular structure. Models and theories used to determine the zone of protection of a lightning rod have been developed, but they all suffer from the lack of field data. The submitted manuscript provides results from high-speed video observations of lightning attachment to low buildings that are commonly found in almost every populated area around the world. The proximity of the camera and the high frame rate allowed us to see interesting details that will improve the understanding of the attachment process and, consequently, the models and theories used by lightning protection standards. This paper also presents spectacular images and videos of lightning flashes connecting lightning rods that will be of interest not only to the lightning physics scientific community and to engineers that struggle with lightning protection but also to all those who want to understand how a lightning rod works.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28322263','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28322263"><span>Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo</p> <p>2017-03-21</p> <p>The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO 2 /water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO 2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO 2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart's law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5359576','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5359576"><span>Causal mechanisms of seismo-EM phenomena during the 1965–1967 Matsushiro earthquake swarm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo</p> <p>2017-01-01</p> <p>The 1965–1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities. PMID:28322263</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...744774E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...744774E"><span>Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo</p> <p>2017-03-01</p> <p>The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023389','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023389"><span>Surface wind convergence as a short-term predictor of cloud-to-ground lightning at Kennedy Space Center: A four-year summary and evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Watson, Andrew I.; Holle, Ronald L.; Lopez, Raul E.; Nicholson, James R.</p> <p>1991-01-01</p> <p>Since 1986, USAF forecasters at NASA-Kennedy have had available a surface wind convergence technique for use during periods of convective development. In Florida during the summer, most of the thunderstorm development is forced by boundary layer processes. The basic premise is that the life cycle of convection is reflected in the surface wind field beneath these storms. Therefore the monitoring of the local surface divergence and/or convergence fields can be used to determine timing, location, longevity, and the lightning hazards which accompany these thunderstorms. This study evaluates four years of monitoring thunderstorm development using surface wind convergence, particularly the average over the area. Cloud-to-ground (CG) lightning is related in time and space with surface convergence for 346 days during the summers of 1987 through 1990 over the expanded wind network at KSC. The relationships are subdivided according to low level wind flow and midlevel moisture patterns. Results show a one in three chance of CG lightning when a convergence event is identified. However, when there is no convergence, the chance of CG lightning is negligible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE33A2521G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE33A2521G"><span>GLM Post Launch Testing and Airborne Science Field Campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodman, S. J.; Padula, F.; Koshak, W. J.; Blakeslee, R. J.</p> <p>2017-12-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. The Geostationary Lightning Mapper (GLM) is a wholly new instrument that provides a capability for total lightning detection (cloud and cloud-to-ground flashes). The first satellite in the GOES-R series, now GOES-16, was launched in November 2016 followed by in-orbit post launch testing for approximately 12 months before being placed into operations replacing the GOES-E satellite in December. The GLM will map total lightning continuously throughout day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. The total lightning is very useful for identifying hazardous and severe thunderstorms, monitoring storm intensification and tracking evolution. Used in tandem with radar, satellite imagery, and surface observations, total lightning data has great potential to increase lead time for severe storm warnings, improve aviation safety and efficiency, and increase public safety. In this paper we present initial results from the post-launch in-orbit performance testing, airborne science field campaign conducted March-May, 2017 and assessments of the GLM instrument and science products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1323377','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1323377"><span>National Athletic Trainers' Association Position Statement: Lightning Safety for Athletics and Recreation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Walsh, Katie M.; Bennett, Brian; Cooper, Mary Ann; Holle, Ronald L.; Kithil, Richard; López, Raul E.</p> <p>2000-01-01</p> <p>Objective: To educate athletic trainers and others about the dangers of lightning, provide lightning-safety guidelines, define safe structures and locations, and advocate prehospital care for lightning-strike victims. Background: Lightning may be the most frequently encountered severe-storm hazard endangering physically active people each year. Millions of lightning flashes strike the ground annually in the United States, causing nearly 100 deaths and 400 injuries. Three quarters of all lightning casualties occur between May and September, and nearly four fifths occur between 10:00 AM and 7:00 PM, which coincides with the hours for most athletic or recreational activities. Additionally, lightning casualties from sports and recreational activities have risen alarmingly in recent decades. Recommendations: The National Athletic Trainers' Association recommends a proactive approach to lightning safety, including the implementation of a lightning-safety policy that identifies safe locations for shelter from the lightning hazard. Further components of this policy are monitoring local weather forecasts, designating a weather watcher, and establishing a chain of command. Additionally, a flash-to-bang count of 30 seconds or more should be used as a minimal determinant of when to suspend activities. Waiting 30 minutes or longer after the last flash of lightning or sound of thunder is recommended before athletic or recreational activities are resumed. Lightning- safety strategies include avoiding shelter under trees, avoiding open fields and spaces, and suspending the use of land-line telephones during thunderstorms. Also outlined in this document are the prehospital care guidelines for triaging and treating lightning-strike victims. It is important to evaluate victims quickly for apnea, asystole, hypothermia, shock, fractures, and burns. Cardiopulmonary resuscitation is effective in resuscitating pulseless victims of lightning strike. Maintenance of cardiopulmonary resuscitation and first-aid certification should be required of all persons involved in sports and recreational activities. PMID:16558665</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE42A..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE42A..01C"><span>Fifty Years of Lightning Observations from Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christian, H. J., Jr.</p> <p>2017-12-01</p> <p>Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected lightning using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect lightning was the PBE (1977). The use of space to study lightning activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to develop high performance optical lightning sensors. Prior to the use of charged-coupled devices (CCD), most space-based lightning sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the lightning produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first lightning sensors to utilize focal-plane arrays. Together they detected global lightning activity for more than twenty years, providing the first detailed information on the distribution of global lightning and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical lightning emissions. It too used a CCD focal plane to detect and locate lightning. In November 2016, the GLM became the first lightning instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. Lightning sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, lightning activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard lightning, a number of sensors have been placed in orbit to detect transient luminous events and tropospheric gamma-ray flashes. A lineal history of space-based lightning observations will be presented as well as a discussion of the scientific contributions made possible by these instruments. In addition, relative merits of space versus ground measurements will be addressed, as well as an effort to demonstrate the complementary nature of the two approaches.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900024786&hterms=stroke&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dstroke','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900024786&hterms=stroke&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dstroke"><span>Comparison of fast electric field changes from subsequent return strokes of natural and triggered lightning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Le Vine, D. M.; Willett, J. C.; Bailey, J. C.</p> <p>1989-01-01</p> <p>Fast electric field changes from subsequent return strokes of natural and triggered lightning with propagation paths almost entirely over water are compared. Data were collected at the Kennedy Space Center, Florida, during the summer of 1987. Comparisons have been made of the average shape, the risetime, and the spectrum of the electric field changes. To a first approximation, the waveforms are very similar; however, the electric field changes from the triggered flashes tend to rise to peak faster and decay faster than do their counterparts in natural cloud-to-ground flashes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870036424&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2526%25231087','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870036424&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2526%25231087"><span>Venus - Dead or alive?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, Harry A., Jr.; Cloutier, Paul A.</p> <p>1986-01-01</p> <p>In situ nightside electric field observations from the Pioneer Venus Orbiter have been interpreted as evidence of extensive lightning in the lower atmosphere of Venus. The scenario, including proposed evidence of clustering of lightning over surface highland regions, has encouraged the acceptance of currently active volcanic output as part of several investigations of the dynamics and chemistry of the atmosphere and the geology of the planet. However, the correlation between the 100-hertz electric field events attributed to lightning and nightside ionization troughs resulting from the interaction of the solar wind with the ionosphere indicates that the noise results from locally generated plasma instabilities and not from any behavior of the lower atmosphere. Furthemore, analysis of the spatial distribution of the noise shows that it is not clustered over highland topography, but rather occurs at random throughout the latitude and longitude regions sampled by the orbiter during the first 5 years of operation, from 1978 to 1984. Thus the electric field observations do not identify lightning and do not provide a basis for inferring the presence of currently active volcanic output. In the absence of known evidence to the contrary, it appears that Venus is no longer active.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE11A..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE11A..01G"><span>The GOES-R Geostationary Lightning Mapper (GLM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodman, S. J.; Blakeslee, R. J.; Koshak, W. J.; Mach, D. M.; Bailey, J. C.; Buechler, D. E.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; McCaul, E., Jr.; Stano, G. T.</p> <p>2012-12-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning activity (in-cloud and cloud-to-ground lightning flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low earth orbit, and from ground-based lightning networks and intensive pre-launch field campaigns. GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extends their combined climatology over the western hemisphere into the coming decades. Science and application development along with pre-operational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings. Results from recent field campaigns and forecaster evaluations on the utility of the total lightning products will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE33A2522F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE33A2522F"><span>Simulating Realistic Test Data for the European Lightning Imager on MTG using Data from Seviri, TRMM-LIS and ISS-LIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finke, U.; Blakeslee, R. J.; Mach, D. M.</p> <p>2017-12-01</p> <p>The next generation of European geostationary weather observing satellites (MTG) will operate an optical lightning location instrument (LI) which will be very similar to the Global Lightning Mapper (GLM) on board of GOES-R. For the development and verification of the product processing algorithms realistic test data are necessary. This paper presents a method of test data generation on the basis of optical lightning data from the LIS instrument and cloud image data from the Seviri radiometer.The basis is the lightning data gathered during the 15 year LIS operation time, particularly the empirical distribution functions of the optical pulse size, duration and radiance as well as the inter-correlation of lightning in space and time. These allow for a realistically structured simulation of lightning test data. Due to its low orbit the instantaneous field of view of the LIS is limited and moving with time. For the generation of test data which cover the geostationary visible disk, the LIS data have to be extended. This is realized by 1. simulating random lightning pulses according to the established distribution functions of the lightning parameters and 2. using the cloud radiometer data of the Seviri instrument on board of the geostationary Meteosat second generation (MSG). Particularly, the cloud top height product (CTH) identifies convective storm clouds wherein the simulation places random lightning pulses. The LIS instrument was recently deployed on the International Space Station (ISS). The ISS orbit reaches higher latitudes, particularly Europe. The ISS-LIS data is analyzed for single observation days. Additionally, the statistical distribution of parameters such as radiance, footprint size, and space time correlation of the groups are compared against the long time statistics from TRMM-LIS.Optical lightning detection efficiency from space is affected by the solar radiation reflected from the clouds. This effect is changing with day and night areas across the field of view. For a realistic simulation of this cloud background radiance the Seviri visual channel VIS08 data is used.Additionally to the test data study, this paper gives a comparison of the MTG-LI to the GLM and discusses differences in instrument design, product definition and generation and the merging of data from both geostationary instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023383','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023383"><span>A system for mapping sources of VHF and electric field pulses from in-cloud lightning at KSC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomson, Ewen M.; Medelius, Pedro J.</p> <p>1991-01-01</p> <p>The literature concerning VHF radiation and wideband electric fields from in-cloud lightning is reviewed. VHF location systems give impressive radio images of lightning in clouds with high spatial and temporal resolution. Using systems based on long and short baseline time-or-arrival and interferometry, workers have detected VHF sources that move at speeds of 10(exp 5) to 10(exp 8) m/s. The more slowly moving sources appear to be associated with channel formation but the physical basis for the higher speeds is not clear. In contrast, wideband electric fields are directly related to physical parameters such as current and tortuosity. A long baseline system is described to measure simultaneously VHF radiation and wideband electric fields at five stations at Kennedy Space Center. All signals are detected over remote, isolated ground planes with fiber optics for data transmission. The modification of this system to map rapidly varying dE/dt pulses is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910012990','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910012990"><span>RSRM top hat cover simulator lightning test, volume 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1990-01-01</p> <p>The test sequence was to measure electric and magnetic fields induced inside a redesigned solid rocket motor case when a simulated lightning discharge strikes an exposed top hat cover simulator. The test sequence was conducted between 21 June and 17 July 1990. Thirty-six high rate-of-rise Marx generator discharges and eight high current bank discharges were injected onto three different test article configurations. Attach points included three locations on the top hat cover simulator and two locations on the mounting bolts. Top hat cover simulator and mounting bolt damage and grain cover damage was observed. Overall electric field levels were well below 30 kilowatts/meter. Electric field levels ranged from 184.7 to 345.9 volts/meter and magnetic field levels were calculated from 6.921 to 39.73 amperes/meter. It is recommended that the redesigned solid rocket motor top hat cover be used in Configuration 1 or Configuration 2 as an interim lightning protection device until a lightweight cover can be designed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1320238','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1320238"><span>A Survey of Lightning Policy in Selected Division I Colleges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Walsh, Katie M.; Hanley, Michael J.; Graner, Susanne J.; Beam, Dwayne; Bazluki, Jim</p> <p>1997-01-01</p> <p>Objective: The purpose of this research was to investigate the hazards of lightning for participants in outdoor athletics and to determine the existence of, and assess the nature of, lightning safety policy at the collegiate level. Design and Setting: We used data from the National Severe Storms Laboratory in Norman, Oklahoma, and from a survey of Division I institutions. Subjects: The 48 National Collegiate Athletic Association Division I (football) universities in Florida, Michigan, Pennsylvania, North Carolina, and New York. Measurements: Athletic trainers at all of the selected 48 Division I institutions responded to the telephone survey. Results: Florida, Michigan, Pennsylvania, North Carolina, and New York led the country in lightning deaths and injuries from 1959-1994. Only 8% (n = 4) of the institutions surveyed in these states have a written policy regarding lightning safety. Conclusions: This study demonstrated the lack of lightning safety policy in the surveyed universities and the need for a systematic plan of action to make fields safer for all who are involved in outdoor sport activities. PMID:16558450</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSMAE11A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSMAE11A..03M"><span>Modern Protection Against Lightning Strikes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, C.</p> <p>2005-05-01</p> <p>The application of science to provide protection against lightning strikes began around 1750 when Benjamin Franklin who invented the lightning rod in an effort to discharge thunderclouds. Instead of preventing lightning as he expected, his rods have been quite successful as strike receptors, intercepting cloud-to ground discharges and conducting them to Earth without damage to the structures on which they are mounted. In the years since Franklin's invention there has been little attention paid to the rod configuration that best serves as a strike receptor but Franklin's original ideas continue to be rediscovered and promoted. Recent measurements of the responses of variously configured rods to nearby strikes indicate that sharp-tipped rods are not the optimum configuration to serve as strike receptors since the ionization of the air around their tips limits the strength of the local electric fields created by an approaching lightning leader. In these experiments, fourteen blunt-tipped rods exposed in strike-reception competitions with nearby sharp-tipped rods were struck by lightning but none of the sharp-tipped rods were struck.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890010408','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890010408"><span>Generalized three-dimensional experimental lightning code (G3DXL) user's manual</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kunz, Karl S.</p> <p>1986-01-01</p> <p>Information concerning the programming, maintenance and operation of the G3DXL computer program is presented and the theoretical basis for the code is described. The program computes time domain scattering fields and surface currents and charges induced by a driving function on and within a complex scattering object which may be perfectly conducting or a lossy dielectric. This is accomplished by modeling the object with cells within a three-dimensional, rectangular problem space, enforcing the appropriate boundary conditions and differencing Maxwell's equations in time. In the present version of the program, the driving function can be either the field radiated by a lightning strike or a direct lightning strike. The F-106 B aircraft is used as an example scattering object.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910016241','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910016241"><span>Analysis of lightning field changes produced by Florida thunderstorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William John</p> <p>1991-01-01</p> <p>A new method is introduced for inferring the charges deposited in a lightning flash. Lightning-caused field changes (delta E's) are described by a more general volume charge distribution than is defined on a large cartesian grid system centered above the measuring networks. It is shown that a linear system of equations can be used to relate delta E's at the ground to the values of charge on this grid. It is possible to apply more general physical constraints to the charge solutions, and it is possible to access the information content of the delta E data. Computer-simulated delta E inversions show that the location and symmetry of the charge retrievals are usually consistent with the known test sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM51B2462Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM51B2462Z"><span>On the interactions between energetic electrons and lightning whistler waves observed at high L-shells on Van Allen Probes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.</p> <p>2017-12-01</p> <p>Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840026782','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840026782"><span>Nighttime observations of thunderstorm electrical activity from a high altitude airplane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brook, M.; Vonnegut, B.; Orville, R. E.; Vaughan, O. H., Jr.</p> <p>1984-01-01</p> <p>Nocturnal thunderstorms were observed from above and features of cloud structure and lightning which are not generally visible from the ground are discussed. Most, lightning activity seems to be associated with clouds with strong convective cauliflower tops. In both of the storms lightning channels were visible in the clear air above the cloud. It is shown that substances produced by thunderstorm electrical discharges can be introduced directly into the stratosphere. The cause and nature of the discharges above the cloud are not clear. They may be produced by accumulations of space charge in the clear air above the cloud. The discharges may arise solely because of the intense electric fields produced by charges within the cloud. In the latter case the ions introduced by these discharges will increase the electrical conductivity of the air above the cloud and increase the conduction current that flows from the cloud to the electrosphere. More quantitative data at higher resolution may show significant spectral differences between cloud to ground and intracloud strokes. It is shown that electric field change data taken with an electric field change meter mounted in an airplane provide data on lightning discharges from above that are quite similar to those obtained from the ground in the past. The optical signals from dart leaders, from return strokes, and from continuing currents are recognizable, can be used to provide information on the fine structure of lightning, and can be used to distinguish between cloud to ground and intracloud flashes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JASTP.146...69W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JASTP.146...69W"><span>Statistical analysis of electric field parameters for negative lightning in Malaysia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wooi, Chin-Leong; Abdul-Malek, Zulkurnain; Ahmad, Noor-Azlinda; El Gayar, Ali I.</p> <p>2016-08-01</p> <p>This paper presents a comparative study on the electric field and its derivative parameters of negative lightning in Malaysia and other regions. This study is the first in Malaysia where the parameters of negative electric field and its derivative are thoroughly analyzed. 104 negative lightning flashes containing 277 negative return strokes occurring within 10-100 km from the measuring station and recorded during monsoon period in the state of Johor, Malaysia had been analyzed. It was found that 73% of the recorded flashes are multiple strokes with an average multiplicity of 2.6 strokes per flash. For first return strokes, the arithmetic mean (AM) of initial peak electric field and the AM of initial peak electric field derivative are 21.8 V/m and 11.3 V/m/μs, respectively. The initial peaks of electric field and its derivative for first return strokes are larger than those for the subsequent return strokes. Comparison of overall results with those obtained earlier in Sri Lanka, Germany, Sweden, Japan, Florida indicates that several electric field and its derivative parameters are affected by propagation media and geographical region. Similarity of results with other countries having the same climatic condition is also observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ESASP.702E..31P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ESASP.702E..31P"><span>A 3D Model to Compute Lightning and HIRF Coupling Effects on Avionic Equipment of an Aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perrin, E.; Tristant, F.; Guiffaut, C.; Terrade, F.; Reineix, A.</p> <p>2012-05-01</p> <p>This paper describes the 3D FDTD model of an aircraft developed to compute the lightning and HIRF (High Intentity Radiated Fields) coupling effects on avionic equipment and all the wire harness associated. This virtual prototype aims at assisting the aircraft manufacturer during the lightning and HIRF certification processes. The model presented here permits to cover a frequency range from lightning spectrum to the low frequency HIRF domain, i.e. 0 to 100 MHz. Moreover, the entire aircraft, including the frame, the skin, the wire harness and the equipment are taken into account in only one model. Results obtained are compared to measurements on a real aircraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28770051','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28770051"><span>Quantification and identification of lightning damage in tropical forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo</p> <p>2017-07-01</p> <p>Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the prevalence of communications towers worldwide, the lightning detection system described here could be implemented in diverse forest types. Data from multiple systems would provide an outstanding opportunity for comparative research on the ecological effects of lightning. Such comparative data are increasingly important given expected increases in lightning frequency with climatic change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1322284','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1322284"><span>Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Siefert, Christopher; Bochev, Pavel Blagoveston; Kramer, Richard Michael Jack</p> <p></p> <p>Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these modelsmore » can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020022489&hterms=thunder&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dthunder','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020022489&hterms=thunder&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dthunder"><span>Preliminary Design of a Lightning Optical Camera and ThundEr (LOCATE) Sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Phanord, Dieudonne D.; Koshak, William J.; Rybski, Paul M.; Arnold, James E. (Technical Monitor)</p> <p>2001-01-01</p> <p>The preliminary design of an optical/acoustical instrument is described for making highly accurate real-time determinations of the location of cloud-to-ground (CG) lightning. The instrument, named the Lightning Optical Camera And ThundEr (LOCATE) sensor, will also image the clear and cloud-obscured lightning channel produced from CGs and cloud flashes, and will record the transient optical waveforms produced from these discharges. The LOCATE sensor will consist of a full (360 degrees) field-of-view optical camera for obtaining CG channel image and azimuth, a sensitive thunder microphone for obtaining CG range, and a fast photodiode system for time-resolving the lightning optical waveform. The optical waveform data will be used to discriminate CGs from cloud flashes. Together, the optical azimuth and thunder range is used to locate CGs and it is anticipated that a network of LOCATE sensors would determine CG source location to well within 100 meters. All of this would be accomplished for a relatively inexpensive cost compared to present RF lightning location technologies, but of course the range detection is limited and will be quantified in the future. The LOCATE sensor technology would have practical applications for electric power utility companies, government (e.g. NASA Kennedy Space Center lightning safety and warning), golf resort lightning safety, telecommunications, and other industries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....14361H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....14361H"><span>Vertical Transport and Sources of Trace Gases in Thunderstorms around the World</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Höller, H.; Fehr, T.; Huntrieser, H.; Gatzen, C.; Friedrich, K.; Seltmann, J.; May, P.; Potts, R.; Held, G.; Gomes-Held, A.</p> <p>2003-04-01</p> <p>Vertical transport processes in thunderstorms have become an issue of increasing interest in recent years. A better quantitative knowledge of the re-distribution of pollutants from the boundary layer to the upper troposphere is important for regional and global climate studies. The lightning NOx source has been investigated recently by field experiments mainly in mid-latitudes. Growing interest is now in the role of tropical thunderstorms for NOx production. The present paper highlights results from recent measurements and field campaigns and will introduce some future research plans. The LINOX and EULINOX campaign on lightning produced NOx (LNOx) performed in Southern Germany gave indication on the importance of intra-cloud lightning for total LNOx. This result was in agreement with measurements from the STERAO campaign in Colorado. The upcoming TROCCINOX campaign will focus on NOx production in tropical storms. For parameterised representation on lightning and NOx in numerical models dynamical and microphysical properties of thunderstorms are important. This also holds for assessments of vertical transport and trace gas re-distribution. During summer of 2002 the field campaign VERTIKATOR was focussing on orografically induced storms in Southern Germany. Detailed radar and airborne observations of thunderstorms were obtained and will be used for discussing the transport processes. Thunderstorm related field experiments in tropical regions have also been performed recently. During EMERALD II dual Doppler radar, lightning as well as airborne observations were obtained in the Darwin region in Northern Australia. Brazilian storms in the Bauru (Sao Paulo) region may often be accompanied by heavy flooding. Case studies from these regions will be used as a first step of completing the global picture of NOx transports and production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE13B..04T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE13B..04T"><span>Observations of the ground-attachment process in natural lightning in the absence of tall strike objects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tran, M. D.; Rakov, V. A.</p> <p>2017-12-01</p> <p>Synchronized high-speed (124 or 210 kiloframes per second) video images and wideband electromagnetic field records of the attachment process were obtained for 4 negative strokes in natural lightning at the Lightning Observatory in Gainesville, Florida. The apparent strike objects were trees, whose heights were less than 30 m or so. Upward connecting leaders (UCLs) and multiple upward unconnected leaders were imaged in multiple frames. The majority of these upward positive leaders exhibited a pulsating behavior (brightening/fading cycles). UCLs, whose maximum extent ranged from 11 to 25 m, propagated at speeds ranging from 1.8×105 to 6.0×105 m/s with a mean of 3.4×105 m/s. Within about 100 m of the ground, the ratio of speeds of the downward negative leader and the corresponding UCL was about 3-4 for 2 events and 0.5 for 1 event. The breakthrough phase (BTP), corresponding to leader extensions inside the common streamer zone (CSZ), was imaged for 2 events. The initial length of CSZ was estimated to be about 30-40 m. For 2 events, estimated speeds of positive and negative leaders inside the CSZ were found to be between 2.4×106 and 3.7×106 m/s. For 1 event, opposite polarity leaders were observed to accelerate inside the CSZ. Further, in this same event, a space-leader-like formation, accompanied by significant intensification of UCL and apparently associated with the onset of BTP, was imaged. We speculate that the step-wise extension of the downward leader facilitated corona streamer bursts from both the downward negative and upward positive (UCL) leader tips, resulting in the establishment of CSZ. First speed profiles for colliding positive and negative leaders were obtained. In one event, the negative leader speed increased from 7.2 ×105 in virgin air to 2.5×106 (by a factor of 3.5), and then to 3.2×106 m/s just prior to the fast transition (FT) in the return-stroke field waveform. The positive leader accelerated from 1.8×105 (in virgin air) to 2.5×106 (by a factor of 14), and then to 3.2×106 m/s. Using integrated dB/dt waveforms, a transmission-line-type model, and peak current reported by the U.S. National Lightning Detection Network, we inferred the current increases during the BTP and FT to be on average 16 and 18 kA, respectively, indicating that these two processes contribute about equally to the overall current peak.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.172...69A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.172...69A"><span>Wakefield acceleration in planetary atmospheres: A possible source of MeV electrons. The collisionless case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arrayás, M.; Cubero, D.; Montanya, J.; Seviour, R.; Trueba, J. L.</p> <p>2018-07-01</p> <p>Intense electromagnetic pulses interacting with a plasma can create a wake of plasma oscillations. Electrons trapped in such oscillations can be accelerated under certain conditions to very high energies. We study the optimal conditions for the wakefield acceleration to produce MeV electrons in planetary plasmas under collisionless conditions. The conditions for the optimal plasma densities can be found in the Earth atmosphere at higher altitudes than 10-15 km, which are the altitudes where lightning leaders can take place.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA573900','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA573900"><span>Interaction with the Lower Ionosphere of Electromagnetic Pulses from Lightning: Heating, Attachment, Ionization, and Optical Emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-09-25</p> <p>using Opal et al. [1971] data on the secondary electron spectra and the ionization potential approximation used by Richards and Torr [1990]. The...N£ most easily detectable in the natural aurora [ Vallance Jones, 1974]. 4? 44 OPTICAL EMISSIONS To study optical emissions from the D region...here) are considered to be weak based on observed auroral spectra [ Vallance Jones, 1974; p. 90]. The intensity of t’-th line is given by [Chamberlain</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA171298','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA171298"><span>Interaction between EMP (Electromagnetic Pulses), Lightning and Static Electricity with Aircraft and Missile Avionics Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1986-05-01</p> <p>integral fuel tanks, the various conductors in the fuel systems (e.g. pipes, fuel gauge wiring etc.) can be a fuel explosion risk of very high currents...without sparking. The energy contained in the sparking is most certainly a grave fuel explosion risk . Similar hazards must be avoided with any wiring or...conductors parallel to the cable, transmission lines can be formed. This mehod can only be used for shielded cables. The shield must be accessible somewhere</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940000043&hterms=computer+industry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcomputer%2Bindustry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940000043&hterms=computer+industry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcomputer%2Bindustry"><span>Testing For EM Upsets In Aircraft Control Computers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Belcastro, Celeste M.</p> <p>1994-01-01</p> <p>Effects of transient electrical signals evaluated in laboratory tests. Method of evaluating nominally fault-tolerant, aircraft-type digital-computer-based control system devised. Provides for evaluation of susceptibility of system to upset and evaluation of integrity of control when system subjected to transient electrical signals like those induced by electromagnetic (EM) source, in this case lightning. Beyond aerospace applications, fault-tolerant control systems becoming more wide-spread in industry; such as in automobiles. Method supports practical, systematic tests for evaluation of designs of fault-tolerant control systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960020720','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960020720"><span>Lightning forecasting studies using LDAR, LLP, field mill, surface mesonet, and Doppler radar data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Forbes, Gregory S.; Hoffert, Steven G.</p> <p>1995-01-01</p> <p>The ultimate goal of this research is to develop rules, algorithms, display software, and training materials that can be used by the operational forecasters who issue weather advisories for daily ground operations and launches by NASA and the United States Air Force to improve real-time forecasts of lightning. Doppler radar, Lightning Detection and Ranging (LDAR), Lightning Location and Protection (LLP), field mill (Launch Pad Lightning Warning System -- LPLWS), wind tower (surface mesonet) and additional data sets have been utilized in 10 case studies of thunderstorms in the vicinity of KSC during the summers of 1994 and 1995. These case studies reveal many intriguing aspects of cloud-to-ground, cloud-to-cloud, in-cloud, and cloud-to-air lightning discharges in relation to radar thunderstorm structure and evolution. They also enable the formulation of some preliminary working rules of potential use in the forecasting of initial and final ground strike threat. In addition, LDAR and LLP data sets from 1993 have been used to quantify the lightning threat relative to the center and edges of LDAR discharge patterns. Software has been written to overlay and display the various data sets as color imagery. However, human intervention is required to configure the data sets for proper intercomparison. Future efforts will involve additional software development to automate the data set intercomparisons, to display multiple overlay combinations in a windows format, and to allow for animation of the imagery. The software package will then be used as a tool to examine more fully the current cases and to explore additional cases in a timely manner. This will enable the formulation of more general and reliable forecasting guidelines and rules.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E3264S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E3264S"><span>Rain Drop Charge Sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>S, Sreekanth T.</p> <p></p> <p>begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge magnitude of initial drops from a precipitation event, gross cloud charge can be estimated and necessary precautions can be taken during convective cloud events. Being a site of high lightning incidence in tropics, Kerala state is affected in India and calls for much attention in lightning hazards mitigation. Installing this charge sensor and atmospheric electric field mill, an attempt to a better warning system can be attempted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMAE33A0257Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMAE33A0257Z"><span>A comparison study of convective and microphysical parameterization schemes associated with lightning occurrence in southeastern Brazil using the WRF model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zepka, G. D.; Pinto, O.</p> <p>2010-12-01</p> <p>The intent of this study is to identify the combination of convective and microphysical WRF parameterizations that better adjusts to lightning occurrence over southeastern Brazil. Twelve thunderstorm days were simulated with WRF model using three different convective parameterizations (Kain-Fritsch, Betts-Miller-Janjic and Grell-Devenyi ensemble) and two different microphysical schemes (Purdue-Lin and WSM6). In order to test the combinations of parameterizations at the same time of lightning occurrence, a comparison was made between the WRF grid point values of surface-based Convective Available Potential Energy (CAPE), Lifted Index (LI), K-Index (KI) and equivalent potential temperature (theta-e), and the lightning locations nearby those grid points. Histograms were built up to show the ratio of the occurrence of different values of these variables for WRF grid points associated with lightning to all WRF grid points. The first conclusion from this analysis was that the choice of microphysics did not change appreciably the results as much as different convective schemes. The Betts-Miller-Janjic parameterization has generally worst skill to relate higher magnitudes for all four variables to lightning occurrence. The differences between the Kain-Fritsch and Grell-Devenyi ensemble schemes were not large. This fact can be attributed to the similar main assumptions used by these schemes that consider entrainment/detrainment processes along the cloud boundaries. After that, we examined three case studies using the combinations of convective and microphysical options without the Betts-Miller-Janjic scheme. Differently from the traditional verification procedures, fields of surface-based CAPE from WRF 10 km domain were compared to the Eta model, satellite images and lightning data. In general the more reliable convective scheme was Kain-Fritsch since it provided more consistent distribution of the CAPE fields with respect to satellite images and lightning data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9645O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9645O"><span>Number of transients/Q-bursts in ELF-band as possible criterion for global thunderstorm activity estimation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ondraskova, Adriena; Sevcik, Sebastian</p> <p>2015-04-01</p> <p>Schumann resonances (SR) are resonant electromagnetic oscillations in extremely low frequency band (ELF, 3 Hz - 3 kHz), which arise in the Earth-ionosphere cavity due to lightning activity in planetary range. The time records in the ELF-band consist of background signals and ELF transients/Q-bursts superimposed on the background exceeding it by a factor of 5 - 10. The former are produced by the common worldwide thunderstorm activity (100 - 150 events per second), the latter origin from individual intense distant lightning discharges (100 - 120 powerful strokes per hour). A Q-burst is produced by a combination of direct and antipodal pulses and the decisive factor for its shape follows from the source-to-observer distance (SOD). Diurnal/seasonal variations of global thunderstorm activity can be deduced from spectral amplitudes of SR modes. Here we focus on diurnal/seasonal variations of the number of ELF-transients assuming that it is another way of lightning activity estimation. To search for transients, our own code was applied to the SR vertical electric component measured in October 2004 - December 2008 at the Astronomical and Geophysical Observatory of FMPI CU, Slovakia. Limits (min-max) for the width of primary spike, time difference between primary and secondary spike and the amplitude of the spike were chosen as criteria for the identification of the burst. Cumulative spectral amplitude of the first three SR modes compared with number of ELF-transients in monthly averaged diurnal variations quite successfully confirmed, that the number of transients can be a suitable criterion for the quantification of global lightning activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4756383','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4756383"><span>Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rison, William; Krehbiel, Paul R.; Stock, Michael G.; Edens, Harald E.; Shao, Xuan-Min; Thomas, Ronald J.; Stanley, Mark A.; Zhang, Yang</p> <p>2016-01-01</p> <p>A long-standing but fundamental question in lightning studies concerns how lightning is initiated inside storms, given the absence of physical conductors. The issue has revolved around the question of whether the discharges are initiated solely by conventional dielectric breakdown or involve relativistic runaway electron processes. Here we report observations of a relatively unknown type of discharge, called fast positive breakdown, that is the cause of high-power discharges known as narrow bipolar events. The breakdown is found to have a wide range of strengths and is the initiating event of numerous lightning discharges. It appears to be purely dielectric in nature and to consist of a system of positive streamers in a locally intense electric field region. It initiates negative breakdown at the starting location of the streamers, which leads to the ensuing flash. The observations show that many or possibly all lightning flashes are initiated by fast positive breakdown. PMID:26876654</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26876654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26876654"><span>Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rison, William; Krehbiel, Paul R; Stock, Michael G; Edens, Harald E; Shao, Xuan-Min; Thomas, Ronald J; Stanley, Mark A; Zhang, Yang</p> <p>2016-02-15</p> <p>A long-standing but fundamental question in lightning studies concerns how lightning is initiated inside storms, given the absence of physical conductors. The issue has revolved around the question of whether the discharges are initiated solely by conventional dielectric breakdown or involve relativistic runaway electron processes. Here we report observations of a relatively unknown type of discharge, called fast positive breakdown, that is the cause of high-power discharges known as narrow bipolar events. The breakdown is found to have a wide range of strengths and is the initiating event of numerous lightning discharges. It appears to be purely dielectric in nature and to consist of a system of positive streamers in a locally intense electric field region. It initiates negative breakdown at the starting location of the streamers, which leads to the ensuing flash. The observations show that many or possibly all lightning flashes are initiated by fast positive breakdown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750014262','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750014262"><span>Lightning effects on the NASA F-8 digital-fly-by-wire airplane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plumer, J. A.; Fisher, F. A.; Walko, L. C.</p> <p>1975-01-01</p> <p>The effects of lightning on a Digital Fly-By-Wire (DFBW)aircraft control system were investigated. The aircraft was a NASA operated F-8 fitted with a modified Apollo guidance computer. Current pulses similar in waveshape to natural lightning, but lower in amplitude, were injected into the aircraft. Measurements were made of the voltages induced on the DFBW circuits, the total current induced on the bundles of wires, the magnetic field intensity inside the aircraft, and the current density on the skin of the aircraft. Voltage measurements were made in both the line-to-ground and line-to-line modes. Voltages measured at the non-destructive test level were then scaled upward to determine how much would be produced by actual lightning. A 200,000 ampere severe lightning flash would produce between 40 and 2000 volts in DFBW circuits. Some system components are expected to be vulnerable to these voltages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GI......3..135C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GI......3..135C"><span>Protection against lightning at a geomagnetic observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Čop, R.; Milev, G.; Deželjin, D.; Kosmač, J.</p> <p>2014-08-01</p> <p>The Sinji Vrh Geomagnetic Observatory was built on the brow of Gora, the mountain above Ajdovščina, which is a part of Trnovo plateau, and all over Europe one can hardly find an area which is more often struck by lightning than this southwestern part of Slovenia. When the humid air masses of a storm front hit the edge of Gora, they rise up more than 1000 m in a very short time, and this causes an additional electrical charge of stormy clouds. The reliability of operations performed in every section of the observatory could be increased by understanding the formation of lightning in a thunderstorm cloud and the application of already-proven methods of protection against a stroke of lightning and against its secondary effects. To reach this goal the following groups of experts have to cooperate: experts in the field of protection against lightning, constructors and manufacturers of equipment and observatory managers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2077776','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2077776"><span>A lightning strike to the head causing a visual cortex defect with simple and complex visual hallucinations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold</p> <p>2007-01-01</p> <p>The case of a 23‐year‐old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was set to a drug‐induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise recovered largely. Neuropsychological tests revealed deficits in fast visual detection tasks and non‐verbal learning, and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. Four months after the accident, she developed a psychological reaction consisting of nightmares with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning flash were retrospectively retraced. PMID:17369595</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3029835','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3029835"><span>A lightning strike to the head causing a visual cortex defect with simple and complex visual hallucinations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold</p> <p>2009-01-01</p> <p>The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was sent into a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise largely recovered. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. At 4 months after the accident, she developed a psychological reaction consisting of nightmares, with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning strike were retrospectively retraced PMID:21734915</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMAE21B0275M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMAE21B0275M"><span>Modeling Long-Distance ELF Radio Atmospherics Generated by Rocket-Triggered Lightning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, R. C.; Kunduri, B.; Anand, S.; Dupree, N.; Mitchell, M.; Agrawal, D.</p> <p>2010-12-01</p> <p>This paper addresses the generation and propagation of radio atmospherics (sferics) radiated by lightning in order to assess the ability to infer the electrical properties of lightning from great distances. This ability may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash. Unlike other similar efforts, the modified code presented preserves the ability of LWPC to account for waveguide mode-coupling and to account for changes to the electrical properties of the ground and ionosphere along the propagation path. The effort described is conducted in advance of the deployment of a global extremely low frequency (ELF) magnetic field array, which is presently under construction. The global ELF array is centered on the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. The ICLRT is well-known for conducting rocket-triggered lightning experiments over the last 15-20 years. This paper uses lightning current waveforms directly measured at the base of the lightning channel (observations performed at the ICLRT) as an input to the model to predict the sferic waveform to be observed by the array under various ionospheric conditions. An analysis of the predicted sferic waveforms is presented, and the components of the lightning current waveform that most effectively excite the Earth-ionosphere waveguide are identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820052684&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820052684&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drust"><span>Radar research on thunderstorms and lightning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rust, W. D.; Doviak, R. J.</p> <p>1982-01-01</p> <p>Applications of Doppler radar to detection of storm hazards are reviewed. Normal radar sweeps reveal data on reflectivity fields of rain drops, ionized lightning paths, and irregularities in humidity and temperature. Doppler radar permits identification of the targets' speed toward or away from the transmitter through interpretation of the shifts in the microwave frequency. Wind velocity fields can be characterized in three dimensions by the use of two radar units, with a Nyquist limit on the highest wind speeds that may be recorded. Comparisons with models numerically derived from Doppler radar data show substantial agreement in storm formation predictions based on information gathered before the storm. Examples are provided of tornado observations with expanded Nyquist limits, gust fronts, turbulence, lightning and storm structures. Obtaining vertical velocities from reflectivity spectra is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22227860-structure-conducting-channel-lightning','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22227860-structure-conducting-channel-lightning"><span>Structure of conducting channel of lightning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Alanakyan, Yu. R.</p> <p>2013-08-15</p> <p>The spatial distribution of the plasma density in a lightning channel is studied theoretically. It is shown that the electric-field double layer is formed at the channel boundary. In this case, the electron temperature changes abruptly and ions are accelerated by the electric field of the double layer. The ion momentum flux density is close to the surrounding gas pressure. Cleaning of the channel from heavy particles occurs in particle-exchange processes between the plasma channel and the surrounding air. Hydrogen ions are accumulated inside the expanding channel from the surrounding air, which is enriched by hydrogen-contained molecules. In this case,more » the plasma channel is unstable and splits to a chain of equidistant bunches of plasma. The hydrogen-enrich bunches burn diffusely after recombination exhibiting the bead lightning behavior.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6307S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6307S"><span>Living Organisms Coupling to Electromagnetic Radiation Below Thermal Noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stolc, Viktor; Freund, Friedemann</p> <p>2013-04-01</p> <p>Ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) radiation is part of the natural environment. Prior to major earthquakes the local ULF and global ELF radiation field is often markedly perturbed. This has detrimental effects on living organisms. We are studying the mechanism of these effects on the biochemical, cellular and organismal levels. The transfer of electrons along the Electron Transfer Chain (ETC) controls the universal reduction-oxidation reactions that are essential for fundamental biochemical processes in living cells. In order for these processes to work properly, the ETC has to maintain some form of synchronization, or coherence with all biochemical reactions in the living cells, including energy production, RNA transcription, and DNA replication. As a consequence of this synchronization, harmful chemical conflict between the reductive and the oxidative partial reactions can be minimized or avoided. At the same time we note that the synchronization allows for a transfer of energy, coherent or interfering, via coupling to the natural ambient EM field. Extremely weak high frequency EM fields, well below the thermal noise level, tuned in frequency to the electron spins of certain steps in the ETC, have already been shown to cause aberrant cell growth and disorientation among plants and animals with respect to the magnetic and gravity vectors. We investigate EM fields over a much wider frequency range, including ULF known to be generated deep in the Earth prior to major earthquakes locally, and ELF known to be fed by lightning discharges, traveling around the globe in the cavity formed between the Earth's surface and the ionosphere. This ULF/ELF radiation can control the timing of the biochemical redox cycle and thereby have a universal effect on physiology of organisms. The timing can even have a detrimental influence, via increased oxidative damage, on the DNA replication, which controls heredity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......134G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......134G"><span>Properties of Lightning Strike Protection Coatings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagne, Martin</p> <p></p> <p>Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity of conductive coatings. Mechanical tests include adhesion, scratch, hardness and Young's modulus of the coatings. The environmental tests are temperature cycling and salt spray cycling. These basic characteristics were investigated first, but further tests also combine the categories, such as electrical tests before, during and after environmental tests, and the effects on the sample's mechanical properties after high electrical current injections. The electrical properties of the conductive coatings have improved and are very close to that of current expanded metallic foil or within an order of magnitude. The mechanical properties of most of these coatings are also good. They exhibit good adhesion, hardness, and no significant loss of flexion properties after current injections. The environmental tests are more mitigated, with some conductive coatings losing their surface conductivity, others having a small increase in specific resistivity, and some were simply unaffected. Tests such as thermogravimetric analysis, scanning electron microscope analysis of scratch tests, and optical microscope observations are included to provide additional analysis of the results of the conductive coatings. The conductive coatings were characterized and tested as part of the CRIAQ project. Lightning strike tests are required to gather further information on these conductive coatings. The main application for these coatings is for lightning strike protection of aircraft, but they can also be used for ground based lightning strike protection and general electromagnetic shielding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880034919&hterms=thunderstorm+protection&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthunderstorm%2Bprotection','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880034919&hterms=thunderstorm+protection&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthunderstorm%2Bprotection"><span>Lightning threat extent of a small thunderstorm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nicholson, James R.; Maier, Launa M.; Weems, John</p> <p>1988-01-01</p> <p>The concern for safety of the personnel at the Kennedy Space Center (KSC) has caused NASA to promulgate strict safety procedures requiring either termination or substantial curtailment when ground lightning threat is believed to exist within 9.3 km of a covered operation. In cases where the threat is overestimated, in either space or time, an opportunity cost is accrued. This paper describes a small thunderstorm initiated over the KSC by terrain effects, that serves to exemplify the impact such an event may have on ground operations at the Center. Data from the Air Force Lightning Location and Protection System, the AF/NASA Launch Pad Lightning Warning System field mill network, radar, and satellite imagery are used to describe the thunderstorm and to discuss its impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890045424&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890045424&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drust"><span>A comparison of the optical pulse characteristics of intracloud and cloud-to-ground lightning as observed above clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Christian, Hugh J.; Rust, W. David</p> <p>1988-01-01</p> <p>The optical-pulse characteristics of intracloud (IC) and cloud-to-ground (CG) lightning flashes were investigated. The time-resolved optical waveforms at 777.4 nm and electric-field changes produced by lightning flashes were measured aboard a U2 aircraft flying above clouds at the same time that ground-based lightning measurements were carried out. The pulse shapes and intensities of IC and CG flashes, as viewed from above cloud, were found to exhibit remarkably similar waveshapes, radiances, and radiant energy densities. The median radiance at cloud top was found to be about 0.007 W/sq m per sr, and the median energy density about 0.000003 J/sq m per sr.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>