Correlated observations of three triggered lightning flashes
NASA Technical Reports Server (NTRS)
Idone, V. P.; Orville, R. E.; Hubert, P.; Barret, L.; Eybert-Berard, A.
1984-01-01
Three triggered lightning flashes, initiated during the Thunderstorm Research International Program (1981) at Langmuir Laboratory, New Mexico, are examined on the basis of three-dimensional return stroke propagation speeds and peak currents. Nonlinear relationships result between return stroke propagation speed and stroke peak current for 56 strokes, and between return stroke propagation speed and dart leader propagation speed for 32 strokes. Calculated linear correlation coefficients include dart leader propagation speed and ensuing return stroke peak current (32 strokes; r = 0.84); and stroke peak current and interstroke interval (69 strokes; r = 0.57). Earlier natural lightning data do not concur with the weak positive correlation between dart leader propagation speed and interstroke interval. Therefore, application of triggered lightning results to natural lightning phenomena must be made with certain caveats. Mean values are included for the three-dimensional return stroke propagation speed and for the three-dimensional dart leader propagation speed.
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.; Roeder, William; Merceret, Francis J.
2010-01-01
A technique has been developed to calculate the probability that any nearby lightning stroke is within any radius of any point of interest. In practice, this provides the probability that a nearby lightning stroke was within a key distance of a facility, rather than the error ellipses centered on the stroke. This process takes the current bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to get the probability that the stroke is inside any specified radius. This new facility-centric technique will be much more useful to the space launch customers and may supersede the lightning error ellipse approach discussed in [5], [6].
Electromagnetic field radiation model for lightning strokes to tall structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motoyama, H.; Janischewskyj, W.; Hussein, A.M.
1996-07-01
This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.
Parameters of triggered-lightning flashes in Florida and Alabama
NASA Astrophysics Data System (ADS)
Fisher, R. J.; Schnetzer, G. H.; Thottappillil, R.; Rakov, V. A.; Uman, M. A.; Goldberg, J. D.
1993-12-01
Channel base currents from triggered lightning were measured at the NASA Kennedy Space Center, Florida, during summer 1990 and at Fort McClellan, Alabama, during summer 1991. Additionally, 16-mm cinematic records with 3- or 5-ms resolution were obtained for all flashes, and streak camera records were obtained for three of the Florida flashes. The 17 flashes analyzed here contained 69 strokes, all lowering negative charge from cloud to ground. Statistics on interstroke interval, no-current interstroke interval, total stroke duration, total stroke charge, total stroke action integral (∫ i2dt), return stroke current wave front characteristics, time to half peak value, and return stroke peak current are presented. Return stroke current pulses, characterized by rise times of the order of a few microseconds or less and peak values in the range of 4 to 38 kA, were found not to occur until after any preceding current at the bottom of the lightning channel fell below the noise level of less than 2 A. Current pulses associated with M components, characterized by slower rise times (typically tens to hundreds of microseconds) and peak values generally smaller than those of the return stroke pulses, occurred during established channel current flow of some tens to some hundreds of amperes. A relatively strong positive correlation was found between return stroke current average rate of rise and current peak. There was essentially no correlation between return stroke current peak and 10-90% rise time or between return stroke peak and the width of the current waveform at half of its peak value. Parameters of the lightning flashes triggered in Florida and Alabama are similar to each other but are different from those of triggered lightning recorded in New Mexico during the 1981 Thunderstorm Research International Program. Continuing currents that follow return stroke current peaks and last for more than 10 ms exhibit a variety of wave shapes that we have subdivided into four categories. All such continuing currents appear to start with a current pulse presumably associated with an M component. A brief summary of lightning parameters important for lightning protection, in a form convenient for practical use, is presented in an appendix.
Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence (Second Revision)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, Martin A.; Rakov, V. A.; Elisme, J. O.
2010-10-05
The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for positive and negative first return strokes, for negative subsequent return strokes, and for positive and negative continuing currents; and we give sets of constants for these functional expressions so that the resultantmore » waveforms exhibit approximately the median and extreme lightning parameters presented in the updated direct strike environment. Fourier transforms of the return stroke current waveforms are presented. The results of our literature survey are included in three Appendices entitled Return Stroke Current, Continuing Current, and Positive Lightning.« less
Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, M A; Rakov, V A; Elisme, J O
2008-10-01
The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we give sets of constants for these expressions so that they yield approximately the median and extreme negative lightning parametersmore » presented in this report. Expressions for the median negative lightning waveforms are plotted. Finally, we provide information on direct-strike lightning damage to metals such as stainless steel, which could be used as components of storage containers for nuclear waste materials; and we describe UF's new experimental research program to add to the sparse data base on the properties of positive lightning. Our literature survey, referred to above, is included in four Appendices. The following four sections (II, III, IV, and V) of this final report deal with related aspects of the research: Section II. Recommended Direct-Strike Median and Extreme Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and Appendix 4. Lightning Damage to Metal Surfaces.« less
Characteristics of VLF/LF Sferics from Elve-producing Lightning Discharges
NASA Astrophysics Data System (ADS)
Blaes, P.; Zoghzoghy, F. G.; Marshall, R. A.
2013-12-01
Lightning return strokes radiate an electromagnetic pulse (EMP) which interacts with the D-region ionosphere; the largest EMPs produce new ionization, heating, and optical emissions known as elves. Elves are at least six times more common than sprites and other transient luminous events. Though the probability that a lightning return stroke will produce an elve is correlated with the return stroke peak current, many large peak current strokes do not produce visible elves. Apart from the lightning peak current, elve production may depend on the return stroke speed, lightning altitude, and ionospheric conditions. In this work we investigate the detailed structure of lightning that gives rise to elves by analyzing the characteristics of VLF/LF lightning sferics in conjunction with optical elve observations. Lightning sferics were observed using an array of six VLF/LF receivers (1 MHz sample-rate) in Oklahoma, and elves were observed using two high-speed photometers pointed over the Oklahoma region: one located at Langmuir Laboratory, NM and the other at McDonald Observatory, TX. Hundreds of elves with coincident LF sferics were observed during the summer months of 2013. We present data comparing the characteristics of elve-producing and non-elve producing lightning as measured by LF sferics. In addition, we compare these sferic and elve observations with FDTD simulations to determine key properties of elve-producing lightning.
Experimental and analytical investigation on metal damage suffered from simulated lightning currents
NASA Astrophysics Data System (ADS)
Yakun, LIU; Zhengcai, FU; Quanzhen, LIU; Baoquan, LIU; Anirban, GUHA
2017-12-01
The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 kA, 8 kA, 400 A, and 100 kA, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235B, the first return stroke component results in the largest damage area with damage depth 0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.
Lightning Reporting at 45th Weather Squadron: Recent Improvements
NASA Technical Reports Server (NTRS)
Finn, Frank C.; Roeder, William P.; Buchanan, Michael D.; McNamara, Todd M.; McAllenan, Michael; Winters, Katherine A.; Fitzpatrick, Michael E.; Huddleston, Lisa L.
2010-01-01
The 45th Weather Squadron (45 WS) provides daily lightning reports to space launch customers at CCAFS/KSC. These reports are provided to assess the need to inspect the electronics of satellite payloads, space launch vehicles, and ground support equipment for induced current damage from nearby lightning strokes. The 45 WS has made several improvements to the lightning reports during 2008-2009. The 4DLSS, implemented in April 2008, provides all lightning strokes as opposed to just one stroke per flash as done by the previous system. The 45 WS discovered that the peak current was being truncated to the nearest kilo amp in the database used to generate the daily lightning reports, which led to an up to 4% underestimate in the peak current for average lightning. This error was corrected and led to elimination of this underestimate. The 45 WS and their mission partners developed lightning location error ellipses for 99% and 95% location accuracies tailored to each individual stroke and began providing them in the spring of 2009. The new procedure provides the distance from the point of interest to the best location of the stroke (the center of the error ellipse) and the distance to the closest edge of the ellipse. This information is now included in the lightning reports, along with the peak current of the stroke. The initial method of calculating the error ellipses could only be used during normal duty hours, i.e. not during nights, weekends, or holidays. This method was improved later to provide lightning reports in near real-time, 24/7. The calculation of the distance to the closest point on the ellipse was also significantly improved later. Other improvements were also implemented. A new method to calculate the probability of any nearby lightning stroke. being within any radius of any point of interest was developed and is being implemented. This may supersede the use of location error ellipses. The 45 WS is pursuing adding data from nine NLDN sensors into 4DLSS in real-time. This will overcome the problem of 4DLSS missing some of the strong local strokes. This will also improve the location accuracy, reduce the size and eccentricity of the location error ellipses, and reduce the probability of nearby strokes being inside the areas of interest when few of the 4DLSS sensors are used in the stroke solution. This will not reduce 4DLSS performance when most of the 4DLSS sensors are used in the stroke solution. Finally, several possible future improvements were discussed, especially for improving the peak current estimate and the error estimate for peak current, and upgrading the 4DLSS. Some possible approaches for both of these goals were discussed.
Why does negative CG lightning have subsequent return strokes?
NASA Astrophysics Data System (ADS)
Wilkes, R. A.; Kotovsky, D. A.; Uman, M. A.; Carvalho, F. L.; Jordan, D.
2017-12-01
It is not understood why cloud-to-ground (CG) lightning flashes lowering negative charge often produce discrete dart-leader/return-stroke sequences rather than having the first stroke drain the available cloud charge, as is almost always the case for CG lightning lowering positive charge. Triggered lightning data obtained at the International Center for Lightning Research and Testing (ICLRT) in north-central Florida have been analyzed to clarify the subsequent return-stroke process. In summers 2013 through 2016 at the ICLRT, 53% of the rocket launches did not initiate any part of a lightning flash, 13% of the rocket launches created an initial stage only (ISO) and failed to produce a following dart-leader/return-stroke sequences, and 34% of rocket launches produced an initial stage (IS) followed by return strokes. The IS of the triggered lightning consists of the upward positive leader and a following initial continuing current, both being responsible for transporting negative charge from the cloud to ground. Our ISO events may well have some commonality with the roughly 20 percent of natural CG flashes that fail to produce a dart-leader/return-stroke. We have analyzed the IS of 41 triggered lightning flashes with (19 cases) and without (22 cases) following return strokes and compared areas and heights of the flash using data collected by a Lightning Mapping Array (LMA). In our preliminary analysis, we can find no geometrical feature of the lightning channel during the IS that will predict the occurrence or lack of occurrence of following return strokes. We also have compared the triggered-lightning electrical current and charge transfer observed at the ground. We found that the average current, duration, and charge transfer during the IS for ISO events is each about half that of ISs analyzed which are followed by dart-leader/return-stroke sequences, contrary to the results presented from the GCOELD in China. Summarizing, there appear to be no differences in the channel geometry between initial stages that do or do not yield dart-leader/return-stroke sequences. In contrast, we find that particular electrical characteristics of the initial stage may indicate whether or not a dart-leader/return-stroke sequence may follow, potentially shedding light on the physical processes necessary for dart-leader initiation.
Three years of lightning impulse charge moment change measurements in the United States
NASA Astrophysics Data System (ADS)
Cummer, Steven A.; Lyons, Walter A.; Stanley, Mark A.
2013-06-01
We report and analyze 3 years of lightning impulse charge moment change (iCMC) measurements obtained from an automated, real time lightning charge moment change network (CMCN). The CMCN combines U.S. National Lightning Detection Network (NLDN) lightning event geolocations with extremely low frequency (≲1 kHz) data from two stations to provide iCMC measurements across the entire United States. Almost 14 million lightning events were measured in the 3 year period. We present the statistical distributions of iCMC versus polarity and NLDN-measured peak current, including corrections for the detection efficiency of the CMCN versus peak current. We find a broad distribution of iCMC for a given peak current, implying that these parameters are at best only weakly correlated. Curiously, the mean iCMC does not monotonically increase with peak current, and in fact, drops for positive CG strokes above +150 kA. For all positive strokes, there is a boundary near 20 C km that separates seemingly distinct populations of high and low iCMC strokes. We also explore the geographic distribution of high iCMC lightning strokes. High iCMC positive strokes occur predominantly in the northern midwest portion of the U.S., with a secondary peak over the gulf stream region just off the U.S. east coast. High iCMC negative strokes are also clustered in the midwest, although somewhat south of most of the high iCMC positive strokes. This is a region far from the locations of maximum occurrence of high peak current negative strokes. Based on assumed iCMC thresholds for sprite production, we estimate that approximately 35,000 positive polarity and 350 negative polarity sprites occur per year over the U.S. land and near-coastal areas. Among other applications, this network is useful for the nowcasting of sprite-producing storms and storm regions.
Lightning channel current persists between strokes
NASA Astrophysics Data System (ADS)
Wendel, JoAnna
2014-09-01
The usual cloud-to-ground lightning occurs when a large negative charge contained in a "stepped leader" travels down toward the Earth's surface. It then meets a positive charge that comes up tens of meters from the ground, resulting in a powerful neutralizing explosion that begins the first return stroke of the lightning flash. The entire flash lasts only a few hundred milliseconds, but during that time, multiple subsequent stroke-return stroke sequences usually occur.
Grounding and lightning protection. Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, M.D.
1987-12-31
Grounding systems protect personnel and equipment by isolating faulted systems and dissipating transient currents. Lightning protection systems minimize the possible consequences of a direct strike by lightning. This volume focuses on design requirements of the grounding system and on present-day concepts used in the design of lightning protection systems. Various types of grounding designs are presented, and their advantages and disadvantages discussed. Safety, of course, is the primary concern of any grounding system. Methods are shown for grounding the non-current-carrying parts of electrical equipment to reduce shock hazards to personnel. Lightning protection systems are installed on tall structures (such asmore » chimneys and cooling towers) to minimize the possibility of structural damage caused by direct lightning strokes. These strokes may carry currents of 200,000 A or more. The volume examines the formation and characteristics of lightning strokes and the way stroke characteristics influence the design of lightning protection systems. Because a large portion of the grounding system is buried in soil or concrete, it is not readily accessible for inspection or repair after its installation. The volume details the careful selection and sizing of materials needed to ensure a long, maintenance-free life for the system. Industry standards and procedures for testing the adequacy of the grounding system are also discussed.« less
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.
2010-01-01
A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station.
NASA Astrophysics Data System (ADS)
Heckman, S.
2015-12-01
Modern lightning locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in lightning research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total Lightning Network (ENTLN) is studied using rocket-triggered lightning data acquired atthe International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground lightning.Earth Networks has developed a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.
Return stroke velocities and currents using a solid state silicon detector system
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. David
1988-01-01
A small, portable device has been developed to measure return stroke velocities. With the device, velocities from 135 strokes that consist of 92 natural return strokes and 43 triggered return strokes have been analyzed. The average return stroke velocity for longer channels, greater than 500 meters, is 1.2 + or - 0.3 x 10 to the 8th m/s for both natural and triggered return strokes. For shorter channel lengths, less than 500 m, natural lightning has a statistically higher average return stroke velocity of 1.9 + or - 0.7 x 10 to the 8th m/s than triggered lightning with an average return stroke velocity of 1.4 + or - 0.4 x 10 to the 8th m/s. Using the transmission line model of the return stroke, natural lightning has a peak current distribution that is log-normal with a median value of 19 kA. Return stroke velocities and currents were determined for two distant single stroke natural positive cloud-to-ground flashes. The velocities were 1.0 and 1.7 x 10 to the 8th ms/s while the estimated peak current for each positive flash was over 125 kA.
Classification of Small Negative Lightning Reports at the KSC-ER
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Cummins, Kenneth L.; Krider, Philip
2008-01-01
The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) operate an extensive suite of lightning sensors because Florida experiences the highest area density of ground strikes in the United States, with area densities approaching 16 fl/sq km/yr when accumulated in 10x10 km (100 sq km) grids. The KSC-ER use data derived from two cloud-to-ground (CG) lightning detection networks, the "Cloud-to-Ground Lightning Surveillance System" (CGLSS) and the U.S. National Lightning Detection Network (TradeMark) (NLDN) plus a 3-dimensional lightning mapping system, the Lightning Detection and Ranging (LDAR) system, to provide warnings for ground operations and to insure mission safety during space launches. For operational applications at the KSC-ER it is important to understand the performance of each lightning detection system in considerable detail. In this work we examine a specific subset of the CGLSS stroke reports that have low values of the negative inferred peak current, Ip, i.e. values between 0 and -7 kA, and were thought to produce a new ground contact (NGC). When possible, the NLDN and LDAR systems were used to validate the CGLSS classification and to determine how many of these reported strokes were first strokes, subsequent strokes in a pre-existing channel (PEC), or cloud pulses that the CGLSS misclassified as CG strokes. It is scientifically important to determine the smallest current that can reach the ground either in the form of a first stroke or by way of a subsequent stroke that creates a new ground contact. In Biagi et al (2007), 52 low amplitude, negative return strokes ([Ip] < or = 10 kA) were evaluated in southern Arizona, northern Texas, and southern Oklahoma. The authors found that 50-87% of the small NLDN reports could be classified as CG (either first or subsequent strokes) on the basis of video and waveform recordings. Low amplitude return strokes are interesting because they are usually difficult to detect, and they are thought to bypass conventional lightning protection that relies on a sufficient attractive radius to prevent "shielding failure" (Golde, 1977). They also have larger location errors compared to the larger current events. In this study, we use the estimated peak current provided by the CGLSS and the results of our classification to determine the minimum Ip for each category of CG stroke and its probability of occurrence. Where possible, these results are compared to the findings in the literature.
Characteristics of the most intense lightning storm ever recorded at the CN Tower
NASA Astrophysics Data System (ADS)
Hussein, A. M.; Kazazi, S.; Anwar, M.; Yusouf, M.; Liatos, P.
2017-02-01
Lightning strikes to the CN Tower have been optically observed since 1978. In 1990, five independent systems started to operate to simultaneously record parameters of lightning strikes to the tower, including the time derivative of the current, the associated electric and magnetic fields, and the channel optical characteristics. On August 24, 2011, during an unusually severe lightning storm, video records showed that the CN Tower was struck with 52 lightning flashes within 84 min and 6.9 s. Thus, this storm produced, on average, a flash to the tower every 99 s. However, the CN Tower lightning current derivative measurement system only recorded 32 flashes, which were perfectly time-matched with 32 of the 52 video-recorded flashes. It is found that the current derivative measurement system recorded every video-recorded flash that contained at least one return stroke. Based on the analysis of video records, it is noted that each of the storm's 52 flashes contains an initial-stage current, proving that all flashes were upward initiated. This unique CN Tower storm - the most intense ever recorded at the tower - is here thoroughly analyzed, based on video and current records. The inter-flash time within the storm is found to vary between 10.6 s and 274 s, with an overall average of 98 s. It is also found that the inter-flash time between successive non-return-stroke flashes is on average 64% longer than that for successive flashes containing return strokes. Statistical analysis of video and current data clearly reveals that the time duration of flashes containing initial-stage currents and return strokes is on average 27% longer than that of flashes that only have initial-stage currents. Furthermore, it is important to note that the time duration of the initial-stage current in flashes containing no return strokes is on average 76% longer than that in flashes containing return strokes. Therefore, it is possible to conclude that if the time duration of the initial-stage current in a flash is long enough, resulting in large charge transfer, then there is less probability of having return strokes following it. The 32 current-recorded flashes contain a total of 156 return strokes, with an average multiplicity of 4.875. It is worth mentioning that during one decade, 1992-2001, the CN Tower current derivative measurement system only recorded 478 return strokes, demonstrating that the number of return strokes recorded at the tower within about 84 min is close to one third of those recorded at the tower during one decade. This finding clearly shows the great value and rarity of the presented extensive lightning current derivative data. Only one of the 32 current-recorded flashes is proved to be positive with a single return stroke. Based on current records, out of a total of 124 inter-stroke time intervals, 94% are found to be within 200 ms, with an overall inter-stroke time average of 68.1 ms. The maximum inter-stroke time recorded during this storm is 726.3 ms, the longest ever recorded at the CN Tower.
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.
2011-01-01
A new technique has been developed to estimate the probability that a nearby cloud to ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.
NASA Technical Reports Server (NTRS)
Huddleston, Lisa; Roeder, WIlliam P.; Merceret, Francis J.
2011-01-01
A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station. Future applications could include forensic meteorology.
Statistical Evolution of the Lightning Flash
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.
2012-12-01
Natural lightning is one of the most fascinating and powerful electrical processes on Earth. To date, the physics behind this natural phenomenon are not fully understood, due primarily to the difficulty of obtaining measurements inside thunderstorms and to the wide range of timescales involved (from nanoseconds to seconds). Our aim is to use accurate lightning geo-location data from the National Lightning Detection Network (NLDN) to study statistical patterns in lightning, taking advantage of the fact that millions of lightning flashes occur around the globe every day. We present two sets of results, one involving the patterns of flashes in a storm, and a second involving the patterns of strokes in a flash. These patterns can provide a surrogate measure of the timescales and the spatial extents of the underlying physical processes. First, we study the timescales of charge buildup inside thunderstorms. We find that, following a lightning flash, the probability of another neighboring flash decreases and takes tens of seconds to recover. We find that this suppression effect is a function of flash type, stroke peak current, cloud-to-ground (CG) stroke multiplicity, and other lightning and geographical parameters. We find that the probabilities of subsequent flashes are more suppressed following oceanic lightning, or following flashes with higher peak currents and/or higher multiplicities (for CG flashes). Second, we use NLDN data to study the evolution of the strokes within a CG flash. A CG flash typically includes multiple return strokes, which can occur in the same channel or in multiple channels within a few kilometers. We cluster NLDN stroke data into flashes and produce the probability density function of subsequent strokes as a function of distance and time-delays relative to the previous stroke. Using this technique, we investigate processes which occur during the CG lightning flash with nanosecond to millisecond timescales. For instance, our results suggest that subsequent strokes that occur in a newly formed channel follow a pattern that propagates at a speed of ~200 km/s. We present our statistical techniques and discuss more thoroughly our work and results.
Automated Studies of Continuing Current in Lightning Flashes
NASA Astrophysics Data System (ADS)
Martinez-Claros, Jose
Continuing current (CC) is a continuous luminosity in the lightning channel that lasts longer than 10 ms following a lightning return stroke to ground. Lightning flashes following CC are associated with direct damage to power lines and are thought to be responsible for causing lightning-induced forest fires. The development of an algorithm that automates continuing current detection by combining NLDN (National Lightning Detection Network) and LEFA (Langmuir Electric Field Array) datasets for CG flashes will be discussed. The algorithm was applied to thousands of cloud-to-ground (CG) flashes within 40 km of Langmuir Lab, New Mexico measured during the 2013 monsoon season. It counts the number of flashes in a single minute of data and the number of return strokes of an individual lightning flash; records the time and location of each return stroke; performs peak analysis on E-field data, and uses the slope of interstroke interval (ISI) E-field data fits to recognize whether continuing current (CC) exists within the interval. Following CC detection, duration and magnitude are measured. The longest observed C in 5588 flashes was 631 ms. The performance of the algorithm (vs. human judgement) was checked on 100 flashes. At best, the reported algorithm is "correct" 80% of the time, where correct means that multiple stations agree with each other and with a human on both the presence and duration of CC. Of the 100 flashes that were validated against human judgement, 62% were hybrid. Automated analysis detects the first but misses the second return stroke in many cases where the second return stroke is followed by long CC. This problem is also present in human interpretation of field change records.
A Probabilistic, Facility-Centric Approach to Lightning Strike Location
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.; Roeder, William p.; Merceret, Francis J.
2012-01-01
A new probabilistic facility-centric approach to lightning strike location has been developed. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collisionith spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.
The Design of Lightning Protection
NASA Technical Reports Server (NTRS)
1983-01-01
Engineering study guides design and monitoring of lightning protection. Design studies for project are collected in 150-page report, containing wealth of information on design of lightning protection systems and on instrumentation for monitoring current waveforms of lightning strokes.
Mathematical physics approaches to lightning discharge problems
NASA Technical Reports Server (NTRS)
Kyrala, A.
1985-01-01
Mathematical physics arguments useful for lightning discharge and generation problems are pursued. A soliton Ansatz for the lightning stroke is treated including a charge generation term which is the ultimate source for the phenomena. Equations are established for a partially ionized plasma inding the effects of pressure, magnetic field, electric field, gravitation, viscosity, and temperature. From these equations is then derived the non-stationary generalized Ohm's Law essential for describing field/current density relationships in the horizon channel of the lightning stroke. The discharge initiation problem is discussed. It is argued that the ionization rate drives both the convective current and electric displacement current to increase exponentially. The statistical distributions of charge in the thundercloud preceding a lightning dischage are considered. The stability of the pre-lightning charge distributions and the use of Boltzmann relaxational equations to determine them are discussed along with a covered impedance path provided by the aircraft.
Electrification in winter storms and the analysis of thunderstorm overflight
NASA Technical Reports Server (NTRS)
Brook, Marx
1991-01-01
The emergence of 24 hr operational lightning detection networks has led to the finding that positive lightning strokes, although still much fewer in number than the normal negative strokes, are present in summer and winter storms. Recent papers address the importance of understanding the meteorological conditions which lead to a dominance of one polarity of stroke over another; the appearance of positive strokes at the end of a storm appeared to presage the end-of-storm downdraft and subsidence leading to downburst activity. It is beginning to appear that positive strokes may be important meteorological indicators. Significant research accomplishments on the following topics are addressed: (1) a study to verify that the black boxes used in the lightning networks to detect both negative and positive strokes to ground were accurate; (2) the use of slow tails to determine the polarity of distant lightning; (3) lightning initiation in winter vs. summer storms; (4) the upgrade of sensors for the measurement of electric field signals associated with lightning; (5) the analysis of lightning flash records from storms between 40 and 125 km from the sensor; and (6) an interesting aspect of the initiation process which involves the physical processes driving the stepped leader. The focus of current research and future research plans are presented.
A review of advances in lightning observations during the past decade in Guangdong, China
NASA Astrophysics Data System (ADS)
Zhang, Yijun; Lü, Weitao; Chen, Shaodong; Zheng, Dong; Zhang, Yang; Yan, Xu; Chen, Lüwen; Dong, Wansheng; Dan, Jianru; Pan, Hanbo
2016-08-01
This paper reviews recent advances in understanding the physical processes of artificially triggered lightning and natural lightning as well as the progress in testing lightning protection technologies, based on a series of lightning field campaigns jointly conducted by the Chinese Academy of Meteorological Sciences and Guangdong Meteorological Bureau since 2006. During the decade-long series of lightning field experiments, the technology of rocket-wire artificially triggered lightning has been improved, and has successfully triggered 94 lightning flashes. Through direct lightning current waveform measurements, an average return stroke peak current of 16 kA was obtained. The phenomenon that the downward leader connects to the lateral surface of the upward leader in the attachment process was discovered, and the speed of the upward leader during the connection process being significantly greater than that of the downward leader was revealed. The characteristics of several return strokes in cloud-to-ground lighting have also been unveiled, and the mechanism causing damage to lightning protection devices (i.e., ground potential rise within the rated current) was established. The performance of three lightning monitoring systems in Guangdong Province has also been quantitatively assessed.
The NASA Lightning Nitrogen Oxides Model (LNOM): Recent Updates and Applications
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold; Biazar, Arastoo; Khan, Maudood; Wang, Lihua; Park, Yee-Hun
2011-01-01
Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are presented. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(tm) (NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx (= NO + NO2). Lightning channel length distributions and lightning 10-m segment altitude distributions are also provided. In addition to NOx production from lightning return strokes, the LNOM now includes non-return stroke lightning NOx production due to: hot core stepped and dart leaders, stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NOx for an August 2006 run of CMAQ is discussed.
Submicrosecond risetimes in lightning return-stroke fields
NASA Technical Reports Server (NTRS)
Weidman, C. D.; Krider, E. P.
1980-01-01
Measurements of lightning electric field, E, and dE/dt signatures have been made near Tampa Bay, Florida, under conditions where the lightning locations were known and where the results were not significantly affected by the response time of the measuring system or groundwave propagation. The fast transitions found on the initial portion of return-stroke fields have 10-90% risetimes ranging from 40 to 200 nsec, with a mean of 90 nsec. The maximum field derivatives during return strokes range from 5 to 75 V/m per microsec with a mean of 29 V/m per microsec when normalized to a distance of 100 km. These field risetime and derivative values suggest that return-stroke currents contain large, submicrosecond components, and this in turn suggests that it may be necessary to reevaluate the possible effects of lightning and the performance of lightning-protection devices in many situations.
NASA Technical Reports Server (NTRS)
Willett, J. C.; LeVine, D. M.
2002-01-01
Direct current measurements are available near the attachment point from both natural cloud-to-ground lightning and rocket-triggered lightning, but little is known about the rise time and peak amplitude of return-stroke currents aloft. We present, as functions of height, current amplitudes, rise times, and effective propagation velocities that have been estimated with a novel remote-sensing technique from data on 24 subsequent return strokes in six different lightning flashes that were triggering at the NASA Kennedy Space Center, FL, during 1987. The unique feature of this data set is the stereo pairs of still photographs, from which three-dimensional channel geometries were determined previously. This has permitted us to calculate the fine structure of the electric-field-change (E) waveforms produced by these strokes, using the current waveforms measured at the channel base together with physically reasonable assumptions about the current distributions aloft. The computed waveforms have been compared with observed E waveforms from the same strokes, and our assumptions have been adjusted to maximize agreement. In spite of the non-uniqueness of solutions derived by this technique, several conclusions seem inescapable: 1) The effective propagation speed of the current up the channel is usually significantly (but not unreasonably) faster than the two-dimensional velocity measured by a streak camera for 14 of these strokes. 2) Given the deduced propagation speed, the peak amplitude of the current waveform often must decrease dramatically with height to prevent the electric field from being over-predicted. 3) The rise time of the current wave front must always increase rapidly with height in order to keep the fine structure of the calculated field consistent with the observations.
Anomalous Lightning Behavior During the 26-27 August 2007 Northern Great Plains Severe Weather Event
NASA Astrophysics Data System (ADS)
Logan, Timothy
2018-02-01
Positive polarity lightning strokes can be useful indicators of thunderstorm behavior. A combination of National Lightning Detection Network and Next Generation Radar retrievals is used to analyze the anomalous positive cloud-to-ground (CG) lightning behavior of a rare, late summer severe weather event that occurred on 26-27 August 2007 in the Northern Great Plains region of the United States and southern Canada. Seven discrete supercells (SC1-SC7) exhibiting frequent and intense lightning were responsible for numerous reports of severe weather (e.g., severe hail and 16 tornadoes) including catastrophic damage to the town of Northwood, North Dakota, caused by SC2. Biomass burning smoke from wildfires in Idaho and Montana was present prior to convective initiation. A positive CG lightning stroke rate of nearly 30 strokes per minute was observed 10 min before the EF4 tornado struck Northwood. SC2 was also responsible for all the reports of tornadoes exceeding an EF2 rating. The strongest peak currents (>200 kA) were observed in SC1-SC4 with SC2 having a maximum value of 280 kA. SC2 dominated the statistics of the line of supercells accounting for 27% of all CG lightning strokes. Positive CG lightning accounted for over 40% of all CG lightning strokes in SC4-SC7 on average, and the maximum exceeded 90% in SC6 and SC7. Increasing positive CG lightning dominance was correlated with an increasing northward gradient of smoke aerosol loading in addition to severe weather being reported before the maximum in positive CG lighting stroke rate (SC5 and SC6). This suggests that a complex combination of synoptic forcing and aerosol perturbation likely led to the observed anomalous positive CG lightning behavior in the supercells.
Nighttime observations of thunderstorm electrical activity from a high altitude airplane
NASA Technical Reports Server (NTRS)
Brook, M.; Rhodes, C.; Vaughan, O. H., Jr.; Orville, R. E.; Vonnegut, B.
1984-01-01
Photographs from a NASA U-2 airplane flying over nocturnal thunderstorms show frequent lightning activity in the upper part of the cloud. In some cases, unobscured segments of lightning channels 1 km or longer are visible in clear air around and above the cloud. Multiple images of lightning channels indicate multiple discharges in the same channel. Photographs taken through a diffraction grating show that the lightning has a spectrum similar to that observed in the lower troposphere. Lightning spectra obtained with a slitless line-scan spectrometer show strong singly ionized nitrogen emissions at 463.0 and 500.5 nm. Field changes measured with an electric field-change meter correlate with pulses measured with a photocell optical system. Optical signals corresponding to dart leader, return stroke, and continuing current events are readily distinguished in the scattered light emerging from the cloud surface. The variation of light intensity with time in lightning events is consistent with predicted modification of optical lightning signals by clouds. It appears that satellite based optical sensor measurements cannot provide reliable information on current rise times in return strokes. On the other hand, discrimination between cloud-to-ground and intracloud flashes and the counting of ground strokes is possible using the optical pulse pairs which have been identified with leader, return-stroke events in the cloud-to-ground flashes studied.
First images of thunder: Acoustic imaging of triggered lightning
NASA Astrophysics Data System (ADS)
Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.
2015-07-01
An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.
Triangulations of sprites relative to parent lighting near the Oklahoma Lightning Mapping Array
NASA Astrophysics Data System (ADS)
Lu, G.; Cummer, S. A.; Li, J.; Lyons, W. A.; Stanley, M. A.; Krehbiel, P. R.; Rison, W.; Thomas, R. J.; Weiss, S. A.; Beasley, W. H.; Bruning, E. C.; MacGorman, D. R.; Palivec, K.; Samaras, T. M.
2012-12-01
Temporal and spatial development of sprite-producing lightning flashes is examined with coordinated observations over an asymmetric mesoscale convective system on June 29, 2011 near the Oklahoma Lightning Mapping Array (OK-LMA). About 30 sprites were mutually observed from Bennett, Colorado and Hawley, Texas, allowing us to triangulate sprite formation in comparison with spatial/temporal development of the parent lightning. Complementary measurements of broadband (<1 Hz to ~300 kHz) radio frequency lightning signals are available from several magnetic sensors across the United States. Our analyses indicate that although sprite locations can be significantly offset horizontally (up to 70 km) from the parent ground stroke, they are usually laterally within 30 km of the in-cloud lightning activity during the 100 ms time interval prior to the sprite production. This is true for short-delayed sprites produced within 20 ms after a causative stroke, and long-delayed sprites appearing up to more than 200 ms after the stroke. Multiple sprites appearing as dancing/jumping events can be produced during one single flash either in a single lightning channel, through series of current surges superposed on a long and intense continuing current, or in multiple lightning channels through distinct ground strokes of the flash. The burst of continuous very-low-frequency/low-frequency lightning sferics commonly observed in association with sprites is linked to the horizontal progression of multiple negative leaders through positive charged regions of the cloud, which are typically centered at altitudes ~1-2 km (or more) above the freezing level.
Analysis and Modeling of Intense Oceanic Lightning
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M.; Said, R.; Lehtinen, N. G.; Inan, U.
2014-12-01
Recent studies using lightning data from geo-location networks such as GLD360 suggest that lightning strokes are more intense over the ocean than over land, even though they are less common [Said et al. 2013]. We present an investigation of the physical differences between oceanic and land lightning. We have deployed a sensitive Low Frequency (1 MHz sampling rate) radio receiver system aboard the NOAA Ronald W. Brown research vessel and have collected thousands of lightning waveforms close to deep oceanic lightning. We analyze the captured waveforms, describe our modeling efforts, and summarize our findings. We model the ground wave (gw) portion of the lightning sferics using a numerical method built on top of the Stanford Full Wave Method (FWM) [Lehtinen and Inan 2008]. The gwFWM technique accounts for propagation over a curved Earth with finite conductivity, and is used to simulate an arbitrary current profile along the lightning channel. We conduct a sensitivity analysis and study the current profiles for land and for oceanic lightning. We find that the effect of ground conductivity is minimal, and that stronger oceanic radio intensity does not result from shorter current rise-time or from faster return stroke propagation speed.
Current to the ionosphere following a lightning stroke
NASA Technical Reports Server (NTRS)
Hale, L. C.; Baginski, M. E.
1987-01-01
A simple analytical expression for calculating the total current waveform to the ionosphere after a lightning stroke is derived. The validity of this expression is demonstrated by comparison with a more rigorous computer solution of Maxwell's equations. The analytic model demonstrates that the temporal variation of the current induced in the ionosphere and global circuit and the corresponding return current in the earth depends on the conductivity profile at intervening altitudes in the middle atmosphere. A conclusion is that capacitative coupling may provide tighter coupling between the lower atmosphere and the ionosphere than usually considered, in both directions, which may help to explain observations which seem to indicate that magnetospheric phenomena may in some instances trigger lightning.
NASA Astrophysics Data System (ADS)
De Conti, Alberto; Silveira, Fernando H.; Visacro, Silvério
2014-05-01
This paper investigates the influence of corona on currents and electromagnetic fields predicted by a return-stroke model that represents the lightning channel as a nonuniform transmission line with time-varying (nonlinear) resistance. The corona model used in this paper allows the calculation of corona currents as a function of the radial electric field in the vicinity of the channel. A parametric study is presented to investigate the influence of corona parameters, such as the breakdown electric field and the critical electric field for the stable propagation of streamers, on predicted currents and electromagnetic fields. The results show that, regardless of the assumed corona parameters, the incorporation of corona into the nonuniform and nonlinear transmission line model under investigation modifies the model predictions so that they consistently reproduce most of the typical features of experimentally observed lightning electromagnetic fields and return-stroke speed profiles. In particular, it is shown that the proposed model leads to close vertical electric fields presenting waveforms, amplitudes, and decay with distance in good agreement with dart leader electric field changes measured in triggered lightning experiments. A comparison with popular engineering return-stroke models further confirms the model's ability to predict consistent electric field waveforms in the close vicinity of the channel. Some differences observed in the field amplitudes calculated with the different models can be related to the fact that current distortion, while present in the proposed model, is ultimately neglected in the considered engineering return-stroke models.
NASA Technical Reports Server (NTRS)
Mata, C.T.; Mata, A.G.
2012-01-01
A Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida in 2009. This LPS was instrumented with comprehensive meteorological and lightning data acquisition systems that were deployed from late 2010 until mid 2011. The first direct strikes to the LPS were recorded in March of 2011, when a limited number of sensors had been activated. The lightning instrumentation system detected a total of 70 nearby strokes and 19 direct strokes to the LPS, 2 of the 19 direct strokes to the LPS had two simultaneous ground attachment points (in both instances one channel terminated on the LPS and the other on the nearby ground). Additionally, there are more unaccounted nearby strokes seen on video records for which limited data was acquired either due to the distance of the stroke or the settings of the data acquisition system. Instrumentation deployment chronological milestones, a summary of lightning strikes (direct and nearby), high speed video frames, downconductor currents, and dH/dt and dE/dt typical waveforms for direct and nearby strokes are presented.
The propagation speed of a positive lightning return stroke
NASA Technical Reports Server (NTRS)
Idone, Vincent P.; Orville, Richard E.; Mach, Douglas M.; Rust, W. David
1987-01-01
The first direct determination of the propagation speed of a lightning return stroke lowering positive charge to ground has been made. This stroke was the third of eight otherwise negative strokes in a triggered lightning flash initiated at the Kennedy Space Center, FL. Two independent optical systems, one photographic and the other photoelectric, yielded common recordings for the third and fourth strokes; the respective two-dimensional return stroke propagation speeds were 1.0 vs 0.93 x 10 to the 8th m/s for the positive (third) stroke and 1.0 vs 1.0 x 10 to the 8th m/s for the fourth stroke. Using fast electric-field data, the positive stroke peak current was estimated to be 21 kA. Photoelectric data only yielded propagation speeds of 1.4, 1.6, 1.2, 1.3, 1.0 and 0.90 x 10 to the 8th m/s for the first, second and fifth through eighth return strokes, respectively.
Photoelectric return-stroke velocity and peak current estimates in natural and triggered lightning
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. David
1989-01-01
Two-dimensional photoelectric return stroke velocities from 130 strokes are presented, including 86 negative natural, 41 negative triggered, one positive triggered, and two positive natural return strokes. For strokes starting near the ground and exceeding 500 m in length, the average velocity is 1.3 + or - 0.3 X 10 to the 8th m/s for natural return strokes and 1.2 + or - 0.3 X 10 to the 8th m/s for triggered return strokes. For strokes with lengths less than 500 m, the average velocities are slightly higher. Using the transmission line model (TLM), the shortest segment one-dimensional return stroke velocity, and either the maximum or plateau electric field, it is shown that natural strokes have a peak current distribution that is lognormal with a median value of 16 kA (maximum E) or 12 kA (plateau E). Triggered lightning has a medium peak current value of 21 kA (maximum E) or 15 kA (plateau E). Correlations are found between TLM peak currents and velocities for triggered and natural subsequent return strokes, but not between TLM peak currents and natural first return stroke velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cen Jianyong; Yuan Ping; Qu Haiyan
2011-11-15
According to the spectra of cloud-to-ground (CG) lightning discharge plasma captured by a slit-less spectrograph and the information of synchronous radiated electric field, the temperatures, the total intensity of spectra, the peak value of current and its action integral of discharge plasma channel have been calculated. Furthermore, the correlativity of these parameters has been analyzed for the first time. The results indicate that the total intensity of spectra has a positive correlation to the discharge current in different strokes of one CG lightning, and the temperature of discharge plasma is direct proportion to the action integral in the first returnmore » strokes of different lightning.« less
Preliminary lightning observations over Greece
NASA Astrophysics Data System (ADS)
Chronis, Themis G.
2012-02-01
The first Precision Lightning Network, monitoring the Cloud-to-Ground (CG) lightning stroke activity over Greece and surrounding waters is operated and maintained by the Hellenic National Meteorological Service. This paper studies the regional (land/water interface), seasonal and diurnal variability of the CG strokes as a function of density, polarity and peak current. Additional investigation uniquely links the CG stroke current to sea surface salinity and cloud electrical capacitance. In brief, this study's major findings area as follows: (1) The seasonal maps of thunder days agree well with the regional climatic convective characteristics of the study area, (2) the CG diurnal variability is consistent with the global lightning activity observations over land and ocean, (3) the maxima of monthly averaged CG counts are located over land and water during typical summer and fall months respectively for both polarities, (4) CG peak currents show a distinct seasonality with larger currents during relatively colder months and smaller currents during summer months, and (5) strong linear trends between -CGs and sea surface salinity; (6) this trend is absent for +CGs data analysis of the employed database relate to the thunderstorm's RC constant and agrees with previous numerical modeling studies.
Attachment process in rocket-triggered lightning strokes
NASA Astrophysics Data System (ADS)
Wang, D.; Rakov, V. A.; Uman, M. A.; Takagi, N.; Watanabe, T.; Crawford, D. E.; Rambo, K. J.; Schnetzer, G. H.; Fisher, R. J.; Kawasaki, Z.-I.
1999-01-01
In order to study the lightning attachment process, we have obtained highly resolved (about 100 ns time resolution and about 3.6 m spatial resolution) optical images, electric field measurements, and channel-base current recordings for two dart leader/return-stroke sequences in two lightning flashes triggered using the rocket-and-wire technique at Camp Blanding, Florida. One of these two sequences exhibited an optically discernible upward-propagating discharge that occurred in response to the approaching downward-moving dart leader and connected to this descending leader. This observation provides the first direct evidence of the occurrence of upward connecting discharges in triggered lightning strokes, these strokes being similar to subsequent strokes in natural lightning. The observed upward connecting discharge had a light intensity one order of magnitude lower than its associated downward dart leader, a length of 7-11 m, and a duration of several hundred nanoseconds. The speed of the upward connecting discharge was estimated to be about 2 × 107 m/s, which is comparable to that of the downward dart leader. In both dart leader/return-stroke sequences studied, the return stroke was inferred to start at the point of junction between the downward dart leader and the upward connecting discharge and to propagate in both upward and downward directions. This latter inference provides indirect evidence of the occurrence of upward connecting discharges in both dart leader/return-stroke sequences even though one of these sequences did not have a discernible optical image of such a discharge. The length of the upward connecting discharges (observed in one case and inferred from the height of the return-stroke starting point in the other case) is greater for the event that is characterized by the larger leader electric field change and the higher return-stroke peak current. For the two dart leader/return-stroke sequences studied, the upward connecting discharge lengths are estimated to be 7-11 m and 4-7 m, with the corresponding return-stroke peak currents being 21 kA and 12 kA, and the corresponding leader electric field changes 30 m from the rocket launcher being 56 kV/m and 43 kV/m. Additionally, we note that the downward dart leader light pulse generally exhibits little variation in its 10-90% risetime and peak value over some tens of meters above the return-stroke starting point, while the following return-stroke light pulse shows an appreciable increase in risetime and a decrease in peak value while traversing the same section of the lightning channel. Our findings regarding (1) the initially bidirectional development of return-stroke process and (2) the relatively strong attenuation of the upward moving return-stroke light (and by inference current) pulse over the first some tens of meters of the channel may have important implications for return-stroke modeling.
Radiation from lightning return strokes over a finitely conducting earth
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Gesell, L.; Kao, Michael
1986-01-01
The effects of the conductivity of the earth on radiation from lightning return strokes are examined theoretically using a piecewise linear transmission line model for the return stroke. First, calculations are made of the electric field radiated during the return stroke, and then this electric field is used to compute the response of conventional AM radio receivers and electric field change systems during the return stroke. The calculations apply to the entire transient waveform (they are not restricted to the initial portions of the return stroke) and yield fast field changes and RF radiation in agreement with measurements made during real lightning. This research was motivated by measurements indicating that a time delay exists between the time of arrival of the fast electric field change and the RF radiation from first return strokes. The time delay is on the order of 20 microsec for frequencies in the HF-UHF range for lightning in Florida. The time delay is obtained theoretically in this paper. It occurs when both the effects of attenuation due to conductivity of the earth, and the finite velocity of propagation of the current pulse up the return stroke channel, are taken into account in the model.
First and subsequent return stroke properties of cloud-to-ground lightning
NASA Technical Reports Server (NTRS)
Namasivayam, S.; Lundquist, Stig
1991-01-01
Lightning properties obtained by a network of magnetic direction finders and by electric field measurements for distances from 50 to 500 km are compared for three summer thunderstorms in Sweden. The data from direct field recordings indicate 31, 17, and 26 pcts. of negative subsequent return strokes with peak current (as inferred from the peak electric field) higher than the first. Electric fields from first strokes are compared with normalized amplitudes registered by the magnetic direction finding system. The efficiency of detection by the magnetic direction finding system is discussed in terms of the percentage of lightning flashes observed by electric field measurements that are not localized. Statistics of the number of strokes per flash and the interstroke time intervals are presented.
NASA Astrophysics Data System (ADS)
Thiemann, Edward M. B.
Lightning detection and geolocation networks have found widespread use by the utility, air traffic control and forestry industries as a means of locating strikes and predicting imminent recurrence. Accurate lightning geolocation requires detecting VLF radio emissions at multiple sites using a distributed sensor network with typical baselines exceeding 150 km, along with precision time of arrival estimation to triangulate the origin of a strike. The trend has been towards increasing network accuracy without increasing sensor density by incorporating precision GPS synchronized clocks and faster front-end signal processing. Because lightning radio waveforms evolve as they propagate over a finitely conducting earth, and that measurements for a given strike may have disparate propagation path lengths, accurate models are required to determine waveform fiducials for precise strike location. The transition between the leader phase and return stroke phase may offer such a fiducial and warrants quantitative modeling to improve strike location accuracy. The VLF spectrum of the ubiquitous downward negative lightning strike is able to be modeled by the transfer of several Coulombs of negative charge from cloud to ground in a two-step process. The lightning stepped leader ionizes a plasma channel downward from the cloud at a velocity of approximately 0.05c, leaving a column of charge in its path. Upon connection with a streamer, the subsequent return stroke initiates at or near ground level and travels upward at an average but variable velocity of 0.3c. The return stroke neutralizes any negative charge along its path. Subsequent dart leader and return strokes often travel smoothly down the heated channel left by a preceding stroke, lacking the halting motion of the preceding initial stepped leader and initial return stroke. Existing lightning models often neglect the leader current and rely on approximations when solving for the return stroke. In this thesis, I present an analytic solution to Maxwell's Equations for the lightning leader followed by a novel return stroke model. I model the leader as a downward propagating boxcar function of uniform charge density and constant velocity, and the subsequent return stroke is modeled as an upward propagating boxcar with a time dependent velocity. Charge conservation is applied to ensure self-consistency of the driving current and charge sources, and physical observations are used to support model development. The resulting transient electric and magnetic fields are presented at various distances and delay times and compared with measured waveforms and previously published models.
Plotting Lightning-Stroke Data
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Garst, R. A.
1986-01-01
Data on lightning-stroke locations become easier to correlate with cloudcover maps with aid of new graphical treatment. Geographic region divided by grid into array of cells. Number of lightning strokes in each cell tabulated, and value representing density of lightning strokes assigned to each cell. With contour-plotting routine, computer draws contours of lightning-stroke density for region. Shapes of contours compared directly with shapes of storm cells.
NASA Astrophysics Data System (ADS)
Wilson, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip
2009-12-01
The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the U.S. National Lightning Detection Network™ (NLDN), and a volumetric lightning mapping array, the Lightning Detection and Ranging (LDAR) system, to monitor and characterize lightning that is potentially hazardous to launch or ground operations. Data obtained from these systems during June-August 2006 have been examined to check the classification of small, negative CGLSS reports that have an estimated peak current, ∣Ip∣ less than 7 kA, and to determine the smallest values of Ip that are produced by first strokes, by subsequent strokes that create a new ground contact (NGC), and by subsequent strokes that remain in a preexisting channel (PEC). The results show that within 20 km of the KSC-ER, 21% of the low-amplitude negative CGLSS reports were produced by first strokes, with a minimum Ip of -2.9 kA; 31% were by NGCs, with a minimum Ip of -2.0 kA; and 14% were by PECs, with a minimum Ip of -2.2 kA. The remaining 34% were produced by cloud pulses or lightning events that we were not able to classify.
Seasonal and Local Characteristics of Lightning Outages of Power Distribution Lines in Hokuriku Area
NASA Astrophysics Data System (ADS)
Sugimoto, Hitoshi; Shimasaki, Katsuhiko
The proportion of the lightning outages in all outages on Japanese 6.6kV distribution lines is high with approximately 20 percent, and then lightning protections are very important for supply reliability of 6.6kV lines. It is effective for the lightning performance to apply countermeasures in order of the area where a large number of the lightning outages occur. Winter lightning occurs in Hokuriku area, therefore it is also important to understand the seasonal characteristics of the lightning outages. In summer 70 percent of the lightning outages on distribution lines in Hokuriku area were due to sparkover, such as power wire breakings and failures of pole-mounted transformers. However, in winter almost half of lightning-damaged equipments were surge arrester failures. The number of the lightning outages per lightning strokes detected by the lightning location system (LLS) in winter was 4.4 times larger than that in summer. The authors have presumed the occurrence of lightning outages from lightning stroke density, 50% value of lightning current and installation rate of lightning protection equipments and overhead ground wire by multiple regression analysis. The presumed results suggest the local difference in the lightning outages.
Damage to metallic samples produced by measured lightning currents
NASA Technical Reports Server (NTRS)
Fisher, Richard J.; Schnetzer, George H.
1991-01-01
A total of 10 sample disks of 2024-T3 aluminum and 4130 ferrous steel were exposed to rocket-triggered lightning currents at the Kennedy Space Center test site. The experimental configuration was arranged so that the samples were not exposed to the preliminary streamer, wire-burn, or following currents that are associated with an upward-initiated rocket-triggered flash but which are atypical of naturally initiated lightning. Return-stroke currents and continuing currents actually attaching to the sample were measured, augmented by close-up video recordings of approximately 3 feet of the channel above the sample and by 16-mm movies with 5-ms resolution. From these data it was possible to correlate individual damage spots with streamer, return-stroke, and continuing currents that produced them. Substantial penetration of 80-mil aluminum was produced by a continuing current of submedian amplitude and duration, and full penetration of a 35-mil steel sample occurred under an eightieth percentile continuing current. The primary purpose of the data acquired in these experiments is for use in improving and quantifying the fidelity of laboratory simulations of lightning burnthrough.
Optical progression characteristics of an interesting natural downward bipolar lightning flash
NASA Astrophysics Data System (ADS)
Chen, Luwen; Lu, Weitao; Zhang, Yijun; Wang, Daohong
2015-01-01
high-speed cameras, Lightning Attachment Process Observation Systems, and fast and slow electrical antennas, we documented a downward bipolar lightning flash that contained one first positive stroke with a peak current of 142 kA and five subsequent negative strokes hitting on a 90 m tall structure on 29 July 2010 in Guangzhou City, China. All the six strokes propagated along the same viewed channel established by the first positive return stroke. The leader which preceded the positive return stroke propagated downward without any branches at a two-dimensional (2-D) speed of 2.5 × 106 m/s. An upward connecting leader with a length of about 80 m was observed in response to the downward positive leader. The 10-90% risetimes of the return strokes' optical pulses ranged from 2.2 µs to 3.2 µs, while the widths from the 10% wavefront to the 50% wave tail ranged from 56.5 µs to 83.1 µs, and the half peak widths ranged from 53.4 µs to 81.6 µs. All the return strokes exhibited similar speeds, ranging from 1.0 × 108 m/s to 1.3 × 108 m/s. Each of the return strokes was followed by a continuing current stage (CC). The first positive stroke CC lasted more than 150 ms, much larger than all the subsequent negative stroke CC, ranging from 13 ms to 70 ms.
A Summary of the NASA Lightning Nitrogen Oxides Model (LNOM) and Recent Results
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harld
2011-01-01
The NASA Marshall Space Flight Center introduced the Lightning Nitrogen Oxides Model (LNOM) a couple of years ago to combine routine state-of-the-art measurements of lightning with empirical laboratory results of lightning NOx production. The routine measurements included VHF lightning source data [such as from the North Alabama Lightning Mapping Array (LMA)], and ground flash location, peak current, and stroke multiplicity data from the National Lightning Detection Network(TradeMark) (NLDN). Following these initial runs of LNOM, the model was updated to include several non-return stroke lightning NOx production mechanisms, and provided the impact of lightning NOx on an August 2006 run of CMAQ. In this study, we review the evolution of the LNOM in greater detail and discuss the model?s latest upgrades and applications. Whereas previous applications were limited to five summer months of data for North Alabama thunderstorms, the most recent LNOM analyses cover several years. The latest statistics of ground and cloud flash NOx production are provided.
A unified engineering model of the first stroke in downward negative lightning
NASA Astrophysics Data System (ADS)
Nag, Amitabh; Rakov, Vladimir A.
2016-03-01
Each stroke in a negative cloud-to-ground lightning flash is composed of downward leader and upward return stroke processes, which are usually modeled individually. The first stroke leader is stepped and starts with preliminary breakdown (PB) which is often viewed as a separate process. We present the first unified engineering model for computing the electric field produced by a sequence of PB, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively charged channel extends downward in a stepped fashion during both the PB and leader stages. Each step involves a current wave that propagates upward along the newly formed channel section. Once the leader attaches to ground, an upward propagating return stroke neutralizes the charge deposited along the channel. Model-predicted electric fields are in reasonably good agreement with simultaneous measurements at both near (hundreds of meters, electrostatic field component is dominant) and far (tens of kilometers, radiation field component is dominant) distances from the lightning channel. Relations between the features of computed electric field waveforms and model input parameters are examined. It appears that peak currents associated with PB pulses are similar to return stroke peak currents, and the observed variation of electric radiation field peaks produced by leader steps at different heights above ground is influenced by the ground corona space charge.
Characteristics of lightning flashes generating dancing sprites above thunderstorms
NASA Astrophysics Data System (ADS)
Soula, Serge; Mlynarczyk, Janusz; Füllekrug, Martin; Pineda, Nicolau; Georgis, Jean-François; van der Velde, Oscar; Montanyà, Joan; Fabro, Ferran
2017-04-01
During the night of October 29-30, 2013, a low-light video camera at Pic du Midi (2877 m) in the French Pyrénées, recorded TLEs above a very active storm over the Mediterranean Sea. The minimum cloud top temperature reached -73˚ C at ˜1600 UTC while its cloud to ground (CG) flash rate reached ˜30 fl min-1. Some sprite events with long duration are classified as dancing sprites. We analyze in detail the temporal evolution and estimated location of sprite elements for two cases of these events. They consist in series of sprite sequences with a duration that exceeds 1 second. By associating the cloud structure, the lightning activity, the electric field radiated in a broad range of low frequencies and the current moment waveform of the lightning strokes, some findings are highlighted: (i) In each series, successive sprite sequences reflect the occurrence time and location of individual positive lightning strokes across the stratiform region. (ii) The longer time-delayed (> 20 ms) sprite elements correspond to the lower impulsive charge moment changes (iCMC) of the parent stroke (< 200 C km) and they are shifted few tens of kilometres from their SP+CG stroke. However, both short and long time-delayed sprite elements also occur after strokes that produce a large iCMC and that are followed by a continuing current. (iii) The long time-delayed sprite elements produced during the continuing current correspond to surges in the current moment waveform. They occur sometimes at an altitude apparently lower than the previous short time-delayed sprite elements, possibly because of the lowered altitude of the ionosphere potential. (iv) The largest and brightest sprite elements produce significant current signatures, visible when their delay is not too short (˜3-5 ms).
NASA Astrophysics Data System (ADS)
Baranov, M. I.; Rudakov, S. V.
2018-03-01
The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.
NASA Astrophysics Data System (ADS)
Baranov, M. I.; Rudakov, S. V.
2018-05-01
The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.
NASA Astrophysics Data System (ADS)
Fan, Tingting; Yuan, Ping; Wang, Xuejuan; Cen, Jianyong; Chang, Xuan; Zhao, Yanyan
2017-09-01
The spectra of two negative cloud-to-ground lightning discharge processes with multi-return strokes are obtained by a slit-less high-speed spectrograph, which the temporal resolution is 110 μs. Combined with the synchronous electrical observation data and theoretical calculation, the physical characteristics during return strokes process are analysed. A positive correlation between discharge current and intensity of ionic lines in the spectra is verified, and based on this feature, the current evolution characteristics during four return strokes are investigated. The results show that the time from peak current to the half-peak value estimated by multi point-fitting is about 101 μs-139 μs. The Joule heat in per unit length of four return strokes channel is in the order of 105J/m-106 J/m. The radius of arc discharge channel is positively related to the discharge current, and the more intense the current is, the greater the radius of channel is. Furthermore, the evolution for radius of arc core channel in the process of return stroke is consistent with the change trend of discharge current after the peak value. Compared with the decay of the current, the temperature decreases more slowly.
Submicrosecond characteristics of lightning return-stroke currents
NASA Technical Reports Server (NTRS)
Leteinturier, Christiane; Hamelin, Joel H.; Eybert-Berard, Andre
1991-01-01
The authors describe the experimental results obtained during 1987 and 1988 triggered-lightning experiments in Florida. Seventy-four simultaneous submicrosecond time-resolved measurements of triggered return-stroke current (I) and current derivative (dI/dt) were made in Florida in 1987 and 1988. Peak currents ranged from about 5 to 76 kA, peak dI/dt amplitude from 13 to 411 kA/microsec and rise time from 90 to 1000 ns. The mean peak dI/dt values of 110 kA/microsec were 2-3 times higher than data from instrumented towers and peak I and dI/dt appear to be positively correlated. These data confirm previous experiments and conclusions supported by forty measurements. They are important in order to define, for example, standards for lightning protection. Present standards give a dI/dt maximum of 140 kA/microsec.
Lightning-Related Indicators for National Climate Assessment (NCA) Studies
NASA Technical Reports Server (NTRS)
Koshak, W.
2017-01-01
Changes in climate can affect the characteristics of lightning (e.g., number of flashes that occur in a region, return stroke current and multiplicity, polarity of charge deposited to ground, and the lightning cloud-top optical energy emission). The NASA/MSFC Lightning Analysis Tool (LAT) monitors these and other quantities in support of the National Climate Assessment (NCA) program. Changes in lightning characteristics lead to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality).
NASA Astrophysics Data System (ADS)
Kolmasova, I.; Santolik, O.; Spurny, P.; Borovicka, J.; Mlynarczyk, J.; Popek, M.; Lan, R.; Uhlir, L.; Diendorfer, G.; Slosiar, R.
2017-12-01
We present observations of transient luminous events (TLEs) produced by a small-scale winter thunderstorm which occurred on 2 April 2017 in the southwest of Czechia. Elves, sprites and associated positive lightning strokes have been simultaneously recorded by different observational techniques. Optical data include video recordings of TLEs from Nydek (Czechia) and data recorded by high time-resolution photometers at several stations of the Czech fireball network which measured the all-sky brightness originating from lightning return strokes. Electromagnetic data sets include 3-component VLF measurements conducted in Rustrel (France), 2-component ELF measurements recorded at the Hylaty station (Poland) and signal intensity variations of a VLF transmitter (DHO38, Rhauderfehn, Germany) recorded in Bojnice (Slovakia). Optical and electromagnetic data are completed by positions and peak currents of all strokes recorded during the observed thunderstorm by the EUCLID lightning detection network. We focus our analysis on positive lightning discharges with high peak currents and we compare properties of those which produced TLE with properties of discharges for which TLE was not detected. The current moment waveforms and charge moment changes associated with the TLE events are reconstructed from the ELF electromagnetic signals. Obtained current moment waveforms show excellent agreement with high time-resolution optical data.
Statistical Patterns in Natural Lightning
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.
2011-12-01
Every day millions of lightning flashes occur around the globe but the understanding of this natural phenomenon is still lacking. Fundamentally, lightning is nature's way of destroying charge separation in clouds and restoring electric neutrality. Thus, statistical patterns of lightning activity indicate the scope of these electric discharges and offer a surrogate measure of timescales for charge buildup in thunderclouds. We present a statistical method to investigate spatio-temporal correlations among lightning flashes using National Lightning Detection Network (NLDN) stroke data. By monitoring the distribution of lightning activity, we can observe the charging and discharging processes in a given thunderstorm. In particular, within a given storm, the flashes do not occur as a memoryless random process. We introduce the No Flash Zone (NFZ) which results from the suppressed probability of two consecutive neighboring flashes. This effect lasts for tens of seconds and can extend up to 15 km around the location of the initial flash, decaying with time. This suppression effect may be a function of variables such as storm location, storm phase, and stroke peak current. We develop a clustering algorithm, Storm-Locator, which groups strokes into flashes, storm cells, and thunderstorms, and enables us to study lightning and the NFZ in different geographical regions, and for different storms. The recursive algorithm also helps monitor the interaction among spatially displaced storm cells, and can provide more insight into the spatial and temporal impacts of lightning discharges.
Atmospheric electricity. [lightning protection criteria in spacecraft design
NASA Technical Reports Server (NTRS)
Daniels, G. E.
1973-01-01
Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.
Analysis and Assessment of Peak Lightning Current Probabilities at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Vaughan, W. W.
1999-01-01
This technical memorandum presents a summary by the Electromagnetics and Aerospace Environments Branch at the Marshall Space Flight Center of lightning characteristics and lightning criteria for the protection of aerospace vehicles. Probability estimates are included for certain lightning strikes (peak currents of 200, 100, and 50 kA) applicable to the National Aeronautics and Space Administration Space Shuttle at the Kennedy Space Center, Florida, during rollout, on-pad, and boost/launch phases. Results of an extensive literature search to compile information on this subject are presented in order to answer key questions posed by the Space Shuttle Program Office at the Johnson Space Center concerning peak lightning current probabilities if a vehicle is hit by a lightning cloud-to-ground stroke. Vehicle-triggered lightning probability estimates for the aforementioned peak currents are still being worked. Section 4.5, however, does provide some insight on estimating these same peaks.
NASA Technical Reports Server (NTRS)
Idone, V. P.; Orville, R. E.
1985-01-01
The correlation between peak relative light intensity L(R) and stroke peak current I(R) is examined for 39 subsequent return strokes in two triggered lightning flashes. One flash contained 19 strokes and the other 20 strokes for which direct measurements were available of the return stroke peak current at ground. Peak currents ranged from 1.6 to 21 kA. The measurements of peak relative light intensity were obtained from photographic streak recordings using calibrated film and microsecond resolution. Correlations, significant at better than the 0.1 percent level, were found for several functional relationships. Although a relation between L(R) and I(R) is evident in these data, none of the analytical relations considered is clearly favored. The correlation between L(R) and the maximum rate of current rise is also examined, but less correlation than between L(R) and I(R) is found. In addition, the peak relative intensity near ground is evaluated for 22 dart leaders, and a mean ratio of peak dart leader to peak return stroke relative light intensity was found to be 0.1 with a range of 0.02-0.23. Using two different methods, the peak current near ground in these dart leaders is estimated to range from 0.1 to 6 kA.
Launch pad lightning protection effectiveness
NASA Technical Reports Server (NTRS)
Stahmann, James R.
1991-01-01
Using the striking distance theory that lightning leaders will strike the nearest grounded point on their last jump to earth corresponding to the striking distance, the probability of striking a point on a structure in the presence of other points can be estimated. The lightning strokes are divided into deciles having an average peak current and striking distance. The striking distances are used as radii from the points to generate windows of approach through which the leader must pass to reach a designated point. The projections of the windows on a horizontal plane as they are rotated through all possible angles of approach define an area that can be multiplied by the decile stroke density to arrive at the probability of strokes with the window average striking distance. The sum of all decile probabilities gives the cumulative probability for all strokes. The techniques can be applied to NASA-Kennedy launch pad structures to estimate the lightning protection effectiveness for the crane, gaseous oxygen vent arm, and other points. Streamers from sharp points on the structure provide protection for surfaces having large radii of curvature. The effects of nearby structures can also be estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu Haiyan; Chang Zhengshi; Yuan Ping
2011-01-15
The spectra of cloud-to-ground lightning with multiple return strokes have been obtained by using a slitless spectrograph on the Chinese Tibet plateau. Combining the spectra with synchronous electrical information, the correlation among spectral properties, channel temperatures and discharge characteristics, and thermal effects of current is discussed for the first time. The results show that the channel plasma temperature varies significantly from stroke to stroke within a given flash, and the total intensity of spectra is directly proportional to the amplitude of electric field change. Moreover, the positive correlation has been confirmed between the channel plasma temperature and the thermal effectmore » which shows the effect of the electric current accumulation. It is inferred that the total intensity of the spectra should be directly proportional to the intensity of discharge current, and channel temperature is correlated positively with the energy transmission in one return stroke.« less
Characteristics of lightning flashes generating sprites above thunderstorms
NASA Astrophysics Data System (ADS)
Soula, S.; Van Der Velde, O. A.; Montanya, J.; Fullekrug, M.; Mlynarczyk, J.
2016-12-01
Sprites are Transient Luminous Events (TLEs) consisting of streamer discharges, in response to a strong transient electrostatic field that exceeds the threshold for dielectric breakdown in the mesosphere. A large panel of sprite observations have been made with several low-light video cameras located in southern France, especially at Pic du Midi (2877 m) in the Pyrénées mountain range. The optical detection of these luminous events allow to determine some of their characteristics as the timing, the duration, the location, the size, the shape, the luminosity. Other parameters describing the storm and the lightning activity provided by different instruments are associated to the sprite observations to a better understanding of their conditions of production and their characteristic settings: (i) the sprites are essentially produced above the stratiform region of the Mesoscale Convective Systems during positive cloud-to-ground lightning flashes that produce large Charge Moment Change (CMC) and with a delay of as much shorter than the current is large. (ii) The long time delayed sprites are associated with continuing current and large CMC. (iii) The sprite elements can be shifted from the stroke location when their delay is long. (iv) Very luminous sprites can produce large current signatures visible in ELF radiation a few milliseconds (< 5 ms) after the positive strokes that generate them, but sometimes imbedded in that of the stroke pulse. (v) Several cases of "dancing sprites" show the successive light emissions reflect the timing and the location of the strokes of the lightning flashes that generate them.
Triggered lightning spectroscopy: Part 1. A qualitative analysis
NASA Astrophysics Data System (ADS)
Walker, T. Daniel; Christian, Hugh J.
2017-08-01
The first high-speed spectra of triggered lightning have been obtained. During the summers of 2012 and 2013, spectra were recorded at the International Center for Lightning Research and Testing, Camp Blanding, FL. The spectra were recorded with a high-speed camera with a grism mounted in front of it. The triggered lightning channels observed were generally at low altitude in a region that included the copper wire. Spectral emissions were recorded at each phase: the initial stage, dart leader, return stroke, and continuing current. These spectra are separated into two major regions: soft ultraviolet to visible (3800-6200 Å) and visible to near infrared (6200-8700 Å). The emissions during the initial stage reflect those of a copper wire burn in air. The majority of the emissions are neutral copper. After the initial stage comes the first return stroke which contains no detected molecular emissions; however, it does contain neutral, singly, and doubly ionized nitrogen and oxygen, neutral argon, and neutral hydrogen. Occasionally, before a return stroke, the dart leader coming down the channel will be stepped. During these occasions the leader spectra resemble that of the return stroke but are dimmer and shorter lived. After the initial portion of the return stroke, there are often changes in the luminosity of the spectrum which corresponds with fluctuations in the continuing current. During these "reillumination phases" no singly or doubly ionized lines have been observed to reemerge over the detection threshold, only neutral emission features.
Oceanic Lightning versus Continental Lightning: VLF Peak Current Discrepancies
NASA Astrophysics Data System (ADS)
Dupree, N. A., Jr.; Moore, R. C.
2015-12-01
Recent analysis of the Vaisala global lightning data set GLD360 suggests that oceanic lightning tends to exhibit larger peak currents than continental lightning (lightning occurring over land). The GLD360 peak current measurement is derived from distant measurements of the electromagnetic fields emanated during the lightning flash. Because the GLD360 peak current measurement is a derived quantity, it is not clear whether the actual peak currents of oceanic lightning tend to be larger, or whether the resulting electromagnetic field strengths tend to be larger. In this paper, we present simulations of VLF signal propagation in the Earth-ionosphere waveguide to demonstrate that the peak field values for oceanic lightning can be significantly stronger than for continental lightning. Modeling simulations are performed using the Long Wave Propagation Capability (LWPC) code to directly evaluate the effect of ground conductivity on VLF signal propagation in the 5-15 kHz band. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-Ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. Furthermore, we evaluate the effect of return stroke speed on these results.
Ship-borne Radio and GLD360 Measurements of Intense Oceanic Lightning
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M.; Said, R.; Lehtinen, N. G.; Inan, U.
2013-12-01
Recent studies with the GLD360 lightning geo-location network have shown that the peak current intensity of cloud-to-ground (CG) lightning is more powerful over the ocean than over land. This remains a poorly understood phenomenon. The Stanford VLF group has recently deployed a Very Low Frequency (1 MHz sampling rate) radio receiver system aboard the NOAA Ronald W. Brown research vessel. The goal of this transatlantic experiment is to improve our understanding of oceanic lightning and to investigate the physical difference between oceanic and land lightning. When positioned reasonably close to deep oceanic thunderstorms, the LF-VLF receiver aboard the Ronald W. Brown detects the impulsive radio emissions from the return stroke, up to 1 MHz, which enables us to estimate the return-stroke waveform shapes generated by the lightning channel. In this presentation, we present our experimental setup and a summary of the data collected during the transatlantic voyages of the NOAA ship. We process lightning-generated waveforms, compare them to LF-VLF data from land lightning over Oklahoma, extract statistical patterns, and compare the data to numerical and analytical models.
Bipolar cloud-to-ground lightning flash observations
NASA Astrophysics Data System (ADS)
Saba, Marcelo M. F.; Schumann, Carina; Warner, Tom A.; Helsdon, John H.; Schulz, Wolfgang; Orville, Richard E.
2013-10-01
lightning is usually defined as a lightning flash where the current waveform exhibits a polarity reversal. There are very few reported cases of cloud-to-ground (CG) bipolar flashes using only one channel in the literature. Reports on this type of bipolar flashes are not common due to the fact that in order to confirm that currents of both polarities follow the same channel to the ground, one necessarily needs video records. This study presents five clear observations of single-channel bipolar CG flashes. High-speed video and electric field measurement observations are used and analyzed. Based on the video images obtained and based on previous observations of positive CG flashes with high-speed cameras, we suggest that positive leader branches which do not participate in the initial return stroke of a positive cloud-to-ground flash later generate recoil leaders whose negative ends, upon reaching the branch point, traverse the return stroke channel path to the ground resulting in a subsequent return stroke of opposite polarity.
Detection of Lightning-produced NOx by Air Quality Monitoring Stations in Israel
NASA Astrophysics Data System (ADS)
Yair, Y.; Shalev, S.; Saaroni, H.; Ziv, B.
2011-12-01
Lightning is the largest natural source for the production of nitrogen oxides (LtNOx) in the troposphere. Since NOx are greenhouse gases, it is important to know the global production rate of LtNOx for climate studies (present estimates range from 2 to 8 Tg per year) and to model its vertical distribution (Ott et al., 2010). One of the key factors for such an estimate is the yield of a single lightning flash, namely the number of molecules produced for each Joule of energy deposited along the lightning channel. We used lightning stroke data from the Israel Lightning Location System (ILLS) together with NOx data obtained from the national network of air quality monitoring stations operated by the Israeli Ministry of Environmental Protection. Looking for the fingerprints of LtNOx in the general ambient concentrations, usually most affected by pollution from urban sources, we looked only for CG strokes occurring within a radius of 3 km from the location of an air-quality monitoring station. This lowered the number of relevant cases from 605,413 strokes detected in the 2004/5 through 2009/10 seasons to 1,897 strokes. We applied a threshold of > 60kA reducing the number of events to 35. The results showed that there was no consistent rising trend in the NOx concentrations in the hour following the lightning (the lifetime near the ground is expected to be a few hours; Zhang et al., 2003). However, when considering only those events when the prevailing wind was in the direction from the stroke location toward the sensor (7 cases), a clear increase of few ppb following the stroke was observed in 5 cases [see Fig.]. This increase is well correlated with the wind speed, suggesting an effective transport from the stroke location to the sensor. Weaker winds allow dilution and result in smaller observed increases of LtNOx. Separate analysis of additional 17 cases in which the strokes were located < 500 m from the monitoring station (with any peak current above 7 kA) showed no consistent trend. When excluding the 7 events that occurred during rush hour traffic, we found 6 (of 10) cases with an average increase in NOx concentrations of 16 ppb in the hour following the lightning. These results suggest a contribution of CG lightning strokes to the ground level concentrations of NOx. L. E. Ott, K. E. Pickering, G. L. Stenchikov, D. J. Allen, A. J. DeCaria, B. Ridley, R.F. Lin, S. Lang, and W.K. Tao (2010), Production of lightning NOx and its vertical distribution calculated from three dimensional cloud scale chemical transport model simulations, J. Geophys. Res., 115, D04301, doi:10.1029/2009JD011880
Small Negative Cloud-to-Ground Lightning Reports at the KSC-ER
NASA Technical Reports Server (NTRS)
Wilson, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip
2009-01-01
'1he NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the CGLSS and the NLDN, and a volumetric lightning mapping array, LDAR, to monitor and characterize lightning that is potentially hazardous to ground or launch operations. Data obtained from these systems during June-August 2006 have been examined to check the classification of small, negative CGLSS reports that have an estimated peak current, [I(sup p)] less than 7 kA, and to determine the smallest values of I(sup p), that are produced by first strokes, by subsequent strokes that create a new ground contact (NGC), and by subsequent strokes that remain in a pre-existing channel (PEC). The results show that within 20 km of the KSC-ER, 21% of the low-amplitude negative CGLSS reports were produced by first strokes, with a minimum I(sup p) of-2.9 kA; 31% were by NGCs, with a minimum I(sup p) of-2.0 kA; and 14% were by PECs, with a minimum I(sup p) of -2.2 kA. The remaining 34% were produced by cloud pulses or lightning events that we were not able to classify.
Calculations of lightning return stroke electric and magnetic fields above ground
NASA Technical Reports Server (NTRS)
Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.
1981-01-01
Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, He; Yuan, Ping; Cen, Jian-Yong
2014-03-15
A cloud-to-ground lightning with six return strokes has been recorded with a slit-less spectrograph in Qinghai province. According to the spectra of return strokes without continuous current, the electron density, the channel temperature, and the gas pressure have been calculated. Then, the correlativity of these parameters has been analyzed. The results indicate that the total intensity of spectra is positive correlated to the intensity of spectral line, they both decrease with time rapidly; furthermore, the channel temperature and the gas pressure decrease with time slowly in the similar trends.
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Meneghini, R.
1978-01-01
A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuejuan; Yuan, Ping; Cen, Jianyong
2014-03-15
Using the spectra of a cloud-to-ground (CG) lightning flash with multiple return strokes and combining with the synchronous radiated electrical field information, the linear charge density, the channel radius, the energy per unit length, the thermal energy, and the energy of dissociation and ionization in discharge channel are calculated with the aid of an electrodynamic model of lightning. The conclusion that the initial radius of discharge channel is determined by the duration of the discharge current is confirmed. Moreover, the correlativity of several parameters has been analyzed first. The results indicate that the total intensity of spectra is positive correlatedmore » to the channel initial radius. The ionization and thermal energies have a linear relationship, and the dissociation energy is correlated positively to the ionization and thermal energies, the energy per unit length is in direct proportion to the square of initial radius in different strokes of one CG lightning.« less
Application of the Lienard-Wiechert solution to a lightning return stroke model
NASA Technical Reports Server (NTRS)
Meneghini, R.
1983-01-01
The electric and magnetic fields associated with the lightning return stroke are expressed as a convolution of the current waveform shape and the fields generated by a moving charge of amplitude one (i.e., the Lienard-Wiechert solution for a unit charge). The representation can be used to compute the fields produced by a current waveform of non-uniform velocity that propagates along a filament of arbitrary, but finite, curvature. To study numerically the effects of linear charge acceleration and channel curvature two simple channel models are used: the linear and the hyperbolic.
Application of the Lienard-Wiechert solution to a lightning return stroke model
NASA Technical Reports Server (NTRS)
Meneghini, R.
1984-01-01
The electric and magnetic fields associated with the lightning return stroke are expressed as a convolution of the current waveform shape and the fields generated by a moving charge of amplitude one (i.e., the Lienard-Wiechert solution for a unit charge). The representation can be used to compute the fields produced by a current waveform of non-uniform velocity that propagates along a filament of arbitrary, but finite, curvature. To study numerically the effects of linear charge acceleration and channel curvature two simple channel models are used: the linear and the hyperbolic.
Properties of M components from currents measured at triggered lightning channel base
NASA Astrophysics Data System (ADS)
Thottappillil, Rajeev; Goldberg, Jon D.; Rakov, Vladimir A.; Uman, Martin A.; Fisher, Richard J.; Schnetzer, George H.
1995-12-01
Channel base currents from triggered lightning were measured at the NASA Kennedy Space Center, Florida, during summer 1990 and at Fort McClellan, Alabama, during summer 1991. An analysis of the return stroke data and overall continuing current data has been published by Fisher et al. [1993]. Here an analysis is given of the impulsive processes, called M components, that occur during the continuing current following return strokes. The 14 flashes analyzed contain 37 leader-return stroke sequences and 158 M components, both processes lowering negative charge from cloud to ground. Statistics are presented for the following M current pulse parameters: magnitude, rise time, duration, half-peak width, preceding continuing current level, M interval, elapsed time since the return stroke, and charge transferred by the M current pulse. A typical M component in triggered lightning is characterized by a more or less symmetrical current pulse having an amplitude of 100-200 A (2 orders of magnitude lower than that for a typical return stroke [Fisher et al., 1993]), a 10-90% rise time of 300-500 μs (3 orders of magnitude larger than that for a typical return stroke [Fisher et al., 1993]), and a charge transfer to ground of the order of 0.1 to 0.2 C (1 order of magnitude smaller than that for a typical subsequent return stroke pulse [Berger et al., 1975]). About one third of M components transferred charge greater than the minimum charge reported by Berger et al. [1975] for subsequent leader-return stroke sequences. No correlation was found between either the M charge or the magnitude of the M component current (the two are moderately correlated) and any other parameter considered. M current pulses occurring soon after the return stroke tend to have shorter rise times, shorter durations, and shorter M intervals than those which occur later. M current pulses were observed to be superimposed on continuing currents greater than 30 A or so, with one exception out of 140 cases, wherein the continuing current level was measured to be about 20 A. The first M component virtually always (one exception out of 34 cases) occurred within 4 ms of the return stroke. This relatively short separation time between return stroke and the first M component, coupled with the observation of Fisher et al. [1993] that continuing currents lasting longer than 10 ms never occur without M current pulses, implies that the M component is a necessary feature of the continuing current mode of charge transfer to ground.
Tropical Cyclone Lightning Distribution and Its Relationship to Convection and Intensity Change
NASA Technical Reports Server (NTRS)
Rodgers, Edward; Wienman, James; Pierce, Harold; Olson, William
2000-01-01
The long distance National Lightning Detection Network (NLDN) was used to monitor the distribution of lightning strokes in various 1998 and 1999 western North Atlantic tropical cyclones. These ground-based lightning observations together with the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and the Tropical Rain Mapping Mission (TRMM) Microwave Instrument (TMI) derived convective rain rates were used to monitor the propagation of electrically charged convective rain bands aid to qualitatively estimate intensification. An example of the lightning analyses was performed on hurricane George between 25-28 September, 1998 when the system left Key West and moved towards the Louisiana coast. During this period of time, George's maximum winds increased from 38 to 45 meters per second on 25 September and then remained steady state until it made landfall. Time-radius displays of the lightning strokes indicated that the greatest number of lightning strokes occurred within the outer core region (greater than 165 km) with little or no lightning strokes at radii less than 165 km. The trend in these lightning strokes decreased as George move into the Gulf of Mexico and showed no inward propagation. The lack inward propagating lightning strokes with time indicated that there was no evidence that an eye wall replacement was occurring that could alter George's intensity. Since George was steady state at this time, this result is not surprising. Time-azimuth displays of lightning strokes in an annulus whose outer and inner radii were respectively, 222 and 333 km from George's center were also constructed. A result from this analysis indicated that the maximum number of strokes occurred in the forward and rear right quadrant when George was over the Gulf of Mexico. This result is, consistent with the aircraft and satellite observations of maximum rainfall.
Observation of Long Ionospheric Recoveries from Lightning-induced Electron Precipitation Events
NASA Astrophysics Data System (ADS)
Mohammadpour Salut, M.; Cohen, M.
2015-12-01
Lightning strokes induces lower ionospheric nighttime disturbances which can be detected through Very Low Frequency (VLF) remote sensing via at least two means: (1) direct heating and ionization, known as an Early event, and (2) triggered precipitation of energetic electrons from the radiation belts, known as Lightning-induced Electron Precipitation (LEP). For each, the ionospheric recover time is typically a few minutes or less. A small class of Early events have been identified as having unusually long ionospheric recoveries (10s of minutes), with the underlying mechanism still in question. Our study shows for the first time that some LEP events also demonstrate unusually long recovery. The VLF events were detected by visual inspection of the recorded data in both the North-South and East-West magnetic fields. Data from the National Lightning Detection Network (NLDN) are used to determine the location and peak current of the lightning responsible for each lightning-associated VLF perturbation. LEP or Early VLF events are determined by measuring the time delay between the causative lightning discharges and the onset of all lightning-associated perturbations. LEP events typically possess an onset delay greater than ~ 200 msec following the causative lightning discharges, while the onset of Early VLF events is time-aligned (<20 msec) with the lightning return stroke. Nonducted LEP events are distinguished from ducted events based on the location of the causative lightning relative to the precipitation region. From 15 March to 20 April and 15 October to 15 November 2011, a total of 385 LEP events observed at Indiana, Montana, Colorado and Oklahoma VLF sites, on the NAA, NLK and NML transmitter signals. 46 of these events exhibited a long recovery. It has been found that the occurrence rate of ducted long recovery LEP events is higher than nonducted. Of the 46 long recovery LEP events, 33 events were induced by ducted whistlers, and 13 events were associated with nonducted obliquely propagating whistler waves. The occurrence of high peak current lightning strokes is a prerequisite for long recovery LEP events.
NASA Technical Reports Server (NTRS)
Uman, M. A.; Mclain, D. K.
1972-01-01
The measured electric field intensities of 161 lightning strokes in 39 flashes which occurred between 1 and 35 km from an observation point at Kennedy Space Center, Florida during June and July of 1971 have been analyzed to determine the lightning channel currents which produced the fields. In addition, typical channel currents are derived and from these typical electric fields at distances between 0.5 and 100 km are computed and presented. On the basis of the results recommendations are made for changes in the specification of lightning properties relative to space vehicle design as given in NASA TMX-64589 (Daniels, 1971). The small sample of lightning analyzed yielded several peak currents in the 100 kA range. Several current rise-times from zero to peak of 0.5 microsec or faster were found; and the fastest observed current rate-of-rise was near 200 kA/microsec. The various sources of error are discussed.
Statistical analysis of lightning electric field measured under Malaysian condition
NASA Astrophysics Data System (ADS)
Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain
2014-02-01
Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.
Dancing sprites: Detailed analysis of two case studies
NASA Astrophysics Data System (ADS)
Soula, Serge; Mlynarczyk, Janusz; Füllekrug, Martin; Pineda, Nicolau; Georgis, Jean-François; van der Velde, Oscar; Montanyà, Joan; Fabró, Ferran
2017-03-01
On 29-30 October 2013, a low-light video camera installed at Pic du Midi (2877 m), recorded transient luminous events above a very active storm over the Mediterranean Sea. The minimum cloud top temperature reached -73°C, while its cloud to ground (CG) flash rate exceeded 30 fl min-1. Some sprite events have long duration and resemble to dancing sprites. We analyze in detail the temporal evolution and estimated location of two series of sprite sequences, as well as the cloud structure, the lightning activity, the electric field radiated in a broad range of low frequencies, and the current moment waveform of the lightning strokes. (i) In each series, successive sprite sequences reflect time and location of corresponding positive lightning strokes across the stratiform region. (ii) The longer time-delayed (>20 ms) sprite elements correspond to the lower impulsive charge moment changes (iCMC) of the parent strokes (<200 C km), and they are shifted few tens of kilometers from their SP + CG stroke. However, both short and long time-delayed sprite elements also occur after strokes that produce a large iCMC and that are followed by a continuing current. (iii) The long time-delayed sprite elements during the continuing current correspond to surges in the current moment waveform. They occur sometimes at an altitude apparently lower than the previous short time-delayed sprite elements, possibly because of changes in the local conductivity. (iv) The largest and brightest sprite elements produce significant current signatures, visible when their delay is not too short ( 3-5 ms).
Modeling of transmission line exposure to direct lightning strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizk, F.A.M.
1990-10-01
The paper introduces a new model for assessing the exposure of free-standing structures and horizontal conductors above flat ground to direct lightning strokes. The starting point of this work is a recently developed criterion for positive leader inception, modified to account for positive leaders initiated under the influence of a negative descending lightning stroke. Subsequent propagation of the positive leader is analyzed to define the point of encounter of the two leaders which determines the attractive radius of a structure or the attractive lateral distance of a conductor. These parameters are investigated for a wide range of heights and return-strokemore » currents. A method for analyzing shielding failure and determining the critical shielding angle is also described. The predictions of the model are compared with field observations and previously developed models.« less
Analysis of electrical transients created by lightning
NASA Technical Reports Server (NTRS)
Nanevicz, J. E.; Vance, E. F.
1980-01-01
A series of flight tests was conducted using a specially-instrumented NASA Learjet to study the electrical transients created on an aircraft by nearby lightning. The instrumentation included provisions for the time-domain and frequency-domain recording of the electrical signals induced in sensors located both on the exterior and on the interior of the aircraft. The design and calibration of the sensors and associated measuring systems is described together with the results of the flight test measurements. The results indicate that the concept of providing instrumentation to follow the lightning signal from propagation field, to aircraft skin current, to current on interior wiring is basically sound. The results of the measurement indicate that the high frequency signals associated with lightning stroke precursor activity are important in generating electromagnetic noise on the interior of the aircraft. Indeed, the signals produced by the precursors are often of higher amplitude and of longer duration that the pulse produced by the main return stroke.
A 21st century investigation of the lightning spectrum
NASA Astrophysics Data System (ADS)
Walker, Thomas Daniel
In the mid 1960s, Martin Uman, Leon Salanave and Richard Orville laid the foundation for lightning spectroscopy. They were among the first to acquire time resolved return stroke spectra and the first to use spectroscopy as a diagnostic technique to characterize physical properties of the lightning channel. Now, almost 50 years later, technology, including CMOS and CCD high speed cameras, volume-phase holographic (VPH) gratings, and triggered lightning, has progressed to the point at which new studies in lightning spectroscopy are needed to verify and extend past measurements. New spectral lines have been discovered in the lightning spectrum as a result of the modern studies, mainly doubly ionized nitrogen lines which had not been observed in the past. The modern technique uses CMOS and CCD cameras with frame rates of up to 1Mfps with exposure down to 0.5mus. The high frame rate paired with camera memory enables a view into the quick high temperature heating period within the first few microseconds of the return stroke, as well as a detailed look at the cooling period which can last for milliseconds. The spectra are recorded digitally and discretely, hence the data can be summed to to view different exposure times revealing long lasting low emission lines during the cooling period as well. Spectral line identification for the natural and triggered lightning are for a range of wavelengths from soft ultraviolet around 3800A to the near infrared at 9500A. The first few microseconds of the lightning return stroke spectrum consists of hydrogen from disassociated water and singly and doubly ionized lines of atomic atmospheric constituents, i.e. argon, nitrogen, and oxygen. Temperatures calculated during this period have been measured above 40000 K. The peak temperature is measured from the first spectrum of the return stroke. After this the channel continuously cools over the lifetime of the return stroke unless there is an increase in the continuing current. Tens of microseconds after the onset, a cool period in the spectra exists which consists solely of neutral atomic emission lines. The cooling period temperature measurements begin in the low 20000 K range and decrease slowly over the course of milliseconds until strength of the emission lines drop below measurement threshold. Besides the return stroke, other specific lightning processes analyzed include stepped leaders, dart-stepped leaders, and m-components within the continuing current. Stepped and dart-stepped leader spectra consist both of pulsing singly ionized lines and steadily growing neutral lines. Each step within these processes cause increased ionization to occur in the channel upward from the step, demonstrating a pulsing temperature throughout the lifetime of these stepped features. Spectra of the stroke processes, m-components and continuing currents, consist of neutral atmospheric emission lines and copper emission lines which demonstrate the long duration of the channel milliseconds after the initial stages. These spectra indicate long lasting low temperatures which should give insight into temperature profiles where NOx reactions occur. From the spectra, emission identification and lifetime as well as calculations of physical parameters such as temperature, number density, and conductivity about each of these processes give insight into what is physically happening within the channel throughout the lifetime of a stroke.
NASA Technical Reports Server (NTRS)
Cummins, Kenneth L.; Carey, Lawrence D.; Schultz, Christopher J.; Bateman, Monte G.; Cecil, Daniel J.; Rudlosky, Scott D.; Petersen, Walter Arthur; Blakeslee, Richard J.; Goodman, Steven J.
2011-01-01
In order to produce useful proxy data for the GOES-R Geostationary Lightning Mapper (GLM) in regions not covered by VLF lightning mapping systems, we intend to employ data produced by ground-based (regional or global) VLF/LF lightning detection networks. Before using these data in GLM Risk Reduction tasks, it is necessary to have a quantitative understanding of the performance of these networks, in terms of CG flash/stroke DE, cloud flash/pulse DE, location accuracy, and CLD/CG classification error. This information is being obtained through inter-comparison with LMAs and well-quantified VLF/LF lightning networks. One of our approaches is to compare "bulk" counting statistics on the spatial scale of convective cells, in order to both quantify relative performance and observe variations in cell-based temporal trends provided by each network. In addition, we are using microsecond-level stroke/pulse time correlation to facilitate detailed inter-comparisons at a more-fundamental level. The current development status of our ground-based inter-comparison and evaluation tools will be presented, and performance metrics will be discussed through a comparison of Vaisala s Global Lightning Dataset (GLD360) with the NLDN at locations within and outside the U.S.
NASA Astrophysics Data System (ADS)
Cummins, K. L.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; Cecil, D. J.; Rudlosky, S. D.; Petersen, W. A.; Blakeslee, R. J.; Goodman, S. J.
2011-12-01
In order to produce useful proxy data for the GOES-R Geostationary Lightning Mapper (GLM) in regions not covered by VLF lightning mapping systems, we intend to employ data produced by ground-based (regional or global) VLF/LF lightning detection networks. Before using these data in GLM Risk Reduction tasks, it is necessary to have a quantitative understanding of the performance of these networks, in terms of CG flash/stroke DE, cloud flash/pulse DE, location accuracy, and CLD/CG classification error. This information is being obtained through inter-comparison with LMAs and well-quantified VLF/LF lightning networks. One of our approaches is to compare "bulk" counting statistics on the spatial scale of convective cells, in order to both quantify relative performance and observe variations in cell-based temporal trends provided by each network. In addition, we are using microsecond-level stroke/pulse time correlation to facilitate detailed inter-comparisons at a more-fundamental level. The current development status of our ground-based inter-comparison and evaluation tools will be presented, and performance metrics will be discussed through a comparison of Vaisala's Global Lightning Dataset (GLD360) with the NLDN at locations within and outside the U.S.
Method and apparatus for determining return stroke polarity of distant lightning
NASA Technical Reports Server (NTRS)
Blakeslee, Richard J. (Inventor); Brook, Marx (Inventor)
1992-01-01
A method is described for determining the return stroke polarity of distant lightning for distances beyond 600 km by detecting the electric field associated with a return stroke of distant lightning, and processing the electric field signal to determine the polarity of the slow tail of the VLF waveform signal associated with the detected electric field. The polarity of the return stroke of distant lightning is determined based upon the polarity of the slow tail portion of the waveform.
Method and apparatus for determining return stroke polarity of distant lightning
NASA Technical Reports Server (NTRS)
Blakeslee, Richard J. (Inventor); Brook, Marx (Inventor)
1990-01-01
A method is described for determining the return stroke polarity of distant lightning for distances beyond 600 km by detecting the electric field associated with a return stroke of distant lightning, and processing the electric field signal to determine the polarity of the slow tail of the VLF waveform signal associated with the detected electric field. The polarity of the return stroke of distant lightning is determined based upon the polarity of the slow tail portion of the waveform.
NASA Astrophysics Data System (ADS)
Somu, Vijaya Bhaskar
Apparent ionospheric reflection heights estimated using the zero-to-zero and peak-to-peak methods to measure skywave delay relative to the groundwave were compared for 108 first and 124 subsequent strokes observed at LOG in 2009. For either metric there was a considerable decrease in average re ection height for subsequent strokes relative to first strokes. Median uncertainties in daytime re ection heights did not exceed 0.7 km. The standard errors in mean re ection heights were less than 3% of the mean value. Apparent changes in re ection height (estimated using the peak-to-peak method) within individual ashes for 54 daytime and 11 nighttime events at distances ranging from 50 km to 330 km were compared. For daytime conditions, the majority of the ashes showed a monotonic decrease in re ection height. For nighttime ashes, the monotonic decrease was found to be considerably less frequent. The apparent ionospheric re ection height tends to increase with return-stroke peak current. In order to increase the sample size for nighttime conditions, additional data for 43 nighttime flashes observed at LOG in 2014 were analyzed. The "fast-break-point" method of measuring skywave delay (McDonald et al., 1979) was additionally used. The 2014 results for return strokes are generally consistent with the 2009 results. The 2014 data were also used for estimating ionospheric re ection heights for elevated sources (6 CIDs and 3 PB pulses) using the double-skywave feature. The results were compared with re ection heights estimated for corresponding return strokes (if any), and fairly good agreement was generally found. It has been shown, using two different FDTD simulation codes, that the observed differences in re ection height cannot be explained by the difference in the frequency content of first and subsequent return-stroke currents. FDTD simulations showed that within 200 km the re ection heights estimated using the peak-to-peak method are close to the hOE parameter of the ionospheric profile for both daytime and nighttime conditions and for both first and second skywaves. The TL model was used to estimate the radial extent of elves produced by the interaction of LEMP with the ionosphere as a function of return-stroke peak current. For a peak current of 100 kA and the speed equal to one-half of the speed of light, the expected radius of elves is 157 km. Skywaves associated with 24 return strokes in 6 lightning ashes triggered at CB in 2015 and recorded at LOG (at a distance of 45 km from CB) were not found for any of the strokes recorded. In contrast, natural-lightning strokes do produce skywaves at comparable distances. One possible reason is the difference in the higher-frequency content (field waveforms for triggered lightning are more narrow than for natural lightning).
Models for electromagnetic coupling of lightning onto multiconductor cables in underground cavities
NASA Astrophysics Data System (ADS)
Higgins, Matthew Benjamin
This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of lightning strokes, are then used to predict electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of lightning current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of lightning (< 100 kHz), electromagnetic energy can readily propagate through hundreds of feet of earth. Indirect transfer function measurements compare extremely well with analytical and computational models developed for the Sago site which take into account measured soil properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omidiora, M. A.; Lehtonen, M.
2008-05-08
This paper deals with the effect of shield wires on lightning overvoltage reduction and the energy relief of MOV (Metal Oxide Varistor) arresters from direct strokes to distribution lines. The subject of discussion is the enhancement of lightning protection in Finnish distribution networks where lightning is most severe. The true index of lightning severity in these areas is based on the ground flash densities and return stroke data collected from the Finnish meteorological institute. The presented test case is the IEEE 34-node test feeder injected with multiple lightning strokes and simulated with the Alternative Transients Program/Electromagnetic Transients program (ATP/EMTP). Themore » response of the distribution line to lightning strokes was modeled with three different cases: no protection, protection with surge arresters and protection with a combination of shield wire and arresters. Simulations were made to compare the resulting overvoltages on the line for all the analyzed cases.« less
Lightning protection of distribution lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, T.E.; Short, T.A.; Anderson, J.G.
1994-01-01
This paper reports a study of distribution line lightning performance, using computer simulations of lightning overvoltages. The results of previous investigations are extended with a detailed model of induced voltages from nearby strokes, coupled into a realistic power system model. The paper also considers the energy duty of distribution-class surge arresters exposed to direct strokes. The principal result is that widely separated pole-top arresters can effectively protect a distribution line from induced-voltage flashovers. This means that nearby lightning strokes need not be a significant lightning performance problem for most distribution lines.
NASA Astrophysics Data System (ADS)
Tran, Thang H.; Baba, Yoshihiro; Somu, Vijaya B.; Rakov, Vladimir A.
2017-12-01
The finite difference time domain (FDTD) method in the 2-D cylindrical coordinate system was used to compute the nearly full-frequency-bandwidth vertical electric field and azimuthal magnetic field waveforms produced on the ground surface by lightning return strokes. The lightning source was represented by the modified transmission-line model with linear current decay with height, which was implemented in the FDTD computations as an appropriate vertical phased-current-source array. The conductivity of atmosphere was assumed to increase exponentially with height, with different conductivity profiles being used for daytime and nighttime conditions. The fields were computed at distances ranging from 50 to 500 km. Sky waves (reflections from the ionosphere) were identified in computed waveforms and used for estimation of apparent ionospheric reflection heights. It was found that our model reproduces reasonably well the daytime electric field waveforms measured at different distances and simulated (using a more sophisticated propagation model) by Qin et al. (2017). Sensitivity of model predictions to changes in the parameters of atmospheric conductivity profile, as well as influences of the lightning source characteristics (current waveshape parameters, return-stroke speed, and channel length) and ground conductivity were examined.
Cloud-to-ground lightning activity in Colombia: A 14-year study using lightning location system data
NASA Astrophysics Data System (ADS)
Herrera, J.; Younes, C.; Porras, L.
2018-05-01
This paper presents the analysis of 14 years of cloud-to-ground lightning activity observation in Colombia using lightning location systems (LLS) data. The first Colombian LLS operated from 1997 to 2001. After a few years, this system was upgraded and a new LLS has been operating since 2007. Data obtained from these two systems was analyzed in order to obtain lightning parameters used in designing lightning protection systems. The flash detection efficiency was estimated using average peak current maps and some theoretical results previously published. Lightning flash multiplicity was evaluated using a stroke grouping algorithm resulting in average values of about 1.0 and 1.6 for positive and negative flashes respectively and for both LLS. The time variation of this parameter changes slightly for the years considered in this study. The first stroke peak current for negative and positive flashes shows median values close to 29 kA and 17 kA respectively for both networks showing a great dependence on the flash detection efficiency. The average percentage of negative and positive flashes shows a 74.04% and 25.95% of occurrence respectively. The daily variation shows a peak between 23 and 02 h. The monthly variation of this parameter exhibits a bimodal behavior typical of the regions located near The Equator. The lightning flash density was obtained dividing the study area in 3 × 3 km cells and resulting in maximum average values of 25 and 35 flashes km- 2 year- 1 for each network respectively. A comparison of these results with global lightning activity hotspots was performed showing good correlation. Besides, the lightning flash density variation with altitude shows an inverse relation between these two variables.
NASA Astrophysics Data System (ADS)
Schmitter, E. D.
2014-11-01
On the 4 November 2012 at 3:04:27 UT a strong lightning in the midst of the North Sea affected the propagation conditions of VLF/LF transmitter radio signals from NRK (Iceland, 37.5 kHz) and GBZ (UK, 19.58 kHz) received at 5246° N 8° E (NW Germany). The amplitude and phase dips show a recovery time of 6-12 min pointing to a LOng Recovery Early VLF (LORE) event. Clear assignment of the causative return stroke in space and time was possible with data from the WWLLN (Worldwide Lightning Location Network). Based on a return stroke current model the electric field is calculated and an excess electron density distribution which decays over time in the lower ionosphere is derived. Ionization, attachment and recombination processes are modeled in detail. Entering the electron density distribution in VLF/LF radio wave propagation calculations using the LWPC (Long Wavelength Propagation Capability) code allows to model the VLF/LF amplitude and phase behavior by adjusting the return stroke current moment. The results endorse and quantify the conception of lower ionosphere EMP heating by strong - but not necessarily extremely strong - return strokes of both polarities.
NASA Technical Reports Server (NTRS)
Willett, J. C.; LeVine, D. M.; Idone, V. P.
2006-01-01
Three-dimensional reconstructions of six rocket-triggered lightning channels are derived from stereo photographs. These reconstructed channels are used to infer the behavior of the current in return strokes above the ground from current waveforms measured at the channel base and electric-field-change waveforms measured at a range of 5.2 kilometers for 24 return strokes in these channels. Streak photographs of 14 of the same strokes are analyzed to determine the rise times, propagation speeds, and amplitudes of relative light intensity for comparison with the electrical inferences. Results include the following: 1) The fine structure of the field-change waveforms that were radiated by these subsequent return strokes can be explained, in large part, by channel geometry. 2) The average 10 - 90% rise time of the stroke current increased by about a factor of seven in our sample, from an observed 0.31 plus or minus 0.17 microseconds at the surface to an inferred 2.2 plus or minus 0.5 microcseconds at 1 kilometer path length above the surface. 3) The three-dimensional propagation speed of the current front averaged 1.80 plus or minus 0.24 X 10(exp 8) meters per second over channel lengths typically greater than 1 kilometer. 4) Assuming that the measured current was entirely due to the return stroke forced an unreasonably large and abrupt reduction in inferred current amplitude over the first few tens of meters above the surface, especially in cases when the leader was bright relative to its stroke. Therefore, a significant fraction of the current at the surface was probably due to the leader, at least in such cases. 5) Peak return-stroke currents decreased by approximately 37 plus or minus 12% from 100 meters to 1 kilometer of path length above the surface. Because of uncertainty about how to partition the measured current between leader and return stroke, we are unable to infer the variation of current amplitude near the ground.
A Unified Model of Cloud-to-Ground Lightning Stroke
NASA Astrophysics Data System (ADS)
Nag, A.; Rakov, V. A.
2014-12-01
The first stroke in a cloud-to-ground lightning discharge is thought to follow (or be initiated by) the preliminary breakdown process which often produces a train of relatively large microsecond-scale electric field pulses. This process is poorly understood and rarely modeled. Each lightning stroke is composed of a downward leader process and an upward return-stroke process, which are usually modeled separately. We present a unified engineering model for computing the electric field produced by a sequence of preliminary breakdown, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively-charged channel extends downward in a stepped fashion through the relatively-high-field region between the main negative and lower positive charge centers and then through the relatively-low-field region below the lower positive charge center. A relatively-high-field region is also assumed to exist near ground. The preliminary breakdown pulse train is assumed to be generated when the negatively-charged channel interacts with the lower positive charge region. At each step, an equivalent current source is activated at the lower extremity of the channel, resulting in a step current wave that propagates upward along the channel. The leader deposits net negative charge onto the channel. Once the stepped leader attaches to ground (upward connecting leader is presently neglected), an upward-propagating return stroke is initiated, which neutralizes the charge deposited by the leader along the channel. We examine the effect of various model parameters, such as step length and current propagation speed, on model-predicted electric fields. We also compare the computed fields with pertinent measurements available in the literature.
The Sandia transportable triggered lightning instrumentation facility
NASA Technical Reports Server (NTRS)
Schnetzer, George H.; Fisher, Richard J.
1991-01-01
Development of the Sandia Transportable Triggered Lightning Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of a munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a lightning response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered lightning test site. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck of by aircraft, and its instrumentation for measuring incident lightning channel currents and the responses of the systems under test. Measurements of return-stroke current peaks obtained with the SATTLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within approximately 7 percent. Continuing currents were measured with a resolution of approximately 2.5 A. This field trial demonstrated the practicality of using a transportable triggered lightning facility for specialized test applications.
Cloud-to-ground lightning flash characteristics from June 1984 through May 1985
NASA Technical Reports Server (NTRS)
Orville, Richard E.; Weisman, Robert A.; Pyle, Richard B.; Henderson, Ronald W.; Orville, Richard E., Jr.
1987-01-01
A magnetic direction-finding network for the detection of lightning cloud-to-ground strikes has been installed along the east coast of the United States. Time, location, flash polarity, stroke count, and peak signal amplitude are recorded in real time. The data were recorded from Maine to North Carolina and as far west as Ohio; analyses were restricted to flashes within 300 km of a direction finder. Measurements of peak signal strength have been obtained from 720,284 first return strokes lowering negative charge. The resulting distribution indicates that few negative strokes have peak currents exceeding 100 kA. Measurements have also been obtained of peak signal strength from 17,694 first return strokes lowering positive charge. These strokes have a median peak current of 45 kA, with some peak currents reaching 300-400 kA. The median peak signal strength and the peak current, double from summer to winter for both negative and positive first return strokes. The polarity of ground flashes is observed to be less than 5 percent positive throughout the summer and early fall, then increases to over 50 percent during the winter, and returns to less than 10 percent in early spring. The percent of positive flashes with one stroke is observed to be approximately 90 percent throughout the year. The percent of negative flashes with one stroke is observed to increase from 40 percent in the summer to approximately 80 percent in January, returning to less than 50 percent in the spring.
NASA Astrophysics Data System (ADS)
Boev, Ivan Krasimirov
In the present PhD work, three sophisticated models based on the "Engineering" modeling approach have been utilized to conveniently describe and thoroughly analyze details of Lightning events at the CN Tower. Both the CN Tower and the Lightning Channel are represented by a number of connected in series Transmission Line sections in order to account for the variations in the shape of the tower and for plasma processes that take place within the Lightning Channel. A sum of two Heidler functions is used to describe the "uncontaminated" Return Stroke current, which is injected at the attachment point between the CN Tower and the Lightning Channel. Reflections and refractions at all points of mismatched impedances are considered until their contribution becomes less than 1% of the originally injected current wave. In the proposed models, the problem with the current discontinuity at the Lightning Channel front, commonly taken care of by introducing a "turn-on" term when computing radiation fields, is uniquely treated by introducing reflected and transmitted components. For the first time, variable speed of propagation of the Return Stroke current front has been considered and its influence upon the predicted current distributions along the whole Lightning Channel path and upon the radiated distant fields analyzed. Furthermore, as another novelty, computation of the electromagnetic field is accomplished in Cartesian Coordinates. This fact permits to relax the requirement on the verticality of the Lightning Channel, normally imposed in Cylindrical Coordinates. Therefore, it becomes possible to study without difficulty the influence of a slanted Lightning Channel upon the surrounding electromagnetic field. Since the proposed sophisticated Five-Section Model has the capability to represent very closely the structure of the CN Tower and to emulate faithfully the shape of, as well as physical processes within the Lightning Channel, it is believed to have the potential of truthfully reproducing observed fields. The developed modeling approach can be easily adapted to study the anticipated radiated fields at tall structures even before construction.
NASA Astrophysics Data System (ADS)
Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Radosavljevic, Radovan; Osmokrovic, Predrag
2012-11-01
A generalized lightning traveling current source return stroke model has been used to examine the characteristics of the lightning channel corona sheath surrounding a thin channel core. A model of the lightning channel consisting of a charged corona sheath and a narrow, highly conducting central core that conducts the main current flow is assumed. Strong electric field, with a predominant radial direction, has been created during the return stroke between the channel core and the outer channel sheath containing the negative charge. The return stroke process is modeled with the positive charge coming from the channel core discharging the negative leader charge in the corona sheath. The corona sheath model that predicts the charge motion in the sheath is used to derive the expressions of the sheath radius vs. time during the return stroke. According to the corona sheath model proposed earlier by Maslowski and Rakov (2006) and Maslowski et al. (2009), it consists of three zones, zone 1 (surrounding channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (outer zone representing the virgin air without charges). We adopted the assumption of a constant electric field inside zone 1 of the corona sheath observed in the experimental research of corona discharges in a coaxial geometry by Cooray (2000). This assumption seems to be more realistic than the assumption of a uniform corona space charge density used previously in the study of Maslowski and Rakov (2006), Marjanovic and Cvetic (2009), and Tausanovic et al. (2010). Applying the Gauss' law on the infinitesimally small cylindrical section of the channel the expressions for time-dependence of the radii of zones 1 and 2 during the return stroke are derived. The calculations have shown that the overall channel dynamics concerning electrical discharge is roughly 50% slower and the maximum radius of zone 1 is about 33% smaller compared to the corresponding values calculated in the study of Tausanovic et al. (2010).
ELF Sferics Produced by Rocket-Triggered Lightning and Observed at Great Distances
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.; Fraser-Smith, A. C.
2013-12-01
Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics as a function of return stroke. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica, although this work focuses on observations performed in Greenland. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the sferic waveform observed at the receiver locations under various ionospheric conditions. LWPC was developed by the Naval Ocean Systems Center over a period of many years. It is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. This paper critically compares observations with model predictions, and in particular analyzes Earth-ionosphere waveguide excitation as a function of return stroke. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning.
NASA Astrophysics Data System (ADS)
Thompson, Kelsey B.
We compared lightning stroke data from the ground-based World Wide Lightning Location Network (WWLLN) and lightning stroke data from the ground-based Earth Networks Total Lightning Network (ENTLN) to lightning group data from the satellite-based Lightning Imaging Sensor (LIS) from 1 January 2010 through 30 June 2011. The region of study, about 39°S to 39°N latitude, 164°E to 17°W longitude, chosen to approximate the Geostationary Lightning Mapper (GLM) field of view, was considered in its entirety and then divided into four geographical sub-regions. We found the highest 18-mon WWLLN coincidence percent (CP) value in the Pacific Ocean at 18.9% and the highest 18-mon ENTLN CP value in North America at 63.3%. We found the lowest 18-mon CP value for both WWLLN and ENTLN in South America at 6.2% and 2.2% respectively. Daily CP values and how often large radiance LIS groups had a coincident stroke varied. Coincidences between LIS groups and ENTLN strokes often resulted in more cloud than ground coincidences in North America and more ground than cloud coincidences in the other three sub-regions.
The NASA Lightning Nitrogen Oxides Model (LNOM): Application to Air Quality Modeling
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold; Khan, Maudood; Biazar, Arastoo; Wang, Lihua
2011-01-01
Recent improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are discussed. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark)(NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NO(x) (= NO + NO2). The latest LNOM estimates of lightning channel length distributions, lightning 1-m segment altitude distributions, and the vertical profile of lightning NO(x) are presented. The primary improvement to the LNOM is the inclusion of non-return stroke lightning NOx production due to: (1) hot core stepped and dart leaders, (2) stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NO(x) for an August 2006 run of CMAQ is discussed.
NASA Astrophysics Data System (ADS)
Ignjatovic, Milan; Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Djuric, Radivoje
2014-11-01
A model of corona sheath that surrounds the thin core of the lightning channel has been investigated by using a generalized traveling current source return stroke model. The lightning channel is modeled by a charged corona sheath that stretches around a highly conductive central core through which the main current flows. The channel core with the negatively charged outer channel sheath forms a strong electric field, with an overall radial orientation. The return stroke process is modeled as the negative leader charge in the corona sheath being discharged by the positive charge coming from the channel core. Expressions that describe how the corona sheath radius evolves during the return stroke are obtained from the corona sheath model, which predicts charge motion within the sheath. The corona sheath model, set forth by Maslowski and Rakov (2006), Tausanovic et al. (2010), Marjanovic and Cvetic (2009), Cvetic et al. (2011) and Cvetic et al. (2012), divides the sheath onto three zones: zone 1 (surrounding the channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (the outer zone, representing uncharged virgin air). In the present study, we have assumed a constant electric field inside zone 1, as suggested by experimental research of corona discharges in coaxial geometry conducted by Cooray (2000). The present investigation builds upon previous studies by Tausanovic et al. (2010) and Cvetic et al. (2012) in several ways. The value of the breakdown electric field has been varied for probing its effect on channel charge distribution prior and during the return stroke. With the aim of investigating initial space charge distribution along the channel, total electric field at the outer surface of the channel corona sheath, just before the return stroke, is calculated and compared for various return stroke models. A self-consistent algorithm is applied to the generalized traveling current source return stroke model, so that the boundary condition for total electric field is fulfilled. The new density of space charge and the new radius of channel corona envelope, immediately before the return stroke stage, are calculated. The obtained results indicate a strong dependence of channel charge distribution on the breakdown electric field value. Among the compared return stroke models, transmission-line-type models have exhibited a good agreement with the predictions of the Gauss' law regarding total breakdown electric field on the corona sheath's outer surface. The generalized lightning traveling current source return stroke model gives similar results if the adjustment of the space charge density inside the corona sheath is performed.
NASA Technical Reports Server (NTRS)
Simpson, Amy A.; Wilson, Jennifer G.; Brown, Robert G.
2015-01-01
Data from multiple sources is needed to investigate lightning characteristics over differing terrain (on-shore vs. off-shore) by comparing natural cloud-to-ground lightning behavior differences depending on the characteristics of attachment mediums. The KSC Lightning Research Database (KLRD) was created to reduce manual data entry time and aid research by combining information from various data sources into a single record for each unique lightning event of interest. The KLRD uses automatic data handling functions to import data from a lightning detection network and identify and record lighting events of interest. Additional automatic functions import data from the NASA Buoy 41009 (located approximately 20 miles off the coast) and the KSC Electric Field Mill network, then match these electric field mill values to the corresponding lightning events. The KLRD calculates distances between each lightning event and the various electric field mills, aids in identifying the location type for each stroke (i.e., on-shore vs. off-shore, etc.), provides statistics on the number of strokes per flash, and produces customizable reports for quick retrieval and logical display of data. Data from February 2014 to date covers 48 unique storm dates with 2295 flashes containing 5700 strokes, of which 2612 are off-shore and 1003 are on-shore. The number of strokes per flash ranges from 1 to 22. The ratio of single to subsequent stroke flashes is 1.29 for off-shore strokes and 2.19 for on-shore strokes.
NASA Technical Reports Server (NTRS)
Willett, J. C.; Idone, V. P.; Orville, R. E.; Leteinturier, C.; Eybert-Berard, A.
1988-01-01
Peak currents, two-dimensional average propagation speeds, and electric field waveforms for a number of subsequent return strikes in rocket-triggered lightning flashes were measured in order to test the 'transmission-line model' of return-stroke radiation of Uman and McLain (1970). Reasonable agreement is found between the propagation speeds measured with the streak camera and those deduced from the transmission-line model. A modification of the model is proposed in which two wave fronts travel upward and downward away from a junction point a short distance above the ground.
NASA Astrophysics Data System (ADS)
Willett, J. C.; Idone, V. P.; Orville, R. E.; Leteinturier, C.; Eybert-Berard, A.
1988-04-01
Peak currents, two-dimensional average propagation speeds, and electric field waveforms for a number of subsequent return strikes in rocket-triggered lightning flashes were measured in order to test the 'transmission-line model' of return-stroke radiation of Uman and McLain (1970). Reasonable agreement is found between the propagation speeds measured with the streak camera and those deduced from the transmission-line model. A modification of the model is proposed in which two wave fronts travel upward and downward away from a junction point a short distance above the ground.
Shipborne LF-VLF oceanic lightning observations and modeling
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Lehtinen, N. G.; Inan, U. S.
2015-10-01
Approximately 90% of natural lightning occurs over land, but recent observations, using Global Lightning Detection (GLD360) geolocation peak current estimates and satellite optical data, suggested that cloud-to-ground flashes are on average stronger over the ocean. We present initial statistics from a novel experiment using a Low Frequency (LF) magnetic field receiver system installed aboard the National Oceanic Atmospheric Agency (NOAA) Ronald W. Brown research vessel that allowed the detection of impulsive radio emissions from deep-oceanic discharges at short distances. Thousands of LF waveforms were recorded, facilitating the comparison of oceanic waveforms to their land counterparts. A computationally efficient electromagnetic radiation model that accounts for propagation over lossy and curved ground is constructed and compared with previously published models. We include the effects of Earth curvature on LF ground wave propagation and quantify the effects of channel-base current risetime, channel-base current falltime, and return stroke speed on the radiated LF waveforms observed at a given distance. We compare simulation results to data and conclude that previously reported larger GLD360 peak current estimates over the ocean are unlikely to fully result from differences in channel-base current risetime, falltime, or return stroke speed between ocean and land flashes.
NASA Astrophysics Data System (ADS)
Visacro, Silverio; Guimaraes, Miguel; Murta Vale, Maria Helena
2017-12-01
First and subsequent return strokes' striking distances (SDs) were determined for negative cloud-to-ground flashes from high-speed videos exhibiting the development of positive and negative leaders and the pre-return stroke phase of currents measured along a short tower. In order to improve the results, a new criterion was used for the initiation and propagation of the sustained upward connecting leader, consisting of a 4 A continuous current threshold. An advanced approach developed from the combined use of this criterion and a reverse propagation procedure, which considers the calculated propagation speeds of the leaders, was applied and revealed that SDs determined solely from the first video frame showing the upward leader can be significantly underestimated. An original approach was proposed for a rough estimate of first strokes' SD using solely records of current. This approach combines the 4 A criterion and a representative composite three-dimensional propagation speed of 0.34 × 106 m/s for the leaders in the last 300 m propagated distance. SDs determined under this approach showed to be consistent with those of the advanced procedure. This approach was applied to determine the SD of 17 first return strokes of negative flashes measured at MCS, covering a wide peak-current range, from 18 to 153 kA. The estimated SDs exhibit very high dispersion and reveal great differences in relation to the SDs estimated for subsequent return strokes and strokes in triggered lightning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, J.E.
1998-05-01
In this report, several lightning-channel parameters are calculated with the aid of an electrodynamic model of lightning. The electrodynamic model describes dart leaders and return strokes as electromagnetic waves that are guided along conducting lightning channels. According to the model, electrostatic energy is delivered to the channel by a leader, where it is stored around the outside of the channel; subsequently, the return stroke dissipates this locally stored energy. In this report this lightning-energy-flow scenario is developed further. Then the energy dissipated per unit length in lightning channels is calculated, where this quantity is now related to the linear chargemore » density on the channel, not to the cloud-to-ground electrostatic potential difference. Energy conservation is then used to calculate the radii of lightning channels: their initial radii at the onset of return strokes and their final radii after the channels have pressure expanded. Finally, the risetimes for channel heating during return strokes are calculated by defining an energy-storage radius around the channel and by estimating the radial velocity of energy flow toward the channel during a return stroke. In three appendices, values for the linear charge densities on lightning channels are calculated, estimates of the total length of branch channels are obtained, and values for the cloud-to-ground electrostatic potential difference are estimated. {copyright} 1998 American Geophysical Union« less
NASA Technical Reports Server (NTRS)
Tyahla, Lori J.; Lopez, Raul E.
1994-01-01
The effect of surface conductivity on the peak magnetic field radiated by the first return stroke in cloud-to-ground lightning was investigated by comparing the peak magnetic fields from return strokes that struck water with those that struck land. The data were obtained from a network of three gated, wideband magnetic direction finders (DFs) at the NASA Kennedy Space Center during the summer of 1985. Two geographical areas that were equidistant from two of the direction finders were compared where the flash distances ranged from approximately 40 to 60 km. An unbiased data set was obtained by correcting site errors, equalizing differences in sensor gain, eliminating directional biases in DF triggering, and keeping differences in signal attenuation over the two surfaces to a minimum. When a statistical analysis was performed on the frequency distributions of the signal amplitudes, there was no statistically significant difference in the peak amplitudes of first return strokes over land (lambda = 8.2 x 10(exp -3) mho/m) and over water (lambda = 4 mho/m). Therefore we infer that the conductivity of the underlying surface does not significantly affect the magnitude of the peak magnetic field, and hence the peak current, in the first return stroke of a cloud-to-ground lightning flash.
NASA Technical Reports Server (NTRS)
Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong;
2012-01-01
The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.
The electric field changes and UHF radiations caused by the triggered lightning in Japan
NASA Technical Reports Server (NTRS)
Kawasaki, Zen-Ichiro; Kanao, Tadashi; Matsuura, Kenji; Nakano, Minoru; Horii, Kenji; Nakamura, Koichi
1991-01-01
In the rocket triggered lightning experiment of fiscal 1989, researchers observed electromagnetic field changes and UHF electromagnetic radiation accompanying rocket triggered lightning. It was found that no rapid changes corresponding to the return stroke of natural lightning were observed in the electric field changes accompanying rocket triggered lightning. However, continuous currents were present. In the case of rocket triggered lightning to the tower, electromagnetic field changes corresponding to the initiation of triggered lightning showed a bipolar pulse of a relatively large amplitude. In contrast, the rocket triggered lightning to the ground did not have such a bipolar pulse. The UHF radiation accompanying the rocket triggered lightning preceded the waveform portions corresponding to the first changes in electromagnetic fields. The number of isolated pulses in the UHF radiation showed a correlation with the time duration from rocket launching up to triggered lightning. The time interval between consecutive isolated pulses tended to get shorter with the passage of time, just like the stepped leaders of natural lightning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwig, G.O.; Saba, M.M.F.; Division of Space Geophysics, National Space Research Institute, 12227-010, Sao Jose dos Campos, SP
2005-09-15
Formation of beaded structures in triggered lightning discharges is considered in the framework of both magnetohydrodynamic (MHD) and hydrodynamic instabilities. It is shown that the space periodicity of the structures can be explained in terms of the kink and sausage type instabilities in a cylindrical discharge with anomalous viscosity. In particular, the fast growth rate of the hydrodynamic Rayleigh-Taylor instability, which is driven by the backflow of air into the channel of the decaying return stroke, dominates the initial evolution of perturbations during the decay of the return current. This instability is responsible for a significant enhancement of the anomalousmore » viscosity above the classical level. Eventually, the damping introduced at the current channel edge by the high level of anomalous viscous stresses defines the final length scale of bead lightning. Later, during the continuing current stage of the lightning flash, the MHD pinch instability persists, although with a much smaller growth rate that can be enhanced in a M-component event. The combined effect of these instabilities may explain various aspects of bead lightning.« less
NASA Technical Reports Server (NTRS)
Mata, C. T.; Mata, A. G.; Rakov, V. A.; Nag, A.; Saul, J.
2012-01-01
A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida. This new instrumentation system includes seven synchronized high-speed video cameras, current sensors installed on the nine downconductors of the new lightning protection system (LPS) for LC39B; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. The LPS received 8 direct lightning strikes (a total of 19 strokes) from March 31 through December 31 2011. The measured peak currents and locations are compared to those reported by the Cloud-to-Ground Lightning Surveillance System (CGLSS II) and the National Lightning Detection Network (NLDN). Results of comparison are presented and analyzed in this paper.
Lightning data study in conjunction with geostationary satellite data
NASA Technical Reports Server (NTRS)
Auvine, Brian; Martin, David W.
1987-01-01
During the summer of 1985, cloud-to-ground stroke lightning were collected. Thirty minute samples of lightning were compared with GOES IR fractional cold cloud coverage computed for three temperature thresholds (213, 243, and 273 K) twice daily (morning and evening). It was found that satellite measurements of cold cloud have a relationship to the flashrate and, in a more limited way, to the polarity and numbers of return strokes. Results varied little by location. Lightning, especially positive strokes, was found to be correlated with fractional cloud coverage, especially for clouds at or below 213 K. Other data and correlations are discussed.
Power spectra at radio frequency of lightning return stroke waveforms
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.
1989-01-01
The power spectra of the wideband (10 Hz to 100 kHz) magnetic field signals in a number of lightning return strokes (primarily first return strokes) measured during a lightning storm which occurred in Lindau, West Germany in August, 1984 have been calculated. The RF magnetic field data were obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks appearing in the spectra of many of the waveforms. An enhancement of power at frequencies of about 60-70 kHz is often seen in the spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.
NASA Astrophysics Data System (ADS)
Solorzano, N. N.; Thomas, J. N.; Hutchins, M. L.; Holzworth, R. H.
2016-10-01
We investigate lightning strokes and deep convection through the examination of cloud-to-ground (CG) lightning from the World Wide Lightning Location Network (WWLLN) and passive microwave radiometer data. Microwave channels at 37 to 183.3 GHz are provided by the Tropical Rainfall Measuring Mission satellite (TRMM) Microwave Imager (TMI) and the Special Sensor Microwave Imager/Sounder (SSMIS) on the Defense Meteorological Satellite Program (DMSP) satellite F16. The present study compares WWLLN stroke rates and minimum radiometer brightness temperatures (Tbs) for two Northern Hemisphere and Southern Hemisphere summers (2009-2011) in the broad tropics (35°S to 35°N). To identify deep convection, we use lightning data and Tbs derived from all channels and differences in the Tbs (ΔTbs) of the three water vapor channels near 183.3 GHz. We find that stroke probabilities increase with increasing Tb depressions for all frequencies examined. Moreover, we apply methods that use the 183.3 GHz channels to pinpoint deep convection associated with lightning. High lightning stroke probabilities are found over land regions for both intense and relatively weak convective systems, although the TMI 85 GHz results should be used with caution as they are affected by a 7 km gap between the conical scans. Over the ocean, lightning is associated mostly with larger Tb depressions. Generally, our results support the noninductive thundercloud charging mechanism but do not rule out the inductive mechanism during the mature stages of storms. Lastly, we present a case study in which lightning stroke rates are used to reconstruct microwave radiometer Tbs.
Lightning protection of distribution systems
NASA Astrophysics Data System (ADS)
Darveniza, M.; Uman, M. A.
1982-09-01
Research work on the lightning protection of distribution systems is described. The rationale behind the planning of the first major phase of the work - the field experiments conducted in the Tampa Bay area during August 1978 and July to September 1979 is explained. The aims of the field work were to characterize lightning in the Tampa Bay area, and to identify the lightning parameters associated with the occurrence of line outages and equipment damage on the distribution systems of the participating utilities. The equipment developed for these studies is fully described. The field work provided: general data on lightning - e.g., electric and magnetic fields of cloud and ground flashes; data from automated monitoring of lightning activity; stroke current waveshapes and peak currents measured at distribution arresters; and line outage and equipment damage on 13 kV networks in the Tampa Bay area. Computer aided analyses were required to collate and to process the accumulated data. The computer programs developed for this work are described.
Lightning-driven electric and magnetic fields measured in the stratosphere: Implications for sprites
NASA Astrophysics Data System (ADS)
Thomas, Jeremy Norman
A well accepted model for sprite production involves quasi-electrostatic fields (QSF) driven by large positive cloud-to-ground (+CG) strokes that can cause electrical breakdown in the middle atmosphere. A new high voltage, high impedance, double Langmuir probe instrument is designed specifically for measuring these large lightning-driven electric field changes at altitudes above 30 km. This High Voltage (HV) Electric Field Detector measured 200 nearby (<75 km) lightning-driven electric field changes, up to 140 V/m in magnitude, during the Brazil Sprite Balloon Campaign 2002--03. A numerical QSF model is developed and compared to the in situ measurements. It is found that the amplitudes and relaxation times of the electric fields driven by these nearby lightning events generally agree with the numerical QSF model, which suggests that the QSF approach is valid for modeling lightning-driven fields. Using the best fit parameters of this comparison, it is predicted that the electric fields at sprite altitudes (60--90 km) never surpass conventional breakdown in the mesosphere for each of these 200 nearby lightning events. Lightning-driven ELF to VLF (25 Hz--8 kHz) electric field changes were measured for each of the 2467 cloud-to-ground lightning (CGs) detected by the Brazilian Integrated Lightning Network (BIN) at distances of 75--600 km, and magnetic field changes (300 Hz--8 kHz) above the background noise were measured for about 35% (858) of these CGs. ELF pulses that occur 4--12 ms after the retarded time of the lightning sferic, which have been previously attributed to sprites, were found for 1.4% of 934 CGs examined with a strong bias towards +CGs (4.9% or 9/184) compared to -CGs (0.5% or 4/750). These results disagree with results from the Sprites99 Balloon Campaign [Bering et al., 2004b], in which the lightning-driven electric and magnetic field changes were rare, while the CG delayed ELF pulses were frequent. The Brazil Campaign results thus suggest that mesospheric currents are likely the result of the QSF driven by large charge moment strokes, which are usually +CG strokes, initiating breakdown in the middle atmosphere.
Static Electric Fields and Lightning Over Land and Ocean in Florida Thunderstorms
NASA Technical Reports Server (NTRS)
Wilson, J. G.; Cummins, K. L.; Simpson, A. A.; Hinckley, A.
2017-01-01
Natural cloud-to-ground (CG) lightning and the charge structure of the associated clouds behave differently over land and ocean. Existing literature has raised questions over the years on the behavior of thunderstorms and lightning over oceans, and there are still open scientific questions. We expand on the observational datasets by obtaining identical electric field observations over coastal land, near-shore, and deep ocean regions during both clear air and thunderstorm periods. Oceanic observations were obtained using two 3-meter NOAA buoys that were instrumented with Campbell Scientific electric field mills to measure the static electric fields. These data were compared to selected electric field records from the existing on-shore electric field mill suite of 31 sensors at Kennedy Space Center (KSC). CG lightning occurrence times, locations and peak current values for both on-shore and ocean were provided by the U.S. National Lightning Detection Network. The buoy instruments were first evaluated on-shore at the Florida coast, to calibrate field enhancements and to confirm proper behavior of the system in elevated-field environments. The buoys were then moored 20NM and 120NM off the coast of KSC in February (20NM) and August (120NM) 2014. Statistically larger CG peak currents were reported over the deep ocean for first strokes and for subsequent strokes with new contacts points. Storm-related static fields were significantly larger at both oceanic sites, likely due to decreased screening by nearby space charge. Time-evolution of the static field during storm development and propagation indicated weak or missing lower positive charge regions in most storms that initiated over the deep ocean, supporting one mechanism for the observed high peak currents in negative first strokes over the deep ocean. This project also demonstrated the practicality of off-shore electric field measurements for safety-related decision making at KSC.
Numerical Calculation of the Spectrum of the Severe (1%) Lighting Current and Its First Derivative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C G; Ong, M M; Perkins, M P
2010-02-12
Recently, the direct-strike lighting environment for the stockpile-to-target sequence was updated [1]. In [1], the severe (1%) lightning current waveforms for first and subsequent return strokes are defined based on Heidler's waveform. This report presents numerical calculations of the spectra of those 1% lightning current waveforms and their first derivatives. First, the 1% lightning current models are repeated here for convenience. Then, the numerical method for calculating the spectra is presented and tested. The test uses a double-exponential waveform and its first derivative, which we fit to the previous 1% direct-strike lighting environment from [2]. Finally, the resulting spectra aremore » given and are compared with those of the double-exponential waveform and its first derivative.« less
Determining distance to lightning strokes from a single station
NASA Technical Reports Server (NTRS)
Ruhnke, L. H. (Inventor)
1973-01-01
Apparatus is described for determining the distance to lightning strokes from a single station. The apparatus includes a first loop antenna system for sensing the magnetic field produced by the lightning which is filtered, square rooted, and fed into a peak voltage holding circuit. A second antenna is provided for sensing the electric field produced by the lightning which is fed into a filter, an absolute value meter, and to a peak voltage holding circuit. A multivibrator gates the magnetic and electric signals through the peak holding circuits to a ratio meter which produces a signal corresponding to the ratio between the magnetic component and the electric component. The amplitude of this signal is proportional to the distance from the apparatus to the lightning stroke.
A numerical study on bow shocks around the lightning return stroke channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Yi, Yun
2015-03-15
Bow shock structures are important to various hydrodynamics and magnetohydrodynamics (MHD) phenomena in geophysics and astrophysics. The formation and propagation of bow shocks around the lightning return stroke channel are investigated based on the self-similar motion theory and simulated with a two-dimensional Eulerian finite volume resistive radiation MHD code. In this framework, as verification of theoretical models, the evolving structures of many quantities, such as the plasma density, temperature, pressure, shock velocity, and magnetic field, can be obtained, which present all the characteristics of bow shocks in the lightning return stroke processes. The evolution characteristics and the configuration of themore » curved return stroke channels, e.g., the non-ideal effects and the scaling laws, are discussed in detail. The results may have applications for some observed features of the return stroke channels and other phenomena in the lightning discharge plasmas.« less
X-ray emission from upward initiated lightning at Gaisberg tower
NASA Astrophysics Data System (ADS)
Hettiarachchi, P.; Cooray, G. V.; Diendorfer, G.; Pichler, H.; Dwyer, J. R.; Rassoul, H.
2016-12-01
We report the occurrence of X-rays at ground level due to cloud to ground flashes of upward initiated lightning from Gaisberg tower in Austria which is located at a 1300m altitude. This is the first time that the X-rays from upward lightning from a tower top located in high altitude is observed. Measurement was carried out using scintillation detectors installed close to the tower top. X-rays were recorded in three subsequent strokes of two flashes out of the total 15 flashes recorded in the system in the period December 2014 to July 2015. In contrast to the observations from downward natural or triggered lightning, X-rays were observed only within 10 µs prior to the subsequent return stroke. This shows that X-rays were emitted when the dart leader is in the vicinity of the tower top and hence during the most intense phase of the dart leader. Both the detected energy and the fluence of X-rays are far lower compared to X-rays from downward natural or rocket triggered lightning. The X-ray waveforms together with current and electric field measurements is presented and comparison of this result to previous ground level observations of X-rays from natural and triggered lightning is discussed.
Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth
NASA Astrophysics Data System (ADS)
Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William S.; Hospodarsky, George B.; Gurnett, Donald A.; Connerney, John E. P.; Bolton, Scott J.
2018-06-01
Electrical currents in atmospheric lightning strokes generate impulsive radio waves in a broad range of frequencies, called atmospherics. These waves can be modified by their passage through the plasma environment of a planet into the form of dispersed whistlers1. In the Io plasma torus around Jupiter, Voyager 1 detected whistlers as several-seconds-long slowly falling tones at audible frequencies2. These measurements were the first evidence of lightning at Jupiter. Subsequently, Jovian lightning was observed by optical cameras on board several spacecraft in the form of localized flashes of light3-7. Here, we show measurements by the Waves instrument8 on board the Juno spacecraft9-11 that indicate observations of Jovian rapid whistlers: a form of dispersed atmospherics at extremely short timescales of several milliseconds to several tens of milliseconds. On the basis of these measurements, we report over 1,600 lightning detections, the largest set obtained to date. The data were acquired during close approaches to Jupiter between August 2016 and September 2017, at radial distances below 5 Jovian radii. We detected up to four lightning strokes per second, similar to rates in thunderstorms on Earth12 and six times the peak rates from the Voyager 1 observations13.
Thermal power and heat energy of cloud-to-ground lightning process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuejuan; Yuan, Ping; Xue, Simin
2016-07-15
A cloud-to-ground lightning flash with nine return strokes has been recorded using a high speed slitless spectrograph and a system composed of a fast antenna and a slow antenna. Based on the spectral data and the synchronous electric field changes that were caused by the lightning, the electrical conductivity, the channel radii, the resistance per unit length, the peak current, the thermal power at the instant of peak current, and the heat energy per unit length during the first 5 μs in the discharge channel have all been calculated. The results indicate that the channel radii have linear relationships with themore » peak current. The thermal power at the peak current time increases with increasing resistance, but exponential decays with the square of the peak current.« less
Protection characteristics of a Faraday cage compromised by lightning burnthrough.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warne, Larry Kevin; Bystrom, Edward; Jorgenson, Roy Eberhardt
2012-01-01
A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scopemore » and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).« less
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of lightning nitrogen oxides, NOx = NO + NO2. Data from the National Lightning Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the NALMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting lightning NOx source profiles are discussed.
A case study of lightning attachment to flat ground showing multiple unconnected upward leaders
NASA Astrophysics Data System (ADS)
Cummins, Kenneth L.; Krider, E. Philip; Olbinski, Mike; Holle, Ronald L.
2018-04-01
On 10 July 2015, a cloud-to-ground (CG) lightning flash that produced two ground terminations was photographed from inside the safety of a truck in southern New Mexico. An analysis of archived NLDN data verified that this was a two-stroke flash, and a close-up view of the first stroke shows that it also initiated at least 12 unconnected, upward leaders (or "streamers") near the ground termination. No unconnected upward leaders were seen near the second ground attachment. After combining an analysis of the photograph with information provided by the NLDN, we infer that the first stroke was of negative (normal) polarity, had modest peak current, and struck about 460 m (± 24%) from the camera. Attachment occurred when an upward-propagating positive leader reached an inferred height of about 21 m above local ground. The second stroke struck ground about 740 m from the camera, and the height of its attachment leader is estimated to be 15 m. The estimated lengths of the unconnected upward leaders in the two-dimensional (2-D) plane of the first stroke range from 2 to 8 m, and all appear to be located within 15 m (2-D) of the main ground termination, with 24% uncertainty. Many of the unconnected upward leaders (inferred to be positive) exhibit multiple upward branches, and most of those branches have upward-directed forks or splits at their ends. This is the first report showing such extensive branching for positive upward leaders in natural lightning strikes to ground. None of the upward leaders can be seen to emanate from the tops of tall, isolated, or pointed objects on the ground, but they likely begin on small plants and rocks, or flat ground. In terms of lightning safety, this photo demonstrates that numerous upward leaders can be produced near a lightning strike point and have the potential to damage or cause injury at more than one specific point on the ground.
NASA Astrophysics Data System (ADS)
Liu, N.; Tilles, J.; Boggs, L.; Bozarth, A.; Rassoul, H.; Riousset, J. A.
2016-12-01
Recent high speed video observations of triggered and natural lightning flashes have significantly advanced our understanding of lightning initiation and propagation. For example, they have helped resolve the initiation of lightning leaders [Stolzenburg et al., JGR, 119, 12198, 2014; Montanyà et al, Sci. Rep., 5, 15180, 2015], the stepping of negative leaders [Hill et al., JGR, 116, D16117, 2011], the structure of streamer zone around the leader [Gamerota et al., GRL, 42, 1977, 2015], and transient rebrightening processes occurring during the leader propagation [Stolzenburg et al., JGR, 120, 3408, 2015]. We started an observational campaign in the summer of 2016 to study lightning by using a Phantom high-speed camera on the campus of Florida Institute of Technology, Melbourne, FL. A few interesting natural cloud-to-ground and intracloud lightning discharges have been recorded, including a couple of 8-9 stroke flashes, high peak current flashes, and upward propagating return stroke waves from ground to cloud. The videos show that the propagation of the downward leaders of cloud-to-ground lightning discharges is very complex, particularly for the high-peak current flashes. They tend to develop as multiple branches, and each of them splits repeatedly. For some cases, the propagation characteristics of the leader, such as speed, are subject to sudden changes. In this talk, we present several selected cases to show the complexity of the leader propagation. One of the effective approaches to characterize the structure and propagation of lightning leaders is the fractal description [Mansell et al., JGR, 107, 4075, 2002; Riousset et al., JGR, 112, D15203, 2007; Riousset et al., JGR, 115, A00E10, 2010]. We also present a detailed analysis of the high-speed images of our observations and formulate useful constraints to the fractal description. Finally, we compare the obtained results with fractal simulations conducted by using the model reported in [Riousset et al., 2007, 2010].
NASA Astrophysics Data System (ADS)
Li, Xiangchao; Wan, Zhicheng
2018-04-01
In order to solve the damage and interference problems to the electronic devices, which are induced by overvoltage excited by the coupling process between lightning electromagnetic wave and overhead lines, the lightning channel is set to be equivalent to a radiant wire antenna. Based on the integration model of lightning return stroke channel, transmission line, and ground, we take advantage of the derived formula gotten from the transmission line model. By combing the theoretical and experimental methods, we conduct a comparative analysis on the coupling process between natural/simulated lightning and overhead line. Besides, we also calculate the amplitude and energy of overvoltage, which is caused by the coupling process between lightning electromagnetic wave and overhead lines. Upon these experimental results, we can draw several conclusions as follows: when the amplitude of the lightning current in the channel is between 5 kA and 41 kA, it takes on an excellent linear relation between the amplitude of overvoltage and the magnitude of the lightning current, the relation between coupling energy and magnitude of the lightning current takes on an exponential trend. When lightning wave transmits on the transmission lines, the high-order mode will be excited. Through analysis on the high-order mode's characteristics, we find that the theoretical analysis is consistent with the experimental results, which has a certain reference value to the protection on overhead lines.
Evaluation of Lightning Incidence to Elements of a Complex Structure: A Monte Carlo Approach
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Rakov, V. A.
2008-01-01
There are complex structures for which the installation and positioning of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some "unprotected" or "exposed" areas. In an effort to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate origins of downward propagating leaders and a lognormal distribution to generate returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for 10,000 years with an assumed ground flash density and peak current distributions, and the output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution.
Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes
NASA Technical Reports Server (NTRS)
Willett, J. C.; Smith, D. A.; LeVine, D. M.; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
The morphological difference between the electromagnetic radiation-field waveforms of "first" and "subsequent" return strokes in cloud-to-ground lightning flashes is well known and can be used to identify the formation of new channels to ground. This difference is generally believed due to the existence of branches on first-stroke channels, whereas subsequent strokes re-illuminate only the main channel of a previous stroke; but experimental evidence for this hypothesis is relatively weak. It has been argued for the influence of channel geometry on the fine structure of radiation from subsequent return strokes by comparing the field-change waveforms recorded at the same station from strokes within the same flash and between different flashes of both natural and triggered lightning. The present paper introduces new evidence for both of these hypotheses from a comparison of waveforms between sensors in different directions from the same stroke.
NASA Astrophysics Data System (ADS)
Haldoupis, Christos; Cohen, Morris; Arnone, Enrico; Cotts, Benjamin; Dietrich, Stefano
2013-08-01
Subionospheric VLF recordings are investigated in relation with intense cloud-to-ground (CG) lightning data. Lightning impacts the lower ionosphere via heating and ionization changes which produce VLF signal perturbations known as early VLF events. Typically, early events recover in about 100 s, but a small subclass does not recover for many minutes, known as long-recovery early events (LORE). In this study, we identify LORE as a distinct category of early VLF events, whose signature may occur either on its own or alongside the short-lived typical early VLF event. Since LORE onsets coincide with powerful lightning strokes of either polarity (±), we infer that they are due to long-lasting ionization changes in the uppermost D region ionosphere caused by electromagnetic pulses emitted by strong ± CG lightning peak currents of typically > 250 kA, which are also known to generate elves. The LORE perturbations are detected when the discharge is located within ~250 km from the great circle path of a VLF transmitter-receiver link. The probability of occurrence increases with stroke intensity and approaches unity for discharges with peak currents ≥ ~300 kA. LOREs are nighttime phenomena that occur preferentially, at least in the present regional data set, during winter when strong ± CG discharges are more frequent and intense. The evidence suggests LORE as a distinct signature representing the VLF fingerprint of elves, a fact which, although was predicted by theory, it escaped identification in the long-going VLF research of lightning effects in the lower ionosphere.
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning nitrogen oxides, NOx = NO + NO 2 . This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Data from the National Lightning Detection Network TM (NLDN) is also employed. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the LMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting raw NOx profiles are discussed.
The Monitoring Of Thunderstorm In Sao Paulo's Urban Areas, Brazil
NASA Astrophysics Data System (ADS)
Gin, R. B.; Pereira, A.; Beneti, C.; Jusevicius, M.; Kawano, M.; Bianchi, R.; Bellodi, M.
2005-12-01
A monitoring of thunderstorm in urban areas occurred in the vicinity of Sao Bernardo do Campo, Sao Paulo from November 2004 to March 2005. Eight thunderstorms were monitored by local electric field, video camera, Brazilian Lightning Location Network (RINDAT) and weather radar. The most of these thunderstorms were associated with the local convection and cold front. Some of these events presented floods in the vicinity of Sao Bernardo and in the Metropolitan Area of Sao Paulo (MASP) being associated with local sea breeze circulation and the heat island effect. The convectives cells exceeding 100km x 100 km of area, actives between 2 and 3 hours. The local electric field identified the electrification stage of thunderstorms, high transients of lightning and total lightning rate of above 10 flashes per minute. About 29.5 thousands of cloud-to-ground lightning flashes were analyzed . From the total set of CG flashes analyzed, about 94 percent were negative strokes and presented average peak current of above 25kA, common for this region. Some lightning images were obtained by video camera and compared with transients of lightning and lightning detection network data. The most of these transients of lightning presented continuing current duration between 100ms and 200ms. A CG lightning occurred on 25th February was visually observed 3.5km from FEI campus, Sao Bernardo do Campo. This lightning presented negative polarity and estimed peak current of above 30kA. A spider was visually observed over FEI Campus at 17th March. No transients of lightning and recording by lightning location network were found.
NASA Technical Reports Server (NTRS)
Wanaselja, O.
1979-01-01
Of interest to the communications industry are the amplitude, waveshape, duration and frequency of lightning-originated voltage surges and transients on the communications network, including the distribution system and AC power supply circuits. The cloud-to-ground lightning discharge and its characteristics are thought to be most meaningful. Of specific interest are peak current, waveshape, number of flashes, strokes per flash, and zone of influence. Accurate and meaningful lightning data at the local level (telephone district office) is necessary for a decision on the appropriate protection level. In addition to lightning, the protection engineer must consider other factors such as: AC induction, switching surges, ground potential rise, soil resistivity, bonding and grounding techniques, shielding and isolation, and exposure of the telephone loop.
Nighttime observations of thunderstorm electrical activity from a high altitude airplane
NASA Technical Reports Server (NTRS)
Brook, M.; Vonnegut, B.; Orville, R. E.; Vaughan, O. H., Jr.
1984-01-01
Nocturnal thunderstorms were observed from above and features of cloud structure and lightning which are not generally visible from the ground are discussed. Most, lightning activity seems to be associated with clouds with strong convective cauliflower tops. In both of the storms lightning channels were visible in the clear air above the cloud. It is shown that substances produced by thunderstorm electrical discharges can be introduced directly into the stratosphere. The cause and nature of the discharges above the cloud are not clear. They may be produced by accumulations of space charge in the clear air above the cloud. The discharges may arise solely because of the intense electric fields produced by charges within the cloud. In the latter case the ions introduced by these discharges will increase the electrical conductivity of the air above the cloud and increase the conduction current that flows from the cloud to the electrosphere. More quantitative data at higher resolution may show significant spectral differences between cloud to ground and intracloud strokes. It is shown that electric field change data taken with an electric field change meter mounted in an airplane provide data on lightning discharges from above that are quite similar to those obtained from the ground in the past. The optical signals from dart leaders, from return strokes, and from continuing currents are recognizable, can be used to provide information on the fine structure of lightning, and can be used to distinguish between cloud to ground and intracloud flashes.
NASA Astrophysics Data System (ADS)
Mochalov, V. A.; Firstov, P. P.; Cherneva, N. V.; Sannikov, D. V.; Akbashev, R. R.; Uvarov, V. N.; Shevtsov, B. M.; Druzhin, G. I.; Mochalova, A. V.
2017-11-01
In the region of the Northern group of volcanoes in Kamchatka peninsula, a distributed network is being planned to monitor the VLF range electromagnetic radiation and to locate the lightning strokes. It will allow the researchers to register weaker electromagnetic pulses from lightning strokes in comparison to the World Wide Lightning Location Network. The hardware-software complex of the network under construction is presented. The capabilities of the available and the developing hardware and software to investigate natural phenomena associated with lightning activity are described.
NASA Astrophysics Data System (ADS)
Zheng, Hao; Holzworth, Robert H.; Brundell, James B.; Jacobson, Abram R.; Wygant, John R.; Hospodarsky, George B.; Mozer, Forrest S.; Bonnell, John
2016-03-01
Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to lightning producing regions. The prediction method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these predicted times for magnetic conjugacy to lightning activity regions, we recorded high time resolution, burst mode waveform data. Here we show that whistlers are observed by the satellites in more than 80% of downloaded waveform data. About 22.9% of the whistlers observed by RBSP are one-to-one coincident with source lightning strokes detected by WWLLN. About 40.1% more of whistlers are found to be one-to-one coincident with lightning if source regions are extended out 2000 km from the satellites footpoints. Lightning strokes with far-field radiated VLF energy larger than about 100 J are able to generate a detectable whistler wave in the inner magnetosphere. One-to-one coincidences between whistlers observed by RBSP and lightning strokes detected by WWLLN are clearly shown in the L shell range of L = 1-3. Nose whistlers observed in July 2014 show that it may be possible to extend this coincidence to the region of L≥4.
Evaluation of Lightning Incidence to Elements of a Complex Structure: A Monte Carlo Approach
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Rakov, V. A.
2008-01-01
There are complex structures for which the installation and positioning of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some "unprotected" or "exposed" areas. In an effort to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate the origin of downward propagating leaders and a lognormal distribution to generate the corresponding returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for N number of years with an assumed ground flash density and the output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution.
Scientific Lightning Detection Network for Kazakhstan
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Lozbin, A.; Inchin, A.; Shpadi, Y.; Inchin, P.; Shpadi, M.; Ayazbayev, G.; Bykayev, R.; Mailibayeva, L.
2015-12-01
In the frame of grant financing of the scientific research in 2015-2017 the project "To Develop Electromagnetic System for lightning location and atmosphere-lithosphere coupling research" was found. The project was start in January, 2015 and should be done during 3 years. The purpose is to create a system of electromagnetic measurements for lightning location and atmosphere-lithosphere coupling research consisting of a network of electric and magnetic sensors and the dedicated complex for data processing and transfer to the end user. The main tasks are to set several points for electromagnetic measurements with 100-200 km distance between them, to develop equipment for these points, to develop the techniques and software for lightning location (Time-of-arrival and Direction Finding (TOA+DF)) and provide a lightning activity research in North Tien-Shan region with respect to seismicity and other natural and manmade activities. Also, it is planned to use lightning data for Global Electric Circuit (GEC) investigation. Currently, there are lightning detection networks in many countries. In Kazakhstan we have only separate units in airports. So, we don't have full lightning information for our region. It is planned, to setup 8-10 measurement points with magnetic and electric filed antennas for VLF range. The final data set should be including each stroke location, time, type (CG+, CG-, CC+ or CC-) and waveform from each station. As the magnetic field lightning antenna the ferrite rod VLF antenna will be used. As the electric field antenna the wide range antenna with specific frequencies filters will be used. For true event detection TOA and DF methods needs detected stroke from minimum 4 stations. In this case we can get location accuracy about 2-3 km and better.
A shielding theory for upward lightning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shindo, Takatoshi; Aihara, Yoshinori
1993-01-01
A new shielding theory is proposed based on the assumption that the occurrence of lightning strokes on the Japan Sea coast in winter is due to the inception of upward leaders from tall structures. Ratios of the numbers of lightning strokes to high structures observed there in winter show reasonable agreement with values calculated by this theory. Shielding characteristics of a high structure in various conditions are predicted.
Horizontal electric fields from lightning return strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, E.M.; Uman, M.A.; Johnson, J.
1985-01-01
Measurements are presented of simultaneous horizontal and vertical electric fields from both close and distant lightning return strokes. The data were obtained during summer 1984 at the Kennedy Space Center, Florida, using an electrically isolated spherical antenna having a system bandwidth of 3 Hz to 5 MHz. Lightning signals were obtained from flashes at distances from a few to 100 kilometers. Since the horizontal electric field is in part determined by the local ground conductivity, that parameter was measured as a function of depth. The horizontal fields from lightning return strokes had typically 1/50 the peak amplitude of the verticalmore » fields and waveshapes which were consistant with available theory, as expressed by the ''wavetilt'' formula.« less
Modelling of power lines in lightning incidence calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousa, A.M.; Srivastava, K.D.
1990-01-01
When applying the electrogeometric model to power lines to determine the frequency and characteristics of the collected lightning strokes, the power line has traditionally been represented by a set of horizontal wires, i.e. both the sag of the wires and the existence of the towers have been ignored. This approach has serious shortcomings including inability to determine the percentage of the strokes terminating on the towers, failure to correctly predict the effect of height on median current, and giving an approximate value for the number of collected strokes without telling the corresponding degree of error. This paper eliminates the abovemore » problems by presenting a computerized solution which takes into consideration the sag of the wires, the existence of the towers, and the inequality of the striking distances to towers and to wires. The features of the program are discussed in the paper, and some of its results are given.« less
NASA Astrophysics Data System (ADS)
Lay, Erin Hoffmann
In this dissertation, the capabilities of the World-Wide Lightning Location Network (WWLLN) are analyzed in order to study the interactions of lightning energy with the lower ionosphere. WWLLN is the first global ground-based lightning location network and the first lightning detection network that continuously monitors lightning around the world in real time. For this reason, a better characterization of the WWLLN could allow many global atmospheric science problems to be addressed, including further investigation into the global electric circuit and global mapping of regions of the lower ionosphere likely to be impacted by strong lightning and transient luminous events. This dissertation characterizes the World-Wide Location Network (WWLLN) in terms of detection efficiency, location and timing accuracy, and lightning type. This investigation finds excellent timing and location accuracy for WWLLN. It provides the first experimentally-determined estimate of relative global detection efficiency that is used to normalize lightning counts based on location. These normalized global lightning data from the WWLLN are used to map intense storm regions around the world with high time and spatial resolution as well as to provide information on energetic emissions known as elves and terrestrial gamma-ray flashes (TGFs). This dissertation also improves WWLLN by developing a procedure to provide the first estimate of relative lightning stroke radiated energy in the 1-24 kHz frequency range by a global lightning detection network. These characterizations and improvements to WWLLN are motivated by the desire to use WWLLN data to address the problem of lightning-to-ionosphere energy coupling. Therefore, WWLLN stroke rates are used as input to a model, developed by Professor Mengu Cho at the Kyushu Institute of Technology in Japan, that describes the non-linear effect of lightning electromagnetic pulses (EMP) on the ionosphere by accumulating electron density changes resulting from the interaction of the EMP of ten successive lightning strokes with the lower ionosphere. Further studies must be completed to narrow uncertainties in the model, but the qualitative ionospheric response to successive EMPs is presented. Results from this study show that the non-linear effect of lightning EMP due to successive lightning strokes must be taken into account, and varies with altitude, such that the most significant electron density enhancement occurs at 88 km altitude.
Lightning prevention systems for paper mills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, R.B. Jr.
1989-05-01
Paper mills are increasingly relying on sensitive electronic equipment to control their operations. However, the sensitivity of these devices has made mills vulnerable to the effects of lightning strokes. An interruption in the power supply or the destruction of delicate microcircuits can have devastating effects on mill productivity. The authors discuss how lightning strokes can be prevented by a Dissipation Array system (DAS). During the past 17 years, the concept has been applied to a host of applications in regions with a high incidence of lightning activity. With nearly 700 systems now installed, more than 4000 system-years of history havemore » been accumulated. Areas as large as 1 km{sup 2} and towers as high as 2000 ft have been protected and completely isolated from lightning strokes. There have been very few failures, and in every case, the cause of the failure was determined and corrected.« less
Magnetic field generated by lightning protection system
NASA Astrophysics Data System (ADS)
Geri, A.; Veca, G. M.
1988-04-01
A lightning protection system for today's civil buildings must be electromagnetically compatible with the electronic equipment present in the building. This paper highlights a mathematic model which analyzes the electromagnetic effects in the environment in which the lightning protection system is. This model is developed by means of finite elements of an electrical circuit where each element is represented by a double pole circuit according to the trapezoidal algorithm developed using the finite difference method. It is thus possible to analyze the electromagnetic phenomena associated with the transient effects created by the lightning stroke even for a high-intensity current. Referring to an elementary system comprised of an air terminal, a down conductor, and a ground terminal, numerical results are here laid out.
Characteristics of long recovery early VLF events observed by the North African AWESOME Network
NASA Astrophysics Data System (ADS)
Naitamor, S.; Cohen, M. B.; Cotts, B. R. T.; Ghalila, H.; Alabdoadaim, M. A.; Graf, K.
2013-08-01
Lightning strokes are capable of initiating disturbances in the lower ionosphere, whose recoveries persist for many minutes. These events are remotely sensed via monitoring subionospherically propagating very low frequency (VLF) transmitter signals, which are perturbed as they pass through the region above the lightning stroke. In this paper we describe the properties and characteristics of the early VLF signal perturbations, which exhibit long recovery times using subionospheric VLF transmitter data from three identical receivers located at Algiers (Algeria), Tunis (Tunisia), and Sebha (Libya). The results indicate that the observation of long recovery events depends strongly on the modal structure of the signal electromagnetic field and the distance from the disturbed region and the receiver or transmitter locations. Comparison of simultaneously collected data at the three sites indicates that the role of the causative lightning stroke properties (e.g., peak current and polarity), or that of transient luminous events may be much less important. The dominant parameter which determines the duration of the recovery time and amplitude appears to be the modal structure of the subionospheric VLF probe signal at the ionospheric disturbance, where scattering occurs, and the subsequent modal structure that propagates to the receiver location.
NASA Astrophysics Data System (ADS)
Vinh, T.
1980-08-01
There is a need for better and more effective lightning protection for transmission and switching substations. In the past, a number of empirical methods were utilized to design systems to protect substations and transmission lines from direct lightning strokes. The need exists for convenient analytical lightning models adequate for engineering usage. In this study, analytical lightning models were developed along with a method for improved analysis of the physical properties of lightning through their use. This method of analysis is based upon the most recent statistical field data. The result is an improved method for predicting the occurrence of sheilding failure and for designing more effective protection for high and extra high voltage substations from direct strokes.
Lightning NOx Statistics Derived by NASA Lightning Nitrogen Oxides Model (LNOM) Data Analyses
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold
2013-01-01
What is the LNOM? The NASA Marshall Space Flight Center (MSFC) Lightning Nitrogen Oxides Model (LNOM) [Koshak et al., 2009, 2010, 2011; Koshak and Peterson 2011, 2013] analyzes VHF Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark) (NLDN) data to estimate the lightning nitrogen oxides (LNOx) produced by individual flashes. Figure 1 provides an overview of LNOM functionality. Benefits of LNOM: (1) Does away with unrealistic "vertical stick" lightning channel models for estimating LNOx; (2) Uses ground-based VHF data that maps out the true channel in space and time to < 100 m accuracy; (3) Therefore, true channel segment height (ambient air density) is used to compute LNOx; (4) True channel length is used! (typically tens of kilometers since channel has many branches and "wiggles"); (5) Distinction between ground and cloud flashes are made; (6) For ground flashes, actual peak current from NLDN used to compute NOx from lightning return stroke; (7) NOx computed for several other lightning discharge processes (based on Cooray et al., 2009 theory): (a) Hot core of stepped leaders and dart leaders, (b) Corona sheath of stepped leader, (c) K-change, (d) Continuing Currents, and (e) M-components; and (8) LNOM statistics (see later) can be used to parameterize LNOx production for regional air quality models (like CMAQ), and for global chemical transport models (like GEOS-Chem).
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Mata, Angel G.; Rakov, V. A.; Nag, A.; Saul, Jon
2012-01-01
A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida. This new instrumentation system includes six synchronized high-speed video cameras, current sensors installed on the nine downcouductors of the new lightning protection system (LPS) for LC39B; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. The LPS received 8 direct lightning strikes (a total of 19 strokes) from March 31 through December 31, 2011. The measured peak currents and locations are compared to those reported by the CGLSS 11 and the NLDN. Results of comparison are presented and analyzed in this paper.
An experimental system for controlled exposure of biological samples to electrostatic discharges.
Marjanovič, Igor; Kotnik, Tadej
2013-12-01
Electrostatic discharges occur naturally as lightning strokes, and artificially in light sources and in materials processing. When an electrostatic discharge interacts with living matter, the basic physical effects can be accompanied by biophysical and biochemical phenomena, including cell excitation, electroporation, and electrofusion. To study these phenomena, we developed an experimental system that provides easy sample insertion and removal, protection from airborne particles, observability during the experiment, accurate discharge origin positioning, discharge delivery into the sample either through an electric arc with adjustable air gap width or through direct contact, and reliable electrical insulation where required. We tested the system by assessing irreversible electroporation of Escherichia coli bacteria (15 mm discharge arc, 100 A peak current, 0.1 μs zero-to-peak time, 0.2 μs peak-to-halving time), and gene electrotransfer into CHO cells (7 mm discharge arc, 14 A peak current, 0.5 μs zero-to-peak time, 1.0 μs peak-to-halving time). Exposures to natural lightning stroke can also be studied with this system, as due to radial current dissipation, the conditions achieved by a stroke at a particular distance from its entry are also achieved by an artificial discharge with electric current downscaled in magnitude, but similar in time course, correspondingly closer to its entry. © 2013.
Lightning Pin Injection Testing on MOSFETS
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita
2009-01-01
Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.
Analysis of lightning outliers in the EUCLID network
NASA Astrophysics Data System (ADS)
Poelman, Dieter R.; Schulz, Wolfgang; Kaltenboeck, Rudolf; Delobbe, Laurent
2017-11-01
Lightning data as observed by the European Cooperation for Lightning Detection (EUCLID) network are used in combination with radar data to retrieve the temporal and spatial behavior of lightning outliers, i.e., discharges located in a wrong place, over a 5-year period from 2011 to 2016. Cloud-to-ground (CG) stroke and intracloud (IC) pulse data are superimposed on corresponding 5 min radar precipitation fields in two topographically different areas, Belgium and Austria, in order to extract lightning outliers based on the distance between each lightning event and the nearest precipitation. It is shown that the percentage of outliers is sensitive to changes in the network and to the location algorithm itself. The total percentage of outliers for both regions varies over the years between 0.8 and 1.7 % for a distance to the nearest precipitation of 2 km, with an average of approximately 1.2 % in Belgium and Austria. Outside the European summer thunderstorm season, the percentage of outliers tends to increase somewhat. The majority of all the outliers are low peak current events with absolute values falling between 0 and 10 kA. More specifically, positive cloud-to-ground strokes are more likely to be classified as outliers compared to all other types of discharges. Furthermore, it turns out that the number of sensors participating in locating a lightning discharge is different for outliers versus correctly located events, with outliers having the lowest amount of sensors participating. In addition, it is shown that in most cases the semi-major axis (SMA) assigned to a lightning discharge as a confidence indicator in the location accuracy (LA) is smaller for correctly located events compared to the semi-major axis of outliers.
Lightning Magnetic Field Measurements around Langmuir Laboratory
NASA Astrophysics Data System (ADS)
Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.
2010-12-01
In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.
NASA Astrophysics Data System (ADS)
Chen, Long; Zhang, Qilin; Hou, Wenhao; Tao, Yulang
2015-07-01
In this paper we have simulated the far-field waveform characteristic of large bipolar events (LBEs) occurred in winter thunderstorms in Japan and compared the field-to-current conversion factors (FCCFs) of LBEs with that of the lightning cloud-to-ground (CG) return stroke (RS) in summer thunderstorm. As for the physical process of LBEs, Wu et al. (2014) considered that LBEs may be very similar to the typical lightning RS (RS-like process) or caused by an initial continuous current pulse (ICC-like process) in upward lightning flashes. We assume that the lightning channel length of LBEs ranges from 500 m to 1000 m, and the height of tall object struck by LBEs is from 100 m to 300 m. By using the bouncing wave model, we found that only when the injected current waveform of LBEs is characterized with a symmetric Gaussian pulse, the simulated far-field waveform of LBEs both for RS-like process and ICC-like process is similar to that observed by Wu et al. (2014). For striking tall objects with heights from 100 m and 300 m, the FCCFs of LBEs are positively correlated with its channel length and derivatives of injected current waveform, and the FCCF for RS-like process is about similar to that for ICC-like process. However, the FCCFs of LBEs are very different from lightning RS in summer thunderstorm; that is to say, the FCCFs developed for the well-known lightning RS in summer thunderstorm are not suitable for LBEs.
NASA Astrophysics Data System (ADS)
Adachi, T.; Said, R.; Cummer, S. A.; Li, J.; Takahashi, Y.; Hsu, R.; Su, H.; Chen, A. B.; Mende, S. B.; Frey, H. U.
2010-12-01
Comparative studies on the electrical properties of oceanic and continental lightning are crucial to elucidate air discharge processes occurring under different conditions. Past studies however have primarily focused on continental lightning because of the limited coverage of ground-based instruments. Recent satellite measurements by FORMOSAT-2/ISUAL provided a new way to survey the global characteristics of lightning and transient luminous events regardless of land and ocean. In this study, we analyze ISUAL/spectrophotometer data to clarify the electrical properties of lightning on a global level. Based on the results obtained by Cummer et al. [2006] and Adachi et al. [2009], the OI-777.4nm emission intensity is used to infer lightning electrical parameters. Results show a clear land-ocean contrast on the parameters of lightning discharge: in oceanic lightning, peak luminosity is 60 % higher and the time scale of return stroke is 30 % shorter. These results suggest higher peak current in oceanic lightning, which is consistent with the fact that elves, EMP-driven phenomena, also tend to occur over the ocean [Chen et al., 2008]. Further analysis of lightning events occurring around the Caribbean Sea shows that the transition-line of lightning electrical properties is precisely located along the coastline. We suggest that the differences in these electrical properties may be due to the boundary conditions (conductivity, surface terrain, etc). In this talk, based on the calibration with NLDN and Duke magnetometer data, current moment change and charge moment change will be globally evaluated using a complete set of the ISUAL-observed lightning events.
Determining Polarities Of Distant Lightning Strokes
NASA Technical Reports Server (NTRS)
Blakeslee, Richard J.; Brook, Marx
1990-01-01
Method for determining polarities of lightning strokes more than 400 km away. Two features of signal from each stroke correlated. New method based on fact each stroke observed thus far for which polarity determined unambiguously, initial polarity of tail same as polarity of initial deflection before initial-deflection signal altered by propagation effects. Receiving station equipped with electric-field-change antenna coupled to charge amplifier having time constant of order of 1 to 10 seconds. Output of amplifier fed to signal-processing circuitry, which determines initial polarity of tail.
Preliminary analysis on faint luminous lightning events recorded by multiple high speed cameras
NASA Astrophysics Data System (ADS)
Alves, J.; Saraiva, A. V.; Pinto, O.; Campos, L. Z.; Antunes, L.; Luz, E. S.; Medeiros, C.; Buzato, T. S.
2013-12-01
The objective of this work is the study of some faint luminous events produced by lightning flashes that were recorded simultaneously by multiple high-speed cameras during the previous RAMMER (Automated Multi-camera Network for Monitoring and Study of Lightning) campaigns. The RAMMER network is composed by three fixed cameras and one mobile color camera separated by, in average, distances of 13 kilometers. They were located in the Paraiba Valley (in the cities of São José dos Campos and Caçapava), SP, Brazil, arranged in a quadrilateral shape, centered in São José dos Campos region. This configuration allowed RAMMER to see a thunderstorm from different angles, registering the same lightning flashes simultaneously by multiple cameras. Each RAMMER sensor is composed by a triggering system and a Phantom high-speed camera version 9.1, which is set to operate at a frame rate of 2,500 frames per second with a lens Nikkor (model AF-S DX 18-55 mm 1:3.5 - 5.6 G in the stationary sensors, and a lens model AF-S ED 24 mm - 1:1.4 in the mobile sensor). All videos were GPS (Global Positioning System) time stamped. For this work we used a data set collected in four RAMMER manual operation days in the campaign of 2012 and 2013. On Feb. 18th the data set is composed by 15 flashes recorded by two cameras and 4 flashes recorded by three cameras. On Feb. 19th a total of 5 flashes was registered by two cameras and 1 flash registered by three cameras. On Feb. 22th we obtained 4 flashes registered by two cameras. Finally, in March 6th two cameras recorded 2 flashes. The analysis in this study proposes an evaluation methodology for faint luminous lightning events, such as continuing current. Problems in the temporal measurement of the continuing current can generate some imprecisions during the optical analysis, therefore this work aim to evaluate the effects of distance in this parameter with this preliminary data set. In the cases that include the color camera we analyzed the RGB mode (red, green, blue) and compared them with the data provided by the black and white cameras for the same event and the influence of these parameters with the luminosity intensity of the flashes. Two peculiar cases presented, from the data obtained at one site, a stroke, some continuing current during the interval between the strokes and, then, a subsequent stroke; however, the other site showed that the subsequent stroke was in fact an M-component, since the continuing current had not vanished after its parent stroke. These events generated a dubious classification for the same event that was based only in a visual analysis with high-speed cameras and they were analyzed in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, J.E.
1995-02-20
The return-stroke breakdown pulse and the dart leader are treated as electric waves guided by conducting lightning channels; such waves are launched when current is injected into a conducting channel (producing the dart leader) or when charge on a channel begins to drain to Earth (producing the return stroke). The guided waves are self-consistent solutions to the full set of Maxwell`s equations, obeying the physical boundary conditions for cylindrical channels. These waves are shown (1) to move with velocities substantially slower than c along the channel, (2) to push current inside the lightning channel, (3) to move charge and voltagemore » along the channel, and (4) to transport energy along and into the channel via Poynting flux. The velocity of a guided wave is a function of only three parameters: the channel radius r{sub ch}, the channel temperature T, and the risetime {triangle}t of the wave front. These velocities are found to fall in the range of velocities of return strokes and of dart leaders. The dart leader and the return stroke are caused by the same type of guided electromagnetic waves: the difference in velocity is owed mostly to the difference in channel temperature. In the case of the dart leader the waves deliver Poynting flux along the outside of the channel down from a thundercloud generator to the downward-propagating wave front. At the wave front of the dart leader the delivered energy goes into heating the channel and into storage in the form of E{sup 2}/8{pi} around the newly charged channel. In the case of the return stroke the Poynting flux is localized to the vicinity of the wave front where stored energy E{sup 2}/8{pi} is delivered radially inward onto the channel to heat the channel in the propagating front. The net result of a dart leader and return stroke is that charge is moved from the cloud to the ground and that energy is moved from the cloud onto the channel. 123 refs., 11 figs., 5 tabs.« less
Shielding of substations against direct lightning strokes by shield wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhuri, P.
1994-01-01
A new analysis for shielding outdoor substations against direct lightning strokes by shield wires is proposed. The basic assumption of this proposed method is that any lightning stroke which penetrates the shields will cause damage. The second assumption is that a certain level of risk of failure must be accepted, such as one or two failures per 100 years. The proposed method, using electrogeometric model, was applied to design shield wires for two outdoor substations: (1) 161-kV/69-kV station, and (2) 500-kV/161-kV station. The results of the proposed method were also compared with the shielding data of two other substations.
NASA Astrophysics Data System (ADS)
Aulich, G. D.; Moore, C. B.; Rison, W.
2006-12-01
Most people know that Ben Franklin invented the lightning rod and that his rods have successfully protected structures for over 250 years. What people don't know is that he invented them on the basis of two misconceptions. The first, that an elevated pointed conductor would discharge a thunderstorm, thereby preventing lightning. The second, that, should the first process fail, the elevated conductor, by virtue of its pointed tip, would serve as a preferred receptor for any lightning strokes that did occur. It has long been known that grounded, elevated, pointed conductors can not discharge thunderstorms and experiments conducted at the Langmuir Laboratory during the 1990s have shown that moderately blunt, rather than pointed, rods are the best receptors for lightning strokes. Nevertheless, Franklin's incorrect ideas about lightning rods persist in many minds, even among some people in the lightning protection business.
NASA Technical Reports Server (NTRS)
Levine, D. M.
1978-01-01
Radiation from lightning in the RF band from 3-300 MHz were monitored. Radiation in this frequency range is of interest as a potential vehicle for monitoring severe storms and for studying the lightning itself. Simultaneous measurements were made of RF radiation and fast and slow field changes. Continuous analogue recordings with a system having 300 kHz of bandwidth were made together with digital records of selected events (principally return strokes) at greater temporal resolution. The data reveal patterns in the RF radiation for the entire flash which are characteristic of flash type and independent of the frequency of observation. Individual events within the flash also have characteristic RF patterns. Strong radiation occurs during the first return strokes, but delayed about 20 micron sec with respect to the begining of the return stroke; whereas, RF radiation from subsequent return strokes tends to be associated with cloud processes preceding the flash with comparatively little radiation occurring during the return stroke itself.
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. D.
1993-01-01
Velocities, optical risetimes, and transmission line model peak currents for seven natural positive return strokes are reported. The average 2D positive return stroke velocity for channel segments of less than 500 m in length starting near the base of the channel is 0.8 +/- 0.3 x 10 exp 8 m/s, which is slower than the present corresponding average velocity for natural negative first return strokes of 1.7 +/- 0.7 x 10 exp 8/s. It is inferred that positive stroke peak currents in the literature, which assume the same velocity as negative strokes, are low by a factor of 2. The average 2D positive return stroke velocity for channel segments of greater than 500 m starting near the base of the channel is 0.9 +/- 0.4 x 10 exp 8 m/s. The corresponding average velocity for the present natural negative first strokes is 1.2 +/- 0.6 x 10 exp 8 m/s. No significant velocity change with height is found for positive return strokes.
Fine structure in RF spectra of lightning return stroke wave forms
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.
1988-01-01
The power spectra of the wide-band (10 Hz to 100 kHz) magnetic-field signals for a number of lightning return strokes measured during a thunderstorm which occurred in Lindau in August, 1984 have been calculated. The RF magnetic field data are obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. Each return stroke data stream is passed through an adaptive filter designed to whiten its spectrum. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks in the spectra of many of the waveforms. A peak at f of about 60-70 kHz is often seen in the power spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.
Characteristics of downward leaders in a cloud-to-ground lightning strike on a lightning rod
NASA Astrophysics Data System (ADS)
Wang, Caixia; Sun, Zhuling; Jiang, Rubin; Tian, Yangmeng; Qie, Xiushu
2018-05-01
A natural downward negative cloud-to-ground (CG) lightning was observed at a close distance of 370 m by using electric field change measurements and a high-speed camera at 5400 frames per second (fps). Two subsequent leader-return strokes of the lightning hit a lightning rod installed on the top of a seven-story building in Beijing city, while the grounding point for the stepped leader-first return stroke was 12 m away, on the roof of the building. The 2-D average speed of the downward stepped leader (L1) before the first return stroke (R1) was approximately 5.1 × 104 m/s during its propagation over the 306 m above the building, and those before the subsequent strokes (R2 and R3) ranged from 1.1 × 106 m/s to 2.2 × 106 m/s. An attempted leader (AL) occurred 201 ms after R1 and 10 ms before R2 reached approximately 99 m above the roof and failed to connect to the ground. The 2-D average speed of the AL was approximately 7.4 × 104 m/s. The luminosity at tip of the leader was brighter than the channel behind it. The leader inducing the R2 with an alteration of terminating point was a dart-stepped leader (DSL), which propagated through the channel of AL and continued to develop downward with new branches at about 17 m above the roof. The 2-D speed of the DSL at the bottom 99 m was 6.6 × 105 m/s. The average time interval between the stepped pulses of the DSL was approximately 10 μs, smaller than that of L1 with value of about 17 μs. The average step lengths of the DSL were approximately 6.6 m. The study shows that the stepped leader-first return stroke of lightning will not always hit the tip of a tall metal rod due to the significant branching property of the leader. However, under certain conditions, the subsequent return strokes may alter the grounding point to the tip of a tall metal rod. For the lightning rod, the protection against subsequent return strokes may be better than that against the first return stroke.
Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes
NASA Technical Reports Server (NTRS)
Willett, John C.; Smith, David A.; LeVine, David M.; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
The Los Alamos National Laboratory (LANL) Sferic Array has recorded electric-field-change waveforms simultaneously at several stations surrounding the ground-strike points of numerous return strokes in cloud-to-ground lightning flashes. Such data are available from the five-station sub-networks in both Florida and New Mexico. With these data it has been possible for the first time to compare the waveforms radiated in different directions by a given stroke. Such comparisons are of interest to assess both the effects of channel geometry on the fine structure of subsequent-stroke radiation fields and the role of branches in the more jagged appearance of first-stroke waveforms. This paper presents multiple-station, time-domain waveforms with a 200 Hz to 500 kHz pass-band from both first and subsequent return strokes at ranges generally between 100 and 200 km. The differences among waveforms of the same stroke received at stations in different directions from the lightning channel are often obvious. These differences are illustrated and interpreted in the context of channel tortuosity and branches.
Electromagnetic Methods of Lightning Detection
NASA Astrophysics Data System (ADS)
Rakov, V. A.
2013-11-01
Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.
Production of Artificial Lightning in An Ordinary Clear Light Bulb.
ERIC Educational Resources Information Center
Zaffo, Peter Alfred
1981-01-01
Reported is a method of producing artificial lightning in an ordinary clear lightbulb. The appearance of sparks produced is that of a miniature stroke of forked lightning seen in natural thunderstorms. The sparks also show the intricate branching patterns often seen in natural lightning. (JT)
NASA Astrophysics Data System (ADS)
Allen, D. J.; Pickering, K. E.; Ring, A.; Holzworth, R. H.
2013-12-01
Lightning is the dominant source of nitrogen oxides (NOx) involved in the production of ozone in the middle and upper troposphere in the tropics and in summer in the midlatitudes. Therefore it is imperative that the lightning NOx (LNOx) source strength per flash be better constrained. This process requires accurate information on the location and timing of lightning flashes. In the past fifteen years satellite-based lightning monitoring by the Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) has greatly increased our understanding of the global distribution of lightning as a function of season and time-of-day. However, detailed information at higher temporal resolutions is only available for limited regions where ground-based networks such as the United States National Lightning Detection Network (NLDN) exist. In 2004, the ground-based World Wide Lightning Location Network (WWLLN) was formed with the goal of providing continuous flash rate information over the entire globe. It detects very low frequency (VLF) radio waves emitted by lightning with a detection efficiency (DE) that varies with stroke energy, time-of-day, surface type, and network coverage. This study evaluated the DE of WWLLN strokes relative to climatological OTD/LIS flashes using data from the 2007 to 2012 time period, a period during which the mean number of working sensors increased from 28 to 53. The analysis revealed that the mean global DE increased from 5% in 2007 to 13% in 2012. Regional variations were substantial with mean 2012 DEs of 5-10% over much of Argentina, Africa, and Asia and 15-30% over much of the Atlantic, Pacific, and Indian Oceans, the United States and the Maritime Continent. Detection-efficiency adjusted WWLLN flash rates were then compared to NLDN-based flash rates. Spatial correlations for individual summer months ranged from 0.66 to 0.93. Temporal correlations are currently being examined for regions of the U.S. and will also be shown.
NASA Astrophysics Data System (ADS)
Zhan, Qinghua; Chen, Zhucheng; Li, Hongtao; Liu, Yijun; Mei, Cheng; He, Zhijie
2017-05-01
In order to solve the accidents happened in the ponds or other special places around the tower which were caused by the diffusion current after lightning stroke the transmission tower, the protection measures for the problem tower in the area of Guangdong Province which occurred dead fish in the pond in thunderstorm weather were studied in this paper. The COMSOL mutiphysics simulation software was used in order to calculate the electromagnetic environment of the diffusion situation by grounding device after lightning stroke the power transmission tower. Study concluded that the safe distance between the fish pond and grounding device of transmission tower is 14 meter. The effects of the length and depth or stayed a gap of the insulation baffle on the fish in the fish pond were discussed. The protection method of the insulation baffle has important practical significance to the protection of the grounding device for diffusion current, and can provide some engineering guidance and basis for the grounding arrangement and transformation of the high voltage transmission line tower.
The verification of lightning location accuracy in Finland deduced from lightning strikes to trees
NASA Astrophysics Data System (ADS)
Mäkelä, Antti; Mäkelä, Jakke; Haapalainen, Jussi; Porjo, Niko
2016-05-01
We present a new method to determine the ground truth and accuracy of lightning location systems (LLS), using natural lightning strikes to trees. Observations of strikes to trees are being collected with a Web-based survey tool at the Finnish Meteorological Institute. Since the Finnish thunderstorms tend to have on average a low flash rate, it is often possible to identify from the LLS data unambiguously the stroke that caused damage to a given tree. The coordinates of the tree are then the ground truth for that stroke. The technique has clear advantages over other methods used to determine the ground truth. Instrumented towers and rocket launches measure upward-propagating lightning. Video and audio records, even with triangulation, are rarely capable of high accuracy. We present data for 36 quality-controlled tree strikes in the years 2007-2008. We show that the average inaccuracy of the lightning location network for that period was 600 m. In addition, we show that the 50% confidence ellipse calculated by the lightning location network and used operationally for describing the location accuracy is physically meaningful: half of all the strikes were located within the uncertainty ellipse of the nearest recorded stroke. Using tree strike data thus allows not only the accuracy of the LLS to be estimated but also the reliability of the uncertainty ellipse. To our knowledge, this method has not been attempted before for natural lightning.
On the behavior of return stroke current and the remotely detected electric field change waveform
NASA Astrophysics Data System (ADS)
Shao, Xuan-Min; Lay, Erin; Jacobson, Abram R.
2012-04-01
After accumulating a large number of remotely recorded negative return stroke electric field change waveforms, a subtle but persistent kink was found following the main return stroke peak by several microseconds. To understand the corresponding return stroke current properties behind the kink and the general return stroke radiation waveform, we analyze strokes occurring in triggered lightning flashes for which have been measured both the channel base current and simultaneous remote electric radiation field. In this study, the channel base current is assumed to propagate along the return stroke channel in a dispersive and lossy manner. The measured channel base current is band-pass filtered, and the higher-frequency component is assumed to attenuate faster than the lower-frequency component. The radiation electric field is computed for such a current behavior and is then propagated to distant sensors. It is found that such a return stroke model is capable of very closely reproducing the measured electric waveforms at multiple stations for the triggered return strokes, and such a model is considered applicable to the common behavior of the natural return stroke as well. On the basis of the analysis, a number of other observables are derived. The time-evolving current dispersion and attenuation compare well with previously reported optical observations. The observable speed tends to agree with optical and VHF observations. Line charge density that is removed or deposited by the return stroke is derived, and the implication of the charge density distribution on leader channel decay is discussed.
Characteristics of M-component in rocket-triggered lightning and a discussion on its mechanism
NASA Astrophysics Data System (ADS)
Jiang, Rubin; Qie, Xiushu; Yang, Jing; Wang, Caixia; Zhao, Yang
2013-09-01
The current and electric field pulses associated with M-component following dart leader-return stroke sequences in negative rocket-triggered lightning flashes were analyzed in detail by using the data from Shandong Artificially Triggering Lightning Experiment, conducted from 2005 to 2010. For 63 M-components with current waveforms superimposed on the relatively steady continuing current, the geometric mean values of the peak current, duration, and charge transfer were 276 A, 1.21 ms, and 101 mC, respectively. The behaviors of the channel base current versus close electric field changes and the observation facts by different authors were carefully examined for investigation on mechanism of the M-component. A modified model based on Rakov's "two-wave" theory is proposed and confirms that the evolution of M-component through the lightning channel involves a downward wave transferring negative charge from the upper to the lower channel and an upward wave draining the charge transported by the downward wave. The upward wave serves to deplete the negative charge by the downward wave at its interface and makes the charge density of the channel beneath the interface layer to be roughly zero. Such modified concept is recognized to be reasonable by the simulated results showing a good agreement between the calculated and the measured E-field waveforms.
Application of surface electrical discharges to the study of lightning strikes on aircraft
NASA Technical Reports Server (NTRS)
Boulay, J. L.; Larigaldie, S.
1991-01-01
Considered here is the characterization of surface discharges which provide a facility complementary to that of artificially triggered lightning. General characteristics of a simplified surface discharge, including current waveforms and the constitution of a surface discharge are outlined, and the application of this approach to the study of aircraft lightning strikes is considered. Representations of leader-streamer and return-stroke phases are discussed, and the application to the two-dimensional discharge phase is covered. It is noted that the fact that the initiation times of surface discharges could be controlled, and the path followed by the discharge channels could be predetermined, indicates that it is possible to produce a highly dedicated high performance instrumentation system.
Daylight time-resolved photographs of lightning.
Qrville, R E; Lala, G G; Idone, V P
1978-07-07
Lightning dart leaders and return strokes have been recorded in daylight with both good spatial resolution and good time resolution as part of the Thunder-storm Research International Program. The resulting time-resolved photographs are apparently equivalent to the best data obtained earlier only at night. Average two-dimensional return stroke velocities in four subsequent strokes between the ground and a height of 1400 meters were approximately 1.3 x 10(8) meters per second. The estimated systematic error is 10 to 15 percent.
Detection of VHF lightning from GPS orbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suszcynsky, D. M.
2003-01-01
Satellite-based VHF' lightning detection is characterized at GPS orbit by using a VHF receiver system recently launched on the GPS SVN 54 satellite. Collected lightning triggers consist of Narrow Bipolar Events (80%) and strong negative return strokes (20%). The results are used to evaluate the performance of a future GPS-satellite-based VHF global lightning monitor.
NASA Astrophysics Data System (ADS)
Cai, Shuyao; Chen, Mingli; Du, Yaping; Qin, Zilong
2017-08-01
A downward lightning flash usually starts with a downward leader and an upward connecting leader followed by an upward return stroke. It is the preceding leader that governs the following return stroke property. Besides, the return stroke property evolves with height and time. These two aspects, however, are not well addressed in most existing return stroke models. In this paper, we present a leader-return stroke consistent model based on the time domain electric field integral equation, which is a growth and modification of Kumar's macroscopic model. The model is further extended to simulate the optical and electromagnetic emissions of a return stroke by introducing a set of equations relating the return stroke current and conductance to the optical and electromagnetic emissions. With a presumed leader initiation potential, the model can then simulate the temporal and spatial evolution of the current, charge transfer, channel size, and conductance of the return stroke, furthermore the optical and electromagnetic emissions. The model is tested with different leader initiation potentials ranging from -10 to -140 MV, resulting in different return stroke current peaks ranging from 2.6 to 209 kA with different return stroke speed peaks ranging from 0.2 to 0.8 speed of light and different optical power peaks ranging from 4.76 to 248 MW/m. The larger of the leader initiation potential, the larger of the return stroke current and speed. Both the return stroke current and speed attenuate exponentially as it propagates upward. All these results are qualitatively consistent with those reported in the literature.
NASA Astrophysics Data System (ADS)
Dotzek, Nikolai; Rabin, Robert M.; Carey, Lawrence D.; MacGorman, Donald R.; McCormick, Tracy L.; Demetriades, Nicholas W.; Murphy, Martin J.; Holle, Ronald L.
2005-07-01
A multi-sensor study of the leading-line, trailing-stratiform (LLTS) mesoscale convective system (MCS) that developed over Texas in the afternoon of 7 April 2002 is presented. The analysis relies mainly on operationally available data sources such as GOES East satellite imagery, WSR-88D radar data and NLDN cloud-to-ground flash data. In addition, total lightning information in three dimensions from the LDAR II network in the Dallas-Ft. Worth region is used. GOES East satellite imagery revealed several ring-like cloud top structures with a diameter of about 100 km during MCS formation. The Throckmorton tornadic supercell, which had formed just ahead of the developing linear MCS, was characterized by a high CG+ percentage below a V-shaped cloud top overshoot north of the tornado swath. There were indications of the presence of a tilted electrical dipole in this storm. Also this supercell had low average CG- first stroke currents and flash multiplicities. Interestingly, especially the average CG+ flash multiplicity in the Throckmorton storm showed oscillations with an estimated period of about 15 min. Later on, in the mature LLTS MCS, the radar versus lightning activity comparison revealed two dominant discharge regions at the back of the convective leading edge and a gentle descent of the upper intracloud lightning region into the trailing stratiform region, apparently coupled to hydrometeor sedimentation. There was evidence for an inverted dipole in the stratiform region of the LLTS MCS, and CG+ flashes from the stratiform region had high first return stroke peak currents.
Cloud-to-ground lightning in tropical cyclones: A study of Hurricanes Hugo (1989) and Jerry (1989)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samsury, C.E.; Orville, R.E.
1994-08-01
Cloud-to-ground lightning characteristics of two Atlantic tropical cyclones of 1989, Hurricanes Hugo and Jerry, are presented. Statistics on the number of flashes, location, polarity, peak currents, and multiplicity (number of strokes per flash) are examined in an 18-h period divided into prelandfall and postlandfall categories. Land-based and aircraft lower fuselage radar data are also analyzed to determine the nature of the precipitation in which lightning is detected. Jerry is found to be more electrically active than Hugo, with 691 flashes detected compared with 33 flashes for Hugo. The majority of these flashes, regardless of the polarity, are located in themore » right front and right rear quadrants of the hurricanes, almost exclusively in outer convective rainbands. One reason for the large difference in the number of flashes between the two storms is the presence of many convective rainbands in Jerry, compared to only a few in Hugo. More than 20% of the flashes in each storm have a positive polarity. Median negative peak currents of the first return strokes are 49 kA in Hugo and 40 kA in Jerry. Median positive peak currents are 65 kA in Hugo and 52 kA in Jerry. The mean multiplicity of the negative flashes is 1.7 in Hugo and 2.6 in Jerry. Twenty percent of the negative flashes detected in Jerry have a multiplicity of 4 or higher.« less
Evidence of negative leaders which precede fast rise ICC pulses of upward
NASA Astrophysics Data System (ADS)
Yoshida, S.; Akita, M.; Morimoto, T.; Ushio, T.; Kawasaki, Z.; Wang, D.; Takagi, N.
2008-12-01
During winter thunderstorm season in Japan, a lightning observation campaign was conducted with using a VHF broadband digital interferometer (DITF), a capacitive antenna, and Rogowski coils to study the charge transfer mechanism associated with ICC pulses of upward lightning. All the detection systems recorded one upward negative lightning stroke hitting a lightning protection tower. The upward lightning consists of only the Initial Stage (IS) with one upward positive leader and six ICC pulses. The six ICC pulses are sub-classified clearly into two types according to current pulse shapes. The type 1 ICC pulses have a higher geometric mean (GM) current peak of 17 kA and a shorter GM 10-90% risetime of 8.9 μs, while the type 2 ICC pulses have a lower GM current peak of 0.34 kA and longer GM 10-90% risetime of 55 μs. The type 1 ICC pulses have the preceding negative leaders connecting to the channel of the continuing current, while the type 2 ICC pulses have no clear preceding negative leader. These negative leaders prior to the type 1 ICC pulses probably caused the current increases of the ICC pulses, which means that the negative leaders created the channels for the ICC pulses. The height of the space charge transferred by one of the type 1 ICC pulses was estimated about 700 m above sea level at most. This observation result is the first evidence to show explicitly the existence of the negative leaders prior to the fast rise ICC pulse. Furthermore, the result shows that space charge could exist at a low attitude such as 700 m above sea level. This fact is one of the reasons why upward lightning occurs even from rather low structures during winter thunderstorm season in Japan.
Variation in light intensity with height and time from subsequent lightning return strokes
NASA Technical Reports Server (NTRS)
Jordan, D. M.; Uman, M. A.
1983-01-01
Photographic measurements of relative light intensity as a function of height and time have been conducted for seven return strokes in two lightning flashes at 7.8 and 8.7 km ranges, using film which possesses an approximately constant spectral response in the 300-670 nm range. The amplitude of the initial light peak is noted to decrease exponentially with height, with a decay constant of 0.6-0.8 km. The logarithm of the peak light intensity near the ground is found to be approximately proportional to the initial peak electric field intensity, implying that the current decrease with height may be much slower than the light decrease. Absolute light intensity is presently estimated through the integration of the photographic signals from individual channel segments, in order to simulate the calibrated, all-sky photoelectric data of Guo and Krider (1982).
Simulation of radiation from lightning return strokes - The effects of tortuosity
NASA Technical Reports Server (NTRS)
Levine, D. M.; Meneghini, R.
1978-01-01
A Monte Carlo simulation has been developed for the electromagnetic fields radiated from a tortuous lightning channel. This was done using a piecewise linear model for the channel and employing for each element the field radiated by a traveling wave on an arbitrarily oriented filament over a conducting plane. The simulation reproduces experimental data reasonably well and has been used to study the effects of tortuosity on the fields radiated by return strokes. Tortuosity can significantly modify the radiated waveform, tending to render it less representative of the current pulse and more nearly unipolar than one would expect based on the theory for a long straight channel. In the frequency domain the effect of tortuosity is an increase in high frequency energy as compared with an equivalent straight channel. The extent of this increase depends on the mean length of the elements comprising the channel and can be significant.
High-speed plasma imaging: A lightning bolt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurden, G.A.; Whiteson, D.O.
Using a gated intensified digital Kodak Ektapro camera system, the authors captured a lightning bolt at 1,000 frames per second, with 100-{micro}s exposure time on each consecutive frame. As a thunder storm approaches while darkness descended (7:50 pm) on July 21, 1994, they photographed lightning bolts with an f22 105-mm lens and 100% gain on the intensified camera. This 15-frame sequence shows a cloud to ground stroke at a distance of about 1.5 km, which has a series of stepped leaders propagating downwards, following by the upward-propagating main return stroke.
Statistical analysis of electric field parameters for negative lightning in Malaysia
NASA Astrophysics Data System (ADS)
Wooi, Chin-Leong; Abdul-Malek, Zulkurnain; Ahmad, Noor-Azlinda; El Gayar, Ali I.
2016-08-01
This paper presents a comparative study on the electric field and its derivative parameters of negative lightning in Malaysia and other regions. This study is the first in Malaysia where the parameters of negative electric field and its derivative are thoroughly analyzed. 104 negative lightning flashes containing 277 negative return strokes occurring within 10-100 km from the measuring station and recorded during monsoon period in the state of Johor, Malaysia had been analyzed. It was found that 73% of the recorded flashes are multiple strokes with an average multiplicity of 2.6 strokes per flash. For first return strokes, the arithmetic mean (AM) of initial peak electric field and the AM of initial peak electric field derivative are 21.8 V/m and 11.3 V/m/μs, respectively. The initial peaks of electric field and its derivative for first return strokes are larger than those for the subsequent return strokes. Comparison of overall results with those obtained earlier in Sri Lanka, Germany, Sweden, Japan, Florida indicates that several electric field and its derivative parameters are affected by propagation media and geographical region. Similarity of results with other countries having the same climatic condition is also observed.
Horizontal electric fields from lightning return strokes
NASA Technical Reports Server (NTRS)
Thomson, E. M.; Medelius, P. J.; Rubinstein, M.; Uman, M. A.; Johnson, J.
1988-01-01
An experiment to measure simultaneously the wideband horizontal and vertical electric fields from lightning return strokes is described. Typical wave shapes of the measured horizontal and vertical fields are presented, and the horizontal fields are characterized. The measured horizontal fields are compared with calculated horizontal fields obtained by applying the wavetilt formula to the vertical fields. The limitations and sources of error in the measurement technique are discussed.
Anomalous light output from lightning dart leaders
NASA Technical Reports Server (NTRS)
Guo, C.; Krider, E. P.
1985-01-01
About 5 percent of the multiple-stroke cloud-to-ground lightning discharges recorded at the NASA Kennedy Space Center during the summer of 1981 contained dart leaders that produced an unusually large light output. An analysis of these cases indicates that the average peak light output per unit length in the leader may be comparable to or even exceed that of the return stroke that follows.
Horizontal fields generated by return strokes
NASA Technical Reports Server (NTRS)
Cooray, Vernon
1991-01-01
Horizontal fields generated by return strokes play an important role in the interaction of lightning generated electric fields with power lines. In many of the recent investigations on the interaction of lightning electromagnetic fields with power lines, the horizontal field was calculated by employing the expression for the tilt of the electric field of a plane wave propagating over finitely conducting earth. The method is suitable for calculating horizontal fields generated by return strokes at distances as close as 200m. At these close ranges, the use of the wavetilt expression can cause large errors.
NASA Technical Reports Server (NTRS)
Hopf, CH.
1991-01-01
Electric field derivative signals from single and multiple lightning strokes are presented. For about 25 pct. of all acquired waveforms, produced by return strokes, stepped leaders or intracloud discharges, type and distance of the signal source are known from the observations by an all sky video camera system. The analysis of the electric field derivative waveforms in the time domain shows a significant difference in the impulse width between return stroke signals and those of stepped leaders and intracloud discharges. In addition, the computed amplitude density spectrum of return stroke waveforms lies by a factor of 10 above that of stepped leaders and intracloud discharges in the frequency range from 50 to 500 kHz.
The RF spectra of first and subsequent lightning return strokes in the 1- to 200-km range
NASA Technical Reports Server (NTRS)
Serhan, G. I.; Uman, M. A.; Childers, D. G.; Lin, Y. T.
1980-01-01
An experimental characterization of the frequency spectra of first and subsequent stroke electric fields are presented over a distance range from about 1 km, where the fields are primarily electrostatic, to 200 km, where they are primarily radiation. Spectra are presented to about 700 kHz for lightning within 12 km and to about 300 kHz for lightning at 50 and 200 km. It is shown that the return stroke ground wave spectrum beyond 50 km has a peak near 4 kHz but that within 10 km the spectrum shows a steady increase with decreasing frequency to 1 kHz. Frequency spectra at all ranges fall off roughly as 1/f for frequencies between 5 and 100 kHz, while the falloff above 100 kHz is faster as the distance to the stroke increases. From this high-frequency attenuation an RF conductivity for central Florida of between 0.002 and 0.005/ohm/m was determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiang, E-mail: cq0405@126.com; Luoyang Electronic Equipment Testing Center, Luoyang 471000; Chen, Bin, E-mail: emcchen@163.com
The Rayleigh-Taylor (R-T) instabilities are important hydrodynamics and magnetohydrodynamics (MHD) phenomena that are found in systems in high energy density physics and normal fluids. The formation and evolution of the R-T instability at channel boundary during back-flow of the lightning return stroke are analyzed using the linear perturbation theory and normal mode analysis methods, and the linear growth rate of the R-T instability in typical condition for lightning return stroke channel is obtained. Then, the R-T instability phenomena of lightning return stroke are simulated using a two-dimensional Eulerian finite volumes resistive radiation MHD code. The numerical results show that themore » evolution characteristics of the R-T instability in the early stage of back-flow are consistent with theoretical predictions obtained by linear analysis. The simulation also yields more evolution characteristics for the R-T instability beyond the linear theory. The results of this work apply to some observed features of the return stroke channel and further advance previous theoretical and experimental work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnetzer, G.H.; Fisher, R.J.; Dinallo, M.A.
1994-08-01
The electrical effects of lightning penetration of the outer case of a weapon on internal structures, such as a firing set housing, and on samples of a flat, flexline detonator cable have been investigated experimentally. Maximum open-circuit voltages measured on either simulated structures (126 V) or the cable (46 V) located directly behind the point of penetration were well below any level that is foreseen to create a threat to nuclear safety. On the other hand, it was found that once full burnthrough of the barrier occurred, significant fractions of the incident continuing currents coupled to both the simulated internalmore » structure (up to 300 A) or to the cable sample (69 A) when each was electrically connected internally to case ground. No occurrence was observed of the injection of large amplitude currents from return strokes occurring after barrier penetration. Under circumstances in which small volumes of trapped gases exist behind penetration sites, rapid heating of the gas by return strokes occurring after burnthrough has been shown to produced large mechanical impulses to the adjacent surfaces.« less
The induced electric field due to a current transient
NASA Astrophysics Data System (ADS)
Beck, Y.; Braunstein, A.; Frankental, S.
2007-05-01
Calculations and measurements of the electric fields, induced by a lightning strike, are important for understanding the phenomenon and developing effective protection systems. In this paper, a novel approach to the calculation of the electric fields due to lightning strikes, using a relativistic approach, is presented. This approach is based on a known current wave-pair model, representing the lightning current wave. The model presented is one that describes the lightning current wave, either at the first stage of the descending charge wave from the cloud or at the later stage of the return stroke. The electric fields computed are cylindrically symmetric. A simplified method for the calculation of the electric field is achieved by using special relativity theory and relativistic considerations. The proposed approach, described in this paper, is based on simple expressions (by applying Coulomb's law) compared with much more complicated partial differential equations based on Maxwell's equations. A straight forward method of calculating the electric field due to a lightning strike, modelled as a negative-positive (NP) wave-pair, is determined by using the special relativity theory in order to calculate the 'velocity field' and relativistic concepts for calculating the 'acceleration field'. These fields are the basic elements required for calculating the total field resulting from the current wave-pair model. Moreover, a modified simpler method using sub models is represented. The sub-models are filaments of either static charges or charges at constant velocity only. Combining these simple sub-models yields the total wave-pair model. The results fully agree with that obtained by solving Maxwell's equations for the discussed problem.
A unified radiative magnetohydrodynamics code for lightning-like discharge simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Xiong, Run
2014-03-15
A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs fluxmore » splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anzanel, P.; Kouteynikoff, P.
1985-02-01
This Part II presents theorical and experimental work about interference generated by lightning strokes in a telecommunication coaxial circuit enclosed inside a composite earthwire for overhead transmission lines. Sinusoidal steady state and surge measurements of the composite earthwire susceptibility to interference (transfer impedance) have been carried out. Induced voltages have been calculated using an original double sampling FFT method whose validity has been checked by measurements on a test line. Finally, it is shown how the cable design can be improved and maximum induced voltage values are given.
NASA Astrophysics Data System (ADS)
Buiat, Martina; Porcù, Federico; Dietrich, Stefano
2017-01-01
Cloud electrification and related lightning activity in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground-based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles and ice content and relate them to the lightning activity. The analysis has been carried out, focusing on 12 convective events over Italy that crossed CloudSat overpasses during significant lightning activity. The CPR products considered here are the vertical profiles of cloud ice water content (IWC) and the effective radius (ER) of ice particles, which are compared with the number of strokes as measured by a ground lightning network (LINET). Results show a strong correlation between the number of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud upper and middle levels, high IWC content and relatively high ER seem to be favourable contributory causes for CG (cloud to ground) stroke occurrence.
Clustering ENTLN sferics to improve TGF temporal analysis
NASA Astrophysics Data System (ADS)
Pradhan, E.; Briggs, M. S.; Stanbro, M.; Cramer, E.; Heckman, S.; Roberts, O.
2017-12-01
Using TGFs detected with Fermi Gamma-ray Burst Monitor (GBM) and simultaneous radio sferics detected by Earth Network Total Lightning Network (ENTLN), we establish a temporal co-relation between them. The first step is to find ENTLN strokes that that are closely associated to GBM TGFs. We then identify all the related strokes in the lightning flash that the TGF-associated-stroke belongs to. After trying several algorithms, we found out that the DBSCAN clustering algorithm was best for clustering related ENTLN strokes into flashes. The operation of DBSCAN was optimized using a single seperation measure that combined time and distance seperation. Previous analysis found that these strokes show three timescales with respect to the gamma-ray time. We will use the improved identification of flashes to research this.
Radio frequency observations of lightning discharges by the forte satellite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, X.; Jacobson, A. R.; Light, T.
2002-01-01
FORTE-observed VHF signatures for different lightning discharges are presented. For in-cloud discharges, a pulse pair is typically recorded and is named a 'transionospheric pulse pair' (TIPP). Many intense TIPPs are coherent and polarized, whereas initial and dart leaders do not show a recognizable degree of polarization. TIPPs are optically weaker than cloud-to-ground (CG) strokes, and stronger VHF TIPPs are optically darker. About 10% of CG strokes, mostly over seawater, produce extremely narrow, powerful VHF pulses at the very beginning of the return strokes. These narrow pulses are found to form an upward beam pattern.
Statistical patterns in the location of natural lightning
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Inan, U. S.
2013-01-01
Lightning discharges are nature's way of neutralizing the electrical buildup in thunderclouds. Thus, if an individual discharge destroys a substantial fraction of the cloud charge, the probability of a subsequent flash is reduced until the cloud charge separation rebuilds. The temporal pattern of lightning activity in a localized region may thus inherently be a proxy measure of the corresponding timescales for charge separation and electric field buildup processes. We present a statistical technique to bring out this effect (as well as the subsequent recovery) using lightning geo-location data, in this case with data from the National Lightning Detection Network (NLDN) and from the GLD360 Network. We use this statistical method to show that a lightning flash can remove an appreciable fraction of the built up charge, affecting the neighboring lightning activity for tens of seconds within a ˜ 10 km radius. We find that our results correlate with timescales of electric field buildup in storms and suggest that the proposed statistical tool could be used to study the electrification of storms on a global scale. We find that this flash suppression effect is a strong function of flash type, flash polarity, cloud-to-ground flash multiplicity, the geographic location of lightning, and is proportional to NLDN model-derived peak stroke current. We characterize the spatial and temporal extent of the suppression effect as a function of these parameters and discuss various applications of our findings.
NASA Astrophysics Data System (ADS)
Wang, D.; Takagi, N.
2012-12-01
We have observed the lightning occurred on a 100 m high windmill and its 105 m high standalone lightning-protection tower about 45 m separated from the windmill in the Hokuriku area of Japan for 7 consecutive winter seasons from 2005 to 2012. Our main observation items include: (1) Lightning current at the bottom of both the windmill and the tower. (2) Thunderstorm electric fields and the electric field changes caused by lightning at multiple sites. (3) Optical images by both low and high speed imaging systems. During the 7 winter seasons, over 100 lightning have hit either the tower or the windmill or both. All the lightning but two observed are of upward lightning. Those upward lightning can be sub-classified into self-initiated types and other-triggered types according to whether there is a discharge activity prior to the upward leaders or not. Self-initiated and other-triggered upward lightning tend to have biased percentages in terms of striking locations (windmill versus tower) and thunderstorm types (active versus weak). All the upward lightning but one contained only initial continuous current stages. In the presentation, we will first give a review on those results we have reported before [1-3]. As an update, we will report the following results. (1) The electric field change required for triggering a negative upward leader is usually more than twice bigger than that for triggering a positive upward leader. (2) An electric current pulse with an amplitude of several tens of Amperes along a high structure has been observed to occur in response to a rapid electric change generated by either a nearby return stroke or K-change. References [1] D.Wang, N.Takagi, T.Watanebe, H. Sakurano, M. Hashimoto, Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower, Geophys. Res. Lett., Vol.35, L02803, doi:10.1029/2007GL032136, 2008. [2] W. Lu, D.Wang, Y. Zhang and N. Takagi, Two associated upward lightning flashes that produced opposite polarity electric field changes, Geophys. Res. Lett., Vol.36, L05801, doi:10.1029/2008GL036598, 2009. [3] D. Wang, N. Takagi, Characteristics of Winter Lightning that Occurred on a Windmill and its Lightning Protection Tower in Japan, IEEJ Trans. on Power and Energy, Vol. 132, No.6, pp.568-572, Doi:10.1541/ieejpes.132.568, 2012.
Massive Statistics of VLF-Induced Ionospheric Disturbances
NASA Astrophysics Data System (ADS)
Pailoor, N.; Cohen, M.; Golkowski, M.
2017-12-01
The impact of lightning of the D-region of the ionosphere has been measured by Very Low Frequency (VLF) remote sensing, and can be seen through the observance of Early-Fast events. Previous research has indicated that several factors control the behavior and occurrence of these events, including the transmitter-receiver geometry, as well as the peak current and polarity of the strike. Unfortunately, since each event is unique due to the wide variety of impacting factors, it is difficult to make broad inferences about the interactions between the lightning and ionosphere. By investigating a large database of lightning-induced disturbances over a span of several years and over a continental-scale region, we seek to quantify the relationship between geometry, lightning parameters, and the apparent disturbance of the ionosphere as measured with VLF transmitters. We began with a set of 860,000 cases where an intense lightning stroke above 150 kA occurred within 300 km of a transmiter-receiver path. To then detect ionospheric disturbances from the large volume of VLF data and lightning incidents, we applied a number of classification methods to the actual VLF amplitude data, and find that the most accurate is a convolutional neural network, which yielded a detection efficiency of 95-98%, and a false positive rate less than 25%. Using this model, we were able to assemble a database of more than 97,000 events, with each event stored with its corresponding time, date, receiver, transmitter, and lightning parameters. Estimates for the peak and slope of each disruption were also calculated. From this data, we were able to chart the relationships between geometry and lightning parameters (peak current and polarity) towards the occurrence probability, perturbation intensity, and recovery time, of the VLF perturbation. The results of this analysis are presented here.
NO{sub x} from lightning 1. Global distribution based on lightning physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, C.; Penner, J.; Prather, M.
1997-03-01
This paper begins a study on the role of lightning in maintaining the global distribution of nitrogen oxides (NO{sub x}) in the troposphere. It presents the first global and seasonal distributions of lightning-produced NO{sub x} (LNO{sub x}) based on the observed distribution of electrical storms and the physical properties of lightning strokes. We derive a global rate for cloud-to-ground (CG) flashes of 20{endash}30 flashes/s with a mean energy per flash of 6.7{times}10{sup 9}J. Intracloud (IC) flashes are more frequent, 50{endash}70 flashes/s but have 10{percent} of the energy of CG strokes and, consequently, produce significantly less NO{sub x}. It appears tomore » us that the majority of previous studies have mistakenly assumed that all lightning flashes produce the same amount of NO{sub x}, thus overestimating the NO{sub x} production by a factor of 3. On the other hand, we feel these same studies have underestimated the energy released in CG flashes, resulting in two negating assumptions. For CG energies we adopt a production rate of 10{times}10{sup 16} molecules NO/J based on the current literature. Using a method to simulate global lightning frequencies from satellite-observed cloud data, we have calculated the LNO{sub x} on various spatial (regional, zonal, meridional, and global) and temporal scales (daily, monthly, seasonal, and interannual). Regionally, the production of LNO{sub x} is concentrated over tropical continental regions, predominantly in the summer hemisphere. The annual mean production rate is calculated to be 12.2 Tg N/yr, and we believe it extremely unlikely that this number is less than 5 or more than 20 Tg N/yr. Although most of LNO{sub x} is produced in the lowest 5 km by CG lightning, convective mixing in the thunderstorms is likely to deposit large amounts of NO{sub x} in the upper troposphere where it is important in ozone production. (Abstract Truncated)« less
The peak electromagnetic power radiated by lightning return strokes
NASA Technical Reports Server (NTRS)
Krider, E. P.; Guo, C.
1983-01-01
Estimates of the peak electromagnetic (EM) power radiated by return strokes have been made by integrating the Poynting vector of measured fields over an imaginary hemispherical surface that is centered on the lightning source, assuming that ground losses are negligible. Values of the peak EM power from first and subsequent strokes have means and standard deviations of 2 + or - 2 x 10 to the 10th and 3 + or - 4 x 10 to the 9th W, respectively. The average EM power that is radiated by subsequent strokes, at the time of the field peak, is about 2 orders of magnitude larger than the optical power that is radiated by these strokes in the wavelength interval from 0.4 to 1.1 micron; hence an upper limit to the radiative efficiency of a subsequent stroke is of the order of 1 percent or less at this time.
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Hill, Jonathan D.; Mata, Angel G.; Cummins, Kenneth L.
2014-01-01
From May 2011 through July 2013, the lightning instrumentation at Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida, has obtained high-speed video records and field change waveforms (dE/dt and three-axis dH/dt) for 54 negative polarity return strokes whose strike termination locations and times are known with accuracy of the order of 10 m or less and 1 µs, respectively. A total of 18 strokes terminated directly to the LC39B lighting protection system (LPS), which contains three 181 m towers in a triangular configuration, an overhead catenary wire system on insulating masts, and nine down conductors. An additional 9 strokes terminated on the 106 m lightning protection mast of Launch Complex 39A (LC39A), which is located about 2.7 km southeast of LC39B. The remaining 27 return strokes struck either on the ground or attached to low-elevation grounded objects within about 500 m of the LC39B LPS. Leader/return stroke sequences were imaged at 3200 frames/sec by a network of six Phantom V310 high-speed video cameras. Each of the three towers on LC39B had two high-speed cameras installed at the 147 m level with overlapping fields of view of the center of the pad. The locations of the strike points of 54 return strokes have been compared to time-correlated reports of the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the National Lightning Detection Network (NLDN), and the results of this comparison will be presented and discussed.
Detection and analysis of radio frequency lightning emissions
NASA Technical Reports Server (NTRS)
Jalali, F.
1982-01-01
The feasibility study of detection of lightning discharges from a geosynchronous satellite requires adequate ground-based information regarding emission characteristics. In this investigation, a measurement system for collection of S-band emission data is set up and calibrated, and the operations procedures for rapid data collection during a storm activity developed. The system collects emission data in two modes; a digitized, high-resolution, short duration record stored in solid-state memory, and a continuous long-duration record on magnetic tape. Representative lightning flash data are shown. Preliminary results indicate appreciable RF emissions at 2 gHz from both the leader and return strokes portions of the cloud-to-ground discharge with strong peaks associated with the return strokes.
NASA Astrophysics Data System (ADS)
Edwards, J. D.; Dreike, P.; Smith, M. W.; Clemenson, M. D.; Zollweg, J. D.
2015-12-01
We describe developments to a 1-D cylindrical, radiation-hydrodynamics model of a lightning return stroke that simulates lighting spectra with 1 Angstrom resolution in photon wavelength. In previous calculations we assumed standard density air in the return stroke channel and the resulting optical spectrum was that of an optically thick emitter, unlike measured spectra that are optically thin. In this work, we improve our model by initializing our simulation assuming that the leader-heated channel is pre-expanded to a density of 0.01-0.05 ambient and near pressure equilibrium with the surrounding ambient air and by implementing a time-dependent, external heat source to incorporate the effects of continuing current. By doing so, our simulated spectra, illustrated in the attached figure, show strong spectral emission characteristics at wavelengths similar to spectra measured by Orville (1968). In this poster, we describe our model and compare our simulated results with spectra measured by Orville (1968) and Smith (2015). We also use spectroscopic methods to compute physical properties of the plasma channel, e.g. temperature, from Smith's measurements and compare these with our simulated results.
Multi-mode Observations of Cloud-to-Ground Lightning Strokes
NASA Astrophysics Data System (ADS)
Smith, M. W.; Smith, B. J.; Clemenson, M. D.; Zollweg, J. D.
2015-12-01
We present hyper-temporal and hyper-spectral data collected using a suite of three Phantom high-speed cameras configured to observe cloud-to-ground lightning strokes. The first camera functioned as a contextual imager to show the location and structure of the strokes. The other two cameras were operated as slit-less spectrometers, with resolutions of 0.2 to 1.0 nm. The imaging camera was operated at a readout rate of 48,000 frames per second and provided an image-based trigger mechanism for the spectrometers. Each spectrometer operated at a readout rate of 400,000 frames per second. The sensors were deployed on the southern edge of Albuquerque, New Mexico and collected data over a 4 week period during the thunderstorm season in the summer of 2015. Strikes observed by the sensor suite were correlated to specific strikes recorded by the National Lightning Data Network (NLDN) and thereby geo-located. Sensor calibration factors, distance to each strike, and calculated values of atmospheric transmission were used to estimate absolute radiometric intensities for the spectral-temporal data. The data that we present show the intensity and time evolution of broadband and line emission features for both leader and return strokes. We highlight several key features and overall statistics of the observations. A companion poster describes a lightning model that is being developed at Sandia National Laboratories.
Study of atmospheric discharges caracteristics using with a standard video camera
NASA Astrophysics Data System (ADS)
Ferraz, E. C.; Saba, M. M. F.
In this study is showed some preliminary statistics on lightning characteristics such as: flash multiplicity, number of ground contact points, formation of new and altered channels and presence of continuous current in the strokes that form the flash. The analysis is based on the images of a standard video camera (30 frames.s-1). The results obtained for some flashes will be compared to the images of a high-speed CCD camera (1000 frames.s-1). The camera observing site is located in São José dos Campos (23°S,46° W) at an altitude of 630m. This observational site has nearly 360° field of view at a height of 25m. It is possible to visualize distant thunderstorms occurring within a radius of 25km from the site. The room, situated over a metal structure, has water and power supplies, a telephone line and a small crane on the roof. KEY WORDS: Video images, Lightning, Multiplicity, Stroke.
NASA Astrophysics Data System (ADS)
Srivastava, A.; Tian, Y.; Wang, D.; Yuan, S.; Chen, Z.; Sun, Z.; Qie, X.
2016-12-01
Scientists have developed the regional and worldwide lightning location network to study the lightning physics and locating the lightning stroke. One of the key issue in all the networks; to recognize the performance of the network. The performance of each network would be different based on the regional geographic conditions and the instrumental limitation. To improve the performance of the network. it is necessary to know the ground truth of the network and to discuss about the detection efficiency (DE) and location accuracy (LA). A comparative study has been discussed among World Wide Lightning Location Network (WWLLN), ADvanced TOA and Direction system (ADTD) and Beijing Lightning NETwork (BLNET) lightning detection network in Beijing area. WWLLN locate the cloud to ground (CG) and strong inter cloud (IC) globally without demonstrating any differences. ADTD locate the CG strokes in the entire China as regional. Both these networks are long range detection system that does not provide the focused details of a thunderstorm. BLNET can locate the CG and IC and is focused on thunderstorm detection. The waveform of fast antenna checked manually and the relative DE among the three networks has been obtained based on the CG strokes. The relative LA has been obtained using the matched flashes among these networks as well as LA obtained using the strike on the tower. The relative DE of BLNET is much higher than the ADTD and WWLLN as these networks has approximately similar relative DE. The relative LA of WWLLN and ADTD location is eastward and northward respectively from the BLNET. The LA based on tower observation is relatively high-quality in favor of BLNET. The ground truth of WWLLN, ADTD and BLNET has been obtained and found the performance of BLNET network is much better. This study is helpful to improve the performance of the networks and to provide a belief of LA that can follow the thunderstorm path with the prediction and forecasting of thunderstorm and lightning.
NASA Astrophysics Data System (ADS)
Li, Yun; Qiu, Shi; Shi, Lihua; Huang, Zhengyu; Wang, Tao; Duan, Yantao
2017-12-01
The time resolved three-dimensional (3-D) spatial reconstruction of lightning channels using high-speed video (HSV) images and VHF broadband interferometer (BITF) data is first presented in this paper. Because VHF and optical radiations in step formation process occur with time separation no more than 1 μs, the observation data of BITF and HSV at two different sites provide the possibility of reconstructing the time resolved 3-D channel of lightning. With the proposed procedures for 3-D reconstruction of leader channels, dart leaders as well as stepped leaders with complex multiple branches can be well reconstructed. The differences between 2-D speeds and 3-D speeds of leader channels are analyzed by comparing the development of leader channels in 2-D and 3-D space. Since return stroke (RS) usually follows the path of previous leader channels, the 3-D speeds of the return strokes are first estimated by combination with the 3-D structure of the preceding leaders and HSV image sequences. For the fourth RS, the ratios of the 3-D to 2-D RS speeds increase with height, and the largest ratio of the 3-D to 2-D return stroke speeds can reach 2.03, which is larger than the result of triggered lightning reported by Idone. Since BITF can detect lightning radiation in a 360° view, correlated BITF and HSV observations increase the 3-D detection probability than dual-station HSV observations, which is helpful to obtain more events and deeper understanding of the lightning process.
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Willett, J.
1988-01-01
Fast electric field changes from subsequent return strokes of natural and triggered lightning with propagation paths almost entirely over water are compared. Data were collected at the Kennedy Space Center, Florida. Comparisons have been made of the average shape, the rise time and the spectrum of the electric field changes. The electric field changes from the triggered flashes tend to rise to peak faster and decay faster than do their counterparts in natural cloud-to-ground flashes.
NASA Technical Reports Server (NTRS)
Rivera Lizxandra Flores; Lang, Timothy
2013-01-01
Sprites are a category of Transient Luminous Events (TLE's) that occur in the upper atmosphere above the tops of Mesoscale Convective Systems (MCSs). They are commonly associated with lightning strokes that produce large charge moment changes (CMCs). Synergistic use of satellite and radar-retrieved observations together with sounding data, forecasts, and lightning-detection-networks allowed the diagnosis and analysis of the meteorological conditions associated with sprites as well as large-CMC lightning over Oklahoma
Lightning spectra at 100,000 fps
NASA Astrophysics Data System (ADS)
McHarg, M. G.; Harley, J.; Haaland, R. K.; Edens, H. E.; Stenbaek-Nielsen, H.
2016-12-01
A fundamental understanding of lightning can be inferred from the spectral emissions resulting from the leader and return stroke channel. We examine an event recorded at 00:58:07 on 19 July 2015 at Langmuir Laboratory. We recorded lightning spectra using a 100 line per mm grating in front of a Phantom V2010 camera with an 85mm Nikon lens recording at 100,000 frames per second. Coarse resolution spectra (approximately 5nm resolution) are produced from approximately 400 nm to 800 nm for each frame. Electric field data from the Langmuir Electric Field Array for the 03:19:19 event show 10 V/m changes in the electric field associated with multiple return strokes visible in the spectral data. We used the spectral data to compare temperatures at the top, middle and bottom of the lightning channel. Lightning Mapping Array data at Langmuir for the 00:58:07 event show a complex flash extending 10 km in the East-West plane and 6 km in the North-South plane. The imagery data imply that this is a bolt-from-the-blue event.
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solarkiewicz, R. J.
2009-01-01
Presently, it is not well understood how to best model nitrogen oxides (NOx) emissions from lightning because lightning is highly variable. Peak current, channel length, channel altitude, stroke multiplicity, and the number of flashes that occur in a particular region (i.e., flash density) all influence the amount of lightning NOx produced. Moreover, these 5 variables are not the same for ground and cloud flashes; e.g., cloud flashes normally have lower peak currents, higher altitudes, and higher flash densities than ground flashes [see (Koshak, 2009) for additional details]. Because the existing satellite observations of lightning (Fig. 1) from the Lightning Imaging Sensor/Optical Transient Detector (LIS/OTD) do not distinguish between ground and cloud fashes, which produce different amounts of NOx, it is very difficult to accurately account for the regional/global production of lightning NOx. Hence, the ability to partition the LIS/OTD lightning climatology into separate ground and cloud flash distributions would substantially benefit the atmospheric chemistry modeling community. NOx indirectly influences climate because it controls the concentration of ozone and hydroxyl radicals in the atmosphere. The importance of lightning-produced NOx is empasized throughout the scientific literature (see for example, Huntrieser et al. 1998). In fact, lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2 and 20 Tg (N)yr(sup -1) (Lee et al., 1997), with more recent estimates of about 6 Tg(N)yr(sup -1) (Martin et al., 2007). In order to make accurate predictions, global chemistry/climate models (as well as regional air quality modells) must more accurately account for the effects of lightning NOx. In particular, the NASA Goddard Institute for Space Studies (GISS) Model E (Schmidt et al., 2005) and the GEOS-CHEM global chemical transport model (Bey et al., 2001) would each benefit from a partitioning of the LIS/OTD lightning climatology. In this study, we introduce a new technique for retrieving the ground flash fraction in a set of N lightning observed from space and that occur within a specific latitude/longitude bin. The method is briefly described and applied to CONUS lightning that have already been partitioned into ground and cloud flashes using independent ground-based observations, in order to assess the accuracy of the retrieval method. The retrieval errors are encouragingly small.
The start of lightning: Evidence of bidirectional lightning initiation.
Montanyà, Joan; van der Velde, Oscar; Williams, Earle R
2015-10-16
Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.
The optical and radiation field signatures produced by lightning return strokes
NASA Technical Reports Server (NTRS)
Guo, C.; Krider, E. P.
1982-01-01
Typical examples of the signals that are produced by first and subsequent return strokes in cloud-to-ground lightning on a microsecond time scale are presented. Statistics on the structure of the waveforms and the radiance of the channels are given. The relationship between the light signals and the associated electric field signatures is discussed. It is shown that the initial light signal from a return stroke tends to be linear for about 15 microsec and then rises more slowly to a peak that is delayed by approximately 60 microsec from the electric field peak. It is thought that the transition between the fast linear portion and the slower rise may be due to the return stroke entering the cloud base. A small percentage of the records suggest that two different branches of the same stepped leader can initiate separate return strokes. The light pulses from cloud discharges tend to be smaller and to vary more slowly than those from return strokes.
Generator and Setup for Emulating Exposures of Biological Samples to Lightning Strokes.
Rebersek, Matej; Marjanovic, Igor; Begus, Samo; Pillet, Flavien; Rols, Marie-Pierre; Miklavcic, Damijan; Kotnik, Tadej
2015-10-01
We aimed to develop a system for controlled exposure of biological samples to conditions they experience when lightning strikes their habitats. We based the generator on a capacitor charged via a bridge rectifier and a dc-dc converter, and discharged via a relay, delivering arcs similar to natural lightning strokes in electric current waveform and similarly accompanied by acoustic shock waves. We coupled the generator to our exposure chamber described previously, measured electrical and acoustic properties of arc discharges delivered, and assessed their ability to inactivate bacterial spores. Submicrosecond discharges descended vertically from the conical emitting electrode across the air gap, entering the sample centrally and dissipating radially toward the ring-shaped receiving electrode. In contrast, longer discharges tended to short-circuit the electrodes. Recording at 341 000 FPS with Vision Research Phantom v2010 camera revealed that initial arc descent was still vertical, but became accompanied by arcs leaning increasingly sideways; after 8-12 μs, as the first of these arcs formed direct contact with the receiving electrode, it evolved into a channel of plasmified air and short-circuited the electrodes. We eliminated this artefact by incorporating an insulating cylinder concentrically between the electrodes, precluding short-circuiting between them. While bacterial spores are highly resistant to electric pulses delivered through direct contact, we showed that with arc discharges accompanied by an acoustic shock wave, spore inactivation is readily obtained. The presented system allows scientific investigation of effects of arc discharges on biological samples. This system will allow realistic experimental studies of lightning-triggered horizontal gene transfer and assessment of its role in evolution.
Interpretation methodology and analysis of in-flight lightning data
NASA Technical Reports Server (NTRS)
Rudolph, T.; Perala, R. A.
1982-01-01
A methodology is presented whereby electromagnetic measurements of inflight lightning stroke data can be understood and extended to other aircraft. Recent measurements made on the NASA F106B aircraft indicate that sophisticated numerical techniques and new developments in corona modeling are required to fully understand the data. Thus the problem is nontrivial and successful interpretation can lead to a significant understanding of the lightning/aircraft interaction event. This is of particular importance because of the problem of lightning induced transient upset of new technology low level microcircuitry which is being used in increasing quantities in modern and future avionics. Inflight lightning data is analyzed and lightning environments incident upon the F106B are determined.
1985-08-15
movement , piezoelectricity generated by stress release, etc. Lightning strokes of whatever origin can, of course, be expected occasionally to set fires, as...be enhanced by earth movement : the former, by an elevated rate of release of radioactive gases (e.g., Rn 222 ) into the air; and the latter, through...the piezoelectric effect, alteration in telluric currents, etc. Changes in both parameters could be generated over extended periods of time through a
Optical power and energy radiated by natural lightning
NASA Astrophysics Data System (ADS)
Quick, Mason G.; Krider, E. Philip
2013-02-01
Calibrated measurements of the visible and near-infrared radiation produced by both negative and positive cloud-to-ground (CG) lightning strokes have been made at distances of 5 to 32 km in southern Arizona (AZ) and the central Great Plains using a photodiode sensor with a flat spectral response between 0.4 and 1.0 µm. Time-correlated video images (60 fps) of the channel development provided information about the types of strokes that were detected and reports from the U.S. National Lightning Detection Network indicated their locations, polarities, and estimates of their peak current. In our sample of negative strokes that were suitable for analysis, there were 23 first (or only) strokes (FS), 19 subsequent strokes that created new ground contacts (NGC), and 101 subsequent strokes that re-illuminated a preexisting channel (PEC). We also analyzed 10 positive strokes (in nine flashes), and 73 of the larger impulses that were radiated by intracloud discharges (CPs). Assuming that these events can be approximated as isotropic sources and that the effects of atmospheric extinction are negligible, the peak optical power (Po), total optical energy (Eo), and characteristic widths of the sources (tcw = Eo/Po) have been computed. Median values of Po for negative FS, NGC, and PEC strokes were 1.8 × 1010 W, 1.1 × 1010 W, and 4.4 × 109 W, respectively. Median values of Eo were 3.6 × 106 J, 3.5 × 106 J, and 1.2 × 106 J, respectively. The median characteristic widths of negative FS, NGC, and PEC strokes were 229 µs, 244 µs, and 283 µs, respectively. Positive CG strokes produced a median Po, Eo, and tcw of 1.9 × 1010 W, 9.3 × 106 J, and 497 µs, respectively. Estimates of the space-and-time-average power per unit length (ℓo) in the lower portion of negative FS, NGC, and PEC channels had medians of 2.8 × 106 W/m, 3.2 × 106 W/m, and 1.4 × 106 W/m, respectively, and the median ℓo for four positive strokes was 8.8 × 106 W/m. Median values for the estimated peak electromagnetic power (PEM) radiated at early times in the strokes are 2.0 × 109 W, 2.5 × 109 W, 1.0 × 109 W, and 9.1 × 109 W for FS, NGC, PEC and positive strokes, respectively. CP events produced a median Po, Eo, and tcw of 2.0 × 109 W, 0.7 × 106 J, and 311 µs, respectively, and are in good agreement with aircraft and satellite measurements. The values of Po, Eo, and ℓo for negative CG strokes in AZ are significantly larger than prior measurements in Florida, likely because there is less atmospheric extinction in our dataset, and due to extinction, all the above values of Po, Eo, and ℓo are lower limits at the source.
NASA Astrophysics Data System (ADS)
Stolzenburg, Maribeth; Marshall, Thomas C.; Karunarathne, Sumedhe; Orville, Richard E.
2018-10-01
Using video data recorded at 50,000 frames per second for nearby negative lightning flashes, estimates are derived for the length of positive upward connecting leaders (UCLs) that presumably formed prior to new ground attachments. Return strokes were 1.7 to 7.8 km distant, yielding image resolutions of 4.25 to 19.5 m. No UCLs are imaged in these data, indicating those features were too transient or too dim compared to other lightning processes that are imaged at these resolutions. Upper bound lengths for 17 presumed UCLs are determined from the height above flat ground or water of the successful stepped leader tip in the image immediately prior to (within 20 μs before) the return stroke. Better estimates of maximum UCL lengths are determined using the downward stepped leader tip's speed of advance and the estimated return stroke time within its first frame. For 17 strokes, the upper bound length of the possible UCL averages 31.6 m and ranges from 11.3 to 50.3 m. Among the close strokes (those with spatial resolution <8 m per pixel), the five which connected to water (salt water lagoon) have UCL upper bound estimates averaging significantly shorter (24.1 m) than the average for the three close strokes which connected to land (36.9 m). The better estimates of maximum UCL lengths for the eight close strokes average 20.2 m, with slightly shorter average of 18.3 m for the five that connected to water. All the better estimates of UCL maximum lengths are <38 m in this dataset
The influence of tortuosity on the spectrum of radiation from lightning return strokes
NASA Technical Reports Server (NTRS)
Levine, D. M.
1978-01-01
An investigation was made of the influence of tortuosity on the spectrum of radiation from lightning return strokes. The shape of the spectrum obtained by including effects of tortuosity was in keeping with data: The spectrum had a peak in the correct frequency regime followed by an initial decrease as the inverse of frequency. This spectrum was in better agreement with data than the spectrum predicted by the same model without tortuosity (i.e. the long straight channel), which decays at a rate proportional to 1/v squared.
Lightning on jupiter: rate, energetics, and effects.
Lewis, J S
1980-12-19
Voyager data on the optical and radio-frequency detection of lightning discharges in the atmosphere of Jupiter suggest a stroke rate significantly lower than on the earth. The efficiency of conversion of atmospheric convective energy flux into lightning is almost certainly less than on the earth, probably near 10(-7) rather than the terrestrial value of 10(-4). At this level the rate of production of complex organic molecules by lightning and by thunder shock waves is negligible compared to the rates of known photochemical processes for forming colored inorganic solids.
Lightning electromagnetic radiation field spectra in the interval from 0. 2 to 20 MHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willett, J.C.; Bailey, J.C.; Leteinturier, C.
1990-11-20
Average energy spectral densities are presented for the fast transitions in most of the components that produce large radiation field impulses from cloud-to-ground lightning; first and subsequent return strokes; stepped, dart-stepped, and 'chaotic' leaders; and 'characteristic' cloud pulses. A disagreement in the previous literature about the spectral energy radiated by return strokes at high frequencies is noted and explained. The authors show that the spectral amplitudes are not seriously distorted by propagation over less than 35 km of seawater, although as much as 45 km of such propagation does appear to produce significant attenuation above about 10 MHz. First andmore » subsequent return strokes produce identical spectra between 0.2 and 20 MHz. The spectra of stepped and dart-stepped leader steps are nearly identical and are very similar to that of characteristic pulses. The spectra of leader steps also match return stroke spectra above 2-3 MHz after the former are increased by about 7 dB. The shapes of individual spectra do not depend on their amplitude, so the shapes of the average spectra are probably not distorted by the trigger thresholds used in the data acquisition. Return strokes are the strongest sources of radiation from cloud-to-ground lightning in the 0.2- to 20-MHz frequency range, although certain intracloud processes are stronger radiators above 8 MHz.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacvarov, D.C.
1981-01-01
A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less
WWLLN and Earth Networks new combined Global Lightning Network: First Look
NASA Astrophysics Data System (ADS)
Holzworth, R. H., II; Brundell, J. B.; Sloop, C.; Heckman, S.; Rodger, C. J.
2016-12-01
Lightning VLF sferic waveforms detected around the world by WWLLN (World Wide Lightning Location Network) and by Earth Networks WTLN receivers are being analyzed in real time to calculate the time of group arrival (TOGA) of the sferic wave packet at each station. These times (TOGAs) are then used for time-of-arrival analysis to determine the source lightning location. Beginning in 2016 we have successfully implemented the operational software to allow the incorporation of waveforms from hundreds of Earth Networks sensors into the normal WWLLN TOGA processing, resulting in a new global lightning distribution which has over twice as many stroke locations as the WWLLN-only data set. The combined global lightning network shows marked improvement over the WWLLN-only data set in regions such as central and southern Africa, and over the Indian subcontinent. As of July 2016 the new data set is typically running at about 230% of WWLLN-only in terms of total strokes, and some days over 250%, using data from 65 to 70 WWLLN stations, combined with the VLF channel from about 160 Earth Networks stations. The Earth Networks lightning network includes nearly 1000 receiving stations, so it is anticipated we will be able to further increase the total stations being used for the new combined network while still maintaining a relatively smooth global distribution of the sensors. Detailed comparisons of the new data set with WWLLN-only data, as well as with independent lightning location networks including WTLN in the CONUS and NZLDN in New Zealand will be presented.
NASA Astrophysics Data System (ADS)
Srivastava, Abhay; Tian, Ye; Qie, Xiushu; Wang, Dongfang; Sun, Zhuling; Yuan, Shanfeng; Wang, Yu; Chen, Zhixiong; Xu, Wenjing; Zhang, Hongbo; Jiang, Rubin; Su, Debin
2017-11-01
The performances of Beijing Lightning Network (BLNET) operated in Beijing-Tianjin-Hebei urban cluster area have been evaluated in terms of detection efficiency and relative location accuracy. A self-reference method has been used to show the detection efficiency of BLNET, for which fast antenna waveforms have been manually examined. Based on the fast antenna verification, the average detection efficiency of BLNET is 97.4% for intracloud (IC) flashes, 73.9% for cloud-to-ground (CG) flashes and 93.2% for the total flashes. Result suggests the CG detection of regional dense network is highly precise when the thunderstorm passes over the network; however it changes day to day when the thunderstorms are outside the network. Further, the CG stroke data from three different lightning location networks across Beijing are compared. The relative detection efficiency of World Wide Lightning Location Network (WWLLN) and Chinese Meteorology Administration - Lightning Detection Network (CMA-LDN, also known as ADTD) are approximately 12.4% (16.8%) and 36.5% (49.4%), respectively, comparing with fast antenna (BLNET). The location of BLNET is in middle, while WWLLN and CMA-LDN average locations are southeast and northwest, respectively. Finally, the IC pulses and CG return stroke pulses have been compared with the S-band Doppler radar. This type of study is useful to know the approximate situation in a region and improve the performance of lightning location networks in the absence of ground truth. Two lightning flashes occurred on tower in the coverage of BLNET show that the horizontal location error was 52.9 m and 250 m, respectively.
NASA Technical Reports Server (NTRS)
Herrman, B. D.; Uman, M. A.; Brantley, R. D.; Krider, E. P.
1976-01-01
The principle of operation of a wideband crossed-loop magnetic-field direction finder is studied by comparing the bearing determined from the NS and EW magnetic fields at various times up to 155 microsec after return stroke initiation with the TV-determined lightning channel base direction. For 40 lightning strokes in the 3 to 12 km range, the difference between the bearings found from magnetic fields sampled at times between 1 and 10 microsec and the TV channel-base data has a standard deviation of 3-4 deg. Included in this standard deviation is a 2-3 deg measurement error. For fields sampled at progressively later times, both the mean and the standard deviation of the difference between the direction-finder bearing and the TV bearing increase. Near 150 microsec, means are about 35 deg and standard deviations about 60 deg. The physical reasons for the late-time inaccuracies in the wideband direction finder and the occurrence of these effects in narrow-band VLF direction finders are considered.
The GOES-R Geostationary Lightning Mapper (GLM)
NASA Astrophysics Data System (ADS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas; Bailey, Jeffrey; Buechler, Dennis; Carey, Larry; Schultz, Chris; Bateman, Monte; McCaul, Eugene; Stano, Geoffrey
2013-05-01
The Geostationary Operational Environmental Satellite R-series (GOES-R) is the next block of four satellites to follow the existing GOES constellation currently operating over the Western Hemisphere. Advanced spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved cloud and moisture imagery with the 16-channel Advanced Baseline Imager (ABI). The GLM will map total lightning activity continuously day and night with near-uniform storm-scale spatial resolution of 8 km with a product refresh rate of less than 20 s over the Americas and adjacent oceanic regions in the western hemisphere. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low Earth orbit, and from ground-based lightning networks and intensive prelaunch field campaigns. The GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extend their combined climatology over the western hemisphere into the coming decades. Science and application development along with preoperational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and checkout of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.
Lightning on Jupiter - Rate, energetics, and effects
NASA Technical Reports Server (NTRS)
Lewis, J. S.
1980-01-01
Voyager data on the optical and radio-frequency detection of lightning discharges in the atmosphere of Jupiter suggest a stroke rate significantly lower than on the earth. The efficiency of conversion of atmospheric convective energy flux into lightning is almost certainly less than on the earth, probably near 10 to the -7th rather than the terrestrial value of 10 to the -4th. At this level the rate of production of complex organic molecules by lightning and by thunder shock waves is negligible compared to the rates of known photochemical processes for forming colored inorganic solids.
The GOES-R Geostationary Lightning Mapper (GLM)
NASA Astrophysics Data System (ADS)
Goodman, S. J.; Blakeslee, R. J.; Koshak, W. J.; Mach, D. M.; Bailey, J. C.; Buechler, D. E.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; McCaul, E., Jr.; Stano, G. T.
2012-12-01
The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning activity (in-cloud and cloud-to-ground lightning flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low earth orbit, and from ground-based lightning networks and intensive pre-launch field campaigns. GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extends their combined climatology over the western hemisphere into the coming decades. Science and application development along with pre-operational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings. Results from recent field campaigns and forecaster evaluations on the utility of the total lightning products will be presented.
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Willett, J. C.; Bailey, J. C.
1989-01-01
Fast electric field changes from subsequent return strokes of natural and triggered lightning with propagation paths almost entirely over water are compared. Data were collected at the Kennedy Space Center, Florida, during the summer of 1987. Comparisons have been made of the average shape, the risetime, and the spectrum of the electric field changes. To a first approximation, the waveforms are very similar; however, the electric field changes from the triggered flashes tend to rise to peak faster and decay faster than do their counterparts in natural cloud-to-ground flashes.
Spatial and Temporal Ionospheric Monitoring Using Broadband Sferic Measurements
NASA Astrophysics Data System (ADS)
McCormick, J. C.; Cohen, M. B.; Gross, N. C.; Said, R. K.
2018-04-01
The D region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales up to many hundreds of kilometers. Very low frequency (VLF) and low-frequency (LF) (3-30 kHz and 30-300 kHz) radio waves are guided to global distances by reflections from the ground and the D region. Therefore, information about its current state is encoded in received VLF/LF signals. VLF transmitters have been used in the past for D region studies, with ionospheric disturbances manifesting as perturbations in amplitude and/or phase. The return stroke of lightning is an impulsive VLF radiator, but unlike VLF transmitters, lightning events are distributed broadly in space allowing for much greater spatial coverage of the D region compared to VLF transmitter-based remote sensing in addition to the broadband spectral advantage over the narrowband transmitters. The challenge is that individual lightning-generated waveforms, or "sferics," vary due to the lightning current parameters and uncertainty in the time/location information, in addition to D region ionospheric variability. These factors make it difficult to utilize the VLF/LF emissions from lightning in a straightforward manner. We describe a technique to recover the time domain and amplitude/phase spectra for both Bϕ and Br with high fidelity and consider the utility of our technique with ambient and varied ionospheric conditions. We demonstrate a technique to simulate sferics and infer a parameterized ionosphere with the Wait and Spies parameters (h
Tortuosity of lightning return stroke channels
NASA Technical Reports Server (NTRS)
Levine, D. M.; Gilson, B.
1984-01-01
Data obtained from photographs of lightning are presented on the tortuosity of return stroke channels. The data were obtained by making piecewise linear fits to the channels, and recording the cartesian coordinates of the ends of each linear segment. The mean change between ends of the segments was nearly zero in the horizontal direction and was about eight meters in the vertical direction. Histograms of these changes are presented. These data were used to create model lightning channels and to predict the electric fields radiated during return strokes. This was done using a computer generated random walk in which linear segments were placed end-to-end to form a piecewise linear representation of the channel. The computer selected random numbers for the ends of the segments assuming a normal distribution with the measured statistics. Once the channels were simulated, the electric fields radiated during a return stroke were predicted using a transmission line model on each segment. It was found that realistic channels are obtained with this procedure, but only if the model includes two scales of tortuosity: fine scale irregularities corresponding to the local channel tortuosity which are superimposed on large scale horizontal drifts. The two scales of tortuosity are also necessary to obtain agreement between the electric fields computed mathematically from the simulated channels and the electric fields radiated from real return strokes. Without large scale drifts, the computed electric fields do not have the undulations characteristics of the data.
Acoustic vs Interferometric Measurements of Lightning
NASA Astrophysics Data System (ADS)
Arechiga, R. O.; Erives, H.; Sonnenfeld, R. G.; Stanley, M. A.; Rison, W.; Thomas, R. J.; Edens, H. E.; Lapierre, J. L.; Stock, M.; Jensen, D.; Morris, K.
2015-12-01
During the summer of 2015 we acquired acoustic and RF data on severalflashes from thunderstorms over Fort Morgan CO. and Langmuir Laboratoryin the Magdalena mountains of central New Mexico. The acoustic arrayswere located at a distance of roughly 150 m from the interferometers.Lightning mapping array and slow antenna data were also obtained. Theacoustic arrays consist of arrays of five audio-range and six infrasoundmicrophones operating at 50 KHz and 1 KHz respectively. The lightninginterferometer at Fort Morgan CO. consists of three flat-plate, 13" diameterantennas at the vertices of an equilateral 50 m per side triangle. Theinterferometer at Langmuir Laboratory consists of three 13" dishes separatedby about 15 m. Both interferometers, operating at 180 Megasamples persecond, use the analysis software and digitizer hardware pioneered byStanley, Stock et al. The high data rate allows for excellent spatialresolution of high speed (and typically high current) processes such asK-changes, return strokes and dart-leaders. In previous studies, we haveshown the usefulness of acoustic recordings to locate thunder sources aswell as infrasound pulses from lightning. This work will present acomparison of Acoustic and Interferometric measurements from lightning,using some interesting flashes, including a positive cloud to ground,that occurred in these campaigns.
[The study on the characteristics and particle densities of lightning discharge plasma].
Wang, Jie; Yuan, Ping; Zhang, Hua-ming; Shen, Xiao-zhi
2008-09-01
According to the wavelengths, relative intensities and transition parameters of lines in cloud-to-ground lightning spectra obtained by a slit-less spectrograph in Qinghai province and Xizang municipality, and by theoretical calculations of plasma, the average temperature and electron density for individual lightning discharge channel were calculated, and then, using Saha equations, electric charge conservation equations and particle conservation equations, the particle densities of every ionized-state, the mass density, pressure and the average ionization degree were obtained. Moreover, the average ionization degree and characteristics of particle distributions in each lightning discharge channel were analyzed. Local thermodynamic equilibrium and an optically thin emitting gas were assumed in the calculations. The result shows that the characteristics of lightning discharge plasma have strong relationships with lightning intensities. For a certain return stroke channel, both temperatures and electron densities of different positions show tiny trend of falling away with increasing height along the discharge channel. Lightning channels are almost completely ionized, and the first ionized particles occupy the main station while N II has the highest particle density. On the other hand, the relative concentrations of N II and O II are near a constant in lightning channels with different intensities. Generally speaking, the more intense the lightning discharge, the higher are the values of channel temperature, electron density and relative concentrations of highly ionized particles, but the lower the concentration of the neutral atoms. After considering the Coulomb interactions between positive and negative particles in the calculations, the results of ionization energies decrease, and the particle densities of atoms and first ionized ions become low while high-ionized ions become high. At a temperature of 28000 K, the pressure of the discharge channel due to electrons, atoms and ions is about 10 atmospheric pressure, and it changes for different lightning stroke with different intensity. The mass density of channel is lower and changes from 0.01 to 0.1 compared to the mass density of air at standard temperature and pressure (STP).
The SEM description of interaction of a transient electromagnetic wave with an object
NASA Technical Reports Server (NTRS)
Pearson, L. W.; Wilton, D. R.
1980-01-01
The singularity expansion method (SEM), proposed as a means for determining and representing the transient surface current density induced on a scatterer by a transient electromagnetic wave is described. The resulting mathematical description of the transient surface current on the object is discussed. The data required to represent the electromagnetic scattering properties of a given object are examined. Experimental methods which were developed for the determination of the SEM description are discussed. The feasibility of characterizing the surface current induced on aircraft flying in proximity to a lightning stroke by way of SEM is examined.
Relativistic-microwave theory of ball lightning.
Wu, H-C
2016-06-22
Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.
Relativistic-microwave theory of ball lightning
NASA Astrophysics Data System (ADS)
Wu, H.-C.
2016-06-01
Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.
Relativistic-microwave theory of ball lightning
Wu, H.-C.
2016-01-01
Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics. PMID:27328835
Automatic lightning detection and photographic system
NASA Technical Reports Server (NTRS)
Wojtasinski, R. J.; Holley, L. D.; Gray, J. L.; Hoover, R. B. (Inventor)
1972-01-01
A system is presented for monitoring and recording lightning strokes within a predetermined area with a camera having an electrically operated shutter with means for advancing the film in the camera after activating the shutter. The system includes an antenna for sensing lightning strikes which, in turn, generates a signal that is fed to an electronic circuit which generates signals for operating the shutter of the camera. Circuitry is provided for preventing activation of the shutter as the film in the camera is being advanced.
Energetic radiation produced during rocket-triggered lightning.
Dwyer, Joseph R; Uman, Martin A; Rassoul, Hamid K; Al-Dayeh, Maher; Caraway, Lee; Jerauld, Jason; Rakov, Vladimir A; Jordan, Douglas M; Rambo, Keith J; Corbin, Vincent; Wright, Brian
2003-01-31
Using a NaI(Tl) scintillation detector designed to operate in electrically noisy environments, we observed intense bursts of energetic radiation (> 10 kiloelectron volts) during the dart leader phase of rocket-triggered lightning, just before and possibly at the very start of 31 out of the 37 return strokes measured. The bursts had typical durations of less than 100 microseconds and deposited many tens of megaelectron volts into the detector. These results provide strong evidence that the production of runaway electrons is an important process during lightning.
NASA Astrophysics Data System (ADS)
Gjesteland, Thomas; Østgaard, Nikolai; Bitzer, Phillip; Christian, Hugh J.
2017-07-01
On 25 October 2012 the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) and the Tropical Rainfall Measuring Mission (TRMM) satellites passed over a thunderstorm on the coast of Sri Lanka. RHESSI observed a terrestrial gamma ray flash (TGF) originating from this thunderstorm. Optical measurements of the causative lightning stroke were made by the lightning imaging sensor (LIS) on board TRMM. The World Wide Lightning Location Network (WWLLN) detected the very low frequency (VLF) radio emissions from the lightning stroke. The geolocation from WWLLN, which we also assume is the TGF source location, was in the convective core of the cloud. By using new information about both RHESSI and LIS timing accuracy, we find that the peak in the TGF light curve occurs 230 μs before the WWLLN time. Analysis of the optical signal from LIS shows that within the uncertainties, we cannot conclude which comes first: the gamma emission or the optical emission. We have also applied the new information about the LIS timing on a previously published event by Østgaard et al. (2012). Also for this event we are not able to conclude which signal comes first. More accurate instruments are needed in order to get the exact timing between the TGF and the optical signal.
On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes
NASA Technical Reports Server (NTRS)
Krider, E. P.
1992-01-01
The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.
Return Stroke Current Reflections in Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Caicedo, J.; Uman, M. A.; Jordan, D.; Biagi, C. J.; Hare, B.
2015-12-01
In the six years from 2009 to 2014, there have been eight triggered flashes at the ICLRT, from a total of 125, in which a total of ten return stroke channel-base currents exhibited a dip 3.0 to 16.6 μs after the initial current peak. Close range electric field measurements show a related dip following the initial electric field peak, and electric field derivative measurements show an associated bipolar pulse, confirming that this phenomenon is not an instrumentation effect in the current measurement. For six of the eight flashes, high-speed video frames show what appears to be suspended sections of unexploded triggering wire at heights of about 150 to 300 m that are illuminated when the upward current wave reaches them. The suspended wire can act as an impedance discontinuity, perhaps as it explodes, and cause a downward reflection of some portion of the upward-propagating current wave. This reflected wave travels down the channel and causes the dip in the measured channel-base current when it reaches ground and reflects upward. The modified transmission line model with exponential decay (MTLE) is used to model the close electric field and electric field derivatives of the postulated initial and reflected current waves, starting with the measured channel base current, and the results are compared favorably with measurements made at distances ranging from 92 to 444 m. From the measured time between current impulse initiation and the time the current reflection reaches the channel base and the current dip initiates, along with the reflection height from the video records, we find the average return stroke current speed for each of the ten strokes to be from 0.28 to 1.9×108 ms-1, with an error of ±0.01×108 ms-1 due to a ±0.1 μs uncertainty in the measurement. This represents the first direct measurement of return stroke current speed, all previous return stroke speed measurements being derived from the luminosity of the process.
Lightning Step Leader and Return Stroke Spectra at 100,000 fps
NASA Astrophysics Data System (ADS)
Harley, J.; McHarg, M.; Stenbaek-Nielsen, H. C.; Haaland, R. K.; Sonnenfeld, R.; Edens, H. E.; Cummer, S.; Lapierre, J. L.; Maddocks, S.
2017-12-01
A fundamental understanding of lightning can be inferred from the spectral emissions resulting from the leader and return stroke channels. We examine events recorded at 00:58:07 on 19 July 2015 and 06:44:24 on 23 July 2017, both at Langmuir Laboratory. Analysis of both events is supplemented by data from the Lightning Mapping Array at Langmuir. The 00:58:07 event spectra was recorded using a 100 line per mm grating in front of a Phantom V2010 camera with an 85mm (9o FOV) Nikon lens recording at 100,000 frames per second. Coarse resolution spectra (approximately 5 nm resolution) are produced from approximately 400 nm to 800 nm for each frame. We analyze several nitrogen and oxygen lines to understand step leader temperature behavior between cloud and ground. The 06:44:24 event spectra was recorded using a 300 line per mm grating (approximately 1.5 nm resolution) in front of a Phantom V2010 camera with an 50mm (32o FOV) Nikon lens also recording at 100,000 frames per second. Two ionized atomic nitrogen lines at 502 nm and 569 nm appear upon attachment and disappear as the return stroke travels from ground to cloud in approximately 5 frames. We analyze these lines to understand initial return stroke temperature and species behavior.
Three unusual strokes in a triggered lightning flash
NASA Technical Reports Server (NTRS)
Idone, V. P.; Orville, R. E.
1984-01-01
Time-resolved photographic records of three strokes of a triggered lightning flash are examined. These strokes exhibit several examples of novel behavior that include (1) the abrupt transformation of dart leaders to stepped leaders and (2) the partial 'reflection' of dart leader luminosity back up the channel. Both phenomena are associated with an apparent discontinuity in channel characteristics between the natural and artificial (wire) sections of the channel. We estimate the ratio of characteristic impedances for these sections to have an upper bound of about a factor of 3. Analysis of one of the dart leader 'reflections' yields a propagation speed of 9.6 x 10 to the 7th m/s whereas the dart leader and return stroke speeds (two-dimensional) over the same channel section are 1.7 x 10 to the 7th and 13 x 10 to the seventh m/s, respectively. Also, one of the return strokes reveals the occurrence of two distinct waves of luminosity that are separated by only 5 microns and that travel up nearly identical channels that differ only in the channel terminus.
Trends in Lightning Electrical Energy Derived from the Lightning Imaging Sensor
NASA Astrophysics Data System (ADS)
Bitzer, P. M.; Koshak, W. J.
2016-12-01
We present results detailing an emerging application of space-based measurement of lightning: the electrical energy. This is a little-used attribute of lightning data which can have applications for severe weather, lightning physics, and wildfires. In particular, we use data from the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS) to find the temporal and spatial variations in the detected spectral energy density. This is used to estimate the total lightning electrical energy, following established methodologies. Results showing the trend in time of the electrical energy, as well as the distribution around the globe, will be highlighted. While flashes have been typically used in most studies, the basic scientifically-relevant measured unit by LIS is the optical group data product. This generally corresponds to a return stroke or IC pulse. We explore how the electrical energy varies per LIS group, providing an extension and comparison with previous investigations. The result is an initial climatology of this new and important application of space-based optical measurements of lightning, which can provide a baseline for future applications using the Geostationary Lightning Mapper (GLM), the European Lightning Imager (LI), and the International Space Station Lightning Imaging Sensor (ISS/LIS) instruments.
Long-lasting upper D-region ionospheric modifications caused by intense +/- CG lightning discharges
NASA Astrophysics Data System (ADS)
Haldoupis, Christos
2013-04-01
In a recent Geophysical Research Letter we have presented observations from a single maritime storm showing that intense positive cloud-to-ground (+CG) lightning discharges during nighttime, which trigger both an elve and a sprite, are associated with long-lasting conductivity modifications in the upper D-region ionosphere. The ionospheric disturbances can be observed as perturbations in the amplitude and phase of VLF (very low frequency) signals propagating through or near the disturbed region. They are manifested as LOng Recovery early VLF Events (LOREs) which can last up to 20 - 30 minutes. The same ionospheric modifications may also produce abrupt step-like changes in VLF transmissions which offset signal levels for longer times (>30-60 min). Here we discuss these observations supplementing them with new evidence and some statistics. Among other things, the unpublished results show that very intense (currents > 250-300 kA) CG lightning discharges of either positive or negative polarity are always accompanied mainly by step-like LOREs. The evidence suggests that the electromagnetic pulse (EMP) of a very high peak current CG lightning stroke, which is likely able to produce an elve, produces by electron impact long lasting and spatially extended elevations in electron density at VLF ionospheric reflection heights in the upper D region ionosphere. The results identify a mechanism for the LORE VLF signatures and confirm predictions and postulations that elves may be accompanied by significant and long-lasting electron density perturbations in the upper D- lower E- region ionosphere.
Lightning Enhancement Over Major Shipping Lanes
NASA Astrophysics Data System (ADS)
Thornton, J. A.; Holzworth, R. H., II; Virts, K.; Mitchell, T. P.
2017-12-01
Using twelve years of high resolution global lightning stroke data from the World Wide Lightning Location Network (WWLLN), we show that lightning density is enhanced by up to a factor of two directly over shipping lanes in the northeastern Indian Ocean and the South China Sea as compared to adjacent areas with similar climatological characteristics. The lightning enhancement is most prominent during the convectively active season, November-April for the Indian Ocean and April - December in the South China Sea, and has been detectable from at least 2005 to the present. We hypothesize that emissions of aerosol particles and precursors by maritime vessel traffic leads to a microphysical enhancement of convection and storm electrification in the region of the shipping lanes. These persistent localized anthropogenic perturbations to otherwise clean regions are a unique opportunity to more thoroughly understand the sensitivity of maritime deep convection and lightning to aerosol particles.
Thunderstorm hazards flight research: Storm hazards 1980 overview
NASA Technical Reports Server (NTRS)
Deal, P. L.; Keyser, G. L.; Fisher, B. D.; Crabill, N. L.
1981-01-01
A highly instrumented NASA F-106B aircraft, modified for the storm hazards mission and protected against direct lightning strikes, was used in conjunction with various ground based radar and lightning measurement systems to collect data during thunderstorm penetration flights. During 69 thunderstorm penetrations, there were 10 direct lightning strikes to the aircraft. No problems were encountered with any of the aircraft's systems as a result of the strikes and the research instrumentation performed as designed. Electromagnetic characteristics of nine strikes were recorded, and the results of other experiments confirm the theory that X-ray radiation and nitrous oxide gas are being produced by processes associated directly with thunderstorm electric fields and lightning discharges. A better understanding of aircraft lightning attachment mechanisms and strike zones is being accomplished by careful inspection, identification, and documentation of lightning attachment points and swept stroke paths following each strike to the aircraft.
Lightning damage to a general aviation aircraft: Description and analysis
NASA Technical Reports Server (NTRS)
Hacker, P. T.
1974-01-01
The damage sustained by a Beechcraft King Air Model B90 aircraft by a single lightning discharge is presented and analyzed. The incident occurred during landing approach at Jackson, Michigan, on Feb. 19, 1971. In addition to the usual melted-metal damage at the lightning attachment points, there was severe implosion-type damage over a large area on the lower right side of the aircraft and impact- and crushing-type damage on the upper and lower surfaces on the left wingtip near the trailing edge. Analyses indicate that the implosion-type damage was probably caused by lightning-generated shock waves, that the impact-and crushing-type damage was caused by magnetic forces, and that the lightning discharge was a multiple strike with at least 11 strokes separated in time by about 4.5 milliseconds. The evidence indicates that the lightning discharge was rather different from the average in character severity.
On the mechanism of X-ray production by dart leaders of lightning flashes
NASA Astrophysics Data System (ADS)
Cooray, Vernon; Dwyer, Joseph; Rakov, V.; Rahman, Mahbubur
2010-07-01
Radiation with energies up to about 250 keV associated with the dart leader phase of rocket-triggered lightning were reported by Dwyer et al. (2004). The mechanism of X-ray generation by dart leaders, however, is unknown at present. Recently, Cooray et al. (2009a) developed physical concepts and mathematical techniques necessary to calculate the electric field associated with the tip of dart leaders. We have utilized the results of these calculations together with the energy dependent frictional force on electrons, as presented by Moss et al. (2006), to evaluate the maximum energy an electron will receive in accelerating in the dart-leader-tip electric field. The main assumptions made in performing the calculations are: (a) the dart leader channel is straight and vertical; (b) the path of the electrons are straight inside the channel; and (c) the decay of the channel temperature is uniform along the length of the dart leader. In the calculation, we have taken into account the fact that the electric field is changing both in space and time and that the gas in the defunct return stroke channel is at atmospheric pressure and at elevated temperature (i.e. reduced gas density). The results of the calculation show that for a given dart leader current there is a critical defunct-return-stroke-channel temperature above which the cold electron runaway becomes feasible. For a typical dart leader, this temperature is around 2500 K. This critical temperature decreases with increase in dart leader current. Since the temperature of the defunct return stroke channel may lie in the range of 2000-4000 K, the results show that the electric field at the tip of dart leaders is capable of accelerating electrons to MeV energy levels.
Lightning-channel morphology by return-stroke radiation field waveforms
NASA Technical Reports Server (NTRS)
Willett, J. C.; Le Vine, D. M.; Idone, V. P.
1995-01-01
Simultaneous video and wideband electric field recordings of 32 cloud-to-ground lightning flashes in Florida were analyzed to show the formation of new channels to ground can be detected by examination of the return-stroke radiation fields alone. The return-stroke E and dE/dt waveforms were subjectively classified according to their fine structure. Then the video images were examined field by field to identify each waveform with a visible channel to ground. Fifty-five correlated waveforms and channel images were obtained. Of these, all 34 first-stroke waveforms (multiple jagged E peaks, noisy dE/dt), 8 of which were not radiated by the chronologically first stroke in the flash, came from new channels to ground (not previously seen on video). All 18 subsequent-stroke waveforms (smoothly rounded E and quiet dE/dt after initial peak) were radiated by old channels (illuminated by a previous stroke). Two double-ground waveforms (two distinct first-return-stroke pulses separated by tens of microseconds or less) coincided with video fields showing two new channels. One `anomalous-stroke' waveform (beginning like a first stroke and ending like a subsequent) was produced by a new channel segment to ground branching off an old channel. This waveform classification depends on the presence or absence of high-frequency fine structure. Fourier analysis shows that first-stroke waveforms contain about 18 dB more spectral power in the frequency interval from 500 kHz to at least 7 MHz than subsequent-stroke waveforms for at least 13 microseconds after the main peak.
Large Charge Moment Change Lightning in an Oklahoma Mesoscale Convective System
NASA Technical Reports Server (NTRS)
Lang, Timothy J.; Cummer, Steven; Petersen, Danyal; Flores-Rivera, Lizxandra; Lyons, Walt; MacGorman, Donald; Beasley, William
2014-01-01
On 31 May 2013, a line of severe thunderstorms developed during the local afternoon in central Oklahoma, USA. One of the supercells produced the El Reno tornado, which caused significant damage and killed several people. During the 2300 UTC hour (during the mature supercell stage and just after the tornado began), the storm produced several positive cloud-to-ground (+CG) lightning strokes that featured large (> 100 C km) impulse charge moment changes (iCMCs; charge moment during the first 2 ms after the return stroke). These discharges occurred mainly in convection, in contrast to the typical pattern of large-CMC and sprite-parent +CGs occurring mainly in stratiform precipitation regions. After this time, the line of thunderstorms evolved over several hours into a large mesoscale convective system (MCS). By the 0700 UTC hour on 1 June 2013, the large-CMC pattern had changed markedly. Large-CMC negative CGs, which were absent early in the storm's lifetime, occurred frequently within convection. Meanwhile, large-CMC +CGs had switched to occurring mainly within the broad stratiform region that had developed during the intervening period. The evolution of the large-CMC lightning in this case will be examined using a mix of national mosaics of radar reflectivity, the Oklahoma Lightning Mapping Array (OKLMA), the Charge Moment Change Network (CMCN), and the National Lightning Detection Network (NLDN). A major goal of this study is understanding how storm structure and evolution affected the production of large-CMC lightning. It is anticipated that this will lead to further insight into how and why storms produce the powerful lightning that commonly causes sprites in the upper atmosphere.
Large Charge Moment Change Lightning in an Oklahoma Mesoscale Convective System
NASA Technical Reports Server (NTRS)
Lang, Timothy J.; Cummer, Steven; Beasley, William; Flores-Rivera, Lizxandra; Lyons, Walt; MacGorman, Donald
2014-01-01
On 31 May 2013, a line of severe thunderstorms developed during the local afternoon in central Oklahoma, USA. One of the supercells produced the El Reno tornado, which caused significant damage and killed several people. During the 2300 UTC hour (during the mature supercell stage and just after the tornado began), the storm produced several positive cloud-to-ground (+CG) lightning strokes that featured large (> 75 C km) impulse charge moment changes (iCMCs - charge moment during the first 2 ms after the return stroke). These discharges occurred mainly in convection, in contrast to the typical pattern of large-CMC and sprite-parent +CGs occurring mainly in stratiform precipitation regions. After this time, the line of thunderstorms evolved over several hours into a large mesoscale convective system (MCS). By the 0700 UTC hour on 1 June 2013, the large- CMC pattern had changed markedly. Large-CMC negative CGs, which were absent early in the storm's lifetime, occurred frequently within convection. Meanwhile, large- CMC +CGs had switched to occurring mainly within the broad stratiform region that had developed during the intervening period. The evolution of the large-CMC lightning in this case will be examined using a mix of polarimetric data from individual radars, national mosaics of radar reflectivity, the Oklahoma Lightning Mapping Array (OKLMA), the Charge Moment Change Network (CMCN), and the National Lightning Detection Network (NLDN). A major goal of this study is understanding how storm structure and evolution affected the production of large-CMC lightning. It is anticipated that this will lead to further insight into how and why storms produce the powerful lightning that commonly causes sprites in the upper atmosphere.
NASA Astrophysics Data System (ADS)
da Silva, C. L.; Merrill, R. A.; Pasko, V. P.
2015-12-01
A significant portion of the in-cloud lightning development is observed as a series of initial breakdown pulses (IBPs) that are characterized by an abrupt change in the electric field at a remote sensor. Recent experimental and theoretical studies have attributed this process to the stepwise elongation of an initial lightning leader inside the thunderstorm [da Silva and Pasko, JGR, 120, 4989-5009, 2015, and references therein]. Attempts to visually observe these events are hampered due to the fact that clouds are opaque to optical radiation. Due to this reason, throughout the last decade, a number of researchers have used the so-called transmission line models (also commonly referred to as engineering models), widely employed for return stroke simulations, to simulate the waveshapes of IBPs, and also of narrow bipolar events. The transmission line (TL) model approach is to prescribe the source current dynamics in a certain manner to match the measured E-field change waveform, with the purpose of retrieving key information about the source, such as its height, peak current, size, speed of charge motion, etc. Although the TL matching method is not necessarily physics-driven, the estimated source characteristics can give insights on the dominant length- and time-scales, as well as, on the energetics of the source. This contributes to better understanding of the environment where the onset and early stages of lightning development takes place.In the present work, we use numerical modeling to constrain the number of source parameters that can be confidently inferred from the observed far-field IBP waveforms. We compare different modified TL models (i.e., with different attenuation behaviors) to show that they tend to produce similar waveforms in conditions where the channel is short. We also demonstrate that it is impossible to simultaneously retrieve the speed of source current propagation and channel length from an observed IBP waveform, in contrast to what has been previously done in the literature. Finally, we demonstrate that the simulated field-to-current conversion factor in IBP sources can vary by more than one order of magnitude, making peak current estimates for intracloud lightning processes a challenging task.
A NASA Lightning Parameterization for CMAQ
NASA Technical Reports Server (NTRS)
Koshak, William; Khan, Maudood; Biazar, Arastoo; Newchurch, Mike; McNider, Richard
2009-01-01
Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, lightning modeling for CMAQ is highly oversimplified. This leads to very poor estimates of lightning-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA lightning model, called the Lightning Nitrogen Oxides Model (LNOM) that combines state-of-the-art lightning measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of lightning NOx production for CMAQ. NASA satellite lightning data is used in conjunction with ground-based lightning detection systems to assure that the best representation of lightning frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and number of strokes per flash are accounted for. LNOM combines all of these factors in a straightforward approach that is easily implemented into CMAQ. We anticipate that future applications of LNOM will produce significant and important changes in CMAQ trace gas concentrations for various regions and times. We also anticipate that these changes will have a direct impact on decision makers responsible for NAAQS attainment.
Characterization of vertical electric fields 500 m and 30 m from triggered lightning
NASA Astrophysics Data System (ADS)
Rubenstein, M.; Rachidi, F.; Uman, M. A.; Thottappillil, R.; Rakov, V. A.; Nucci, C. A.
1995-05-01
Vertical electric field waveforms of leader-return stroke sequences measured 500 m and 30 m from rocket-triggered lightning are presented. The 500-m data were recorded during the summer of 1986, the 30-m data during the summer of 1991, both at the NASA Kennedy Space Center, Florida. The 40 leader-return stroke field waveforms at 500 m and the 8 waveforms at 30 m all appear as asymmetrical V-shaped pulses, the bottom of the V being associated with the transition from the leader to the return stroke. Only two waveforms at 30 m were suitable for quantitative analysis. The widths of the V at half of peak value for these are 1.8 and 5.0 μs, while for the 500-m data they are 1 to 2 orders of magnitude greater, with a median value of 100 μs. Applying a widely used and simple leader model to the measured leader electric fields at 500 m, we infer, for the bottom kilometer or so of the leader channel, leader speeds between 2×106 and 2×107 m/s and leader charges per unit length of 0.02×10-3 to 0.08×10-3 C/m. From the two measured leader electric field changes at 30 m we infer, using the same leader model, for the bottom 100 meters or so of the leader channel, speeds of 3×107 and 1×107 m/s (the corresponding measured waveform half widths are 1.8 μs and 5.0 μs) and charges per unit length of 0.14×10-3 and 0.02×10-3 C/m (the corresponding measured leader field changes are 81 kV/m and 12 kV/m). The corresponding measured return stroke peak currents for the above two cases are 40 kA and 7 kA, respectively. A positive correlation is observed between the magnitude of the leader field change at 500 m and the ensuing return stroke current peak.
Application of triggered lightning numerical models to the F106B and extension to other aircraft
NASA Technical Reports Server (NTRS)
Ng, Poh H.; Dalke, Roger A.; Horembala, Jim; Rudolph, Terence; Perala, Rodney A.
1988-01-01
The goal of the F106B Thunderstorm Research Program is to characterize the lightning environment for aircraft in flight. This report describes the application of numerical electromagnetic models to this problem. Topics include: (1) Extensive application of linear triggered lightning to F106B data; (2) Electrostatic analysis of F106B field mill data; (3) Application of subgrid modeling to F106B nose region, including both static and nonlinear models; (4) Extension of F106B results to other aircraft of varying sizes and shapes; and (5) Application of nonlinear model to interaction of F106B with lightning leader-return stroke event.
NASA Technical Reports Server (NTRS)
Rivera, Lizxandra Flores; Lang, Timothy
2014-01-01
Sprites are a category of Transient Luminous Events (TLEs) that occur in the upper atmosphere above the tops of Mesoscale Convective Systems (MCSs). They are commonly associated with lightning strokes that produce large charge moment changes (CMCs). Synergistic use of satellite and radar-retrieved observations together with sounding data, forecasts, and lightning-detection networks allowed the diagnosis and analysis of the meteorological conditions associated with sprites as well as large-CMC lightning over Oklahoma. One goal of the NASA-funded effort reported herein is the investigation of the potential for sprite interference with aerospace activities in the 20- 100km altitude range, including research balloons, space missions and other aviation transports.
Observations of a bi-directional lightning leader producing an M-component
NASA Astrophysics Data System (ADS)
Kotovsky, D. A.; Uman, M. A.; Wilkes, R.; Carvalho, F. L.; Jordan, D. M.
2017-12-01
Lightning discharges to ground often exhibit millisecond-scale surges in the continuing currents following return strokes, called M-components. Relatively little is known regarding the source of M-component charge and the mechanisms by which that charge is transferred to ground. In this work, we seek to directly address these questions by presenting correlated high-speed video and Lightning Mapping Array (LMA) observations of a bi-directional leader that resulted in an M-component occurring in a rocket-and-wire triggered lightning flash. The observed leader initiated in the decayed remnants of a positive leader channel that had traversed virgin air approximately 90 msec prior. Three-dimensional locations and speeds of the photographed bi-directional leader and M-component processes are calculated by mapping video images to the observed LMA channel geometry. Both ends of the bi-directional leader exhibited speeds on the order of 2 x106 m sec-1 over 570 meters of the visible channel. Propagation of the luminosity wave from the in-cloud leader to ground ( 8.8 km channel length) exhibited appreciable dispersion, with rise-times (10-90%) increasing from 330 to 410 μsec and pulse-widths (half-maximum) increasing from 380 to 810 μsec - the M-component current pulse measured at ground-level exhibited a rise-time of 290 μsec and a pulse-width of 770 μsec. Group velocities of the luminosity wave have been calculated as a function of frequency, increasing from 2 x107 to 6 x107 m sec-1 over the dominant signal bandwidth (DC to 2 kHz). Additionally, multiple waves of luminosity are observed within the in-cloud channel, indicating nuanced wave phenomena possibly associated with reflection from the end of the leader channel and attachment with the main lightning channel carrying continuing current to ground.
NASA Astrophysics Data System (ADS)
Kolmasova, I.; Santolik, O.; Defer, E.; Stéphane, P.; Lan, R.; Uhlir, L.; Coquillat, S.; Lambert, D.; Pinty, J. P.; Prieur, S.
2016-12-01
Lightning discharges to ground often exhibit millisecond-scale surges in the continuing currents following return strokes, called M-components. Relatively little is known regarding the source of M-component charge and the mechanisms by which that charge is transferred to ground. In this work, we seek to directly address these questions by presenting correlated high-speed video and Lightning Mapping Array (LMA) observations of a bi-directional leader that resulted in an M-component occurring in a rocket-and-wire triggered lightning flash. The observed leader initiated in the decayed remnants of a positive leader channel that had traversed virgin air approximately 90 msec prior. Three-dimensional locations and speeds of the photographed bi-directional leader and M-component processes are calculated by mapping video images to the observed LMA channel geometry. Both ends of the bi-directional leader exhibited speeds on the order of 2 x106 m sec-1 over 570 meters of the visible channel. Propagation of the luminosity wave from the in-cloud leader to ground ( 8.8 km channel length) exhibited appreciable dispersion, with rise-times (10-90%) increasing from 330 to 410 μsec and pulse-widths (half-maximum) increasing from 380 to 810 μsec - the M-component current pulse measured at ground-level exhibited a rise-time of 290 μsec and a pulse-width of 770 μsec. Group velocities of the luminosity wave have been calculated as a function of frequency, increasing from 2 x107 to 6 x107 m sec-1 over the dominant signal bandwidth (DC to 2 kHz). Additionally, multiple waves of luminosity are observed within the in-cloud channel, indicating nuanced wave phenomena possibly associated with reflection from the end of the leader channel and attachment with the main lightning channel carrying continuing current to ground.
Lightning swept-stroke attachment patterns and flight conditions for storm hazards 1981
NASA Technical Reports Server (NTRS)
Fisher, B. D.
1984-01-01
As part of the NASA Langley Research Center Storm Hazards Program, 111 thunderstorm penetrations were made in 1981 with an F-106B airplane in order to record direct-strike lightning data and the associated flight conditions. Ground-based weather radar measurements in conjunction with these penetrations were made by NOAA National Severe Storms Laboratory in Oklahoma and by NASA Wallops Flight Facility in Virginia. In 1981, the airplane received 10 direct lightning strikes; in addition, lightning transient data were recorded from 22 nearby flashes. Following each flight, the airplane was thoroughly inspected for evidence of lightning attachment, and the individual lightning attachment points were plotted on isometric projections of the airplane to identify swept-flash patterns. This report shows the strike attachment patterns that were found, and tabulates the flight conditions at the time of each lightning event. Finally, this paper contains a table in which the data in this report are cross-referenced with the previously published electromagnetic waveform data recorded onboard the airplane.
Fast radio bursts as pulsar lightning
NASA Astrophysics Data System (ADS)
Katz, J. I.
2017-07-01
There are striking phenomenological similarities between fast radio bursts (FRBs) and lightning in the Earth's and planetary atmospheres. Both have very low duty factors, ≲10-8-10-5 for FRBs and (very roughly) ˜10-4 for the main return strokes in an active thundercloud. Lightning occurs in an electrified insulating atmosphere when a conducting path is created by and permits current flow. FRBs may occur in neutron star magnetospheres whose plasma is believed to be divided by vacuum gaps. Vacuum is a perfect insulator unless electric fields are sufficient for electron-positron pair production by curvature radiation, a high-energy analogue of electrostatic breakdown in an insulating gas. FRB may be 'electrars' powered by the release of stored electrostatic energy, counterparts to soft gamma repeaters powered by the release of stored magnetostatic energy (magnetars). This frees pulsar FRB models from the constraint that their power not exceeds the instantaneous spin-down power. Energetic constraints imply that the sources of more energetic FRBs have shorter spin-down lifetimes, perhaps even less than the 3 yr over which FRB 121102 has been observed to repeat.
Measured close lightning leader-step electric-field-derivative waveforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Doug M.; Hill, Dustin; Biagi, Christopher J.
2010-12-01
We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak andmore » becomes dominant as range decreases. The initial peak is often preceded by a 'slow front,' similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 {micro}s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m{sup -1} {micro}s{sup -1} (standard deviation (S.D.), 3.7 V m{sup -1} {micro}s{sup -1}, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA {micro}s{sup -1}, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of {approx}3 mC. As part of the modeling, those currents were propagated upward at 1.5 x 10{sup 8} m s{sup -1}, with their amplitudes decaying exponentially with a decay height constant of 25 m.« less
NASA Technical Reports Server (NTRS)
Griffin, Charles F.; James, Arthur M.
1985-01-01
The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.
Lightning studies using LDAR and companion data sets
NASA Technical Reports Server (NTRS)
Forbes, Gregory S.
1994-01-01
Research was conducted to use the KSC Lightning Detection and Ranging (LDAR) system, together with companion data, in four subprojects: weather forecasting and advisory applications of LDAR, LDAR in relation to field mill readings, lightning flash and stroke detection using LDAR, and LDAR in relation to radar reflectivity patterns and KSC wind profiler vertical velocities. The research is aimed at developing rules, algorithms, and training materials that can be used by the operational weather forecasters who issue weather advisories for daily ground operations and launches by NASA and the United States Air Force. During the summer of 1993, LDAR data was examined on an hourly basis from 14 thunderstorm days and compared to ground strike data measured by the Lightning Location and Protection (LLP) system. These data were re-examined during 1994 to identify, number, and track LDAR-detected storms continually throughout the day and avoid certain interpretation problems arising from the use of hourly files. An areal storm growth factor was incorporated into a scheme to use current mappings of LDAR-defined thunderstorms to predict future ground strikes. During the summer of 1994, extensive sets of LDAR and companion data have been collected for 16 thunderstorm days, including a variety of meteorological situations. Detailed case studies are being conducted to relate the occurence of LDAR to the radar structure and evolution of thunderstorms. Field mill (LPWS) data are being examined to evaluate the complementary nature of LDAR and LPLWS data in determining the time of beginning and ending of the ground strike threat at critical sites. A computerized lightning flash and stroke discrimination algorithm has been written that can be used to help locate the points of origin of the electrical discharges, help distinguish in-cloud, cloud-ground, and upward flashes, and perhaps determine when the threat of ground strikes has ceased. Surface wind tower (mesonet), radar, sounding, and KSC wind profiler data will be used to develop schemes to help anticipate the timing and location of new thunderstorm development. Analysis of this data will continue in graduate student research projects.
A survey of industry practices regarding shielding of substations against direct lightning strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousa, A.M.; Wehling, R.J.
1993-01-01
A survey of industry practices regarding shielding of substations against direct lightning strokes is presented and analyzed. The survey is based on responses from 114 companies including consultants and utilities both from within and from outside North America. The survey identifies the shielding design methods in use, the factors affecting the selection of a shielding method, the shielding design criteria and the governing factors, the performance of the different shielding methods and miscellaneous related aspects. The survey revealed a large number (35) of shielding failure incidents; 34 of which occurred in systems designed using either the fixed shielding angle methodmore » or Wagner's 1942 method.« less
NASA Astrophysics Data System (ADS)
Qin, Jianqi; Celestin, Sebastien; Pasko, Victor P.
2013-05-01
Carrot sprites, exhibiting both upward and downward propagating streamers, and columniform sprites, characterized by predominantly vertical downward streamers, represent two distinct morphological classes of lightning-driven transient luminous events in the upper atmosphere. It is found that positive cloud-to-ground lightning discharges (+CGs) associated with large charge moment changes (QhQ) tend to produce carrot sprites with the presence of a mesospheric region where the electric field exceeds the value 0.8Ek and persists for
The physics of charge separation preceding lightning strokes in thunderclouds
NASA Technical Reports Server (NTRS)
Kyrala, Ali
1987-01-01
The physics of charge separation preceding lightning strokes in thunderclouds is presented by three types of arguments: An explanation is given for the aggregation of electrical charges of like sign overcoming Coulomb repulsion by attraction due to exchange interaction. The latter is well known in quantum mechanics from the theories of the nuclear bond and the covalent bond. A classical electrostatic model of charge balls of segregated positive and negative charges in the thundercloud is presented. These charge balls can only be maintained in temporarily stable locations by a containing vortex. Because they will be of different sizes and masses, they will stabilize at different altitudes when drag forces are included with the given electrostatic force. The question of how the charges become concentrated again after lightning discharges is approached by means of the collisional Boltzmann transport equation to explain quasi-periodic recharging. It is shown that solutions cannot be separable in both position and time if they are to represent aggregation.
The October 25th 2015 super-cell storm over central Israel: numerical simulations with the WRF model
NASA Astrophysics Data System (ADS)
Lynn, Barry; Yair, Yoav
2017-04-01
We present high-resolution WRF simulations with lightning assimilation (Fierro et al., 2012; Lynn et al., 2015) coupled with the Dynamic Lightning Scheme (Lynn et al., 2012) of the October 25th 2015 super-cell event in the eastern Mediterranean. That storm developed within the northern tip of a Red-Sea trough off the Egyptian coastline near Alexandria, with deep convective cells rapidly growing over the sea, exhibiting cloud top temperatures colder than -70°C ( 18 km) and radar reflectivity cores > 65 dBz at 10 km. As the cells crossed the Israeli coast-line north of Tel-Aviv, they exhibited intensive lightning activity, severe hail, downbursts, and intense rain. The lightning detection system of the Israeli Electrical Corporation registered a total of over 17,000 CGs, and for 20 minutes at the peak of the event recorded CG flash-rates greater than 430 strokes per minute (if including IC strokes, it was likely higher). The results of the simulations properly reconstruct the rapid growth of vertically extensive high-reflectivity cores, with significant amounts of graupel, ice and supercooled water within the charging zone below -20C. This guaranteed the effectiveness of non-inductive charge separation processes leading to the exceptional flash rates that were observed. Fierro, A. O, E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2012: Application of a Lightning Data Assimilation Technique in the WRF-ARW Model at Cloud-Resolving Scales for the Tornado Outbreak of 24 May 2011. Mon. Wea. Rev., 140, 2609-2627. Lynn, B. H., G. Kelman, and G. Ellrod, 2015: An Evaluation of the Efficacy of Using Observed Lightning to Improve Convective Lightning Forecasts. Wea. Forecasting, 30, 405-423. Lynn, B. H., Y. Yair, C. Price, G. Kelman, and A. J. Clark, 2012: Predicting cloud-to-ground and intracloud lightning in weather forecast models.Wea. Forecasting, 27, 1470-1488, doi:10.1175/WAF-D-11-00144.1.
Calculation of induced voltages on overhead lines caused by inclined lightning strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakakibara, A.
1989-01-01
Equations to calculate the inducing scalar and vector potentials produced by inclined return strokes are shown. Equations are also shown for calculating the induced voltages on overhead lines where horizontal components of inducing vector potential exist. The adequacy of the calculation method is demonstrated by field experiments. Using these equations, induced voltages on overhead lines are calculated for a variety of directions of return strokes.
On the Nature of Cloud Lightning
NASA Astrophysics Data System (ADS)
Betz, H. D.; Schmidt, K.; Oettinger, W. P.; Montag, B.; Wuerl, A.
2009-04-01
Studies of lightning discharges generally deal with electrical activities that occur both inside thunderclouds (IC) and may involve a ground connection (CG). Even though CG has been studied more extensively than IC, it is known that the two types of discharges are accompanied by emission of qualitatively similar radiation. Less well recognized is the observation that relatively strong strokes are produced not only in connection with CG, but also by discharge processes that do not connect to ground. These IC strokes tend to exhibit somewhat smaller field amplitudes than CG strokes, but they produce thunder and the field records often resemble the ones known from CG. In fact, the number of these IC-strokes is large enough to allow efficient monitoring of cloud activity with the same technique as one applies for CG detection (VLF/LF). Very frequently, IC-strokes are produced during the initial breakdown phase, whereby initiation is probably caused by electron runaway processes that extend over hundreds of meters. Further prominent discharge phases can be effectively observed, most important are stepped leaders with copious emission of VHF radio signals. Experimental data for the various cloud processes are discussed and evaluated with respect to theoretical and practical significance. Open questions on the production mechanisms are elucidated, and the relative occurrence of IC versus CG strokes is illustrated.
Lightning electromagnetic radiation field spectra in the interval from 0.2 to 20 MHz
NASA Technical Reports Server (NTRS)
Willett, J. C.; Bailey, J. C.; Leteinturier, C.; Krider, E. P.
1990-01-01
New Fourier transforms of wideband time-domain electric fields (E) produced by lightning (recorded at the Kennedy Space Center during the summers of 1985 and 1987) were recorded in such a way that several different events in each lightning flash could be captured. Average HF spectral amplitudes for first return strokes, stepped-leader steps, and 'characteristic pulses' are given for significantly more events, at closer ranges, and with better spectral resolution than in previous literature reports. The method of recording gives less bias toward the first large event in the flash and thus yields a large sample of a wide variety of lightning processes. As a result, reliable composite spectral amplitudes are obtained for a number of different processes in cloud-to-ground lightning over the frequency interval from 0.2 to 20 MHz.
Terrestrial gamma-ray flash production by lightning
NASA Astrophysics Data System (ADS)
Carlson, Brant E.
Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared to the results of Monte Carlo simulations of the physics of energetic photon production and propagation in air. These comparisons are used to constrain the TGF source altitude, energy, and directional distribution, and indicate a broadly-beamed low-altitude source inconsistent with production far above thunderstorms as previously suggested. The details of energetic electron production by electric fields in air are then examined. In particular, the source of initial high-energy electrons that are accelerated and undergo avalanche multiplication to produce bremsstrahlung is studied and the properties of these initial seed particles as produced by cosmic rays are determined. The number of seed particles available indicates either extremely large amplification of the number of seed particles or an alternate source of seeds. The low-altitude photon source and alternate source of seed particles required by these studies suggest a production mechanism closely-associated with lightning. A survey of lightning physics in the context of TGF emission indicates that current pulses along lightning channels may trigger TGF production by both producing strong electric fields and a large population of candidate seed electrons. The constraints on lightning physics, thunderstorm physics, and TGF physics all allow production by this mechanism. A computational model of this mechanism is then presented on the basis of a method of moments simulation of charge and current on a lightning channel. Calculation of the nearby electric fields then drives Monte Carlo simulations of energetic electron dynamics which determine the properties of the resulting bremsstrahlung. The results of this model compare quite well with satellite observations of TGFs subject to requirements on the ambient electric field and the current pulse magnitude and duration. The model makes quantitative predictions about the TGF source altitude, directional distribution, and lightning association that are in overall agreement with existing TGF observations and may be tested in more detail in future experiments.
Long-delayed bright dancing sprite with large Horizontal displacement from its parent flash
NASA Astrophysics Data System (ADS)
Yang, Jing; Lu, Gaopeng; Lee, Li-Jou; Feng, Guili
2015-07-01
We reported in this paper the observation of a very bright long-delayed dancing sprite with distinct horizontal displacement from its parent stroke. The dancing sprite lasted only 60 ms, and the morphology consisted of three fields with two slim dim sprite elements in the first two fields and a very bright large element in the third field, different from other observations where the dancing sprites usually contained multiple elements over a longer time interval, and the sprite shape and brightness in the video field are often similar to the previous fields. The bright sprite was displaced at least 38 km from its parent cloud-to-ground (CG) stroke and occurred over comparatively higher cloud top region. The parent flash of this compact dancing sprite was of positive polarity, with only one return stroke (approximately +24 kA) and obvious continuing current process, and the charge moment change of stroke was small (barely above the threshold for sprite production). All the sprite elements occurred during the continuing current stage, and the bright long-delayed sprite element induced a considerable current pulse. The dancing feature of this sprite may be linked to the electrical charge structure, dynamics and microphysics of parent storm, and the inferred development of parent CG flash was consistent with previous very high-frequency (VHF) observations of lightning in the same region.
Measurement of Electromagnetic Properties of Lightning with 10 Nanosecond Resolution
NASA Technical Reports Server (NTRS)
Baum, C. E.; Breen, E. L.; Oneill, J. P.; Moore, C. B.; Hall, D. L.
1980-01-01
Electromagnetic data recorded from lightning strikes are presented. The data analysis reveals general characteristics of fast electromagnetic fields measured at the ground including rise times, amplitudes, and time patterns. A look at the electromagnetic structure of lightning shows that the shortest rise times in the vicinity of 30 ns are associated with leader leader streamers. Lightning location is based on electromagnetic field characteristics and is compared to a nearby sky camera. The fields from both leaders and return strokes were measured and are discussed. The data were obtained during 1978 and 1979 from lightning strikes occuring within 5 kilometers of an underground metal instrumentation room located on South Baldy peak near Langmuir Laboratory, New Mexico. The computer controlled instrumentation consisted of sensors previously used for measuring the nuclear electromagnetic pulse (EMP) and analog-digital recorders with 10 ns sampling, 256 levels of resolution, and 2 kilobytes of internal memory.
Protection against lightning at a geomagnetic observatory
NASA Astrophysics Data System (ADS)
Čop, R.; Milev, G.; Deželjin, D.; Kosmač, J.
2014-08-01
The Sinji Vrh Geomagnetic Observatory was built on the brow of Gora, the mountain above Ajdovščina, which is a part of Trnovo plateau, and all over Europe one can hardly find an area which is more often struck by lightning than this southwestern part of Slovenia. When the humid air masses of a storm front hit the edge of Gora, they rise up more than 1000 m in a very short time, and this causes an additional electrical charge of stormy clouds. The reliability of operations performed in every section of the observatory could be increased by understanding the formation of lightning in a thunderstorm cloud and the application of already-proven methods of protection against a stroke of lightning and against its secondary effects. To reach this goal the following groups of experts have to cooperate: experts in the field of protection against lightning, constructors and manufacturers of equipment and observatory managers.
A solid state lightning propagation speed sensor
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. David
1989-01-01
A device to measure the propagation speeds of cloud-to-ground lightning has been developed. The lightning propagation speed (LPS) device consists of eight solid state silicon photodetectors mounted behind precision horizontal slits in the focal plane of a 50-mm lens on a 35-mm camera. Although the LPS device produces results similar to those obtained from a streaking camera, the LPS device has the advantages of smaller size, lower cost, mobile use, and easier data collection and analysis. The maximum accuracy for the LPS is 0.2 microsec, compared with about 0.8 microsecs for the streaking camera. It is found that the return stroke propagation speed for triggered lightning is different than that for natural lightning if measurements are taken over channel segments less than 500 m. It is suggested that there are no significant differences between the propagation speeds of positive and negative flashes. Also, differences between natural and triggered dart leaders are discussed.
Characteristics of Lightning Within Electrified Snowfall Events Using Lightning Mapping Arrays
NASA Astrophysics Data System (ADS)
Schultz, Christopher J.; Lang, Timothy J.; Bruning, Eric C.; Calhoun, Kristin M.; Harkema, Sebastian; Curtis, Nathan
2018-02-01
This study examined 34 lightning flashes within four separate thundersnow events derived from lightning mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each lightning flash, as well as the correspondence between the LMA observations and lightning data taken from national lightning networks like the National Lightning Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the data set. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km2, with a maximum flash extent of 2,300 km2, a minimum of 3 km2, and a median of 128 km2. An average of 2.29 NLDN flashes were recorded per LMA-derived lightning flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN-identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six lightning flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses lightning's interaction with the human-built environment and provides an example of lightning within heavy snowfall observed by Geostationary Operational Environmental Satellite-16's Geostationary Lightning Mapper.
Characteristics of Lightning within Electrified Snowfall Events using Lightning Mapping Arrays.
Schultz, Christopher J; Lang, Timothy J; Bruning, Eric C; Calhoun, Kristin M; Harkema, Sebastian; Curtis, Nathan
2018-02-27
This study examined 34 lightning flashes within four separate thundersnow events derived from lightning mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each lightning flash, as well as the correspondence between the LMA observations and lightning data taken from national lightning networks like the National Lightning Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the dataset. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km 2 , with a maximum flash extent of 2300 km 2 , a minimum of 3 km 2 , and a median of 128 km 2 . An average of 2.29 NLDN flashes were recorded per LMA-derived lightning flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six lightning flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses lightning's interaction with the human built environment and provides an example of lightning within heavy snowfall observed by GOES-16's Geostationary Lightning Mapper.
Evaluation of the damages caused by lightning current flowing through bearings
NASA Technical Reports Server (NTRS)
Celi, O.; Pigini, A.; Garbagnati, E.
1991-01-01
A laboratory for lightning current tests was set up allowing the generation of the lightning currents foreseen by the Standards. Lightning tests are carried out on different objects, aircraft materials and components, evaluating the direct and indirect effects of lightning. Recently a research was carried out to evaluate the effects of the lightning current flow through bearings with special reference to wind power generator applications. For this purpose, lightning currents of different amplitude were applied to bearings in different test conditions and the damages caused by the lightning current flow were analyzed. The influence of the load acting on the bearing, the presence of lubricant and the bearing rotation were studied.
NASA Astrophysics Data System (ADS)
Yair, Y.; Ziv, B.; Lynn, B. H.; Evgeni, K.
2016-12-01
An exceptionally rare Eastern Mediterranean super-cell thunderstorm occurred during the morning hours of October 25th 2015. The storm developed within the northern tip of a Red-Sea trough (extending from Sudan to the Southeastern Mediterranean Sea) off the Egyptian coastline near Alexandria and moved north-west, crossing the Israeli coast just north of Tel-Aviv at 0900 local time. Deep convective cells developed rapidly over the sea, with thunderclouds exhibiting cloud top temperatures colder than -70°C (18 km) and radar reflectivity cores > 65 dBz at 10 km. The storms were accompanied by intensive lightning activity, severe hail, downbursts, and intense rain. The super-cell subsided upon reaching the Jordan rift in eastern Israel. The super-cell caused 1 fatality, extensive flooding and agricultural damages. It also impacted the national electrical network with power outages lasting for 3 days in central Israel. More than 17,000 cloud-to-ground lightning strokes were registered by the lightning detection system of the Israeli Electrical Corporation, exceeding the annual average for the entire country. The average cloud-to-ground flash rates between 0940-0950 and 0950-1000 (local time) were greater than 436 and 430 strokes per minute respectively, exceeding the global record flash rates found in the Argentina-Paraguay border (Zipser et al., 2006). This was the most powerful thunderstorm ever observed in Israel since lightning detection became operational in 1997. Medium-range forecast models such as ECMWF and the GFS missed the timing and severity of this unusual storm. We will present a mesoscale and microphysical analysis of this event to better understand the origins and severity of this rare super-cell. WRF high-resolution simulations with lightning assimilation (Fierro et al., 2012; Lynn et al., 2015) coupled with the Dynamic Lightning Scheme (Lynn et al., 2012) will be used in order to evaluate the performance of the WRF for accurately nowcasting such events.
A comparison between initial continuous currents of different types of upward lightning
NASA Astrophysics Data System (ADS)
Wang, D.; Sawada, N.; Takagi, N.
2009-12-01
We have observed the lightning to a wind turbine and its lightning-protection tower for four consecutive winter seasons from 2005 to 2009. Our observation items include (1) thunderstorm electrical fields and lightning-caused electric field changes at multi sites around the wind turbine, (2) electrical currents at the bottom of the wind turbine and its lightning protection tower, (3) normal video and high speed image of lightning optical channels. Totally, we have obtained the data for 42 lightning that hit either on wind turbine or its lightning protection tower or both. Among these 42 lightning, 38 are upward lightning and 2 are downward lightning. We found the upward lightning can be sub-classified into two types. Type 1 upward lightning are self-triggered from a high structure, while type 2 lightning are triggered by a discharge occurred in other places which could be either a cloud discharge or a cloud-to-ground discharge (other-triggered). In this study, we have compared the two types of upward lightning in terms of initial continuous current rise time, peak current and charge transferred to the ground. We found that the initial current of self-triggered lightning tends to rise significantly faster and to a bigger peak value than the other-triggered lightning, although both types of lightning transferred similar amount of charge to the ground.
NASA Technical Reports Server (NTRS)
Sharp, D.; Williams, E.; Weber, M.; Goodman, Steven J.; Raghavan, R.; Matlin, A.; Boldi, B.
1998-01-01
This paper will discuss findings of a collaborative lightning research project between National Aeronautics and Space Administration, the Massachusetts Institute of Technology and the National Weather Service office In Melbourne Florida. In August 1996, NWS/MLB received a workstation which incorporates data from the KMLB WSR-88D, Cloud to Ground (CG) stroke data from the National Lightning Detection Network (NLDN), and 3D volumetric lightning data collected from the Kennedy Space Centers' Lightning Detection And Ranging (LDAR) lightning system. The two primary objectives of this lightning workstation, called Lightning Imaging Sensor Data Applications Display (USDAD), are to: observe how total lightning relates to severe convective storm morphology over central Florida, and compare ground based total lightning data (LDAR) to a satellite based lightning detection system. This presentation will focus on objective #1. The LISDAD system continuously displays CG and total lighting activity overlaid on top of the KMLB composite reflectivity product. This allows forecasters to monitor total lightning activity associated with convective cells occurring over the central Florida peninsula and adjacent coastal waters. The LISDAD system also keeps track of the amount of total lightning data, and associated KMLB radar products with individual convective cells occurring over the region. By clicking on an individual cell, a history table displays flash rate information (CG and total lightning) in one minute increments, along with radar parameter trends (echo tops, maximum dBz and height of maximum dBz) every 5 minutes. This history table Is updated continuously, without user intervention, as long as the cell is identified. Reviewing data collected during the 1997 wet season (21 cases) revealed that storms which produced severe weather (hall greater or = 0.75 in. or wind damage) typically showed a rapid rise In total lightning prior to the onset of severe weather. On average, flash rate increases of 25 FPM per minute over a time scale of approximately 5 minutes were common. These pulse severe storms typically reached values of 150 to 200 FPM with some cells exceeding 400 FPM. One finding which could have a direct application to the warning process is that the rapid increase in lightning typically occurred in advance of the warning issuance time. Comparisons between the ending time of the rapid rate increase and the time of when the warning was issued by NWS/MLB meteorologist exhibited a lead time of 8 minutes. It is conceivable that if close monitoring of the LISDAD system by operational meteorologist is routinely performed, warnings for pulse severe storms could be issued up to 4 to 6 minutes earlier than what is issued currently.
NASA Astrophysics Data System (ADS)
Ringhausen, J.
2017-12-01
This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.
Characteristics of cloud-to-ground lightning flashes along the east coast of the United States
NASA Technical Reports Server (NTRS)
Orville, R. E., Sr.; Pyle, R. B.; Henderson, R. W.; Orville, R. E., Jr.; Weisman, R. A.
1985-01-01
A magnetic direction-finding network for the detection of lightning cloud-to-ground strikes has been installed along the east coast of the United States. Most of the lightning occurring from Maine to Florida and as far west as Ohio is detected. Time, location, flash polarity, stroke count, and peak signal amplitude are recorded in real time. Flash locations, time, and polarity are displayed routinely for research and operational purposes. Flash density maps have been generated for the summers of 1983 and 1984, when the network only extended to North Carolina, and show density maxima in northern Virginia and Maryland.
Resistance and internal electric field in cloud-to-ground lightning channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cen, Jianyong; Yuan, Ping, E-mail: yuanp@nwnu.edu.cn; Xue, Simin
2015-02-02
Cloud-to-ground lightning with six return strokes has been recorded by slitless spectrograph and the system of fast antenna and slow antenna. The physical parameters of the discharge channel have been obtained based on the combination of spectra and synchronous radiated electric field. The resistance and internal electric field of the channel are studied as the focus in this paper. The results show that the resistances per unit length of the lightning channel are in the order of 10{sup −2}–10{sup −1 }Ω/m and the internal electric field strengths are in the order of 10{sup 3 }V/m.
NASA Astrophysics Data System (ADS)
Qiu, Shi; Zhou, Bi-Hua; Shi, Li-Hua
2012-10-01
A single-station-based lightning discharge channel reconstruction system by combining a two-dimensional (2D) VHF broadband interferometer and a three-dimensional (3D) acoustic lighting mapping system has been developed and used for lightning observations. Two cloud-to-ground (CG) flashes with highly branched leaders recorded by the system are analyzed and presented in this paper. VHF radiation could well delineate the development of simultaneous leader branches, while acoustic emissions mainly located on the main channel which was traversed by return stroke (RS) process. Localizations by VHF and acoustic emissions agree well with each other. The mapping results confirm that audible acoustic emission of lightning discharge is mainly associated with high current process like RS. Leaders could generate detectable acoustic signals, with amplitude at least an order weaker than ensuing RS, but they are hard to identify except in closer ranges than the main channel. As a significant phenomenon, this paper provides the first 3D locations associated with sources of tearing sounds, which are inferred to be generated by downward negative leaders when they approach ground. The synchronized observation enable VHF interferometer locate lightning development in spatially quasi 3D, and three stepped leaders, five dart leaders and two dart-stepped leaders are identified, with the 3D velocity (1.3-3.9) × 105 m/s, (1.0-2.9) × 107 m/s and from (1.0-1.3) × 107 m/s to (2.4-2.6) × 106 m/s, respectively. In addition, the application of this approach in improving the accuracy of thunder ranging is discussed.
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip
2007-01-01
The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground lightning detection networks, CGLSS and NLDN, during ground and launch operations at the KSC-ER. For these applications, it is very important to understand the location accuracy and detection efficiency of each network near the KSC-ER. If a cloud-to-ground (CG) lightning strike is missed or mis-located by even a small amount, the result could have significant safety implications, require expensive retests, or create unnecessary delays or scrubs in launches. Therefore, it is important to understand the performance of each lightning detection system in considerable detail. To evaluate recent upgrades in the CGLSS sensors in 2000 and the entire NLDN in 2002- 2003, we have compared. measurements provided by these independent networks in the summers of 2005 and 2006. Our analyses have focused on the fraction of first strokes reported individually and in-common by each network (flash detection efficiency), the spatial separation between the strike points reported by both networks (relative location accuracy), and the values of the estimated peak current, Ip, reported by each network. The results within 100 km of the KSC-ER show that the networks produce very similar values of Ip (except for a small scaling difference) and that the relative location accuracy is consistent with model estimates that give median values of 200-300m for the CGLSS and 600-700m for the NLDN in the region of the KSC-ER. Because of differences in the network geometries and sensor gains, the NLDN does not report 10-20% of the flashes that have a low Ip (2 kA < |Ip| < 16 kA), both networks report 99 % of the flashes that have intermediate values of Ip (16< |Ip| < 50 kA), and the CGLSS fails to report 20-30% of the high-current events (|Ip| >=0 kA).
NASA Astrophysics Data System (ADS)
Fullekrug, M.; Liu, Z.; Koh, K.; Mezentsev, A.; Pedeboy, S.; Soula, S.; Sugier, J.; Enno, S. E.; Rycroft, M. J.
2016-12-01
Transient Luminous Events (TLEs) can generate electromagnetic radiation at frequencies 100 kHz (Qin et al., 2012, Fullekrug et al., 2013) and <1 kHz (Pasko et al., GRL, 1998, Cummer et al., GRL, 1998)as a result of the splitting and exponential growth of streamer discharges (Pasko, JGR, 2010, McHarg, JGR, 2010). The electromagnetic radiation results from the coherent superposition of the very weak signalsfrom thousands of small scale streamer discharges at 40 km height for frequencies 100 kHz and at 80 km height for frequencies <1 kHz. It seems therefore plausible that TLEs can also generate electromagnetic waves at intermediate heights, e.g. 60 km with frequencies between 1-100 kHz, e.g., 10 kHz. However, this frequency range is dominated by the powerful electromagnetic radiation from return strokes and it is hence commonly thought that this radiation can not easily be detectedwith single radio receivers. This study proposes to search for electromagnetic radiation from TLEsabove thunderclouds by use of a mini array that has the ability to determine the elevation angle toward the radiation source. Mini arrays with small apertures are used for infrasonic and seismic studies to determine source mechanisms and properties of the medium through which the waves propagate. For the detection of electromagneticradiation, the array processing is adapted for the fast propagationat the speed of light. Here we report for the first time the detection and mapping of distant lightning strokes in the sky with a mini array located near Bath in the UK. The array has a baseline to wavelength ratio 4.2 10^{-2} to record electromagnetic waves from 2-18 kHz. It is found that the mini array detects 69 lightning strokes per second from cloud-to-ground and in-cloud discharges, even though the parent thunderstorms are 900-1,100 km away and a rigorous selection criterion based on the spatial coherency of the electromagnetic source field across the array is used. About 14% of the lightning strokes appear at larger elevation angles in the sky than the remaining 86% of lightning strokes as the result of birefringent subionospheric wave propagation attributed to ordinary and extra-ordinary waves. These results imply that mini arrays can be used to detect electromagnetic radiation from TLEs above thunderclouds in different frequency ranges.
The electric field change caused by a ground flash with multiple channels
NASA Technical Reports Server (NTRS)
Nakano, Minoru; Takagi, Nobuyuki; Arima, Izumi; Kawasaki, Zen-Ichiro; Takeuti, Tosio
1991-01-01
The electric field and the magnetic flux changes caused by a ground flash with multiple channels are measured near the electric power transmission lines during winter thunderstorms. Triggered lightning strokes and the following associated strokes to the transmission line towers produce characteristic waveforms of the field changes. A few examples of the waveforms and a brief discussion are given.
Observations of lightning processes using VHF radio interferometry
NASA Technical Reports Server (NTRS)
Rhodes, C. T.; Shao, X. M.; Krehbiel, P. R.; Thomas, R.
1991-01-01
A single station, multiple baseline radio interferometer was used to locate the direction of VHF radiation from lightning discharges with microsec time resolution. Radiation source directions and electric field waveforms were analyzed for various types of breakdown events. These include initial breakdown and K type events of in-cloud activity, and the leaders of initial and subsequent strokes to ground and activity during and following return strokes. Radiation during the initial breakdown of a flash and in the early stages of initial leaders to ground is found to be similar. In both instances, the activity consists of localized bursts of radiation that are intense and slow moving. Motion within a given burst is unresolved by the interferometer. Radiation from in-cloud K type events is essentially the same as that from dart leaders; in both cases it is produced at the leading edge of a fast moving streamer that propagates along a well defined, often extensive path. K type events are sometimes terminated by fast field changes that are similar to the return stroke initiated by dart leaders; such K type events are the in-cloud analog of the dart leader return stroke process.
Establishing a Disruptive New Capability for NASA to Fly UAV's into Hazardous Conditions
NASA Technical Reports Server (NTRS)
Ely, Jay; Nguyen, Truong; Wilson, Jennifer; Brown, Robert; Laughter, Sean; Teets, Ed; Parker, Allen; Chan, Patrick Hon Man; Richards, Lance
2015-01-01
A 2015 NASA Aeronautics Mission "Seedling" Proposal is described for a Severe-Environment UAV (SE-UAV) that can perform in-situ measurements in hazardous atmospheric conditions like lightning, volcanic ash and radiation. Specifically, this paper describes the design of a proof-of-concept vehicle and measurement system that can survive lightning attachment during flight operations into thunderstorms. Elements from three NASA centers draw together for the SE-UAV concept. 1) The NASA KSC Genesis UAV was developed in collaboration with the DARPA Nimbus program to measure electric field and X-rays present within thunderstorms. 2) A novel NASA LaRC fiber-optic sensor uses Faraday-effect polarization rotation to measure total lightning electric current on an air vehicle fuselage. 3) NASA AFRC's state-of-the-art Fiber Optics and Systems Integration Laboratory is envisioned to transition the Faraday system to a compact, light-weight, all-fiber design. The SE-UAV will provide in-flight lightning electric-current return stroke and recoil leader data, and serve as a platform for development of emerging sensors and new missions into hazardous environments. NASA's Aeronautics and Science Missions are interested in a capability to perform in-situ volcanic plume measurements and long-endurance UAV operations in various weather conditions. (Figure 1 shows an artist concept of a SE-UAV flying near a volcano.) This paper concludes with an overview of the NASA Aeronautics Strategic Vision, Programs, and how a SE-UAV is envisioned to impact them. The SE-UAV concept leverages high-value legacy research products into a new capability for NASA to fly a pathfinder UAV into hazardous conditions, and is presented in the SPIE DSS venue to explore teaming, collaboration and advocacy opportunities outside NASA.
Establishing a disruptive new capability for NASA to fly UAV's into hazardous conditions
NASA Astrophysics Data System (ADS)
Ely, Jay; Nguyen, Truong; Wilson, Jennifer; Brown, Robert; Laughter, Sean; Teets, Ed; Parker, Allen; Chan, Hon M.; Richards, Lance
2015-05-01
A 2015 NASA Aeronautics Mission "Seedling" Proposal is described for a Severe-Environment UAV (SE-UAV) that can perform in-situ measurements in hazardous atmospheric conditions like lightning, volcanic ash and radiation. Specifically, this paper describes the design of a proof-of-concept vehicle and measurement system that can survive lightning attachment during flight operations into thunderstorms. Elements from three NASA centers draw together for the SE-UAV concept. 1) The NASA KSC Genesis UAV was developed in collaboration with the DARPA Nimbus program to measure electric field and X-rays present within thunderstorms. 2) A novel NASA LaRC fiber-optic sensor uses Faraday-effect polarization rotation to measure total lightning electric current on an air vehicle fuselage. 3) NASA AFRC's state-of-the-art Fiber Optics and Systems Integration Laboratory is envisioned to transition the Faraday system to a compact, light-weight, all-fiber design. The SE-UAV will provide in-flight lightning electric-current return stroke and recoil leader data, and serve as a platform for development of emerging sensors and new missions into hazardous environments. NASA's Aeronautics and Science Missions are interested in a capability to perform in-situ volcanic plume measurements and long-endurance UAV operations in various weather conditions. (Figure 1 shows an artist concept of a SE-UAV flying near a volcano.) This paper concludes with an overview of the NASA Aeronautics Strategic Vision, Programs, and how a SE-UAV is envisioned to impact them. The SE-UAV concept leverages high-value legacy research products into a new capability for NASA to fly a pathfinder UAV into hazardous conditions, and is presented in the SPIE DSS venue to explore teaming, collaboration and advocacy opportunities outside NASA.
NASA Astrophysics Data System (ADS)
Akita, Manabu; Yoshida, Satoru; Nakamura, Yoshitaka; Morimoto, Takeshi; Ushio, Tomoo; Kawasaki, Zen-Ichiro; Wang, Daohong
Lightning Research Group of Osaka University (LRG-OU) has been developing and improving the VHF broadband digital interferometer (DITF) for thunderstorm observations. It enables us to locate the impulsive VHF radiation sources caused by lightning discharges with extremely high resolutions. As a result of the VHF observations during the 2007-2008 winter season in the Japan Sea coastal area, cloud-to-ground (CG) flashes that neutralize multiple charge regions inside thunderclouds are visualized by the VHF broadband DITF. The first flash is the positive CG flash that neutralizes multiple positive charge regions in a flash. The second flash is the bipolar lightning flash that neutralizes both positive and negative charge inside thunderclouds. In the case of bipolar lightning flashes, some tens millisecond after the return strokes, the subsequent negative breakdowns initiate from the proximities of the initiation points of the preceding negative stepped leaders. It was also found that the altitudes of negative charge regions are lower than 2km. The bipolar lightning flashes observed in this campaign neutralize positive charge after lowering the negative charge to the ground.
NASA Astrophysics Data System (ADS)
Van Eaton, A. R.; Smith, C. M.; Schneider, D. J.
2017-12-01
Lightning in volcanic plumes provides a promising way to monitor ash-producing eruptions and investigate their dynamics. Among the many methods of lightning detection are global networks of sensors that detect electromagnetic radiation in the very low frequency band (3-30 kHz), including the World Wide Lightning Location Network. These radio waves propagate thousands of kilometers at the speed of light, providing an opportunity for rapid detection of explosive volcanism anywhere in the world. Lightning is particularly valuable as a near real-time indicator of ash-rich plumes that are hazardous to aviation. Yet many fundamental questions remain. Under what conditions does electrical activity in volcanic plumes become powerful, detectable lightning? And conversely, can we use lightning to illuminate eruption processes and hazards? This study highlights recent observations from the eruptions of Redoubt (Alaska, 2009), Kelud (Indonesia, 2014), Calbuco (Chile, 2015), and Bogoslof (Alaska, 2017) to examine volcanic lighting from a range of eruption styles (Surtseyan to Plinian) and mass eruption rates from 10^5 to 10^8 kg/s. It is clear that lightning stroke-rates do not scale in a simple way with mass eruption rate or plume height across different eruptions. However, relative changes in electrical activity through individual eruptions relate to changes in eruptive intensity, ice content, and volcanic plume processes (fall vs. flow).
Lightning Mapping With an Array of Fast Antennas
NASA Astrophysics Data System (ADS)
Wu, Ting; Wang, Daohong; Takagi, Nobuyuki
2018-04-01
Fast Antenna Lightning Mapping Array (FALMA), a low-frequency lightning mapping system comprising an array of fast antennas, was developed and established in Gifu, Japan, during the summer of 2017. Location results of two hybrid flashes and a cloud-to-ground flash comprising 11 return strokes (RSs) are described in detail in this paper. Results show that concurrent branches of stepped leaders can be readily resolved, and K changes and dart leaders with speeds up to 2.4 × 107 m/s are also well imaged. These results demonstrate that FALMA can reconstruct three-dimensional structures of lightning flashes with great details. Location accuracy of FALMA is estimated by comparing the located striking points of successive RSs in cloud-to-ground flashes. Results show that distances between successive RSs are mainly below 25 m, indicating exceptionally high location accuracy of FALMA.
Research on electrical properties of severe thunderstorms in the Great Plains
NASA Technical Reports Server (NTRS)
Rust, W. D.; Taylor, W. L.; Macgorman, D. R.; Arnold, R. T.
1981-01-01
Techniques, equipment, and results of studies (1978-1980) to determine the relationships between electrical phenomena and the dynamics and precipitation of storms are reported. Doppler and conventional radar, video tapes and movies, and VHF recording devices were used to monitor an area 200 x 100 km, aligned SW to NE. The 23 cm radar and a Doppler radar were employed to acquire radar echoes from lightning. Observations of a squall line, a severe storm, and radar echoes from electrical discharges are described. Positively charged cloud-to-ground lightning was observed during the severe and final stages of severe storms; average lightning rates and total flashes for normal and severe storms are provided. Comparisons of lightning echoes and electric field changes indicated that abrupt increases in radar reflectivity were correlated with return strokes and K-type field changes.
NASA Astrophysics Data System (ADS)
Wescott, E. M.; Sentman, D. D.; Heavner, M. J.; Hampton, D. L.; Vaughan, O. H.
1998-05-01
Blue jets are narrow cones of blue light that appear to propagate upward from the cloud tops at speeds of about 100 km/s to terminal altitudes of about 40 km ([Wescott et al. 1995]). In this paper, we present the results of a refined analysis of these optical phenomena and their relationship to cloud-to-ground (CG) and intracloud lightning, and to very large hailfall, their apparent color, and possible mechanisms for their production. In a thunderstorm where more than 50 of these events were observed from aircraft on the night of 1 July 1994, about half of the blue jets occurred in a cluster near Foreman, Arkansas, and the rest in an area near Texarkana, (Texas/Arkansas). Hail 7 cm in diameter fell in those two storm cells at the time of the blue jet occurrences. One other blue jet was observed over an intense multi cell storm in Kansas on the night of 3 July 1994. Comparison to cloud-to-ground (CG) lightning strokes revealed that blue jets were not coincident with either positive or negative CG strokes, but they occurred in the same general area as negative CG strokes and large hail, and that cumulative distributions of the negative CG strokes in +/-5 s before and after the jet and within a radius of 15 km showed a significant reduction in the flash rate for 2 s following the event. From an analysis of color TV signal levels and calculations of quenching and atmospheric transmission, we conclude that significant ionization is present in the jets. Theoretical work by others suggests that the mechanism for their production is a streamer, but there remain discrepancies between these theories and the observations.
Evidence for solar wind modulation of lightning
NASA Astrophysics Data System (ADS)
Scott, C. J.; Harrison, R. G.; Owens, M. J.; Lockwood, M.; Barnard, L.
2014-05-01
The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream’s source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (˜1%) but rapid decrease in galactic cosmic ray flux, a moderate (˜6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer months (June to August). Though this reduced the number of solar wind triggers to 32, the response in both lightning and thunder day data remained statistically significant. This modulation of lightning by regular and predictable solar wind events may be beneficial to medium range forecasting of hazardous weather.
Positive cloud-to-ground lightning flashes in severe storms
NASA Technical Reports Server (NTRS)
Rust, W. D.; Macgorman, D. R.; Arnold, R. T.
1981-01-01
The occurrence of cloud-to-ground flashes that effectively lower positive charge to earth (+CG flash) over flat terrain has been documented in the mature stage of severe thunderstorms. Of the 31 documented +CG flashes, most had only one return stroke. Zero-to-peak rise times for the strokes averaged 7 microsec. The +CG flashes averaged 520 ms in duration, with 25 percent lasting more than 800 ms. Many of these had field changes suggestive of continuing current. Positive flashes have been observed to emanate from several regions of severe storms: high on the back of the main storm tower, through the wall cloud, and from the downshear anvil. Visually most of these positive flashes have emanated from high in the storm, and acoustic mapping of two shows thunder sources to a height of about 15 km.
Reconstruction of lightning channel geometry by localizing thunder sources
NASA Astrophysics Data System (ADS)
Bodhika, J. A. P.; Dharmarathna, W. G. D.; Fernando, Mahendra; Cooray, Vernon
2013-09-01
Thunder is generated as a result of a shock wave created by sudden expansion of air in the lightning channel due to high temperature variations. Even though the highest amplitudes of thunder signatures are generated at the return stroke stage, thunder signals generated at other events such as preliminary breakdown pulses also can be of amplitudes which are large enough to record using a sensitive system. In this study, it was attempted to reconstruct the lightning channel geometry of cloud and ground flashes by locating the temporal and spatial variations of thunder sources. Six lightning flashes were reconstructed using the recorded thunder signatures. Possible effects due to atmospheric conditions were neglected. Numerical calculations suggest that the time resolution of the recorded signal and 10 ms-1error in speed of sound leads to 2% and 3% errors, respectively, in the calculated coordinates. Reconstructed channel geometries for cloud and ground flashes agreed with the visual observations. Results suggest that the lightning channel can be successfully reconstructed using this technique.
NASA Technical Reports Server (NTRS)
Lyons, W. A.; Nelson, T. E.; Warner, T. A.; Lang, T. J.; Cummins, K.; Quick, M.; Rison, W.; Krehbiel, P.; Cummer, S. A.; Meyers, J.;
2014-01-01
During the 2013 convective storm season, a high resolution 3-D Lightning Mapping Array was deployed to north central Kansas (Cummins et al, this conference.) In conjunction with fixed and mobile camera systems and electric field mills, this allowed for detailed investigations of lightning induced upward lighting (LTUL) discharges from tall objects in the region, including wind turbines. Also, concurrent observations using a network of low-light cameras deployed over the central U.S. as part of the PhOCAL program detected transient luminous events (TLEs) above the Kansas LMA (KSLMA). During the night of 29-30 May 2013, waves of precipitation associated with several large MCSs traversing Kansas moved through the KSLMA domain. We focus on two LTUL events that exemplify two modes of upward lightning production from tall structures. At 0859Z, 30 May 2013, a nearby + 92 kA CG, with extensive in-cloud branching passing overhead a wind farm, was followed by complex LTUL discharges from four turbines. In addition, a sprite was confirmed by the Bennett, CO SpriteNet camera. The parent flash covered a very large area. It initiated near the MCS convective leading line 150 km to the south, and traveled into a stratiform precipitation maximum over the KSLMA. Typically when a +CG precedes an LTUL, the triggering component is either 1) the return stroke that traverses the leader network which initially forms near the towers or 2) new negative leader activity that develops once the return stroke reaches the end of the initial leader network that may not have initially been near the tower. In the latter case, the new leader development passes near the towers and triggers upward positive leaders similar to those associated with only an intracloud flash. The +CG return stroke may hit >10 km from the towers and the new leader development may travel extensive distances before getting close enough to the towers to trigger upward lightning. In this case, there was the typical long delay between the +CG return stroke and LTUL initiation (10s to 100s of ms). The parent lightning discharges for both sprites and LTULs have many common aspects and tend to occur in similar meteorological regimes, with the two phenomena often occurring together. An earlier LUTL, at 2320Z, 29 May 2013 was captured at 9900 fps by a Phantom camera in the PhOCAL mobile Lightning Investigation Vehicle (LIV). This discharge, exhibiting numerous recoil leaders, also occurred in a stratiform region some 50-100 km north of an MCS convective core. While there was no preceding +CG, there was an extensive network of IC channels, one of which passed overhead close to the turbine. These observations are consistent with the ongoing UPLIGHTS studies of LTULs from tall towers in Rapid City. While a +CG is usually involved (85% of the time), the LTUL occurs because of the associated extensive in cloud components passing over towers. The earlier case without a +CG typifies this second mode where the triggering component is a negative leader associated with the IC activity passing near the towers initiates the upward positive leaders. We will discuss the parent discharges, shown in their meteorological (radar and satellite) context, and attempt to better understand the charge structures present in both the convective and stratiform regions of the MCS. The sprite and its relationship to the parent discharge will similarly be discussed
NASA Astrophysics Data System (ADS)
Argemí, O.; Bech, J.; Pineda, N.; Rigo, T.
2009-09-01
Remote sensing observing systems of the Meteorological Service of Catalonia (SMC) have been upgraded during the last years with newer technologies and enhancements. Recent changes on the weather radar network have been motivated to improve precipitation estimates by radar as well as meteorological surveillance in the area of Catalonia. This region has approximately 32,000 square kilometres and is located in the NE of Spain, limited by the Pyrenees to the North (with mountains exceeding 3000 m) and by the Mediterranean Sea to the East and South. In the case of the total lightning (intra-cloud and cloud-to-ground lightning) detection system, the current upgrades will assure a better lightning detection efficiency and location accuracy. Both upgraded systems help to enhance the tracking and the study of thunderstorm events. Initially, the weather radar network was designed to cover the complex topography of Catalonia and surrounding areas to support the regional administration, which includes civil protection and water authorities. The weather radar network was upgraded in 2008 with the addition of a new C-band Doppler radar system, which is located in the top of La Miranda Mountain (Tivissa) in the southern part of Catalonia enhancing the coverage, particularly to the South and South-West. Technically the new radar is very similar to the last one installed in 2003 (Creu del Vent radar), using a 4 m antenna (i.e., 1 degree beam width), a Vaisala-Sigmet RVP-8 digital receiver and processor and a low power transmitter using a Travelling Wave Tube (TWT) amplifier. This design allows using pulse-compression techniques to enhance radial resolution and sensitivity. Currently, the SMC is upgrading its total lightning detection system, operational since 2003. While a fourth sensor (Amposta) was added last year to enlarge the system coverage, all sensors and central processor will be upgraded this year to the new Vaisala’s total lightning location technology. The new LS8000 sensor configuration integrates two lightning detection technologies: VHF interferometry technology provides high performance in detection of cloud lightning, while LF combined magnetic direction finding and time-of-arrival technology offers a highest detection efficiency and accurate location for cloud-to-ground lightning strokes. The presentation describes in some detail all this innovation in remote sensing observing networks and also reports some examples over Catalonia which is frequently affected by different types of convective events, including severe weather (large hail, tornadic events, etc.) and heavy rainfall episodes.
NASA Astrophysics Data System (ADS)
Krider, E. P.; Baffou, G.; Murray, N. D.; Willett, J. C.
2004-12-01
We have analyzed the shapes and other characteristics of the electric field, E, and dE/dt waveforms that were radiated by leader steps just before the first return stroke in cloud-to-ocean lightning. dE/dt waveforms were recorded using an 8-bit digitizer sampling at 100 MHz, and an integrated waveform, Eint, was computed by numerically integrating dE/dt and comparing the result with an analog E waveform digitized at 10 MHz. All signals were recorded under conditions where the lightning locations were known and there was minimal distortion in the fields due to the effects of ground-wave propagation. The dE/dt waveforms radiated by leader steps tend to fall into three categories: (1) "simple" - an isolated negative peak that is immediately followed by a positive overshoot (where negative polarity follows the normal physics convention), (2) "double" - two simple waveforms that occur at almost the same time, and (3) "burst" - a complex cluster of pulses with a total duration of about one microsecond. In this paper, we will give examples of each of these waveform types, and we will summarize their characteristics on a submicrosecond time-scale. For example, in an interval starting 9 μ s before to 4 μ s before the largest, negative (dominant) peak in dE/dt peak in the return stroke, 131 first strokes produced a total of 296 impulses with a peak amplitude greater than 10% of the dominant peak, and the average amplitude of these pulses was 0.21 of the dominant peak. The last leader step in a 12 μ s interval before the dominant peak was a simple waveform in 51 first strokes, and in these cases, the average time-interval between the peak dE/dt of the step and the dominant peak of the stroke was 5.8 ± 1.7 μ s, a value that is in good agreement with prior measurements. The median full-width-at-half-maximum (FWHM) of 274 simple Eint signatures was 141 ns, and the associated mean and standard deviation were 187 ± 131 ns.
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Vaughan, William W.
1998-01-01
A summary is presented of basic lightning characteristics/criteria for current and future NASA aerospace vehicles. The paper estimates the probability of occurrence of a 200 kA peak lightning return current, should lightning strike an aerospace vehicle in various operational phases, i.e., roll-out, on-pad, launch, reenter/land, and return-to-launch site. A literature search was conducted for previous work concerning occurrence and measurement of peak lighting currents, modeling, and estimating probabilities of launch vehicles/objects being struck by lightning. This paper presents these results.
Length bounds for connecting discharges in triggered lightning subsequent strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idone, V.P.
1990-11-20
Highly time resolved streak recordings from nine subsequent strokes in four triggered flashes have been examined for evidence of the occurrence of upward connecting discharges. These photographic recordings were obtained with superior spatial and temporal resolution (0.3 m and 0.5 {lambda}s) and were examined with a video image analysis system to help delineate the separate leader and return stroke image tracks. Unfortunately, a definitive determination of the occurrence of connecting discharges in these strokes could not be made. The data did allow various determinations of an upper bound length for any possible connecting discharge in each stroke. Under the simplestmore » analysis approach possible, an 'absolute' upper bound set of lengths was measured that ranged from 12 to 27 m with a mean of 19 m; two other more involved analyses yielded arguably better upper bound estimates of 8-18 m and 7-26 m with means of 19 m; two other more involved analyses yielded arguably better upper bound estimates of 8-18 m and 7-26 m with means of 12 and 13 m, respectively. An additional set of low time-resolution telephoto recordings of the lowest few meters of channel revealed six strokes in these flashes with one or more upward unconnected channels originating from the lightning rod tip. The maximum length of unconnected channel seen in each of these strokes ranged from 0.2 to 1.6 m with a mean of 0.7 m. This latter set of observations is interpreted as indirect evidence that connecting discharges did occur in these strokes and that the lower bound for their length is about 1 m.« less
Measurement and modeling of transfer functions for lightning coupling into the Sago mine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Marvin E.; Higgins, Matthew B.
2007-04-01
This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.
NASA Astrophysics Data System (ADS)
Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.
2017-12-01
Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.
Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations
NASA Astrophysics Data System (ADS)
Compston, A. J.; Cohen, M.; Lehtinen, N. G.; Inan, U.; Linscott, I.; Said, R.; Parrot, M.
2014-12-01
Terrestrial Very Low Frequency (VLF) electromagnetic radiation, which strongly impacts the Van Allen radiation belt electron dynamics, is injected across the ionosphere into the Earth's plasmasphere from two primary sources: man-made VLF transmitters and lightning discharges. Numerical models of trans-ionospheric propagation of such waves remain unvalidated, and early models may have overestimated the absorption, hindering a comprehensive understanding of the global impact of VLF waves in the loss of radiation belt electrons. In an attempt to remedy the problem of a lack of accurate trans-ionospheric propagation models, we have used a full electromagnetic wave method (FWM) numerical code to simulate the propagation of lightning-generated whistlers into the magnetosphere and compared the results with whistlers observed on the DEMETER satellite and paired with lightning stroke data from the National Lightning Detection Network (NLDN). We have identified over 20,000 whistlers occuring in 14 different passes of DEMETER over the central United States during the summer of 2009, and 14,000 of those occured within the 2000 km x 2000 km simulation grid we used. As shown in the attached figure, which shows a histogram of the ratio of the simulated whistler energy to the measured whistler energy for the 14,000 whistlers we compared, the simulation tends to slightly underestimate the total whistler energy injected by about 5 dB. However, the simulation underestimates the DEMETER measurements more as one gets further from the source lightning stroke, so since the signal to noise ratio of more distant whistlers will be smaller, possibly additive noise in the DEMETER measurements (which of course is not accounted for in the model) may explain some of the observed discrepancy.
NASA Technical Reports Server (NTRS)
Fisher, B. D.; Brown, P. W.; Plumer, J. A.
1985-01-01
Data on 637 direct lightning strikes and 117 close flashes observed by the NASA instrumented F-106B aircraft as part of the Storm Hazards Program at NASA Langley during 1980-1984 are compiled and analyzed, updating the report of Fisher and Plumer (1983). The airborne and ground-based measurement and recording apparatus and the flight and data-reduction procedures are described, and the results are discussed in terms of lightning-strike-conducive flight conditions and lightning attachment patterns. A peak strike rate of 2.1/min is found at altitude 38,000-40,000 ft and temperature below -40 C, with very few strikes below 20,000 ft. Four categories of swept-flash attachment pattern are identified, but it is pointed out that all exterior surfaces of the F-106B are potential attachment sites.
TETRA observation of gamma-rays at ground level associated with nearby thunderstorms
Ringuette, Rebecca; Case, Gary L; Cherry, Michael L; Granger, Douglas; Guzik, T Gregory; Stewart, Michael; Wefel, John P
2013-01-01
[1] Terrestrial gamma-ray flashes (TGFs)—very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms—have been detected with satellite instruments. TGF and Energetic Thunderstorm Rooftop Array (TETRA), an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma-rays at ground level. After 2.6 years of observation, 24 events with durations 0.02–4.2 ms have been detected associated with nearby lightning, three of them coincident events observed by detectors separated by ∼1000 m. Nine of the events occurred within 6 ms and 5 km of negative polarity cloud-to-ground lightning strokes with measured currents in excess of 20 kA. The events reported here constitute the first catalog of TGFs observed at ground level in close proximity to the acceleration site. PMID:26167428
Measuring Method for Lightning Channel Temperature.
Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R
2016-09-26
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.
Measuring Method for Lightning Channel Temperature
NASA Astrophysics Data System (ADS)
Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.
2016-09-01
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.
Calculating the electron temperature in the lightning channel by continuous spectrum
NASA Astrophysics Data System (ADS)
Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN
2017-12-01
Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.
Mathematical Inversion of Lightning Data: Techniques and Applications
NASA Technical Reports Server (NTRS)
Koshak, William
2003-01-01
A survey of some interesting mathematical inversion studies dealing with radio, optical, and electrostatic measurements of lightning are presented. A discussion of why NASA is interested in lightning, what specific physical properties of lightning are retrieved, and what mathematical techniques are used to perform the retrievals are discussed. In particular, a relatively new multi-station VHF time-of-arrival (TOA) antenna network is now on-line in Northern Alabama and will be discussed. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The LMA supports on-going ground-validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The LMA also provides detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and offers interesting comparisons with other meteorological/geophysical datasets. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. A new channel mapping retrieval algorithm is introduced for this purpose. To characterize the spatial distribution of retrieval errors, the algorithm has been applied to analyze literally tens of millions of computer-simulated lightning VHF point sources that have been placed at various ranges, azimuths, and altitudes relative to the LMA network. Statistical results are conveniently summarized in high-resolution, color-coded, error maps.
Response of lightning energy and total electron content with sprites over Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Suparta, W.; Yusop, N.
2017-05-01
This paper investigates the response of the lightning energy with the total electron content (TEC) derived from GPS over Antarctic Peninsula during St Patrick’s geomagnetic storm. During this event, sprite as one of the mesospheric transient luminous events (TLEs) associated with positive cloud-to-ground (+CG) lightning discharges can be generated. In this work, GPS and lightning data for the period from 14 to 20 March 2015 is analyzed. Geomagnetic activity and electric field data are also processed to relate the geomagnetic storm and lightning. Results show that during St Patrick’s geomagnetic storm, the lighting energy was produced up to ∼257 kJ. The ionospheric TEC was obtained 60 TECU, 38 TECU and 78 TECU between 18:00 and 21:00 UT for OHI3, PALV and ROTH stations, respectively. The peak of lightning energy was observed 14 hours after peaked of TEC. Sprite possibly generated through the electrical coupling process between the top cloud, middle and upper atmosphere with the DC electric field found to be ∼10 mVm-1 which leading to the sprite generation after the return strokes on 18 March 2015.
D region disturbances caused by electromagnetic pulses from lightning
NASA Technical Reports Server (NTRS)
Rodriguez, Juan V.; Inan, Umran S.; Bell, Timothy F.
1992-01-01
Attention is given to a simple formulation of the propagation and absorption in a magnetized collisional plasma of EM pulses from lightning which describes the effect of discharge orientation and radiated electric field on the structure and magnitude of heating and secondary ionization in the D region. Radiation from most lightning discharges can heat substantially, but only the most intense (not less than 20 V/m) are likely to cause ionization enhancements not less than 10 percent of the ambient in a single ionization cycle. This dependence on the radiated electric field is modified by the discharge radiation pattern: a horizontal cloud discharge tends to cause larger heating and ionizaton maxima while a vertical return stroke causes disturbances of a larger horizontal extent.
Why Flash Type Matters: A Statistical Analysis
NASA Astrophysics Data System (ADS)
Mecikalski, Retha M.; Bitzer, Phillip M.; Carey, Lawrence D.
2017-09-01
While the majority of research only differentiates between intracloud (IC) and cloud-to-ground (CG) flashes, there exists a third flash type, known as hybrid flashes. These flashes have extensive IC components as well as return strokes to ground but are misclassified as CG flashes in current flash type analyses due to the presence of a return stroke. In an effort to show that IC, CG, and hybrid flashes should be separately classified, the two-sample Kolmogorov-Smirnov (KS) test was applied to the flash sizes, flash initiation, and flash propagation altitudes for each of the three flash types. The KS test statistically showed that IC, CG, and hybrid flashes do not have the same parent distributions and thus should be separately classified. Separate classification of hybrid flashes will lead to improved lightning-related research, because unambiguously classified hybrid flashes occur on the same order of magnitude as CG flashes for multicellular storms.
NASA Astrophysics Data System (ADS)
Tran, M. D.; Rakov, V. A.
2017-12-01
Synchronized high-speed (124 or 210 kiloframes per second) video images and wideband electromagnetic field records of the attachment process were obtained for 4 negative strokes in natural lightning at the Lightning Observatory in Gainesville, Florida. The apparent strike objects were trees, whose heights were less than 30 m or so. Upward connecting leaders (UCLs) and multiple upward unconnected leaders were imaged in multiple frames. The majority of these upward positive leaders exhibited a pulsating behavior (brightening/fading cycles). UCLs, whose maximum extent ranged from 11 to 25 m, propagated at speeds ranging from 1.8×105 to 6.0×105 m/s with a mean of 3.4×105 m/s. Within about 100 m of the ground, the ratio of speeds of the downward negative leader and the corresponding UCL was about 3-4 for 2 events and 0.5 for 1 event. The breakthrough phase (BTP), corresponding to leader extensions inside the common streamer zone (CSZ), was imaged for 2 events. The initial length of CSZ was estimated to be about 30-40 m. For 2 events, estimated speeds of positive and negative leaders inside the CSZ were found to be between 2.4×106 and 3.7×106 m/s. For 1 event, opposite polarity leaders were observed to accelerate inside the CSZ. Further, in this same event, a space-leader-like formation, accompanied by significant intensification of UCL and apparently associated with the onset of BTP, was imaged. We speculate that the step-wise extension of the downward leader facilitated corona streamer bursts from both the downward negative and upward positive (UCL) leader tips, resulting in the establishment of CSZ. First speed profiles for colliding positive and negative leaders were obtained. In one event, the negative leader speed increased from 7.2 ×105 in virgin air to 2.5×106 (by a factor of 3.5), and then to 3.2×106 m/s just prior to the fast transition (FT) in the return-stroke field waveform. The positive leader accelerated from 1.8×105 (in virgin air) to 2.5×106 (by a factor of 14), and then to 3.2×106 m/s. Using integrated dB/dt waveforms, a transmission-line-type model, and peak current reported by the U.S. National Lightning Detection Network, we inferred the current increases during the BTP and FT to be on average 16 and 18 kA, respectively, indicating that these two processes contribute about equally to the overall current peak.
Measuring Method for Lightning Channel Temperature
Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.
2016-01-01
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5–50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases. PMID:27665937
Characteristics of lightning leader propagation and ground attachment
NASA Astrophysics Data System (ADS)
Jiang, Rubin; Qie, Xiushu; Wang, Zhichao; Zhang, Hongbo; Lu, Gaopeng; Sun, Zhuling; Liu, Mingyuan; Li, Xun
2015-12-01
The grounding process and the associated leader behavior were analyzed by using high-speed video record and time-correlated electric field change for 37 natural negative cloud-to-ground flashes. Weak luminous grounded channel was recognized below the downward leader tip in the frame preceding the return stroke, which is inferred as upward connecting leader considering the physical process of lightning attachment, though not directly confirmed by sequential frames. For stepped leader-first return strokes, the upward connecting leaders tend to be induced by those downward leader branches with brighter luminosity and lower channel tip above ground, and they may accomplish the attachment with great possibility. The upward connecting leaders for 2 out of 61 leader-subsequent stroke sequences were captured in the frame prior to the return stroke, exhibiting relatively long channel lengths of 340 m and 105 m, respectively. The inducing downward subsequent leaders were of the chaotic type characterized by irregular electric field pulse train with duration of 0.2-0.3 ms. The transient drop of the high potential difference between stepped leader system and ground when the attachment occurred would macroscopically terminate the propagation of those ungrounded branches while would not effectively prevent the development of the existing space stem systems in the low-conductivity streamer zone apart from the leader tip. When the ungrounded branches are of poor connection with the main stroke channel, their further propagation toward ground would be feasible. These two factors may contribute to the occurrence of multiple grounding within the same leader-return stroke sequence.
NASA Technical Reports Server (NTRS)
Kim, Ji-In; Kim, Kyu-Myong
2011-01-01
In this study, we analyze the weekly cycle of lightning over Korea and adjacent oceans and associated variations of aerosols, clouds, precipitation, and atmospheric circulations, using aerosol optical depth (AOD) from the NASA Moderate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), cloud properties from MODIS, precipitation and storm height from Tropical Rainfall Measuring Mission (TRMM) satellite, and lightning data from the Korean Lightning Detection Network (KLDN) during 9-year from 2002 to 2010. Lightning data was divided into three approximately equal areas, land area of Korea, and two adjacent oceans, Yellow Sea and South Sea. Preliminary results show that the number of lightning increases during the middle of the week over Yellow Sea. AOD data also shows moderately significant midweek increase at about the same time as lightning peaks. These results are consistent with the recent studies showing the invigoration of storms with more ice hydrometeors by aerosols, and subsequently wash out of aerosols by rainfall. Frequency of lightning strokes tend to peak at weekend in land area and over South Sea, indicating local weekly anomalous circulation between land and adjacent ocean. On the other hand, lightning frequency over Yellow Sea appears to have very strong weekly cycle with midweek peak on around Wednesday. It is speculated that the midweek peak of lightning over Yellow Sea was related with aerosol transport from adjacent land area. AOD data also suggests midweek peak over Yellow Sea, however, the weekly cycle of AOD was not statistically significant. Changes in weekly cycle of lightning from pre-monsoon to monsoon season, as well as associated clouds and circulation patterns are also discussed.
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.
2010-01-01
Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. This excellent agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 0.7 kA (ocean) and 1.1 kA (land) from lightning-producing storms, and 0.22 kA (ocean) and 0.04 (land) from electrified shower clouds, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Breaking the results down into mean storm counts reveals 1100 for land storms with lightning, 530 for ocean storms without lightning, 390 for ocean storms with lightning, and 330 for land storms without lightning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikiforov, E. P.
2009-07-15
Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces themore » number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.« less
[Deaths in swine by a lightning strike in the sty].
Appel, G
1991-05-01
It is reported on deaths of pigs due to lightning stroke in the barn. During a severe thunder storm 11 clinically healthy pigs with an average weight of approx. 22 kg died simultaneously and suddenly in the barn. The animals were kept on a floor of metal slats. The pens were separated by metal bars. A water pipe leading into the barn from outside had contact to the bars. Two pigs were submitted for an examination approx. three hours post mortem. The macroscopic and microscopic necropsy findings are described.
D-region Ionospheric Imaging Using VLF/LF Broadband Sferics, Forward Modeling, and Tomography
NASA Astrophysics Data System (ADS)
McCormick, J.; Cohen, M.
2017-12-01
The D-region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales from 10 km to many hundreds of km. VLF and LF (3-30kHz, 30-300kHz) radio waves are guided to global distances by reflecting off of the ground and the D-region, making the Earth-ionosphere waveguide (EIWG). Therefore, information about the current state of the ionosphere is encoded in received VLF/LF radio waves since they act like probes of the D-region. The return stroke of lightning is an impulsive event that radiates powerful broadband radio emissions in VLF/LF bands known as `radio atmospherics' or `sferics'. Lightning flashes occur about 40-50 times per second throughout the Earth. An average of 2000 lightning storms occur each day with a mean duration of 30 minutes creating a broad spatial and temporal distribution of lightning VLF/LF sources. With careful processing, we can recover high fidelity measurements of amplitude and phase of both the radial and azimuthal magnetic field sferic components. By comparison to a theoretical EIWG propagation model such as the Long Wave Propagation Capability (LWPC) developed by the US Navy, with a standard forward modeling approach, we can infer information about the current state of the D-region. Typically, the ionosphere is parametrized to reduce the dimensionality of the problem which usually results in an electron density vs altitude profile. For large distances (Greater than 1000 km), these results can be interpreted as path-averaged information. In contrast to studies using navy transmitters to study the D-region, the full spectral information allows for more complete information and less ambiguous inferred ionospheric parameters. With the spatial breadth of lightning sources taken together with a broadly distributed VLF/LF receiver network, a dense set of measurements are acquired in a tomographic sense. Using the wealth of linear algebra and imaging techniques it is possible to produce a 2D image of the D-region electron density profile.
NASA Astrophysics Data System (ADS)
Tüchler, Lukas; Meyer, Vera
2013-04-01
The new radar-data and lightning-data based automatic cell identification, tracking and nowcasting tool A-TNT (Austrian Thunderstorm Nowcasting Tool), which has been developed at ZAMG, has been applied to investigate the appearance of thunderstorms at Europe scale. Based on the ec-TRAM-method [1], the algorithm identifies and monitors regions of intense precipitation and lightning activity separately by analyzing sequential two-dimensional intensity maps of radar precipitation rate or lightning densities, respectively. Each data source is processed by a stand-alone identification, tracking and nowcasting procedure. The two tracking results are combined to a "main" cell in a final step. This approach allows that the output derived from the two data sources complement each other giving a more comprehensive picture about the current storm situation. So it is possible to distinguish between pure precipitation cells and thunderstorms, to observe regions, where one data source is not or poorly available, and to compensate for occasional data failures. Consequently, the combined cell-tracks are expected to be more consistent and the cell-tracking more robust. Input data for radar-cell tracking on European Scale is the OPERA radar-composite, which is provided every 15 minutes on a 2 km x 2 km grid, indicating the location and intensity of precipitation over Europe. For the lightning-cell tracking, the lightning-detection data of the EUCLID network is mapped on the OPERA grid. Every five minutes, flash density maps with recorded strokes are created and analyzed. This study will present a detailed investigation of the quality of the identification and tracking results using radar and lightning data. The improvements concerning the robustness and reliability of the cell tracking achieved by combining both data sources will be shown. Analyses about cell tracks and selected storm parameters like frequency, longevity and area will give insight into occurrence, appearance and impact of different severe precipitation events. These studies are performed to support the project HAREN (Hazard Assessment based on Rainfall European Nowcasts, funded by the EC Directorate General for Humanitarian Aid and Civil Protection), which has the objective to improve warnings for hazards induced by precipitation at local scale all over Europe. REFERENCES: [1] Meyer, V. K., H. Höller, and H. D. Betz 2012: Automated thunderstorm tracking and nowcasting: utilization of three-dimensional lightning and radar data. Manuscript accepted for publication in ACPD.
Lightning Strike Peak Current Probabilities as Related to Space Shuttle Operations
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Vaughan, William W.
2000-01-01
A summary is presented of basic lightning characteristics/criteria applicable to current and future aerospace vehicles. The paper provides estimates on the probability of occurrence of a 200 kA peak lightning return current, should lightning strike an aerospace vehicle in various operational phases, i.e., roll-out, on-pad, launch, reenter/land, and return-to-launch site. A literature search was conducted for previous work concerning occurrence and measurement of peak lighting currents, modeling, and estimating the probabilities of launch vehicles/objects being struck by lightning. This paper presents a summary of these results.
NASA Astrophysics Data System (ADS)
Gallin, Louis-Jonardan; Farges, Thomas; Marchiano, Régis; Coulouvrat, François; Defer, Eric; Rison, William; Schulz, Wolfgang; Nuret, Mathieu
2016-04-01
In the framework of the European Hydrological Cycle in the Mediterranean Experiment project, a field campaign devoted to the study of electrical activity during storms took place in the south of France in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within the coverage of a Lightning Mapping Array network. On the 26 October 2012, a thunderstorm passed just over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes, were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz, of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent detections from the European Cooperation for Lightning Detection lightning location system were also used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but also from the horizontal discharges which occur inside the clouds. The huge amount of observation data leads to a statistical analysis of lightning discharges acoustically recorded. Especially, the distributions of altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the source on these distributions is established. The capacity of the acoustic method to describe precisely the lower part of nearby cloud-to-ground discharges, where the Lightning Mapping Array network is not effective, is also highlighted.
NASA Astrophysics Data System (ADS)
Grandell, J.; Stuhlmann, R.
2010-09-01
The Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measurement Mission (TRMM) platform has provided a continuous source of lightning observations in the +/- 35 deg latitude region since 1998. LIS, together with its predecessor Optical Transient Detector (OTD) have established an unprecedented database of optical observations of lightning from a low-earth orbit, allowing a more consistent and uniform view of lightning that has been available from any ground-based system so far. The main disadvantage of LIS is that, since it operates on a low-earth orbit with a low inclination, only a small part of the globe is viewed at a time and only for a duration of ~2 minutes, and for a rapidly changing phenomenon like convection and the lightning related thereto this is far from optimal. This temporal sampling deficiency can, however, be overcome with observations from a geostationary orbit. One such mission in preparation is the Lightning Imager on-board the Meteosat Third Generation (MTG) satellite, which will provide service continuation to the Meteosat Second Generation (MSG) system from 2018 onwards. The current MSG system has become the primary European source of geostationary observations over Europe and Africa with the start of nominal operations in January 2004, and will be delivering observations and services at least until 2017. However, considering the typical development cycle for a new complex space system, it was already for a longer time necessary to plan for and define the MTG system. MTG needs to be available around 2016, before the end of the nominal lifetime of MSG-3. One of the new missions selected for MTG is the previously mentioned Lightning Imager (LI) mission, detecting continuously over almost the full disc the lightning discharges taking place in clouds or between cloud and ground with a resolution around 10 km. The LI mission is intended to provide a real time lightning detection (cloud-to-cloud and cloud-to-ground strokes) and location capability in support to NWC and VSRF of severe storm hazards and lightning strike warning. As lightning is strongly correlated with storm related phenomena like precipitation, hail and gust, a further objective of the LI mission is to serve as proxy for intensive convection related to ice flux, updraft strength and convective rainfall. Lightning can also serve as proxy for adiabatic and latent heating to be assimilated in global/mesoscale NWP models. Finally, for atmospheric chemistry, lightning plays a significant role in generating nitrogen oxide. The natural nitrogen oxide budget is a matter of great uncertainty at this time, and long-term observations of one of its sources will prove valuable as the subject develops. Based on the LIS database covering a decade of observations, a range of important statistics are computed which have helped to define the MTG LI mission. These statistics have also been used as input/tuning parameters for MTG LI proxy data to enable processor development for the operational L2 products. These statistics and conclusions based on the LIS measurements shall be presented and discussed.
NASA Astrophysics Data System (ADS)
Zheng, Dong; Zhang, Yijun; Lu, Weitao; Zhang, Yang; Dong, Wansheng; Chen, Shaodong; Dan, Jianru
2012-08-01
This study investigates an abnormal artificially triggered lightning event that produced two positive upward propagations: one during the initial stage (i.e., the upward leader (UL)) and the other after a negative downward aborted leader (DAL). The triggered lightning was induced in a weak thunderstorm over the experiment site and did not produce a return stroke. All of the intra-cloud lightning around the experiment site produced positive changes in the electric field. The initial stage was a weak discharge process. A downward dart leader propagated along the channel produced by the first UL, ending at a height of approximately 453 m and forming a DAL. Under the influence of the DAL, the electric field at a point located 78 m from the rod experienced a steady reduction of about 6.8 kV m-1 over 5.24 ms prior to the initiation of a new upward channel (i.e., the second upward propagation (UP)). The second UP, which started approximately 4.1 ms after the termination of the DAL and propagated along the original channel, was triggered by the DAL and sustained for approximately 2.95 ms. Two distinct current pulses were superimposed on the current of the second UP. The first pulse, which was related to the sudden initiation of the second UP, was characterized by a more rapid increase and decrease and a larger peak value than the second pulse, which was related to the development of the second UP into the area affected by the DAL. The second UP contained both a similar-to-leader process and a following neutralization process. This study introduces a new type of triggering leader, in which a new upward discharge is triggered in an established channel by an aborted leader propagating along the same channel with opposite polarity and propagation direction.
Commentary on fast atmospheric pulsations. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vampola, A.L.
A recent paper proposed that Fast Atmospheric Light Pulsations (FAPs), which have been observed at L=1.5-2.2 in the northern hemisphere, are optical signatures of >2-MeV electrons associated with Lightning-induced Electron Precipitation (LEP) events produced by lightning strokes in the southern hemisphere. FAPs cannot be produced by >2-MeV electrons in the inner radiation belt because the upper limit for fluxes of such particles is only about 0.2% of the value that was used in the analysis and would lead to an unrealistically short electron lifetime. The discrepancy comes from using an electron model, AE-2, which included the Starfish fission electrons. Latermore » inner-zone electron environment models show the inner-zone to have negligible fluxes of electrons in excess of 2 MeV. The use of a model in which southern hemisphere lightning strokes result in northern hemisphere FAPs via a cyclotron mode interaction between magnetospheric electrons and lightning generated waves is also untenable because it would result in FAP intensities two orders of magnitude greater in the southern hemisphere than in the northern hemisphere, leading to a further two orders of magnitude reduction in estimated inner-zone electron lifetimes. The estimated light intensity of FAPs is within acceptable bounds compared to the lifetime of inner zone electrons if all electrons above 100 keV contribute to the light production, if southern hemisphere FAP intensity is no greater than the FAP intensity observed in the northern hemisphere, and if the light-production efficiency is of the order of .001.« less
NASA Technical Reports Server (NTRS)
Collier, Richard S.
1997-01-01
This report describes finite difference computer calculations for the Space Shuttle Launch Pad which predict lightning induced electric currents and electric and magnetic fields caused by a lightning strike to the Lightning Protection System caternary wire. Description of possible lightning threats to Shuttle Payload components together with specifications for protection of these components, result from the calculation of lightning induced electric and magnetic fields inside and outside the during a lightning event. These fields also induce currents and voltages on cables and circuits which may be connected to, or a part of, shuttle payload components. These currents and voltages are also calculated. These threat levels are intended as a guide for designers of payload equipment to specify any shielding and/or lightning protection mitigation which may be required for payload components which are in the process of preparation or being transferred into the Shuttle Orbiter.
The North Alabama Lightning Warning Product
NASA Technical Reports Server (NTRS)
Buechler, Dennis E.; Blakeslee, R. J.; Stano, G. T.
2009-01-01
The North Alabama Lightning Mapping Array NALMA has been collecting total lightning data on storms in the Tennessee Valley region since 2001. Forecasters from nearby National Weather Service (NWS) offices have been ingesting this data for display with other AWIPS products. The current lightning product used by the offices is the lightning source density plot. The new product provides a probabalistic, short-term, graphical forecast of the probability of lightning activity occurring at 5 min intervals over the next 30 minutes . One of the uses of the current lightning source density product by the Huntsville National Weather Service Office is to identify areas of potential for cloud-to-ground flashes based on where LMA total lightning is occurring. This product quantifies that observation. The Lightning Warning Product is derived from total lightning observations from the Washington, D.C. (DCLMA) and North Alabama Lightning Mapping Arrays and cloud-to-ground lightning flashes detected by the National Lightning Detection Network (NLDN). Probability predictions are provided for both intracloud and cloud-to-ground flashes. The gridded product can be displayed on AWIPS workstations in a manner similar to that of the lightning source density product.
NASA Astrophysics Data System (ADS)
Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.
2016-08-01
A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.
Lightning Instrumentation at KSC
NASA Technical Reports Server (NTRS)
Colon, Jose L.; Eng, D.
2003-01-01
This report summarizes lightning phenomena with a brief explanation of lightning generation and lightning activity as related to KSC. An analysis of the instrumentation used at launching Pads 39 A&B for measurements of lightning effects is included with alternatives and recommendations to improve the protection system and upgrade the actual instrumentation system. An architecture for a new data collection system to replace the present one is also included. A novel architecture to obtain lightning current information from several sensors using only one high speed recording channel while monitoring all sensors to replace the actual manual lightning current recorders and a novel device for the protection system are described.
NASA Technical Reports Server (NTRS)
Peterson, Harold; Beasley, William
2011-01-01
We address the question of whether ice crystals with habits typically encountered by lightning discharges may serve as catalysts for the production of NOx by lightning. If so, and if the effect is sufficiently large, it would need to be taken into account in estimates of global NOx production by lightning. In this study, we make a series of plausible assumptions about the temperatures and concentrations of reactant species in the environment of discharges and we postulate a mechanism by which ice crystals could adsorb nitrogen atoms. We then compare production rates between uncatalyzed and catalyzed reactions at 2000 K, 3000 K, and 4000 K, temperatures observed in lightning channels during the cool-down period after a return stroke. Catalyzed NO production rates are greater at 2000 K, whereas uncatalyzed production occurs most rapidly at 4000 K. The channel temperature stays around 2000 K for a longer period of time than at 4000 K. The longer residence time at 2000 K is sufficient to allow fresh reactants to participate in the mix in. Therefore, our results suggest that nearly three times as much NO per flash is produced by ice-catalyzed reactions as compared with uncatalyzed reactions.
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. David
1989-01-01
The present device for lightning channel propagation-velocity determination employs eight photodetectors mounted behind precision horizontal slits in the focal plane of a photographic camera lens. The eight photodetector pulses, IRIG-B time, and slow and fast electric field-change waveforms are recorded on a 14-track analog tape recorder. A comparison of the present results with those obtained by a streaking camera shows no significant differences between the velocities obtained from the same strokes with the two systems; neither is there any difference in pulse characteristics or in the velocities calculated from them.
Electrical and Hydrometeor Structure of Thunderstorms that produce Upward Lightning
NASA Astrophysics Data System (ADS)
dos Santos Souza, J. C.; Albrecht, R. I.; Lang, T. J.; Saba, M. M.; Warner, T. A.; Schumann, C.
2017-12-01
Upward lightning (UL) flashes at tall structures have been reported to be initiated by in-cloud branching of a parent positive cloud-to-ground (CG) or intracloud (IC) lightning during the decaying stages of thunderstorms, and associated with stratiform precipitation. This in-cloud branching of the parent CG lightning into lower layers of the stratiform precipitation, as well as other situational modes of UL triggering, are indicative of a lower charge center. The objective of this study is to determine the hydrometeor characteristics of thunderstorms that produce UL, especially at the lower layers of the stratiform region where the bidirectional leader of the parent CG or IC lightning propagates through. We investigated 17 thunderstorms that produced 56 UL flashes in São Paulo, SP, Brazil and 10 thunderstorms (27 UL) from the UPLIGHTS field experiment in Rapid City, SD, USA. We used polarimetric radar data and 3D lighting mapping or the combination of total (i.e., intracloud and cloud-to-ground) and cloud-to-ground lightning strokes data. The Hydrometeor Identification for the thunderstorms of this study consider the information from polarimetric variables ZH, ZDR, KDP and RHOHV to infer radar echoes into rain (light, medium, heavy), hail, dry snow, wet snow, ice crystals, graupel and rain-hail mixtures. Charge structure is inferred by the 3D very-high-frequency (VHF) Lightning Mapping Array by monitoring lightning propagation closely in time and space and constructing vertical histograms of VHF source density. The results of this research project are important to increase the understanding of the phenomenon, the storm evolution and the predictability of UL.
Stepped-to-dart Leaders in Cloud-to-ground Lightning
NASA Astrophysics Data System (ADS)
Stolzenburg, M.; Marshall, T. C.; Karunarathne, S.; Karunarathna, N.; Warner, T.; Orville, R. E.
2013-12-01
Using time-correlated high-speed video (50,000 frames per second) and fast electric field change (5 MegaSamples per second) data for lightning flashes in East-central Florida, we describe an apparently rare type of subsequent leader: a stepped leader that finds and follows a previously used channel. The observed 'stepped-to-dart leaders' occur in three natural negative ground flashes. Stepped-to-dart leader connection altitudes are 3.3, 1.6 and 0.7 km above ground in the three cases. Prior to the stepped-to-dart connection, the advancing leaders have properties typical of stepped leaders. After the connection, the behavior changes almost immediately (within 40-60 us) to dart or dart-stepped leader, with larger amplitude E-change pulses and faster average propagation speeds. In this presentation, we will also describe the upward luminosity after the connection in the prior return stroke channel and in the stepped leader path, along with properties of the return strokes and other leaders in the three flashes.
Development of a head-phantom and measurement setup for lightning effects.
Machts, Rene; Hunold, Alexander; Leu, Carsten; Haueisen, Jens; Rock, Michael
2016-08-01
Direct lightning strikes to human heads lead to various effects ranging from Lichtenberg figures, over loss of consciousness to death. The evolution of the induced current distribution in the head is of great interest to understand the effect mechanisms. This work describes a technique to model a simplified head-phantom to investigate effects during direct lightning strike. The head-phantom geometry, conductive and dielectric parameters were chosen similar to that of a human head. Three layers (brain, skull, and scalp) were created for the phantom using agarose hydrogel doped with sodium chloride and carbon. The head-phantom was tested on two different impulse generators, which reproduce approximate lightning impulses. The effective current and the current distribution in each layer were analyzed. The biggest part of the current flowed through the brain layer, approx. 70 % in cases without external flashover. Approx. 23 % of the current flowed through skull layer and 6 % through the scalp layer. However, the current decreased within the head-phantom to almost zero after a complete flashover on the phantom occurred. The flashover formed faster with a higher impulse current level. Exposition time of current through the head decreases with a higher current level of the lightning impulse. This mechanism might explain the fact that people can survive a lightning strike. The experiments help to understand lightning effects on humans.
Lightning charge moment changes estimated by high speed photometric observations from ISS
NASA Astrophysics Data System (ADS)
Hobara, Y.; Kono, S.; Suzuki, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.; Suzuki, M.
2017-12-01
Optical observations by the CCD camera using the orbiting satellite is generally used to derive the spatio-temporal global distributions of the CGs and ICs. However electrical properties of the lightning such as peak current and lightning charge are difficult to obtain from the space. In particular, CGs with considerably large lightning charge moment changes (CMC) and peak currents are crucial parameters to generate red sprites and elves, respectively, and so it must be useful to obtain these parameters from space. In this paper, we obtained the lightning optical signatures by using high speed photometric observations from the International Space Station GLIMS (Global Lightning and Sprit MeasurementS JEM-EF) mission. These optical signatures were compared quantitatively with radio signatures recognized as truth values derived from ELF electromagnetic wave observations on the ground to verify the accuracy of the optically derived values. High correlation (R > 0.9) was obtained between lightning optical irradiance and current moment, and quantitative relational expression between these two parameters was derived. Rather high correlation (R > 0.7) was also obtained between the integrated irradiance and the lightning CMC. Our results indicate the possibility to derive lightning electrical properties (current moment and CMC) from optical measurement from space. Moreover, we hope that these results will also contribute to forthcoming French microsatellite mission TARANIS.
Simulation and measurement of melting effects on metal sheets caused by direct lightning strikes
NASA Technical Reports Server (NTRS)
Kern, Alexander
1991-01-01
Direct lightning strikes melt metal parts of various systems, like fuel and propellant tanks of rockets and airplanes, at the point of strike. Responsible for this melting are the impulse current and, if occurring, the long duration current, both carrying a remarkable charge Q. For studying these meltings the simulation in the laboratory has to be based on the parameters of natural lightnings. International standards exist defining certain threat levels of natural lightnings and giving possible generator circuits for the simulation. The melting caused by both types of lightning currents show different appearance. Their characteristics, their differences in melting and heating of metal sheets are investigated. Nevertheless the simulation of lightning in the laboratory is imperfect. While natural lightning is a discharge without a counter electrode, the simulation always demands a close counter electrode. The influence of this counter electrode is studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchard, D., E-mail: mitcharddr@cardiff.ac.uk; Clark, D.; Carr, D.
A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum wasmore » reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.« less
Optical characteristics of lightning and thunderstorm currents
NASA Technical Reports Server (NTRS)
Krider, E. P.; Blakeslee, R. J.
1985-01-01
Researchers determined that lightning can be used to determine the diurnal variations of thunderstorms, i.e., storms that produce audible thunder, and that these variations are also in good agreement with diurnal variations in rainfall and convective activity. Measurements of the Maxwell current density, J sub m, under active thunderstorms show that this physical quantity is quasi-steady between lightning discharges and that lightning does not produce large changes in J sub m. Maps of J sub m show contours of iso-current density that are consistent with the locations of radar echos and the locations of where lightning has altered the cloud charge distribution.
Variation in light intensity with height and time from subsequent lightning return strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, D.M.; Uman, M.A.
1983-08-20
Relative light intensity has been measured photographically as a function of height and time for seven subsequent return strokes in two lightning flashes at ranges of 7.8 and 8.7 km. The film used was Kodak 5474 Shellburst, which has a roughly constant spectral response between 300 and 670 nm. The time resolution was about 1.0 ..mu..s, and the spatial resolution was about 4 m. The observed light signals consisted of a fast rise to peak, followed by a slower decrease to a relatively constant value. The amplitude of the initial light peak decreases exponentially with height with a decay constantmore » of about 0.6 to 0.8 km. The 20% to 80% rise time of the initial light signal is between 1 and 4 ..mu..s near ground and increases by an additional 1 to 2 ..mu..s by the time the return stroke reaches the cloud base, a height between 1 and 2 km. The light intensity 30 ..mu..s after the initial peak is relatively constant with height and has an amplitude that is 15% to 30% of the initial peak near the ground and 50% to 100% of the initial peak at cloud base. The logarithm of the peak light intensity near the ground is roughly proportional to the initial peak electric field intensity, and this in turn implies that the current decrease with height may be much slower than the light decrease. The absolute light intensity has been estimated by integrating the photographic signals from individual channel segments to simulate the calibrated all-sky photoelectric data of Guo and Krider (1982). Using this method, the authors find that the mean peak radiance near the ground is 8.3 x 10/sup 5/ W/m, with a total range from 1.4 x 10/sup 5/ to 3.8 x 10/sup 6/ W/m. 16 references, 11 figures.« less
Laboratory-Scale Evidence for Lightning-Mediated Gene Transfer in Soil
Demanèche, Sandrine; Bertolla, Franck; Buret, François; Nalin, Renaud; Sailland, Alain; Auriol, Philippe; Vogel, Timothy M.; Simonet, Pascal
2001-01-01
Electrical fields and current can permeabilize bacterial membranes, allowing for the penetration of naked DNA. Given that the environment is subjected to regular thunderstorms and lightning discharges that induce enormous electrical perturbations, the possibility of natural electrotransformation of bacteria was investigated. We demonstrated with soil microcosm experiments that the transformation of added bacteria could be increased locally via lightning-mediated current injection. The incorporation of three genes coding for antibiotic resistance (plasmid pBR328) into the Escherichia coli strain DH10B recipient previously added to soil was observed only after the soil had been subjected to laboratory-scale lightning. Laboratory-scale lightning had an electrical field gradient (700 versus 600 kV m−1) and current density (2.5 versus 12.6 kA m−2) similar to those of full-scale lightning. Controls handled identically except for not being subjected to lightning produced no detectable antibiotic-resistant clones. In addition, simulated storm cloud electrical fields (in the absence of current) did not produce detectable clones (transformation detection limit, 10−9). Natural electrotransformation might be a mechanism involved in bacterial evolution. PMID:11472916
An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.
2014-01-01
An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight, complex shapes, large structure dimension, large current, and low frequency capabilities are important considerations.
Toward a Time-Domain Fractal Lightning Simulation
NASA Astrophysics Data System (ADS)
Liang, C.; Carlson, B. E.; Lehtinen, N. G.; Cohen, M.; Lauben, D.; Inan, U. S.
2010-12-01
Electromagnetic simulations of lightning are useful for prediction of lightning properties and exploration of the underlying physical behavior. Fractal lightning models predict the spatial structure of the discharge, but thus far do not provide much information about discharge behavior in time and therefore cannot predict electromagnetic wave emissions or current characteristics. Here we develop a time-domain fractal lightning simulation from Maxwell's equations, the method of moments with the thin wire approximation, an adaptive time-stepping scheme, and a simplified electrical model of the lightning channel. The model predicts current pulse structure and electromagnetic wave emissions and can be used to simulate the entire duration of a lightning discharge. The model can be used to explore the electrical characteristics of the lightning channel, the temporal development of the discharge, and the effects of these characteristics on observable electromagnetic wave emissions.
Electromagnetic sensors for general lightning application
NASA Technical Reports Server (NTRS)
Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.
1980-01-01
Electromagnetic sensors for general lightning applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to lightning measurements, but there are some special cases of lightning measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on lightning at South Baldy peak in central New Mexico during the 1978 and 1979 lightning seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.
A test technique for measuring lightning-induced voltages on aircraft electrical circuits
NASA Technical Reports Server (NTRS)
Walko, L. C.
1974-01-01
The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.
Expanding on the relationship between continuing current and in-cloud leader growth
NASA Astrophysics Data System (ADS)
Lapierre, Jeff L.; Sonnenfeld, Richard G.; Stock, Michael; Krehbiel, Paul R.; Edens, Harald E.; Jensen, Daniel
2017-04-01
When lightning connects to the ground, there is a large surge of current, called the return stroke, which is occasionally followed by a longer-lasting steady current, called continuing current (CC). In a previous study of negative cloud-to-ground (-CG) flashes, we observed the growth rate of in-cloud positive leaders in an attempt to identify occurrences of CC. However, there was no observed change in positive leader growth rate during CC of negative CG flashes. In this study, we use the Langmuir Electric Field Array, Lightning Mapping Array, and Flash-Continuous Broadband Digital Interferometer data to extend the previous study to the growth of the negative leader during positive CG flashes. We have found that in contrast with previous results, negative leader growth during positive CG flashes does show increases in growth rates coincident with CC. Finally, we find that the growth rate magnitudes for positive and negative leaders are typically ˜2-4 km/10 ms and ˜25-40 km/10 ms, respectively. These contrasting results highlight the differences between positive and negative leaders and provide strong evidence as to why -CC and +CC behave differently. Negative leaders inject higher amounts of current and allow the channel to remain conductive throughout the duration of CC. Whereas for positive leaders, the channel becomes nonconductive relatively quickly. It is therefore disconnected from the channel to the ground, and, due to the positive leader's continued growth, an electric potential is built up until a K event is produced that re-ionizes the channel.
NASA Astrophysics Data System (ADS)
Samir, Nait Amor; Bouderba, Yasmina
VLF signal perturbations in association with thunderstorm activity appear as changes in the signal amplitude and phase. Several papers reported on the characteristics of thus perturbations and their connection to the lightning strokes amplitude and polarity. In this contribution, we quantified the electrons density increases due to lightning activity by the use of the LWPC code and VLF signal perturbations parameters. The method is similar to what people did in studying the solar eruptions effect. the results showed that the reference height (h') decreased to lower altitudes (between 70 and 80 km). From the LWPC code results the maximum of the electron density was then deduced. Therefore, a numerical simulation of the atmospheric species times dependences was performed to study the recovery times of the electrons density at different heights. The results showed that the recovery time last for several minutes and explain the observation of long recovery Early signal perturbations.
Global Electric Circuit Implications of Total Current Measurements over Electrified Clouds
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.
2009-01-01
We determined total conduction (Wilson) currents and flash rates for 850 overflights of electrified clouds spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative Wilson currents. We combined these individual storm overflight statistics with global diurnal lightning variation data from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to estimate the thunderstorm and electrified shower cloud contributions to the diurnal variation in the global electric circuit. The contributions to the global electric circuit from lightning producing clouds are estimated by taking the mean current per flash derived from the overflight data for land and ocean overflights and combining it with the global lightning rates (for land and ocean) and their diurnal variation derived from the LIS/OTD data. We estimate the contribution of non-lightning producing electrified clouds by assuming several different diurnal variations and total non-electrified storm counts to produce estimates of the total storm currents (lightning and non-lightning producing storms). The storm counts and diurnal variations are constrained so that the resultant total current diurnal variation equals the diurnal variation in the fair weather electric field (+/-15%). These assumptions, combined with the airborne and satellite data, suggest that the total mean current in the global electric circuit ranges from 2.0 to 2.7 kA, which is greater than estimates made by others using other methods.
Lightning rates relative to tornadic storm evolution on 22 May 1981
NASA Technical Reports Server (NTRS)
Macgorman, Donald R.; Burgess, Donald W.; Mazur, Vladislav; Rust, W. David; Taylor, William L.
1989-01-01
Lightning and Doppler radar data for two tornadic storms in Oklahoma on May 22, 1981 are used to analyze ground flash rates relative to the time of tornadoes. It is found that the ground flash rates had no obvious relationship with the tornado times, although the stroke rate in both storms was greatest after the tornadic stage ended. The variations in the cyclone shear and the intracloud flash rates within 10 km of the mesocyclone region are examined. The results suggest that most tornadic storms have an increase in total flash rates near the time of the tornado and that this increase is often dominated by intracloud flashes.
NASA Astrophysics Data System (ADS)
Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.
2018-02-01
We propose the Deep Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not observed by current and planned spaceborne lightning mappers.
NASA Technical Reports Server (NTRS)
Shultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Stano, Geoffrey T.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; AMS 10th Satellite Symposium) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end to end physical and dynamical basis for relating lightning rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relation to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, relation specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
NASA Astrophysics Data System (ADS)
Visacro, Silverio; Guimaraes, Miguel; Murta Vale, Maria Helena
2017-12-01
Original simultaneous records of currents, close electric field, and high-speed videos of natural negative cloud-to-ground lightning striking the tower of Morro do Cachimbo Station are used to reveal typical features of upward positive leaders before the attachment, including their initiation and mode of propagation. According to the results, upward positive leaders initiate some hundreds of microseconds prior to the return stroke, while a continuous uprising current of about 4 A and superimposed pulses of a few tens amperes flow along the tower. Upon leader initiation, the electric field measured 50 m away from the tower at ground level is about 60 kV/m. The corresponding average field roughly estimated 0.5 m above the tower top is higher than 0.55 MV/m. As in laboratory experiments, the common propagation mode of upward positive leaders is developing continuously, without steps, from their initiation. Unlike downward negative leaders, upward positive leaders typically do not branch off, though they can bifurcate under the effect of a downward negative leader's secondary branch approaching their lateral surface. The upward positive leader's estimated average two-dimensional propagation speed, in the range of 0.06 × 106 to 0.16 × 106 m/s, has the same order of magnitude as that of downward negative leaders. Apparently, the speed tends to increase just before attachment.
A review of natural lightning - Experimental data and modeling
NASA Technical Reports Server (NTRS)
Uman, M. A.; Krider, E. P.
1982-01-01
A critical review is presented of the currents and the electric and magnetic fields characteristic of each of the salient discharge processes which make up cloud-to-ground and intracloud lightning. Emphasis is placed on the more recent work in which measured waveform variation is in the microsecond and submicrosecond range, since it is this time-scale that is of primary importance in lightning/aircraft interactions. The state-of-the-art of the modeling of lightning currents and fields is discussed in detail. A comprehensive bibliography is given of all literature relating to both lightning measurements and models.
Preliminary study on the Validation of FY-4A Lightning Mapping Imager
NASA Astrophysics Data System (ADS)
Cao, D.; Lu, F.; Qie, X.; Zhang, X.; Huang, F.; Wang, D.
2017-12-01
The FengYun-4 (FY-4) geostationary meteorological satellite is the second generation of China's geostationary meteorological satellite. The FY-4A was launched on December 11th, 2016. It includes a new instrument Lightning Mapping Imager (LMI) for total lightning (cloud and cloud-to-ground flashes) detection. The LMI operates at a wavelength of 777.4nm with 1.9ms integrated time. And it could observe lightning activity continuously day and night with spatial resolution of 7.8 km (sub satellite point) over China region. The product algorithm of LMI consists of false signal filtering and flash clustering analysis. The false signal filtering method is used to identify and remove non-lightning artifacts in optical events. The flash clustering analysis method is used to cluster "event" into "group" and "flash" using specified time and space threshold, and the other non-lightning optical events are filtered further more in the clustering analysis. The ground-based lightning location network (LLN) in China and WWLLN (World Wide Lightning Location Network) were both used to make preliminary validation of LMI. The detection efficiency for cloud-to-ground lightning, spatial and temporal accuracy of LMI were estimated by the comparison of lightning observations from ground-based network and LMI. The day and night biases were also estiamted. Although the LLN and WWLLN mainly observe return strokes in cloud-to-ground flash, the accuracy of LMI still could be estimated for that it was not associated with the flash type mostly. The false alarm efficiency of LMI was estimated using the Geostationary Interferometric Infrared Sounder (GIIRS), another payloads on the FY-4A satellite. The GIIRS could identify the convective cloud region and give more information about the cloud properties. The GIIRS products were used to make a rough evaluation of false alarm efficiency of LMI. The results of this study reveal details of characteristics of LMI instrument. It is also found that the product algorithm of LMI is effective and the LMI products could be used for the analysis of lightning activity in China in a certain extent.
Thunderclouds and Lightning Conductors
ERIC Educational Resources Information Center
Martin, P. F.
1973-01-01
Discusses the historical background of the development of lightning conductors, describes the nature of thunderclouds and the lightning flash, and provides a calculation of the electric field under a thundercloud. Also discussed are point discharge currents and the attraction theory of the lightning conductor. (JR)
High current lightning test of space shuttle external tank lightning protection system
NASA Technical Reports Server (NTRS)
Mumme, E.; Anderson, A.; Schulte, E. H.
1977-01-01
During lift-off, the shuttle launch vehicle (external tank, solid rocket booster and orbiter) may be subjected to a lightning strike. Tests of a proposed lightning protection method for the external tank and development materials which were subjected to simulated lightning strikes are described. Results show that certain of the high resistant paint strips performed remarkably well in diverting the 50 kA lightning strikes.
Lightning discharges produced by wind turbines
NASA Astrophysics Data System (ADS)
Montanyà, Joan; van der Velde, Oscar; Williams, Earle R.
2014-02-01
New observations with a 3-D Lightning Mapping Array and high-speed video are presented and discussed. The first set of observations shows that under certain thunderstorm conditions, wind turbine blades can produce electric discharges at regular intervals of 3 s in relation to its rotation, over periods of time that range from a few minutes up to hours. This periodic effect has not been observed in static towers indicating that the effect of rotation is playing a critical role. The repeated discharges can occur tens of kilometers away from electrically active thunderstorm areas and may or may not precede a fully developed upward lightning discharge from the turbine. Similar to rockets used for triggering lightning, the fast movement of the blade tip plays an important role on the initiation of the discharge. The movement of the rotor blades allows the tip to "runaway" from the generated corona charge. The second observation is an uncommon upward/downward flash triggered by a wind turbine. In that flash, a negative upward leader was initiated from a wind turbine without preceding lightning activity. The flash produced a negative cloud-to-ground stroke several kilometers from the initiation point. The third observation corresponds to a high-speed video record showing simultaneous upward positive leaders from a group of wind turbines triggered by a preceding intracloud flash. The fact that multiple leaders develop simultaneously indicates a poor shielding effect among them. All these observations provide some special features on the initiation of lightning by nonstatic and complex tall structures.
NASA Astrophysics Data System (ADS)
Jacobson, Abram R.; Holzworth, Robert H.; Pfaff, Robert; Heelis, Roderick
2018-04-01
Both ray theory and full-wave models of very low frequency transmission through the ionospheric D layer predict that the transmission is greatly suppressed near the geomagnetic equator. We use data from the low-inclination Communication/Navigation Outage Forecast System satellite to test this semiquantitatively, for broadband very low frequency emissions from lightning. Approximate ground-truthing of the incident wavefields in the Earth-ionosphere waveguide is provided by the World Wide Lightning Location Network. Observations of the wavefields at the satellite are provided by the Vector Electric Field Instrument aboard the satellite. The data set comprises whistler observations with the satellite at magnetic latitudes <26°. Thus, our conclusions, too, must be limited to the near-equatorial region and are not necessarily predictive of midlatitude whistler properties. We find that in most broadband recordings of radio waves at the satellite, very few of the lightning strokes result in a detectable radio pulse at the satellite. However, in a minority of the recordings, there is enhanced transmission of very low frequency lightning emissions through the D layer, at a level exceeding model predictions by at least an order of magnitude. We show that kilometric-scale D-layer irregularities may be implicated in the enhanced transmission. This observation of sporadic enhancements at low magnetic latitude, made with broadband lightning emissions, is consistent with an earlier review of D-layer transmission for transmission from powerful man-made radio beacons.
NASA Technical Reports Server (NTRS)
Livermore, S. F. (Inventor)
1978-01-01
An apparatus for measuring the intensity of current produced in an elongated electrical conductive member by a lightning strike for determining the intensity of the lightning strike is presented. The apparatus includes an elongated strip of magnetic material that is carried within an elongated tubular housing. A predetermined electrical signal is recorded along the length of said elongated strip of magnetic material. One end of the magnetic material is positioned closely adjacent to the electrically conductive member so that the magnetic field produced by current flowing through said electrically conductive member disturbs a portion of the recorded electrical signal directly proportional to the intensity of the lightning strike.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Paulson, K. V.
For audio-frequency magnetotelluric surveys where the signals are lightning-stroke transients, the conventional Fourier transform method often fails to produce a high quality impedance tensor. An alternative approach is to use the wavelet transform method which is capable of localizing target information simultaneously in both the temporal and frequency domains. Unlike Fourier analysis that yields an average amplitude and phase, the wavelet transform produces an instantaneous estimate of the amplitude and phase of a signal. In this paper a complex well-localized wavelet, the Morlet wavelet, has been used to transform and analyze audio-frequency magnetotelluric data. With the Morlet wavelet, the magnetotelluric impedance tensor can be computed directly in the wavelet transform domain. The lightning-stroke transients are easily identified on the dilation-translation plane. Choosing those wavelet transform values where the signals are located, a higher signal-to-noise ratio estimation of the impedance tensor can be obtained. In a test using real data, the wavelet transform showed a significant improvement in the signal-to-noise ratio over the conventional Fourier transform.
Review of measurements of the RF spectrum of radiation from lightning
NASA Technical Reports Server (NTRS)
Levine, D. M.
1986-01-01
Measurements reported in the literature of the spectrum of electromagnetic radiation from lightning in the frequency range from 1 kHz to 1 GHz are reviewed. Measurements have been made either by monitoring the power received at individual frequencies using a narrow bandwidth recording device tuned to the frequencies under investigation or by recording the transient (time dependent) radiation with a wide bandwidth device and then Fourier transforming the waveform to obtain a spectrum. Measurements of the first type were made extensively in the 1950's and 1960's and several composite spectra have been deduced by normalizing the data of different investigators to common units of bandwidth and distance. The composite spectra tend to peak near 5 kHz and then decrease roughly as (frequency) to the -1, up to nearly 100 MHz where scatter in the data make the behavior uncertain. Measurements of the second type have been reported for return strokes, the stepped leader and for some intracloud processes. The spectrum of first return strokes obtained in this manner is very similar to the composite spectra obtained from the narrow-band measurements.
Long-Range Lightning Products for Short Term Forecasting of Tropical Cyclogenesis
NASA Astrophysics Data System (ADS)
Businger, S.; Pessi, A.; Robinson, T.; Stolz, D.
2010-12-01
This paper will describe innovative graphical products derived in real time from long-range lightning data. The products have been designed to aid in short-term forecasting of tropical cyclone development for the Tropical Cyclone Structure Experiment 2010 (TCS10) held over the western Pacific Ocean from 17 August to 17 October 2010 and are available online at http://www.soest.hawaii.edu/cgi-bin/pacnet/tcs10.pl. The long-range lightning data are from Vaisala’s Global Lightning Data 360 (GLD360) network and include time, location, current strength, polarity, and data quality indication. The products currently provided in real time include i. Infrared satellite imagery overlaid with lighting flash locations, with color indication of current strength and polarity (shades of blue for negative to ground and red for positive to ground). ii. A 15x15 degree storm-centered tile of IR imagery overlaid with lightning data as in i). iii. A pseudo reflectivity product showing estimates of radar reflectivity based on lightning rate - rain rate conversion derived from TRMM and PacNet data. iv. A lightning history product that plots each hour of lightning flash locations in a different color for a 12-hour period. v. Graphs of lightning counts within 50 or 300 km radius, respectively, of the storm center vs storm central sea-level pressure. vi. A 2-D graphic showing storm core lightning density along the storm track. The first three products above can be looped to gain a better understanding of the evolution of the lightning and storm structure. Examples of the graphics and their utility will be demonstrated and discussed. Histogram of lightning counts within 50 km of the storm center and graph of storm central pressure as a function of time.
LOFAR Lightning Imaging: Mapping Lightning With Nanosecond Precision
NASA Astrophysics Data System (ADS)
Hare, B. M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J. R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T. N. G.; ter Veen, S.; Winchen, T.
2018-03-01
Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (˜3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.
Ionospheric density perturbations recorded by DEMETER above intense thunderstorms
NASA Astrophysics Data System (ADS)
Parrot, M.; Sauvaud, J. A.; Soula, S.; PinçOn, J. L.; Velde, O.
2013-08-01
(Detection of Electromagnetic Emissions Transmitted From Earthquake Regions) was a three-axis stabilized Earth-pointing spacecraft launched on 29 June 2004 into a low-altitude (710 km) polar and circular orbit that was subsequently lowered to 650 km until the end of the mission in December 2010. DEMETER measured electromagnetic waves all around the Earth, except in the auroral zones (invariant latitude >65°). The frequency range for the electric field was from DC up to 3.5 MHz, and for the magnetic field, it was from a few hertz up to 20 kHz. At its altitude, the phenomena observed on the E field and B field spectrograms recorded during nighttime by the satellite in the very low frequency range are mainly dominated by whistlers. In a first step, the more intense whistlers have been searched. They correspond to the most powerful lightning strokes occurring below DEMETER. Then, it is shown that this intense lightning activity is able to perturb the electron and ion densities at the satellite altitude (up to 133%) during nighttime. These intense lightning strokes are generally associated with transient luminous events, and one event with many sprites recorded on 17 November 2006 above Europe is reported. Examining the charged particle precipitation, it is shown that this density enhancement in the high ionosphere can be related to the energetic particle precipitation induced by the strong whistlers emitted during a long-duration thunderstorm activity at the same location.
NASA Astrophysics Data System (ADS)
Zhu, Baoyou; Ma, Ming; Xu, Weiwei; Ma, Dong
2015-12-01
Properties of negative cloud-to-ground (CG) lightning flashes, in terms of number of strokes per flash, inter-stroke intervals and the relative intensity of subsequent and first strokes, were presented by accurate-stroke-count studies based on all 1085 negative flashes from a local thunderstorm. The percentage of single-stroke flashes and stroke multiplicity evolved significantly during the whole life cycle of the study thunderstorm. The occurrence probability of negative CG flashes decreased exponentially with the increasing number of strokes per flash. About 30.5% of negative CG flashes contained only one stroke and number of strokes per flash averaged 3.3. In a subset of 753 negative multiple-stroke flashes, about 41.4% contained at least one subsequent stroke stronger than the corresponding first stroke. Subsequent strokes tended to decrease in strength with their orders and the ratio of subsequent to first stroke peaks presented a geometric mean value of 0.52. Interestingly, negative CG flashes of higher multiplicity tended to have stronger initial strokes. 2525 inter-stroke intervals showed a more or less log-normal distribution and gave a geometric mean value of 62 ms. For CG flashes of particular multiplicity geometric mean inter-stroke intervals tended to decrease with the increasing number of strokes per flash, while those intervals associated with higher order strokes tended to be larger than those associated with low order strokes.
Lightning-channel conditioning
NASA Astrophysics Data System (ADS)
Sonnenfeld, R.; da Silva, C. L.; Eack, K.; Edens, H. E.; Harley, J.; McHarg, M.; Contreras Vidal, L.
2017-12-01
The concept of "conditioning" has several distinct applications in understanding lightning. It is commonly associated to the greater speed of dart-leaders vs. stepped leaders and the retrace of a cloud-to-ground channel by later return strokes. We will showadditional examples of conditioning: (A) High-speed videos of triggered flashes show "dark" periods of up to 50 ms between rebrightenings of an existing channel. (B) Interferometer (INTF) images of intra-cloud (IC) flashes demonstrate that electric-field "K-changes" correspond to rapid propagation of RF impulses along a previously formed channel separated by up to 20 ms with little RF emission on that channel. (C) Further, INTF images (like the one below) frequently show that the initial IC channel is more branched and "fuzzier'' than its later incarnations. Also, we contrast high-speed video, INTF observations, and spectroscopic measurements with possible physical mechanisms that can explain how channel conditioning guides and facilitates dart leader propagation. These mechanisms include: (1) a plasmochemical effect where electrons are stored in negative ions and released during the dart leader propagation via field-induced detachment; (2) small-amplitude residual currents that can maintain electrical conductivity; and (3) slow heat conduction cooling of plasma owing to channel expansion dynamics.
A simulated lightning effects test facility for testing live and inert missiles and components
NASA Technical Reports Server (NTRS)
Craven, Jeffery D.; Knaur, James A.; Moore, Truman W., Jr.; Shumpert, Thomas H.
1991-01-01
Details of a simulated lightning effects test facility for testing live and inert missiles, motors, and explosive components are described. The test facility is designed to simulate the high current, continuing current, and high rate-of-rise current components of an idealized direct strike lightning waveform. The Lightning Test Facility was in operation since May, 1988, and consists of: 3 separate capacitor banks used to produce the lightning test components; a permanently fixed large steel safety cage for retaining the item under test (should it be ignited during testing); an earth covered bunker housing the control/equipment room; a charge/discharge building containing the charging/discharging switching; a remotely located blockhouse from which the test personnel control hazardous testing; and interconnecting cables.
Measurement of characteristics of lightning at high altitudes
NASA Technical Reports Server (NTRS)
Coquelet, M.; Gall, D.
1981-01-01
New development in aeronautical technology -- the use of composite materials, new electronic components, electric flight controls -- have made aircraft potentially more and more vulnerable to the effects of lightning. In-flight tests were conducted to evaluate the current in a bolt of lightning, to measure voltage surge in the onboard circuitry and in certain pieces of equipment, and to document the relationship lightning bolt current and the voltage surge so as to develop a theoretical model and thuds to become acquainted with the significant
Interpretation of F-106B in-flight lightning signatures
NASA Technical Reports Server (NTRS)
Trost, T. F.; Grothaus, M. G.; Wen, C. T.
1985-01-01
Various characteristics of the electromagnetic data obtained on a NASA F-106B aircraft during direct lightning strikes are presented. Time scales of interest range from 10 ns to 400 microsecond. The following topics are discussed: (1) Lightning current, I, measured directly versus I obtained from computer integration of measured I-dot; (2) A method of compensation for the low frequency cutoff of the current transformer used to measure I; (3) Properties of fast pulses observed in the lightning time-derivative waveforms; (4) The characteristic D-dot signature of the F-106B aircraft; (5) An RC-discharge interpretation for some lightning waveforms; (6) A method for inferring the locations of lightning channel attachment points on the aircraft by using B-dot data; (7) Simple, approximate relationships between D-dot and I-dot and between B and I; and (8) Estimates of energy, charge, voltage, and resistance for a particular lightning event.
Electric fields preceding cloud-to-ground lightning flashes
NASA Astrophysics Data System (ADS)
Beasley, W.; Uman, M. A.; Rustan, P. L., Jr.
1982-06-01
A detailed analysis is presented of the electric-field variations preceding the first return strokes of 80 cloud-to-ground lightning flashes in nine different storms observed at the NASA Kennedy Space Center during the summers of 1976 and 1977. It is suggested that the electric-field variations can best be characterized as having two sections: preliminary variations and stepped leader. The stepped-leader change begins during a transition period of a few milliseconds marked by characteristic bipolar pulses; the duration of stepped leaders lies most frequently in the 6-20 millisecond range. It is also suggested that there is only one type of stepped leader, not two types (alpha and beta) often referred to in the literature.
Faraday Cage Protects Against Lightning
NASA Technical Reports Server (NTRS)
Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.
1992-01-01
Faraday cage protects electronic and electronically actuated equipment from lightning. Follows standard lightning-protection principles. Whether lightning strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.
Calibration tests on magnetic tape lightning current detectors
NASA Technical Reports Server (NTRS)
Crouch, K. E.
1980-01-01
The low cost, passive, peak lightning current detector (LCD) invented at the NASA/Kennedy Space Center, uses magnetic audio recording tape to sense the magnitude of the peak magnetic field around a conductor carrying lightning currents. Test results show that the length of audio tape erased was linearly related to the peak simulated lightning currents in a round conductor. Accuracies of + or - 10% were shown for measurements made using a stopwatch readout technique to determine the amount of tape erased by the lightning current. The stopwatch technique is a simple, low cost means of obtaining LCD readouts and can be used in the field to obtain immediate results. Where more accurate data are desired, the tape is played and the output recorded on a strip chart, oscilloscope, or some other means so that measurements can be made on that recording. Conductor dimensions, tape holder dimensions, and tape formulation must also be considered to obtain a more accurate result. If the shape of the conductor is other than circular (i.e., angle, channel, H-beam), an analysis of the magnetic field is required to use an LCD, especially at low current levels.
Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites
NASA Astrophysics Data System (ADS)
Kawakami, Hirohide
Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch-repaired CFRP plates were selected as structural elements likely to be susceptible to lightning event. This study forms a solid foundation for the understanding of lightning damage mechanism of CFRPs, and become an important first step toward building a practical damage prediction tool of lighting event.
NASA Technical Reports Server (NTRS)
Mata, C. T.; Rakov, V. A.; Mata, A. G.
2010-01-01
A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC3913) at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras; currents through the nine downconductors of the new lightning protection system for LC3913; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. A 20:1 scaled down model of the new Lightning Protection System (LPS) of LC39B was built at the International Center for Lightning Research and Testing, Camp Blanding, FL. This scaled down lightning protection system was instrumented with the transient recorders, digitizers, and sensors to be used in the final instrumentation installation at LC3913. The instrumentation used at the ICLRT is also a scaled-down instrumentation of the LC39B instrumentation. The scaled-down LPS was subjected to seven direct lightning strikes and six (four triggered and two natural nearby flashes) in 2010. The following measurements were acquired at the ICLRT: currents through the nine downconductors; two dl-/dt, 3-axis stations, one at the center of the LPS (underneath the catenary wires), and another 40 meters south from the center of the LPS; ten dE/dt stations, nine of them on the perimeter of the LPS and one at the center of the LPS (underneath the catenary wire system); and the incident current. Data from representative events are presented and analyzed in this paper.
NASA Technical Reports Server (NTRS)
Arnold, R. T.; Rust, W. D.
1984-01-01
Successful ground truth support of U-2 overflights was been accomplished. Data have been reduced for 4 June 1984 and some of the results have been integrated into some of MSFC's efforts. Staccato lightning (multiply branched, single stroke flash with no continuing current) is prevalent within the rainfree region around the main storm updraft and this is believed to be important, i.e., staccato flashes might be an important indicator of severe storm electrification. Results from data analysis from two stations appear to indicate that charge center heights can be estimated from a combination of intercept data with data from the fixed laboratory at NSSL. An excellent data base has been provided for determining the sight errors and efficiency of NSSL's LLP system. Cloud structures, observable in a low radar reflectivity region and on a scale smaller than is currently resolved by radar, which appear to be related to electrical activity are studied.
NASA Astrophysics Data System (ADS)
Haldoupis, Christos; Cohen, Morris; Cotts, Benjamin; Arnone, Enrico; Inan, Umran
2012-08-01
Observations show that intense +CG lightning discharges which trigger both an elve and a sprite are associated with long-lasting conductivity modifications in the upper D-region ionosphere. They are observed as strong perturbations in VLF signals propagating through the disturbed region, manifested as LOng Recovery Early VLF events (LORE), which can last up to 30 minutes. These same ionospheric modifications are also responsible for step-like changes, seen mostly in off-storm VLF transmissions, which offset signal levels even for longer times. The evidence suggests that when a very intense positive cloud to ground lightning stroke leads to an elve and a high altitude sprite, and possibly a sprite halo as well, there is production of long lasting elevations in electron density at VLF reflection heights that cause LOREs and severe effects on VLF propagation. The present results confirm past predictions and postulations that elves may be accompanied by long-lasting electron density perturbations in the lower ionosphere.
Lightning strike protection of composites
NASA Astrophysics Data System (ADS)
Gagné, Martin; Therriault, Daniel
2014-01-01
Aircraft structures are being redesigned to use fiber-reinforced composites mainly due to their high specific stiffness and strength. One of the main drawbacks from changing from electrically conductive metals to insulating or semi-conducting composites is the higher vulnerability of the aircraft to lightning strike damage. The current protection approach consists of bonding a metal mesh to the surface of the composite structure, but this weight increase negatively impact the fuel efficiency. This review paper presents an overview of the lightning strike problematic, the regulations, the lightning damage to composite, the current protection solutions and other material or technology alternatives. Advanced materials such as polymer-based nanocomposites and carbon nanotube buckypapers are promising candidates for lightweight lightning strike protection technology.
Inner ear damage following electric current and lightning injury: a literature review.
Modayil, P C; Lloyd, G W; Mallik, A; Bowdler, D A
2014-05-01
Audiovestibular sequelae of electrical injury, due to lightning or electric current, are probably much more common than indicated in literature. The aim of the study was to review the impact of electrical injury on the cochleovestibular system. Studies were identified through Medline, Embase, CINAHL and eMedicine databases. Medical Subject Headings used were 'electrical injury', 'lightning', 'deafness' and 'vertigo'. All prospective and retrospective studies, case series and case reports of patients with cochlear or vestibular damage due to lightning or electrical current injury were included. Studies limited to external and middle ear injuries were excluded. Thirty-five articles met the inclusion criteria. Fifteen reported audiovestibular damage following electric current injury (domestic or industrial); a further 15 reported lightning injuries and five concerned pathophysiology and management. There were no histological studies of electrical current injury to the human audiovestibular system. The commonest acoustic insult after lightning injury is conductive hearing loss secondary to tympanic membrane rupture and the most frequent vestibular symptom is transient vertigo. Electrical current injuries predominantly cause pure sensorineural hearing loss and may significantly increase a patient's lifetime risk of vertigo. Theories for cochleovestibular damage in electrical injury include disruption of inner ear anatomy, electrical conductance, hypoxia, vascular effects and stress response hypothesis. The pathophysiology of cochleovestibular damage following electrical injury is unresolved. The mechanism of injury following lightning strike is likely to be quite different from that following domestic or industrial electrical injury. The formulation of an audiovestibular management protocol for patients who have suffered electrical injuries and systematic reporting of all such events is recommended.
Fiber-Optic Sensor for Aircraft Lightning Current Measurement
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata,Angel G.; Snyder, Gary P.
2012-01-01
An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor's accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.
Fiber-Optic Sensor for Aircraft Lightning Current Measurement
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.
2012-01-01
An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.
NASA Technical Reports Server (NTRS)
Blakelee, Richard
1999-01-01
A four station Advanced Lightning Direction Finder (ALDF) network was recently established in the state of Rondonia in western Brazil through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of-arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the internet. The network will remain deployed for several years to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measurement Mission (TRMM) satellite which was launched in November 1997. The measurements will also be used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-term observations from this network will contribute in establishing a regional lightning climatological data base, supplementing other data bases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at NASA/MSFC are now being applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The processing methodology and the initial results from an analysis of the first 6 months of network operations will be presented.
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Bailey, J. C.; Pinto, O.; Athayde, A.; Renno, N.; Weidman, C. D.
2003-01-01
A four station Advanced Lightning Direction Finder (ALDF) network was established in the state of Rondonia in western Brazil in 1999 through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of- arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/Marshall Space Flight Center in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the Internet. The network, which is still operational, was deployed to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite that was launched in November 1997. The measurements are also being used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-time series observations produced by this network will help establish a regional lightning climatological database, supplementing other databases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at the NASA/Marshall Space Flight Center have been applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The data will also be corrected for the network detection efficiency. The processing methodology and the results from the analysis of four years of network operations will be presented.
NASA Technical Reports Server (NTRS)
Blakeslee, Rich; Bailey, Jeff; Koshak, Bill
1999-01-01
A four station Advanced Lightning Direction Finder (ALDF) network was recently established in the state of Rondonia in western Brazil through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of-arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/ Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the internet. The network will remain deployed for several years to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite which was launched in November 1997. The measurements will also be used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-term observations from this network will contribute in establishing a regional lightning climatological data base, supplementing other data bases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at NASA/Marshall Space Flight Center (MSFC) are now being applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The processing methodology and the initial results from an analysis of the first 6 months of network operations will be presented.
NASA Astrophysics Data System (ADS)
Alves, J.; Saraiva, A. C. V.; Campos, L. Z. D. S.; Pinto, O., Jr.; Antunes, L.
2014-12-01
This work presents a method for the evaluation of location accuracy of all Lightning Location System (LLS) in operation in southeastern Brazil, using natural cloud-to-ground (CG) lightning flashes. This can be done through a multiple high-speed cameras network (RAMMER network) installed in the Paraiba Valley region - SP - Brazil. The RAMMER network (Automated Multi-camera Network for Monitoring and Study of Lightning) is composed by four high-speed cameras operating at 2,500 frames per second. Three stationary black-and-white (B&W) cameras were situated in the cities of São José dos Campos and Caçapava. A fourth color camera was mobile (installed in a car), but operated in a fixed location during the observation period, within the city of São José dos Campos. The average distance among cameras was 13 kilometers. Each RAMMER sensor position was determined so that the network can observe the same lightning flash from different angles and all recorded videos were GPS (Global Position System) time stamped, allowing comparisons of events between cameras and the LLS. The RAMMER sensor is basically composed by a computer, a Phantom high-speed camera version 9.1 and a GPS unit. The lightning cases analyzed in the present work were observed by at least two cameras, their position was visually triangulated and the results compared with BrasilDAT network, during the summer seasons of 2011/2012 and 2012/2013. The visual triangulation method is presented in details. The calibration procedure showed an accuracy of 9 meters between the accurate GPS position of the object triangulated and the result from the visual triangulation method. Lightning return stroke positions, estimated with the visual triangulation method, were compared with LLS locations. Differences between solutions were not greater than 1.8 km.
An Overview of Three-year JEM-GLIMS Nadir Observations of Lightning and TLEs
NASA Astrophysics Data System (ADS)
Sato, M.; Ushio, T.; Morimoto, T.; Adachi, T.; Kikuchi, H.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; Inan, U.; Linscott, I.; Hobara, Y.
2015-12-01
JEM-GLIMS nadir observations of lightning and TLEs at the ISS started from November 2012 and successfully ended on August 2015. For three-year observation period, JEM-GLIMS succeeded in detecting over 8,000 lightning events and 670 TLEs. The detected optical emissions of sprites showed clear horizontal displacement with the range of 10-20 km from the peak location of the +CG emissions and from the +CG locations detected by NLDN and WWLLN. Using VITF electric field waveform data, source locations of VHF pulses excited by the parent CG discharges are estimated. It is found that the possible VHF source locations were mostly located within the area of the parent lightning emissions. These facts may imply that the center region of the neutralized charge by CG discharges in the thundercloud located near the return stroke point and that the some seed conditions were established in advance at the sprite location before the occurrence of sprites. The global occurrence distributions and rates of lightning discharges and TLEs are also estimated. The estimated mean global occurrence rate of lightning discharges is ~1.5 events/s, which is smaller number than that derived from MicroLab-1/OTD and TRMM/LIS measurements. This may be originated in the fact that JEM-GLISM detected only intense lightning optical events due to the high threshold level for the event triggering. To the contrary, the estimated mean global occurrence rate of TLEs is ~9.8 events/min, which is two times higher than the ISUAL result. It is likely that JEM-GLIMS could detect dimmer optical emissions of TLEs than ISUAL since the distance between the JEM-GLIMS instruments and TLEs is much closer. At the presentation, we will summarize the results derived from three-year JEM-GLIMS nadir observations. We will discuss possible occurrence conditions of sprites, properties of global occurrence rates of lightning and TLEs, and their LT dependences more in detail.
NASA Technical Reports Server (NTRS)
Hill, J. D.; Pilkey, J.; Uman, M, A.; Jordan, D. M.; Biggerstaff, M. I.; Rison, W.; Blakeslee, R.
2012-01-01
We characterize the geometrical and electrical characteristics of the initial stages of nine Florida triggered lightning discharges using a Lightning Mapping Array (LMA), a C-band SMART radar, and measured channel-base currents. We determine initial channel and subsequent branch lengths, average initial channel and branch propagation speeds, and channel-base current at the time of each branch initiation. The channel-base current is found to not change significantly when branching occurs, an unexpected result. The initial stage of Florida triggered lightning typically transitions from vertical to horizontal propagation at altitudes of 3-6 km, near the typical 0 C level of 4-5 km and several kilometers below the expected center of the negative cloud-charge region at 7-8 km. The data presented potentially provide information on thunderstorm electrical and hydrometeor structure and discharge propagation physics. LMA source locations were obtained from VHF sources of positive impulsive currents as small as 10 A, in contrast to expectations found in the literature.
Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
Physical and Dynamical Linkages between Lightning Jumps and Storm Conceptual Models
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
The Elusive Evidence of Volcanic Lightning.
Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M
2017-11-14
Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.
Lightning effects on the NASA F-8 digital-fly-by-wire airplane
NASA Technical Reports Server (NTRS)
Plumer, J. A.; Fisher, F. A.; Walko, L. C.
1975-01-01
The effects of lightning on a Digital Fly-By-Wire (DFBW)aircraft control system were investigated. The aircraft was a NASA operated F-8 fitted with a modified Apollo guidance computer. Current pulses similar in waveshape to natural lightning, but lower in amplitude, were injected into the aircraft. Measurements were made of the voltages induced on the DFBW circuits, the total current induced on the bundles of wires, the magnetic field intensity inside the aircraft, and the current density on the skin of the aircraft. Voltage measurements were made in both the line-to-ground and line-to-line modes. Voltages measured at the non-destructive test level were then scaled upward to determine how much would be produced by actual lightning. A 200,000 ampere severe lightning flash would produce between 40 and 2000 volts in DFBW circuits. Some system components are expected to be vulnerable to these voltages.
The 1983 direct strike lightning data, part 1
NASA Technical Reports Server (NTRS)
Thomas, Mitchel E.
1985-01-01
Data waveforms are presented which were obtained during the 1983 direct strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. Part 1 contains 435 pages of lightning strike data in chart form.
The 1983 direct strike lightning data, part 2
NASA Technical Reports Server (NTRS)
Thomas, Mitchel E.
1985-01-01
Data waveforms are presented which were obtained during the 1983 direct strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. Part 2 contains 443 pages of lightning strike data in chart form.
The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.
Filigree burn of lightning: two case reports.
Kumar, Virendra
2007-04-01
Lightning is a powerful natural electrostatic discharge produced during a thunderstorm. The electric current passing through the discharge channels is direct with a potential of 1000 million volts or more. Lightning can kill or injure a person by a direct strike, a side-flash, or conduction through another object. Lightning can cause a variety of injuries in the skin and the cardiovascular, neurological and ophthalmic systems. Filigree burn of lightning is a superficial burn and very rare. Two cases of death from lightning which have this rare finding are reported and discussed.
MSFC shuttle lightning research
NASA Technical Reports Server (NTRS)
Vaughan, Otha H., Jr.
1993-01-01
The shuttle mesoscale lightning experiment (MLE), flown on earlier shuttle flights, and most recently flown on the following space transportation systems (STS's), STS-31, -32, -35, -37, -38, -40, -41, and -48, has continued to focus on obtaining additional quantitative measurements of lightning characteristics and to create a data base for use in demonstrating observation simulations for future spaceborne lightning mapping systems. These flights are also providing design criteria data for the design of a proposed shuttle MLE-type lightning research instrument called mesoscale lightning observational sensors (MELOS), which are currently under development here at MSFC.
Variation of the channel temperature in the transmission of lightning leader
NASA Astrophysics Data System (ADS)
Chang, Xuan; Yuan, Ping; Cen, Jianyong; Wang, Xuejuan
2017-06-01
According to the time-resolved spectra of the lightning stepped leader and dart leader processes, the channel temperature, its evolution characteristics with time and the variation along the channel height in the transmission process were analyzed. The results show that the stepped leader tip has a slightly higher temperature than the trailing end, which should be caused by a large amount of electric charges on the leader tip. In addition, both temperature and brightness are enhanced at the position of the channel node. The dart leader has a higher channel temperature than the stepped leader but a lower temperature than the return stroke. Meanwhile, the channel temperature of the dart leader obviously increases when the dart leader propagates to the ground.
NASA Astrophysics Data System (ADS)
Stock, M.; Lapierre, J. L.; Zhu, Y.
2017-12-01
Recently, the Geostationary Lightning Mapper (GLM) began collecting optical data to locate lightning events and flashes over the North and South American continents. This new instrument promises uniformly high detection efficiency (DE) over its entire field of view, with location accuracy on the order of 10 km. In comparison, Earth Networks Total Lightning Networks (ENTLN) has a less uniform coverage, with higher DE in regions with dense sensor coverage, and lower DE with sparse sensor coverage. ENTLN also offers better location accuracy, lightning classification, and peak current estimation for their lightning locations. It is desirable to produce an integrated dataset, combining the strong points of GLM and ENTLN. The easiest way to achieve this is to simply match located lightning processes from each system using time and distance criteria. This simple method will be limited in scope by the uneven coverage of the ground based network. Instead, we will use GLM group locations to look up the electric field change data recorded by ground sensors near each GLM group, vastly increasing the coverage of the ground network. The ground waveforms can then be used for: improvements to differentiation between glint and lightning for GLM, higher precision lighting location, current estimation, and lightning process classification. Presented is an initial implementation of this type of integration using preliminary GLM data, and waveforms from ENTLN.
JPS heater and sensor lightning qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.
NASA Manned Launch Vehicle Lightning Protection Development
NASA Technical Reports Server (NTRS)
McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.
2009-01-01
Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the spacecraft and launch vehicles to withstand both the direct and indirect effects of lightning. A review of current Space Shuttle lightning constraints and protection methodology will be presented, as well as a historical review of Space Shuttle lightning requirements and design. The Space Shuttle lightning requirements document, NSTS 07636, Lightning Protection, Test and Analysis Requirements, (originally published as document number JSC 07636, Lightning Protection Criteria Document) was developed in response to the Apollo 12 lightning event and other experiences with NASA and the Department of Defense launch vehicles. This document defined the lightning environment, vehicle protection requirements, and design guidelines for meeting the requirements. The criteria developed in JSC 07636 were a precursor to the Society of Automotive Engineers (SAE) lightning standards. These SAE standards, along with Radio Technical Commission for Aeronautics (RTCA) DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, are the basis for the current Constellation lightning design requirements. The development and derivation of these requirements will be presented. As budget and schedule constraints hampered lightning protection design and verification efforts, the Space Shuttle elements waived the design requirements and relied on lightning avoidance in the form of launch commit criteria (LCC) constraints and a catenary wire system for lightning protection at the launch pads. A better understanding of the lightning environment has highlighted the vulnerability of the protection schemes and associated risk to the vehicle, which has resulted in lost launch opportunities and increased expenditures in manpower to assess Space Shuttle vehicle health and safety after lightning events at the launch pad. Because of high-percentage launch availability and long-term on-pad requirements, LCC constraints are no longer considered feasible. The Constellation vehicles must be designed to withstand direct and indirect effects of lightning. A review of the vehicle design and potential concerns will be presented as well as the new catenary lightning protection system for the launch pad. This system is required to protect the Constellation vehicles during launch processing when vehicle lightning effects protection might be compromised by such items as umbilical connections and open access hatches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabayan, H.S.; Zicker, J.D.
The amplitudes of currents due to lightning are considerably larger than NEMP induced currents both in the time and frequency domains. The more important quantity for aperture illumination is the rate of rise of the current. The analysis performed for this in this memorandum is unsatisfactory since the artificial double exponential model was used. Still, the lightning rate of rise is only twice as high as that due to NEMP even when the absolute worst (or presently known) lightning pulse is used. A much better way to do this comparison is to use an actual LEMP data and NEMP frommore » an actual weapon. Furthermore, because of lack of data, no electric field analysis was undertaken.« less
NASA Astrophysics Data System (ADS)
Montanya, J.; Oscar, V. D. V.; Tapia, F. F.
2017-12-01
Since the discovery of the Terrestrial Gamma-ray Flashes more than 20 years ago, investigations on high energy emissions from natural lightning and high voltage laboratory sparks gained significant interest. X-ray emissions from lightning as well from high voltage laboratory sparks have in common the role played by negative leaders/streamers. On the other hand, negative leaders are well known to produce much more VHF and microwave radiation than positive leaders. Moreover, in previous works, microwave emissions from lightning leaders have been attributed to Bremsstrahlung process. The object of this work is to investigate if X-rays and RF microwave emissions share the same origin. We present simultaneous measurements of X-rays and microwaves in high voltage sparks and natural lightning. The instrumentation consists on a NaI(Tl) and LaBr3 scintillation detectors and two different receivers. One is fix tuned at 2.4 GHz with a bandwidth of 5.5 MHz. The second can be tuned at any frequency up to 18 GHz with different selectable bandwidths of 10 MHz, 40 MHz and 100 MHz. In the laboratory, results have shown that all the sparks presented microwave radiation before the breakdown of the gap, either X-rays were detected or not. In the cases where X-rays were identified, microwave emissions peaked at the same time (in the microsecond scale). We found that the power amplitudes of the microwave emissions are related to the applied voltage to the gap. In the same configuration, those cases where X-rays were detected microwave emissions presented higher power levels. The results suggest that in some part of the discharge electrons are very fast accelerated allowing, in some cases, to reach enought energy to produce X-rays. In the field, we have found similar results. On 13th of June of 2015 a bipolar cloud-to-ground flash struck 200 m close to the Eagle Nest instrumented tower (Spanish Pyrenees, 2536 m ASL). The flash presented four strokes and, in all of them, microwave radiation was detected before the return stroke. The microwave emissions in the first positive leader had lower amplitude but presented longer duration whereas the emissions in the three negative downward dart leaders were more impulsive. X-rays were detected in two of the three negative downward dart leaders.
Three-dimensional time domain model of lightning including corona effects
NASA Technical Reports Server (NTRS)
Podgorski, Andrew S.
1991-01-01
A new 3-D lightning model that incorporates the effect of corona is described for the first time. The new model is based on a Thin Wire Time Domain Lightning (TWTDL) Code developed previously. The TWTDL Code was verified during the 1985 and 1986 lightning seasons by the measurements conducted at the 553 m CN Tower in Toronto, Ontario. The inclusion of corona in the TWTDL code allowed study of the corona effects on the lightning current parameters and the associated electric field parameters.
NASA Technical Reports Server (NTRS)
Grove, C. H.; Phillips, R. L.; Wojtasinski, R. J.
1975-01-01
A lightning instrumentation system was designed to record current magnitudes of lightning strikes that hit a launch pad service structure at NASA's Kennedy Space Center. The instrumentation system consists of a lightning ground rod with a current sensor coil, an optical transmitter, an optical fiber cable link, a detector receiver, and a recording system. The transmitter is a wideband pulse transformer driving an IR LED emitter. The transmitter operates linearly as a transducer. A low loss fiber bundle provides isolation of the recorder system from the electromagnetic field of the lightning strike. The output of an optical detector receiver module is sampled and recorded in digital format. The significant factors considered in the design were dynamic range, linearity, mechanical configuration, electromagnetic isolation, and temperature compensation.
Dancing red sprites and the lightning activity in their parent thunderstorm
NASA Astrophysics Data System (ADS)
Bór, József; Zelkó, Zoltán; Hegedüs, Tibor; Jäger, Zoltán; Mlynarczyk, Janusz; Popek, Martin; Betz, Hans-Dieter
2016-04-01
Red sprites are brief optical emissions initiated in the mesosphere by intense tropospheric lightning discharges. A group of red sprites, in which the elements appear in rapid succession with some lateral offset from one another is referred to as a dancing sprite event. The occurrence of such events implies that significant and sequential charge removal extending to large regions of the thunderstorm can take place in the underlying cloud system. In this work, we examine the relation of the locations and observation times of appearing sprite elements to the temporal and spatial distribution of the lightning activity in a specific sprite-active thunderstorm. The selected mesoscale convective system (MCS) composed of several extremely active thundercloud cells crossed Central Europe from South-West to North-East through Germany, Austria, the Czech Republic, and Poland on the night of 6 August, 2013. This MCS has triggered over one hundred sprites including several dancing sprite events. Video recordings of sprites captured from Sopron, Hungary (16.6°E, 47.7°N) and Nydek, Czech Republic (18.8°E, 49.7°N) were used to identify dancing sprite events and to determine the exact locations of the appearing sprite elements by a triangulation technique used originally to analyze meteor observations. Lightning activity in the MCS can be reviewed using the database of LINET lightning detection network which fully covers the region of interest (ROI). The poster demonstrates how cases of sequential charge removal in the thunderstorm can be followed by combining the available information on the occurrence time, location, polarity, and type (CG/IC) of detected lightning strokes in the ROI on one hand and the occurrence time and location of elements in dancing sprite events on the other hand.
NASA Technical Reports Server (NTRS)
Breslawski, Christine
1990-01-01
An analysis of video tapes of nocturnal lightning events, taken aboard space shuttle flights STS-8, STS-9, STS-41D, and STS-51J, shows flashes with dimensions ranging from approximately 1 km by 1 km to 440 km by 110 km. Of particular interest are the flashes whose dimensions exceeded 100 km, as flashes of this size are seldom reported. In general, larger flashes were found to have longer durations, take longer to reach their maximum extent, and reach their maximum extent at a smaller percent of their total duration than smaller flashes. Sixty four percent of the flashes occurred with one to five other events appearing in the same video frame. These simultaneous events were an average of 60 km apart from each other. If a breakdown process is propagating between the simultaneous flashes, it would be travelling at a rate of 10(exp 5)m/sec. Plots of the area of an event over its duration show peaks in the area curve which may be indicative if lightning strokes. There was an average of 3.6 peaks per flash. In general, the longer the flash duration, the more peaks there were in the area curve. The area curves of the lightning events fall into one of five shape categories. It is suggested that the shape of the area curve may indicate whether an event is an intracloud or cloud to ground lightning flash. Some of the lightning events had a persistent bright spot. These events had an average duration which was greater than that of events without the bright spot. On average, the bright spot events had a maximum area which was larger than that of the flashes without the bright spot.
NASA Astrophysics Data System (ADS)
1985-12-01
The conference presents papers on statistical data and standards, coupling and indirect effects, meteorology and thunderstorm studies, lightning simulators, fuel ignition hazards, the phenomenology and characterization of lightning, susceptibility and protection of avionics, ground systems protection, lightning locators, aircraft systems protection, structures and materials, electrostatics, and spacecraft protection against static electricity. Particular attention is given to a comparison of published HEMP and natural lightning on the surface of an aircraft, electromagnetic interaction of external impulse fields with aircraft, of thunderstorm currents and lightning charges at the NASA Kennedy Space Center, the design of a fast risetime lightning generator, lightning simulation tests in FAA CV-580 lightning research aircraft, and the energy requirements of an aircraft triggered discharge. Papers are also presented on aircraft lightning attachment at low altitudes, a new form of transient suppressor, a proving ground for lightning research, and a spacecraft materials test in a continuous, broad energy-spectrum electron beam.
Lightning-Related Indicators for National Climate Assessment (NCA) Studies
NASA Astrophysics Data System (ADS)
Koshak, W. J.
2017-12-01
With the recent advent of space-based lightning mappers [i.e., the Geostationary Lightning Mapper (GLM) on GOES-16, and the Lightning Imaging Sensor (LIS) on the International Space Station], improved investigations on the inter-relationships between lightning and climate are now possible and can directly support the goals of the National Climate Assessment (NCA) program. Lightning nitrogen oxides (LNOx) affect greenhouse gas concentrations such as ozone that influences changes in climate. Conversely, changes in climate (from any causes) can affect the characteristics of lightning (e.g., frequency, current amplitudes, multiplicity, polarity) that in turn leads to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality). This study discusses improvements to, and recent results from, the NASA/MSFC NCA Lightning Analysis Tool (LAT). It includes key findings on the development of different types of lightning flash energy indicators derived from space-based lightning observations, and demonstrates how these indicators can be used to estimate trends in LNOx across the continental US.
Model of lightning strike to a steel reinforce structure using PSpice
NASA Astrophysics Data System (ADS)
Koone, Neil; Condren, Brian
2003-03-01
Surges and arcs from lightning can pose hazards to personnel and sensitive equipment and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air.
Evolution simulation of lightning discharge based on a magnetohydrodynamics method
NASA Astrophysics Data System (ADS)
Fusheng, WANG; Xiangteng, MA; Han, CHEN; Yao, ZHANG
2018-07-01
In order to solve the load problem for aircraft lightning strikes, lightning channel evolution is simulated under the key physical parameters for aircraft lightning current component C. A numerical model of the discharge channel is established, based on magnetohydrodynamics (MHD) and performed by FLUENT software. With the aid of user-defined functions and a user-defined scalar, the Lorentz force, Joule heating and material parameters of an air thermal plasma are added. A three-dimensional lightning arc channel is simulated and the arc evolution in space is obtained. The results show that the temperature distribution of the lightning channel is symmetrical and that the hottest region occurs at the center of the lightning channel. The distributions of potential and current density are obtained, showing that the difference in electric potential or energy between two points tends to make the arc channel develop downwards. The arc channel comes into expansion on the anode surface due to stagnation of the thermal plasma and there exists impingement on the copper plate when the arc channel comes into contact with the anode plate.
Lightning induced currents in aircraft wiring using low level injection techniques
NASA Technical Reports Server (NTRS)
Stevens, E. G.; Jordan, D. T.
1991-01-01
Various techniques were studied to predict the transient current induced into aircraft wiring bundles as a result of an aircraft lightning strike. A series of aircraft measurements were carried out together with a theoretical analysis using computer modeling. These tests were applied to various aircraft and also to specially constructed cylinders installed within coaxial return conductor systems. Low level swept frequency CW (carrier waves), low level transient and high level transient injection tests were applied to the aircraft and cylinders. Measurements were made to determine the transfer function between the aircraft drive current and the resulting skin currents and currents induced on the internal wiring. The full threat lightning induced transient currents were extrapolated from the low level data using Fourier transform techniques. The aircraft and cylinders used were constructed from both metallic and CFC (carbon fiber composite) materials. The results show the pulse stretching phenomenon which occurs for CFC materials due to the diffusion of the lightning current through carbon fiber materials. Transmission Line Matrix modeling techniques were used to compare theoretical and measured currents.
Modern concepts of treatment and prevention of lightning injuries.
Edlich, Richard F; Farinholt, Heidi-Marie A; Winters, Kathryne L; Britt, L D; Long, William B
2005-01-01
Lightning is the second most common cause of weather-related death in the United States. Lightning is a natural atmospheric discharge that occurs between regions of net positive and net negative electric charges. There are several types of lightning, including streak lightning, sheet lightning, ribbon lightning, bead lightning, and ball lightning. Lightning causes injury through five basic mechanisms: direct strike, flash discharge (splash), contact, ground current (step voltage), and blunt trauma. While persons struck by lightning show evidence of multisystem derangement, the most dramatic effects involve the cardiovascular and central nervous systems. Cardiopulmonary arrest is the most common cause of death in lightning victims. Immediate resuscitation of people struck by lightning greatly affects the prognosis. Electrocardiographic changes observed following lightning accidents are probably from primary electric injury or burns of the myocardium without coronary artery occlusion. Lightning induces vasomotor spasm from direct sympathetic stimulation resulting in severe loss of pulses in the extremities. This vasoconstriction may be associated with transient paralysis. Damage to the central nervous system accounts for the second most debilitating group of injuries. Central nervous system injuries from lightning include amnesia and confusion, immediate loss of consciousness, weakness, intracranial injuries, and even brief aphasia. Other organ systems injured by lightning include the eye, ear, gastrointestinal system, skin, and musculoskeletal system. The best treatment of lightning injuries is prevention. The Lightning Safety Guidelines devised by the Lightning Safety Group should be instituted in the United States and other nations to prevent these devastating injuries.
An investigation of the generation and properties of laboratory-produced ball lightning
NASA Astrophysics Data System (ADS)
Oreshko, A. G.
2015-06-01
The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning - in an external spherical layer that rotates around the axis - there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is `embedded' in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.
NASA Astrophysics Data System (ADS)
Kubicki, Marek; Konarski, Jerzy; Gajda, Wojciech; Barański, Piotr; Guzikowski, Jakub; Kryza, Maciej
2017-04-01
In this work we present preliminary results on the thunderstorm event at IG PAS Swider Geophysical Observatory (52.12°N, 21.25°E, geomagnetic latitude 50.5°N, near Warsaw, Poland) on 19 July 2015. The storm was caused by the abrasion of the warm front that stretched almost latitudinaly and cold front moving from the west to the east. Warm continental-tropical arrived at southern and eastern part of the country and the rest was covered by cool polar-maritime airmass. The storm had the squall-line character of approximately 100 km length and consisted of several cells, and the height of the cumulonimbus (Cb) cloud base was 1 km and top was 14 km, as inferred from the analysis of CAPPI (Constant Altitude Plan Position Indicator), CMAX (Column Maximum Display), MLVCUT (Multiple-Line Vertical Cut) radar map products from POLRAD observations at Institute of Meteorology and Water Management - National Research Institute (IMWM-NRI), Legionowo station. In our paper we have discussed the obtained results of the post-time analysis of lightning activity and radar observations of the extended multicells thunderstorm system passing over IG PAS Swider Geophysical Observatory, on 19 July 2015 together with its dynamic and electric charge structure obtained from the WRF_ELEC model. We have used the archive data from the Polish National Lightning Location and Detection System PERUN (provided by IMWM-NRI) together with radar data obtained from the Doppler meteorological radar METEOR 1500C at Legionowo. Additionally, during the approach, passing over and moving away phase of the thunderstorm system, we have gathered the simultaneous and continuous recordings of E-field, the electric conductivity of air and the independent supplementary reference lightning detections delivered by the Swider measuring station of the Local Lightning Detection Network (LLDN) operated in Warsaw region. These data have given us a new possibility to acquire many valuable information about the characteristic type of the particular lightning flashes that were initiated by different adjacent thunderstorm cells developed in this time. On the other hand, the recorded E-field signatures of the lightning strokes by the LLDN measuring station have enabled us to differentiate between the variety of their types indicating the complex electric charge structure of the particular thunderstorm cells which developed in this storm system. Moreover, on the base of the supplementary numerical simulations of the considered thunderstorm episode by applying the WRF_ELEC model to the post-time analysis we were able to obtain the more detailed picture with more thermodynamic parameters not only about the specific electric charge structure of the considered thunderstorm cells, and how their thermodynamic pattern created the suitable conditions to initiate the observed lightning stroke types. Atmospheric electricity observations at Swider have been supported within the statutory activities of Institute of Geophysics, PAS, grant No. 3841/E-41/S/2016 and 3841/E-41/S/2017 of the Ministry of Science and Higher Education of Poland.
A comparison of lightning and nuclear electromagnetic pulse response of a helicopter
NASA Technical Reports Server (NTRS)
Easterbrook, C. C.; Perala, R. A.
1984-01-01
A numerical modeling technique is utilized to investigate the response of a UH-60A helicopter to both lightning and nuclear electromagnetic pulses (NEMP). The analytical approach involves the three-dimensional time domain finite-difference solutions of Maxwell's equations. Both the external currents and charges as well as the internal electromagnetic fields and cable responses are computed. Results of the analysis indicate that, in general, the short circuit current on internal cables is larger for lightning, whereas the open-circuit voltages are slightly higher for NEMP. The lightning response is highly dependent upon the rise time of the injected current as was expected. The analysis shows that a coupling levels to cables in a helicopter are 20 to 30 dB larger than those observed in fixed-wing aircraft.
An experiment to detect and locate lightning associated with eruptions of Redoubt Volcano
Hoblitt, R.P.
1994-01-01
A commercially-available lightning-detection system was temporarily deployed near Cook Inlet, Alaska in an attempt to remotely monitor volcanogenic lightning associated with eruptions of Redoubt Volcano. The system became operational on February 14, 1990; lightning was detected in 11 and located in 9 of the 13 subsequent eruptions. The lightning was generated by ash clouds rising from pyroclastic density currents produced by collapse of a lava dome emplaced near Redoubt's summit. Lightning discharge (flash) location was controlled by topography, which channeled the density currents, and by wind direction. In individual eruptions, early flashes tended to have a negative polarity (negative charge is lowered to ground) while late flashes tended to have a positive polarity (positive charge is lowered to ground), perhaps because the charge-separation process caused coarse, rapid-settling particles to be negatively charged and fine, slow-settling particles to be positively charged. Results indicate that lightning detection and location is a useful adjunct to seismic volcano monitoring, particularly when poor weather or darkness prevents visual observation. The simultaneity of seismicity and lightning near a volcano provides the virtual certainty that an ash cloud is present. This information is crucial for aircraft safety and to warn threatened communities of impending tephra falls. The Alaska Volcano Observatory has now deployed a permanent lightning-detection network around Cook Inlet. ?? 1994.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Wheeler, Mark
2005-01-01
Five logistic regression equations were created that predict the probability of cloud-to-ground lightning occurrence for the day in the KSC/CCAFS area for each month in the warm season. These equations integrated the results from several studies over recent years to improve thunderstorm forecasting at KSC/CCAFS. All of the equations outperform persistence, which is known to outperform NPTI, the current objective tool used in 45 WS lightning forecasting operations. The equations also performed well in other tests. As a result, the new equations will be added to the current set of tools used by the 45 WS to determine the probability of lightning for their daily planning forecast. The results from these equations are meant to be used as first-guess guidance when developing the lightning probability forecast for the day. They provide an objective base from which forecasters can use other observations, model data, consultation with other forecasters, and their own experience to create the final lightning probability for the 1100 UTC briefing.
NASA Astrophysics Data System (ADS)
Luque, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Yair, Yoav; Price, Colin
2013-04-01
Radio observations [1] and, more recently, optical images from the Cassini spacecraft [2] have clearly established the existence of electrical storms in Saturn and constrained the possible altitude range and total dissipated energy of lightning strokes. Based on these observations, we here investigate the physical effects of lightning on the upper layers of Saturn's atmosphere. We first study the relevance of the conductivity profile of the lower Saturnian ionosphere and how the Maxwell relaxation time limits the amplitude and duration of the reduced electric fields. We implemented a simple, zero-dimensional model [3] that considers only the most relevant ionization reactions; we then applied this model to two conductivity profiles proposed in the literature [4, 5] and a range of possible amplitudes and durations of the driving stroke. Then we investigate the possibility that the lightning-induced ionization results in a field that is locally strong enough to ignite streamer discharges and thus form a sprite. A sprite would lead to localized but very intense fields potentially resulting in detectable optical emissions [6]. We model the possible sprite inception with a self-consistent, cylindrically symmetrical 3d transport code [7]. Finally we discuss the chemical impact of lightning-induced electric fields in the upper Saturnian atmosphere. We use a kinetic model where we implemented the most important reactions induced by energized electrons in a H2/He atmosphere. We thus investigate what species densities are significantly enhanced and what are the expected spectroscopical signatures of upper-atmospheric electricity in Saturn. [1] G. Fischer, M.D. Desch, P. Zarka, M.L. Kaiser, D.A. Gurnett, W.S. Kurth, W. Macher, HO Rucker, A. Lecacheux, W.M. Farrell, et al., Saturn lightning recorded by cassini/rpws in 2004. Icarus, 183(1):135, 2006. [2] U.A. Dyudina, A.P. Ingersoll, S.P. Ewald, C.C. Porco, G. Fischer, W.S. Kurth, and R.A. West, Detection of visible lightning on saturn. Geophys. Res. Lett., 37:L09205, 2010. [3] A. Luque and F.J. Gordillo-Vázquez, Mesospheric electric breakdown and delayed sprite ignition caused by electron detachment. Nature Geoscience, 5:22, 2011. [4] L.E. Moore, M. Mendillo, I.C.F. Müller-Wodarg, and D.L. Murr. Modeling of global variations and ring shadowing in saturn's ionosphere, Icarus, 172(2): 503-520, 2004. [5] M. Galand, L. Moore, B. Charnay, I. Mueller-Wodarg, and M. Mendillo. Solar primary and secondary ionization at Saturn, J. Geophys. Res., 114(A6): A06313, 2009. [6] D. Dubrovin, S. Nijdam, E. M. van Veldhuizen, U. Ebert, Y. Yair, and C. Price, Sprite discharges on venus and jupiter-like planets: A laboratory investigation. J. Geophys. Res., 115:A00E34, 2010. [7] A. Luque and U. Ebert, A. Luque and U. Ebert, Emergence of sprite streamers from screening-ionization waves in the lower ionosphere, Nature Geoscience 2, 757-760, 2009
NASA Astrophysics Data System (ADS)
Luque, A.; Dubrovin, D.; Gordillo-Vázquez, F. J.; Ebert, U.; Parra-Rojas, F. C.; Yair, Y.; Price, C.
2014-10-01
Atmospheric electricity has been detected in all gaseous giants of our solar system and is therefore likely present also in extrasolar planets. Building upon measurements from Saturn and Jupiter, we investigate how the electromagnetic pulse emitted by a lightning stroke affects upper layers of a gaseous giant. This effect is probably significantly stronger than that on Earth. We find that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial "elve."
Television image of a large upward electrical discharge above a thunderstorm system
NASA Technical Reports Server (NTRS)
Franz, R. C.; Nemzek, R. J.; Winckler, J. R.
1990-01-01
A low light-level TV camera is used to obtain an unusual image of luminous electrical discharge over a thunderstorm 250 km from the observation site. The image is presented and the discharge in the image is described. It is suggested that the image is probably due to two localized electric charge concentrations at the cloud tops. The hazard of these discharges for aircraft and rocket launches is examined. Consideration is given to the possibility that these discharges may account for unexplained photometric observations of distant lightning events that show a low rise rate of the luminous pulse and no electromagnetic sferic pulse like that in cloud-to-earth lightning strokes. The photometric events of this type that occurred on September 22-23, 1989 during hurricane Hugo are noted.
Electric field mill network products to improve detection of the lightning hazard
NASA Technical Reports Server (NTRS)
Maier, Launa M.
1987-01-01
An electric field mill network has been used at Kennedy Space Center for over 10 years as part of the thunderstorm detection system. Several algorithms are currently available to improve the informational output of the electric field mill data. The charge distributions of roughly 50 percent of all lightning can be modeled as if they reduced the charged cloud by a point charge or a point dipole. Using these models, the spatial differences in the lightning induced electric field changes, and a least squares algorithm to obtain an optimum solution, the three-dimensional locations of the lightning charge centers can be located. During the lifetime of a thunderstorm, dynamically induced charging, modeled as a current source, can be located spatially with measurements of Maxwell current density. The electric field mills can be used to calculate the Maxwell current density at times when it is equal to the displacement current density. These improvements will produce more accurate assessments of the potential electrical activity, identify active cells, and forecast thunderstorm termination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Lightning is an energetic electric discharge, creating a current that flows briefly within a cloud--or between a cloud and the ground--and heating the air to temperatures about five times hotter than the sun’s surface. But there’s a lot about lightning that’s still a mystery. Los Alamos National Laboratory is working to change that. Because lightning produces optical and radio frequency signals similar to those from a nuclear explosion, it’s important to be able to distinguish whether such signals are caused by lightning or a nuclear event. As part of the global security mission at Los Alamos, scientists use lightning tomore » help develop better instruments for nuclear test-ban treaty monitoring and, in the process, have learned a lot about lightning itself.« less
Lightning vulnerability of fiber-optic cables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Leonard E.; Caldwell, Michele
2008-06-01
One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.« less
NASA Technical Reports Server (NTRS)
Blakeslee, Richard J.; Mach, Douglas M.; Bateman, Monte J.; Bailey, Jeffrey C.
2011-01-01
We present total conduction (Wilson) currents for more than 1000 high-altitude aircraft overflights of electrified clouds acquired over nearly two decades. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV/m to 16. kV/m, with mean (median) of 0.9 kV/m (0.29 kV/m). Total conductivity at flight altitude ranged from 0.6 pS/m to 3.6 pS/m, with mean and median of 2.2 pS/m. Peak current densities ranged from -2.0 nA m(exp -2) to 33.0 nA m(exp -2) with mean (median) of 1.9 nA m(exp -2) (0.6 nA m(exp -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.7 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.41 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min-1, respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate.
NASA Technical Reports Server (NTRS)
Blakeslee, Richard J.; Mach, Douglas M.; Bateman, Monte J.; Bailey, Jeffrey C.
2011-01-01
We determined total conduction currents and flash rates for around 900 high-altitude aircraft overflights of electrified clouds over 17 years. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV m(sup -1) to 16. kV m(sup -1), with mean (median) of 0.9 kV m(sup -1) (0.29 kV m(sup -1)). Total conductivity at flight altitude ranged from 0.6 pS m(sup -1) to 3.6 pS m(sup -1), with mean and median of 2.2 pS m(sup -1). Peak current densities ranged from -2.0 nA m(sup -2) to 33.0 nA m(sup -2) with mean (median) of 1.9 nA m(sup -2) (0.6 nA m(sup -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.6 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.39 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min(sup -1), respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate.
NASA Technical Reports Server (NTRS)
Espley, J. R.; Connerney, J. E. P.
2014-01-01
Mars' ionosphere has no obvious magnetic signs of large-scale, dustproduced lightning. However, there are numerous interesting ionospheric currents (some associated with crustal magnetic fields) which would allow for E&M subsurface sounding.
Modeling Long-Distance ELF Radio Atmospherics Generated by Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Moore, R. C.; Kunduri, B.; Anand, S.; Dupree, N.; Mitchell, M.; Agrawal, D.
2010-12-01
This paper addresses the generation and propagation of radio atmospherics (sferics) radiated by lightning in order to assess the ability to infer the electrical properties of lightning from great distances. This ability may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash. Unlike other similar efforts, the modified code presented preserves the ability of LWPC to account for waveguide mode-coupling and to account for changes to the electrical properties of the ground and ionosphere along the propagation path. The effort described is conducted in advance of the deployment of a global extremely low frequency (ELF) magnetic field array, which is presently under construction. The global ELF array is centered on the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. The ICLRT is well-known for conducting rocket-triggered lightning experiments over the last 15-20 years. This paper uses lightning current waveforms directly measured at the base of the lightning channel (observations performed at the ICLRT) as an input to the model to predict the sferic waveform to be observed by the array under various ionospheric conditions. An analysis of the predicted sferic waveforms is presented, and the components of the lightning current waveform that most effectively excite the Earth-ionosphere waveguide are identified.
PSpice Model of Lightning Strike to a Steel Reinforced Structure
NASA Astrophysics Data System (ADS)
Koone, Neil; Condren, Brian
2003-12-01
Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented.
The 1984 direct strike lightning data, part 3
NASA Technical Reports Server (NTRS)
Thomas, Mitchel E.; Carney, Harold K.
1986-01-01
Data waveforms are presented which were obtained during the 1984 direct-strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. This is part 3, consisting entirely of charts and graphs.
High-Speed Video Observations of a Natural Lightning Stepped Leader
NASA Astrophysics Data System (ADS)
Jordan, D. M.; Hill, J. D.; Uman, M. A.; Yoshida, S.; Kawasaki, Z.
2010-12-01
High-speed video images of one branch of a natural negative lightning stepped leader were obtained at a frame rate of 300 kfps (3.33 us exposure) on June 18th, 2010 at the International Center for Lightning Research and Testing (ICLRT) located on the Camp Blanding Army National Guard Base in north-central Florida. The images were acquired using a 20 mm Nikon lens mounted on a Photron SA1.1 high-speed camera. A total of 225 frames (about 0.75 ms) of the downward stepped leader were captured, followed by 45 frames of the leader channel re-illumination by the return stroke and subsequent decay following the ground attachment of the primary leader channel. Luminous characteristics of dart-stepped leader propagation in triggered lightning obtained by Biagi et al. [2009, 2010] and of long laboratory spark formation [e.g., Bazelyan and Raizer, 1998; Gallimberti et al., 2002] are evident in the frames of the natural lightning stepped leader. Space stems/leaders are imaged in twelve different frames at various distances in front of the descending leader tip, which branches into two distinct components 125 frames after the channel enters the field of view. In each case, the space stem/leader appears to connect to the leader tip above in the subsequent frame, forming a new step. Each connection is associated with significant isolated brightening of the channel at the connection point followed by typically three or four frames of upward propagating re-illumination of the existing leader channel. In total, at least 80 individual steps were imaged.
Time-averaged current analysis of a thunderstorm using ground-based measurements
NASA Astrophysics Data System (ADS)
Driscoll, Kevin T.; Blakeslee, Richard J.; Koshak, William J.
1994-05-01
The amount of upward current provided to the ionosphere by a thunderstorm that appeared over the Kennedy Space Center (KSC) on July 11, 1978, is reexamined using an analytic equation that describes a bipolar thunderstorm's current contribution to the global circuit in terms of its generator current, lightning currents, the altitudes of its charge centers, and the conductivity profile of the atmosphere. Ground-based measurements, which were obtained from a network of electric field mills positioned at various distances from the thunderstorm, were used to characterize the electrical activity inside the thundercloud. The location of the lightning discharges, the type of lightning, and the amount of charge neutralized during this thunderstorm were computed through a least squares inversion of the measured changes in the electric fields following each lightning discharge. These measurements provided the information necessary to implement the analytic equation, and consequently, a time-averaged estimate of this thunderstorm's current contribution to the global circuit was calculated. From these results the amount of conduction current supplied to the ionosphere by this small thunderstorm was computed to be less than 25% of the time-averaged generator current that flowed between the two vertically displaced charge centers.
NASA Technical Reports Server (NTRS)
Rustan, Pedro L., Jr.
1987-01-01
Lightning data obtained by measuring the surface electromagnetic fields on a CV-580 research aircraft during 48 lightning strikes between 1500 and 18,000 feet in central Florida during the summers of 1984 and 1985, and nuclear electromagnetic pulse (NEMP) data obtained by surface electromagnetic field measurements using a 1:74 CV-580 scale model, are presented. From one lightning event, maximum values of 3750 T/s for the time rate of change of the surface magnetic flux density, and 4.7 kA for the peak current, were obtained. From the simulated NEMP test, maximum values of 40,000 T/s for the time rate of change of the surface magnetic flux density, and 90 A/sq m for the total normal current density, were found. The data have application to the development of a military aircraft lightning/NEMP standard.
Lightning research: A user's lament
NASA Technical Reports Server (NTRS)
Golub, C. N.
1984-01-01
As a user of devices and procedures for lightning protection, the author is asking the lightning research community for cookbook recipes to help him solve his problems. He is lamenting that realistic devices are scarce and that his mission does not allow him the time nor the wherewithal to bridge the gap between research and applications. A few case histories are presented. In return for their help he is offering researchers a key to lightning technology--the use of the Eastern Test Range and its extensive resources as a proving ground for their experiment in the lightning capital of the United States. A current example is given--a joint lightning characterization project to take place there. Typical resources are listed.
A Fiber-Optic Current Sensor for Lightning Measurement Applications
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.
2015-01-01
An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.
A fiber-optic current sensor for lightning measurement applications
NASA Astrophysics Data System (ADS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.
2015-05-01
An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.
The energy requirements of an aircraft triggered discharge
NASA Astrophysics Data System (ADS)
Bicknell, J. A.; Shelton, R. W.
The corona produced at aircraft surfaces requires an energy input before the corona can develop into a high current discharge and, thus, a possible lightning stroke. This energy must be drawn from the space charge field of the thundercloud and, since this is of low density, the unique propagation characteristics of positive corona streamers may be important. Estimates of the energy made available by the propagation are compared with laboratory measurements of the minimum energy input required to trigger a breakdown. The comparison indicates a minimum streamer range for breakdown of several tens of meters. Also estimated is the energy released as a consequence of streamer-hydrometer interactions; this is shown to be significant so that breakdown could depend upon the precipitation rate within the cloud. Inhibiting streamer production may therefore provide an aircraft with a degree of corona protection.
Mapping thunder sources by inverting acoustic and electromagnetic observations
NASA Astrophysics Data System (ADS)
Anderson, J. F.; Johnson, J. B.; Arechiga, R. O.; Thomas, R. J.
2014-12-01
We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is considered to consist of a weighted superposition of these acoustic signals. We calculate the posterior distribution of acoustic source energy for each channel with a Markov Chain Monte Carlo inversion that fits power envelopes of modeled and recorded thunder; these results show which parts of the flash carry current and produce thunder. We examine the effects of RF pulse location imprecision and atmospheric winds on quality of results and apply this method to several lightning flashes over the Magdalena Mountains in New Mexico, USA. This method will enable more detailed study of lightning phenomena by allowing researchers to map current flow in addition to leader propagation.
Estimation of Lightning Levels on a Launcher Using a BEM-Compressed Model
NASA Astrophysics Data System (ADS)
Silly, J.; Chaigne, B.; Aspas-Puertolas, J.; Herlem, Y.
2016-05-01
As development cycles in the space industry are being considerably reduced, it seems mandatory to deploy in parallel fast analysis methods for engineering purposes, but without sacrificing accuracy. In this paper we present the application of such methods to early Phase A-B [1] evaluation of lightning constraints on a launch vehicle.A complete 3D parametric model of a launcher has been thus developed and simulated with a Boundary Element Method (BEM)-frequency simulator (equipped with a low frequency algorithm). The time domain values of the observed currents and fields are obtained by post-treatment using an inverse discrete Fourier transform (IDFT).This model is used for lightning studies, especially the simulation are useful to analyse the influence of lightning injected currents on resulting circulated currents on external cable raceways. The description of the model and some of those results are presented in this article.
77 FR 51722 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... that AD to prevent electrical energy from lightning, hot shorts, or fault current from entering the... that AD to prevent electrical energy from lightning, hot shorts, or fault current from entering the... specifically invite comments on the overall regulatory, economic, environmental, and energy aspects of this...
The Goes-R Geostationary Lightning Mapper (GLM): Algorithm and Instrument Status
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2010-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. A joint field campaign with Brazilian researchers in 2010-2011 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.
The feasibility of inflight measurement of lightning strike parameters
NASA Technical Reports Server (NTRS)
Crouch, K. E.; Plumer, J. A.
1978-01-01
The appearance of nonmetallic structural materials and microelectronics in aircraft design has resulted in a need for better knowledge of hazardous environments such as lightning and the effects these environments have on the aircraft. This feasibility study was performed to determine the lightning parameters in the greatest need of clarification and the performance requirements of equipment necessary to sense and record these parameters on an instrumented flight research aircraft. It was found that electric field rate of change, lightning currents, and induced voltages in aircraft wiring are the parameters of greatest importance. Flat-plate electric field sensors and resistive current shunts are proposed for electric field and current sensors, to provide direct measurements of these parameters. Six bit analog-to-digital signal conversion at a 5 nanosecond sampling rate, short-term storage of 85000 bits and long term storage of 5 x 10 to the 7th power bits of electric field, current and induced voltage data on the airplane are proposed, with readout and further analysis to be accomplished on the ground. A NASA F-106B was found to be suitable for use as the research aircraft because it has a minimum number of possible lightning attachment points, space for the necessary instrumentation, and appears to meet operational requirements. Safety considerations are also presented.
The new Section 23 of DO160C/ED14C lightning testing of externally mounted electrical equipment
NASA Astrophysics Data System (ADS)
Burrows, B. J. C.
1991-08-01
The new Section 23 is introduced which has only very recently been fully approved by the RTCA for incorporation into the first revision of DO160C/ED14C. Full threat lightning direct effects testing of equipment is entirely new to DO160, the only existing lightning testing is transient testing for LRU's (Line Replaceable Units) by pin or cable bundle injection methods, for equipment entirely contained within the airframe and assumed to be unaffected by direct effects. This testing required transients of very low amplitude compared with lightning itself, whereas the tests now to be described involve full threat lightning testing, that is using the previously established severe parameters of lightning appropriate to the Zone, such as 200 kA for Zone 1A as in AC20-136. Direct effects (i.e., damage) testing involves normally the lightning current arc attaching to the object under test (or very near to it) so submitting it to full potential for the electric, mechanical, thermal and shock damage which is caused by high current arcing. Since equipment for any part of the airframe require qualification, tests to demonstrate safety of equipment in fuel vapor regions of the airframe are also included.
Investigation of severe lightning strike incidents to two USAF F-106A aircraft
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1981-01-01
The results of the inspection and analysis of two F-106A aircraft that were struck by separate lightning strikes within a few minutes of each other are presented. Each aircraft sustained severe lightning strikes to the pitot booms, resulting in extensive damage to the pitot heater power harness, number 8 ground wire, and lightning suppressors, but there was no damage to either aircraft's electrical or avionic systems. A simulated lightning current of 226 kA and 3.8 million A(2)*S was required to reproduce the damage to the ground wires in the radomes. Photographs and detailed assessments of the damage are included.
A follow-up study of a large group of children struck by lightning.
Silva, Lynette Mary Ann; Cooper, Mary Ann; Blumenthal, Ryan; Pliskin, Neil
2016-08-10
On 11 November 1994, 26 preadolescent girls, 2 adult supervisors and 7 dogs were sleeping in a tent in rural South Africa when the tent was struck by lightning. Four of the girls and 4 of the dogs were killed. The 2 adults were unharmed, but all but 3 of the children suffered significant injuries. An article in 2002 detailed the event and examined the medical and psychological changes in the surviving girls. To understand the medical and psychological changes secondary to lightning strike years after injury. An online questionnaire was prepared that included a checklist of physical and psychological symptoms. Participants were asked to report on both initial and current symptoms. Eleven of the 22 survivors were contacted, and 10 completed the survey. Participants reported that initial physical symptoms generally resolved over time, with ~10 - 20% continuing to experience physical symptoms. Vision problems persisted in 50% of respondents. Psychological symptoms, overall, had a later onset and were more likely to be chronic or currently experienced. Depression and anxiety, specifically, were higher among the survivors than the reported incidence in South Africa. Initial and current/chronic physical and psychological symptoms following lightning strike are reported, adding to the body of literature on the long-term after-effects of lightning strike on survivors. A brief discussion on post-traumatic stress disorder symptomatology and post-lightning shock syndrome is provided.
Analysis of ELF Radio Atmospherics Radiated by Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.; Pilkey, J. T.; Uman, M. A.; Jordan, D. M.; Caicedo, J. A.; Hare, B.; Ngin, T. K.
2014-12-01
Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) along with pertinent Lightning Mapping Array (LMA) data are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the radio atmospheric (sferic) waveform observed at the receiver locations under various ionospheric conditions. We identify fitted exponential electron density profiles that accurately describe the observed propagation delays, phase delays, and signal amplitudes. The ability to infer ionospheric characteristics using distant ELF observations greatly enhances ionospheric remote sensing capabilities, especially in regard to interpreting observations of transient luminous events (TLEs) and other ionospheric effects associated with lightning.
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard; Koshak, William; Petersen, Walter; Carey, Larry; Mach, Douglas; Buechler, Dennis; Bateman, Monte; McCaul, Eugene; Bruning, Eric;
2010-01-01
The next generation Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2015 is a follow on to the existing GOES system currently operating over the Western Hemisphere. The system will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. The system provides products including lightning, cloud properties, rainfall rate, volcanic ash, air quality, hurricane intensity, and fire/hot spot characterization. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral, spatial, and temporal resolution for the 16-channel Advanced Baseline Imager (ABI). The Geostationary Lightning Mapper (GLM), an optical transient detector will map total (in-cloud and cloud-to-ground) lightning flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the higher level algorithms and applications using the GLM alone and decision aids incorporating information from the ABI, ground-based weather radar, and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional lightning networks are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time total lightning mapping data are also being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and facilitate early on-orbit user readiness for this new capability.
Aircraft Lightning Electromagnetic Environment Measurement
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.
2011-01-01
This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.
Production of NOx by Lightning and its Effects on Atmospheric Chemistry
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.
2009-01-01
Production of NO(x) by lightning remains the NO(x) source with the greatest uncertainty. Current estimates of the global source strength range over a factor of four (from 2 to 8 TgN/year). Ongoing efforts to reduce this uncertainty through field programs, cloud-resolved modeling, global modeling, and satellite data analysis will be described in this seminar. Representation of the lightning source in global or regional chemical transport models requires three types of information: the distribution of lightning flashes as a function of time and space, the production of NO(x) per flash, and the effective vertical distribution of the lightning-injected NO(x). Methods of specifying these items in a model will be discussed. For example, the current method of specifying flash rates in NASA's Global Modeling Initiative (GMI) chemical transport model will be discussed, as well as work underway in developing algorithms for use in the regional models CMAQ and WRF-Chem. A number of methods have been employed to estimate either production per lightning flash or the production per unit flash length. Such estimates derived from cloud-resolved chemistry simulations and from satellite NO2 retrievals will be presented as well as the methodologies employed. Cloud-resolved model output has also been used in developing vertical profiles of lightning NO(x) for use in global models. Effects of lightning NO(x) on O3 and HO(x) distributions will be illustrated regionally and globally.
Sprites, elf transients, and positive ground strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccippio, D.J.; Boldi, R.; Williams, E.R.
1995-08-25
In two summertime mesoscale convective systems (MCSs), mesospheric optical sprite phenomena were often coincident with both large-amplitude positive cloud-to-ground lightning and transient Schumann resonance excitations of the entire Earth-ionosphere cavity. These observations, together with earlier studies of MCS electrification, suggest that sprites are triggered when the rapid removal of large quantities of positive charge from an areally extensive charge layer stresses the mesosphere to dielectric breakdown. 46 refs., 7 figs., 1 tab.
NASA Technical Reports Server (NTRS)
Santiago-Perez, Julio
1988-01-01
The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.
NASA Astrophysics Data System (ADS)
Santiago-Perez, Julio
1988-10-01
The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.
NASA Astrophysics Data System (ADS)
Merenda, K. D.
2016-12-01
Since 2013, the Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina, extended its trigger algorithm to detect emissions of light consistent with the signature from very low frequency perturbations due to electromagnetic pulse sources (ELVES). Correlations with the World Wide Lightning Location Network (WWLLN), the Lightning Imaging Sensor (LIS) and simulated events were used to assess the quality of the reconstructed data. The FD is a pixel array telescope sensitive to the deep UV emissions of ELVES. The detector provides the finest time resolution of 100 nanoseconds ever applied to the study of ELVES. Four eyes, separated by approximately 40 kilometers, consist of six telescopes and span a total of 360 degrees of azimuth angle. The detector operates at night when storms are not in the field of view. An existing 3D EMP Model solves Maxwell's equations using a three dimensional finite-difference time-domain model to describe the propagation of electromagnetic pulses from lightning sources to the ionosphere. The simulation also provides a projection of the resulting ELVES onto the pixel array of the FD. A full reconstruction of simulated events is under development. We introduce the analog signal time evolution comparison between Auger reconstructed data and simulated events on individual FD pixels. In conjunction, we will present a study of the angular distribution of light emission around the vertical and above the causative lightning source. We will also contrast, with Monte Carlo, Auger double ELVES events separated by at most 5 microseconds. These events are too short to be explained by multiple return strokes, ground reflections, or compact intra-cloud lightning sources. Reconstructed ELVES data is 40% correlated to WWLLN data and an analysis with the LIS database is underway.
Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather
Price, Colin
2008-01-01
Severe and extreme weather is a major natural hazard all over the world, often resulting in major natural disasters such as hail storms, tornados, wind storms, flash floods, forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence, etc. can only be observed at close distances, lightning activity in these damaging storms can be monitored at all spatial scales, from local (using very high frequency [VHF] sensors), to regional (using very low frequency [VLF] sensors), and even global scales (using extremely low frequency [ELF] sensors). Using sensors that detect the radio waves emitted by each lightning discharge, it is now possible to observe and track continuously distant thunderstorms using ground networks of sensors. In addition to the number of lightning discharges, these sensors can also provide information on lightning characteristics such as the ratio between intra-cloud and cloud-to-ground lightning, the polarity of the lightning discharge, peak currents, charge removal, etc. It has been shown that changes in some of these lightning characteristics during thunderstorms are often related to changes in the severity of the storms. In this paper different lightning observing systems are described, and a few examples are provided showing how lightning may be used to monitor storm hazards around the globe, while also providing the possibility of supplying short term forecasts, called nowcasting. PMID:27879700
Current Distribution Characteristics of CFRP Panels
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuo
CFRP (Carbon Fiber Reinforced Plastic) is widely used in the structures of aircrafts, automobiles, wing turbines, and rockets because of its qualities of high mechanical strength, low weight, fatigue resistance, and dimensional stability. However, these structures are often at risk of being struck by lightning. When lightning strikes such structures and lightning current flows through the CFRP, it may be structurally damaged because of the impact of the lightning strike or ignitions between layers. If there are electronic systems near the CFRP, they may break down or malfunction because of the resulting electromagnetic disturbance. In fact, the generation mechanisms of these breakdowns and malfunctions depend on the current distribution in the CFRP. Hence, it is critical to clarify the current distribution in various kinds of CFRPs. In this study, two kinds of CFRP panels—one composed of quasi-isotropic lamination layers and the other composed of 0°/90° lamination layers of unidirectional CFRP prepregs—are used to investigate the dependence of current distribution on the nature of the lamination layers. The current distribution measurements and simulations for CFRP panels are compared with those for a same-sized aluminum plate. The knowledge of these current distribution characteristics would be very useful for designing the CFRP structures of aircrafts, automobiles, wing turbines, rockets, etc. in the future.
NASA Technical Reports Server (NTRS)
Schultz, C. J.; Carey, L. D.; Schultz, E. V.; Stano, G. T.; Blakeslee, R.; Goodman, S. J.
2014-01-01
The purpose of the total lightning jump algorithm (LJA) is to provide forecasters with an additional tool to identify potentially hazardous thunderstorms, yielding increased confidence in decisions within the operational warning environment. The LJA was first developed to objectively indentify rapid increases in total lightning (also termed "lightning jumps") that occur prior to the observance of severe and hazardous weather (Williams et al. 1999, Schultz et al. 2009, Gatlin and Goodman 2010, Schultz et al. 2011). However, a physical and framework leading up to and through the time of a lightning jump is still lacking within the literature. Many studies infer that there is a large increase in the updraft prior to or during the jump, but are not specific on what properties of the updraft are indeed increasing (e.g., maximum updraft speed vs volume or both) likely because these properties were not specifically observed. Therefore, the purpose of this work is to physically associate lightning jump occurrence to polarimetric and multi-Doppler radar measured thunderstorm intensity metrics and severe weather occurrence, thus providing a conceptual model that can be used to adapt the LJA to current operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, V. P.; Fortov, V. E.; Bykov, Yu. A.
Conditions for the propagation in soil of current pulses with an amplitude of up to 85 kA and temporal characteristics typical of a lightning stroke are studied with the help of a specially designed mobile test complex on the basis of a 4-MJ capacitive energy storage with an output voltage of up to 2 MV. In contrast to the conventional opinion that the ionization processes in highly conductive soils are weakly pronounced, a dramatic reduction in the grounding resistance at a resistivity of about 100 Ω m and currents above 10 kA was observed. A time interval in which themore » grounding resistance is determined by the skin effect in soil is revealed. It is shown that the grounding resistance continues to decrease behind the front of the current pulse due to the continuous growth of spark channels in soil. Time variations in the grounding resistance cannot be related to the formation of a continuous ionization zone near the grounding electrodes and are explained only by the simultaneous growth of several long spark channels extending from the grounding device.« less
A Multisensor Investigation of Convection During HyMeX SOP1 IOP13
NASA Technical Reports Server (NTRS)
Roberto, N.; Adirosi, E.; Baldini, L.; Casella, D.; Dietrich, S.; Panegrossi, G.; Petracca, M.; Sano, P.; Gatlin, P.
2014-01-01
A multisensor analysis of the convective precipitation event occurred over Rome during the IOP13 (October 15th, 2012) of the HyMeX (Hydrological cycle in the Mediterranean eXperiment) Special Observation Period (SOP) 1 is presented. Thanks to the cooperation among Italian meteorological services and scientific community and a specific agreement with NASA-GSFC, different types of devices for meteorological measurements were made available during the HyMeX SOP.1. For investigating this event, used are the 3-D lightning data provided by the LINET, the CNR ISAC dual-pol C-band radar (Polar 55C), located in Rome, the Drop Size Distributions (DSD) collected by the 2D Video Disdrometer (2DVD) and the collocated Micro Rain Radar (MRR) installed at the Radio Meteorology Lab. of "Sapienza" University of Rome, located 14 km from the Polar 55C radar. The relation between microphysical structure and electrical activity during the convective phase of the event was investigated using LINET lightning data and Polar 55C (working both in PPI and RHI scanning mode) observations. Location of regions of high horizontal reflectivity (Zh) values ( > 50 dBz), indicating convective precipitation, were found to be associated to a high number of LINET strokes. In addition, an hydrometeor classification scheme applied to the Polar 55C scans was used to detect graupel and to identify a relation between number of LINET strokes and integrated IWC of graupel along the event. Properties of DSDs measured by the 2DVD and vertical DSD profiles estimated by MRR and their relation with the lighting activity registered by LINET were investigated with specific focus on the transition from convective to stratiform regimes. A good agreement was found between convection detected by these instruments and the number of strokes detected by LINET.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alanakyan, Yu. R., E-mail: yralanak@mail.ru
2015-10-15
In this paper, some features of the dynamics of a lightning channel that emerges after the leader-streamer process, are theoretically studied. It is shown that the dynamic pinch effect in the channel becomes possible if a discharge current before the main (quasi-steady) stage of a lightning discharge increases rapidly. The ensuing magnetic compression of the channel increases plasma temperature to several million degrees leading to a soft x-ray flash within the highly ionized plasma. The relation between the plasma temperature and the channel radius during the main stage of a lightning discharge is derived.
NASA Astrophysics Data System (ADS)
Aplin, Karen; Fischer, Georg
2018-02-01
Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System remains a technical challenge to be solved.
High Impact Weather Forecasts and Warnings with the GOES-R Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group Lightning Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.
Polarimetric and Multi-Doppler Radar Observations of Sprite-producing Storms
NASA Technical Reports Server (NTRS)
Lang, TImothy J.; Lyons, Walter A.; Rutledge, Steven A.; Dolan, Brenda; Cummer, Steven A.; Krehbiel, Paul; Rison, William
2014-01-01
Sprites are caused by luminous electrical breakdown of the upper atmosphere, and frequently occur over large mesoscale precipitation systems. Two sprite-producing storms (on 8 and 25 June) were observed in Colorado during the summer of 2012. Unlike most past studies of sprites, these storms were observed by a polarimetric radar - the CSU-CHILL facility - which provided both PPI and RHI scans of the cases. Also available were multiple-Doppler syntheses from CSU-CHILL, local NEXRAD radars, and the CSU-Pawnee radar; as well as data from the Colorado Lightning Mapping Array (COLMA), high speed cameras, and other lightning-detection instrumentation. This unique dataset provided an unprecedented look at the detailed kinematic and microphysical structures of the thunderstorms as they produced sprites, including electrical alignment signatures in the immediate location of the charge layers neutralized by sprite-parent positive cloud-to-ground lightning strokes. One of the sprite-producing cases (25 June) featured an anomalous charge structure and may serve as a model for how sprites can be produced over convection rather than the more typical stratiform regions. Also to be presented will be evidence for advection of charge into a common stratiform precipitation region (on 8 June), which was then tapped by lightning originating from multiple different convective cores to produce sprites. Depending on the outcome of the 2013 convective season, polarimetric data from additional storms that produce sprites and other transient luminous events (TLEs) may be presented.
The protection of photovoltaic power systems from lightning
NASA Astrophysics Data System (ADS)
Rogers, C. B.
Lightning protection techniques at nine prototype photovoltaic power system sites with outputs from 18-225 kW are described. Noting that protection schemes are devised to fit isokeraunic data for specific sites, grounding is cited as a common feature for all systems. The grounds are, in separate instances, connected to junction boxes, frames of the solar cell panels, lead from the dc center, from the dc negative terminal, from the frames and equipment, at the array turntable, or from the building rebar frames. The dc power cables are protected by either metal conduit, metal conduit ground wire, direct burial, by rigid metal conduit, ground conductors, or by ground conductors at the ends of the conduit run. Costs run from 0.01-0.28$/W, with all the systems outfitted with bypass and blocking diodes. Direct stroke protection is viewed as less important than isokeraunic data.
Design of lightning protection for a full-authority digital engine control
NASA Technical Reports Server (NTRS)
Dargi, M.; Rupke, E.; Wiles, K.
1991-01-01
The steps and procedures are described which are necessary to achieve a successful lightning-protection design for a state-of-the-art Full-Authority Digital Engine Control (FADEC) system. The engine and control systems used as examples are fictional, but the design and verification methods are real. Topics discussed include: applicable airworthiness regulation, selection of equipment transient design and control levels for the engine/airframe and intra-engine segments of the system, the use of cable shields, terminal-protection devices and filter circuits in hardware protection design, and software approaches to minimize upset potential. Shield terminations, grounding, and bonding are also discussed, as are the important elements of certification and test plans, and the role of tests and analyses. Also included are examples of multiple-stroke and multiple-burst testing. A review of design pitfalls and challenges, and status of applicable test standards such as RTCA DO-160, Section 22, are presented.
NASA Technical Reports Server (NTRS)
Burns, Lee; Decker, Ryan
2005-01-01
Lightning strike location and peak current are monitored operationally in the Kennedy Space Center (KSC) Cape Canaveral Air Force Station (CCAFS) area by the Cloud to Ground Lightning Surveillance System (CGLSS). The present study compiles ten years worth of CGLSS data into a database of near strikes. Using shuffle launch platform LP39A as a convenient central point, all strikes recorded within a 20-mile radius for the period of record O R ) from January 1, 1993 to December 31,2002 were included in the subset database. Histograms and cumulative probability curves are produced for both strike intensity (peak current, in kA) and the corresponding magnetic inductance fields (in A/m). Results for the full POR have application to launch operations lightning monitoring and post-strike test procedures.
Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate
NASA Technical Reports Server (NTRS)
Mackerras, D.; Darvenzia, M.; Orville, R. E.; Williams, E. R.; Goodman, S. J.
1999-01-01
A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.
NASA Astrophysics Data System (ADS)
Collier, Richard S.; McKenna, Paul M.; Perala, Rodney A.
1991-08-01
The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.
NASA Technical Reports Server (NTRS)
Collier, Richard S.; Mckenna, Paul M.; Perala, Rodney A.
1991-01-01
The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.
The High Energy Lightning Simulator (HELS) Test Facility for Testing Explosive Items
1996-08-01
Center, Redstone Arsenal, AL Thomas E. Roy and David W. Bagwell AMTEC Corporation, Huntsville, AL ABSTRACT Details of the High Energy Lightning...simulated lightning testing of inerted missiles and inerted explosive items containing electrically initiated explosive trains is to determine the...penetrate the safety cages, which are electrically conductive and grounded, without loss of current. This transmission system consists of six large
NASA Technical Reports Server (NTRS)
Lambert, Winfred; Wheeler, Mark; Roeder, William
2005-01-01
The 45th Weather Squadron (45 WS) at Cape Canaveral Air-Force Station (CCAFS)ln Florida issues a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts. This information is used for general planning of operations at CCAFS and Kennedy Space Center (KSC). These facilities are located in east-central Florida at the east end of a corridor known as 'Lightning Alley', an indication that lightning has a large impact on space-lift operations. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data and an objective forecast tool developed over 30 years ago. The 45 WS requested that a new lightning probability forecast tool based on statistical analysis of more recent historical warm season (May-September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The resulting tool is a set of statistical lightning forecast equations, one for each month of the warm season, that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season.
The GOES-R GeoStationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.
Lightning x-rays inside thunderclouds, in-flight measurements on-board an A350
NASA Astrophysics Data System (ADS)
van Deursen, Alexander; Kochkin, Pavlo; de Boer, Alte; Bardet, Michiel; Boissin, Jean-François
2015-04-01
Thunderstorms emit bursts of energetic radiation. Moreover, lightning stepped leader produces x-ray pulses. The phenomena, their interrelation and impact on Earth's atmosphere and near space are not fully understood yet. The In-flight Lightning Strike Damage Assessment System ILDAS was developed in an EU FP6 project ( http://ildas.nlr.nl/ ) to provide information on threat that lightning poses to aircraft. It is intended to localize the lightning attachment points in order to reduce maintenance time and to build statics on lightning current. The system consists of 2 E-field sensors and a varying number of H-field sensors. It has recently been enhanced by two LaBr3 scintillation detectors inside the aircraft. The scintillation detectors are sensitive to x- and gamma-rays above 30 keV. The entire system is installed on-board of an A-350 aircraft and digitizes data with 100Msamples/sec rate when triggered by lightning. A continuously monitoring channel counts the number of occurrences that the x-ray signal exceeds a set of trigger levels. In the beginning of 2014 the aircraft flew through thunderstorm cells collecting the data from the sensors. The x-rays generated by the lightning flash are measured in synchronization better than 40 ns with the lightning current information during a period of 1 second around the strike. The continuous channel stores x-ray information with very limited time and amplitude resolution during the whole flight. That channel would allow x-rays from cosmic ray background, TGFs and continuous gamma-ray glow of thundercloud outside the 1 s time window. In the EGU2014 we presented the ILDAS system and showed that the x-ray detection works as intended. Fast x-ray bursts have been detected during stepped/dart stepped leaders and during interception of lightning. Data analysis of continuous channel recordings will be presented as well.
NASA Astrophysics Data System (ADS)
Rycroft, Michael J.; Odzimek, Anna; Arnold, Neil F.; Füllekrug, Martin; Kułak, Andrzej; Neubert, Torsten
2007-12-01
Several processes acting below, in and above thunderstorms and in electrified shower clouds drive upward currents which close through the global atmospheric electric circuit. These are all simulated in a novel way using the software package PSpice. A moderate negative cloud-to-ground lightning discharge from the base of a thunderstorm increases the ionospheric potential above the thundercloud by 0.0013%. Assuming the ionosphere to be an equipotential surface, this discharge increases the current flowing in the global circuit and the fair-weather electric field also by 0.0013%. A moderate positive cloud-to-ground lightning discharge from the bottom of a thunderstorm decreases the ionospheric potential by 0.014%. Such a discharge may trigger a sprite, causing the ionospheric potential to decrease by ˜1V. The time scales for the recovery of the ionospheric potential are shown to be ˜250s, which is of the same order as the CR time constant for the global circuit. Knowing the global average rate of lightning discharges, it is found that negative cloud-to-ground discharges increase the ionospheric potential by only ˜4%, and that positive cloud-to-ground discharges reduce it by ˜3%. Thus, overall, lightning contributes only ˜1%—an almost insignificant proportion—to maintaining the high potential of the ionosphere. It is concluded that the net upward current to the ionosphere due to lightning is only ˜20A. Further, it is concluded that conduction and convection currents associated with “batteries” within thunderclouds and electrified shower clouds contribute essentially equally (˜500A each) to maintaining the ionospheric potential.
Observations of Large-Amplitude, Whistler-Mode Wave Ducts in the Outer Plasmasphere
1990-02-12
evidence for whistler ducts [Smith and Angerami , 1968]. They showed that the spectral shape (dispersion) of whistlers arising from lightning strokes...the equatorial separation of the ducts near L z 3 ranged from 50 to 500 km and that the equatorial thicknesses were about 400 km. Angerami [1970...reported [Smith and Angerami , 1968; Angerami , 1970; Scarf and Chappell, 1973; Carpenter et al., 1981]. The half- width of the ducts and the density
NASA Astrophysics Data System (ADS)
Kolmasova, Ivana; Santolik, Ondrej; Farges, Thomas; Rison, William; Lan, Radek; Uhlir, Ludek
2014-05-01
We analyze pulse sequences occurring prior to first return strokes of negative cloud-to-ground lightning flashes. The magnetic-field waveforms are measured close to the thunderstorm using a broad-band analyzer with a sampling interval of 12.5 ns. The electric-field waveforms are measured at the distance of ~ 400 km using an analyzer with a sampling interval of 80 ns. The sequence is usually composed of three parts. It begins with a larger pulse train which is believed to be connected with initial breakdown processes. The train of preliminary breakdown pulses ("B" part) is followed by a relatively low and irregular pulse activity ("I" part), which is sometimes missing. The sequence ends with a pulse train attributed to the stepped leader ("L" part). We recognize two different patterns ("B-I-L" and "B-L" types) in recorded waveforms. For the first time, we analyze the time evolution of the pulse amplitudes in the "B" part of "B-I-L" type sequences. The pulse amplitude is decreasing on average by 34% of the maximum value within a given train. We observe an unusually short duration of sequences. This is probably linked to a low height of the thundercloud. Another possible explanation may be based on an untypical precipitation mix resulting in faster steeped leaders.
Forecasting Lightning at Kennedy Space Center/Cape Canaveral Air Force Station, Florida
NASA Technical Reports Server (NTRS)
Lambert, Winfred; Wheeler, Mark; Roeder, William
2005-01-01
The Applied Meteorology Unit (AMU) developed a set of statistical forecast equations that provide a probability of lightning occurrence on Kennedy Space Center (KSC) I Cape Canaveral Air Force Station (CCAFS) for the day during the warm season (May September). The 45th Weather Squadron (45 WS) forecasters at CCAFS in Florida include a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts, which are briefed at 1100 UTC (0700 EDT). This information is used for general scheduling of operations at CCAFS and KSC. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts for the KSC/CCAFS area during Shuttle flight operations. Much of the current lightning probability forecast at both groups is based on a subjective analysis of model and observational data. The objective tool currently available is the Neumann-Pfeffer Thunderstorm Index (NPTI, Neumann 1971), developed specifically for the KSCICCAFS area over 30 years ago. However, recent studies have shown that 1-day persistence provides a better forecast than the NPTI, indicating that the NPTI needed to be upgraded or replaced. Because they require a tool that provides a reliable estimate of the daily thunderstorm probability forecast, the 45 WS forecasters requested that the AMU develop a new lightning probability forecast tool using recent data and more sophisticated techniques now possible through more computing power than that available over 30 years ago. The equation development incorporated results from two research projects that investigated causes of lightning occurrence near KSCICCAFS and over the Florida peninsula. One proved that logistic regression outperformed the linear regression method used in NPTI, even when the same predictors were used. The other study found relationships between large scale flow regimes and spatial lightning distributions over Florida. Lightning, probabilities based on these flow regimes were used as candidate predictors in the equation development. Fifteen years (1 989-2003) of warm season data were used to develop the forecast equations. The data sources included a local network of cloud-to-ground lightning sensors called the Cloud-to-Ground Lightning Surveillance System (CGLSS), 1200 UTC Florida synoptic soundings, and the 1000 UTC CCAFS sounding. Data from CGLSS were used to determine lightning occurrence for each day. The 1200 UTC soundings were used to calculate the synoptic-scale flow regimes and the 1000 UTC soundings were used to calculate local stability parameters, which were used as candidate predictors of lightning occurrence. Five logistic regression forecast equations were created through careful selection and elimination of the candidate predictors. The resulting equations contain five to six predictors each. Results from four performance tests indicated that the equations showed an increase in skill over several standard forecasting methods, good reliability, an ability to distinguish between non-lightning and lightning days, and good accuracy measures and skill scores. Given the overall good performance the 45 WS requested that the equations be transitioned to operations and added to the current set of tools used to determine the daily lightning probability of occurrence.
Preliminary Results form the Japanese Total Lightning Network
NASA Astrophysics Data System (ADS)
Hobara, Y.; Ishii, H.; Kumagai, Y.; Liu, C.; Heckman, S.; Price, C. G.; Williams, E. R.
2015-12-01
We report on the initial observational results from the first Japanese Total Lightning Detection Network (JTLN) in relation to severe weather phenomena. The University of Electro-Communications (UEC) has deployed the Earth Networks (EN) Total Lightning System over Japan to carry out research on the relationship between thunderstorm activity and severe weather phenomena since 2013. In this paper we first demonstrate the current status of our new network followed by the initial scientific results. The lightning jump algorithm was applied to our total lightning data to study the relationship between total lighting activity and hazardous weather events such as gust fronts and tornadoes over land reported by the JMA (Japanese Meteorological Agency) in 2014. As a result, a clear increase in total lighting flash rate as well as lightning jumps are observed prior to most hazardous weather events (~20 min) indicating potential usefulness for early warning in Japan. Furthermore we are going to demonstrate the relationship of total lightning activities with meteorological radar data focusing particularly on Japanese Tornadic storms.
A modeling study of the time-averaged electric currents in the vicinity of isolated thunderstorms
NASA Technical Reports Server (NTRS)
Driscoll, Kevin T.; Blakeslee, Richard J.; Baginski, Michael E.
1992-01-01
A thorough examination of the results of a time-dependent computer model of a dipole thunderstorm revealed that there are numerous similarities between the time-averaged electrical properties and the steady-state properties of an active thunderstorm. Thus, the electrical behavior of the atmosphere in the vicinity of a thunderstorm can be determined with a formulation similar to what was first described by Holzer and Saxon (1952). From the Maxwell continuity equation of electric current, a simple analytical equation was derived that expresses a thunderstorm's average current contribution to the global electric circuit in terms of the generator current within the thundercloud, the intracloud lightning current, the cloud-to-ground lightning current, the altitudes of the charge centers, and the conductivity profile of the atmosphere. This equation was found to be nearly as accurate as the more computationally expensive numerical model, even when it is applied to a thunderstorm with a reduced conductivity thundercloud, a time-varying generator current, a varying flash rate, and a changing lightning mix.
Detailed flow, hydrometeor and lightning characteristics of an isolated thunderstorm during COPS
NASA Astrophysics Data System (ADS)
Schmidt, K.; Hagen, M.; Höller, H.; Richard, E.; Volkert, H.
2012-04-01
The three-hour life-cycle of the isolated thunderstorm on 15 July 2007 during the Convective and Orographically-induced Precipitation Study (COPS) is documented in detail, with a special emphasis on the rapid develpment and mature phases. Remote sensing techniques as 5-minute rapid scans from geostationary satellites, combined Doppler-retrievals from up to four Doppler-radars, the polarimetric determination of hydrometeors and spatio-temporal occurrences of lightning strokes are employed to arrive at a synoptic quantification of the physical parameters of this, for the COPS period, rare event. Inner cloud flow fields are available, gridded on a 500-m-mesh, at four consecutive times separated by 15 minute-intervals (14:35, 14:50, 15:05, 15:20). They contain horizontal winds of up to 15 m/s and updrafts exceeding 4 m/s, the latter collocated with lightning strokes. Profiles of flow and hydrometeor statistics over the entire cloud volume provide reference data for high-resolution, real-world, episode-type numerical weather predicition runs in research mode. Exemplary results are obtained by applying the Meso-NH modelling system in a four-fold nested configuration with a horizontal mesh-size of 500 m. The study embarks from two multi-channel time-lapse movie-loops from geostationary satellite imagery, which provide an intuitive distinction of six phases making up the entire life-cycle of the tunderstorm. It concludes with a triple image-loop, juxtaposing a close-up of the cloud motion seen by Meteosat, simulated brightness temperatures (as a proxy for clouds seen by the infrared satellite channel), and a perspective view on the model generated system of cloud cells. By employing the motion-geared human visual system, such multiple image loops provide a high, and as yet hardly utilised potential for a well-grounded selection of further sensitivity experiments in the modelling community.
NASA Astrophysics Data System (ADS)
Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.
2017-10-01
According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Christian, H. J.; Boccippio, D. J.; Koshak, W. J.; Cecil, D. J.; Arnold, James E. (Technical Monitor)
2002-01-01
The ThOR mission uses a lightning mapping sensor in geostationary Earth orbit to provide continuous observations of thunderstorm activity over the Americas and nearby oceans. The link between lightning activity and cloud updrafts is the basis for total lightning observations indicating the evolving convective intensification and decay of storms. ThOR offers a national operational demonstration of the utility of real-time total lightning mapping for earlier and more reliable identification of potentially severe and hazardous storms. Regional pilot projects have already demonstrated that the dominance in-cloud lightning and increasing in-cloud lash rates are known to precede severe weather at the surface by tens of minutes. ThOR is currently planned for launch in 2005 on a commercial or research satellite. Real-time data will be provided to selected NWS Weather Forecast Offices and National Centers (EMC/AWC/SPC) for evaluation.
Location and analysis of acoustic infrasound pulses in lightning
NASA Astrophysics Data System (ADS)
Arechiga, R.; Stock, M.; Thomas, R.; Erives, H.; Rison, W.; Edens, H.; Lapierre, J.
2014-07-01
Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel.
Analysis and calculation of lightning-induced voltages in aircraft electrical circuits
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1974-01-01
Techniques to calculate the transfer functions relating lightning-induced voltages in aircraft electrical circuits to aircraft physical characteristics and lightning current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of lightning-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, developed earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of lightning waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential lightning-induced voltages in electrical circuits of complete aircraft in the design stage.
Pulse generator with intermediate inductive storage as a lightning simulator
NASA Astrophysics Data System (ADS)
Kovalchuk, B. M.; Kharlov, A. V.; Zherlytsyn, A. A.; Kumpyak, E. V.; Tsoy, N. V.
2016-06-01
Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 μF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 μF) capacitors are connected in parallel. The generator inductance is 2 μH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 μH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 μs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.
The GOES-R Series Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas M.
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument development. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (an engineering development unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms
The Goes-R Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved storm diagnostic capability with the Advanced Baseline Imager. The GLM will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. In this paper we will report on new Nowcasting and storm warning applications being developed and evaluated at various NOAA Testbeds.