Lightning protection technology for small general aviation composite material aircraft
NASA Technical Reports Server (NTRS)
Plumer, J. A.; Setzer, T. E.; Siddiqi, S.
1993-01-01
An on going NASA (Small Business Innovative Research) SBIR Phase II design and development program will produce the first lightning protected, fiberglass, General Aviation aircraft that is available as a kit. The results obtained so far in development testing of typical components of the aircraft kit, such as the wing and fuselage panels indicate that the lightning protection design methodology and materials chosen are capable of protecting such small composite airframes from lightning puncture and structural damage associated with severe threat lightning strikes. The primary objective of the program has been to develop a lightening protection design for full scale test airframe and verify its adequacy with full scale laboratory testing, thus enabling production and sale of owner-built, lightning-protected, Stoddard-Hamilton Aircraft, Inc. Glasair II airplanes. A second objective has been to provide lightning protection design guidelines for the General Aviation industry, and to enable these airplanes to meet lightening protection requirements for certification of small airplanes. This paper describes the protection design approaches and development testing results obtained thus far in the program, together with design methodology which can achieve the design goals listed above. The presentation of this paper will also include results of some of the full scale verification tests, which will have been completed by the time of this conference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omidiora, M. A.; Lehtonen, M.
2008-05-08
This paper deals with the effect of shield wires on lightning overvoltage reduction and the energy relief of MOV (Metal Oxide Varistor) arresters from direct strokes to distribution lines. The subject of discussion is the enhancement of lightning protection in Finnish distribution networks where lightning is most severe. The true index of lightning severity in these areas is based on the ground flash densities and return stroke data collected from the Finnish meteorological institute. The presented test case is the IEEE 34-node test feeder injected with multiple lightning strokes and simulated with the Alternative Transients Program/Electromagnetic Transients program (ATP/EMTP). Themore » response of the distribution line to lightning strokes was modeled with three different cases: no protection, protection with surge arresters and protection with a combination of shield wire and arresters. Simulations were made to compare the resulting overvoltages on the line for all the analyzed cases.« less
Space Shuttle Lightning Protection
NASA Technical Reports Server (NTRS)
Suiter, D. L.; Gadbois, R. D.; Blount, R. L.
1979-01-01
The technology for lightning protection of even the most advanced spacecraft is available and can be applied through cost-effective hardware designs and design-verification techniques. In this paper, the evolution of the Space Shuttle Lightning Protection Program is discussed, including the general types of protection, testing, and anlayses being performed to assess the lightning-transient-damage susceptibility of solid-state electronics.
Status of research into lightning effects on aircraft
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1976-01-01
Developments in aircraft lightning protection since 1938 are reviewed. Potential lightning problems resulting from present trends toward the use of electronic controls and composite structures are discussed, along with presently available lightning test procedures for problem assessment. The validity of some procedures is being questioned because of pessimistic results and design implications. An in-flight measurement program is needed to provide statistics on lightning severity at flight altitudes and to enable more realistic tests, and operators are urged to supply researchers with more details on electronic components damaged by lightning strikes. A need for review of certain aspects of fuel system vulnerability is indicated by several recent accidents, and specific areas for examination are identified. New educational materials and standardization activities are also noted.
NASA Technical Reports Server (NTRS)
1991-01-01
Lightning Technologies, Inc., Pittsfield, MA, - a spinoff company founded by president J. Anderson Plumer, a former NASA contractor employee who developed his expertise with General Electric Company's High Voltage Laboratory - was a key player in Langley Research Center's Storm Hazards Research Program. Lightning Technologies used its NASA acquired experience to develop protective measures for electronic systems and composite structures on aircraft, both of which are particularly susceptible to lightning damage. The company also provides protection design and verification testing services for complete aircraft systems or individual components. Most aircraft component manufacturers are among Lightning Technologies' clients.
Computer Programs for Prediction of Lightning Induced Voltages in Aircraft Electrical Circuits
1975-04-01
8217-Mnnmn " ■*> i ■ : mmmmim*mmemmmMmmmmmam*t*ammi m ■■>■ ■ ,-,.->»^~—~—-. ■ - m^m Test techniques and equipment have been designed for subjecting com...are still on the drawing board, when there is as yet no aircraft on which to run tests . To fulfill this need, a program was initiated by the Air...aluated by full-scale simulated lightning tests of the external assemblies in question. Government specifications for some of these devices or
NASA Technical Reports Server (NTRS)
1976-01-01
To avoid the possibility of an unnecessary launch delay, a special program was initiated to provide aircraft measurement of electric fields at various altitudes over the Apollo vehicle launch pad. Eight aircraft, each equipped with electric field meters, were used in the program. This program and some of the more important findings are discussed. Also included is a summary of the history of manned space vehicle involvement with lightning, a brief description of the lightning instrumentation in use at KSC (Kennedy Space Center) at the time of the Apollo Soyuz mission and a discussion of the airborne instrumentation and related data.
Lightning protection guidelines and test data for adhesively bonded aircraft structures
NASA Technical Reports Server (NTRS)
Pryzby, J. E.; Plumer, J. A.
1984-01-01
The highly competitive marketplace and increasing cost of energy has motivated manufacturers of general aviation aircraft to utilize composite materials and metal-to-metal bonding in place of conventional fasteners and rivets to reduce weight, obtain smoother outside surfaces and reduce drag. The purpose of this program is protection of these new structures from hazardous lightning effects. The program began with a survey of advance-technology materials and fabrication methods under consideration for future designs. Sub-element specimens were subjected to simulated lightning voltages and currents. Measurements of bond line voltages, electrical sparking, and mechanical strength degradation were made to comprise a data base of electrical properties for new technology materials and basic structural configurations. The second hase of the program involved tests on full scale wing structures which contained integral fuel tanks and which were representative of examples of new technology structures and fuel systems. The purpose of these tests was to provide a comparison between full scale structural measurements and those obtained from the sub-element specimens.
NASA Technical Reports Server (NTRS)
Zaepfel, K. P.; Fisher, B. D.; Ott, M. S.
1985-01-01
As part of the NASA Langley Research Center Storm Hazards Program, 241 thunderstorm penetrations were made in 1982 with an F-106B airplane in order to record direct-strike lightning data and the associated flight conditions. During these penetrations, the airplane received 156 direct lightning strikes; in addition, lightning transient data were recorded from 26 nearby lightning flashes. The tests were conducted within 150 nautical miles of Hampton, Virginia, assisted by ground-based weather-radar guidance from the NASA Wallops Flight Facility. The photographs of the lightning attachments taken from two onboard 16-mm color movie cameras and the associated strike attachment patterns are presented. A table of the flight conditions recorded at the time of each lightning event, and a table in which the data are cross-referenced with the previously published lightning electromagnetic waveform data are included.
Lightning protection design and testing of an all composite wet wing for the Egrett
NASA Technical Reports Server (NTRS)
Burrows, B. J. C.; Haigh, S. J.; Chessum, C.; Dunkley, V. P.
1991-01-01
The Egrett aircraft has an all composite wing comprising CFC(carbon fiber composite)/Nomex sandwich skins, full length CFC main spar caps, and GFRP (glass fiber reinforced plastics) main and auxiliary spar webs. It also has short inboard CFC auxiliary spar caps. It has fine aluminum wires woven into the surface for protection. It has an integral fuel tank using the CFC/Nomex skins as the upper and lower tank walls, and lies between the forward auxiliary spar and the forward of the two main spar webs. The fuel tank is not bagged, i.e., it is in effect a wet wing tank. It has conventional capacitive type fuel gauging. The aircraft was cleared to IFR standards and so required full lightning protection and demonstration that it would survive the lightning environment. The lightning protection was designed for the wing (and also for the remainder of the aircraft). An inner wing test samples (which included a part of the fuel tank) were tested as part of the proving program. The protection design and the testing process are described. The intrinsic structural features are indicated that improve lightning protection design and which therefore minimize the weight and cost of any added lightning protection components.
2009-02-12
CAPE CANAVERAL, Fla. – The faint sunrise sky over NASA's Kennedy Space Center casts the newly erected lightning towers on Launch Pad 39B in silhouette. The two towers at left contain the lightning mast on top; the one at right does not. At center are the fixed and rotating service structures that have served the Space Shuttle Program. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller
2009-01-02
CAPE CANAVERAL, Fla. – CAPE CANAVERAL, Fla. -- On Launch Pad 39B at NASA's Kennedy Space Center in Florida, another lightning tower is being constructed as part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder
2009-02-12
CAPE CANAVERAL, Fla. – A lightning mast remains to be lifted atop the third and final lightning tower erected on Launch Pad 39B at NASA's Kennedy Space Center. Three towers surround the pad. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller
2009-02-12
CAPE CANAVERAL, Fla. – The faint sunrise sky over NASA's Kennedy Space Center casts the newly erected lightning towers on Launch Pad 39B in silhouette. They surround the fixed and rotating service structures at center that have served the Space Shuttle Program. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller
Lightning NOx Estimates from Space-Based Lightning Imagers
NASA Technical Reports Server (NTRS)
Koshak, William J.
2017-01-01
The intense heating of air by a lightning channel, and subsequent rapid cooling, leads to the production of lightning nitrogen oxides (NOx = NO + NO2) as discussed in Chameides [1979]. In turn, the lightning nitrogen oxides (or "LNOx" for brevity) indirectly influences the Earth's climate because the LNOx molecules are important in controlling the concentration of ozone (O3) and hydroxyl radicals (OH) in the atmosphere. Climate is most sensitive to O3 in the upper troposphere, and LNOx is the most important source of NOx in the upper troposphere at tropical and subtropical latitudes; hence, lightning is a useful parameter to monitor for climate assessments. The National Climate Assessment (NCA) program was created in response to the Congressionally-mandated Global Change Research Act (GCRA) of 1990. Thirteen US government organizations participate in the NCA program which examines the effects of global change on the natural environment, human health and welfare, energy production and use, land and water resources, human social systems, transportation, agriculture, and biological diversity. The NCA focuses on natural and human-induced trends in global change, and projects major trends 25 to 100 years out. In support of the NCA, the NASA Marshall Space Flight Center (MSFC) continues to assess lightning-climate inter-relationships. This activity applies a variety of NASA assets to monitor in detail the changes in both the characteristics of ground- and space- based lightning observations as they pertain to changes in climate. In particular, changes in lightning characteristics over the conterminous US (CONUS) continue to be examined by this author using data from the Tropical Rainfall Measuring Mission Lightning Imaging Sensor. In this study, preliminary estimates of LNOx trends derived from TRMM/LIS lightning optical energy observations in the 17 yr period 1998-2014 are provided. This represents an important first step in testing the ability to make remote retrievals of LNOx from a satellite-based lightning sensor. As is shown, the methodology can also be directly applied to more recently launched lightning mappers, such as the Geostationary Lightning Mapper, and the International Space Station LIS.
Lightning Tracking Tool for Assessment of Total Cloud Lightning within AWIPS II
NASA Technical Reports Server (NTRS)
Burks, Jason E.; Stano, Geoffrey T.; Sperow, Ken
2014-01-01
Total lightning (intra-cloud and cloud-to-ground) has been widely researched and shown to be a valuable tool to aid real-time warning forecasters in the assessment of severe weather potential of convective storms. The trend of total lightning has been related to the strength of a storm's updraft. Therefore a rapid increase in total lightning signifies the strengthening of the parent thunderstorm. The assessment of severe weather potential occurs in a time limited environment and therefore constrains the use of total lightning. A tool has been developed at NASA's Short-term Prediction Research and Transition (SPoRT) Center to assist in quickly analyzing the total lightning signature of multiple storms. The development of this tool comes as a direct result of forecaster feedback from numerous assessments requesting a real-time display of the time series of total lightning. This tool also takes advantage of the new architecture available within the AWIPS II environment. SPoRT's lightning tracking tool has been tested in the Hazardous Weather Testbed (HWT) Spring Program and significant changes have been made based on the feedback. In addition to the updates in response to the HWT assessment, the lightning tracking tool may also be extended to incorporate other requested displays, such as the intra-cloud to cloud-to-ground ratio as well as incorporate the lightning jump algorithm.
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.; Calhoun, Kristin K.; Terborg, Amanda M.
2014-01-01
Since 2010, the de facto Geostationary Lightning Mapper (GLM) demonstration product has been the Pseudo-Geostationary Lightning Mapper (PGLM) product suite. Originally prepared for the Hazardous Weather Testbed's Spring Program (specifically the Experimental Warning Program) when only four ground-based lightning mapping arrays were available, the effort now spans collaborations with several institutions and eight collaborative networks. For 2013, NASA's Short-term Prediction Research and Transition (SPoRT) Center and NOAA's National Severe Storms Laboratory have worked to collaborate with each network to obtain data in real-time. This has gone into producing the SPoRT variant of the PGLM that was demonstrated in AWIPS II for the 2013 Spring Program. Alongside the PGLM products, the SPoRT / Meteorological Development Laboratory's total lightning tracking tool also was evaluated to assess not just another visualization of future GLM data but how to best extract more information while in the operational environment. Specifically, this tool addressed the leading request by forecasters during evaluations; provide a time series trend of total lightning in real-time. In addition to the Spring Program, SPoRT is providing the PGLM "mosaic" to the Aviation Weather Center (AWC) and Storm Prediction Center. This is the same as what is used at the Hazardous Weather Testbed, but combines all available networks into one display for use at the national centers. This year, the mosaic was evaluated during the AWC's Summer Experiment. An important distinction between this and the Spring Program is that the Summer Experiment focuses on the national center perspective and not at the local forecast office level. Specifically, the Summer Experiment focuses on aviation needs and concerns and brings together operational forecaster, developers, and FAA representatives. This presentation will focus on the evaluation of SPoRT's pseudo-GLM products in these separate test beds. The emphasis will be on how future GLM observations can support operations at both the local and national scale and how the PGLM was used in combination with other lightning data sets. Evaluations for the PGLM were quite favorable with forecasters appreciating the high temporal resolution, the ability to look for rapid increases in lightning activity ahead of severe weather, as well as situational awareness for where convection is firing and for flight routing.
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places the 100-foot fiberglass mast atop the new lightning tower constructed on the pad. The towers are part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with the additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Kim Shiflett
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places the 100-foot fiberglass mast atop the new lightning tower constructed on the pad. The towers are part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with the additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Kim Shiflett
The Development of the Puerto Rico Lightning Detection Network for Meteorological Research
NASA Technical Reports Server (NTRS)
Legault, Marc D.; Miranda, Carmelo; Medin, J.; Ojeda, L. J.; Blakeslee, Richard J.
2011-01-01
A land-based Puerto Rico Lightning Detection Network (PR-LDN) dedicated to the academic research of meteorological phenomena has being developed. Five Boltek StormTracker PCI-Receivers with LTS-2 Timestamp Cards with GPS and lightning detectors were integrated to Pentium III PC-workstations running the CentOS linux operating system. The Boltek detector linux driver was compiled under CentOS, modified, and thoroughly tested. These PC-workstations with integrated lightning detectors were installed at five of the University of Puerto Rico (UPR) campuses distributed around the island of PR. The PC-workstations are left on permanently in order to monitor lightning activity at all times. Each is networked to their campus network-backbone permitting quasi-instantaneous data transfer to a central server at the UPR-Bayam n campus. Information generated by each lightning detector is managed by a C-program developed by us called the LDN-client. The LDN-client maintains an open connection to the central server operating the LDN-server program where data is sent real-time for analysis and archival. The LDN-client also manages the storing of data on the PC-workstation hard disk. The LDN-server software (also an in-house effort) analyses the data from each client and performs event triangulations. Time-of-arrival (TOA) and related hybrid algorithms, lightning-type and event discriminating routines are also implemented in the LDN-server software. We also have developed software to visually monitor lightning events in real-time from all clients and the triangulated events. We are currently monitoring and studying the spatial, temporal, and type distribution of lightning strikes associated with electrical storms and tropical cyclones in the vicinity of Puerto Rico.
Final results of the NASA storm hazards program
NASA Technical Reports Server (NTRS)
Fisher, Bruce D.; Brown, Philip W.; Plumer, J. Anderson; Wunschel, Alfred J., Jr.
1988-01-01
Lightning swept-flash attachment patterns and the associated flight conditions were recorded from 1980-1986 during 1496 thunderstorm penetrations and 714 direct strikes with a NASA F-1068 research airplane. These data were studied with an emphasis on lightning avoidance by aircraft and on aircraft protection design. The individual lightning attachment spots, along with crew comments and on-board photographic data were used to identify lightning swept-flash attachment patterns and the orientations of the lightning channels with respect to the airplane. The full-scale in-flight data were compared to results from scale-model arc-attachment tests. The airborne and scale-model data showed that any exterior surface of this airplane may be susceptible to direct lightning attachment. In addition, the altitudes, ambient temperatures, and the relative turbulence and precipitation levels at which the strikes occurred in thunderstorms are summarized and discussed. It was found that the peak strike rate occurred at pressure altitudes betwen 38,000 ft and 40,000 ft, corresponding to ambient temperatures colder than -40 C.
2009-02-13
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 100-foot lightning mast has been raised to vertical. It will be lifted and installed on top of the third and final new lightning tower being erected around the pad. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Tim Jacobs
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places the 100-foot fiberglass mast atop the new lightning tower constructed on the pad. The towers are part of the new lightning protection system for the Constellation Program and Ares/Orion launches. At left of the service structures is another tower under construction. Each of the three new lightning towers will be 500 feet tall with the additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Kim Shiflett
Analysis and calculation of lightning-induced voltages in aircraft electrical circuits
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1974-01-01
Techniques to calculate the transfer functions relating lightning-induced voltages in aircraft electrical circuits to aircraft physical characteristics and lightning current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of lightning-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, developed earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of lightning waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential lightning-induced voltages in electrical circuits of complete aircraft in the design stage.
The NASA F-106B Storm Hazards Program
NASA Technical Reports Server (NTRS)
Neely, W. R., Jr.; Fisher, B. D.
1983-01-01
During the NASA LRC Storm Hazards Program, 698 thunderstorm precipitations were made from 1980 to 1983 with an F-106B aircraft in order to record direct lightning strike data and the associated flight conditions. It was found that each of the three composite fin caps tested experienced multiple lightning attachments with only minor cosmetic damage. The maximum current level was only 20 ka, which is well below the design standard of 200 ka; however, indications are that the current rate of rise standard has been approached and may be exceeded in a major strike. The peak lightning strike rate occurred at ambient temperatures between -40 and -45 C, while most previously reported strikes have occurred at or near the freezing level. No significant operational difficulties or major aircraft damage resulting from the thunderstorm penetrations have been found.
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane completes construction of one of the towers in the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder
2009-01-26
CAPE CANAVERAL, Fla. – Construction of the towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida continues on the new lightning protection system for the Constellation Program and Ares/Orion launches. Here, a 100-foot fiberglass lightning mast is being prepared to be lifted on top of one of the 500-foot towers. The mast will support a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – In the rosy dawn light, construction of the towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida continues on the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – In the rosy dawn light, construction of the towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida continues on the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
PSpice Model of Lightning Strike to a Steel Reinforced Structure
NASA Astrophysics Data System (ADS)
Koone, Neil; Condren, Brian
2003-12-01
Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented.
Lightning Technology: Proceedings of a Technical Symposium
NASA Technical Reports Server (NTRS)
1980-01-01
Several facets of lightning technology are considered including phenomenology, measurement, detection, protection, interaction, and testing. Lightning electromagnetics, protection of ground systems, and simulated lightning testing are emphasized. The lightning-instrumented F-106 aircraft is described.
University of Florida lightning research at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Uman, Martin A.; Thomson, Ewen M.
1987-01-01
A variety of basic and applied research programs are being conducted at the Kennedy Space Center. As an example of this research, the paper describes the University of Florida program to characterize the electric and magnetic fields of lightning and the coupling of those fields to utility power lines. Specifically, detailed consideration is given to the measurements of horizontal and vertical electric fields made during the previous three summers at KSC and the simultaneous measurements of the voltages on a 500 m test line made during the past two summers at KSC. Theory to support these measurements is also presented.
Produce documents and media information. [on lightning
NASA Technical Reports Server (NTRS)
Alzmann, Melanie A.; Miller, G.A.
1994-01-01
Lightning data and information were collected from the United States, Germany, France, Brazil, China, and Australia for the dual purposes of compiling a global lightning data base and producing publications on the Marshall Space Flight Center's lightning program. Research covers the history of lightning, the characteristics of a storm, types of lightningdischarges, observations from airplanes and spacecraft, the future fole of planes and spacecraft in lightning studies, lightning detection networks, and the relationships between lightning and rainfall. Descriptions of the Optical Transient Dectector, the Lightning Imaging Sensor, and the Lightning Mapper Sensor are included.
2008-12-19
CAPE CANAVERAL, Fla. -- On Launch Pad 39B at NASA's Kennedy Space Center in Florida, one of the new lightning towers is under construction. The towers will hold catenary wires as part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Pad 39B will be the site of the first Ares vehicle launch, including Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Tim Jacobs
Lightning fire research in the Rocky Mountains
J. S. Barrows
1954-01-01
Lightning is the major cause of fires in Rocky Mountain forests. The lightning fire problem is the prime target of a broad research program now known as Project Skyfire. KEYWORDS: lightning, fire research
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.; Virts, K.;
2017-01-01
Mission: Fly a flight-spare LIS (Lightning Imaging Sensor) on ISS to take advantage of unique capabilities provided by the ISS (e.g., high inclination, real time data); Integrate LIS as a hosted payload on the DoD Space Test Program-Houston 5 (STP-H5) mission and launch on a Space X rocket for a minimum 2 year mission. Measurement: NASA and its partners developed and demonstrated effectiveness and value of using space-based lightning observations as a remote sensing tool; LIS measures lightning (amount, rate, radiant energy) with storm scale resolution, millisecond timing, and high detection efficiency, with no land-ocean bias. Benefit: LIS on ISS will extend TRMM (Tropical Rainfall Measuring Mission) time series observations, expand latitudinal coverage, provide real time data to operational users, and enable cross-sensor calibration.
2017-07-27
The Fly’s Eye GLM Simulator (FEGS) is an airborne array of multi-spectral radiometers optimized to measure the optical emission from lightning. The instrument was designed by the Lightning Group in the Earth Science Office at the Marshall Space Flight Center as part of the validation effort for the first Geostationary Lightning Mapper (GLM) onboard GOES-16. From March to May of 2017, FEGS was flown on the NASA Armstrong Flight Research Center ER-2 along with a payload of other instruments during the GOES-16 Validation Flight Campaign. Data collected during the campaign are being analyzed by scientists at NASA and collaborating institutions to test the accuracy of GLM and other GOES-16 instruments. FEGS adds the capability to investigate sub-millisecond lightning energetics to the NASA Airborne Earth Science program. When flown with its complimentary suite of instruments, the FEGS package observes lightning radiation signatures that span from radio frequencies to gamma-ray emission. Learn more about the GOES-16 Validation Flight Campaign here: https://www.youtube.com/watch?v=rCTIk...
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane (at left) completes construction of one of the towers in the new lightning protection system for the Constellation Program and Ares/Orion launches. At right, another tower is being constructed. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder
Evaluation of the damages caused by lightning current flowing through bearings
NASA Technical Reports Server (NTRS)
Celi, O.; Pigini, A.; Garbagnati, E.
1991-01-01
A laboratory for lightning current tests was set up allowing the generation of the lightning currents foreseen by the Standards. Lightning tests are carried out on different objects, aircraft materials and components, evaluating the direct and indirect effects of lightning. Recently a research was carried out to evaluate the effects of the lightning current flow through bearings with special reference to wind power generator applications. For this purpose, lightning currents of different amplitude were applied to bearings in different test conditions and the damages caused by the lightning current flow were analyzed. The influence of the load acting on the bearing, the presence of lubricant and the bearing rotation were studied.
Airborne atmospheric electricity experiments
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.
1985-01-01
During the 1984 U2 spring flight program, lightning spectra were measured in the wavelengths from 380 nm to 900 nm with a temporal resolution of 5 ms. With this capability, researchers simultaneously acquired both visible near-infrared lightning spectra on a pulse to pulse basis, so that the spectral variability within a flash, as well as flash to flash variations, can be studied. Preliminary results suggest that important variations do occur, particularly in the strengths of the hydrogen and singly ionized nitrogen emission lines. Also, the results have revealed significant differences in the integrated energy distributions between the lightning spectra measured above clouds and the spectral measurements of cloud-to-ground lightning made at the ground. In particular, the ratio of the energy in the near-IR to that in the visible is around 1 to 2 for cloud top spectra versus about 1/3 for surface observations. Detailed analyses of the 1984 lightning spectral data is being conducted. This data should provide improved understanding about the optical transmission properties of thunderclouds and the physics of the lightning discharge process. Efforts continue on developing and testing background signal removal algorithms using U2 spectometer and optical array sensor day-flight data sets. The goal of this research is to develop an algorithm satisfying Lightning Mapper Sensor requirements.
Thunderstorm Overflight Program
NASA Technical Reports Server (NTRS)
Vaughan, O. H., Jr.; Vonnegut, B.; Orville, R.; Brook, M.; Tennis, R.; Rhodes, C.; Rust, D.
1980-01-01
The Thunderstorm Overflight Program is being conducted by NASA, NOAA, and universities to evaluate the feasibility of making meaningful measurements of lightning parameters from an orbiting platform above thunderstorms. A NASA instrumented U-2 high-altitude research aircraft was used during the summer of 1979 and spring of 1980 to collect data over the tops of the thunderstorms while ground-based measurements were being made simultaneously. Test sites at Langmuir Laboratory, Socorro, N. Mex., and the National Severe Storms Laboratory, Norman, Okla. were used for this program. Additional flights are planned for the spring and summer of 1981. Data from the NASA U-2 flights will also be used to interpret measurements made during the Nighttime/Daytime Optical Survey Lightning Experiment to be flown on the Space Shuttle in late 1981.
Flash Detection Efficiencies of Long Range Lightning Detection Networks During GRIP
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Bateman, Monte G.; Blakeslee, Richard J.
2012-01-01
We flew our Lightning Instrument Package (LIP) on the NASA Global Hawk as a part of the Genesis and Rapid Intensification Processes (GRIP) field program. The GRIP program was a NASA Earth science field experiment during the months of August and September, 2010. During the program, the LIP detected lighting from 48 of the 213 of the storms overflown by the Global Hawk. The time and location of tagged LIP flashes can be used as a "ground truth" dataset for checking the detection efficiency of the various long or extended range ground-based lightning detection systems available during the GRIP program. The systems analyzed included Vaisala Long Range (LR), Vaisala GLD360, the World Wide Lightning Location Network (WWLLN), and the Earth Networks Total Lightning Network (ENTLN). The long term goal of our research is to help understand the advantages and limitations of these systems so that we can utilize them for both proxy data applications and cross sensor validation of the GOES-R Geostationary Lightning Mapper (GLM) sensor when it is launched in the 2015 timeframe.
High current lightning test of space shuttle external tank lightning protection system
NASA Technical Reports Server (NTRS)
Mumme, E.; Anderson, A.; Schulte, E. H.
1977-01-01
During lift-off, the shuttle launch vehicle (external tank, solid rocket booster and orbiter) may be subjected to a lightning strike. Tests of a proposed lightning protection method for the external tank and development materials which were subjected to simulated lightning strikes are described. Results show that certain of the high resistant paint strips performed remarkably well in diverting the 50 kA lightning strikes.
Lightning Launch Commit Criteria for America's Space Program
NASA Technical Reports Server (NTRS)
Roeder, W. P.; Sardonia, J. E.; Jacobs, S. C.; Hinson, M. S.; Harms, D. E.; Madura, J. T.; DeSordi, S. P.
1999-01-01
The danger of natural and triggered lightning significantly impacts space launch operations supported by the USAF. The lightning Launch Commit Criteria (LCC) are used by the USAF to avoid these lightning threats to space launches. This paper presents a brief overview of the LCC.
Imaging Sensor Flight and Test Equipment Software
NASA Technical Reports Server (NTRS)
Freestone, Kathleen; Simeone, Louis; Robertson, Byran; Frankford, Maytha; Trice, David; Wallace, Kevin; Wilkerson, DeLisa
2007-01-01
The Lightning Imaging Sensor (LIS) is one of the components onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and was designed to detect and locate lightning over the tropics. The LIS flight code was developed to run on a single onboard digital signal processor, and has operated the LIS instrument since 1997 when the TRMM satellite was launched. The software provides controller functions to the LIS Real-Time Event Processor (RTEP) and onboard heaters, collects the lightning event data from the RTEP, compresses and formats the data for downlink to the satellite, collects housekeeping data and formats the data for downlink to the satellite, provides command processing and interface to the spacecraft communications and data bus, and provides watchdog functions for error detection. The Special Test Equipment (STE) software was designed to operate specific test equipment used to support the LIS hardware through development, calibration, qualification, and integration with the TRMM spacecraft. The STE software provides the capability to control instrument activation, commanding (including both data formatting and user interfacing), data collection, decompression, and display and image simulation. The LIS STE code was developed for the DOS operating system in the C programming language. Because of the many unique data formats implemented by the flight instrument, the STE software was required to comprehend the same formats, and translate them for the test operator. The hardware interfaces to the LIS instrument using both commercial and custom computer boards, requiring that the STE code integrate this variety into a working system. In addition, the requirement to provide RTEP test capability dictated the need to provide simulations of background image data with short-duration lightning transients superimposed. This led to the development of unique code used to control the location, intensity, and variation above background for simulated lightning strikes at user-selected locations.
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane completes construction of one of the towers in the new lightning protection system for the Constellation Program and Ares/Orion launches. Other towers are being constructed at left and behind the service structures on the pad. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder
A simulated lightning effects test facility for testing live and inert missiles and components
NASA Technical Reports Server (NTRS)
Craven, Jeffery D.; Knaur, James A.; Moore, Truman W., Jr.; Shumpert, Thomas H.
1991-01-01
Details of a simulated lightning effects test facility for testing live and inert missiles, motors, and explosive components are described. The test facility is designed to simulate the high current, continuing current, and high rate-of-rise current components of an idealized direct strike lightning waveform. The Lightning Test Facility was in operation since May, 1988, and consists of: 3 separate capacitor banks used to produce the lightning test components; a permanently fixed large steel safety cage for retaining the item under test (should it be ignited during testing); an earth covered bunker housing the control/equipment room; a charge/discharge building containing the charging/discharging switching; a remotely located blockhouse from which the test personnel control hazardous testing; and interconnecting cables.
Lightning-Related Indicators for National Climate Assessment (NCA) Studies
NASA Technical Reports Server (NTRS)
Koshak, W.
2017-01-01
Changes in climate can affect the characteristics of lightning (e.g., number of flashes that occur in a region, return stroke current and multiplicity, polarity of charge deposited to ground, and the lightning cloud-top optical energy emission). The NASA/MSFC Lightning Analysis Tool (LAT) monitors these and other quantities in support of the National Climate Assessment (NCA) program. Changes in lightning characteristics lead to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality).
Lightning Effects in the Payload Changeout Room
NASA Technical Reports Server (NTRS)
Thomas, Garland L.; Fisher, Franklin A.; Collier, Richard S.; Medelius, Pedro J.
1997-01-01
Analytical and empirical studies have been performed to provide better understanding of the electromagnetic environment inside the Payload Changeout Room and Orbiter payload bay resulting from lightning strikes to the launch pad lightning protection system. The analytical studies consisted of physical and mathematical modeling of the pad structure and the Payload Changeout Room. Empirical testing was performed using a lightning simulator to simulate controlled (8 kA) lightning strikes to the catenary wire lightning protection system. In addition to the analyses and testing listed above, an analysis of the configuration with the vehicle present was conducted, in lieu of testing, by the Finite Difference, Time Domain method.
Test Report: Direct and Indirect Lightning Effects on Composite Materials
NASA Technical Reports Server (NTRS)
Evans, R. W.
1997-01-01
Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane begins lifting a 100-foot fiberglass lightning mast to place it on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane begins lifting a 100-foot fiberglass lightning mast to place it on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane lifts a 100-foot fiberglass lightning mast that will be placed on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane lifts a 100-foot fiberglass lightning mast alongside the 500-foot tower where it will be installed. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places a 100-foot fiberglass lightning mast on top of the 500-foot tower. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane holds a 100-foot fiberglass lightning mast that will be placed on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places a 100-foot fiberglass lightning mast on top of the 500-foot tower. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. Another tower is seen at right. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
STS-4 test mission simulates operational flight: President terms success golden spike in space
NASA Technical Reports Server (NTRS)
1982-01-01
The fourth Space Shuttle flight is summarized. STS certification as operational, applications experiments, experiments involving crew, the first Getaway Special, a lightning survey. Shuttle environment measurement, prelaunch rain and hail, loss of solid rocket boosters, and modification of the thermal test program are reviewed.
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, equipment surrounds the service structures for the construction of towers in the new lightning protection system for the Constellation Program and Ares/Orion launches. In the foreground is part of the giant crane used to place segments on the towers. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast (seen on the ground) atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder
Follow-on cable coupling lightning test. Volume 2: Appendixes A, B, C, and D
NASA Technical Reports Server (NTRS)
1990-01-01
The following information from the follow-on cable coupling lightning test of the Space Shuttle Booster is presented: (1) resistance measurements (cover-to-cover and cover-to-floor plate); (2) resistance measurements (external bond strap-to-case); (3) resistance measurements (internal bond strap-to-case) and; (4) follow-on cable coupling lightning test data plots. The bulk of the document comprises the follow-on cable coupling lightning test data plots.
The new Section 23 of DO160C/ED14C lightning testing of externally mounted electrical equipment
NASA Astrophysics Data System (ADS)
Burrows, B. J. C.
1991-08-01
The new Section 23 is introduced which has only very recently been fully approved by the RTCA for incorporation into the first revision of DO160C/ED14C. Full threat lightning direct effects testing of equipment is entirely new to DO160, the only existing lightning testing is transient testing for LRU's (Line Replaceable Units) by pin or cable bundle injection methods, for equipment entirely contained within the airframe and assumed to be unaffected by direct effects. This testing required transients of very low amplitude compared with lightning itself, whereas the tests now to be described involve full threat lightning testing, that is using the previously established severe parameters of lightning appropriate to the Zone, such as 200 kA for Zone 1A as in AC20-136. Direct effects (i.e., damage) testing involves normally the lightning current arc attaching to the object under test (or very near to it) so submitting it to full potential for the electric, mechanical, thermal and shock damage which is caused by high current arcing. Since equipment for any part of the airframe require qualification, tests to demonstrate safety of equipment in fuel vapor regions of the airframe are also included.
NASA Astrophysics Data System (ADS)
1985-12-01
The conference presents papers on statistical data and standards, coupling and indirect effects, meteorology and thunderstorm studies, lightning simulators, fuel ignition hazards, the phenomenology and characterization of lightning, susceptibility and protection of avionics, ground systems protection, lightning locators, aircraft systems protection, structures and materials, electrostatics, and spacecraft protection against static electricity. Particular attention is given to a comparison of published HEMP and natural lightning on the surface of an aircraft, electromagnetic interaction of external impulse fields with aircraft, of thunderstorm currents and lightning charges at the NASA Kennedy Space Center, the design of a fast risetime lightning generator, lightning simulation tests in FAA CV-580 lightning research aircraft, and the energy requirements of an aircraft triggered discharge. Papers are also presented on aircraft lightning attachment at low altitudes, a new form of transient suppressor, a proving ground for lightning research, and a spacecraft materials test in a continuous, broad energy-spectrum electron beam.
NASA Technical Reports Server (NTRS)
Llewellyn, J. A.
1967-01-01
The Launch Complex 37 lightning strike of July 27, 1967, was reviewed and compared to a similar incident on the Gemini Program. Available data indicate little likelihood of damaging currents having been present in SA-204 Launch Vehicle or the ground equipment during the July 27th incident. Based on the results of subsystem and system testing after the strike, anticipated results of future testing, the six months elapsed time between the strike-and launch, and the fact that much of the critical airborne electrical/electronic equipment has been removed since the strike for other reasons, no new actions are considered necessary at this time in the Gemini case, significant failures occurred in both airborne and ground circuits. Due to the resultant semi, condlictor uncertainty, and the relatively' short time prior to planned launch, all critical airborne components containing semiconduetors were replaced, and a sophisticated data comparison task was implemented.
NASA Technical Reports Server (NTRS)
Belcastro, C. M.
1984-01-01
A methodology was developed a assess the upset susceptibility/reliability of a computer system onboard an aircraft flying through a lightning environment. Upset error modes in a general purpose microprocessor were studied. The upset tests involved the random input of analog transients which model lightning induced signals onto interface lines of an 8080 based microcomputer from which upset error data was recorded. The program code on the microprocessor during tests is designed to exercise all of the machine cycles and memory addressing techniques implemented in the 8080 central processing unit. A statistical analysis is presented in which possible correlations are established between the probability of upset occurrence and transient signal inputs during specific processing states and operations. A stochastic upset susceptibility model for the 8080 microprocessor is presented. The susceptibility of this microprocessor to upset, once analog transients have entered the system, is determined analytically by calculating the state probabilities of the stochastic model.
New Mission to Measure Global Lightning from the International Space Station (ISS)
NASA Astrophysics Data System (ADS)
Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.
2015-12-01
Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) from November 1997 to April 2015 between 38° N/S latitudes, and its Optical Transient Detector predecessor that acquired observation from May 1995 to April 2000 over 75° N/S latitudes. In February 2016, as an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission. The LIS on ISS will continue observations of the amount, rate, and radiant energy of total lightning over the Earth. More specifically, LIS measures lightning during both day and night, with storm scale resolution (~4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines. This mission will also extend TRMM time series observations, expand the latitudinal coverage to 54° latitude, provide real-time lightning data to operational users, espically over data sparse oceanic regions, and enable cross-sensor observations and calibrations that includes the new GOES-R Geostationary Lightning Mapper (GLM) and the Meteosat Third Generation Lightning Imager (MTG LI). The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other ISS payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) exploring the connection between lightning and terrestrial gamma-ray flashes (TGFs).
Lighnting detection and tracking with consumer electronics
NASA Astrophysics Data System (ADS)
Kamau, Gilbert; van de Giesen, Nick
2015-04-01
Lightning data is not only important for environment and weather monitoring but also for safety purposes. The AS3935 Franklin Lightning Sensor (AMS, Unterpremstaetten, Austria) is a lightning sensor developed for inclusion in consumer electronics such as watches and mobile phones. The AS3935 is small (4mmx4mm) and relatively cost effective (Eu 5). The downside is that only rough distance estimates are provided, as average power is assumed for every lightning strike. To be able to track lightning, a network of devices that monitor and keep track of occurrences of lightning strikes was developed. A communication interface was established between the sensors, a data logging circuit and a microcontroller. The digital outputs of the lightning sensor and data from a GPS are processed by the microcontroller and logged onto an SD card. The interface program enables sampling parameters such as distance from the lightning strike, time of strike occurrence and geographical location of the device. For archiving and analysis purposes, the data can be transferred from the SD card to a PC and results displayed using a graphical user interface program. Data gathered shows that the device can track the frequency and movement of lightning strikes in an area. The device has many advantages as compared to other lightning sensor stations in terms of huge memory, lower power consumption, small size, greater portability and lower cost. The devices were used in a network around Nairobi, Kenya. Through multi-lateration, lightning strikes could be located with a RMSE of 2 km or better.
Böhrer, Madeleine; Stewart, Samuel A; Hurley, Katrina F
2017-06-27
Introduction Although death due to electrical injury and lightning are rare in children, these injuries are often preventable. Twenty years ago, most injuries occurred at home, precipitated by oral contact with electrical cords, contact with wall sockets and faulty electrical equipment. We sought to assess the epidemiology of electrical injuries in children presenting to Emergency Departments (EDs) that participate in the Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP). This study is a retrospective review of electrical and lightning injury data from CHIRPP. The study population included children and youth aged 0-19 presenting to participating CHIRPP EDs from 1997-2010. Age, sex, year, setting, circumstance and disposition were extracted. Variables were tested using Fisher's exact test and simple linear regression. The dataset included 1183 electrical injuries, with 84 (7%) resulting in hospitalization. Most events occurred at home in the 2-5 year age group and affected the hands. Since 1997 there has been a gradual decrease in the number of electrical injuries per year (p<0.01) and there is an annual surge in electrical injuries over the summer (p<0.01). Forty-six percent of injuries involved electrical outlets, 65% of injuries involved some sort of electrical equipment. Injuries due to lightning were rare (n=19). No deaths were recorded in the database. Despite the decrease in the number of electrical injuries per year, a large portion of injuries still appear to be preventable. Further research should focus on effective injury prevention strategies.
NASA Technical Reports Server (NTRS)
Santiago-Perez, Julio
1988-01-01
The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.
NASA Astrophysics Data System (ADS)
Santiago-Perez, Julio
1988-10-01
The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.
NASA Astrophysics Data System (ADS)
Landry, B. J.; Blair, D.; Causey, J.; Collins, J.; Davis, A.; Fernandez-Kim, V.; Kennedy, J.; Pate, N.; Kearney, C.; Schayer, C.; Turk, E.; Cherry, M. L.; Fava, C.; Granger, D.; Stewart, M.; Guzik, T. G.
2017-12-01
High energy gamma ray flashes from terrestrial sources have been observed by satellites for decades, but the actual mechanism, assumed to be thunderstorm lightning, has yet to be fully characterized. The goal of COTEL, funded by NASA through the University Student Instrument Project (USIP) program, is to correlate in time TGF events, lightning strikes, and electric fields inside of thunderstorms. This will be accomplished using a small network of balloon-borne payloads suspended in and around thunderstorm environments. The payloads will detect and timestamp gamma radiation bursts, lightning strikes, and the intensity of localized electric fields. While in flight, data collected by the payloads will be transmitted to a ground station in real-time and will be analyzed post-flight to investigate potential correlations between lightning, TGFs, and electric fields. The COTEL student team is in its second year of effort having spent the first year developing the basic balloon payloads and ground tracking system. Currently the team is focusing on prototype electric field and gamma radiation detectors. Testing and development of these systems will continue into 2018, and flight operations will take place during the spring 2018 Louisiana thunderstorm season. The presentation, led by undergraduate Physics student Brad Landry, will cover the student team effort in developing the COTEL system, an overview of the system architecture, balloon flight tests conducted to date, preliminary results from prototype detectors, lessons learned for student-led science projects, and future plans.
14 CFR 35.38 - Lightning strike.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by tests, analysis based on tests, or experience on similar designs, that the propeller can withstand a lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller has...
14 CFR 35.38 - Lightning strike.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by tests, analysis based on tests, or experience on similar designs, that the propeller can withstand a lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller has...
14 CFR 35.38 - Lightning strike.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by tests, analysis based on tests, or experience on similar designs, that the propeller can withstand a lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller has...
14 CFR 35.38 - Lightning strike.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by tests, analysis based on tests, or experience on similar designs, that the propeller can withstand a lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller has...
14 CFR 35.38 - Lightning strike.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by tests, analysis based on tests, or experience on similar designs, that the propeller can withstand a lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller has...
Lightning Mapper Sensor Lens Assembly S.O. 5459: Project Management Plan
NASA Technical Reports Server (NTRS)
Zeidler, Janet
1999-01-01
Kaiser Electro-Optics, Inc. (KEO) has developed this Project Management Plan for the Lightning Mapper Sensor (LMS) program. KEO has integrated a team of experts in a structured program management organization to meet the needs of the LMS program. The project plan discusses KEO's approach to critical program elements including Program Management, Quality Assurance, Configuration Management, and Schedule.
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Christian, H. J.; Stewart, M. F.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.
2014-01-01
In recent years, NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to provide global observations of total lightning after 17 years on-orbit. In April 2013, a space-qualified LIS built as the flight spare for TRMM, was selected for flight as a science mission on the International Space Station. The ISS LIS (or I-LIS as Hugh Christian prefers) will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of global lightning. More specifically, it measures lightning during both day and night, with storm scale resolution, millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that the characteristics of lightning that LIS measures can be quantitatively coupled to both thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will be exploring the connection between thunderstorms and lightning with terrestrial gamma-ray flashes (TGFs). Another important function of the ISS LIS will be to provide cross-sensor calibration/validation with a number of other payloads, including the TRMM LIS and the next generation geostationary lightning mappers (e.g., GOES-R Geostationary Lightning Mapper and Meteosat Third Generation Lightning Imager). This inter-calibration will improve the long term climate monitoring provided by all these systems. Finally, the ISS LIS will extend the time-series climate record of LIS lightning observations and expand the latitudinal coverage of LIS lightning to the climate significant upper middle-latitudes.
NASA Technical Reports Server (NTRS)
1982-01-01
The fourth space shuttle flight is summarized. An onboard electrophoresis experiment is reviewed. Crew physiology, the first getaway special, a lightning survey, shuttle environment measurement, prelaunch weather conditions, loss of solid rocket boosters, modification of thermal test program, and other events are also reviewed.
Science of Ball Lightning (Fire Ball)
NASA Astrophysics Data System (ADS)
Ohtsuki, Yoshi-Hiko
1989-08-01
The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Ball Lightning -- The Continuing Challenge * Hungarian Ball Lightning Observations in 1987 * Nature of Ball Lightning in Japan * Phenomenological and Psychological Analysis of 150 Austrian Ball Lightning Reports * Physical Problems and Physical Properties of Ball Lightning * Statistical Analysis of the Ball Lightning Properties * A Fluid-Dynamical Model for Ball Lightning and Bead Lightning * The Lifetime of Hill's Vortex * Electrical and Radiative Properties of Ball Lightning * The Candle Flame as a Model of Ball Lightning * A Model for Ball Lightning * The High-Temperature Physico-Chemical Processes in the Lightning Storm Atmosphere (A Physico-Chemical Model of Ball Lightning) * New Approach to Ball Lightning * A Calculation of Electric Field of Ball Lightning * The Physical Explanation to the UFO over Xinjiang, Northern West China * Electric Reconnection, Critical Ionization Velocity, Ponderomotive Force, and Their Applications to Triggered and Ball Lightning * The PLASMAK™ Configuration and Ball Lightning * Experimental Research on Ball Lightning * Performance of High-Voltage Test Facility Designed for Investigation of Ball Lightning * List of Participants
NASA Technical Reports Server (NTRS)
1990-01-01
Resistance measurements are given in graphical for when a simulated lightning discharge strikes on an exposed top hat cover simulator. The test sequence was to measure the electric and magnetic fields induced inside a redesigned solid rocket motor case.
Lightning-Related Indicators for National Climate Assessment (NCA) Studies
NASA Astrophysics Data System (ADS)
Koshak, W. J.
2017-12-01
With the recent advent of space-based lightning mappers [i.e., the Geostationary Lightning Mapper (GLM) on GOES-16, and the Lightning Imaging Sensor (LIS) on the International Space Station], improved investigations on the inter-relationships between lightning and climate are now possible and can directly support the goals of the National Climate Assessment (NCA) program. Lightning nitrogen oxides (LNOx) affect greenhouse gas concentrations such as ozone that influences changes in climate. Conversely, changes in climate (from any causes) can affect the characteristics of lightning (e.g., frequency, current amplitudes, multiplicity, polarity) that in turn leads to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality). This study discusses improvements to, and recent results from, the NASA/MSFC NCA Lightning Analysis Tool (LAT). It includes key findings on the development of different types of lightning flash energy indicators derived from space-based lightning observations, and demonstrates how these indicators can be used to estimate trends in LNOx across the continental US.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places a 100-foot fiberglass lightning mast on top of the 500-foot tower. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. Another tower is seen at right. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller
Space shuttle program: Lightning protection criteria document
NASA Technical Reports Server (NTRS)
1975-01-01
The lightning environment for space shuttle design is defined and requirements that the design must satisfy to insure protection of the vehicle system from direct and indirect effects of lightning are imposed. Specifications, criteria, and guidelines included provide a practical and logical approach to protection problems.
Lightning protection for shuttle propulsion elements
NASA Technical Reports Server (NTRS)
Goodloe, Carolyn C.; Giudici, Robert J.
1991-01-01
The results of lightning protection analyses and tests are weighed against the present set of waivers to the NASA lightning protection specification. The significant analyses and tests are contrasted with the release of a new and more realistic lightning protection specification, in September 1990, that resulted in an inordinate number of waivers. A variety of lightning protection analyses and tests of the Shuttle propulsion elements, the Solid Rocket Booster, the External Tank, and the Space Shuttle Main Engine, were conducted. These tests range from the sensitivity of solid propellant during shipping to penetration of cryogenic tanks during flight. The Shuttle propulsion elements have the capability to survive certain levels of lightning strikes at certain times during transportation, launch site operations, and flight. Changes are being evaluated that may improve the odds of withstanding a major lightning strike. The Solid Rocket Booster is the most likely propulsion element to survive if systems tunnel bond straps are improved. Wiring improvements were already incorporated and major protection tests were conducted. The External Tank remains vulnerable to burn-through penetration of its skin. Proposed design improvements include the use of a composite nose cone and conductive or laminated thermal protection system coatings.
Lightning vulnerability of fiber-optic cables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Leonard E.; Caldwell, Michele
2008-06-01
One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.« less
Nowcasting and forecasting of lightning activity: the Talos project.
NASA Astrophysics Data System (ADS)
Lagouvardos, Kostas; Kotroni, Vassiliki; Kazadzis, Stelios; Giannaros, Theodore; Karagiannidis, Athanassios; Galanaki, Elissavet; Proestakis, Emmanouil
2015-04-01
Thunder And Lightning Observing System (TALOS) is a research program funded by the Greek Ministry of Education with the aim to promote excellence in the field of lightning meteorology. The study focuses on exploring the real-time observations provided by the ZEUS lightning detection system, operated by the National Observatory of Athens since 2005, as well as the 10-year long database of the same system. More precisely the main research issues explored are: - lightning climatology over the Mediterranean focusing on lightning spatial and temporal distribution, on the relation of lightning with topographical features and instability and on the importance of aerosols in lightning initiation and enhancement. - nowcasting of lightning activity over Greece, with emphasis on the operational aspects of this endeavour. The nowcasting tool is based on the use of lightning data complemented by high-time resolution METEOSAT imagery. - forecasting of lightning activity over Greece based on the use of WRF numerical weather prediction model. - assimilation of lightning with the aim to improve the model precipitation forecast skill. In the frame of this presentation the main findings of each of the aforementioned issues are highlighted.
Advanced aerodynamics and active controls. Selected NASA research
NASA Technical Reports Server (NTRS)
1981-01-01
Aerodynamic and active control concepts for application to commercial transport aircraft are discussed. Selected topics include in flight direct strike lightning research, triply redundant digital fly by wire control systems, tail configurations, winglets, and the drones for aerodynamic and structural testing (DAST) program.
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.;
2015-01-01
In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other ISS payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will be exploring the connection between thunderstorms and lightning with terrestrial gamma-ray flashes (TGFs) and the Japan Aerospace Exploration Agency's Global LIghtning and Sprites MeasurementS (GLIMS) with its focus on global lightning and sprite connections. Another important function of the ISS LIS will be to provide cross-sensor calibration/validation with a number of other payloads, including the TRMM LIS and the next generation geostationary lightning mappers such as the GOES-R Geostationary Lightning Mapper (GLM) and Meteosat Third Generation Lightning Imager (MTG LI), as well as with ground-based lightning detection systems. These inter-calibrations will improve the long term climate monitoring record provided by all these systems. Finally, the ISS LIS will extend the time-series climate record of LIS lightning observations and expand the latitudinal coverage of LIS lightning to the climate significant upper middle-latitudes.
Follow-on cable coupling lightning test, volume 1
NASA Technical Reports Server (NTRS)
Danforth, Richard
1990-01-01
A redesigned solid rocket motor test article was subjected to simulated lightning strikes. This test was performed to evaluate the effects of lightning strike to the redesigned motor and Space Transportation System. The purpose of the test was to evaluate the performance of systems tunnel design changes when subjected to the lightning discharges. The goal of the design changes was to reduce lightning induced coupling to cables within the systems tunnel. The test article was subjected to several different amounts and kinds of discharges. Changes in coupling levels detected during the tests are recorded. The dominant mode of coupling appears to be caused by the diffusion of the magnetic fields through the system tunnel covers. The results from bond strap integrity testing showed that 16 of 18 bond straps survived. Design change evaluations showed that coupling reduction ranged from 0 to 36 decibels for each type of cable. The type of cable has less effect on coupling than does strike location and strike levels. Recommendations for design changes are made.
JPS heater and sensor lightning qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.
NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Dudley, Kenneth L.; Smith, Laura J.; Wang, Chuantong; Ticatch, Larry A.
2014-01-01
Traditional methods to protect composite aircraft from lightning strike damage rely on a conductive layer embedded on or within the surface of the aircraft composite skin. This method is effective at preventing major direct effect damage and minimizes indirect effects to aircraft systems from lightning strike attachment, but provides no additional benefit for the added parasitic weight from the conductive layer. When a known lightning strike occurs, the points of attachment and detachment on the aircraft surface are visually inspected and checked for damage by maintenance personnel to ensure continued safe flight operations. A new multi-functional lightning strike protection (LSP) method has been developed to provide aircraft lightning strike protection, damage detection and diagnosis for composite aircraft surfaces. The method incorporates a SansEC sensor array on the aircraft exterior surfaces forming a "Smart skin" surface for aircraft lightning zones certified to withstand strikes up to 100 kiloamperes peak current. SansEC sensors are open-circuit devices comprised of conductive trace spiral patterns sans (without) electrical connections. The SansEC sensor is an electromagnetic resonator having specific resonant parameters (frequency, amplitude, bandwidth & phase) which when electromagnetically coupled with a composite substrate will indicate the electrical impedance of the composite through a change in its resonant response. Any measureable shift in the resonant characteristics can be an indication of damage to the composite caused by a lightning strike or from other means. The SansEC sensor method is intended to diagnose damage for both in-situ health monitoring or ground inspections. In this paper, the theoretical mathematical framework is established for the use of open circuit sensors to perform damage detection and diagnosis on carbon fiber composites. Both computational and experimental analyses were conducted to validate this new method and system for aircraft composite damage detection and diagnosis. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. This paper also presents the shielding effectiveness along with the lightning direct effect test results from several different SansEC LSP and baseline protected and unprotected carbon fiber reinforced polymer (CFRP) test panels struck at 40 and 100 kiloamperes following a universal common practice test procedure to enable damage comparisons between SansEC LSP configurations and common practice copper mesh LSP approaches. The SansEC test panels were mounted in a LSP test bed during the lightning test. Electrical, mechanical and thermal parameters were measured during lightning attachment and are presented with post test nondestructive inspection comparisons. The paper provides correlational results between the SansEC sensors computed electric field distribution and the location of the lightning attachment on the sensor trace and visual observations showing the SansEC sensor's affinity for dispersing the lightning attachment.
A first look at lightning energy determined from GLM
NASA Astrophysics Data System (ADS)
Bitzer, P. M.; Burchfield, J. C.; Brunner, K. N.
2017-12-01
The Geostationary Lightning Mapper (GLM) was launched in November 2016 onboard GOES-16 has been undergoing post launch and product post launch testing. While these have typically focused on lightning metrics such as detection efficiency, false alarm rate, and location accuracy, there are other attributes of the lightning discharge that are provided by GLM data. Namely, the optical energy radiated by lightning may provide information useful for lightning physics and the relationship of lightning energy to severe weather development. This work presents initial estimates of the lightning optical energy detected by GLM during this initial testing, with a focus on observations during field campaign during spring 2017 in Huntsville. This region is advantageous for the comparison due to the proliferation of ground-based lightning instrumentation, including a lightning mapping array, interferometer, HAMMA (an array of electric field change meters), high speed video cameras, and several long range VLF networks. In addition, the field campaign included airborne observations of the optical emission and electric field changes. The initial estimates will be compared with previous observations using TRMM-LIS. In addition, a comparison between the operational and scientific GLM data sets will also be discussed.
NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Dudley, Kenneth L.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Ticatch, Larry A.; Mielnik, John J.; Mcneill, Patrick A.
2013-01-01
To support FAA certification airworthiness standards, composite substrates are subjected to lightning direct-effect electrical waveforms to determine performance characteristics of the lightning strike protection (LSP) conductive layers used to protect composite substrates. Test results collected from independent LSP studies are often incomparable due to variability in test procedures & applied practices at different organizations, which impairs performance correlations between different LSP data sets. Under a NASA supported contract, The Boeing Company developed technical procedures and documentation as guidance in order to facilitate a test method for conducting universal common practice lightning strike protection test procedures. The procedures obtain conformity in future lightning strike protection evaluations to allow meaningful performance correlations across data sets. This universal common practice guidance provides the manufacturing specifications to fabricate carbon fiber reinforced plastic (CFRP) test panels, including finish, grounding configuration, and acceptable methods for pretest nondestructive inspection (NDI) and posttest destructive inspection. The test operations guidance elaborates on the provisions contained in SAE ARP5416 to address inconsistencies in the generation of damage protection performance data, so as to provide for maximum achievable correlation across capable lab facilities. In addition, the guidance details a direct effects test bed design to aid in quantification of the multi-physical phenomena surrounding a lightning direct attachment supporting validation data requirements for the development of predictive computational modeling. The lightning test bed is designed to accommodate a repeatable installation procedure to secure the test panel and eliminate test installation uncertainty. It also facilitates a means to capture the electrical waveform parameters in 2 dimensions, along with the mechanical displacement and thermal heating parameters which occur during lightning attachment. Following guidance defined in the universal common practice LSP test documents, protected and unprotected CFRP panels were evaluated at 20, 40 and 100KAmps. This report presents analyzed data demonstrating the scientific usefulness of the common practice approach. Descriptions of the common practice CFRP test articles, LSP test bed fixture, and monitoring techniques to capture the electrical, mechanical and thermal parameters during lightning attachment are presented here. Two methods of measuring the electrical currents were evaluated, inductive current probes and a newly developed fiberoptic sensor. Two mechanical displacement methods were also examined, optical laser measurement sensors and a digital imaging correlation camera system. Recommendations are provided to help users implement the common practice test approach and obtain LSP test characterizations comparable across data sets.
Tests of the Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval
NASA Technical Reports Server (NTRS)
Koshak, William; Solakiewicz, Richard; Attele, Rohan
2011-01-01
Satellite lightning imagers such as the NASA Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS) and the future GOES-R Geostationary Lightning Mapper (GLM) are designed to detect total lightning (ground flashes + cloud flashes). However, there is a desire to discriminate ground flashes from cloud flashes from the vantage point of space since this would enhance the overall information content of the satellite lightning data and likely improve its operational and scientific applications (e.g., in severe weather warning, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters (one of which is the ground flash fraction), a scalar function was minimized by a numerical method. In order to improve this optimization, a Grobner basis solution was introduced to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. In this study, we test the efficacy of the Grobner basis initialization using actual lightning imager measurements and ground flash truth derived from the national lightning network.
Atmospheric electrical modeling in support of the NASA F106 Storm Hazards Project
NASA Technical Reports Server (NTRS)
Helsdon, J. H.
1986-01-01
With the use of composite (non-metallic) and microelectronics becoming more prevalent in the construction of both military and commercial aircraft, the control systems have become more susceptible to damage or failure from electromagnetic transients. One source of such transients is the lightning discharge. In order to study the effects of the lightning discharge on the vital components of an aircraft, NASA Langley Research Center has undertaken a Storm Hazards Program in which a specially instrumented F106B jet aircraft is flown into active thunderstorms with the intention of being struck by lightning. One of the specific purposes of the program is to quantify the environmental conditions which are conductive to aircraft lightning strikes.
Structural Analysis of Lightning Protection System for New Launch Vehicle
NASA Technical Reports Server (NTRS)
Cope, Anne; Moore, Steve; Pruss, Richard
2008-01-01
This project includes the design and specification of a lightning protection system for Launch Complex 39 B (LC39B) at Kennedy Space Center, FL in support of the Constellation Program. The purpose of the lightning protection system is to protect the Crew Launch Vehicle (CLV) or Cargo Launch Vehicle (CaLV) and associated launch equipment from direct lightning strikes during launch processing and other activities prior to flight. The design includes a three-tower, overhead catenary wire system to protect the vehicle and equipment on LC39B as described in the study that preceded this design effort: KSC-DX-8234 "Study: Construct Lightning Protection System LC3 9B". The study was a collaborative effort between Reynolds, Smith, and Hills (RS&H) and ASRC Aerospace (ASRC), where ASRC was responsible for the theoretical design and risk analysis of the lightning protection system and RS&H was responsible for the development of the civil and structural components; the mechanical systems; the electrical and grounding systems; and the siting of the lightning protection system. The study determined that a triangular network of overhead catenary cables and down conductors supported by three triangular free-standing towers approximately 594 ft tall (each equipped with a man lift, ladder, electrical systems, and communications systems) would provide a level of lightning protection for the Constellation Program CLV and CaLV on Launch Pad 39B that exceeds the design requirements.
Generalized three-dimensional experimental lightning code (G3DXL) user's manual
NASA Technical Reports Server (NTRS)
Kunz, Karl S.
1986-01-01
Information concerning the programming, maintenance and operation of the G3DXL computer program is presented and the theoretical basis for the code is described. The program computes time domain scattering fields and surface currents and charges induced by a driving function on and within a complex scattering object which may be perfectly conducting or a lossy dielectric. This is accomplished by modeling the object with cells within a three-dimensional, rectangular problem space, enforcing the appropriate boundary conditions and differencing Maxwell's equations in time. In the present version of the program, the driving function can be either the field radiated by a lightning strike or a direct lightning strike. The F-106 B aircraft is used as an example scattering object.
NASA Astrophysics Data System (ADS)
Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.
2017-12-01
Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical lightning for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was robotically installed in an Earth-viewing position on the outside of the ISS, providing a great opportunity to not only extend the 17-year TRMM LIS record of tropical lightning measurements but also to expand that coverage to higher latitudes missed by the TRMM mission. Since its activation, LIS has continuously observed the amount, rate, and radiant energy lightning within its field-of-view as it orbits the Earth. A major focus of this mission is to better understand the processes which cause lightning, as well as the connections between lightning and subsequent severe weather events. This understanding is a key to improving weather predictions and saving lives and property here in the United States and around the world. The LIS measurements will also help cross-validate observations from the new Geostationary Lightning Mapper (GLM) operating on NOAA's newest weather satellite GOES-16. An especially unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational forecasting and warning applications over data sparse regions such as the oceans. Finally, being on ISS enables LIS to provide simultaneous and complementary observations with other ISS payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will explore the connection between thunderstorms and lightning with terrestrial gamma-ray flashes (TGFs) when it is launched to ISS in 2018.
Preliminary tests of vulnerability of typical aircraft electronics to lightning-induced voltages
NASA Technical Reports Server (NTRS)
Plumer, J. A.; Walko, L. C.
1974-01-01
Tests made on two pieces of typical aircraft electronics equipment to ascertain their vulnerability to simulated lightning-induced transient voltages representative of those which might occur in flight when the aircraft is struck by lightning were conducted. The test results demonstrated that such equipment can be interfered with or damaged by transient voltages as low as 21 volts peak. Greater voltages can cause failure of semiconductor components within the equipment. The results emphasize a need for establishment of coordinated system susceptibility and component vulnerability criteria to achieve lightning protection of aerospace electrical and electronic systems.
A test technique for measuring lightning-induced voltages on aircraft electrical circuits
NASA Technical Reports Server (NTRS)
Walko, L. C.
1974-01-01
The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.
The High Energy Lightning Simulator (HELS) Test Facility for Testing Explosive Items
1996-08-01
Center, Redstone Arsenal, AL Thomas E. Roy and David W. Bagwell AMTEC Corporation, Huntsville, AL ABSTRACT Details of the High Energy Lightning...simulated lightning testing of inerted missiles and inerted explosive items containing electrically initiated explosive trains is to determine the...penetrate the safety cages, which are electrically conductive and grounded, without loss of current. This transmission system consists of six large
Testing of Unmanned Ground Vehicle (UGV) Systems
2009-02-12
Emissions - Intra-system EMC TOP 1-2-51253 TOP 1-2-51154 TOP 2-2-61355 Determines whether the item tested meets the electromagnetic radiation ...effects, static electricity, and lightning criteria and the maximum electromagnetic radiation environment to which the test item may be exposed...Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 2-2-540 Testing of Unmanned Ground Vehicle (UGV) Systems 5c. PROGRAM ELEMENT NUMBER 5d
The Sandia transportable triggered lightning instrumentation facility
NASA Technical Reports Server (NTRS)
Schnetzer, George H.; Fisher, Richard J.
1991-01-01
Development of the Sandia Transportable Triggered Lightning Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of a munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a lightning response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered lightning test site. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck of by aircraft, and its instrumentation for measuring incident lightning channel currents and the responses of the systems under test. Measurements of return-stroke current peaks obtained with the SATTLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within approximately 7 percent. Continuing currents were measured with a resolution of approximately 2.5 A. This field trial demonstrated the practicality of using a transportable triggered lightning facility for specialized test applications.
Lightning Pin Injection Test: MOSFETS in "ON" State
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Saha, Sankalita; Wysocki, Philip F.; Celaya, Jose R.
2011-01-01
The test objective was to evaluate MOSFETs for induced fault modes caused by pin-injecting a standard lightning waveform into them while operating. Lightning Pin-Injection testing was performed at NASA LaRC. Subsequent fault-mode and aging studies were performed by NASA ARC researchers using the Aging and Characterization Platform for semiconductor components. This report documents the test process and results, to provide a basis for subsequent lightning tests. The ultimate IVHM goal is to apply prognostic and health management algorithms using the features extracted during aging to allow calculation of expected remaining useful life. A survey of damage assessment techniques based upon inspection is provided, and includes data for optical microscope and X-ray inspection. Preliminary damage assessments based upon electrical parameters are also provided.
NASA Astrophysics Data System (ADS)
Finke, U.; Blakeslee, R. J.; Mach, D. M.
2017-12-01
The next generation of European geostationary weather observing satellites (MTG) will operate an optical lightning location instrument (LI) which will be very similar to the Global Lightning Mapper (GLM) on board of GOES-R. For the development and verification of the product processing algorithms realistic test data are necessary. This paper presents a method of test data generation on the basis of optical lightning data from the LIS instrument and cloud image data from the Seviri radiometer.The basis is the lightning data gathered during the 15 year LIS operation time, particularly the empirical distribution functions of the optical pulse size, duration and radiance as well as the inter-correlation of lightning in space and time. These allow for a realistically structured simulation of lightning test data. Due to its low orbit the instantaneous field of view of the LIS is limited and moving with time. For the generation of test data which cover the geostationary visible disk, the LIS data have to be extended. This is realized by 1. simulating random lightning pulses according to the established distribution functions of the lightning parameters and 2. using the cloud radiometer data of the Seviri instrument on board of the geostationary Meteosat second generation (MSG). Particularly, the cloud top height product (CTH) identifies convective storm clouds wherein the simulation places random lightning pulses. The LIS instrument was recently deployed on the International Space Station (ISS). The ISS orbit reaches higher latitudes, particularly Europe. The ISS-LIS data is analyzed for single observation days. Additionally, the statistical distribution of parameters such as radiance, footprint size, and space time correlation of the groups are compared against the long time statistics from TRMM-LIS.Optical lightning detection efficiency from space is affected by the solar radiation reflected from the clouds. This effect is changing with day and night areas across the field of view. For a realistic simulation of this cloud background radiance the Seviri visual channel VIS08 data is used.Additionally to the test data study, this paper gives a comparison of the MTG-LI to the GLM and discusses differences in instrument design, product definition and generation and the merging of data from both geostationary instruments.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, pilings are being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, workers measure the piling being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
The 1981 direct strike lightning data. [utilizing the F-106 aircraft
NASA Technical Reports Server (NTRS)
Pitts, F. L.; Thomas, M. E.
1982-01-01
Data waveforms obtained during the 1981 direct strike lightning tests, utilizing the NASA F-106B aircraft specially instrumented for lightning electromagnetic measurements are presented. The aircraft was operated in a thunderstorm environment to elicit strikes. Electromagnetic field data were recorded for both attached lightning and free field excitation of the aircraft.
Optical Detection of Lightning from Space
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.; Christian, Hugh J.
1998-01-01
Optical sensors have been developed to detect lightning from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based lightning detection offers three unique capabilities: (1) the ability to reliably detect lightning over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) lightning, and (3) the ability to detect lightning with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite lightning research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global lightning climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed.
Analysis and Assessment of Peak Lightning Current Probabilities at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Vaughan, W. W.
1999-01-01
This technical memorandum presents a summary by the Electromagnetics and Aerospace Environments Branch at the Marshall Space Flight Center of lightning characteristics and lightning criteria for the protection of aerospace vehicles. Probability estimates are included for certain lightning strikes (peak currents of 200, 100, and 50 kA) applicable to the National Aeronautics and Space Administration Space Shuttle at the Kennedy Space Center, Florida, during rollout, on-pad, and boost/launch phases. Results of an extensive literature search to compile information on this subject are presented in order to answer key questions posed by the Space Shuttle Program Office at the Johnson Space Center concerning peak lightning current probabilities if a vehicle is hit by a lightning cloud-to-ground stroke. Vehicle-triggered lightning probability estimates for the aforementioned peak currents are still being worked. Section 4.5, however, does provide some insight on estimating these same peaks.
The 1983 direct strike lightning data, part 1
NASA Technical Reports Server (NTRS)
Thomas, Mitchel E.
1985-01-01
Data waveforms are presented which were obtained during the 1983 direct strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. Part 1 contains 435 pages of lightning strike data in chart form.
The 1983 direct strike lightning data, part 2
NASA Technical Reports Server (NTRS)
Thomas, Mitchel E.
1985-01-01
Data waveforms are presented which were obtained during the 1983 direct strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. Part 2 contains 443 pages of lightning strike data in chart form.
Colorado Lightning Mapping Array Collaborations through the GOES-R Visiting Scientist Program
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.; Szoke, Edward; Rydell, Nezette; Cox, Robert; Mazur, Rebecca
2014-01-01
For the past two years, the GOES-R Proving Ground has solicited proposals for its Visiting Scientist Program. NASA's Short-term Prediction Research and Transition (SPoRT) Center has used this opportunity to support the GOES-R Proving Ground by expanding SPoRT's total lightning collaborations. In 2012, this expanded the evaluation of SPoRT's pseudo-geostationary lightning mapper product to the Aviation Weather Center and Storm Prediction Center. This year, SPoRT has collaborated with the Colorado Lightning Mapping Array (COLMA) and potential end users. In particular, SPoRT is collaborating with the Cooperative Institute for Research in the Atmosphere (CIRA) and Colorado State University (CSU) to obtain these data in real-time. From there, SPoRT is supporting the transition of these data to the local forecast offices in Boulder, Colorado and Cheyenne, Wyoming as well as to Proving Ground projects (e.g., the Hazardous Weather Testbed's Spring Program and Aviation Weather Center's Summer Experiment). This presentation will focus on the results of this particular Visiting Scientist Program trip. In particular, the COLMA data are being provided to both forecast offices for initial familiarization. Additionally, several forecast issues have been highlighted as important uses for COLMA data in the operational environment. These include the utility of these data for fire weather situations, situational awareness for both severe weather and lightning safety, and formal evaluations to take place in the spring of 2014.
Summary report of the Lightning and Static Electricity Committee
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1979-01-01
Lightning protection technology as applied to aviation and identifying these technology needs are presented. The flight areas of technical needs include; (1) the need for In-Flight data on lightning electrical parameters; (2) technology base and guidelines for protection of advanced systems and structures; (3) improved laboratory test techniques; (4) analysis techniques for predicting induced effects; (5) lightning strike incident data from General Aviation; (6) lightning detection systems; (7) obtain pilot reports of lightning strikes; and (8) better training in lightning awareness. The nature of each problem, timeliness, impact of solutions, degree of effort required, and the roles of government and industry in achieving solutions are discussed.
NASA Manned Launch Vehicle Lightning Protection Development
NASA Technical Reports Server (NTRS)
McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.
2009-01-01
Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the spacecraft and launch vehicles to withstand both the direct and indirect effects of lightning. A review of current Space Shuttle lightning constraints and protection methodology will be presented, as well as a historical review of Space Shuttle lightning requirements and design. The Space Shuttle lightning requirements document, NSTS 07636, Lightning Protection, Test and Analysis Requirements, (originally published as document number JSC 07636, Lightning Protection Criteria Document) was developed in response to the Apollo 12 lightning event and other experiences with NASA and the Department of Defense launch vehicles. This document defined the lightning environment, vehicle protection requirements, and design guidelines for meeting the requirements. The criteria developed in JSC 07636 were a precursor to the Society of Automotive Engineers (SAE) lightning standards. These SAE standards, along with Radio Technical Commission for Aeronautics (RTCA) DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, are the basis for the current Constellation lightning design requirements. The development and derivation of these requirements will be presented. As budget and schedule constraints hampered lightning protection design and verification efforts, the Space Shuttle elements waived the design requirements and relied on lightning avoidance in the form of launch commit criteria (LCC) constraints and a catenary wire system for lightning protection at the launch pads. A better understanding of the lightning environment has highlighted the vulnerability of the protection schemes and associated risk to the vehicle, which has resulted in lost launch opportunities and increased expenditures in manpower to assess Space Shuttle vehicle health and safety after lightning events at the launch pad. Because of high-percentage launch availability and long-term on-pad requirements, LCC constraints are no longer considered feasible. The Constellation vehicles must be designed to withstand direct and indirect effects of lightning. A review of the vehicle design and potential concerns will be presented as well as the new catenary lightning protection system for the launch pad. This system is required to protect the Constellation vehicles during launch processing when vehicle lightning effects protection might be compromised by such items as umbilical connections and open access hatches.
United States Air Force F-35A Operational Basing Environmental Impact Statement. Volume 1
2013-09-01
Evaluation (FDE) program and Weapons School (WS) beddown, the F-22 designator was used. Subsequent testing , development, and deployment resulted in...Initial F-35A Operational Basing EIS Final, September 2013 contract to develop the JSF ( designated the F-35 Lightning II). Since then, testing of F...of the aircraft even with system failures. Throughout the design and testing process, safety initiatives took previous best practices for single
NASA Technical Reports Server (NTRS)
Merceret, Francis J. (Editor); Willett, John C.; Christian, Hugh J.; Dye, James E.; Krider, E. Phillip; Madura, John T.; OBrien, T. Paul; Rust, W. David; Walterscheid, Richard L.
2010-01-01
The history of the Lightning Launch Commit Criteria (LLCC) used at all spaceports under the jurisdiction of the United States is provided. The formation and history of the Lightning Advisory Panel (LAP) that now advises NASA, the Air Force and the Federal Aviation Administration on LLCC development and improvement is emphasized. The period covered extends from the early days of space flight through 2010. Extensive appendices provide significant detail about important aspects that are only summarized in the main text.
Discharge in Long Air Gaps; Modelling and applications
NASA Astrophysics Data System (ADS)
Beroual, A.; Fofana, I.
2016-06-01
Discharge in Long Air Gaps: Modelling and applications presents self-consistent predictive dynamic models of positive and negative discharges in long air gaps. Equivalent models are also derived to predict lightning parameters based on the similarities between long air gap discharges and lightning flashes. Macroscopic air gap discharge parameters are calculated to solve electrical, empirical and physical equations, and comparisons between computed and experimental results for various test configurations are presented and discussed. This book is intended to provide a fresh perspective by contributing an innovative approach to this research domain, and universities with programs in high-voltage engineering will find this volume to be a working example of how to introduce the basics of electric discharge phenomena.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler puts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Rationales for the Lightning Flight-Commit Criteria
NASA Technical Reports Server (NTRS)
Willett, John C. (Editor); Merceret, Francis J.; Krider, E. Philip; Dye, James E.; OBrien, T. Paul; Rust, W. David; Walterscheid, Richard L.; Madura, John T.; Christian, Hugh J.
2010-01-01
Since natural and artificially-initiated (or "triggered") lightning are demonstrated hazards to the launch of space vehicles, the American space program has responded by establishing a set of Lightning Flight Commit Criteria (LFCC), also known as Lightning Launch Commit Criteria (LLCC), and associated Definitions to mitigate the risk. The LLCC apply to all Federal Government ranges and similar LFCC have been adopted by the Federal Aviation Administration for application at state-operated and private spaceports. The LLCC and Definitions have been developed, reviewed, and approved over the years of the American space program, progressing from relatively simple rules in the mid-twentieth century (that were inadequate) to a complex suite for launch operations in the early 21st century. During this evolutionary process, a "Lightning Advisory Panel (LAP)" of top American scientists in the field of atmospheric electricity was established to guide it. Details of this process are provided in a companion document entitled "A History of the Lightning Launch Commit Criteria and the Lightning Advisory Panel for America s Space program" which is available as NASA Special Publication 2010-216283. As new knowledge and additional operational experience have been gained, the LFCC/LLCC have been updated to preserve or increase their safety and to increase launch availability. All launches of both manned and unmanned vehicles at all Federal Government ranges now use the same rules. This simplifies their application and minimizes the cost of the weather infrastructure to support them. Vehicle operators and Range safety personnel have requested that the LAP provide a detailed written rationale for each of the LFCC so that they may better understand and appreciate the scientific and operational justifications for them. This document provides the requested rationales
HAARP-based Investigations of Lightning-induced Nonlinearities within the D-Region Ionosphere
NASA Astrophysics Data System (ADS)
Moore, R. C.
2015-12-01
It is well-documented that energetic lightning can produce fantastical events with the lower ionosphere. Although the High-frequency Active Auroral Research Program (HAARP) transmitter is not as powerful as lightning, it can be used to investigate the nonlinear interactions that occur within the lower ionosphere, many of which also occur during lightning-induced ionospheric events. This paper presents the best experimental results obtained during D-region modification experiments performed by the University of Florida at the HAARP observatory between 2007 and 2014, including ELF/VLF wave generation experiments, wave-wave mixing experiments, and cross-modulation experiments. We emphasize the physical processes important for lightning-ionosphere interactions that can be directly investigated using HAARP.
NASA Technical Reports Server (NTRS)
Woodard, Crystal; Carey, Lawrence D.; Petersen, Walter A.; Felix, Mariana; Roeder, William P.
2011-01-01
Lightning is one of Earth s natural dangers, destructive not only to life but also physical property. According to the National Weather Service, there are on average 58 lightning fatalities each year, with over 300 related injuries (NWS 2010). The ability to forecast lightning is critical to a host of activities ranging from space vehicle launch operations to recreational sporting events. For example a single lightning strike to a Space Shuttle could cause billions of dollars of damage and possible loss of life. While forecasting that provides longer lead times could provide sporting officials with more time to respond to possible threatening weather events, thus saving the lives of player and bystanders. Many researchers have developed and tested different methods and tools of first flash forecasting, however few have done so using dual-polarimetric radar variables and products on an operational basis. The purpose of this study is to improve algorithms for the short-term prediction of lightning initiation through development and testing of operational techniques that rely on parameters observed and diagnosed using C-band dual-polarimetric radar.
An Overview of the Total Lightning Jump Algorithm: Past, Present and Future Work
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.; Deierling, Wiebke; Kessinger, Cathy
2011-01-01
Rapid increases in total lightning prior to the onset of severe and hazardous weather have been observed for several decades. These rapid increases are known as lightning jumps and can precede the occurrence of severe weather by tens of minutes. Over the past decade, a significant effort has been made to quantify lightning jump behavior in relation to its utility as a predictor of severe and hazardous weather. Based on a study of 34 thunderstorms that occurred in the Tennessee Valley, early work conducted in our group at Huntsville determined that it was indeed possible to create a reasonable operational lightning jump algorithm (LJA) based on a statistical framework relying on the variance behavior of the lightning trending signal. We the expanded this framework and tested several variance-related LJA configurations on a much larger sample of 87 severe and non severe thunderstorms. This study determined that a configuration named the "2(sigma)" algorithm had the most promise in development of the operational LJA with a probability of detection (POD) of 87%, a false alarm rate (FAR) of 33%, a Heidke Skill Score (HSS) of 0.75. The 2(sigma) algorithm was then tested on an even larger sample of 711 thunderstorms of all types from four regions of the country where total lightning measurement capability existed. The result was very encouraging.Despite the larger number of storms and the inclusion of different regions of the country, the POD remained high (79%), the FAR was low (36%) and HSS was solid (0.71). Average lead time from jump to severe weather occurrence was 20.65 minutes, with a standard deviation of +/- 15 minutes. Also, trends in total lightning were compared to cloud to ground (CG) lightning trends, and it was determined that total lightning trends had a higher POD (79% vs 66%), lower FAR (36% vs 54 %) and a better HSS (0.71 vs 0.55). From the 711-storm case study it was determined that a majority of missed events were due to severe weather producing thunderstorms in low flashing environments. The latest efforts have been geared toward examining these low flashing storms in order to adjust the algorithm for such storms, thus enhancing the capability of the LJA. Future work will test the algorithm in real time using current satellite and radar based cell tracking methods, as well as, comparing total lightning jump occurrence to both satellite based and ground base observations of thunderstorms to create correlations between lightning jumps and the observed structures within thunderstorms. Finally this algorithm will need to be tested using Geostationary Lightning Mapper proxy data to transition the algorithm from VHF ground based lightning measurements to lower frequency space-based lightning measurements.
NASA Astrophysics Data System (ADS)
Orville, R. E.
2004-12-01
A major field program will occur in summer 2005 to determine the sources and causes for the enhanced cloud-to-ground lightning over Houston, Texas. This program will be in association with simultaneous experiments supported by the Environmental Protection Agency (EPA) and the Texas Commission on Environmental Quality (TCEQ), formally the Texas Natural Resource Conservation Commission (TNRCC). Recent studies covering the period 1989-2002 document a 60 percent increase of cloud-to-ground lightning in the Houston area as compared to surrounding background values, which is second in flash density only to the Tampa Bay, Florida area. We suggest that the elevated flash densities could result from several factors, including 1) the convergence due to the urban heat island effect and complex sea breeze (thermal hypothesis), and 2) the increasing levels of air pollution from anthropogenic sources producing numerous small cloud droplets and thereby suppressing mean droplet size (aerosol hypothesis). The latter effect would enable more cloud water to reach the mixed phase region where it is involved in the formation of precipitation and the separation of electric charge, leading to an enhancement of lightning. The primary goals of HEAT are to examine the effects of (1) pollution, (2) the urban heat island, and (3) the complex coastline on storms and lightning characteristics in the Houston area. The transport of air pollutants by Houston thunderstorms will be investigated. In particular, the relative amounts of lightning-produced and convectively transported NOx into the upper troposphere will be determined, and a comparison of the different NOx sources in the urban area of Houston will be developed. The HEAT project is based on the observation that there is an enhancement in cloud-to-ground (CG) lightning. Total lightning (intracloud (IC) and CG) will be measured using a lightning mapping system (LDAR II) to observe if there is an enhancement in intracloud lightning as well.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling off a truck. The piling will be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Systems tunnel linear shaped charge lightning strike
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of the systems tunnel linear shaped charge (LSC) was performed at the Thiokol Lightning Test Complex in Wendover, Utah, on 23 Jun. 1989. The test article consisted of a 160-in. section of the LSC enclosed within a section of the systems tunnel. The systems tunnel was bonded to a section of a solid rocket motor case. All test article components were full scale. The systems tunnel cover of the test article was subjected to three discharges (each discharge was over a different grounding strap) from the high-current generator. The LSC did not detonate. All three grounding straps debonded and violently struck the LSC through the openings in the systems tunnel floor plates. The LSC copper surface was discolored around the areas of grounding strap impact, and arcing occurred at the LSC clamps and LSC ends. This test verified that the present flight configuration of the redesigned solid rocket motor systems tunnel, when subjected to simulated lightning strikes with peak current levels within 71 percent of the worst-case lightning strike condition of NSTS-07636, is adequate to prevent LSC ignition. It is therefore recommended that the design remain unchanged.
The Statistic Results of the ISUAL Lightning Survey
NASA Astrophysics Data System (ADS)
Chuang, Chia-Wen; Bing-Chih Chen, Alfred; Liu, Tie-Yue; Lin, Shin-Fa; Su, Han-Tzong; Hsu, Rue-Ron
2017-04-01
The ISUAL (Imager for Sprites and Upper Atmospheric Lightning) onboard FORMOSAT-2 is the first science payload dedicated to the study of the lightning-induced transient luminous events (TLEs). Transient events, including TLEs and lightning, were recorded by the intensified imager, spectrophotometer (SP), and array photometer (AP) simultaneously while their light variation observed by SP exceeds a programmed threshold. Therefore, ISUAL surveys not only TLEs but also lightning globally with a good spatial, temporal and spectral resolution. In the past 12 years (2004-2016), approximately 300,000 transient events were registered, and only 42,000 are classified as TLEs. Since the main mission objective is to explore the distribution and characteristics of TLEs, the remaining transient events, mainly lightning, can act as a long-term global lightning survey. These huge amount of events cannot be processed manually as TLEs do, therefore, a data pipeline is developed to scan lightning patterns and to derive their geolocation with an efficient algorithm. The 12-year statistic results including occurrence rate, global distribution, seasonal variation, and the comparison with the LIS/OTD survey are presented in this report.
A Model Lightning Safety Policy for Athletics
Bennett, Brian L.
1997-01-01
Objective: The purpose of this paper is to present a model policy on lightning safety for athletic trainers. Background: Among college athletic programs in the United States there is a serious lack of written policy on lightning safety. Available evidence shows that most National Collegiate Athletic Association (NCAA) Division I institutions, even though they are located in high lightning activity areas of the country, do not have formal, written lightning safety policies. Clinical Advantages/ Recommendations: The policy presented herein, which is at the forefront of such policies, is the lightning safety policy written as part of a policies and procedures manual for the division of sports medicine at a public NCAA Division I university. This is a policy based on practicality that utilizes the “flash-to- bang” method for determining the distance of lightning activity from the observer. The policy begins with the importance of prevention, including the daily monitoring of weather reports. The policy defines a “safe shelter” and specifies the chain of command for determining who removes a team or individuals from an athletic site in the event of dangerous lightning activity. PMID:16558459
Quantification and identification of lightning damage in tropical forests.
Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo
2017-07-01
Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the prevalence of communications towers worldwide, the lightning detection system described here could be implemented in diverse forest types. Data from multiple systems would provide an outstanding opportunity for comparative research on the ecological effects of lightning. Such comparative data are increasingly important given expected increases in lightning frequency with climatic change.
Effects of lightning on operations of aerospace vehicles
NASA Technical Reports Server (NTRS)
Fisher, Bruce D.
1989-01-01
Traditionally, aircraft lightning strikes were a major aviation safety issue. However, the increasing use of composite materials and the use of digital avionics for flight critical systems will require that more specific lightning protection measures be incorporated in the design of such aircraft in order to maintain the excellent lightning safety record presently enjoyed by transport aircraft. In addition, several recent lightning mishaps, most notably the loss of the Atlas/Centaur-67 vehicle at Cape Canaveral Air Force Station, Florida in March 1987, have shown the susceptibility of aircraft and launch vehicles to the phenomenon of vehicle-triggered lightning. The recent findings of the NASA Storm Hazards Program were reviewed as they pertain to the atmospheric conditions conducive to aircraft lightning strikes. These data are then compared to recent summaries of lightning strikes to operational aircraft fleets. Finally, the new launch commit criteria for triggered lightning being used by NASA and the U.S. Defense Department are summarized. The NASA Research data show that the greatest probability of a direct strike in a thunderstorm occurs at ambient temperatures of about -40 C. Relative precipitation and turbulence levels were characterized as negligible to light for these conditions. However, operational fleet data have shown that most aircraft lightning strikes in routine operations occur at temperatures near the freezing level in non-cumulonimbus clouds. The non-thunderstorm environment was not the subject of dedicated airborne lightning research.
NASA Technical Reports Server (NTRS)
1980-01-01
Computer simulations and laboratory tests were used to evaluate the hazard posed by lightning flashes to ground on the Solar Power Satellite rectenna and to make recommendations on a lightning protection system for the rectenna. The distribution of lightning over the lower 48 of the continental United States was determined, as were the interactions of lightning with the rectenna and the modes in which those interactions could damage the rectenna. Lightning protection was both required and feasible. Several systems of lightning protection were considered and evaluated. These included two systems that employed lightning rods of different lengths and placed on top of the rectenna's billboards and a third, distribution companies; it consists of short lightning rods all along the length of each billboard that are connected by a horizontal wire above the billboard. The distributed lightning protection system afforded greater protection than the other systems considered and was easier to integrate into the rectenna's structural design.
Lightning swept-stroke attachment patterns and flight conditions for storm hazards 1981
NASA Technical Reports Server (NTRS)
Fisher, B. D.
1984-01-01
As part of the NASA Langley Research Center Storm Hazards Program, 111 thunderstorm penetrations were made in 1981 with an F-106B airplane in order to record direct-strike lightning data and the associated flight conditions. Ground-based weather radar measurements in conjunction with these penetrations were made by NOAA National Severe Storms Laboratory in Oklahoma and by NASA Wallops Flight Facility in Virginia. In 1981, the airplane received 10 direct lightning strikes; in addition, lightning transient data were recorded from 22 nearby flashes. Following each flight, the airplane was thoroughly inspected for evidence of lightning attachment, and the individual lightning attachment points were plotted on isometric projections of the airplane to identify swept-flash patterns. This report shows the strike attachment patterns that were found, and tabulates the flight conditions at the time of each lightning event. Finally, this paper contains a table in which the data in this report are cross-referenced with the previously published electromagnetic waveform data recorded onboard the airplane.
Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials
NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.
2009-01-01
The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Wright, Pat; Christian, Hugh; Blakeslee, Richard; Buechler, Dennis; Scharfen, Greg
1991-01-01
The global lightning signatures were analyzed from the DMSP Optical Linescan System (OLS) imagery archived at the National Snow and Ice Data Center. Transition to analysis of the digital archive becomes available and compare annual, interannual, and seasonal variations with other global data sets. An initial survey of the quality of the existing film archive was completed and lightning signatures were digitized for the summer months of 1986 to 1987. The relationship is studied between: (1) global and regional lightning activity and rainfall, and (2) storm electrical development and environment. Remote sensing data sets obtained from field programs are used in conjunction with satellite/radar/lightning data to develop and improve precipitation estimation algorithms, and to provide a better understanding of the co-evolving electrical, microphysical, and dynamical structure of storms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Lightning is an energetic electric discharge, creating a current that flows briefly within a cloud--or between a cloud and the ground--and heating the air to temperatures about five times hotter than the sun’s surface. But there’s a lot about lightning that’s still a mystery. Los Alamos National Laboratory is working to change that. Because lightning produces optical and radio frequency signals similar to those from a nuclear explosion, it’s important to be able to distinguish whether such signals are caused by lightning or a nuclear event. As part of the global security mission at Los Alamos, scientists use lightning tomore » help develop better instruments for nuclear test-ban treaty monitoring and, in the process, have learned a lot about lightning itself.« less
Developing an Enhanced Lightning Jump Algorithm for Operational Use
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.
2009-01-01
Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deecke, T.A.; Hyde, J.V.; Hylko, J.M.
2006-07-01
The weather is the most significant and unmanageable variable when performing environmental remediation activities. This variable can contribute to the failure of a project in two ways: 1) severe injury to an employee or employees following a cloud-to-ground lightning strike without prior visual or audible warnings; and 2) excessive 'down time' associated with mobilization and demobilization activities after a false alarm (e.g., lightning was seen in the distance but was actually moving away from the site). Therefore, in order for a project to be successful from both safety and financial viewpoints, the uncertainties associated with inclement weather, specifically lightning, needmore » to be understood to eliminate the element of surprise. This paper discusses educational information related to the history and research of lightning, how lightning storms develop, types of lightning, the mechanisms of lightning injuries and fatalities, and follow-up medical treatment. Fortunately, lightning storm monitoring does not have to be either costly or elaborate. WESKEM, LLC selected the Boltek StormTracker Lightning Detection System with the Aninoquisi Lightning 2000{sup TM} software. This fixed system, used in combination with online weather web pages, monitors and alarms WESKEM, LLC field personnel in the event of an approaching lightning storm. This application was expanded to justify the purchase of the hand-held Sky Scan Lightning/Storm Detector Model P5 used by the Heath Youth Athletic Association (HYAA) which is a non-profit, charitable organization offering sports programs for the youth and young adults in the local community. Fortunately, a lightning injury or fatality has never occurred on a WESKEM Paducah project or an HYAA-sponsored event. Using these fixed and hand-held systems will continue to prevent such injuries from occurring in the foreseeable future. (authors)« less
Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites
NASA Astrophysics Data System (ADS)
Kawakami, Hirohide
Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch-repaired CFRP plates were selected as structural elements likely to be susceptible to lightning event. This study forms a solid foundation for the understanding of lightning damage mechanism of CFRPs, and become an important first step toward building a practical damage prediction tool of lighting event.
Lightning protection of the Fokker 100 CFRP rudder
NASA Technical Reports Server (NTRS)
Ruiter, A. J. M.
1991-01-01
The construction of the structural parts of the Fokker 100 CFRP rudder is described with respect to the requirements for electrical bonding and lightning protection. Furthermore, the philosophy for the selection of a consumable trailing edge is given. A description of possible alternative designs for trailing edges and their advantages and disadvantages with respect to damage after lightning impact will also be reviewed. An overview of the tests performed on test samples and the rudder construction are presented and discussed. The effectiveness of both the selected structural provisions and trailing edge are described (and proven) by reporting the results of the simulated lightning tests performed. Proof is given that the trailing edge construction and its bonding through the structural parts of the rudder to the main aircraft structure is a solution which results in minor damage to the rudder after lightning impact. Furthermore, it is shown that the selected trailing edge construction is less favored by the structural designers due to the weight penalty.
1990-08-29
Multiple lightning bolts struck the Technology Test Bed, formerly the S-IC Static Test Stand, at the Marshall Space Flight Center (MSFC) during a thunderstorm. This spectacular image of lightning was photographed by MSFC photographer Dernis Olive on August 29, 1990.
Tantalum capacitor behavior under fast transient overvoltages. [circuit protection against lightning
NASA Technical Reports Server (NTRS)
Zill, J. A.; Castle, K. D.
1974-01-01
Tantalum capacitors were tested to determine failure time when subjected to short-duration, high-voltage surges caused by lightning strikes. Lightning is of concern to NASA because of possible damage to critical spacecraft circuits. The test was designed to determine the minimum time for tantalum capacitor failure and the amount of overvoltage a capacitor could survive, without permanent damage, in 100 microseconds. All tested exhibited good recovery from the transient one-shot pulses with no failure at any voltage, forward or reverse, in less than 25 microseconds.
Advanced composite vertical stabilizer for DC-10 transport aircraft
NASA Technical Reports Server (NTRS)
Stephens, C. O.
1979-01-01
Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.
NASA Technical Reports Server (NTRS)
Vaughan, O. H., Jr.
1984-01-01
This report presents an overview of the NASA Thunderstorm Overflight Program (TOP)/Optical Lightning Experiment (OLDE) being conducted by the Marshall Space Flight Center and university researchers in atmospheric electricity. Discussed in this report are the various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used in 1983 to collect optical and electronic signatures from the lightning events. Samples of some of the photographic and electronic signatures are presented. Approximately 4132 electronic data samples of optical pulses were collected and are being analyzed by the NASA and university researchers. A number of research reports are being prepared for future publication. These reports will provide more detailed data analysis and results from the 1983 spring and summer program.
Lightning research: A user's lament
NASA Technical Reports Server (NTRS)
Golub, C. N.
1984-01-01
As a user of devices and procedures for lightning protection, the author is asking the lightning research community for cookbook recipes to help him solve his problems. He is lamenting that realistic devices are scarce and that his mission does not allow him the time nor the wherewithal to bridge the gap between research and applications. A few case histories are presented. In return for their help he is offering researchers a key to lightning technology--the use of the Eastern Test Range and its extensive resources as a proving ground for their experiment in the lightning capital of the United States. A current example is given--a joint lightning characterization project to take place there. Typical resources are listed.
The 1984 direct strike lightning data, part 3
NASA Technical Reports Server (NTRS)
Thomas, Mitchel E.; Carney, Harold K.
1986-01-01
Data waveforms are presented which were obtained during the 1984 direct-strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. This is part 3, consisting entirely of charts and graphs.
Storm hazards '79: F-106B operations summary
NASA Technical Reports Server (NTRS)
Fisher, B. D.; Keyser, G. L., Jr.; Deal, P. L.; Thomas, M. E.; Pitts, F. L.
1980-01-01
Preliminary flight tests with a F-106B aircraft were made on the periphery of isolated thunder cells using weather radar support. In addition to storm hazards correlation research, a direct-strike lightning measurement experiment and an atmospheric chemistry experiment were conducted. Two flights were made to close proximity to lightning generating cumulonimbus clouds; however, no direct lightning strikes were experienced. Although no discernible lightning transients were recorded, many operational techniques were identified and established.
A review of advances in lightning observations during the past decade in Guangdong, China
NASA Astrophysics Data System (ADS)
Zhang, Yijun; Lü, Weitao; Chen, Shaodong; Zheng, Dong; Zhang, Yang; Yan, Xu; Chen, Lüwen; Dong, Wansheng; Dan, Jianru; Pan, Hanbo
2016-08-01
This paper reviews recent advances in understanding the physical processes of artificially triggered lightning and natural lightning as well as the progress in testing lightning protection technologies, based on a series of lightning field campaigns jointly conducted by the Chinese Academy of Meteorological Sciences and Guangdong Meteorological Bureau since 2006. During the decade-long series of lightning field experiments, the technology of rocket-wire artificially triggered lightning has been improved, and has successfully triggered 94 lightning flashes. Through direct lightning current waveform measurements, an average return stroke peak current of 16 kA was obtained. The phenomenon that the downward leader connects to the lateral surface of the upward leader in the attachment process was discovered, and the speed of the upward leader during the connection process being significantly greater than that of the downward leader was revealed. The characteristics of several return strokes in cloud-to-ground lighting have also been unveiled, and the mechanism causing damage to lightning protection devices (i.e., ground potential rise within the rated current) was established. The performance of three lightning monitoring systems in Guangdong Province has also been quantitatively assessed.
NASA Technical Reports Server (NTRS)
Bateman, Monte G.; Blakeslee, Richard J.; Mach, Douglas M.
2010-01-01
During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. American
Variation of a Lightning NOx Indicator for National Climate Assessment
NASA Technical Reports Server (NTRS)
Koshak, William; Vant-Hull, B.; McCaul, E. W.; Peterson, H. S.
2014-01-01
Lightning nitrogen oxides (LNOx) indirectly influences our climate since these molecules are important in controlling the concentration of ozone (O3) and hydroxyl radicals (OH) in the atmosphere [Huntrieser et al., 1998]. In support of the National Climate Assessment (NCA) program, satellite Lightning Imaging Sensor (LIS; Christian et al. [1999]; Cecil et al. [2014]) data is used to estimate LNOx production over the southern portion of the conterminous US for the 16 year period 1998-2013.
Narrow-band filters for the lightning imager
NASA Astrophysics Data System (ADS)
Piegari, Angela; Di Sarcina, Ilaria; Grilli, Maria Luisa; Menchini, Francesca; Scaglione, Salvatore; Sytchkova, Anna; Zola, Danilo; Cuevas, Leticia P.
2017-11-01
The study of lightning phenomena will be carried out by a dedicated instrument, the lightning imager, that will make use of narrow-band transmission filters for separating the Oxygen emission lines in the clouds, from the background signal. The design, manufacturing and testing of these optical filters will be described here.
NASA Astrophysics Data System (ADS)
Duvall, Brian Edward
Interest in small unmanned aerial vehicles has increased dramatically in recent years. Hybrid vehicles which allow forward flight as a fixed wing aircraft and a true vertical landing capability have always had applications. Management of the available energy and noise associated with electric propeller propulsion systems presents many challenges. NASA Langley has developed the Greased Lightning 10 (GL-10) vertical takeoff, unmanned aerial vehicle with ten individual motors and propellers. All are used for propulsion during takeoff and contribute to acoustic noise pollution which is an identified nuisance to the surrounding users. A propeller test capability was developed to gain an understanding of how the noise can be reduced while meeting minimum thrust requirements. The designed propeller test stand allowed for various commercially available propellers to be tested for potential direct replacement of the current GL-10 propellers and also supported testing of a newly designed propeller provided by the Georgia Institute of Technology. Results from the test program provided insight as to which factors affect the noise as well as performance characteristics. The outcome of the research effort showed that the current GL-10 propeller still represents the best choice of all the candidate propellers tested.
Lightning attachment patterns and flight conditions for storm hazards, 1980
NASA Technical Reports Server (NTRS)
Fisher, B. D.; Keyser, G. L., Jr.; Deal, P. L.
1982-01-01
As part of the NASA Langley Research Center Storm Hazards Program, 69 thunderstorm pentrations were made in 1980 with an F-106B airplane in order to record direct strike lightning data and the associated flight conditions. Ground based weather radar measurements in conjunction with these penetrations were made by NOAA National Severe Storms Laboratory in Oklahoma and by NASA Wallops Flight Center in Virginia. In 1980, the airplane received 10 direct lightning strikes; in addition, lightning transient data were recorded from 6 nearby flashes. Following each flight, the airplane was thoroughly inspected for evidence of lightning attachment, and the individual lightning attachment points were plotted on isometric projections of the airplane to identify swept flash patterns. This report presents pilot descriptions of the direct strikes to the airplane, shows the strike attachment patterns that were found, and discusses the implications of the patterns with respect to aircraft protection design. The flight conditions are also included. Finally, the lightning strike scenarios for three U.S. Air Force F-106A airplanes which were struck during routine operations are given in the appendix to this paper.
NASA Technical Reports Server (NTRS)
1987-01-01
In the last three years the focus was on the information contained in the lightning measurement, which is independent of other meteorological measurements that can be made from space. The characteristics of lightning activity in mesoscale convective systems were quantified. A strong relationship was found between lightning activity and surface rainfall. It is shown that lightning provides a precursor signature for wet microbursts (the strong downdrafts that produce windshears hazardous to aircraft) and that the lightning signature is a direct consequence of storm evolution. The Universities Space Research Association (USRA) collaborated with NASA scientists in the preliminary analysis and scientific justification for the design and deployment of an optical instrument which can detect lightning from geostationary orbit. Science proposals for the NASA mesoscale science program and for the Tethered Satellite System were reviewed. The weather forecasting research and unmanned space vehicles. Software was written to ingest and analyze the lightning ground strike data on the MSFC McIDAS system. The capabilities which were developed have a wide application to a number of problems associated with the operational impacts of electrical discharge within the atmosphere.
Model of lightning strike to a steel reinforce structure using PSpice
NASA Astrophysics Data System (ADS)
Koone, Neil; Condren, Brian
2003-03-01
Surges and arcs from lightning can pose hazards to personnel and sensitive equipment and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air.
Lightning testing at the subsystem level
NASA Technical Reports Server (NTRS)
Luteran, Frank
1991-01-01
Testing at the subsystem or black box level for lightning hardness is required if system hardness is to be assured at the system level. The often applied philosophy of lighting testing only at the system level leads to extensive end of the line design changes which result in excessive costs and time delays. In order to perform testing at the subsystem level two important factors must be defined to make the testing simulation meaningful. The first factor is the definition of the test stimulus appropriate to the subsystem level. Application of system level stimulations to the subsystem level usually leads to significant overdesign of the subsystem which is not necessary and may impair normal subsystem performance. The second factor is the availability of test equipment needed to provide the subsystem level lightning stimulation. Equipment for testing at this level should be portable or at least movable to enable efficient testing in a design laboratory environment. Large fixed test installations for system level tests are not readily available for use by the design engineers at the subsystem level and usually require special operating skills. The two factors, stimulation level and test equipment availability, must be evaluated together in order to produce a practical, workable test standard. The neglect or subordination of either factor will guarantee failure in generating the standard. It is not unusual to hear that test standards or specifications are waived because a specified stimulation level cannot be accomplished by in-house or independent test facilities. Determination of subsystem lightning simulation level requires a knowledge and evaluation of field coupling modes, peak and median levels of voltages and currents, bandwidths, and repetition rates. Practical limitations on test systems may require tradeoffs in lightning stimulation parameters in order to build practical test equipment. Peak power levels that can be generated at specified bandwidths with standard electrical components must be considered in the design and costing of the test system. Stimulation tests equipment and test methods are closely related and must be considered a test system for lightning simulation. A non-perfect specification that can be reliably and repeatedly applied at the subsystem test level is more desirable than a perfect specification that cannot be applied at all.
F-5F Shark Nose radome lightning test
NASA Technical Reports Server (NTRS)
Scott, G. W.
1980-01-01
A unique F-5F radome wtih a geometry similar to a Shark Nose profile was tested with a high voltage Marx generator, 1,200,000 volts in order to demonstrate the effectiveness of the lightning protection system with currents from 5,000 amperes or greater. An edge discontinuity configuration is a characteristic feature in the forward region of the radome and occasionally serves as an attachment point. The results of nineteen attachment tests at various aspect angles with an air gap of one meter indicated that no damage occurred to the dielectric material of the radom. The test proved the effectiveness of the lightning protection system.
Lightning Pin Injection Testing on MOSFETS
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita
2009-01-01
Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.
Tánczos, Tímea; Zádori, Dénes; Jakab, Katalin; Hnyilicza, Zsuzsanna; Klivényi, Péter; Keresztes, László; Engelhardt, József; Németh, Dezső; Vécsei, László
2014-01-01
Lightning-related injuries most often involve impairment of the functions of the central and peripheral nervous systems, usually including cognitive dysfunctions. We evaluated the cognitive deficit of a patient who had survived a lightning strike and measured the improvement after her cognitive training. This therapeutic method appears to be a powerful tool in the neurorehabilitation treatment. The aim of this case study was to prove the beneficial effects of cognitive training as part of the neurorehabilitation after a lightning strike. Six neuropsychological functions were examined in order to test the cognitive status of the patient before and after the 2-month cognitive training: phonological short-term memory (digit span test and word repetitions test), visuo-spatial short-term memory (Corsi Block Tapping Test), working memory (backward digit span test and listening span test), executive functions (letter and semantic fluencies), language functions (non-word repetition test, Pléh-Palotás-Lörik (PPL) test and sentence repetition test) and episodic memory (Rivermead Behavioral Memory Test and Mini Mental State Examination). We also utilized these tests in aged-matched healthy individuals so as to be able to characterize the domains of the observed improvements more precisely. The patient exhibited a considerable improvement in the backward digit span, semantic fluency, non-word repetition, PPL, sentence repetition and Rivermead Behavioral Memory tests. The cognitive training played an important role in the neurorehabilitation treatment of this lightning injury patient. It considerably improved her quality of life through the functional recovery.
Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper
NASA Technical Reports Server (NTRS)
Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.;
2014-01-01
Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).
Lightning protection of distribution systems
NASA Astrophysics Data System (ADS)
Darveniza, M.; Uman, M. A.
1982-09-01
Research work on the lightning protection of distribution systems is described. The rationale behind the planning of the first major phase of the work - the field experiments conducted in the Tampa Bay area during August 1978 and July to September 1979 is explained. The aims of the field work were to characterize lightning in the Tampa Bay area, and to identify the lightning parameters associated with the occurrence of line outages and equipment damage on the distribution systems of the participating utilities. The equipment developed for these studies is fully described. The field work provided: general data on lightning - e.g., electric and magnetic fields of cloud and ground flashes; data from automated monitoring of lightning activity; stroke current waveshapes and peak currents measured at distribution arresters; and line outage and equipment damage on 13 kV networks in the Tampa Bay area. Computer aided analyses were required to collate and to process the accumulated data. The computer programs developed for this work are described.
Analysis of ELF Radio Atmospherics Radiated by Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.; Pilkey, J. T.; Uman, M. A.; Jordan, D. M.; Caicedo, J. A.; Hare, B.; Ngin, T. K.
2014-12-01
Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) along with pertinent Lightning Mapping Array (LMA) data are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the radio atmospheric (sferic) waveform observed at the receiver locations under various ionospheric conditions. We identify fitted exponential electron density profiles that accurately describe the observed propagation delays, phase delays, and signal amplitudes. The ability to infer ionospheric characteristics using distant ELF observations greatly enhances ionospheric remote sensing capabilities, especially in regard to interpreting observations of transient luminous events (TLEs) and other ionospheric effects associated with lightning.
An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.
2014-01-01
An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight, complex shapes, large structure dimension, large current, and low frequency capabilities are important considerations.
The Sao Paulo Lightning Mapping Array (SPLMA): Prospects to GOES-R GLM and CHUVA
NASA Technical Reports Server (NTRS)
Albrecht, Rachel I.; Carrey, Larry; Blakeslee, Richard J.; Bailey, Jeffrey C.; Goodman, Steven J.; Bruning, Eric C.; Koshak, William; Morales, Carlos A.; Machado, Luiz A. T.; Angelis, Carlos F.;
2010-01-01
This paper presents the characteristics and prospects of a Lightning Mapping Array to be deployed at the city of S o Paulo (SPLMA). This LMA network will provide CHUVA campaign with total lightning, lightning channel mapping and detailed information on the locations of cloud charge regions for the thunderstorms investigated during one of its IOP. The real-time availability of LMA observations will also contribute to and support improved weather situational awareness and mission execution. For GOES-R program it will form the basis of generating unique and valuable proxy data sets for both GLM and ABI sensors in support of several on-going research investigations
Application of triggered lightning numerical models to the F106B and extension to other aircraft
NASA Technical Reports Server (NTRS)
Ng, Poh H.; Dalke, Roger A.; Horembala, Jim; Rudolph, Terence; Perala, Rodney A.
1988-01-01
The goal of the F106B Thunderstorm Research Program is to characterize the lightning environment for aircraft in flight. This report describes the application of numerical electromagnetic models to this problem. Topics include: (1) Extensive application of linear triggered lightning to F106B data; (2) Electrostatic analysis of F106B field mill data; (3) Application of subgrid modeling to F106B nose region, including both static and nonlinear models; (4) Extension of F106B results to other aircraft of varying sizes and shapes; and (5) Application of nonlinear model to interaction of F106B with lightning leader-return stroke event.
Expanding the Operational Use of Total Lightning Ahead of GOES-R
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.; Wood, Lance; Garner, Tim; Nunez, Roland; Kann, Deirdre; Reynolds, James; Rydell, Nezette; Cox, Rob; Bobb, William R.
2015-01-01
NASA's Short-term Prediction Research and Transition Center (SPoRT) has been transitioning real-time total lightning observations from ground-based lightning mapping arrays since 2003. This initial effort was with the local Weather Forecast Offices (WFO) that could use the North Alabama Lightning Mapping Array (NALMA). These early collaborations established a strong interest in the use of total lightning for WFO operations. In particular the focus started with warning decision support, but has since expanded to include impact-based decision support and lightning safety. SPoRT has used its experience to establish connections with new lightning mapping arrays as they become available. The GOES-R / JPSS Visiting Scientist Program has enabled SPoRT to conduct visits to new partners and expand the number of operational users with access to total lightning observations. In early 2014, SPoRT conducted the most recent visiting scientist trips to meet with forecast offices that will used the Colorado, Houston, and Langmuir Lab (New Mexico) lightning mapping arrays. In addition, SPoRT met with the corresponding Center Weather Service Units (CWSUs) to expand collaborations with the aviation community. These visits were an opportunity to learn about the forecast needs of each office visited as well as to provide on-site training for the use of total lightning, setting the stage for a real-time assessment during May-July 2014. With five lightning mapping arrays covering multiple geographic locations, the 2014 assessment has demonstrated numerous uses of total lightning in varying situations. Several highlights include a much broader use of total lightning for impact-based decision support ranging from airport weather warnings, supporting fire crews, and protecting large outdoor events. The inclusion of the CWSUs has broadened the operational scope of total lightning, demonstrating how these data can support air traffic management, particularly in the Terminal Radar Approach Control Facilities (TRACON) region around an airport. These collaborations continue to demonstrate, from the operational perspective, the utility of total lightning and the importance of continued training and preparation in advance of the Geostationary Lightning Mapper.
Measurement of characteristics of lightning at high altitudes
NASA Technical Reports Server (NTRS)
Coquelet, M.; Gall, D.
1981-01-01
New development in aeronautical technology -- the use of composite materials, new electronic components, electric flight controls -- have made aircraft potentially more and more vulnerable to the effects of lightning. In-flight tests were conducted to evaluate the current in a bolt of lightning, to measure voltage surge in the onboard circuitry and in certain pieces of equipment, and to document the relationship lightning bolt current and the voltage surge so as to develop a theoretical model and thuds to become acquainted with the significant
NASA Astrophysics Data System (ADS)
Ponds, Charles D.; Knaur, James A.
1988-01-01
This paper presents the design and test requirements in developing an electromagnetic compatibility missile system. Environmental levels are presented for electromagnetic radiation hazards, electromagnetic radiation operational, electrostatic discharge, lightning, and electromagnetic pulse (nuclear). Testing techniques and facility capabilities are presented for research and development testing of missile systems.
Camp Blanding Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Blakeslee,Richard; Christian, Hugh; Bailey, Jeffrey; Hall, John; Uman, Martin; Jordan, Doug; Krehbiel, Paul; Rison, William; Edens, Harald
2011-01-01
A seven station, short base-line Lightning Mapping Array was installed at the Camp Blanding International Center for Lightning Research and Testing (ICLRT) during April 2011. This network will support science investigations of Terrestrial Gamma-Ray Flashes (TGFs) and lightning initiation using rocket triggered lightning at the ICLRT. The network operations and data processing will be carried out through a close collaboration between several organizations, including the NASA Marshall Space Flight Center, University of Alabama in Huntsville, University of Florida, and New Mexico Tech. The deployment was sponsored by the Defense Advanced Research Projects Agency (DARPA). The network does not have real-time data dissemination. Description, status and plans will be discussed.
MODEL TESTS ON BALL LIGHTNING; Modellversuche zum Kugelblitz
DOE Office of Scientific and Technical Information (OSTI.GOV)
nauer, H.
1959-10-31
Ball lightning phenomena and properties gleaned from a collection of observations are examined. The observations of a diffusion combustion of minute gas admixtures in air are thoroughly examined because they display the greatest resemblance to natural ball lightning. A comparison of properties with the qualities of the luminous clouds during diffusion combustion shows very good agreement. (W.D.M.)
Correlated observations of three triggered lightning flashes
NASA Technical Reports Server (NTRS)
Idone, V. P.; Orville, R. E.; Hubert, P.; Barret, L.; Eybert-Berard, A.
1984-01-01
Three triggered lightning flashes, initiated during the Thunderstorm Research International Program (1981) at Langmuir Laboratory, New Mexico, are examined on the basis of three-dimensional return stroke propagation speeds and peak currents. Nonlinear relationships result between return stroke propagation speed and stroke peak current for 56 strokes, and between return stroke propagation speed and dart leader propagation speed for 32 strokes. Calculated linear correlation coefficients include dart leader propagation speed and ensuing return stroke peak current (32 strokes; r = 0.84); and stroke peak current and interstroke interval (69 strokes; r = 0.57). Earlier natural lightning data do not concur with the weak positive correlation between dart leader propagation speed and interstroke interval. Therefore, application of triggered lightning results to natural lightning phenomena must be made with certain caveats. Mean values are included for the three-dimensional return stroke propagation speed and for the three-dimensional dart leader propagation speed.
Diffuse dispersive delay and the time convolution/attenuation of transients
NASA Technical Reports Server (NTRS)
Bittner, Burt J.
1991-01-01
Test data and analytic evaluations are presented to show that relatively poor 100 KHz shielding of 12 Db can effectively provide an electromagnetic pulse transient reduction of 100 Db. More importantly, several techniques are shown for lightning surge attenuation as an alternative to crowbar, spark gap, or power zener type clipping which simply reflects the surge. A time delay test method is shown which allows CW testing, along with a convolution program to define transient shielding effectivity where the Fourier phase characteristics of the transient are known or can be broadly estimated.
Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, M A; Rakov, V A; Elisme, J O
2008-10-01
The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we give sets of constants for these expressions so that they yield approximately the median and extreme negative lightning parametersmore » presented in this report. Expressions for the median negative lightning waveforms are plotted. Finally, we provide information on direct-strike lightning damage to metals such as stainless steel, which could be used as components of storage containers for nuclear waste materials; and we describe UF's new experimental research program to add to the sparse data base on the properties of positive lightning. Our literature survey, referred to above, is included in four Appendices. The following four sections (II, III, IV, and V) of this final report deal with related aspects of the research: Section II. Recommended Direct-Strike Median and Extreme Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and Appendix 4. Lightning Damage to Metal Surfaces.« less
Tropical Cyclone Lightning Distribution and Its Relationship to Convection and Intensity Change
NASA Technical Reports Server (NTRS)
Rodgers, Edward; Wienman, James; Pierce, Harold; Olson, William
2000-01-01
The long distance National Lightning Detection Network (NLDN) was used to monitor the distribution of lightning strokes in various 1998 and 1999 western North Atlantic tropical cyclones. These ground-based lightning observations together with the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and the Tropical Rain Mapping Mission (TRMM) Microwave Instrument (TMI) derived convective rain rates were used to monitor the propagation of electrically charged convective rain bands aid to qualitatively estimate intensification. An example of the lightning analyses was performed on hurricane George between 25-28 September, 1998 when the system left Key West and moved towards the Louisiana coast. During this period of time, George's maximum winds increased from 38 to 45 meters per second on 25 September and then remained steady state until it made landfall. Time-radius displays of the lightning strokes indicated that the greatest number of lightning strokes occurred within the outer core region (greater than 165 km) with little or no lightning strokes at radii less than 165 km. The trend in these lightning strokes decreased as George move into the Gulf of Mexico and showed no inward propagation. The lack inward propagating lightning strokes with time indicated that there was no evidence that an eye wall replacement was occurring that could alter George's intensity. Since George was steady state at this time, this result is not surprising. Time-azimuth displays of lightning strokes in an annulus whose outer and inner radii were respectively, 222 and 333 km from George's center were also constructed. A result from this analysis indicated that the maximum number of strokes occurred in the forward and rear right quadrant when George was over the Gulf of Mexico. This result is, consistent with the aircraft and satellite observations of maximum rainfall.
NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes
NASA Technical Reports Server (NTRS)
Burnham, Karen; Scully, Robert; Norgard, John
2013-01-01
The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This presentation will outline the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability
NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes
NASA Technical Reports Server (NTRS)
Burnham, Karen; Scully, Robert C.; Norgard, John D.
2013-01-01
The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This paper outlines the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability.
NASA Astrophysics Data System (ADS)
Jacobson, Abram R.; Shao, Xuan-Min; Holzworth, Robert
2010-05-01
We are developing and testing a steep-incidence D region sounding method for inferring profile information, principally regarding electron density. The method uses lightning emissions (in the band 5-500 kHz) as the probe signal. The data are interpreted by comparison against a newly developed single-reflection model of the radio wave's encounter with the lower ionosphere. The ultimate application of the method will be to study transient, localized disturbances of the nocturnal D region, including those instigated by lightning itself. Prior to applying the method to study lightning-induced perturbations of the nighttime D region, we have performed a validation test against more stable and predictable daytime observations, where the profile of electron density is largely determined by direct solar X-ray illumination. This article reports on the validation test. Predictions from our recently developed full-wave ionospheric-reflection model are compared to statistical summaries of daytime lightning radiated waveforms, recorded by the Los Alamos Sferic Array. The comparison is used to retrieve best fit parameters for an exponential profile of electron density in the ionospheric D region. The optimum parameter values are compared to those found elsewhere using a narrowband beacon technique, which used totally different measurements, ranges, and modeling approaches from those of the work reported here.
The LATEST Project: Operational Assessment of Total Lightning Data in the U.S.
NASA Technical Reports Server (NTRS)
Goodman, Steven
2004-01-01
A government, university, and industry alliance has joined forces to transition total lightning observations from ground-based research networks and NASA satellites (LIS/TRMM) to improve the short range prediction of severe weather. This interest builds on the desire of the U.S Weather Research Program to foster a national Nowcasting Test Bed, with this specific transition activity initiated through the NASA short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL. A kick-off national workshop sponsored by the SPoRT Center was held in Huntsville April 1-2 to identify the common goals and objectives of the research and operational community, and to assign roles and responsibilities within the alliance. The workshop agenda, presentations, and summary are available at the SPoRT Center Web site ( h h under the "Meetings" tab. The next national workshop is planned for 2005 in Dallas, TX. The NASA North Alabama regional Lightning Mapping Array &MA) has been operational in the Huntsville area for 3 years, and has continuously sampled a variety of severe weather systems during that period. A gridded version of the LMA total lightning data is currently being supplied to National Weather Service offices in Huntsville, Nashville and Birmingham through the NWS AWES decision support system, for the purposes of assessing the utility of the data in the nowcasting of severe weather such as tornadoes, damaging straight line winds, flash flooding and other weather hazards (lightning induced forest fires, microbursts). While the raw LMA data have been useful to NWS forecasters, even greater utility would be realized if higher-order data products could be supplied through AWIPS along with the gridded data over a larger domain. In 2003-2004 additional LMA systems have been deployed across the southern US. from Florida to New Mexico, providing an opportunity for more than 20 NWS forecast offices to evaluate the incremental value of total lightning data in the warning decision making process.
NASA Astrophysics Data System (ADS)
Ullah, Irshad; Baharom, MNR; Ahmed, H.; Luqman, HM.; Zainal, Zainab
2017-11-01
Protection against lightning is always a challenging job for the researcher. The consequences due to lightning on different building shapes needs a comprehensive knowledge in order to provide the information to the common man. This paper is mainly concern with lightning pattern when it strikes on the building with different shape. The work is based on the practical experimental work in high voltage laboratory. Different shapes of the scaled structures have been selected in order to investigate the equal distribution of lightning voltage. The equal distribution of lightning voltage will provide the maximum probability of lightning strike on air terminal of the selected shapes. Building shapes have a very important role in lightning protection. The shapes of the roof tops have different geometry and the Franklin rod installation is also varies with changing the shape of the roof top. According to the ambient weather condition of Malaysia high voltage impulse is applied on the lightning rod installed on different geometrical shape. The equal distribution of high voltage impulse is obtained as the geometry of the scaled structure is identical and the air gap for all the tested object is kept the same. This equal distribution of the lightning voltage also proves that the probability of lightning strike is on the corner and the edges of the building structure.
NASA Astrophysics Data System (ADS)
Navon, M. I.; Stefanescu, R.
2013-12-01
Previous assimilation of lightning used nudging approaches. We develop three approaches namely, 3D-VAR WRFDA and1D+nD-VAR (n=3,4) WRFDA . The present research uses Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. To test performance of aforementioned schemes, we assess quality of resulting analysis and forecasts of precipitation compared to those from a control experiment and verify them against NCEP stage IV precipitation. Results demonstrate that assimilating lightning observations improves precipitation statistics during the assimilation window and for 3-7 h thereafter. The 1D+4D-VAR approach yielded the best performance significantly improving precipitation rmse errors by 25% and 27.5%,compared to control during the assimilation window for two tornadic test cases. Finally we propose a new approach to assimilate 2-D images of lightning flashes based on pixel intensity, mitigating dimensionality by a reduced order method.
Remote sensing of the lightning heating effect duration with ground-based microwave radiometer
NASA Astrophysics Data System (ADS)
Jiang, Sulin; Pan, Yun; Lei, Lianfa; Ma, Lina; Li, Qing; Wang, Zhenhui
2018-06-01
Artificially triggered lightning events from May 26, 2017 to July 16, 2017 in Guangzhou Field Experiment Site for Lightning Research and Test (GFESL) were intentionally remotely sensed with a ground-based microwave radiometer for the first time in order to obtain the features of lightning heating effect. The microwave radiometer antenna was adjusted to point at a certain elevation angle towards the expected artificially triggered lightning discharging path. Eight of the 16 successfully artificially triggered lightning events were captured and the brightness temperature data at four frequencies in K and V bands were obtained. The results from data time series analysis show that artificially triggered lightning can make the radiometer generate brightness temperature pulses, and the amplitudes of these pulses are in the range of 2.0 K to 73.8 K. The brightness temperature pulses associated with 7 events can be used to estimate the duration of lightning heating effect through accounting the number of the pulses in the continuous pulse sequence and the sampling interval between four frequencies. The maximum duration of the lightning heating effect is 1.13 s, the minimum is 0.172 s, and the average is 0.63 s.
Central hyperadrenergic state after lightning strike.
Parsaik, Ajay K; Ahlskog, J Eric; Singer, Wolfgang; Gelfman, Russell; Sheldon, Seth H; Seime, Richard J; Craft, Jennifer M; Staab, Jeffrey P; Kantor, Birgit; Low, Phillip A
2013-08-01
To describe and review autonomic complications of lightning strike. Case report and laboratory data including autonomic function tests in a subject who was struck by lightning. A 24-year-old man was struck by lightning. Following that, he developed dysautonomia, with persistent inappropriate sinus tachycardia and autonomic storms, as well as posttraumatic stress disorder (PTSD) and functional neurologic problems. The combination of persistent sinus tachycardia and episodic exacerbations associated with hypertension, diaphoresis, and agitation was highly suggestive of a central hyperadrenergic state with superimposed autonomic storms. Whether the additional PTSD and functional neurologic deficits were due to a direct effect of the lightning strike on the central nervous system or a secondary response is open to speculation.
Central Hyperadrenergic State After Lightning Strike
Parsaik, Ajay K.; Ahlskog, J. Eric; Singer, Wolfgang; Gelfman, Russell; Sheldon, Seth H.; Seime, Richard J.; Craft, Jennifer M.; Staab, Jeffrey P.; Kantor, Birgit; Low, Phillip A.
2013-01-01
Objective To describe and review autonomic complications of lightning strike. Methods Case report and laboratory data including autonomic function tests in a subject who was struck by lightning. Results A 24-year-old man was struck by lightning. Following that, he developed dysautonomia, with persistent inappropriate sinus tachycardia and autonomic storms, as well as posttraumatic stress disorder (PTSD) and functional neurologic problems. Interpretation The combination of persistent sinus tachycardia and episodic exacerbations associated with hypertension, diaphoresis, and agitation were highly suggestive of a central hyperadrenergic state with superimposed autonomic storms. Whether the additional PTSD and functional neurologic deficits were due to a direct effect of the lightning strike on the CNS or a secondary response is open to speculation. PMID:23761114
GOES-R Geostationary Lightning Mapper Performance Specifications and Algorithms
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.
Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2012-01-01
Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.
Experimental study of rotating wind turbine breakdown characteristics in large scale air gaps
NASA Astrophysics Data System (ADS)
Wang, Yu; Qu, Lu; Si, Tianjun; Ni, Yang; Xu, Jianwei; Wen, Xishan
2017-06-01
When a wind turbine is struck by lightning, its blades are usually rotating. The effect of blade rotation on a turbine’s ability to trigger a lightning strike is unclear. Therefore, an arching electrode was used in a wind turbine lightning discharge test to investigate the difference in lightning triggering ability when blades are rotating and stationary. A negative polarity switching waveform of 250/2500 μs was applied to the arching electrode and the up-and-down method was used to calculate the 50% discharge voltage. Lightning discharge tests of a 1:30 scale wind turbine model with 2, 4, and 6 m air gaps were performed and the discharge process was observed. The experimental results demonstrated that when a 2 m air gap was used, the breakdown voltage increased as the blade speed was increased, but when the gap length was 4 m or longer, the trend was reversed and the breakdown voltage decreased. The analysis revealed that the rotation of the blades changes the charge distribution in the blade-tip region, promotes upward leader development on the blade tip, and decreases the breakdown voltage. Thus, the blade rotation of a wind turbine increases its ability to trigger lightning strikes.
GLM Post Launch Testing and Airborne Science Field Campaign
NASA Astrophysics Data System (ADS)
Goodman, S. J.; Padula, F.; Koshak, W. J.; Blakeslee, R. J.
2017-12-01
The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. The Geostationary Lightning Mapper (GLM) is a wholly new instrument that provides a capability for total lightning detection (cloud and cloud-to-ground flashes). The first satellite in the GOES-R series, now GOES-16, was launched in November 2016 followed by in-orbit post launch testing for approximately 12 months before being placed into operations replacing the GOES-E satellite in December. The GLM will map total lightning continuously throughout day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. The total lightning is very useful for identifying hazardous and severe thunderstorms, monitoring storm intensification and tracking evolution. Used in tandem with radar, satellite imagery, and surface observations, total lightning data has great potential to increase lead time for severe storm warnings, improve aviation safety and efficiency, and increase public safety. In this paper we present initial results from the post-launch in-orbit performance testing, airborne science field campaign conducted March-May, 2017 and assessments of the GLM instrument and science products.
2009-10-20
CAPE CANAVERAL, Fla. - Poised inside Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the Ares I-X rocket's upper stage is adorned with the American flag, NASA logo, and the logos of the Constellation Program, Ares, and Ares I-X. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System
NASA Technical Reports Server (NTRS)
1975-01-01
A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.
NASA Astrophysics Data System (ADS)
Defer, E.; Coquillat, S.; Lambert, D.; Pinty, J. P.; Prieur, S.; Caumont, O.; Labatut, L.; Nuret, M.; Blanchet, P.; Buguet, M.; Lalande, P.; Labrouche, G.; Pedeboy, S.; Lojou, J. Y.; Schwarzenboeck, A.; Delanoë, J.; Bourdon, A.; Guiraud, L.
2017-12-01
The 4-year EXAEDRE (EXploiting new Atmospheric Electricity Data for Research and the Environment; Oct 2016-Sept 2020) project is sponsored by the French Science Foundation ANR (Agence Nationale de la Recherche). This project is a French contribution to the HyMeX (HYdrological cycle in the Mediterranean EXperiment) program. The EXAEDRE activities rely on innovative multi-disciplinary and state of the art instrumentation and modeling tools to provide a comprehensive description of the electrical activity in thunderstorms. The EXAEDRE observational part is based on i) existing lightning records collected during HyMeX Special Observation Period (SOP1; Sept-Nov 2012), and permanent lightning observations provided by the research Lightning Mapping Array SAETTA and the operational Météorage lightning locating systems, ii) additional lightning observations mapped with a new VHF interferometer especially developed within the EXAEDRE project, and iii) a dedicated airborne campaign over Corsica. The modeling part of the EXAEDRE project exploits the electrification and lightning schemes developed in the cloud resolving model MesoNH and promotes an innovative technique of flash data assimilation in the french operational model AROME of Météo-France. An overview of the EXAEDRE project will be given with an emphasis on the instrumental, observational and modeling activities performed during the 1st year of the project. The preparation of the EXAEDRE airborne campaign scheduled for September 2018 over Corsica will then be discussed. Acknowledgements. The EXAEDRE project is sponsored by grant ANR-16-CE04-0005 with support from the MISTRALS/HyMeX meta program.
2009-10-20
CAPE CANAVERAL, Fla. - Inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the 327-foot-tall Ares I-X rocket stands on its mobile launcher platform. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
Smart CMOS image sensor for lightning detection and imaging.
Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor
2013-03-01
We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.
Evaluation of NASA SPoRT's Pseudo-Geostationary Lightning Mapper Products in the 2011 Spring Program
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.; Carcione, Brian; Siewert, Christopher; Kuhlman, Kristin M.
2012-01-01
NASA's Short-term Prediction Research and Transition (SPoRT) program is a contributing partner with the GOES-R Proving Ground (PG) preparing forecasters to understand and utilize the unique products that will be available in the GOES-R era. This presentation emphasizes SPoRT s actions to prepare the end user community for the Geostationary Lightning Mapper (GLM). This preparation is a collaborative effort with SPoRT's National Weather Service partners, the National Severe Storms Laboratory (NSSL), and the Hazardous Weather Testbed s Spring Program. SPoRT continues to use its effective paradigm of matching capabilities to forecast problems through collaborations with our end users and working with the developers at NSSL to create effective evaluations and visualizations. Furthermore, SPoRT continues to develop software plug-ins so that these products will be available to forecasters in their own decision support system, AWIPS and eventually AWIPS II. In 2009, the SPoRT program developed the original pseudo geostationary lightning mapper (PGLM) flash extent product to demonstrate what forecasters may see with GLM. The PGLM replaced the previous GLM product and serves as a stepping-stone until the AWG s official GLM proxy is ready. The PGLM algorithm is simple and can be applied to any ground-based total lightning network. For 2011, the PGLM used observations from four ground-based networks (North Alabama, Kennedy Space Center, Oklahoma, and Washington D.C.). While the PGLM is not a true proxy product, it is intended as a tool to train forecasters about total lightning as well as foster discussions on product visualizations and incorporating GLM-resolution data into forecast operations. The PGLM has been used in 2010 and 2011 and is likely to remain the primary lightning training tool for the GOES-R program for the near future. This presentation will emphasize the feedback received during the 2011 Spring Program. This will discuss several topics. Based on feedback from the 2010 Spring Program, SPoRT created two variant PGLM products, which NSSL produced locally and provided in real-time within AWIPS for 2011. The first is the flash initiation density (FID) product, which creates a gridded display showing the number of flashes that originated in each 8 8 km grid box. The second product is the maximum flash density (MFD). This shows the highest PGLM value for each grid point over a specific period of time, ranging from 30 to 120 minutes. In addition to the evaluation of these two new products, the evaluation of the PGLM itself will be covered. The presentation will conclude with forecaster feedback for additional improvements requested for future evaluations, such as within the 2012 Spring Program.
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.
2011-12-01
Model predictions of the ELF radio atmospheric generated by rocket-triggered lightning are compared with observations performed at Arrival Heights, Antarctica. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. ELF observations performed at Arrival Heights, Antarctica during rocket-triggered lightning experiments at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida are presented. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with LWPC to predict the sferic waveform observed at Arrival Heights under various ionospheric conditions. This paper critically compares observations with model predictions.
Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte
2016-01-01
This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.
NASA Technical Reports Server (NTRS)
Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte
2016-01-01
This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.
SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE
2017-01-01
This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system. PMID:29303164
NASA Astrophysics Data System (ADS)
Solorzano, N. N.; Thomas, J. N.; Hutchins, M. L.; Holzworth, R. H.
2016-10-01
We investigate lightning strokes and deep convection through the examination of cloud-to-ground (CG) lightning from the World Wide Lightning Location Network (WWLLN) and passive microwave radiometer data. Microwave channels at 37 to 183.3 GHz are provided by the Tropical Rainfall Measuring Mission satellite (TRMM) Microwave Imager (TMI) and the Special Sensor Microwave Imager/Sounder (SSMIS) on the Defense Meteorological Satellite Program (DMSP) satellite F16. The present study compares WWLLN stroke rates and minimum radiometer brightness temperatures (Tbs) for two Northern Hemisphere and Southern Hemisphere summers (2009-2011) in the broad tropics (35°S to 35°N). To identify deep convection, we use lightning data and Tbs derived from all channels and differences in the Tbs (ΔTbs) of the three water vapor channels near 183.3 GHz. We find that stroke probabilities increase with increasing Tb depressions for all frequencies examined. Moreover, we apply methods that use the 183.3 GHz channels to pinpoint deep convection associated with lightning. High lightning stroke probabilities are found over land regions for both intense and relatively weak convective systems, although the TMI 85 GHz results should be used with caution as they are affected by a 7 km gap between the conical scans. Over the ocean, lightning is associated mostly with larger Tb depressions. Generally, our results support the noninductive thundercloud charging mechanism but do not rule out the inductive mechanism during the mature stages of storms. Lastly, we present a case study in which lightning stroke rates are used to reconstruct microwave radiometer Tbs.
NASA Astrophysics Data System (ADS)
Boldi, R.; Hobara, Y.; Yamashita, K.; Hayakawa, M.; Satori, G.; Bor, J.; Lyons, W. A.; Nelson, T.; Russell, B.; Williams, E.
2006-12-01
The generation of electromagnetic transient signatures in the SR frequency range (Q-bursts) from the energetic lightning originating in Africa were intensively studied during the AMMA (African Monsoon Multidisciplinary Analysis) field program centered on Niamey, Niger in 2006. During this wet season many active westward- moving MCSs were observed by the MIT C-band Doppler radar. The MCSs exhibited a gust front, a leading squall line and a large spatially-extended (100-200 km) stratiform region that often passed over the observation site. Many transient events were recorded in association with local lightning both with a slow antenna and a DC electric field mill installed near the radar. During the gust front and squall line traverse, the majority of lightning exhibited normal polarity. A remarkable transition of polarity is observed once the radar site is under the stratiform region and a pronounced radar bright band has had time to develop. The majority of the ground flashes then exhibit a positive polarity (positive ground flash). In particular, very intense positive ground flashes (often topped with spider lightning structure) are registered when the radar "hbright band"h is most strongly developed. These positive flashes exhibit a large DC field change in comparison to ones observed during the earlier squall line passage. Video observations of nighttime events support the existence of the lateral extensive spider lightning. Daytime events exhibit thunder durations of a few minutes. ELF Q-bursts were recorded at MIT's Schumann resonance station in Rhode Island U.S.A. (about 8 Mm distance from Niamey) associated with several large well-established positive ground flashes observed locally near Niamey. The event identification is made by accurate GPS timing and arrival direction of the waves. The onset times of the Q-burst are in good agreement with the electric field measurement near Niamey. The arrival directions of the waves are also in good agreement assuming the lightning source near Niamey. Those Q- bursts were generated when the radar observed the bright band in the stratiform region. Africa stands out among the three tropical chimneys in its production of large and energetic positive ground flashes in several independently produced maps of global lightning activity. Comparison of the morphology of convection in radar field programs in Niamey and in Brazil (LBA Program, 1999) have shown far more squall line activity with accompanying stratiform regions in Africa. A large ratio of positive to negative ground flashes in Africa has been documented by the global mapping of Q-bursts, and is consistent with production of positive lightning in the prevalent stratiform regions behind active squall lines. In contrast, a predominance of large negative ground flashes is observed in the Maritime Continent where many lightning sources are located close to (or over) the ocean, and where vigorous continental-style squall lines are relatively scarce. The global maps from Rhode Island U.S. and Moshiri Japan show similar tendency in the distribution of lightning polarity.
Evaluation of lightning accommodation systems for wind-driven turbine rotors
NASA Technical Reports Server (NTRS)
Bankaitis, H.
1982-01-01
Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.
Equipment testing with damped sinewaves between 1 and 50 MHz
NASA Astrophysics Data System (ADS)
Hardwick, C. John; Baldwin, R. E.
1992-11-01
Present lightning equipment test standards such as RTCA DO160C call for damped sinusoidal tests at 1 and 10 MHz. There has been some discussion in the lightning community about extending these tests to 50 frequencies in the region 1-50 MHz. This paper presents characteristics of such tests on cable bundles and notes the relationship between bundle current and injected voltage; important parameters are the cable loss and Q of the driving waveform.
Lightning protection of a modern wind energy system
NASA Astrophysics Data System (ADS)
Jaeger, D.
Due to their considerable height and frequent location above flat terrain, wind energy systems may be struck by lightning, with two types of severe effects: the physical destruction of structurally and/or mechanically important elements, such as a rotor blade, or the damage or interruption of system electrical and electronic equipment. The GROWIAN II DEMO lightning protection program has undertaken the development of measures which in their sophistication and complexity approximate those for aircraft. These protective measures are applied to the carbon fiber-reinforced plastic composite rotor blades, the rotor bearing, and electrical circuitry installed within the wind turbine's nacelle.
2008-11-25
CAPE CANAVERAL, Fla. - The new lightning towers are under construction on Launch Pad 39B at NASA’s Kennedy Space Center in Florida. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire centenary system. This improved lightning protection system allows for the taller height of the Ares I compared to the space shuttle. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is targeted for summer of 2009, as part of NASA’s Constellation Program. Photo credit: NASA/Tim Jacobs
NASA Technical Reports Server (NTRS)
Rudolph, T. H.; Perala, R. A.
1983-01-01
The objective of the work reported here is to develop a methodology by which electromagnetic measurements of inflight lightning strike data can be understood and extended to other aircraft. A linear and time invariant approach based on a combination of Fourier transform and three dimensional finite difference techniques is demonstrated. This approach can obtain the lightning channel current in the absence of the aircraft for given channel characteristic impedance and resistive loading. The model is applied to several measurements from the NASA F106B lightning research program. A non-linear three dimensional finite difference code has also been developed to study the response of the F106B to a lightning leader attachment. This model includes three species air chemistry and fluid continuity equations and can incorporate an experimentally based streamer formulation. Calculated responses are presented for various attachment locations and leader parameters. The results are compared qualitatively with measured inflight data.
ELF Sferics Observed at Large Distances
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.
2012-12-01
Model predictions of the ELF radio atmospheric generated by rocket-triggered lightning are compared with observations performed at at large (>1 Mm) distances. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. ELF observations performed in Alaska and Antarctica during rocket-triggered lightning experiments at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida are presented. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with LWPC to predict the sferic waveform observed at the receiver locations under various ionospheric conditions. This paper critically compares observations with model predictions.
Calibration tests on magnetic tape lightning current detectors
NASA Technical Reports Server (NTRS)
Crouch, K. E.
1980-01-01
The low cost, passive, peak lightning current detector (LCD) invented at the NASA/Kennedy Space Center, uses magnetic audio recording tape to sense the magnitude of the peak magnetic field around a conductor carrying lightning currents. Test results show that the length of audio tape erased was linearly related to the peak simulated lightning currents in a round conductor. Accuracies of + or - 10% were shown for measurements made using a stopwatch readout technique to determine the amount of tape erased by the lightning current. The stopwatch technique is a simple, low cost means of obtaining LCD readouts and can be used in the field to obtain immediate results. Where more accurate data are desired, the tape is played and the output recorded on a strip chart, oscilloscope, or some other means so that measurements can be made on that recording. Conductor dimensions, tape holder dimensions, and tape formulation must also be considered to obtain a more accurate result. If the shape of the conductor is other than circular (i.e., angle, channel, H-beam), an analysis of the magnetic field is required to use an LCD, especially at low current levels.
Lightning Radio Source Retrieval Using Advanced Lightning Direction Finder (ALDF) Networks
NASA Technical Reports Server (NTRS)
Koshak, William J.; Blakeslee, Richard J.; Bailey, J. C.
1998-01-01
A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of lightning radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National Lightning Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).
Struck-by-lightning deaths in the United States.
Adekoya, Nelson; Nolte, Kurt B
2005-05-01
The objective of the research reported here was to examine the epidemiologic characteristics of struck-by-lightning deaths. Using data from both the National Centers for Health Statistics (NCHS) multiple-cause-of-death tapes and the Census of Fatal Occupational Injuries (CFOI), which is maintained by the Bureau of Labor Statistics, the authors calculated numbers and annualized rates of lightning-related deaths for the United States. They used resident estimates from population microdata files maintained by the Census Bureau as the denominators. Work-related fatality rates were calculated with denominators derived from the Current Population Survey of employment data. Four illustrative investigative case reports of lightning-related deaths were contributed by the New Mexico Office of the Medical Investigator. It was found that a total of 374 struck-by-lightning deaths had occurred during 1995-2000 (an average annualized rate of 0.23 deaths per million persons). The majority of deaths (286 deaths, 75 percent) were from the South and the Midwest. The numbers of lightning deaths were highest in Florida (49 deaths) and Texas (32 deaths). A total of 129 work-related lightning deaths occurred during 1995-2002 (an average annual rate of 0.12 deaths per million workers). Agriculture and construction industries recorded the most fatalities at 44 and 39 deaths, respectively. Fatal occupational injuries resulting from being struck by lightning were highest in Florida (21 deaths) and Texas (11 deaths). In the two national surveillance systems examined, incidence rates were higher for males and people 20-44 years of age. In conclusion, three of every four struck-by-lightning deaths were from the South and the Midwest, and during 1995-2002, one of every four struck-by-lightning deaths was work-related. Although prevention programs could target the entire nation, interventions might be most effective if directed to regions with the majority of fatalities because they have the majority of lightning strikes per year.
Production of NOx by Lightning and its Effects on Atmospheric Chemistry
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.
2009-01-01
Production of NO(x) by lightning remains the NO(x) source with the greatest uncertainty. Current estimates of the global source strength range over a factor of four (from 2 to 8 TgN/year). Ongoing efforts to reduce this uncertainty through field programs, cloud-resolved modeling, global modeling, and satellite data analysis will be described in this seminar. Representation of the lightning source in global or regional chemical transport models requires three types of information: the distribution of lightning flashes as a function of time and space, the production of NO(x) per flash, and the effective vertical distribution of the lightning-injected NO(x). Methods of specifying these items in a model will be discussed. For example, the current method of specifying flash rates in NASA's Global Modeling Initiative (GMI) chemical transport model will be discussed, as well as work underway in developing algorithms for use in the regional models CMAQ and WRF-Chem. A number of methods have been employed to estimate either production per lightning flash or the production per unit flash length. Such estimates derived from cloud-resolved chemistry simulations and from satellite NO2 retrievals will be presented as well as the methodologies employed. Cloud-resolved model output has also been used in developing vertical profiles of lightning NO(x) for use in global models. Effects of lightning NO(x) on O3 and HO(x) distributions will be illustrated regionally and globally.
1992-11-01
November 1992 1992 INTERNATIONAL AEROSPACE AND GROUND CONFERENCE 6. Perfrming Orgnis.aten Code ON LIGHTNING AND STATIC ELECTRICITY - ADDENDUM 111...October 6-8 1992 Program and the Federal Aviation Administration 14. Sponsoring Agency Code Technical Center ACD-230 15. Supplementary Metes The NICG...area]. The program runs well on an IBM PC or compatible 386 with a math co-processor 387 chip and a VGA monitor. For this study, streamers were added
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Petersen, W.; Buechler, D. E.; Krehbiel, P. R.; Gatlin, P.; Zubrick, S.
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models is expected to be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 ground processing algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area)
Infrasound from lightning measured in Ivory Coast
NASA Astrophysics Data System (ADS)
Farges, T.; Matoza, R. S.
2011-12-01
It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes, ...). Some of the IMS stations are located where worldwide lightning detection networks (e.g. WWLLN) have a weak detection capability but lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of lightning flashes can be detected with this technique, giving better results locally than worldwide lightning detection networks. An IMS infrasound station has been installed in Ivory Coast for 8 years. The optical space-based instrument OTD measured a rate of 10-20 flashes/km^2/year in that country and showed strong seasonal variations (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 3 years of data (2005-2008).
NASA Technical Reports Server (NTRS)
Fisher, B. D.; Plumer, J. A.
1984-01-01
The direct lightning strike data and associated flight conditions recorded from 1980 to 1983 during 742 thunderstorm penetrations with a NASA F-106B in Oklahoma and Virginia are studied with an emphasis on aircraft protection design. The individual lightning attachment spots were plotted on isometric projections of the aircraft to identify lightning entry and exit points and swept flash patterns. The altitudes, ambient temperatures, turbulence, and precipitation at which the strikes occurred are summarized and discussed. It was noted that peak strike rates (0.81 strikes/min and 3 strikes/penetration) occurred at altitudes between 11 km and 11.6 km corresponding to ambient temperatures between -40 C and -45 C. The data confirmed that initial entry and exit points most frequently occur at aircraft extremities, in this case the nose boom, the wing tips, the vertical fin cap, and the afterburner. The swept-flash attachment paths and burn marks found in this program indicate that the mid-span areas of swept aircraft may be more susceptible to lightning than previously thought. It was also found that lightning strikes may attach to spots within the engine tail pipe.
Lightning protection design external tank /Space Shuttle/
NASA Technical Reports Server (NTRS)
Anderson, A.; Mumme, E.
1979-01-01
The possibility of lightning striking the Space Shuttle during liftoff is considered and the lightning protection system designed by the Martin Marietta Corporation for the external tank (ET) portion of the Shuttle is discussed. The protection system is based on diverting and/or directing a lightning strike to an area of the spacecraft which can sustain the strike. The ET lightning protection theory and some test analyses of the system's design are reviewed including studies of conductivity and thermal/stress properties in materials, belly band feasibility, and burn-through plug grounding and puncture voltage. The ET lightning protection system design is shown to be comprised of the following: (1) a lightning rod on the forward most point of the ET, (2) a continually grounded, one inch wide conductive strip applied circumferentially at station 371 (belly band), (3) a three inch wide conductive belly band applied over the TPS (i.e. the insulating surface of the ET) and grounded to a structure with eight conductive plugs at station 536, and (4) a two inch thick TPS between the belly bands which are located over the weld lands.
First Cloud-to-Ground Lightning Timing Study
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.
2013-01-01
NASA's LSP, GSDO and other programs use the probability of cloud-to-ground (CG) lightning occurrence issued by the 45th Weather Squadron (45 WS) in their daily and weekly lightning probability forecasts. These organizations use this information when planning potentially hazardous outdoor activities, such as working with fuels, or rolling a vehicle to a launch pad, or whenever personnel will work outside and would be at-risk from lightning. These organizations would benefit greatly if the 45 WS could provide more accurate timing of the first CG lightning strike of the day. The Applied Meteorology Unit (AMU) has made significant improvements in forecasting the probability of lightning for the day, but forecasting the time of the first CG lightning with confidence has remained a challenge. To address this issue, the 45 WS requested the AMU to determine if flow regimes, wind speed categories, or a combination of the two could be used to forecast the timing of the first strike of the day in the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) lightning warning circles. The data was stratified by various sea breeze flow regimes and speed categories in the surface to 5,000-ft layer. The surface to 5,000-ft layer was selected since that is the layer the 45 WS uses to predict the behavior of sea breeze fronts, which are the dominant influence on the occurrence of first lightning in Florida during the warm season. Due to small data sample sizes after stratification, the AMU could not determine a statistical relationship between flow regimes or speed categories and the time of the first CG strike.. As expected, although the amount and timing of lightning activity varies by time of day based on the flow regimes and speed categories, there are extended tails of low lightning activity making it difficult to specify times when the threat of the first lightning flash can be avoided. However, the AMU developed a graphical user interface with input from the 45 WS that allows forecasters to visualize the climatological frequencies of the timing of the first lightning strike. This tool should contribute directly to the 45 WS goal of improving lightning timing capability for its NASA, US Air Force and commercial customers.
Designs for surge immunity in critical electronic facilities
NASA Technical Reports Server (NTRS)
Roberts, Edward F., Jr.
1991-01-01
In recent years, Federal Aviation Administration (FAA) embarked on a program replacing older tube type electronic equipment with newer solid state equipment. This replacement program dramatically increased the susceptibility of the FAA's facilities to lightning related damages. The proposal is presented of techniques which may be employed to lessen the susceptibility of new FAA electronic facility designs to failures resulting from lightning related surges and transients as well as direct strikes. The general concept espoused is one of a consistent system approach employing both perimeter and internal protection. It compares the technique presently employed to reduce electronic noise with other techniques which reduce noise while lowering susceptibility to lightning related damage. It is anticipated that these techniques will be employed in the design of an Air Traffic Control Tower in a high isokeraunic area. This facility would be subjected to rigorous monitoring over a multi-year period to provide quantitative data hopefully supporting the advantage of this design.
NASA Technical Reports Server (NTRS)
Belcastro, C. M.
1983-01-01
Flight critical computer based control systems designed for advanced aircraft must exhibit ultrareliable performance in lightning charged environments. Digital system upset can occur as a result of lightning induced electrical transients, and a methodology was developed to test specific digital systems for upset susceptibility. Initial upset data indicates that there are several distinct upset modes and that the occurrence of upset is related to the relative synchronization of the transient input with the processing sate of the digital system. A large upset test data base will aid in the formulation and verification of analytical upset reliability modeling techniques which are being developed.
The Hundred Year Hunt for the Red Sprite
NASA Astrophysics Data System (ADS)
Lyons, W. A.; Schmidt, M.
2003-12-01
This presentation reviews an NSF Informal Science Education project directed by the PO of an ongoing NSF Physical Meteorology/Aeronomy-sponsored research program on red sprites. For over 100 years, anecdotal reports and citations in the literature have persisted of strange luminous apparitions occurring high above thunderstorms. They were long discounted by the scientific community - until 1989, when by pure chance, a video revealed two giant pillars of light extending tens of kilometers above a thunderstorm. Since then, thousands of events, now called sprites, have been imaged, many by the PI. Mesospheric sprites, at 40 to 90 km altitude, are induced by lightning discharges having highly unusual characteristics. Science is now gradually unraveling the nature of the giant lightning discharges which spawn sprites. In the process we have found even more unusual electrical discharges above thunderstorms, suggesting that many new discoveries await to be made. We produced and are distributing a planetarium DVD/video program (42 minutes length) entitled, "The Hundred Year Hunt for the Red Sprite." It documents the application of the scientific method to unraveling this century old mystery surrounding strange lights in the night sky. We also contrasted this story of discovery to the pseudo-science prevalent today in topics such as UFOs. With distribution to numerous planetaria and science centers, we believe over 200,000 persons will eventually view this program (which has won three major video production awards). Our long term goal is to inspire planetarium visitors to undertake their own self-directed learning programs. A companion educational web site (www.Sky-Fire.TV) allows students and adults sufficiently motivated by the planetarium experience to further investigate sprites and related basic science topics. The highly interactive web site challenges visitors to test their knowledge of sprites and lightning by participating in an on-line 20 question quiz game, which provides instant feed back and scoring. Visitors, encouraged to actively search the sky for these fleeting phenomena, have already reported a number of highly unusual events of potential scientific value.
2014-08-14
CAPE CANAVERAL, Fla. – The lightning suppression system on Launch Pad 39B soon may be put to the test by a thunderstorm moving through the launch complex at NASA’s Kennedy Space Center in Florida. Kennedy's Ground Support Development and Operations Program is hard at work transforming the center's facilities into a multi-user spaceport, when the weather permits. For more on Kennedy Space Center, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Ben Smegelsky
A Personal Storm Warning Service
NASA Technical Reports Server (NTRS)
1994-01-01
Although lightning detection systems operated by government agencies, utilities and other businesses provide storm warnings, this information often does not reach the public until some time after the observations have been made. A low-cost personal lightning detector offers a significant safety advantage to private flyers, boaters, golfers and others. Developed by Airborne Research Associates, the detectors originated in Space Shuttle tests of an optical lightning detection technique. The commercial device is pointed toward a cloud to detect invisible intracloud lightning by sensing subtle changes in light presence. The majority of the sales have been to golf courses. Additional products and more advanced applications are in progress.
A Ground Flash Fraction Retrieval Algorithm for GLM
NASA Technical Reports Server (NTRS)
Koshak, William J.
2010-01-01
A Bayesian inversion method is introduced for retrieving the fraction of ground flashes in a set of N lightning observed by a satellite lightning imager (such as the Geostationary Lightning Mapper, GLM). An exponential model is applied as a physically reasonable constraint to describe the measured lightning optical parameter distributions. Population statistics (i.e., the mean and variance) are invoked to add additional constraints to the retrieval process. The Maximum A Posteriori (MAP) solution is employed. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The approach is feasible for N greater than 2000, and retrieval errors decrease as N is increased.
ELF Sferics Produced by Rocket-Triggered Lightning and Observed at Great Distances
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.; Fraser-Smith, A. C.
2013-12-01
Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics as a function of return stroke. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica, although this work focuses on observations performed in Greenland. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the sferic waveform observed at the receiver locations under various ionospheric conditions. LWPC was developed by the Naval Ocean Systems Center over a period of many years. It is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. This paper critically compares observations with model predictions, and in particular analyzes Earth-ionosphere waveguide excitation as a function of return stroke. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning.
2009-10-20
CAPE CANAVERAL, Fla. - The Ares I-X rocket heads toward Launch Pad 39B at NASA's Kennedy Space Center in Florida, riding atop a crawler-transporter. The 4.2-mile trip to the pad from the massive Vehicle Assembly Building began at 1:39 a.m. EDT. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
2009-10-20
CAPE CANAVERAL, Fla. - With the work platforms retracted, the Ares I-X stands tall inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platforms were retracted in preparation for the rocket's rollout to Launch Pad 39B. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
2009-10-20
CAPE CANAVERAL, Fla. - The towering 327-foot-tall Ares I-X rocket rides aboard a crawler-transporter as it exits the massive Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The rocket is bolted to its mobile launcher platform for the move to the launch pad. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
2009-10-20
CAPE CANAVERAL, Fla. – Spotlighted against the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the 327-foot-tall Ares I-X rocket begins its slow trek to Launch Pad 39B. The move, known as "rollout," began at 1:39 a.m. EDT. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Jim Grossmann
Geostationary Lightning Mapper for GOES-R
NASA Technical Reports Server (NTRS)
Goodman, Steven; Blakeslee, Richard; Koshak, William
2007-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 11 year data record of global lightning activity. Instrument formulation studies begun in January 2006 will be completed in March 2007, with implementation expected to begin in September 2007. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite, airborne science missions (e.g., African Monsoon Multi-disciplinary Analysis, AMMA), and regional test beds (e.g, Lightning Mapping Arrays) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data now being provided to selected forecast offices will lead to improved understanding of the application of these data in the severe storm warning process and accelerate the development of the pre-launch algorithms and Nowcasting applications. Proxy data combined with MODIS and Meteosat Second Generation SEVERI observations will also lead to new applications (e.g., multi-sensor precipitation algorithms blending the GLM with the Advanced Baseline Imager, convective cloud initiation and identification, early warnings of lightning threat, storm tracking, and data assimilation).
Geostationary Lightning Mapper for GOES-R and Beyond
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch readiness in December 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models will be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) forecast offices in Southern and Eastern Region. This effort is designed to help improve our understanding of the application of these data in operational settings.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Wheeler, Mark
2005-01-01
Five logistic regression equations were created that predict the probability of cloud-to-ground lightning occurrence for the day in the KSC/CCAFS area for each month in the warm season. These equations integrated the results from several studies over recent years to improve thunderstorm forecasting at KSC/CCAFS. All of the equations outperform persistence, which is known to outperform NPTI, the current objective tool used in 45 WS lightning forecasting operations. The equations also performed well in other tests. As a result, the new equations will be added to the current set of tools used by the 45 WS to determine the probability of lightning for their daily planning forecast. The results from these equations are meant to be used as first-guess guidance when developing the lightning probability forecast for the day. They provide an objective base from which forecasters can use other observations, model data, consultation with other forecasters, and their own experience to create the final lightning probability for the 1100 UTC briefing.
NASA Technical Reports Server (NTRS)
Peterson, Harold; Koshak, William J.
2009-01-01
An algorithm has been developed to estimate the altitude distribution of one-meter lightning channel segments. The algorithm is required as part of a broader objective that involves improving the lightning NOx emission inventories of both regional air quality and global chemistry/climate models. The algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand; VHF source amplitude thresholding and smoothing were applied to optimize results. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. One-meter channel segment altitude distributions were also obtained for the different seasons.
Grounding and lightning protection. Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, M.D.
1987-12-31
Grounding systems protect personnel and equipment by isolating faulted systems and dissipating transient currents. Lightning protection systems minimize the possible consequences of a direct strike by lightning. This volume focuses on design requirements of the grounding system and on present-day concepts used in the design of lightning protection systems. Various types of grounding designs are presented, and their advantages and disadvantages discussed. Safety, of course, is the primary concern of any grounding system. Methods are shown for grounding the non-current-carrying parts of electrical equipment to reduce shock hazards to personnel. Lightning protection systems are installed on tall structures (such asmore » chimneys and cooling towers) to minimize the possibility of structural damage caused by direct lightning strokes. These strokes may carry currents of 200,000 A or more. The volume examines the formation and characteristics of lightning strokes and the way stroke characteristics influence the design of lightning protection systems. Because a large portion of the grounding system is buried in soil or concrete, it is not readily accessible for inspection or repair after its installation. The volume details the careful selection and sizing of materials needed to ensure a long, maintenance-free life for the system. Industry standards and procedures for testing the adequacy of the grounding system are also discussed.« less
Study on the Transient Process of 500kV Substations Secondary Equipment
NASA Astrophysics Data System (ADS)
Li, Hongbo; Li, Pei; Zhang, Yanyan; Niu, Lin; Gao, Nannan; Si, Tailong; Guo, Jiadong; Xu, Min-min; Li, Guofeng; Guo, Liangfeng
2017-05-01
By analyzing on the reason of the lightning accident occur in the substation, the way of lightning incoming surge invading the secondary system is summarized. The interference source acts on the secondary system through various coupling paths. It mainly consists of four ways: the conductance coupling mode, the Capacitive Coupling Mode, the inductive coupling mode, The Radiation Interference Model. Then simulated the way with the program-ATP. At last, from the three aspects of low-voltage power supply system, the impact potential distribution of grounding grid, the secondary system and the computer system. The lightning protection measures is put forward.
Modeling Long-Distance ELF Radio Atmospherics Generated by Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Moore, R. C.; Kunduri, B.; Anand, S.; Dupree, N.; Mitchell, M.; Agrawal, D.
2010-12-01
This paper addresses the generation and propagation of radio atmospherics (sferics) radiated by lightning in order to assess the ability to infer the electrical properties of lightning from great distances. This ability may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash. Unlike other similar efforts, the modified code presented preserves the ability of LWPC to account for waveguide mode-coupling and to account for changes to the electrical properties of the ground and ionosphere along the propagation path. The effort described is conducted in advance of the deployment of a global extremely low frequency (ELF) magnetic field array, which is presently under construction. The global ELF array is centered on the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. The ICLRT is well-known for conducting rocket-triggered lightning experiments over the last 15-20 years. This paper uses lightning current waveforms directly measured at the base of the lightning channel (observations performed at the ICLRT) as an input to the model to predict the sferic waveform to be observed by the array under various ionospheric conditions. An analysis of the predicted sferic waveforms is presented, and the components of the lightning current waveform that most effectively excite the Earth-ionosphere waveguide are identified.
NASA Technical Reports Server (NTRS)
Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.
2009-01-01
A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on the appropriate applications for the 45 WS mission. These include forecasting the onset of lightning, the cessation of lightning, convective winds, and hopefully the inference of electrical fields in clouds. This presentation will report on the results achieved so far in the project.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane traveling long one of the crawlerway tracks makes the turn toward Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane travels along one of the crawlerway tracks on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane moves past the Vehicle Assembly Building on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.
2017-01-01
Thirty-nine thunderstorms are examined using multiple-Doppler, polarimetric and total lightning observations to understand the role of mixed phase kinematics and microphysics in the development of lightning jumps. This sample size is larger than those of previous studies on this topic. The principal result of this study is that lightning jumps are a result of mixed phase updraft intensification. Larger increases in intense updraft volume (≥ 10 m s−1) and larger changes in peak updraft speed are observed prior to lightning jump occurrence when compared to other non-jump increases in total flash rate. Wilcoxon-Mann-Whitney Rank Sum testing yields p-values ≤0.05, indicating statistical independence between lightning jump and non-jump distributions for these two parameters. Similar changes in mixed phase graupel mass magnitude are observed prior to lightning jumps and non-jump increases in total flash rate. The p-value for graupel mass change is p=0.096, so jump and non-jump distributions for graupel mass change are not found statistically independent using the p=0.05 significance level. Timing of updraft volume, speed and graupel mass increases are found to be 4 to 13 minutes in advance of lightning jump occurrence. Also, severe storms without lightning jumps lack robust mixed phase updrafts, demonstrating that mixed phase updrafts are not always a requirement for severe weather occurrence. Therefore, the results of this study show that lightning jump occurrences are coincident with larger increases in intense mixed phase updraft volume and peak updraft speed than smaller non-jump increases in total flash rate. PMID:29158622
Use of High-Resolution WRF Simulations to Forecast Lightning Threat
NASA Technical Reports Server (NTRS)
McCaul, E. W., Jr.; LaCasse, K.; Goodman, S. J.; Cecil, D. J.
2008-01-01
Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors aloft in storms. This relationship is exploited, in conjunction with the capabilities of cloud-resolving forecast models such as WRF, to forecast explicitly the threat of lightning from convective storms using selected output fields from the model forecasts. The simulated vertical flux of graupel at -15C and the shape of the simulated reflectivity profile are tested in this study as proxies for charge separation processes and their associated lightning risk. Our lightning forecast method differs from others in that it is entirely based on high-resolution simulation output, without reliance on any climatological data. short [6-8 h) simulations are conducted for a number of case studies for which three-dmmensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity fields, and METAR and ACARS data y&eld satisfactory simulations. __nalyses of the lightning threat fields suggests that both the graupel flux and reflectivity profile approaches, when properly calibrated, can yield reasonable lightning threat forecasts, although an ensemble approach is probably desirable in order to reduce the tendency for misplacement of modeled storms to hurt the accuracy of the forecasts. Our lightning threat forecasts are also compared to other more traditional means of forecasting thunderstorms, such as those based on inspection of the convective available potential energy field.
Schultz, Christopher J; Carey, Lawrence D; Schultz, Elise V; Blakeslee, Richard J
2017-02-01
Thirty-nine thunderstorms are examined using multiple-Doppler, polarimetric and total lightning observations to understand the role of mixed phase kinematics and microphysics in the development of lightning jumps. This sample size is larger than those of previous studies on this topic. The principal result of this study is that lightning jumps are a result of mixed phase updraft intensification. Larger increases in intense updraft volume (≥ 10 m s -1 ) and larger changes in peak updraft speed are observed prior to lightning jump occurrence when compared to other non-jump increases in total flash rate. Wilcoxon-Mann-Whitney Rank Sum testing yields p-values ≤0.05, indicating statistical independence between lightning jump and non-jump distributions for these two parameters. Similar changes in mixed phase graupel mass magnitude are observed prior to lightning jumps and non-jump increases in total flash rate. The p-value for graupel mass change is p=0.096, so jump and non-jump distributions for graupel mass change are not found statistically independent using the p=0.05 significance level. Timing of updraft volume, speed and graupel mass increases are found to be 4 to 13 minutes in advance of lightning jump occurrence. Also, severe storms without lightning jumps lack robust mixed phase updrafts, demonstrating that mixed phase updrafts are not always a requirement for severe weather occurrence. Therefore, the results of this study show that lightning jump occurrences are coincident with larger increases in intense mixed phase updraft volume and peak updraft speed than smaller non-jump increases in total flash rate.
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.
2017-01-01
Thirty-nine thunderstorms are examined using multiple-Doppler, polarimetric and total lightning observations to understand the role of mixed phase kinematics and microphysics in the development of lightning jumps. This sample size is larger than those of previous studies on this topic. The principal result of this study is that lightning jumps are a result of mixed phase updraft intensification. Larger increases in intense updraft volume greater than or equal to 10 m(sup -1) and larger changes in peak updraft speed are observed prior to lightning jump occurrence when compared to other non-jump increases in total ash rate. Wilcoxon-Mann-Whitney Rank Sum testing yields p-values 0.05, indicating statistical independence between lightning jump and non-jump distributions for these two parameters. Similar changes in mixed phase graupel mass magnitude are observed prior to lightning jumps and non-jump increases in total ash rate. The p-value for graupel mass change is p=0.096, so jump and non-jump distributions for graupel mass change are not found statistically independent using the p=0.05 significance level. Timing of updraft volume, speed and graupel mass increases are found to be 4 to 13 minutes in advance of lightning jump occurrence. Also, severe storms without lightning jumps lack robust mixed phase updrafts, demonstrating that mixed phase updrafts are not always a requirement for severe weather occurrence. Therefore, the results of this study show that lightning jump occurrences are coincident with larger increases in intense mixed phase updraft volume and peak updraft speed than smaller non-jump increases in total ash rate.
NASA Technical Reports Server (NTRS)
Fisher, B. D.; Brown, P. W.; Plumer, J. A.
1985-01-01
Data on 637 direct lightning strikes and 117 close flashes observed by the NASA instrumented F-106B aircraft as part of the Storm Hazards Program at NASA Langley during 1980-1984 are compiled and analyzed, updating the report of Fisher and Plumer (1983). The airborne and ground-based measurement and recording apparatus and the flight and data-reduction procedures are described, and the results are discussed in terms of lightning-strike-conducive flight conditions and lightning attachment patterns. A peak strike rate of 2.1/min is found at altitude 38,000-40,000 ft and temperature below -40 C, with very few strikes below 20,000 ft. Four categories of swept-flash attachment pattern are identified, but it is pointed out that all exterior surfaces of the F-106B are potential attachment sites.
Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
NASA Technical Reports Server (NTRS)
Shultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Stano, Geoffrey T.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; AMS 10th Satellite Symposium) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end to end physical and dynamical basis for relating lightning rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relation to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, relation specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
Physical and Dynamical Linkages between Lightning Jumps and Storm Conceptual Models
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane has removed the 80-foot lightning mast from the top of the fixed service structure. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
Effects of simulated lightning on composite and metallic joints
NASA Technical Reports Server (NTRS)
Howell, W. E.; Plumer, J. A.
1982-01-01
The effects of simulated lightning strikes and currents on aircraft bonded joints and access/inspection panels were investigated. Both metallic and composite specimens were tested. Tests on metal fuel feed through elbows in graphite/epoxy structures were evaluated. Sparking threshold and residual strength of single lap bonded joints and sparking threshold of access/inspection panels and metal fuel feed through elbows are reported.
LSP Composite Susbtrate Destructive Evaluation Test Assessment Manual
NASA Technical Reports Server (NTRS)
Kovach, Daniel J.; Erickson, Grant J.
2013-01-01
This document specifies the processes to perform post-strike destructive damage evaluation of tested CFRP panels.It is recognized that many factors besides lightning damage protection are involved in the selection of an appropriate Lightning Strike Protection (LSP) for a particular system (e.g., cost, weight, corrosion resistance, shielding effectiveness, etc.). This document strives primarily to address the standardized generation of damage protection performance data.
NASA Technical Reports Server (NTRS)
Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont
2013-01-01
The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell mergers and possible dynamical, microphysical and electrical interaction of individual cells when testing various hypotheses.
NASA Technical Reports Server (NTRS)
Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont
2013-01-01
The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell mergers and possible dynamical, microphysical and electrical interaction of individual cells when testing various hypotheses.
A Probabilistic, Facility-Centric Approach to Lightning Strike Location
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.; Roeder, William p.; Merceret, Francis J.
2012-01-01
A new probabilistic facility-centric approach to lightning strike location has been developed. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collisionith spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.
Lightning effects on the NASA F-8 digital-fly-by-wire airplane
NASA Technical Reports Server (NTRS)
Plumer, J. A.; Fisher, F. A.; Walko, L. C.
1975-01-01
The effects of lightning on a Digital Fly-By-Wire (DFBW)aircraft control system were investigated. The aircraft was a NASA operated F-8 fitted with a modified Apollo guidance computer. Current pulses similar in waveshape to natural lightning, but lower in amplitude, were injected into the aircraft. Measurements were made of the voltages induced on the DFBW circuits, the total current induced on the bundles of wires, the magnetic field intensity inside the aircraft, and the current density on the skin of the aircraft. Voltage measurements were made in both the line-to-ground and line-to-line modes. Voltages measured at the non-destructive test level were then scaled upward to determine how much would be produced by actual lightning. A 200,000 ampere severe lightning flash would produce between 40 and 2000 volts in DFBW circuits. Some system components are expected to be vulnerable to these voltages.
A Method for Retrieving Ground Flash Fraction from Satellite Lightning Imager Data
NASA Technical Reports Server (NTRS)
Koshak, William J.
2009-01-01
A general theory for retrieving the fraction of ground flashes in N lightning observed by a satellite-based lightning imager is provided. An "exponential model" is applied as a physically reasonable constraint to describe the measured optical parameter distributions, and population statistics (i.e., mean, variance) are invoked to add additional constraints to the retrieval process. The retrieval itself is expressed in terms of a Bayesian inference, and the Maximum A Posteriori (MAP) solution is obtained. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The ability to retrieve ground flash fraction has important benefits to the atmospheric chemistry community. For example, using the method to partition the existing satellite global lightning climatology into separate ground and cloud flash climatologies will improve estimates of lightning nitrogen oxides (NOx) production; this in turn will improve both regional air quality and global chemistry/climate model predictions.
NASA Technical Reports Server (NTRS)
Rustan, Pedro L., Jr.
1987-01-01
Lightning data obtained by measuring the surface electromagnetic fields on a CV-580 research aircraft during 48 lightning strikes between 1500 and 18,000 feet in central Florida during the summers of 1984 and 1985, and nuclear electromagnetic pulse (NEMP) data obtained by surface electromagnetic field measurements using a 1:74 CV-580 scale model, are presented. From one lightning event, maximum values of 3750 T/s for the time rate of change of the surface magnetic flux density, and 4.7 kA for the peak current, were obtained. From the simulated NEMP test, maximum values of 40,000 T/s for the time rate of change of the surface magnetic flux density, and 90 A/sq m for the total normal current density, were found. The data have application to the development of a military aircraft lightning/NEMP standard.
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2007-01-01
The case of a 23‐year‐old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was set to a drug‐induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise recovered largely. Neuropsychological tests revealed deficits in fast visual detection tasks and non‐verbal learning, and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. Four months after the accident, she developed a psychological reaction consisting of nightmares with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning flash were retrospectively retraced. PMID:17369595
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2009-01-01
The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was sent into a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise largely recovered. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. At 4 months after the accident, she developed a psychological reaction consisting of nightmares, with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning strike were retrospectively retraced PMID:21734915
NASA Astrophysics Data System (ADS)
Katunin, A.; Krukiewicz, K.; Turczyn, R.; Sul, P.; Łasica, A.; Catalanotti, G.; Bilewicz, M.
2017-02-01
Lightning strike protection is one of the important issues in the modern maintenance problems of aircraft. This is due to a fact that the most of exterior elements of modern aircraft is manufactured from polymeric composites which are characterized by isolating electrical properties, and thus cannot carry the giant electrical charge when the lightning strikes. This causes serious damage of an aircraft structure and necessity of repairs and tests before returning a vehicle to operation. In order to overcome this problem, usually metallic meshes are immersed in the polymeric elements. This approach is quite effective, but increases a mass of an aircraft and significantly complicates the manufacturing process. The approach proposed by the authors is based on a mixture of conducting and dielectric polymers. Numerous modeling studies which are based on percolation clustering using kinetic Monte Carlo methods, finite element modeling of electrical and mechanical properties, and preliminary experimental studies, allow achieving an optimal content of conducting particles in a dielectric matrix in order to achieve possibly the best electrical conductivity and mechanical properties, simultaneously. After manufacturing the samples with optimal content of a conducting polymer, mechanical and electrical characterization as well as high-voltage testing was performed. The application of such a material simplifies manufacturing process and ensures unique properties of aircraft structures, which allows for minimizing damage after lightning strike, as well as provide electrical bounding and grounding, interference shielding, etc. The proposed solution can minimize costs of repair, testing and certification of aircraft structures damaged by lightning strikes.
Post Launch Calibration and Testing of the Geostationary Lightning Mapper on the GOES-R Satellite
NASA Technical Reports Server (NTRS)
Rafal, Marc D.; Clarke, Jared T.; Cholvibul, Ruth W.
2016-01-01
The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 microseconds) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.
Jamaludin, Farah Adilah; Ab-Kadir, Mohd Zainal Abidin; Izadi, Mahdi; Azis, Norhafiz; Jasni, Jasronita; Abd-Rahman, Muhammad Syahmi
2017-01-01
Located near the equator, Malaysia is a country with one of the highest lightning densities in the world. Lightning contributes to 70% of the power outages in Malaysia and affects power equipment, automated network systems, causes data losses and monetary losses in the nation. Therefore, consideration of insulator evaluation under lightning impulses can be crucial to evaluate and attempt to overcome this issue. This paper presents a new approach to increase the electrical performance of polymer insulators using a Room Temperature Vulcanisation (RTV) coating. The evaluation involves three different settings of polymer insulator, namely uncoated, RTV type 1, and RTV type 2 upper surface coatings. All the insulators were tested under three different conditions as dry, clean wet and salty under different impulse polarities using the even-rising test method. The voltage breakdown for each test was recorded. From the experiment, it was found that the effectiveness of the RTV coating application became apparent when tested under salty or polluted conditions. It increased the voltage withstand capabilities of the polymer insulator up to 50% from the basic uncoated insulator. Under dry and clean conditions, the RTV coating provided just a slight increase of the breakdown voltage. The increase in voltage breakdown capability decreased the probability of surface discharge and dry band arcing that could cause degradation of the polymeric material housing. The RTV type 1 coating was found to be more effective when performing under a lightning impulse. The findings might help the utility companies improve the performance of their insulators in order to increase power system reliability.
Jamaludin, Farah Adilah; Ab-Kadir, Mohd Zainal Abidin; Izadi, Mahdi; Azis, Norhafiz; Jasni, Jasronita; Abd-Rahman, Muhammad Syahmi
2017-01-01
Located near the equator, Malaysia is a country with one of the highest lightning densities in the world. Lightning contributes to 70% of the power outages in Malaysia and affects power equipment, automated network systems, causes data losses and monetary losses in the nation. Therefore, consideration of insulator evaluation under lightning impulses can be crucial to evaluate and attempt to overcome this issue. This paper presents a new approach to increase the electrical performance of polymer insulators using a Room Temperature Vulcanisation (RTV) coating. The evaluation involves three different settings of polymer insulator, namely uncoated, RTV type 1, and RTV type 2 upper surface coatings. All the insulators were tested under three different conditions as dry, clean wet and salty under different impulse polarities using the even-rising test method. The voltage breakdown for each test was recorded. From the experiment, it was found that the effectiveness of the RTV coating application became apparent when tested under salty or polluted conditions. It increased the voltage withstand capabilities of the polymer insulator up to 50% from the basic uncoated insulator. Under dry and clean conditions, the RTV coating provided just a slight increase of the breakdown voltage. The increase in voltage breakdown capability decreased the probability of surface discharge and dry band arcing that could cause degradation of the polymeric material housing. The RTV type 1 coating was found to be more effective when performing under a lightning impulse. The findings might help the utility companies improve the performance of their insulators in order to increase power system reliability. PMID:29136025
Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite
NASA Astrophysics Data System (ADS)
Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.
2016-05-01
The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.
Post Launch Calibration and Testing of the Geostationary Lightning Mapper on GOES-R Satellite
NASA Technical Reports Server (NTRS)
Rafal, Marc; Cholvibul, Ruth; Clarke, Jared
2016-01-01
The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 s) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.
Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique
NASA Technical Reports Server (NTRS)
Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.
2011-01-01
The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between forecast skill and lead-time. Forecast skill is determined by statistical analysis of probability of detection (POD), false alarm ratio (FAR), Operational Utility Index (OUI), and critical success index (CSI).
Analysis of electrical transients created by lightning
NASA Technical Reports Server (NTRS)
Nanevicz, J. E.; Vance, E. F.
1980-01-01
A series of flight tests was conducted using a specially-instrumented NASA Learjet to study the electrical transients created on an aircraft by nearby lightning. The instrumentation included provisions for the time-domain and frequency-domain recording of the electrical signals induced in sensors located both on the exterior and on the interior of the aircraft. The design and calibration of the sensors and associated measuring systems is described together with the results of the flight test measurements. The results indicate that the concept of providing instrumentation to follow the lightning signal from propagation field, to aircraft skin current, to current on interior wiring is basically sound. The results of the measurement indicate that the high frequency signals associated with lightning stroke precursor activity are important in generating electromagnetic noise on the interior of the aircraft. Indeed, the signals produced by the precursors are often of higher amplitude and of longer duration that the pulse produced by the main return stroke.
Cloud-to-Ground Lightning Estimates Derived from SSMI Microwave Remote Sensing and NLDN
NASA Technical Reports Server (NTRS)
Winesett, Thomas; Magi, Brian; Cecil, Daniel
2015-01-01
Lightning observations are collected using ground-based and satellite-based sensors. The National Lightning Detection Network (NLDN) in the United States uses multiple ground sensors to triangulate the electromagnetic signals created when lightning strikes the Earth's surface. Satellite-based lightning observations have been made from 1998 to present using the Lightning Imaging Sensor (LIS) on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, and from 1995 to 2000 using the Optical Transient Detector (OTD) on the Microlab-1 satellite. Both LIS and OTD are staring imagers that detect lightning as momentary changes in an optical scene. Passive microwave remote sensing (85 and 37 GHz brightness temperatures) from the TRMM Microwave Imager (TMI) has also been used to quantify characteristics of thunderstorms related to lightning. Each lightning detection system has fundamental limitations. TRMM satellite coverage is limited to the tropics and subtropics between 38 deg N and 38 deg S, so lightning at the higher latitudes of the northern and southern hemispheres is not observed. The detection efficiency of NLDN sensors exceeds 95%, but the sensors are only located in the USA. Even if data from other ground-based lightning sensors (World Wide Lightning Location Network, the European Cooperation for Lightning Detection, and Canadian Lightning Detection Network) were combined with TRMM and NLDN, there would be enormous spatial gaps in present-day coverage of lightning. In addition, a globally-complete time history of observed lightning activity is currently not available either, with network coverage and detection efficiencies varying through the years. Previous research using the TRMM LIS and Microwave Imager (TMI) showed that there is a statistically significant correlation between lightning flash rates and passive microwave brightness temperatures. The physical basis for this correlation emerges because lightning in a thunderstorm occurs where ice is first present in the cloud and electric charge separation occurs. These ice particles efficiently scatter the microwave radiation at the 85 and 37 GHz frequencies, thus leading to large brightness temperature depressions. Lightning flash rate is related to the total amount of ice passing through the convective updraft regions of thunderstorms. Confirmation of this relationship using TRMM LIS and TMI data, however, remains constrained to TRMM observational limits of the tropics and subtropics. Satellites from the Defense Meteorology Satellite Program (DMSP) have global coverage and are equipped with passive microwave imagers that, like TMI, observe brightness temperatures at 85 and 37 GHz. Unlike the TRMM satellite, however, DMSP satellites do not have a lightning sensor, and the DMSP microwave data has never been used to derive global lightning. In this presentation, a relationship between DMSP Special Sensor Microwave Imager (SSMI) data and ground-based cloud-to-ground (CG) lightning data from NLDN is investigated to derive a spatially complete time history of CG lightning for the USA study area. This relationship is analogous to the established using TRMM LIS and TMI data. NLDN has the most spatially and temporally complete CG lightning data for the USA, and therefore provides the best opportunity to find geospatially coincident observations with SSMI sensors. The strongest thunderstorms generally have minimum 85 GHz Polarized Corrected brightness Temperatures (PCT) less than 150 K. Archived radar data was used to resolve the spatial extent of the individual storms. NLDN data for that storm spatial extent defined by radar data was used to calculate the CG flash rate for the storm. Similar to results using TRMM sensors, a linear model best explained the relationship between storm-specific CG flash rates and minimum 85 GHz PCT. However, the results in this study apply only to CG lightning. To extend the results to weaker storms, the probability of CG lightning (instead of the flash rate) was calculated for storms having 85 GHz PCT greater than 150 K. NLDN data was used to determine if a CG strike occurred for a storm. This probability of CG lightning was plotted as a function of minimum 85 GHz PCT and minimum 37 GHz PCT. These probabilities were used in conjunction with the linear model to estimate the CG flash rate for weaker storms with minimum 85 GHz PCTs greater than 150 K. Results from the investigation of CG lightning and passive microwave radiation signals agree with the previous research investigating total lightning and brightness temperature. Future work will take the established relationships and apply them to the decades of available DMSP data for the USA to derive a map of CG lightning flash rates. Validation of this method and uncertainty analysis will be done by comparing the derived maps of CG lightning flash rates against existing NLDN maps of CG lightning flash rates.
Artificial Neural Network applied to lightning flashes
NASA Astrophysics Data System (ADS)
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a success rate of 90%. The videos used in this experiment were acquired by seven video cameras installed in São Bernardo do Campo, Brazil, that continuously recorded lightning events during the summer. The cameras were disposed in a 360 loop, recording all data at a time resolution of 33ms. During this period, several convective storms were recorded.
2011-08-03
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the water tower and lightning protection system, consisting of three 600-foot-tall lightning towers, remain at Launch Pad 39B after the pad's deconstruction. Each lightning tower is 500 feet tall and topped off with an additional 100-foot fiberglass mast which supports a wire catenary system. In 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. For information on NASA's future plans, visit http://www.nasa.gov/exploration. Photo credit: NASA/Kim Shiflett
GLM Validation Studies in Colorado
NASA Astrophysics Data System (ADS)
Rutledge, S. A.; Reimel, K.; Fuchs, B.; Xu, W.
2017-12-01
On 8 May 2017 the Geostationary Lightning Mapper (GLM) calibration/validation field campaign completed a mission over the domain of the Colorado Lightning Mapping Array (LMA). This "gold mine day" produced a mixture of normal polarity and anomalous storms of varying intensity. A case study analysis has been completed for a portion of three individual storms from this day. By utilizing a cell tracking algorithm and lightning flash attribution program, individual lightning flashes detected by the GLM, LMA, the National Lightning Detection Network (NLDN), and Earth Networks Total Lightning Network (ENTLN) are attributed to individual storm cells. The focus of this analysis is the detection efficiency of GLM. We will discuss how the GLM detection efficiency changes as a result of storm morphology and lightning flash characteristics. Lightning flash size, flash height, and the amount of ice present between the lightning flash altitude and the top of the cloud all appear to play a role in how well GLM detects lightning flashes. Since GLM shares the same concept as its predecessor TRMM LIS (optically-based lightning detection), the evaluation of TRMM LIS against LMA network-detected lightning provides insights into the GLM detection efficiency. We have collected observations by LIS and LMA coincident in time and space during 2008-2014. The sample includes 400 LIS overpasses with both LIS and LMA detecting flashes within 150 km radius of the center of the LMA array during the 120 second LIS observing time period (analysis presently confined to the Alabama LMA network). The overall LIS detection efficiency (DE, defined as the ratio of flash rates between LIS and LMA) is 0.45, with higher DE for lower flash rate cases. LIS showed a DE of nearly 100% for cases with flash rates < 10 fl/min, but had a DE of only 20-30% for high flash rates within intense storms (> 300 fl/min). We further separated the dataset into day and night, and found that the night-time DE (0.6) increased by 20% compared to day-time DE (0.5). LIS DE also increased as a function of LMA-derived flash size, possibly due to stronger radiance from larger flashes. LIS DE was the lowest ( 40%) for flashes with sizes smaller than a single LIS pixel (< 16 km2). These results may be applicable to GLM as well.
Recent Advancements in Lightning Jump Algorithm Work
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.
2010-01-01
In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).
The Goes-R Geostationary Lightning Mapper (GLM): Algorithm and Instrument Status
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2010-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. A joint field campaign with Brazilian researchers in 2010-2011 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.
NASA Technical Reports Server (NTRS)
Edwards, Paul; Terseck, Alex; Trout, Dawn
2016-01-01
Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.
NASA Technical Reports Server (NTRS)
Koshak, William; Solakiewicz, Richard
2013-01-01
An analytic perturbation method is introduced for estimating the lightning ground flash fraction in a set of N lightning flashes observed by a satellite lightning mapper. The value of N is large, typically in the thousands, and the observations consist of the maximum optical group area produced by each flash. The method is tested using simulated observations that are based on Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) data. National Lightning Detection NetworkTM (NLDN) data is used to determine the flash-type (ground or cloud) of the satellite-observed flashes, and provides the ground flash fraction truth for the simulation runs. It is found that the mean ground flash fraction retrieval errors are below 0.04 across the full range 0-1 under certain simulation conditions. In general, it is demonstrated that the retrieval errors depend on many factors (i.e., the number, N, of satellite observations, the magnitude of random and systematic measurement errors, and the number of samples used to form certain climate distributions employed in the model).
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Blakeslee, R. J.; Bailey, J. C.
2000-01-01
A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing, and arrival time of lightning radio emissions. Solutions for the plane (i.e., no earth curvature) are provided that implement all of these measurements. The accuracy of the retrieval method is tested using computer-simulated datasets, and the relative influence of bearing and arrival time data an the outcome of the final solution is formally demonstrated. The algorithm is sufficiently accurate to validate NASA:s Optical Transient Detector and Lightning Imaging Sensor. A quadratic planar solution that is useful when only three arrival time measurements are available is also introduced. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in sc)iirce location, Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. For arbitrary noncollinear network geometries and in the absence of measurement errors, it is shown that the two quadratic roots are equivalent (no source location ambiguity) on the outer sensor baselines. The accuracy of the quadratic planar method is tested with computer-generated datasets, and the results are generally better than those obtained from the three-station linear planar method when bearing errors are about 2 deg.
NASA Technical Reports Server (NTRS)
Goodman, Steven; Blakeslee, Richard; Koshak, William
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous,full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornado activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight units is expected to begin in latter part of the year. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2B algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data provided to selected National Weather Service forecast offices in Southern and Eastern Region are also improving our understanding of the application of these data in the severe storm warning process and help to accelerate the development of the pre-launch algorithms and Nowcasting applications.
NASA Technical Reports Server (NTRS)
Goodman, Steven; Blakeslee, Richard; Koshak, William; Petersen, Walt; Buechler, Dennis; Krehbiel, Paul; Gatlin, Patrick; Zubrick, Steven
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational.The mission objectives for the GLM are to 1) provide continuous,full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight units is expected to begin in latter part of the year. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2B algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) sate]lite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data provided to selected National Weather Service forecast offices in Southern and Eastern Region are also improving our understanding of the application of these data in the severe storm warning process and help to accelerate the development of the pre-launch algorithms and Nowcasting applications. Abstract for the 3 rd Conference on Meteorological
Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.
2011-01-01
Defining the electromagnetic environment inside a graphite composite fairing due to near-by lightning strikes is of interest to spacecraft developers. This effort develops a transmission-line-matrix (TLM) model with a CST Microstripes to examine induced voltages. on interior wire loops in a composite fairing due to a simulated near-by lightning strike. A physical vehicle-like composite fairing test fixture is constructed to anchor a TLM model in the time domain and a FEKO method of moments model in the frequency domain. Results show that a typical graphite composite fairing provides adequate shielding resulting in a significant reduction in induced voltages on high impedance circuits despite minimal attenuation of peak magnetic fields propagating through space in near-by lightning strike conditions.
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane lowers the 80-foot lightning mast removed from the top of the fixed service structure (left) onto the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 80-foot lightning mast removed from the top of the fixed service structure (behind it) is lowered onto the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 80-foot lightning mast removed from the top of the fixed service structure (left) rests on the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane is being used to remove the 80-foot lightning mast from the top of the fixed service structure. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane is being used to remove the 80-foot lightning mast from the top of the fixed service structure. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 80-foot lightning mast removed from the top of the fixed service structure (center) rests on the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
Using High Resolution Model Data to Improve Lightning Forecasts across Southern California
NASA Astrophysics Data System (ADS)
Capps, S. B.; Rolinski, T.
2014-12-01
Dry lightning often results in a significant amount of fire starts in areas where the vegetation is dry and continuous. Meteorologists from the USDA Forest Service Predictive Services' program in Riverside, California are tasked to provide southern and central California's fire agencies with fire potential outlooks. Logistic regression equations were developed by these meteorologists several years ago, which forecast probabilities of lightning as well as lightning amounts, out to seven days across southern California. These regression equations were developed using ten years of historical gridded data from the Global Forecast System (GFS) model on a coarse scale (0.5 degree resolution), correlated with historical lightning strike data. These equations do a reasonably good job of capturing a lightning episode (3-5 consecutive days or greater of lightning), but perform poorly regarding more detailed information such as exact location and amounts. It is postulated that the inadequacies in resolving the finer details of episodic lightning events is due to the coarse resolution of the GFS data, along with limited predictors. Stability parameters, such as the Lifted Index (LI), the Total Totals index (TT), Convective Available Potential Energy (CAPE), along with Precipitable Water (PW) are the only parameters being considered as predictors. It is hypothesized that the statistical forecasts will benefit from higher resolution data both in training and implementing the statistical model. We have dynamically downscaled NCEP FNL (Final) reanalysis data using the Weather Research and Forecasting model (WRF) to 3km spatial and hourly temporal resolution across a decade. This dataset will be used to evaluate the contribution to the success of the statistical model of additional predictors in higher vertical, spatial and temporal resolution. If successful, we will implement an operational dynamically downscaled GFS forecast product to generate predictors for the resulting statistical lightning model. This data will help fire agencies be better prepared to pre-deploy resources in advance of these events. Specific information regarding duration, amount, and location will be especially valuable.
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.
2009-01-01
Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps." Herein, we document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 lightning jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) lightning jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the GOES-R Geostationary Lightning Mapper.
The Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production
NASA Technical Reports Server (NTRS)
Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, A. Lamont
2014-01-01
The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell mergers and possible dynamical, microphysical and electrical interaction of individual cells when testing various hypotheses.
The Impact of Lightning on Hurricane Rapid Intensification Forecasts Using the HWRF Model
NASA Astrophysics Data System (ADS)
Rosado, K.; Tallapragada, V.; Jenkins, G. S.
2016-12-01
In 2010, the National Oceanic and Atmospheric Administration (NOAA) created the Hurricane Forecast Improvement Project (HFIP) with the main goal of improving the tropical cyclone intensity and track forecasts by 50% in ten years. One of the focus areas is the improvement of the tropical cyclone rapid intensification (RI) forecasts. In order to contribute to this task, the role of lightning during the life cycle of a tropical cyclone using the NCEP operational HWRF hurricane model has been investigated. We ask two key research questions: (1) What is the functional relationship between atmospheric moisture content, lightning, and intensity in the HWRF model? and (2) How well does the HWRF model forecast the spatial distributions of lightning before, during, and after tropical cyclone intensification, especially for RI events? In order to address those questions, a lightning parameterization scheme called the Lightning Potential Index (LPI) was implemented into the HWRF model. The selected study cases to test the LPI implementation on the 2015 HWRF (operational version) are: Earl and Joaquin (North Atlantic), Haiyan (Western North Pacific), and Patricia (Eastern North Pacific). Five-day forecasts was executed on each case study with emphasis on rapid intensification periods. An extensive analysis between observed "best track" intensity, model intensity forecast, and potential for lightning forecast was performed. Preliminary results show that: (1) strong correlation between lightning and intensity changes does exists; and (2) the potential for lightning increases to its maximum peak a few hours prior to the peak intensity of the tropical cyclone. LPI peak values could potentially serve as indicator for future rapid intensification periods. Results from this investigation are giving us a better understanding of the mechanism behind lightning as a proxy for tropical cyclone steady state intensification and tropical cyclone rapid intensification processes. Improvement of lightning forecast has the potential to improve HWRF hurricane model intensity forecasts.
Using Total Lightning Observations to Enhance Lightning Safety
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.
2012-01-01
Lightning is often the underrated threat faced by the public when it comes to dangerous weather phenomena. Typically, larger scale events such as floods, hurricanes, and tornadoes receive the vast majority of attention by both the general population and the media. This comes from the fact that these phenomena are large, longer lasting, can impact a large swath of society at one time, and are dangerous events. The threat of lightning is far more isolated on a case by case basis, although millions of cloud-to-ground lightning strikes hit this United States each year. While attention is given to larger meteorological events, lightning is the second leading cause of weather related deaths in the United States. This information raises the question of what steps can be taken to improve lightning safety. Already, the meteorological community s understanding of lightning has increased over the last 20 years. Lightning safety is now better addressed with the National Weather Service s access to the National Lightning Detection Network data and enhanced wording in their severe weather warnings. Also, local groups and organizations are working to improve public awareness of lightning safety with easy phrases to remember, such as "When Thunder Roars, Go Indoors." The impacts can be seen in the greater array of contingency plans, from airports to sports stadiums, addressing the threat of lightning. Improvements can still be made and newer technologies may offer new tools as we look towards the future. One of these tools is a network of sensors called a lightning mapping array (LMA). Several of these networks exist across the United States. NASA s Short-term Prediction Research and Transition Center (SPoRT), part of the Marshall Spaceflight Center, has access to three of these networks from Huntsville, Alabama, the Kennedy Space Center, and Washington D.C. The SPoRT program s mission is to help transition unique products and observations into the operational forecast environment. SPoRT has been collaborating with the Huntsville National Weather Service (NWS) Office since 2003 and has since included several other offices to better implement LMA observations into real-time applications. Much of that work has focused on the LMA s ability to detect intra-cloud lightning in addition to cloud-to-ground lightning strikes. Combined, these observations are called total lightning. With total lightning observations, NWS offices can enhance their situational awareness and improve severe weather warnings. Just as importantly, the observed intra-cloud flashes often precede the first cloud-to-ground strike by a few minutes. SPoRT and its partner NWS offices are working to develop visualizations and applications to better utilize these data. However, there is a drawback. The LMAs have a short range of no more than 200 km. This is being addressed with the next generation geostationary satellite, GOES-R, which will boast the Geostationary Lightning Mapper (GLM). SPoRT, in conjunction with NOAA s GOES-R Proving Ground, is working to prepare the end user community for the GLM era using the LMA observations as a demonstration tool. Working collaboratively with our NWS partners, SPoRT is working to determine how best to integrate these future observations to improve both severe storm warnings and lightning safety.
NASA Technical Reports Server (NTRS)
Rust, W. D.; Macgorman, D. R.
1985-01-01
During FY-85, Researchers conducted a field program and analyzed data. The field program incorporated coordinated measurements made with a NASA U2. Results include the following: (1) ground truth measurements of lightning for comparison with those obtained by the U2; (2) analysis of dual-Doppler radar and dual-VHF lightning mapping data from a supercell storm; (3) analysis of synoptic conditions during three simultaneous storm systems on 13 May 1983 when unusually large numbers of positive cloud-to-ground (+CG) flashes occurred; (4) analysis of extremely low frequency (ELF) wave forms; and (5) an assessment of a cloud -ground strike location system using a combination of mobile laboratory and fixed-base TV video data.
Corona from Ice, Thunderstorm Electrification and Lightning Suppression.
1980-11-01
rates of droplets highly charged by interaction with corona streamers. Laboratory and theoretical studies have been performed in an effort to explore in...CORONA FROM ICE, THUNDERSTORM ELECTRIFICATION Final AND LIGHTNING SUPPRESSION 1 Sep 77 to 31 Aug 80 6. Performing Org. Report Number 7. Author(s) 8...Contract or Grant Number J. Latham AFOSR-77-3429 O"o 9. Performing Organization Name and Address 10. Program Element, Project, Task Physics Department
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane arrives at the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
NASA Technical Reports Server (NTRS)
Rust, W. D.; Macgorman, D. R.; Taylor, W.; Arnold, R. T.
1984-01-01
Severe storms and lightning were measured with a NASA U2 and ground based facilities, both fixed base and mobile. Aspects of this program are reported. The following results are presented: (1) ground truth measurements of lightning for comparison with those obtained by the U2. These measurements include flash type identification, electric field changes, optical waveforms, and ground strike location; (2) simultaneous extremely low frequency (ELF) waveforms for cloud to ground (CG) flashes; (3) the CG strike location system (LLP) using a combination of mobile laboratory and television video data are assessed; (4) continued development of analog-to-digital conversion techniques for processing lightning data from the U2, mobile laboratory, and NSSL sensors; (5) completion of an all azimuth TV system for CG ground truth; (6) a preliminary analysis of both IC and CG lightning in a mesocyclone; and (7) the finding of a bimodal peak in altitude lightning activity in some storms in the Great Plains and on the east coast. In the forms on the Great Plains, there was a distinct class of flash what forms the upper mode of the distribution. These flashes are smaller horizontal extent, but occur more frequently than flashes in the lower mode of the distribution.
Aircraft Lightning Electromagnetic Environment Measurement
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.
2011-01-01
This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.
Geostationary Lightning Mapper: Lessons Learned from Post Launch Test
NASA Astrophysics Data System (ADS)
Edgington, S.; Tillier, C. E.; Demroff, H.; VanBezooijen, R.; Christian, H. J., Jr.; Bitzer, P. M.
2017-12-01
Pre-launch calibration and algorithm design for the GOES Geostationary Lightning Mapper resulted in a successful and trouble-free on-orbit activation and post-launch test sequence. Within minutes of opening the GLM aperture door on January 4th, 2017, lightning was detected across the entire field of view. During the six-month post-launch test period, numerous processing parameters on board the instrument and in the ground processing algorithms were fine-tuned. Demonstrated on-orbit performance exceeded pre-launch predictions. We provide an overview of the ground calibration sequence, on-orbit tuning of the instrument, tuning of the ground processing algorithms (event filtering and navigation). We also touch on new insights obtained from analysis of a large and growing archive of raw GLM data, containing 3e8 flash detections derived from over 1e10 full-disk images of the Earth.
NASA Technical Reports Server (NTRS)
Mata, C. T.; Rakov, V. A.; Mata, A. G.
2010-01-01
A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC3913) at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras; currents through the nine downconductors of the new lightning protection system for LC3913; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. A 20:1 scaled down model of the new Lightning Protection System (LPS) of LC39B was built at the International Center for Lightning Research and Testing, Camp Blanding, FL. This scaled down lightning protection system was instrumented with the transient recorders, digitizers, and sensors to be used in the final instrumentation installation at LC3913. The instrumentation used at the ICLRT is also a scaled-down instrumentation of the LC39B instrumentation. The scaled-down LPS was subjected to seven direct lightning strikes and six (four triggered and two natural nearby flashes) in 2010. The following measurements were acquired at the ICLRT: currents through the nine downconductors; two dl-/dt, 3-axis stations, one at the center of the LPS (underneath the catenary wires), and another 40 meters south from the center of the LPS; ten dE/dt stations, nine of them on the perimeter of the LPS and one at the center of the LPS (underneath the catenary wire system); and the incident current. Data from representative events are presented and analyzed in this paper.
Pulse generator with intermediate inductive storage as a lightning simulator
NASA Astrophysics Data System (ADS)
Kovalchuk, B. M.; Kharlov, A. V.; Zherlytsyn, A. A.; Kumpyak, E. V.; Tsoy, N. V.
2016-06-01
Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 μF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 μF) capacitors are connected in parallel. The generator inductance is 2 μH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 μH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 μs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.
NASA Astrophysics Data System (ADS)
Basarab, B.; Fuchs, B.; Rutledge, S. A.
2013-12-01
Predicting lightning activity in thunderstorms is important in order to accurately quantify the production of nitrogen oxides (NOx = NO + NO2) by lightning (LNOx). Lightning is an important global source of NOx, and since NOx is a chemical precursor to ozone, the climatological impacts of LNOx could be significant. Many cloud-resolving models rely on parameterizations to predict lightning and LNOx since the processes leading to charge separation and lightning discharge are not yet fully understood. This study evaluates predicted flash rates based on existing lightning parameterizations against flash rates observed for Colorado storms during the Deep Convective Clouds and Chemistry Experiment (DC3). Evaluating lightning parameterizations against storm observations is a useful way to possibly improve the prediction of flash rates and LNOx in models. Additionally, since convective storms that form in the eastern plains of Colorado can be different thermodynamically and electrically from storms in other regions, it is useful to test existing parameterizations against observations from these storms. We present an analysis of the dynamics, microphysics, and lightning characteristics of two case studies, severe storms that developed on 6 and 7 June 2012. This analysis includes dual-Doppler derived horizontal and vertical velocities, a hydrometeor identification based on polarimetric radar variables using the CSU-CHILL radar, and insight into the charge structure using observations from the northern Colorado Lightning Mapping Array (LMA). Flash rates were inferred from the LMA data using a flash counting algorithm. We have calculated various microphysical and dynamical parameters for these storms that have been used in empirical flash rate parameterizations. In particular, maximum vertical velocity has been used to predict flash rates in some cloud-resolving chemistry simulations. We diagnose flash rates for the 6 and 7 June storms using this parameterization and compare to observed flash rates. For the 6 June storm, a preliminary analysis of aircraft observations of storm inflow and outflow is presented in order to place flash rates (and other lightning statistics) in the context of storm chemistry. An approach to a possibly improved LNOx parameterization scheme using different lightning metrics such as flash area will be discussed.
RSRM top hat cover simulator lightning test, volume 1
NASA Technical Reports Server (NTRS)
1990-01-01
The test sequence was to measure electric and magnetic fields induced inside a redesigned solid rocket motor case when a simulated lightning discharge strikes an exposed top hat cover simulator. The test sequence was conducted between 21 June and 17 July 1990. Thirty-six high rate-of-rise Marx generator discharges and eight high current bank discharges were injected onto three different test article configurations. Attach points included three locations on the top hat cover simulator and two locations on the mounting bolts. Top hat cover simulator and mounting bolt damage and grain cover damage was observed. Overall electric field levels were well below 30 kilowatts/meter. Electric field levels ranged from 184.7 to 345.9 volts/meter and magnetic field levels were calculated from 6.921 to 39.73 amperes/meter. It is recommended that the redesigned solid rocket motor top hat cover be used in Configuration 1 or Configuration 2 as an interim lightning protection device until a lightweight cover can be designed.
Three Dimensional Lightning Launch Commit Criteria Visualization Tool
NASA Technical Reports Server (NTRS)
Bauman, William H., III
2014-01-01
Lightning occurrence too close to a NASA LSP or future SLS program launch vehicle in flight would have disastrous results. The sensitive electronics on the vehicle could be damaged to the point of causing an anomalous flight path and ultimate destruction of the vehicle and payload.According to 45th Weather Squadron (45 WS) Lightning Launch Commit Criteria (LLCC), a vehicle cannot launch if lightning is within 10 NM of its pre-determined flight path. The 45 WS Launch Weather Officers (LWOs) evaluate this LLCC for their launch customers to ensure the safety of the vehicle in flight. Currently, the LWOs conduct a subjective analysis of the distance between lightning and the flight path using data from different display systems. A 3-D display in which the lightning data and flight path are together would greatly reduce the ambiguity in evaluating this LLCC. It would give the LWOs and launch directors more confidence in whether a GO or NO GO for launch should be issued. When lightning appears close to the path, the LWOs likely err on the side of conservatism and deem the lightning to be within 10 NM. This would cause a costly delay or scrub. If the LWOs can determine with a strong level of certainty that the lightning is beyond 10 NM, launch availability would increase without compromising safety of the vehicle, payload or, in the future, astronauts.The AMU was tasked to conduct a market research of commercial, government, and open source software that might be able to ingest and display the 3-D lightning data from the KSC Lightning Mapping Array (LMA), the 45th Space Wing Weather Surveillance Radar (WSR), the National Weather Service in Melbourne Weather Surveillance Radar 1988 Doppler (WSR-88D), and the vehicle flight path data so that all can be visualized together. To accomplish this, the AMU conducted Internet searches for potential software candidates and interviewed software developers.None of the available off-the-shelf software had a 3-D capability that could display all of the data in a single visualization. The AMU determined there are two viable software packages that could satisfy the 45 WS requirement with further development and recommends the KSC Weather Office follow-up with both organizations to request development costs.
An improved ELF/VLF method for globally geolocating sprite-producing lightning
NASA Astrophysics Data System (ADS)
Price, Colin; Asfur, Mustafa; Lyons, Walter; Nelson, Thomas
2002-02-01
The majority of sprites, the most common of transient luminous events (TLEs) in the upper atmosphere, are associated with a sub-class of positive cloud-to-ground lightning flashes (+CGs) whose characteristics are slowly being revealed. These +CGs produce extremely low frequency (ELF) and very low frequency (VLF) radiation detectable at great distances from the parent thunderstorm. During the STEPS field program in the United States, ELF/VLF transients associated with sprites were detected in the Negev Desert, Israel, some 11,000 km away. Within a two-hour period on 4 July 2000, all of the sprites detected optically in the United States produced detectable ELF/VLF transients in Israel. All of these transients were of positive polarity (representing positive lightning). Using the VLF data to obtain the azimuth of the transients, and the ELF data to calculate the distance between the source and receiver, we remotely determined the position of the sprite-forming lightning with an average locational error of 184 km (error of 1.6%).
Evaluation of Lightning Incidence to Elements of a Complex Structure: A Monte Carlo Approach
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Rakov, V. A.
2008-01-01
There are complex structures for which the installation and positioning of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some "unprotected" or "exposed" areas. In an effort to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate origins of downward propagating leaders and a lognormal distribution to generate returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for 10,000 years with an assumed ground flash density and peak current distributions, and the output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution.
Evaluation of Lightning Incidence to Elements of a Complex Structure: A Monte Carlo Approach
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Rakov, V. A.
2008-01-01
There are complex structures for which the installation and positioning of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some "unprotected" or "exposed" areas. In an effort to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate the origin of downward propagating leaders and a lognormal distribution to generate the corresponding returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for N number of years with an assumed ground flash density and the output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution.
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.
2010-01-01
A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station.
First images of thunder: Acoustic imaging of triggered lightning
NASA Astrophysics Data System (ADS)
Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.
2015-07-01
An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.
Audible thunder characteristic and the relation between peak frequency and lightning parameters
NASA Astrophysics Data System (ADS)
Yuhua, Ouyang; Ping, Yuan
2012-02-01
In recent summers, some natural lightning optical spectra and audible thunder signals were observed. Twelve events on 15 August 2008 are selected as samples since some synchronizing information about them are obtained, such as lightning optical spectra, surface E-field changes, etc. By using digital filter and Fourier transform, thunder frequency spectra in observation location have been calculated. Then the two main propagation effects, finite amplitude propagation and attenuation by air, are calculated. Upon that we take the test thunder frequency spectra and work backward to recalculate the original frequency spectra near generation location. Thunder frequency spectra and the frequency distribution varying with distance are researched. According to the theories on plasma, the channel temperature and electron density are further calculated by transition parameters of lines in lightning optical spectra. Pressure and the average ionization degree of each discharge channel are obtained by using Saha equations, charge conservation equations and particle conservation equations. Moreover, the relationship between the peak frequency of each thunder and channel parameters of the lightning is studied.
2009-10-20
CAPE CANAVERAL, Fla. – The 327-foot-tall Ares I-X rocket clears the door of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, on its way to Launch Pad 39B. The move to the launch pad, known as "rollout," began at 1:39 a.m. EDT. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Blakeslee, R. J.; Bailey, J. C.
1997-01-01
A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from in Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing, and arrival time of lightning radio emissions and solutions for the plane (i.e.. no Earth curvature) are provided that implement all of these measurements. The accuracy of the retrieval method is tested using computer-simulated data sets and the relative influence of bearing and arrival time data on the outcome of the final solution is formally demonstrated. The algorithm is sufficiently accurate to validate NASA's Optical Transient Detector (OTD) and Lightning Imaging System (LIS). We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. For arbitrary noncollinear network geometries and in the absence of measurement errors, it is shown that the two quadratic roots are equivalent (no source location ambiguity) on the outer sensor baselines. The accuracy of the quadratic planar method is tested with computer-generated data sets and the results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 degrees.
Weather, Climate, and Society: New Demands on Science and Services
NASA Technical Reports Server (NTRS)
2010-01-01
A new algorithm has been constructed to estimate the path length of lightning channels for the purpose of improving the model predictions of lightning NOx in both regional air quality and global chemistry/climate models. This algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. Channel length distributions were also obtained for the different seasons.
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, workers attach more cables to the 80-foot lightning mast removed from the top of the fixed service structure. The mast will be lowered to horizontal for transport from the pad. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
Numerical Calculation of the Spectrum of the Severe (1%) Lighting Current and Its First Derivative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C G; Ong, M M; Perkins, M P
2010-02-12
Recently, the direct-strike lighting environment for the stockpile-to-target sequence was updated [1]. In [1], the severe (1%) lightning current waveforms for first and subsequent return strokes are defined based on Heidler's waveform. This report presents numerical calculations of the spectra of those 1% lightning current waveforms and their first derivatives. First, the 1% lightning current models are repeated here for convenience. Then, the numerical method for calculating the spectra is presented and tested. The test uses a double-exponential waveform and its first derivative, which we fit to the previous 1% direct-strike lighting environment from [2]. Finally, the resulting spectra aremore » given and are compared with those of the double-exponential waveform and its first derivative.« less
Broadband VHF observations for lightning impulses from a small satellite SOHLA-1 (Maido 1)
NASA Astrophysics Data System (ADS)
Morimoto, T.; Kikuchi, H.; Ushio, T.; Kawasaki, Z.; Hidekazu, H.; Aoki, T.
2009-12-01
Lightning Research Group of Osaka University (LRG-OU) has been developing VHF Broadband Digital Interferometer (DITF) to image precise lightning channels and monitor lightning activity widely. The feature of broadband DITF is its ultrawide bandwidth (from 25MHz to 100MHz) and implicit redundancy for estimating VHF source location. LRG-OU considers an application of the broadband DITF to the spaceborne measurement system and joins the SOHLA (Space Oriented Higashi-Osaka Leading Associate) satellite project. The SOHLA satellite project represents a technology transfer program to expand the range of the space development community in Japan. The objective is to get SMEs (Small and Medium sized manufacturing Enterprises) involved in small space projects and new space technologies. Under the cooperative agreement, JAXA (Japan Aerospace Exploration Agency) intends to contribute to socio-economic development by returning its R&D results to society, and SOHLA tries to revitalize the local economy through the commercialization of versatile small satellites. According to the agreement, JAXA provides SOHLA its technical information on small satellites and other technical assistance for the development of the small satellites, SOHLA-1. The prime objective of the SOHLA-1 program is to realize low-cost and short term development of a microsatellite which utilizes the components and bus technologies of JAXA’s MicroLabSat. SOHLA-1 is a spin-stabilized microsatellite of MicroLabSat heritage (about 50 kg). The spin axis is fixed to inertial reference frame. The spin axis (z-axis) lies in the plane containing the solar direction and the normal to the orbital plane. LRG-OU takes responsibility for a science mission of SOHLA-1. To examine the feasibility of the DITF receiving VHF lightning impulses in space, LRG-OU proposes the BMW (Broadband Measurement of Waveform for VHF Lightning Impulses). BMW consists of a single pair of an antenna, a band-pass filter, an amplifier, and an analog-to-digital converter (ADC) to record broadband VHF pulses in orbit. The waveforms of 100 EM pulses in VHF band emitted from a lightning flash are obtained. Three pairs of BMW with accurate synchronized 3-channel-ADC are needed to realize DITF. From the successful satellite observation like TRMM/LIS, the effectiveness and impact of satellite observations for lightning are obvious. The combination of optical and VHF lightning observations are complimentary each other. ISS/JEM is a candidate platform to realize the simplest DITF and synchronous observations with optical sensors. SOHLA-1 was launched by a HII-A rocket at January 23, 2009 and named Maido-1. Then BMW has worked well and recorded VHF EM waveforms. The development of Maido-1 and its observations results will be presented.
The performance of cable braids and terminations to lightning induced transients
NASA Technical Reports Server (NTRS)
Crofts, David
1991-01-01
The latest specification detailing the test waveforms for indirect lightning transients as applied to aircraft wiring systems specify very high voltages and currents. Although considerable data exists for measuring cable screen leakage using such methods as surface transfer impedance and bulk cable injection, there is little data on the likely core transient level that is likely to be induced from these threats. In particular, the new Waveform 5 at very high current levels (10 kA) is reputed to cause severe cable damage. A range of representative cables were made with various screen termination techniques and screening levels. These were tested first to determine their relative screening performance and then they were subjected to lightning transient testing to all the specified waveforms. Core voltages were measured for each test. Tests were also performed on bundles with fewer wires to determine the failure criteria with Waveform 5 and these tests also include flat conductor cables. The test showed that correctly terminated cable bundles performed well in all the tests and would provide a high level of protection to the electronic systems. The use of overbraides, provided the individual screens are well terminated, appears to be unnecessary.
NASA Astrophysics Data System (ADS)
Boldi, Robert; Williams, Earle; Guha, Anirban
2018-01-01
In this paper, we use (1) the 20 year record of Schumann resonance (SR) signals measured at West Greenwich Rhode Island, USA, (2) the 19 year Lightning Imaging Sensor (LIS)/Optical Transient Detector (OTD) lightning data, and (3) the normal mode equations for a uniform cavity model to quantify the relationship between the observed Schumann resonance modal intensity and the global-average vertical charge moment change M (C km) per lightning flash. This work, by integrating SR measurements with satellite-based optical measurements of global flash rate, accomplishes this quantification for the first time. To do this, we first fit the intensity spectra of the observed SR signals to an eight-mode, three parameter per mode, (symmetric) Lorentzian line shape model. Next, using the LIS/OTD lightning data and the normal mode equations for a uniform cavity model, we computed the expected climatological-daily-average intensity spectra. We then regressed the observed modal intensity values against the expected modal intensity values to find the best fit value of the global-average vertical charge moment change of a lightning flash (M) to be 41 C km per flash with a 99% confidence interval of ±3.9 C km per flash, independent of mode. Mode independence argues that the model adequately captured the modal intensity, the most important fit parameter herein considered. We also tested this relationship for the presence of residual modal intensity at zero lightning flashes per second and found no evidence that modal intensity is significantly different than zero at zero lightning flashes per second, setting an upper limit to the amount of nonlightning contributions to the observed modal intensity.
NASA Astrophysics Data System (ADS)
Baranov, M. I.; Rudakov, S. V.
2018-03-01
The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.
Lightning induced currents in aircraft wiring using low level injection techniques
NASA Technical Reports Server (NTRS)
Stevens, E. G.; Jordan, D. T.
1991-01-01
Various techniques were studied to predict the transient current induced into aircraft wiring bundles as a result of an aircraft lightning strike. A series of aircraft measurements were carried out together with a theoretical analysis using computer modeling. These tests were applied to various aircraft and also to specially constructed cylinders installed within coaxial return conductor systems. Low level swept frequency CW (carrier waves), low level transient and high level transient injection tests were applied to the aircraft and cylinders. Measurements were made to determine the transfer function between the aircraft drive current and the resulting skin currents and currents induced on the internal wiring. The full threat lightning induced transient currents were extrapolated from the low level data using Fourier transform techniques. The aircraft and cylinders used were constructed from both metallic and CFC (carbon fiber composite) materials. The results show the pulse stretching phenomenon which occurs for CFC materials due to the diffusion of the lightning current through carbon fiber materials. Transmission Line Matrix modeling techniques were used to compare theoretical and measured currents.
NASA Astrophysics Data System (ADS)
Baranov, M. I.; Rudakov, S. V.
2018-05-01
The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane begins moving away from the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
NASA Astrophysics Data System (ADS)
Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.
2016-12-01
Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) and its Optical Transient Detector (OTD) predecessor that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) spanning a period from May 1995 through April 2015. As an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense (DoD) Space Test Program-Houston 5 (STP-H5) mission. The STP-H5 payload containing LIS is scheduled launch from NASA's Kennedy Space Center to the ISS in November 2016, aboard the SpaceX Cargo Resupply Services-10 (SpaceX-10) mission, installed in the unpressurized "trunk" of the Dragon spacecraft. After the Dragon is berth to ISS Node 2, the payload will be removed from the trunk and robotically installed in a nadir-viewing location on the external truss of the ISS. Following installation on the ISS, the LIS Operations Team will work with the STP-H5 and ISS Operations Teams to power-on LIS and begin instrument checkout and commissioning. Following successful activation, LIS orbital operations will commence, managed from the newly established LIS Payload Operations Control Center (POCC) located at the National Space Science Technology Center (NSSTC) in Huntsville, AL. The well-established and robust processing, archival, and distribution infrastructure used for TRMM was easily adapted to the ISS mission, assuring that lightning observations from LIS on ISS can be quickly delivered to science and applications users soon after routine operations are underway. Also real-time data, available for the first time with this mission, are being provided to interested users in partnership with NASA's Short Term Prediction Research and Transition (SPoRT) center, also located at the NSSTC.
NASA Technical Reports Server (NTRS)
Spiller, Olaf
1991-01-01
The provisions applied to the Airbus A340 wing wiring against lightning indirect effects are presented. The construction and installation of the wiring's shielding systems are described, and the analysis and tests performed to determine the effectiveness of the measures taken are discussed. A first evaluation of the results of the theoretical analysis together with the provisional results of tests indicate a sufficient safety margin between required and achieved protection levels.
Coastal Warning Display Program
! Boating Safety Beach Hazards Rip Currents Hypothermia Hurricanes Thunderstorms Lightning Coastal Flooding Tsunamis 406 EPIRB's National Weather Service Marine Forecasts COASTAL WARNING DISPLAY PROGRAM Marine COASTAL WARNING DISPLAY PROGRAM As of February 15, 1989, the National Weather Service retired its Coastal
Infrasound from lightning measured in Ivory Coast
NASA Astrophysics Data System (ADS)
Farges, T.; Millet, C.; Matoza, R. S.
2012-04-01
It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes, …). Some of the IMS stations are located where worldwide lightning detection networks (e.g. WWLLN) have a weak detection capability but lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of lightning flashes can be detected with this technique, giving better results locally than worldwide lightning detection networks. An IMS infrasound station has been installed in Ivory Coast for 9 years. The lightning rate of this region is 10-20 flashes/km2/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 4 years of data (2005-2009). For short lightning distances (less than 20 km), up to 60 % of lightning detected by WWLLN has been one-to-one correlated. Moreover, numerous infrasound events which have the infrasound from lightning signature could not be correlated when thunderstorms were close to the station. Statistical analyses of all correlated infrasound events show an exponential decrease of the infrasound amplitude with the distance of one order of magnitude per 50 km. These analyses show also that the relative position of lightning is important: the detection limit is higher when lightning occur at the East of the station than when they occur at the West. The dominant wind (the Easterlies) could be responsible of this dissymmetry. It also exists a high variability of detection efficiency with the seasons (better efficiency in fall than in spring). Finally, these statistics show clearly a structure inside the shadow zone (from 70 to 200 km away from the station). These results will be compared with intensive numerical simulations. The simulations are separated into two parts: the simulation of the near-field blast wave generated by a lightning and the simulation of the non-linear propagation of the shock front through a realistic atmosphere. By comparing our numerical results to recorded data over a full 1-year period, we aim to show that dominant features of statistics at the IMS station may be explained by the meteorological variability.
Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure. Parts 1 and 2
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.
2011-01-01
Defining the electromagnetic environment inside a graphite composite fairing due to lightning is of interest to spacecraft developers. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is developed and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately predict the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the development of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is developed in the time domain to study how the composite fairing affects lightning induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately predict the test and industry results.
Development of a head-phantom and measurement setup for lightning effects.
Machts, Rene; Hunold, Alexander; Leu, Carsten; Haueisen, Jens; Rock, Michael
2016-08-01
Direct lightning strikes to human heads lead to various effects ranging from Lichtenberg figures, over loss of consciousness to death. The evolution of the induced current distribution in the head is of great interest to understand the effect mechanisms. This work describes a technique to model a simplified head-phantom to investigate effects during direct lightning strike. The head-phantom geometry, conductive and dielectric parameters were chosen similar to that of a human head. Three layers (brain, skull, and scalp) were created for the phantom using agarose hydrogel doped with sodium chloride and carbon. The head-phantom was tested on two different impulse generators, which reproduce approximate lightning impulses. The effective current and the current distribution in each layer were analyzed. The biggest part of the current flowed through the brain layer, approx. 70 % in cases without external flashover. Approx. 23 % of the current flowed through skull layer and 6 % through the scalp layer. However, the current decreased within the head-phantom to almost zero after a complete flashover on the phantom occurred. The flashover formed faster with a higher impulse current level. Exposition time of current through the head decreases with a higher current level of the lightning impulse. This mechanism might explain the fact that people can survive a lightning strike. The experiments help to understand lightning effects on humans.
High Impact Weather Forecasts and Warnings with the GOES-R Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group Lightning Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.
Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model
NASA Astrophysics Data System (ADS)
Jourdain, L.; Kulawik, S. S.; Worden, H. M.; Pickering, K. E.; Worden, J.; Thompson, A. M.
2010-01-01
Improved estimates of NOx from lightning sources are required to understand tropospheric NOx and ozone distributions, the oxidising capacity of the troposphere and corresponding feedbacks between chemistry and climate change. In this paper, we report new satellite ozone observations from the Tropospheric Emission Spectrometer (TES) instrument that can be used to test and constrain the parameterization of the lightning source of NOx in global models. Using the National Lightning Detection (NLDN) and the Long Range Lightning Detection Network (LRLDN) data as well as the HYPSLIT transport and dispersion model, we show that TES provides direct observations of ozone enhanced layers downwind of convective events over the USA in July 2006. We find that the GEOS-Chem global chemistry-transport model with a parameterization based on cloud top height, scaled regionally and monthly to OTD/LIS (Optical Transient Detector/Lightning Imaging Sensor) climatology, captures the ozone enhancements seen by TES. We show that the model's ability to reproduce the location of the enhancements is due to the fact that this model reproduces the pattern of the convective events occurrence on a daily basis during the summer of 2006 over the USA, even though it does not well represent the relative distribution of lightning intensities. However, this model with a value of 6 Tg N/yr for the lightning source (i.e.: with a mean production of 260 moles NO/Flash over the USA in summer) underestimates the intensities of the ozone enhancements seen by TES. By imposing a production of 520 moles NO/Flash for lightning occurring in midlatitudes, which better agrees with the values proposed by the most recent studies, we decrease the bias between TES and GEOS-Chem ozone over the USA in July 2006 by 40%. However, our conclusion on the strength of the lightning source of NOx is limited by the fact that the contribution from the stratosphere is underestimated in the GEOS-Chem simulations.
The GOES-R GeoStationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.
2009-01-22
CAPE CANAVERAL, Fla. – A giant crane is used to add additional segments to the new lightning towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida. Three new lightning towers on the pad will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.
1992-01-01
A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.
Cable coupling lightning transient qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.
NASA Astrophysics Data System (ADS)
Qin, Zilong; Chen, Mingli; Zhu, Baoyou; Du, Ya-ping
2017-01-01
An improved ray theory and transfer matrix method-based model for a lightning electromagnetic pulse (LEMP) propagating in Earth-ionosphere waveguide (EIWG) is proposed and tested. The model involves the presentation of a lightning source, parameterization of the lower ionosphere, derivation of a transfer function representing all effects of EIWG on LEMP sky wave, and determination of attenuation mode of the LEMP ground wave. The lightning source is simplified as an electric point dipole standing on Earth surface with finite conductance. The transfer function for the sky wave is derived based on ray theory and transfer matrix method. The attenuation mode for the ground wave is solved from Fock's diffraction equations. The model is then applied to several lightning sferics observed in central China during day and night times within 1000 km. The results show that the model can precisely predict the time domain sky wave for all these observed lightning sferics. Both simulations and observations show that the lightning sferics in nighttime has a more complicated waveform than in daytime. Particularly, when a LEMP propagates from east to west (Φ = 270°) and in nighttime, its sky wave tends to be a double-peak waveform (dispersed sky wave) rather than a single peak one. Such a dispersed sky wave in nighttime may be attributed to the magneto-ionic splitting phenomenon in the lower ionosphere. The model provides us an efficient way for retrieving the electron density profile of the lower ionosphere and hence to monitor its spatial and temporal variations via lightning sferics.
[Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model].
Sun, Yu; Shi, Ming-Chang; Peng, Huan; Zhu, Pei-Lin; Liu, Si-Lin; Wu, Shi-Lei; He, Cheng; Chen, Feng
2014-04-01
Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning were the three most important factors affecting the lightning fires in the forest, while the daily average wind speed and the slope was of less importance. With the increase of the proportion of test data, the max Kappa and AUC values were increased. The max Kappa values were above 0.75 and the average value was 0.772, while all of the AUC values were above 0.5 and the average value was 0. 859. With a moderate level of prediction accuracy being achieved, the MAXENT model could be used to predict forest lightning fire in Daxing'anling Mountains.
NASA Technical Reports Server (NTRS)
Wilson, Timmy R.; Kichak, Robert; Rakov, Vladimir; Kithil, Richard, Jr.; Sargent, Noel B.
2009-01-01
The existing lightning protection system at Pad 39B for the Space Shuttle is an outgrowth of a system that was put in place for the Apollo Program. Dr. Frank Fisher of Lightning Technologies was a key participant in the design and implementation of that system. He conveyed to the NESC team that the catenary wire provision was put in place quickly (as assurance against possible vehicle damage causing critical launch delays) rather than being implemented as a comprehensive system designed to provide a high degree of guaranteed protection. Also, the technology of lightning protection has evolved over time with considerable work being conducted by groups such as the electric utilities companies, aircraft manufacturers, universities, and others. Several accepted present-day methods for analysis of lightning protection were used by Drs. Medelius and Mata to study the expected lightning environment for the Pad 39B facility and to analyze the degree of protection against direct lightning attachment to the Space Shuttle. The specific physical configuration directly affects the vulnerability, so cases that were considered included the RSS next to and rolled back from the Space Shuttle, and the GOx Vent Arm both extended and withdrawn from the ET. Elements of the lightning protection system at Pad 39B are shown in Figure 6.0-1 and consist of an 80 foot insulating mast on top of the Fixed Support Structure (FSS), a catenary wire system that runs from the mast in a North/South direction to grounds 1000 feet away on each side of the mast, the RSS which can either be next to or away from the Space Shuttle, and a GOx vent that can either be extended or retracted from the top of the ET.
Variation of a Lightning NOx Indicator for National Climate Assessment
NASA Technical Reports Server (NTRS)
Koshak, William J.; McCaul, Eugene W., Jr.; Peterson, Harold S.; Vant-Hull, Brian
2014-01-01
During the past couple of years, an analysis tool was developed by the NASA Marshall Space Flight Center (MSFC) for the National Climate Assessment (NCA) program. The tool monitors and examines changes in lightning characteristics over the conterminous US (CONUS) on a continual basis. In this study, we have expanded the capability of the tool so that it can compute a new climate assessment variable that is called the Lightning NOx Indicator (LNI). Nitrogen oxides (NOx = NO + NO2) are known to indirectly influence our climate, and lightning NOx is the most important source of NOx in the upper troposphere (particularly in the tropics). The LNI is derived using Lightning Imaging Sensor (LIS) data and is computed by summing up the product of flash area x flash brightness over all flashes that occur in a particular region and period. Therefore, it is suggested that the LNI is a proxy to lightning NOx production. Specifically, larger flash areas are consistent with longer channel length and/or more energetic channels, and hence more NOx production. Brighter flashes are consistent with more energetic channels, and hence more NOx production. The location of the flash within the thundercloud and the optical scattering characteristics of the thundercloud are of course complicating factors. We analyze LIS data for the years 2003-2013 and provide geographical plots of the time-evolution of the LNI in order to determine if there are any significant changes or trends between like seasons, or from year to year.
A NASA Lightning Parameterization for CMAQ
NASA Technical Reports Server (NTRS)
Koshak, William; Khan, Maudood; Biazar, Arastoo; Newchurch, Mike; McNider, Richard
2009-01-01
Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, lightning modeling for CMAQ is highly oversimplified. This leads to very poor estimates of lightning-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA lightning model, called the Lightning Nitrogen Oxides Model (LNOM) that combines state-of-the-art lightning measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of lightning NOx production for CMAQ. NASA satellite lightning data is used in conjunction with ground-based lightning detection systems to assure that the best representation of lightning frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and number of strokes per flash are accounted for. LNOM combines all of these factors in a straightforward approach that is easily implemented into CMAQ. We anticipate that future applications of LNOM will produce significant and important changes in CMAQ trace gas concentrations for various regions and times. We also anticipate that these changes will have a direct impact on decision makers responsible for NAAQS attainment.
1983-06-01
fighter aircraft. The entire test bed is from testing of a representative digital supported above the ground plane by non - control system(s)l e.g... control and Increased systems Integration a. Raw data must be collected and Introduce new requirements for protection, experimental setups and An accurate...presented, several possible solutions to the grounding prob! - are suggested. All rely on establishing initial ground contact through a controlled non -zero
A survey of laser lightning rod techniques
NASA Technical Reports Server (NTRS)
Barnes, Arnold A., Jr.; Berthel, Robert O.
1991-01-01
The work done to create a laser lightning rod (LLR) is discussed. Some ongoing research which has the potential for achieving an operational laser lightning rod for use in the protection of missile launch sites, launch vehicles, and other property is discussed. Because of the ease with which a laser beam can be steered into any cloud overhead, an LLR could be used to ascertain if there exists enough charge in the clouds to discharge to the ground as triggered lightning. This leads to the possibility of using LLRs to test clouds prior to launching missiles through the clouds or prior to flying aircraft through the clouds. LLRs could also be used to probe and discharge clouds before or during any hazardous ground operations. Thus, an operational LLR may be able to both detect such sub-critical electrical fields and effectively neutralize them.
NASA Technical Reports Server (NTRS)
Burns, Lee; Decker, Ryan
2005-01-01
Lightning strike location and peak current are monitored operationally in the Kennedy Space Center (KSC) Cape Canaveral Air Force Station (CCAFS) area by the Cloud to Ground Lightning Surveillance System (CGLSS). The present study compiles ten years worth of CGLSS data into a database of near strikes. Using shuffle launch platform LP39A as a convenient central point, all strikes recorded within a 20-mile radius for the period of record O R ) from January 1, 1993 to December 31,2002 were included in the subset database. Histograms and cumulative probability curves are produced for both strike intensity (peak current, in kA) and the corresponding magnetic inductance fields (in A/m). Results for the full POR have application to launch operations lightning monitoring and post-strike test procedures.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Jack Legere, NASA Quality Assurance specialist for the Shuttle Program, displays the Stanley Cup to employees in the Orbiter Processing Facility. Behind him is Discovery. Jay Feaster, general manager of the National Hockey League 2004 Champions Tampa Bay Lightning, brought the cup to KSC while on a tour. The cup was also briefly available for viewing by employees in the KSC Training Auditorium. The Stanley Cup weighs 35 pounds and is more than 100 years old. The Lightning will be added to the cup in September.
NASA Technical Reports Server (NTRS)
Williams, Earle R.
2001-01-01
This report is concerned with a summary of work completed under NASA Grant NAG5-4778 entitled: "Precipitation-Lightning Relationships on a Global Basis", with a supplement entitled: "A Study of Tropical Continental Convection in TRMM/Brazil". Several areas of endeavor are summarized, some of them concerned directly with the observations from the TRMM satellite, and others focussing on ground based measurements in the NASA TRMM LBA field program in Brazil.
Lightning Physics: A Three Year Program
1983-01-01
because these aircraft are controlled poeal’ r r o(z’, I- RIC) with low-voltage digital electronics and are in part construct- 4w J(,3 cR "*t • at ed of... millise - limits pretrigger and delayed-trigger mode,. and a variety of sample conds, and hundreds of microseconds, respectively, the time of simple...processes, but we feel it prudent to discontinue use of the Proctor, D. E., A radio study of lightning, Ph.D. thesis , Univ. of designations in order
Daylight time-resolved photographs of lightning.
Qrville, R E; Lala, G G; Idone, V P
1978-07-07
Lightning dart leaders and return strokes have been recorded in daylight with both good spatial resolution and good time resolution as part of the Thunder-storm Research International Program. The resulting time-resolved photographs are apparently equivalent to the best data obtained earlier only at night. Average two-dimensional return stroke velocities in four subsequent strokes between the ground and a height of 1400 meters were approximately 1.3 x 10(8) meters per second. The estimated systematic error is 10 to 15 percent.
2009-10-20
CAPE CANAVERAL, Fla. – Workers prepare to close the arms of the vehicle stabilization system around the towering 327-foot-tall Ares I-X rocket, newly arrived on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The test rocket left the Vehicle Assembly Building at 1:39 a.m. EDT on its 4.2-mile trek to the pad and was "hard down" on the pad’s pedestals at 9:17 a.m. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
2009-10-20
CAPE CANAVERAL, Fla. – The arms of the vehicle stabilization system are closed around the towering 327-foot-tall Ares I-X rocket, newly arrived on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The test rocket left the Vehicle Assembly Building at 1:39 a.m. EDT on its 4.2-mile trek to the pad and was "hard down" on the pad’s pedestals at 9:17 a.m. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
Voltages induced on a power distribution line by overhead cloud lightning
NASA Technical Reports Server (NTRS)
Yacoub, Ziad; Rubinstein, Marcos; Uman, Martin A.; Thomson, Ewen M.; Medelius, Pedro J.
1991-01-01
Voltages induced by overhead cloud lightning on a 448 m open circuited power distribution line and the corresponding north-south component of the lightning magnetic field were simultaneously measured at the NASA Kennedy Space Center during the summer of 1986. The incident electric field was calculated from the measured magnetic field. The electric field was then used as an input to the computer program, EMPLIN, that calculated the voltages at the two ends of the power line. EMPLIN models the frequency domain field/power coupling theory found, for example, in Ianoz et al. The direction of the source, which is also one of the inputs to EMPLIN, was crudely determined from a three station time delay technique. The authors found reasonably good agreement between calculated and measured waveforms.
LNOx Estimates Directly from LIS Data
NASA Astrophysics Data System (ADS)
Koshak, W. J.; Vant-hull, B.; McCaul, E.
2014-12-01
Nitrogen oxides (NOx = NO + NO2) are known to indirectly influence climate since they affect the concentration of both atmospheric ozone (O3) and hydroxyl radicals (OH). In addition, lightning NOx (LNOx) is the most important source of NOx in the upper troposphere (particularly in the tropics). It is difficult to estimate LNOx because it is not easy to make measurements near the lightning channel, and the various NOx-producing mechanisms within a lightning flash are not fully understood. A variety of methods have been used to estimate LNOx production [e.g., in-situ observations, combined ground-based VHF lightning mapping and VLF/LF lightning locating observations, indirect retrievals using satellite Ozone Monitoring Instrument (OMI) observations, theoretical considerations, laboratory spark measurements, and rocket triggered lightning measurements]. The present study introduces a new approach for estimating LNOx that employs Lightning Imaging Sensor (LIS) data. LIS optical measurements are used to directly estimate the total energy of a flash; the total flash energy is then converted to LNOx production (in moles) by multiplying by a thermo-chemical yield. Hence, LNOx estimates on a flash-by-flash basis are obtained. A Lightning NOx Indicator (LNI) is computed by summing up the LIS-derived LNOx contributions from a region over a particular analysis period. Larger flash optical areas are consistent with longer channel length and/or more energetic channels, and hence more NOx production. Brighter flashes are consistent with more energetic channels, and hence more NOx production. The location of the flash within the thundercloud and the optical scattering characteristics of the thundercloud are complicating factors. LIS data for the years 2003-2013 were analyzed, and geographical plots of the time-evolution of the LNI over the southern tier states (i.e. upto 38o N) of CONUS were determined. Overall, the LNI trends downward over the 11 yr analysis period. The LNI has been added to the list of indicators presently provided by a sustaining assessment tool developed at the NASA Marshall Space Flight Center (MSFC) for monitoring lightning/climate interactions over the United States, as part of the National Climate Assessment (NCA) program.
NASA Technical Reports Server (NTRS)
Poehler, H. A.
1978-01-01
Results of a test of the use of a Lightning Detection and Ranging (LDAR) remote display in the Patrick AFB RAPCON facility are presented. Agreement between LDAR and radar precipitation echoes of the RAPCON radar was observed, as well as agreement between LDAR and pilot's visual observations of lightning flashes. A more precise comparison between LDAR and KSC based radars is achieved by the superposition of LDAR precipitation echoes. Airborne measurements of updrafts and turbulence by an armored T-28 aircraft flying through the thunderclouds are correlated with LDAR along the flight path. Calibration and measurements of the accuracy of the LDAR System are discussed, and the extended range of the system is illustrated.
Processing and display of atmospheric phenomenaa data
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Garst, R. A.; Purser, L. R.
1984-01-01
A series of technical efforts dealing with various atmospheric phenomena is described. Refinements to the Potential in an Electrostatic Cloud (PEC) model are discussed. The development of an Apple III graphics program, the NSSL Lightning Data Program and a description of data reduction procedures are examined. Several utility programs are also discussed.
A rare manifestation of burns after lightning strike in rural Ghana: a case report.
Apanga, Paschal Awingura; Azumah, John Atigiba; Yiranbon, Joseph Bayewala
2017-07-25
Lightning is a natural phenomenon that mostly affects countries in the tropical and subtropical regions of the globe, including Ghana. Lightning strikes pose a global public health issue. Although strikes to humans are uncommon, it is associated with high morbidity and mortality. We present a case of a 10-year-old Ghanaian girl who got second-degree burns after being struck by lightning. She was put on an intravenous broad-spectrum antibiotic (ceftriaxone), Ringer's lactate, and her burns were dressed with sterile gauze impregnated with Vaseline (petroleum jelly) and silver sulfadiazine ointment. There was marked improvement on the 16 th day of treatment despite the lack in capacity of the hospital to carry out some laboratory diagnostic tests. On the 21 st day of treatment, the burns were completely healed without scars and contractures. This is evidence of burns due to lightning strike, despite its rare occurrence. This report will help inform those in doubt, particularly in communities where lightning injuries are associated with widespread superstition. The case report also revealed how rural healthcare can be challenging amid a lack of basic diagnostic equipment and logistics. However, in resource-limited settings, Vaseline (petroleum jelly) and silver sulfadiazine could be used in the treatment of burns.
A transportable 50 kA dual mode lightning simulator
NASA Technical Reports Server (NTRS)
Salisbury, K.; Lloyd, S.; Chen, Y. G.
1991-01-01
A transportable lightning simulator was designed, built and tested, which is capable of delivering more than 50 kA to an 8 micro-H test object. The simulator was designed to be a versatile device in the lightning laboratory while meeting the requirements of MIL-STD-1757A for component E current waveforms. The system is capable of operating in either a ringing mode with a Q greater than 5 and a nominal frequency of 160 kHz, or a unipolar mode with no hardware configuration changes. The ringing mode is obtained by the LCR series circuit formed by the pulse generator and test object. The unipolar mode is obtained by closing an electrically triggered crowbar switch at peak current. The simulator exceeds the peak current requirement and rate of rise requirements for MIL-STD-1757A in both the ringing and unipolar modes. The pulse half width in the unipolar mode is in excess of 50 microsec and the action is in excess of 10(exp 5) A(exp 2)s. The design, component values, and test results are presented.
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.
2011-01-01
A new technique has been developed to estimate the probability that a nearby cloud to ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.
NASA Technical Reports Server (NTRS)
Huddleston, Lisa; Roeder, WIlliam P.; Merceret, Francis J.
2011-01-01
A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station. Future applications could include forensic meteorology.
The GOES-R Series Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas M.
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument development. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (an engineering development unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms
The Goes-R Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved storm diagnostic capability with the Advanced Baseline Imager. The GLM will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. In this paper we will report on new Nowcasting and storm warning applications being developed and evaluated at various NOAA Testbeds.
Infrasound from lightning measured in Ivory Coast from 2004 to 2014
NASA Astrophysics Data System (ADS)
Farges, Thomas; Le Pichon, Alexis; Ceranna, Lars; Diawara, Adama
2016-04-01
It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. 80 % of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes …). Some of the IMS stations are located where lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. Assink et al. (2008) and Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within 300 km. One-to-one correlation is possible when the thunderstorm is within about 75 km from the station. When the lightning flash occurs within 20 km, it is also possible to rebuild the 3D geometry of the discharges when the network size is less than 100 m (Arechiga et al., 2011; Gallin, 2014). An IMS infrasound station has been installed in Ivory Coast since 2002. The lightning rate of this region is 10-20 flashes/km²/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 10 years of data (2005-2014). Correlation between infrasound having a mean frequency higher than 1 Hz and lightning flashes detected by the World Wide Lightning Location Network (WWLLN) is systematically looked for. One-to-one correlation is obtained for flashes occurring within about 100 km. An exponential decrease of the infrasound amplitude with the distance of one order of magnitude per 50 km is found. The detection variability with the arrival azimuth is examined. A non-negligible number of events coming from the shadow zone (30 - 200 km) is found. It is also interesting to note that most of the infrasound related to lightning flashes is due to thunderstorm which occurred more than 200 km away from the station. However, it is hard to deduce any precise characteristics in those cases.
NASA Technical Reports Server (NTRS)
Wahid, Parveen
1995-01-01
This project involved the determination of the effective radiated power of lightning sources and the polarization of the radiating source. This requires the computation of the antenna patterns at all the LDAR site receiving antennas. The known radiation patterns and RF signal levels measured at the antennas will be used to determine the effective radiated power of the lightning source. The azimuth and elevation patterns of the antennas in the LDAR system were computed using flight test data that was gathered specifically for this purpose. The results presented in this report deal with the azimuth patterns for all the antennas and the elevation patterns for three of the seven sites.
2009-01-22
CAPE CANAVERAL, Fla. – Progress is being made on construction of the new lightning towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida. New sections are being added with the help of a giant crane. Three new lightning towers on the pad will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Kim Shiflett
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anzanel, P.; Kouteynikoff, P.
1985-02-01
This Part II presents theorical and experimental work about interference generated by lightning strokes in a telecommunication coaxial circuit enclosed inside a composite earthwire for overhead transmission lines. Sinusoidal steady state and surge measurements of the composite earthwire susceptibility to interference (transfer impedance) have been carried out. Induced voltages have been calculated using an original double sampling FFT method whose validity has been checked by measurements on a test line. Finally, it is shown how the cable design can be improved and maximum induced voltage values are given.
Kinematic and Microphysical Control of Lightning Flash Rate over Northern Alabama
NASA Technical Reports Server (NTRS)
Carey, Lawrence D.; Bain, Anthony L.; Matthee, Retha; Schultz, Christopher J.; Schultz, Elise V.; Deierling, Wiebke; Petersen, Walter A.
2015-01-01
The Deep Convective Clouds and Chemistry (DC3) experiment seeks to examine the relationship between deep convection and the production of nitrogen oxides (NO (sub x)) via lightning (LNO (sub x)). A critical step in estimating LNO (sub x) production in a cloud-resolving model (CRM) without explicit lightning is to estimate the flash rate from available model parameters that are statistically and physically correlated. As such, the objective of this study is to develop, improve and evaluate lightning flash rate parameterizations in a variety of meteorological environments and storm types using radar and lightning mapping array (LMA) observations taken over Northern Alabama from 2005-2012, including during DC3. UAH's Advanced Radar for Meteorological and Operational Research (ARMOR) and the Weather Surveillance Radar - 1988 Doppler (WSR 88D) located at Hytop (KHTX) comprises the dual-Doppler and polarimetric radar network, which has been in operation since 2004. The northern Alabama LMA (NA LMA) in conjunction with Vaisala's National Lightning Detection Network (NLDN) allow for a detailed depiction of total lightning during this period. This study will integrate ARMOR-KHTX dual Doppler/polarimetric radar and NA LMA lightning observations from past and ongoing studies, including the more recent DC3 results, over northern Alabama to form a large data set of 15-20 case days and over 20 individual storms, including both ordinary multicell and supercell convection. Several flash rate parameterizations will be developed and tested, including those based on 1) graupel/small hail volume; 2) graupel/small hail mass, and 3) convective updraft volume. Sensitivity of the flash rate parameterizations to storm intensity, storm morphology and environmental conditions will be explored.
Lightning safety awareness of visitors in three California national parks.
Weichenthal, Lori; Allen, Jacoby; Davis, Kyle P; Campagne, Danielle; Snowden, Brandy; Hughes, Susan
2011-09-01
To assess the level of lightning safety awareness among visitors at 3 national parks in the Sierra Nevada Mountains of California. A 12-question, short answer convenience sample survey was administered to participants 18 years of age and over concerning popular trails and points of interest with known lightning activity. There were 6 identifying questions and 5 knowledge-based questions pertaining to lightning that were scored on a binary value of 0 or 1 for a total of 10 points for the survey instrument. Volunteers in Fresno, California, were used as a control group. Participants were categorized as Sequoia and Kings Canyon National Park (SEKI), frontcountry (FC), or backcountry (BC); Yosemite National Park (YNP) FC or BC; and Fresno. Analysis of variance (ANOVA) was used to test for differences between groups. 467 surveys were included for analysis: 77 in Fresno, 192 in SEKI, and 198 in YNP. National park participants demonstrated greater familiarity with lightning safety than individuals from the metropolitan community (YNP 5.84 and SEKI 5.65 vs Fresno 5.14, P = .0032). There were also differences noted between the BC and FC subgroups (YNP FC 6.07 vs YNP BC 5.62, P = .02; YNP FC 6.07 vs SEKI FC 5.58, P = .02). Overall results showed that participants had certain basic lightning knowledge but lacked familiarity with other key lightning safety recommendations. While there are statistically significant differences in lightning safety awareness between national parks and metropolitan participants, the clinical impact of these findings are debatable. This study provides a starting point for providing educational outreach to visitors in these national parks. Copyright © 2011 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Objective Lightning Probability Forecast Tool Phase II
NASA Technical Reports Server (NTRS)
Lambert, Winnie
2007-01-01
This presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.
Measurements of lightning rod responses to nearby strikes
NASA Astrophysics Data System (ADS)
Moore, C. B.; Aulich, G. D.; Rison, W.
2000-05-01
Following Benjamin Franklin's invention of the lightning rod, based on his discovery that electrified objects could be discharged by approaching them with a metal needle in hand, conventional lightning rods in the U.S. have had sharp tips. In recent years, the role of the sharp tip in causing a lightning rod to act as a strike receptor has been questioned leading to experiments in which pairs of various sharp-tipped and blunt rods have been exposed beneath thunderclouds to determine the better strike receptor. After seven years of tests, none of the sharp Franklin rods or of the so-called “early streamer emitters” has been struck, but 12 blunt rods with tip diameters ranging from 12.7 mm to 25.4 mm have taken strikes. Our field experiments and our analyses indicate that the strike-reception probabilities of Franklin's rods are greatly increased when their tips are made moderately blunt.
NASA Technical Reports Server (NTRS)
Carey, L. D.; Petersen, W. A.; Deierling, W.; Roeder, W. P.
2009-01-01
A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar replaces the modified WSR-74C at Patrick AFB that has been in use since 1984. The new radar is a Radtec TDR 43-250, which has Doppler and dual polarization capability. A new fixed scan strategy was designed to best support the space program. The fixed scan strategy represents a complex compromise between many competing factors and relies on climatological heights of various temperatures that are important for improved lightning forecasting and evaluation of Lightning Launch Commit Criteria (LCC), which are the weather rules to avoid lightning strikes to in-flight rockets. The 0 C to -20 C layer is vital since most generation of electric charge occurs within it and so it is critical in evaluating Lightning LCC and in forecasting lightning. These are two of the most important duties of 45 WS. While the fixed scan strategy that covers most of the climatological variation of the 0 C to -20 C levels with high resolution ensures that these critical temperatures are well covered most of the time, it also means that on any particular day the radar is spending precious time scanning at angles covering less important heights. The goal of this project is to develop a user-friendly, Interactive Data Language (IDL) computer program that will automatically generate optimized radar scan strategies that adapt to user input of the temperature profile and other important parameters. By using only the required scan angles output by the temperature profile adaptive scan strategy program, faster update times for volume scans and/or collection of more samples per gate for better data quality is possible, while maintaining high resolution at the critical temperature levels. The temperature profile adaptive technique will also take into account earth curvature and refraction when geo-locating the radar beam (i.e., beam height and arc distance), including non-standard refraction based on the user-input temperature profile. In addition to temperature profile adaptivity, this paper will also summarize the other requirements for this scan strategy program such as detection of low-level boundaries, detection of anvil clouds, reducing the Cone Of Silence, and allowing for times when deep convective clouds will not occur. The adaptive technique will be carefully compared to and benchmarked against the new fixed scan strategy. Specific environmental scenarios in which the adaptive scan strategy is able to optimize and improve coverage and resolution at critical heights, scan time, and/or sample numbers relative to the fixed scan strategy will be presented.
LSP Composite Susbtrate Manufacturing Processing Guide
NASA Technical Reports Server (NTRS)
Kovach, Daniel J.; Griess, Kenneth H.
2013-01-01
This document is intended to define Carbon Fiber Reinforced Plastic (CFRP) test panel configurations that can be employed for the purposes of evaluating the protection capabilities of Lightning Strike Protection (LSP) materials developed by the Aerospace Industry. The configurations are intended to provide consistent behavior in their response to simulated lightning strikes at pre-defined levels when tested by a capable vendor according to a test procedure written to enable consistent results (ref section 2.1.2). In response to an attachment of a simulated lightning strike on a CFRP panel, one can expect to see various levels of ablation and delamination, both through the thickness of the panel and with respect to the amount of panel surface area that exhibits damage. Panel configurations defined in this document include: An "unprotected" configuration 128694-1 (ref section 4.1), consisting of a cured CFRP laminate stackup of tape and fabric prepregs, coated with a typical aerospace primer and paint finishing scheme, attached to aluminum grounding bars intended to draw electrical current from the lightning attachment point to the panel edges and thus to ground. A "protected" configuration 128694-2 (ref section 4.1), wherein a layer of an LSP material form often used in the Aerospace Industry is included in the laminate stackup prior to cure. The CFRP materials, finishes and grounding arrangement for ths configuration are the same as for the "unprotected" configuration.
Optical image acquisition system for colony analysis
NASA Astrophysics Data System (ADS)
Wang, Weixing; Jin, Wenbiao
2006-02-01
For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems since they belong to a new technology product. One of the main problems is image acquisition. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. A digital camera in the top of the box connected to a PC computer with a USB cable, all the camera functions are controlled by the computer.
Rocket-triggered lightning strikes and forest fire ignition
NASA Technical Reports Server (NTRS)
Fenner, James
1990-01-01
The following are presented: (1) background information on the rocket-triggered lightning project an Kennedy Space Center (KSC); (2) a summary of the forecasting problem; (3) the facilities and equipment available for undertaking field experiments at KSC; (4) previous research activity performed; (5) a description of the atmospheric science field laboratory near Mosquito Lagoon on the KSC complex; (6) methods of data acquisition; and (7) present results. New sources of data for the 1990 field experiment include measuring the electric field in the lower few thousand feet of the atmosphere by suspending field measuring devices below a tethered balloon, and measuring the electric field intensity in clouds and in the atmosphere with aircraft. The latter program began in July of 1990. Also, future prospects for both triggered lightning and forest fire research at KSC are listed.
Properties of Lightning Strike Protection Coatings
NASA Astrophysics Data System (ADS)
Gagne, Martin
Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity of conductive coatings. Mechanical tests include adhesion, scratch, hardness and Young's modulus of the coatings. The environmental tests are temperature cycling and salt spray cycling. These basic characteristics were investigated first, but further tests also combine the categories, such as electrical tests before, during and after environmental tests, and the effects on the sample's mechanical properties after high electrical current injections. The electrical properties of the conductive coatings have improved and are very close to that of current expanded metallic foil or within an order of magnitude. The mechanical properties of most of these coatings are also good. They exhibit good adhesion, hardness, and no significant loss of flexion properties after current injections. The environmental tests are more mitigated, with some conductive coatings losing their surface conductivity, others having a small increase in specific resistivity, and some were simply unaffected. Tests such as thermogravimetric analysis, scanning electron microscope analysis of scratch tests, and optical microscope observations are included to provide additional analysis of the results of the conductive coatings. The conductive coatings were characterized and tested as part of the CRIAQ project. Lightning strike tests are required to gather further information on these conductive coatings. The main application for these coatings is for lightning strike protection of aircraft, but they can also be used for ground based lightning strike protection and general electromagnetic shielding.
Greased Lightning (GL-10) Flight Testing Campaign
NASA Technical Reports Server (NTRS)
Fredericks, William J.; McSwain, Robert G.; Beaton, Brian F.; Klassman, David W.; Theodore, Colin R.
2017-01-01
Greased Lightning (GL-10) is an aircraft configuration that combines the characteristics of a cruise efficient airplane with the ability to perform vertical takeoff and landing (VTOL). This aircraft has been designed, fabricated and flight tested at the small unmanned aerial system (UAS) scale. This technical memorandum will document the procedures and findings of the flight test experiments. The GL-10 design utilized two key technologies to enable this unique aircraft design; namely, distributed electric propulsion (DEP) and inexpensive closed loop controllers. These technologies enabled the flight of this inherently unstable aircraft. Overall it has been determined thru flight test that a design that leverages these new technologies can yield a useful VTOL cruise efficient aircraft.
NASA Astrophysics Data System (ADS)
Schultz, C. J.; Lang, T. J.; Leake, S.; Runco, M.; Blakeslee, R. J.
2017-12-01
Video and still frame images from cameras aboard the International Space Station (ISS) are used to inspire, educate, and provide a unique vantage point from low-Earth orbit that is second to none; however, these cameras have overlooked capabilities for contributing to scientific analysis of the Earth and near-space environment. The goal of this project is to study how georeferenced video/images from available ISS camera systems can be useful for scientific analysis, using lightning properties as a demonstration. Camera images from the crew cameras and high definition video from the Chiba University Meteor Camera were combined with lightning data from the National Lightning Detection Network (NLDN), ISS-Lightning Imaging Sensor (ISS-LIS), the Geostationary Lightning Mapper (GLM) and lightning mapping arrays. These cameras provide significant spatial resolution advantages ( 10 times or better) over ISS-LIS and GLM, but with lower temporal resolution. Therefore, they can serve as a complementarity analysis tool for studying lightning and thunderstorm processes from space. Lightning sensor data, Visible Infrared Imaging Radiometer Suite (VIIRS) derived city light maps, and other geographic databases were combined with the ISS attitude and position data to reverse geolocate each image or frame. An open-source Python toolkit has been developed to assist with this effort. Next, the locations and sizes of all flashes in each frame or image were computed and compared with flash characteristics from all available lightning datasets. This allowed for characterization of cloud features that are below the 4-km and 8-km resolution of ISS-LIS and GLM which may reduce the light that reaches the ISS-LIS or GLM sensor. In the case of video, consecutive frames were overlaid to determine the rate of change of the light escaping cloud top. Characterization of the rate of change in geometry, more generally the radius, of light escaping cloud top was integrated with the NLDN, ISS-LIS and GLM to understand how the peak rate of change and the peak area of each flash aligned with each lightning system in time. Flash features like leaders could be inferred from the video frames as well. Testing is being done to see if leader speeds may be accurately calculated under certain circumstances.
Why does negative CG lightning have subsequent return strokes?
NASA Astrophysics Data System (ADS)
Wilkes, R. A.; Kotovsky, D. A.; Uman, M. A.; Carvalho, F. L.; Jordan, D.
2017-12-01
It is not understood why cloud-to-ground (CG) lightning flashes lowering negative charge often produce discrete dart-leader/return-stroke sequences rather than having the first stroke drain the available cloud charge, as is almost always the case for CG lightning lowering positive charge. Triggered lightning data obtained at the International Center for Lightning Research and Testing (ICLRT) in north-central Florida have been analyzed to clarify the subsequent return-stroke process. In summers 2013 through 2016 at the ICLRT, 53% of the rocket launches did not initiate any part of a lightning flash, 13% of the rocket launches created an initial stage only (ISO) and failed to produce a following dart-leader/return-stroke sequences, and 34% of rocket launches produced an initial stage (IS) followed by return strokes. The IS of the triggered lightning consists of the upward positive leader and a following initial continuing current, both being responsible for transporting negative charge from the cloud to ground. Our ISO events may well have some commonality with the roughly 20 percent of natural CG flashes that fail to produce a dart-leader/return-stroke. We have analyzed the IS of 41 triggered lightning flashes with (19 cases) and without (22 cases) following return strokes and compared areas and heights of the flash using data collected by a Lightning Mapping Array (LMA). In our preliminary analysis, we can find no geometrical feature of the lightning channel during the IS that will predict the occurrence or lack of occurrence of following return strokes. We also have compared the triggered-lightning electrical current and charge transfer observed at the ground. We found that the average current, duration, and charge transfer during the IS for ISO events is each about half that of ISs analyzed which are followed by dart-leader/return-stroke sequences, contrary to the results presented from the GCOELD in China. Summarizing, there appear to be no differences in the channel geometry between initial stages that do or do not yield dart-leader/return-stroke sequences. In contrast, we find that particular electrical characteristics of the initial stage may indicate whether or not a dart-leader/return-stroke sequence may follow, potentially shedding light on the physical processes necessary for dart-leader initiation.
2009-10-27
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA's Kennedy Space Center in Florida, the rotating service structure has been rolled back from the Constellation Program's 327-foot-tall Ares I-X rocket, sitting atop its mobile launcher platform, during preparations for launch. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
2009-10-27
CAPE CANAVERAL, Fla. – Sunrise at Launch Pad 39B at NASA's Kennedy Space Center in Florida reveals the rotating service structure and the arms of the vehicle stabilization system have been retracted from around the Constellation Program's 327-foot-tall Ares I-X rocket for launch. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
2009-10-27
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA's Kennedy Space Center in Florida, xenon lights illuminate the Constellation Program's 327-foot-tall Ares I-X rocket after the rotating service structure, has been retracted from around it for launch. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
2009-10-27
CAPE CANAVERAL, Fla. – Daybreak at Launch Pad 39B at NASA's Kennedy Space Center in Florida reveals the rotating service structure rolled back from around the Constellation Program's 327-foot-tall Ares I-X rocket for launch. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
Characteristics of infrasound from lightning and sprites near thunderstorm areas
NASA Astrophysics Data System (ADS)
Farges, Thomas; Blanc, Elisabeth
2010-06-01
Research about thunder was mainly performed 20-30 years ago but has been renewed in recent years due to new interest about infrasound in the framework of the verification of the compliance of the Comprehensive Nuclear-Test-Ban Treaty. During the Eurosprite 2005 campaign, an infrasound miniarray has been set up in France to measure the characteristics of infrasound from lightning and sprites when these kinds of sources were close to the sensors (that is, for lightning distances lower than 100 km and sprite distances lower than 300 km). For two large thunderstorms which passed over the station, detection conditions of infrasound from lightning are detailed, and some characteristics are thoroughly described (e.g., amplitude variation with distance and spectrum of an individual event in the frequency range from 0.01 to 10 Hz). The locations of infrasound sources are determined using a 3-D inversion. Infrasound signals from sprites have also been detected, and the 3-D inversion method used for lightning infrasound has been adapted to locate the sources of infrasound from sprites. Four different sprite infrasound events are analyzed in this way. The infrasound source corresponds well to the sprite spatial characteristics deduced from camera observations. Questions about generation mechanisms of infrasound from lightning and sprites still remain. These new results should help us to understand the sound generation processes.
Forecasting Lightning Threat using Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Goodman, Steven J.; LaCasse, Katherine M.; Cecil, Daniel J.
2008-01-01
Two new approaches are proposed and developed for making time and space dependent, quantitative short-term forecasts of lightning threat, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the WRF model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed phase region at the-15 C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash rate proxy fields against domain-wide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. Our blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Exploratory tests for selected North Alabama cases show that, because WRF can distinguish the general character of most convective events, our methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models,the techniques proposed herein should continue to be applicable as newer and more accurate physically-based model versions, physical parameterizations, initialization techniques and ensembles of forecasts become available.
2009-01-22
CAPE CANAVERAL, Fla. – Brilliant beams of sunlight bounce off the new lightning tower under construction on Launch Pad 39B at NASA's Kennedy Space Center in Florida. New sections are being added with the help of a giant crane (at right). Three new lightning towers on the pad will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Kim Shiflett
Seasonal and Local Characteristics of Lightning Outages of Power Distribution Lines in Hokuriku Area
NASA Astrophysics Data System (ADS)
Sugimoto, Hitoshi; Shimasaki, Katsuhiko
The proportion of the lightning outages in all outages on Japanese 6.6kV distribution lines is high with approximately 20 percent, and then lightning protections are very important for supply reliability of 6.6kV lines. It is effective for the lightning performance to apply countermeasures in order of the area where a large number of the lightning outages occur. Winter lightning occurs in Hokuriku area, therefore it is also important to understand the seasonal characteristics of the lightning outages. In summer 70 percent of the lightning outages on distribution lines in Hokuriku area were due to sparkover, such as power wire breakings and failures of pole-mounted transformers. However, in winter almost half of lightning-damaged equipments were surge arrester failures. The number of the lightning outages per lightning strokes detected by the lightning location system (LLS) in winter was 4.4 times larger than that in summer. The authors have presumed the occurrence of lightning outages from lightning stroke density, 50% value of lightning current and installation rate of lightning protection equipments and overhead ground wire by multiple regression analysis. The presumed results suggest the local difference in the lightning outages.
Modern concepts of treatment and prevention of lightning injuries.
Edlich, Richard F; Farinholt, Heidi-Marie A; Winters, Kathryne L; Britt, L D; Long, William B
2005-01-01
Lightning is the second most common cause of weather-related death in the United States. Lightning is a natural atmospheric discharge that occurs between regions of net positive and net negative electric charges. There are several types of lightning, including streak lightning, sheet lightning, ribbon lightning, bead lightning, and ball lightning. Lightning causes injury through five basic mechanisms: direct strike, flash discharge (splash), contact, ground current (step voltage), and blunt trauma. While persons struck by lightning show evidence of multisystem derangement, the most dramatic effects involve the cardiovascular and central nervous systems. Cardiopulmonary arrest is the most common cause of death in lightning victims. Immediate resuscitation of people struck by lightning greatly affects the prognosis. Electrocardiographic changes observed following lightning accidents are probably from primary electric injury or burns of the myocardium without coronary artery occlusion. Lightning induces vasomotor spasm from direct sympathetic stimulation resulting in severe loss of pulses in the extremities. This vasoconstriction may be associated with transient paralysis. Damage to the central nervous system accounts for the second most debilitating group of injuries. Central nervous system injuries from lightning include amnesia and confusion, immediate loss of consciousness, weakness, intracranial injuries, and even brief aphasia. Other organ systems injured by lightning include the eye, ear, gastrointestinal system, skin, and musculoskeletal system. The best treatment of lightning injuries is prevention. The Lightning Safety Guidelines devised by the Lightning Safety Group should be instituted in the United States and other nations to prevent these devastating injuries.
NASA Astrophysics Data System (ADS)
Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.
2017-12-01
To clarify the evolution of damage for typical carbon woven fabric/epoxy laminates exposed to lightning strike, artificial lightning testing on carbon woven fabric/epoxy laminates were conducted, damage was assessed using visual inspection and damage peeling approaches. Relationships between damage size and action integral were also elucidated. Results showed that damage appearance of carbon woven fabric/epoxy laminate presents circular distribution, and center of the circle located at the lightning attachment point approximately, there exist no damage projected area dislocations for different layers, visual damage territory represents maximum damage scope; visible damage can be categorized into five modes: resin ablation, fiber fracture and sublimation, delamination, ablation scallops and block-shaped ply-lift; delamination damage due to resin pyrolysis and internal pressure exist obvious distinguish; project area of total damage is linear with action integral for the same type specimens, that of resin ablation damage is linear with action integral, but no correlation with specimen type, for all specimens, damage depth is linear with logarithm of action integral. The coupled thermal-electrical model constructed is capable to simulate the ablation damage for carbon woven fabric/epoxy laminates exposed to simulated lightning current through experimental verification.
High Speed Intensified Video Observations of TLEs in Support of PhOCAL
NASA Technical Reports Server (NTRS)
Lyons, Walter A.; Nelson, Thomas E.; Cummer, Steven A.; Lang, Timothy; Miller, Steven; Beavis, Nick; Yue, Jia; Samaras, Tim; Warner, Tom A.
2013-01-01
The third observing season of PhOCAL (Physical Origins of Coupling to the upper Atmosphere by Lightning) was conducted over the U.S. High Plains during the late spring and summer of 2013. The goal was to capture using an intensified high-speed camera, a transient luminous event (TLE), especially a sprite, as well as its parent cloud-to-ground (SP+CG) lightning discharge, preferably within the domain of a 3-D lightning mapping array (LMA). The co-capture of sprite and its SP+CG was achieved within useful range of an interferometer operating near Rapid City. Other high-speed sprite video sequences were captured above the West Texas LMA. On several occasions the large mesoscale convective complexes (MCSs) producing the TLE-class lightning were also generating vertically propagating convectively generated gravity waves (CGGWs) at the mesopause which were easily visible using NIR-sensitive color cameras. These were captured concurrent with sprites. These observations were follow-ons to a case on 15 April 2012 in which CGGWs were also imaged by the new Day/Night Band on the Suomi NPP satellite system. The relationship between the CGGW and sprite initiation are being investigated. The past year was notable for a large number of elve+halo+sprite sequences sequences generated by the same parent CG. And on several occasions there appear to be prominent banded modulations of the elves' luminosity imaged at >3000 ips. These stripes appear coincident with the banded CGGW structure, and presumably its density variations. Several elves and a sprite from negative CGs were also noted. New color imaging systems have been tested and found capable of capturing sprites. Two cases of sprites with an aurora as a backdrop were also recorded. High speed imaging was also provided in support of the UPLIGHTS program near Rapid City, SD and the USAFA SPRITES II airborne campaign over the Great Plains.
Colony image acquisition and segmentation
NASA Astrophysics Data System (ADS)
Wang, W. X.
2007-12-01
For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems. The main problems are image acquisition and image segmentation. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. The developed colony image segmentation algorithm consists of the sub-algorithms: (1) image classification; (2) image processing; and (3) colony delineation. The colony delineation algorithm main contain: the procedures based on grey level similarity, on boundary tracing, on shape information and colony excluding. In addition, a number of algorithms are developed for colony analysis. The system has been tested and satisfactory.
NASA Technical Reports Server (NTRS)
Lee, J. T.
1984-01-01
As part of continuing research on aviation related weather hazards, numerous experiments were incorporated into the 1983 Spring Observation Program. This year's program was an abbreviated one because of commitments made to the development of the Next Generation Radar (NEXRAD) project. The National Oceanic and Atmospheric Administration's (NOAA) P-3 Orion and the National Aeronautics and Space Administration's (NASA) RB-57B and U-2 were the main aircraft involved in the studies of lightning, wind shear, turbulence, and storm structure. A total of 14 flights were made by these aircraft during the period of May 16 through June 5, 1983. Aircraft instrumentation experiments are described, and resultant data sets available for research are detailed. Aircraft instrumentation and Doppler radar characteristics are detailed.
A comparison between initial continuous currents of different types of upward lightning
NASA Astrophysics Data System (ADS)
Wang, D.; Sawada, N.; Takagi, N.
2009-12-01
We have observed the lightning to a wind turbine and its lightning-protection tower for four consecutive winter seasons from 2005 to 2009. Our observation items include (1) thunderstorm electrical fields and lightning-caused electric field changes at multi sites around the wind turbine, (2) electrical currents at the bottom of the wind turbine and its lightning protection tower, (3) normal video and high speed image of lightning optical channels. Totally, we have obtained the data for 42 lightning that hit either on wind turbine or its lightning protection tower or both. Among these 42 lightning, 38 are upward lightning and 2 are downward lightning. We found the upward lightning can be sub-classified into two types. Type 1 upward lightning are self-triggered from a high structure, while type 2 lightning are triggered by a discharge occurred in other places which could be either a cloud discharge or a cloud-to-ground discharge (other-triggered). In this study, we have compared the two types of upward lightning in terms of initial continuous current rise time, peak current and charge transferred to the ground. We found that the initial current of self-triggered lightning tends to rise significantly faster and to a bigger peak value than the other-triggered lightning, although both types of lightning transferred similar amount of charge to the ground.
Forecasting Lightning at Kennedy Space Center/Cape Canaveral Air Force Station, Florida
NASA Technical Reports Server (NTRS)
Lambert, Winfred; Wheeler, Mark; Roeder, William
2005-01-01
The Applied Meteorology Unit (AMU) developed a set of statistical forecast equations that provide a probability of lightning occurrence on Kennedy Space Center (KSC) I Cape Canaveral Air Force Station (CCAFS) for the day during the warm season (May September). The 45th Weather Squadron (45 WS) forecasters at CCAFS in Florida include a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts, which are briefed at 1100 UTC (0700 EDT). This information is used for general scheduling of operations at CCAFS and KSC. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts for the KSC/CCAFS area during Shuttle flight operations. Much of the current lightning probability forecast at both groups is based on a subjective analysis of model and observational data. The objective tool currently available is the Neumann-Pfeffer Thunderstorm Index (NPTI, Neumann 1971), developed specifically for the KSCICCAFS area over 30 years ago. However, recent studies have shown that 1-day persistence provides a better forecast than the NPTI, indicating that the NPTI needed to be upgraded or replaced. Because they require a tool that provides a reliable estimate of the daily thunderstorm probability forecast, the 45 WS forecasters requested that the AMU develop a new lightning probability forecast tool using recent data and more sophisticated techniques now possible through more computing power than that available over 30 years ago. The equation development incorporated results from two research projects that investigated causes of lightning occurrence near KSCICCAFS and over the Florida peninsula. One proved that logistic regression outperformed the linear regression method used in NPTI, even when the same predictors were used. The other study found relationships between large scale flow regimes and spatial lightning distributions over Florida. Lightning, probabilities based on these flow regimes were used as candidate predictors in the equation development. Fifteen years (1 989-2003) of warm season data were used to develop the forecast equations. The data sources included a local network of cloud-to-ground lightning sensors called the Cloud-to-Ground Lightning Surveillance System (CGLSS), 1200 UTC Florida synoptic soundings, and the 1000 UTC CCAFS sounding. Data from CGLSS were used to determine lightning occurrence for each day. The 1200 UTC soundings were used to calculate the synoptic-scale flow regimes and the 1000 UTC soundings were used to calculate local stability parameters, which were used as candidate predictors of lightning occurrence. Five logistic regression forecast equations were created through careful selection and elimination of the candidate predictors. The resulting equations contain five to six predictors each. Results from four performance tests indicated that the equations showed an increase in skill over several standard forecasting methods, good reliability, an ability to distinguish between non-lightning and lightning days, and good accuracy measures and skill scores. Given the overall good performance the 45 WS requested that the equations be transitioned to operations and added to the current set of tools used to determine the daily lightning probability of occurrence.
Calibration/validation strategy for GOES-R L1b data products
NASA Astrophysics Data System (ADS)
Fulbright, Jon P.; Kline, Elizabeth; Pogorzala, David; MacKenzie, Wayne; Williams, Ryan; Mozer, Kathryn; Carter, Dawn; Race, Randall; Sims, Jamese; Seybold, Matthew
2016-10-01
The Geostationary Operational Environmental Satellite-R series (GOES-R) will be the next generation of NOAA geostationary environmental satellites. The first satellite in the series is planned for launch in November 2016. The satellite will carry six instruments dedicated to the study of the Earth's weather, lightning mapping, solar observations, and space weather monitoring. Each of the six instruments require specialized calibration plans to achieve their product quality requirements. In this talk we will describe the overall on-orbit calibration program and data product release schedule of the GOES-R program, as well as an overview of the strategies of the individual instrument science teams. The Advanced Baseline Imager (ABI) is the primary Earth-viewing weather imaging instrument on GOES-R. Compared to the present on-orbit GOES imagers, ABI will provide three times the spectral bands, four times the spatial resolution, and operate five times faster. The increased data demands and product requirements necessitate an aggressive and innovative calibration campaign. The Geostationary Lightning Mapper (GLM) will provide continuous rapid lightning detection information covering the Americas and nearby ocean regions. The frequency of lightning activity points to the intensification of storms and may improve tornado warning lead time. The calibration of GLM will involve intercomparisons with ground-based lightning detectors, an airborne field campaign, and a ground-based laser beacon campaign. GOES-R also carries four instruments dedicated to the study of the space environment. The Solar Ultraviolet Imager (SUVI) and the Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS) will study solar activity that may affect power grids, communication, and spaceflight. The Space Environment In-Situ Suite (SEISS) and the Magnetometer (MAG) study the in-situ space weather environment. These instruments follow a calibration and validation (cal/val) program that relies on intercomparisons with other space-based sensors and utilize special spacecraft maneuvers. Given the importance of cal/val to the success of GOES-R, the mission is committed to a long-term effort. This commitment enhances our knowledge of the long-term data quality and builds user confidence. The plan is a collaborative effort amongst the National Oceanic and Atmospheric Administration (NOAA), the National Institute of Standards and Technology (NIST), and the National Aeronautics and Space Administration (NASA). It is being developed based on the experience and lessons-learned from the heritage GOES and Polar-orbiting Operational Environmental Satellite (POES) systems, as well as other programs. The methodologies described in the plan encompass both traditional approaches and the current state-of-the-art in cal/val.
A wide bandwidth electrostatic field sensor for lightning research
NASA Technical Reports Server (NTRS)
Zaepfel, K. P.
1986-01-01
Data obtained from UHF Radar observation of direct-lightning strikes to the NASA F-106B airplane have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero volts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The new system was implemented with four shutter-type field mills located at strategic points on the airplane. The bandwidth of the new system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 Hz to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite-difference time-domain electromagnetic computer code.
A wide bandwidth electrostatic field sensor for lightning research
NASA Technical Reports Server (NTRS)
Zaepfel, Klaus P.
1989-01-01
Data obtained from UHF radar observation of direct-lightning strikes to the NASA F-106B aircraft have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero bolts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The system was implemented with four shutter-type field mills located at strategic points on the aircraft. The bandwidth of the system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite difference time-domain electromagnetic computer code.
Principles of Lightning Physics
NASA Astrophysics Data System (ADS)
Mazur, Vladislav
2016-12-01
Principles of Lightning Physics presents and discusses the most up-to-date physical concepts that govern many lightning events in nature, including lightning interactions with man-made structures, at a level suitable for researchers, advanced students and well-educated lightning enthusiasts. The author's approach to understanding lightning-to seek out, and show what is common to all lightning flashes-is illustrated by an analysis of each type of lightning and the multitude of lightning-related features. The book examines the work that has gone into the development of new physical concepts, and provides critical evaluations of the existing understanding of the physics of lightning and the lexicon of terms and definitions presently used in lightning research.
Mechanisms test bed math model modification and simulation support
NASA Technical Reports Server (NTRS)
Gilchrist, Andrea C.; Tobbe, Patrick A.
1995-01-01
This report summarizes the work performed under contract NAS8-38771 in support of the Marshall Space Flight Center Six Degree of Freedom Motion Facility and Flight Robotics Laboratory. The contract activities included the development of the two flexible body and Remote Manipulator System simulations, Dynamic Overhead Target Simulator control system and operating software, Global Positioning System simulation, and Manipulator Coupled Spacecraft Controls Testbed. Technical support was also provided for the Lightning Imaging Sensor and Solar X-Ray Imaging programs. The cover sheets and introductory sections for the documentation written under this contract are provided as an appendix.
NASA Technical Reports Server (NTRS)
Willett, J. C.; Idone, V. P.; Orville, R. E.; Leteinturier, C.; Eybert-Berard, A.
1988-01-01
Peak currents, two-dimensional average propagation speeds, and electric field waveforms for a number of subsequent return strikes in rocket-triggered lightning flashes were measured in order to test the 'transmission-line model' of return-stroke radiation of Uman and McLain (1970). Reasonable agreement is found between the propagation speeds measured with the streak camera and those deduced from the transmission-line model. A modification of the model is proposed in which two wave fronts travel upward and downward away from a junction point a short distance above the ground.
NASA Astrophysics Data System (ADS)
Willett, J. C.; Idone, V. P.; Orville, R. E.; Leteinturier, C.; Eybert-Berard, A.
1988-04-01
Peak currents, two-dimensional average propagation speeds, and electric field waveforms for a number of subsequent return strikes in rocket-triggered lightning flashes were measured in order to test the 'transmission-line model' of return-stroke radiation of Uman and McLain (1970). Reasonable agreement is found between the propagation speeds measured with the streak camera and those deduced from the transmission-line model. A modification of the model is proposed in which two wave fronts travel upward and downward away from a junction point a short distance above the ground.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Roeder, William
2007-01-01
This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Roeder, William
2007-01-01
This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May- September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Roeder, William
2008-01-01
This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equaitions showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Roeder, William
2013-01-01
This conference poster describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability and an ability to distinguish between lightning and non-lightning days.
The North Alabama Severe Thunderstorm Observations, Research, and Monitoring Network (STORMnet)
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hall, J.; Bateman, M.; McCaul, E.; Buechler, D.;
2002-01-01
The Severe Thunderstorm Observations, Research, and Monitoring network (STORMnet) became operational in 2001 as a test bed to infuse new science and technologies into the severe and hazardous weather forecasting and warning process. STORMnet is collaboration among NASA scientists, National Weather Service (NWS) forecasters, emergency managers and other partners. STORMnet integrates total lightning observations from a ten-station 3-D VHF regional lightning mapping array, the National Lightning Detection Network (NLDN), real-time regional NEXRAD Doppler radar, satellite visible and infrared imagers, and a mobile atmospheric profiling system to characterize storms and their evolution. The storm characteristics and life-cycle trending are accomplished in real-time through the second generation Lightning Imaging Sensor Demonstration and Display (LISDAD II), a distributed processing system with a JAVA-based display application that allows anyone, anywhere to track individual storm histories within the Tennessee Valley region of north Alabama and Tennessee, a region of the southeastern U.S. well known for abundant severe weather.
The North Alabama Lightning Mapping Array: Recent Severe Storm Observations and Future Prospects
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Blakeslee, R.; Christian, H.; Koshak, W.; Bailey, J.; Hall, J.; McCaul, E.; Buechler, D.; Darden, C.; Burks, J.
2004-01-01
The North Alabama Lightning Mapping Array became operational in November 2001 as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. Since the installation of the LMA, it has measured the total lightning activity of a large number of severe weather events, including three supercell tornado outbreaks, two supercell hailstorm events, and numerous microburst-producing storms and ordinary non-severe thunderstorms. The key components of evolving storm morphology examined are the time rate-of-change (temporal trending) of storm convective and precipitation characteristics that can be diagnosed in real-time using NEXRAD WSR-88D Doppler radar (echo growth and decay, precipitation structures and velocity features, outflow boundaries), LMA (total lightning flash rate and its trend) and National Lightning Detection Network (cloud-to- ground lightning, its polarity and trends). For example, in a transitional season supercell tornado outbreak, peak total flash rates for typical supercells in Tennessee reached 70-100/min, and increases in the total flash rate occurred during storm intensification as much as 20-25 min prior to at least some of the tornadoes. The most intense total flash rate measured during this outbreak (over 800 flashes/min) occurred in a storm in Alabama. In the case of a severe summertime pulse thunderstorm in North Alabama, the peak total flash rate reached 300/min, with a strong increase in total lightning evident some 9 min before damaging winds were observed at the surface. In this paper we provide a sampling of LMA observations and products during severe weather events to illustrate the capability of the system, and discuss the prospects for improving the short-term forecasting of convective weather using total lightning data.
NASA Astrophysics Data System (ADS)
Zepka, G. D.; Pinto, O.
2010-12-01
The intent of this study is to identify the combination of convective and microphysical WRF parameterizations that better adjusts to lightning occurrence over southeastern Brazil. Twelve thunderstorm days were simulated with WRF model using three different convective parameterizations (Kain-Fritsch, Betts-Miller-Janjic and Grell-Devenyi ensemble) and two different microphysical schemes (Purdue-Lin and WSM6). In order to test the combinations of parameterizations at the same time of lightning occurrence, a comparison was made between the WRF grid point values of surface-based Convective Available Potential Energy (CAPE), Lifted Index (LI), K-Index (KI) and equivalent potential temperature (theta-e), and the lightning locations nearby those grid points. Histograms were built up to show the ratio of the occurrence of different values of these variables for WRF grid points associated with lightning to all WRF grid points. The first conclusion from this analysis was that the choice of microphysics did not change appreciably the results as much as different convective schemes. The Betts-Miller-Janjic parameterization has generally worst skill to relate higher magnitudes for all four variables to lightning occurrence. The differences between the Kain-Fritsch and Grell-Devenyi ensemble schemes were not large. This fact can be attributed to the similar main assumptions used by these schemes that consider entrainment/detrainment processes along the cloud boundaries. After that, we examined three case studies using the combinations of convective and microphysical options without the Betts-Miller-Janjic scheme. Differently from the traditional verification procedures, fields of surface-based CAPE from WRF 10 km domain were compared to the Eta model, satellite images and lightning data. In general the more reliable convective scheme was Kain-Fritsch since it provided more consistent distribution of the CAPE fields with respect to satellite images and lightning data.
NASA Astrophysics Data System (ADS)
Heckman, S.
2015-12-01
Modern lightning locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in lightning research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total Lightning Network (ENTLN) is studied using rocket-triggered lightning data acquired atthe International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground lightning.Earth Networks has developed a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.
The North Alabama Lightning Warning Product
NASA Technical Reports Server (NTRS)
Buechler, Dennis E.; Blakeslee, R. J.; Stano, G. T.
2009-01-01
The North Alabama Lightning Mapping Array NALMA has been collecting total lightning data on storms in the Tennessee Valley region since 2001. Forecasters from nearby National Weather Service (NWS) offices have been ingesting this data for display with other AWIPS products. The current lightning product used by the offices is the lightning source density plot. The new product provides a probabalistic, short-term, graphical forecast of the probability of lightning activity occurring at 5 min intervals over the next 30 minutes . One of the uses of the current lightning source density product by the Huntsville National Weather Service Office is to identify areas of potential for cloud-to-ground flashes based on where LMA total lightning is occurring. This product quantifies that observation. The Lightning Warning Product is derived from total lightning observations from the Washington, D.C. (DCLMA) and North Alabama Lightning Mapping Arrays and cloud-to-ground lightning flashes detected by the National Lightning Detection Network (NLDN). Probability predictions are provided for both intracloud and cloud-to-ground flashes. The gridded product can be displayed on AWIPS workstations in a manner similar to that of the lightning source density product.
Forecasting Lightning Threat using Cloud-resolving Model Simulations
NASA Technical Reports Server (NTRS)
McCaul, E. W., Jr.; Goodman, S. J.; LaCasse, K. M.; Cecil, D. J.
2009-01-01
As numerical forecasts capable of resolving individual convective clouds become more common, it is of interest to see if quantitative forecasts of lightning flash rate density are possible, based on fields computed by the numerical model. Previous observational research has shown robust relationships between observed lightning flash rates and inferred updraft and large precipitation ice fields in the mixed phase regions of storms, and that these relationships might allow simulated fields to serve as proxies for lightning flash rate density. It is shown in this paper that two simple proxy fields do indeed provide reasonable and cost-effective bases for creating time-evolving maps of predicted lightning flash rate density, judging from a series of diverse simulation case study events in North Alabama for which Lightning Mapping Array data provide ground truth. One method is based on the product of upward velocity and the mixing ratio of precipitating ice hydrometeors, modeled as graupel only, in the mixed phase region of storms at the -15\\dgc\\ level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domainwide statistics of the peak values of simulated flash rate proxy fields against domainwide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. A blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Weather Research and Forecast Model simulations of selected North Alabama cases show that this model can distinguish the general character and intensity of most convective events, and that the proposed methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because models tend to have more difficulty in correctly predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models, the techniques proposed herein should continue to be applicable as newer and more accurate physically-based model versions, physical parameterizations, initialization techniques and ensembles of cloud-allowing forecasts become available.
A Lightning Safety Primer for Camps.
ERIC Educational Resources Information Center
Attarian, Aram
1992-01-01
Provides the following information about lightning, which is necessary for camp administrators and staff: (1) warning signs of lightning; (2) dangers of lightning; (3) types of lightning injuries; (4) prevention of lightning injury; and (5) helpful training tips. (KS)
Analysis of electromagnetic fields on an F-106B aircraft during lightning strikes
NASA Technical Reports Server (NTRS)
Trost, T. F.; Pitts, F. L.
1982-01-01
Information on the exterior electromagnetic environment of an aircraft when it is struck by lightning has been obtained during thunderstorm penetrations with an F-106B aircraft. Electric and magnetic fields were observed, using mainly time-derivative type sensors, with bandwidths to 50 MHz. Lightning pulse lengths ranging from 25 ns to 7 microsec have been recorded. Sufficient high-frequency content was present to excite electromagnetic resonances of the aircraft, and peaks in the frequency spectra of the waveforms in the range 7 to 23 MHz are in agreement with the resonant frequencies determined in laboratory scale-model tests. Both positively and negatively charged strikes were experienced, and most of the data suggest low values of peak current.
Analysis of lightning field changes produced by Florida thunderstorms
NASA Technical Reports Server (NTRS)
Koshak, William John
1991-01-01
A new method is introduced for inferring the charges deposited in a lightning flash. Lightning-caused field changes (delta E's) are described by a more general volume charge distribution than is defined on a large cartesian grid system centered above the measuring networks. It is shown that a linear system of equations can be used to relate delta E's at the ground to the values of charge on this grid. It is possible to apply more general physical constraints to the charge solutions, and it is possible to access the information content of the delta E data. Computer-simulated delta E inversions show that the location and symmetry of the charge retrievals are usually consistent with the known test sources.
The Case for Using Blunt-Tipped Lightning Rods as Strike Receptors.
NASA Astrophysics Data System (ADS)
Moore, C. B.; Aulich, G. D.; Rison, William
2003-07-01
Conventional lightning rods used in the United States have sharp tips, a practice derived from Benjamin Franklin's discovery of a means to obtain protection from lightning. However, the virtue of sharp tips for strike reception has never been established. An examination of the relevant physics shows that very strong electric fields are required above the tips of rods in order that they function as strike receptors but that the gradients of the field strength over sharp-tipped rods are so great that, at distances of a few millimeters, the local fields are often too weak for the development of upward-going streamers. In field tests, rods with rounded tips have been found to be better strike receptors than were nearby sharp-tipped rods.
NASA Astrophysics Data System (ADS)
Guillet, S.; Gosmain, A.; Ducoux, W.; Ponçon, M.; Fontaine, G.; Desseix, P.; Perraud, P.
2012-05-01
The increasing use of composite materials in aircrafts primary structures has led to different problematics in the field of safety of flight in lightning conditions. The consequences of this technological mutation, which occurs in a parallel context of extension of electrified critical functions, are addressed by aircraft manufacturers through the enhancement of their available assessment means of lightning transient. On the one hand, simulation tools, provided an accurate description of aircraft design, are today valuable assessment tools, in both predictive and operative terms. On the other hand, in-house test means allow confirmation and consolidation of design office hardening solutions. The combined use of predictive simulation tools and in- house test means offers an efficient and reliable support for all aircraft developments in their various life-time stages. The present paper provides PREFACE research project results that illustrate the above introduced strategy on the de-icing system of the NH90 composite main rotor blade.
NASA Astrophysics Data System (ADS)
Jacobson, Abram R.; Holzworth, Robert H.; Pfaff, Robert; Heelis, Roderick
2018-04-01
Both ray theory and full-wave models of very low frequency transmission through the ionospheric D layer predict that the transmission is greatly suppressed near the geomagnetic equator. We use data from the low-inclination Communication/Navigation Outage Forecast System satellite to test this semiquantitatively, for broadband very low frequency emissions from lightning. Approximate ground-truthing of the incident wavefields in the Earth-ionosphere waveguide is provided by the World Wide Lightning Location Network. Observations of the wavefields at the satellite are provided by the Vector Electric Field Instrument aboard the satellite. The data set comprises whistler observations with the satellite at magnetic latitudes <26°. Thus, our conclusions, too, must be limited to the near-equatorial region and are not necessarily predictive of midlatitude whistler properties. We find that in most broadband recordings of radio waves at the satellite, very few of the lightning strokes result in a detectable radio pulse at the satellite. However, in a minority of the recordings, there is enhanced transmission of very low frequency lightning emissions through the D layer, at a level exceeding model predictions by at least an order of magnitude. We show that kilometric-scale D-layer irregularities may be implicated in the enhanced transmission. This observation of sporadic enhancements at low magnetic latitude, made with broadband lightning emissions, is consistent with an earlier review of D-layer transmission for transmission from powerful man-made radio beacons.
Aircraft Lightning Protection Handbook
1989-09-01
tape or metal braid . The shield. The effect of leakage through the connector can transfer characteristics can seldom be determined by thus be...62 REFERENCES 66 CHAPTER 4 LIGHTNING EFFECTS ON AIRCRAFT 69 4.1 Introduction 69 4.2 Direct Effects on Metal Structures 70 4.2.1 Pitting and Melt...Certification plans 112 5.8 Test Plans 113 REFERENCES 113 Chapter 6 DIRECT EFFECTS PROTECTION 115 6.1 Introduction 115 6.2 Direct Effects on Metal Structures
Lightning Protection and Structural Bonding for the B2 Test Stand
NASA Technical Reports Server (NTRS)
Kinard, Brandon
2015-01-01
With the privatization of the space industry, NASA has entered a new era. To explore deeper parts of the solar system, NASA is developing a new spacecraft, the Space Launch System (SLS), capable of reaching these destinations, such as an asteroid or Mars. However, the test stand that is capable of testing the stage has been unused for many years. In addition to the updating/repair of the stand, more steel is being added to fully support the SLS. With all these modifications, the lightning protection system must be brought up to code to assure the protection of all personnel and assets. Structural bonding is a part of the lightning protection system. The focus of this project was to assure proper structural bonding. To begin, all relevant technical standards and the construction specifications were reviewed. This included both the specifications for the lightning protection and for general construction. The drawings were reviewed as well. From the drawings, bolted structural joints were reviewed to determine whether bonding was necessary. Several bolted joints were determined to need bonding according to the notes in the drawings. This exceeds the industry standards. The bolted joints are an electrically continuous joint. During tests, the stand experiences heavy vibration that may weaken the continuity of the bolted joint. Therefore, the secondary bonding is implemented to ensure that the structural joint has low resistance. If the structural joint has a high resistance because of corrosion, a potential gradient can occur that can cause a side flash. Damage, injury, or death can occur from a side flash so they are to be prevented. A list of the identified structural joints was compiled and sent to the contractor to be bonded. That covers the scope of this project.
The Intra-Cloud Lightning Fraction in the Contiguous United States
NASA Technical Reports Server (NTRS)
Medici, Gina; Cummins, Kenneth L.; Koshak, William J.; Rudlosky, Scott D.; Blakeslee, Richard J.; Goodman, Steven J.; Cecil, Daniel J.; Bright, David R.
2015-01-01
Lightning is dangerous and destructive; cloud-to-ground (CG) lightning flashes can start fires, interrupt power delivery, destroy property and cause fatalities. Its rate-of-occurrence reflects storm kinematics and microphysics. For decades lightning research has been an important focus, and advances in lightning detection technology have been essential contributors to our increasing knowledge of lightning. A significant step in detection technology is the Geostationary Lightning Mapper (GLM) to be onboard the Geostationary Operational Environment Satellite R-Series (GOES-R) to be launched in early 2016. GLM will provide continuous "Total Lightning" observations [CG and intra-cloud lightning (IC)] with near-uniform spatial resolution over the Americas by measuring radiance at the cloud tops from the different types of lightning. These Total Lightning observations are expected to significantly improve our ability to nowcast severe weather. It may be important to understand the long-term regional differences in the relative occurrence of IC and CG lightning in order to understand and properly use the short-term changes in Total Lightning flash rate for evaluating individual storms.
[Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].
Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai
2012-07-01
Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.
Modeling of X-ray Images and Energy Spectra Produced by Stepping Lightning Leaders
NASA Astrophysics Data System (ADS)
Xu, Wei; Marshall, Robert A.; Celestin, Sebastien; Pasko, Victor P.
2017-11-01
Recent ground-based measurements at the International Center for Lightning Research and Testing (ICLRT) have greatly improved our knowledge of the energetics, fluence, and evolution of X-ray emissions during natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, using Monte Carlo simulations and the response matrix of unshielded detectors in the Thunderstorm Energetic Radiation Array (TERA), we calculate the energy spectra of X-rays as would be detected by TERA and directly compare with the observational data during event MSE 10-01. The good agreement obtained between TERA measurements and theoretical calculations supports the mechanism of X-ray production by thermal runaway electrons during the negative corona flash stage of stepping lightning leaders. Modeling results also suggest that measurements of X-ray bursts can be used to estimate the approximate range of potential drop of lightning leaders. Moreover, the X-ray images produced during the leader stepping process in natural negative CG discharges, including both the evolution and morphological features, are theoretically quantified. We show that the compact emission pattern as recently observed in X-ray images is likely produced by X-rays originating from the source region, and the diffuse emission pattern can be explained by the Compton scattering effects.
Satellite Proving Ground for the GOES-R Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Gurka, James; Bruning, E. C.; Blakeslee, J. R.; Rabin, Robert; Buechler, D.
2009-01-01
The key mission of the Satellite Proving Ground is to demonstrate new satellite observing data, products and capabilities in the operational environment to be ready on Day 1 to use the GOES-R suite of measurements. Algorithms, tools, and techniques must be tested, validated, and assessed by end users for their utility before they are finalized and incorporated into forecast operations. The GOES-R Proving Ground for the Geostationary Lightning Mapper (GLM) focuses on evaluating how the infusion of the new technology, algorithms, decision aids, or tailored products integrate with other available tools (weather radar and ground strike networks; nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing forecasts and warning products. Additionally, the testing concept fosters operation and development staff interactions which will improve training materials and support documentation development. Real-time proxy total lightning data from regional VHF lightning mapping arrays (LMA) in Northern Alabama, Central Oklahoma, Cape Canaveral Florida, and the Washington, DC Greater Metropolitan Area are the cornerstone for the GLM Proving Ground. The proxy data will simulate the 8 km Event, Group and Flash data that will be generated by GLM. Tailored products such as total flash density at 1-2 minute intervals will be provided for display in AWIPS-2 to select NWS forecast offices and national centers such as the Storm Prediction Center. Additional temporal / spatial combinations are being investigated in coordination with operational needs and case-study proxy data and prototype visualizations may also be generated from the NASA heritage Lightning Imaging Sensor and Optical Transient Detector data. End users will provide feedback on the utility of products in their operational environment, identify use cases and spatial/temporal scales of interest, and provide feedback to the developers for adjusted or new products.
Lockheed P–38J Lightning at the Aircraft Engine Research Laboratory
1945-03-21
The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory acquired two Lockheed P–38J Lightning in October 1944 to augment their burgeoning icing research program. The P–38 was a high-altitude interceptor with a unique twin fuselage configuration. Lockheed designed the aircraft in 1938 and 1939. Its two Allison V–1710 engines carried the aircraft to altitudes up to 40,000 feet. The P–38 was used extensively during World War II in a variety of roles. In August 1943, Lockheed began producing an improved version, the P–38J that included better cockpit heating, engine cooling, and dive flaps. The military loaned the NACA two P–38Js to determine the amount of ice formation on the induction system of the turbosupercharger-equipped engines. In 1944 and 1945 one of the aircraft was subjected to ground tests using an engine blower on the hangar apron. The V–1710 was run over a full range of speeds as different levels of water were injected into the blower and sprayed onto the engine. The other P–38J was flown at 10,000 feet altitude with water sprayed into the engine to simulate rain. The tests confirmed that closing the intercooler flap added protection against the ice by blocking water ingestion and increasing engine heat. NACA pilot Joseph Walker joined the Cleveland laboratory in early 1945 as a physicist. Walker had flown P–38s during World, and later claimed that seeing the NACA’s two P–38Js inspired him to return to his earlier calling as a pilot, this time with the NACA. Walker was particularly active in the icing flight program during his five years of flying in Cleveland.
LOFAR Lightning Imaging: Mapping Lightning With Nanosecond Precision
NASA Astrophysics Data System (ADS)
Hare, B. M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J. R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T. N. G.; ter Veen, S.; Winchen, T.
2018-03-01
Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (˜3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.
NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Hosler, E. Ramon (Editor); Armstrong, Dennis W. (Editor)
1989-01-01
The contractor's report contains all sixteen final reports prepared by the participants in the 1989 Summer Faculty Fellowship Program. Reports describe research projects on a number of different topics. Interface software, metal corrosion, rocket triggering lightning, automatic drawing, 60-Hertz power, carotid-cardiac baroreflex, acoustic fields, robotics, AI, CAD/CAE, cryogenics, titanium, and flow measurement are discussed.
Establishing a Disruptive New Capability for NASA to Fly UAV's into Hazardous Conditions
NASA Technical Reports Server (NTRS)
Ely, Jay; Nguyen, Truong; Wilson, Jennifer; Brown, Robert; Laughter, Sean; Teets, Ed; Parker, Allen; Chan, Patrick Hon Man; Richards, Lance
2015-01-01
A 2015 NASA Aeronautics Mission "Seedling" Proposal is described for a Severe-Environment UAV (SE-UAV) that can perform in-situ measurements in hazardous atmospheric conditions like lightning, volcanic ash and radiation. Specifically, this paper describes the design of a proof-of-concept vehicle and measurement system that can survive lightning attachment during flight operations into thunderstorms. Elements from three NASA centers draw together for the SE-UAV concept. 1) The NASA KSC Genesis UAV was developed in collaboration with the DARPA Nimbus program to measure electric field and X-rays present within thunderstorms. 2) A novel NASA LaRC fiber-optic sensor uses Faraday-effect polarization rotation to measure total lightning electric current on an air vehicle fuselage. 3) NASA AFRC's state-of-the-art Fiber Optics and Systems Integration Laboratory is envisioned to transition the Faraday system to a compact, light-weight, all-fiber design. The SE-UAV will provide in-flight lightning electric-current return stroke and recoil leader data, and serve as a platform for development of emerging sensors and new missions into hazardous environments. NASA's Aeronautics and Science Missions are interested in a capability to perform in-situ volcanic plume measurements and long-endurance UAV operations in various weather conditions. (Figure 1 shows an artist concept of a SE-UAV flying near a volcano.) This paper concludes with an overview of the NASA Aeronautics Strategic Vision, Programs, and how a SE-UAV is envisioned to impact them. The SE-UAV concept leverages high-value legacy research products into a new capability for NASA to fly a pathfinder UAV into hazardous conditions, and is presented in the SPIE DSS venue to explore teaming, collaboration and advocacy opportunities outside NASA.
Establishing a disruptive new capability for NASA to fly UAV's into hazardous conditions
NASA Astrophysics Data System (ADS)
Ely, Jay; Nguyen, Truong; Wilson, Jennifer; Brown, Robert; Laughter, Sean; Teets, Ed; Parker, Allen; Chan, Hon M.; Richards, Lance
2015-05-01
A 2015 NASA Aeronautics Mission "Seedling" Proposal is described for a Severe-Environment UAV (SE-UAV) that can perform in-situ measurements in hazardous atmospheric conditions like lightning, volcanic ash and radiation. Specifically, this paper describes the design of a proof-of-concept vehicle and measurement system that can survive lightning attachment during flight operations into thunderstorms. Elements from three NASA centers draw together for the SE-UAV concept. 1) The NASA KSC Genesis UAV was developed in collaboration with the DARPA Nimbus program to measure electric field and X-rays present within thunderstorms. 2) A novel NASA LaRC fiber-optic sensor uses Faraday-effect polarization rotation to measure total lightning electric current on an air vehicle fuselage. 3) NASA AFRC's state-of-the-art Fiber Optics and Systems Integration Laboratory is envisioned to transition the Faraday system to a compact, light-weight, all-fiber design. The SE-UAV will provide in-flight lightning electric-current return stroke and recoil leader data, and serve as a platform for development of emerging sensors and new missions into hazardous environments. NASA's Aeronautics and Science Missions are interested in a capability to perform in-situ volcanic plume measurements and long-endurance UAV operations in various weather conditions. (Figure 1 shows an artist concept of a SE-UAV flying near a volcano.) This paper concludes with an overview of the NASA Aeronautics Strategic Vision, Programs, and how a SE-UAV is envisioned to impact them. The SE-UAV concept leverages high-value legacy research products into a new capability for NASA to fly a pathfinder UAV into hazardous conditions, and is presented in the SPIE DSS venue to explore teaming, collaboration and advocacy opportunities outside NASA.
[Neurological diseases after lightning strike : Lightning strikes twice].
Gruhn, K M; Knossalla, Frauke; Schwenkreis, Peter; Hamsen, Uwe; Schildhauer, Thomas A; Tegenthoff, Martin; Sczesny-Kaiser, Matthias
2016-06-01
Lightning strikes rarely occur but 85 % of patients have lightning-related neurological complications. This report provides an overview about different modes of energy transfer and neurological conditions related to lightning strikes. Moreover, two case reports demonstrate the importance of interdisciplinary treatment and the spectrum of neurological complications after lightning strikes.
The NASA Lightning Nitrogen Oxides Model (LNOM): Recent Updates and Applications
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold; Biazar, Arastoo; Khan, Maudood; Wang, Lihua; Park, Yee-Hun
2011-01-01
Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are presented. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(tm) (NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx (= NO + NO2). Lightning channel length distributions and lightning 10-m segment altitude distributions are also provided. In addition to NOx production from lightning return strokes, the LNOM now includes non-return stroke lightning NOx production due to: hot core stepped and dart leaders, stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NOx for an August 2006 run of CMAQ is discussed.
Visual Analytics approach for Lightning data analysis and cell nowcasting
NASA Astrophysics Data System (ADS)
Peters, Stefan; Meng, Liqiu; Betz, Hans-Dieter
2013-04-01
Thunderstorms and their ground effects, such as flash floods, hail, lightning, strong wind and tornadoes, are responsible for most weather damages (Bonelli & Marcacci 2008). Thus to understand, identify, track and predict lightning cells is essential. An important aspect for decision makers is an appropriate visualization of weather analysis results including the representation of dynamic lightning cells. This work focuses on the visual analysis of lightning data and lightning cell nowcasting which aim to detect and understanding spatial-temporal patterns of moving thunderstorms. Lightnings are described by 3D coordinates and the exact occurrence time of lightnings. The three-dimensionally resolved total lightning data used in our experiment are provided by the European lightning detection network LINET (Betz et al. 2009). In all previous works, lightning point data, detected lightning cells and derived cell tracks are visualized in 2D. Lightning cells are either displayed as 2D convex hulls with or without the underlying lightning point data. Due to recent improvements of lightning data detection and accuracy, there is a growing demand on multidimensional and interactive visualization in particular for decision makers. In a first step lightning cells are identified and tracked. Then an interactive graphic user interface (GUI) is developed to investigate the dynamics of the lightning cells: e.g. changes of cell density, location, extension as well as merging and splitting behavior in 3D over time. In particular a space time cube approach is highlighted along with statistical analysis. Furthermore a lightning cell nowcasting is conducted and visualized. The idea thereby is to predict the following cell features for the next 10-60 minutes including location, centre, extension, density, area, volume, lifetime and cell feature probabilities. The main focus will be set to a suitable interactive visualization of the predicted featured within the GUI. The developed visual exploring tool for the purpose of supporting decision making is investigated for two determined user groups: lightning experts and interested lay public. Betz HD, Schmidt K, Oettinger WP (2009) LINET - An International VLF/LF Lightning Detection Network in Europe. In: Betz HD, Schumann U, Laroche P (eds) Lightning: Principles, Instruments and Applications. Springer Netherlands, Dordrecht, pp 115-140 Bonelli P, Marcacci P (2008) Thunderstorm nowcasting by means of lightning and radar data: algorithms and applications in northern Italy. Nat. Hazards Earth Syst. Sci 8(5):1187-1198
NASA Technical Reports Server (NTRS)
Christian, Hugh J.
2004-01-01
Our knowledge of the global distribution of lightning has improved dramatically since the advent of spacebased lightning observations. Of major importance was the 1995 launch of the Optical Transient Detector (OTD), followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous eight-year record of global lightning activity. These lightning observations have provided a new global perspective on total lightning activity. For the first time, total lightning activity (cloud-to-ground and intra-cloud) has been observed over large regions with high detection efficiency and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised global flash rate estimate (44 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe weather. Accurate flash rate estimates are now available over large areas of the earth (+/- 72 deg. latitude). Ocean-land contrasts as a function of season are clearly reveled, as are orographic effects and seasonal and interannual variability. The space-based observations indicate that air mass thunderstorms, not large storm system dominate global activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated that this capability could lead to significantly improved severe weather warning times and reduced false warning rates. This talk will summarize our space-based lightning measurements, will discuss how lightning observations can be used to monitor severe weather, and present a concept for continuous geostationary-based lightning observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikiforov, E. P.
2009-07-15
Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces themore » number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.« less
NASA Astrophysics Data System (ADS)
Hui, W.; Huang, F.; Guo, Q.; Li, D.; Yao, Z.; Zou, W.
2017-12-01
The development of lightning detection technology accumulates a large amount of long-term data for investigating the lightning activities. Ground-based lightning networks provide continuous lightning location but offer limited spatial coverage because of the complex underlying surface conditions. Space-based optical sensors can detect lightning with global homogeneity. However, observing from satellites in low-earth orbit has fixed locations at the ground very shortly during its overpasses. The latest launched geostationary satellite-based lightning imagers can detect lightning in real time, and provide complete life-cycle coverage of each observed thunderstorm. In this study, based on multi-source lightning data, the lightning activities in southwest China, which with complex terrain and prone to appear lightning, are researched. Firstly, the climatological characteristics of lightning activities in this region from 1998 to 2013 are analyzed by using very-high resolution (0.1°) Lightning Imaging Sensor (LIS)-derived data. The results indicate that the lightning activity is more intense in eastern and southern regions of southwest China than in western and northern regions; the monthly and hourly flash densities also show its obvious seasonal and diurnal variation respectively, which is consistent with the development of the convective systems in the region. The results show that the spatial and temporal distribution of lightning activities in southwest China is related to its topography, water vapor, and atmospheric conditions. Meanwhile, by comparing with the analysis derived data from Chinese Ground-based Lightning Location System, the LIS-based detection results are confirmed. Furthermore, the process of a thunderstorm in southwest China from 29 to 30 March 2017 is investigated by using the new-generation monitoring data of Chinese Fengyun-4 geostationary satellite-based Lightning Mapping Imager (LMI) and the rainfall data. The results tell us more about the behavior of lightning while the thunderstorm traverses through the region, and also demonstrate the correlation between the rainfall amounts and the storm track. This study will contribute to applications of lightning data to improve monitoring and forecasting of severe weather.
Severe weather detection by using Japanese Total Lightning Network
NASA Astrophysics Data System (ADS)
Hobara, Yasuhide; Ishii, Hayato; Kumagai, Yuri; Liu, Charlie; Heckman, Stan; Price, Colin
2015-04-01
In this paper we demonstrate the preliminary results from the first Japanese Total Lightning Network. The University of Electro-Communications (UEC) recently deployed Earth Networks Total Lightning System over Japan to conduct various lightning research projects. Here we analyzed the total lightning data in relation with 10 severe events such as gust fronts and tornadoes occurred in 2014 in mainland Japan. For the analysis of these events, lightning jump algorithm was used to identify the increase of the flash rate in prior to the severe weather events. We found that lightning jumps associated with significant increasing lightning activities for total lightning and IC clearly indicate the severe weather occurrence than those for CGs.
NASA Technical Reports Server (NTRS)
Day, Arthur C.; Griess, Kenneth H.
2013-01-01
This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.
Total Lightning as an Indicator of Mesocyclone Behavior
NASA Technical Reports Server (NTRS)
Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.
2014-01-01
Apparent relationship between total lightning (in-cloud and cloud to ground) and severe weather suggests its operational utility. Goal of fusion of total lightning with proven tools (i.e., radar lightning algorithms. Preliminary work here investigates circulation from Weather Suveilance Radar- 1988 Doppler (WSR-88D) coupled with total lightning data from Lightning Mapping Arrays.
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of lightning nitrogen oxides, NOx = NO + NO2. Data from the National Lightning Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the NALMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting lightning NOx source profiles are discussed.
1998-09-28
KENNEDY SPACE CENTER, FLA. -- At left, the payload canister for Space Shuttle Discovery is lifted from its canister movement vehicle to the top of the Rotating Service Structure on Launch Pad 39-B. Discovery (right), sitting atop the Mobile Launch Platform and next to the Fixed Service Structure (FSS), is scheduled for launch on Oct. 29, 1998, for the STS-95 mission. That mission includes the International Extreme Ultraviolet Hitchhiker (IEH-3), the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar-observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process. At the top of the FSS can be seen the 80-foot lightning mast . The 4-foot-high lightning rod on top helps prevent lightning current from passing directly through the Space Shuttle and the structures on the pad
Lightning Safety Tips and Resources
... Safety Brochure U.S. Lightning Deaths in 2018 : 5 Youtube: Lightning Safety for the Deaf and Hard of ... for Hard of Hearing: jpg , high res png YouTube: Lightning Safety Tips Lightning Safety When Working Outdoors : ...
Where are the lightning hotspots on Earth?
NASA Astrophysics Data System (ADS)
Albrecht, R. I.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R. J.; Christian, H. J., Jr.
2015-12-01
The first lightning observations from space date from the early 1960s and more than a dozen spacecraft orbiting the Earth have flown instruments that recorded lightning signals from thunderstorms over the past 45 years. In this respect, the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS), having just completed its mission (1997-2015), provides the longest and best total (intracloud and cloud-to-ground) lightning data base over the tropics.We present a 16 year (1998-2013) reprocessed data set to create very high resolution (0.1°) TRMM LIS total lightning climatology. This detailed very high resolution climatology is used to identify the Earth's lightning hotspots and other regional features. Earlier studies located the lightning hotspot within the Congo Basin in Africa, but our very high resolution lightning climatology found that the highest lightning flash rate on Earth actually occurs in Venezuela over Lake Maracaibo, with a distinct maximum during the night. The higher resolution dataset clearly shows that similar phenomenon also occurs over other inland lakes with similar conditions, i.e., locally forced convergent flow over a warm lake surface which drives deep nocturnal convection. Although Africa does not have the top lightning hotspot, it comes in a close second and it is the continent with the highest number of lightning hotspots, followed by Asia, South America, North America, and Oceania. We also present climatological maps for local hour and month of lightning maxima, along with a ranking of the highest five hundred lightning maxima, focusing discussion on each continent's 10 highest lightning maxima. Most of the highest continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development. These results are especially relevant in anticipation of the upcoming availability of continuous total lightning observations from the Geostationary Lightning Mapping (GLM) aboard GOES-R. This study provides context to forecasters as to total lightning activity and locations within GLM field of view as well as around the world.
Parameters of triggered-lightning flashes in Florida and Alabama
NASA Astrophysics Data System (ADS)
Fisher, R. J.; Schnetzer, G. H.; Thottappillil, R.; Rakov, V. A.; Uman, M. A.; Goldberg, J. D.
1993-12-01
Channel base currents from triggered lightning were measured at the NASA Kennedy Space Center, Florida, during summer 1990 and at Fort McClellan, Alabama, during summer 1991. Additionally, 16-mm cinematic records with 3- or 5-ms resolution were obtained for all flashes, and streak camera records were obtained for three of the Florida flashes. The 17 flashes analyzed here contained 69 strokes, all lowering negative charge from cloud to ground. Statistics on interstroke interval, no-current interstroke interval, total stroke duration, total stroke charge, total stroke action integral (∫ i2dt), return stroke current wave front characteristics, time to half peak value, and return stroke peak current are presented. Return stroke current pulses, characterized by rise times of the order of a few microseconds or less and peak values in the range of 4 to 38 kA, were found not to occur until after any preceding current at the bottom of the lightning channel fell below the noise level of less than 2 A. Current pulses associated with M components, characterized by slower rise times (typically tens to hundreds of microseconds) and peak values generally smaller than those of the return stroke pulses, occurred during established channel current flow of some tens to some hundreds of amperes. A relatively strong positive correlation was found between return stroke current average rate of rise and current peak. There was essentially no correlation between return stroke current peak and 10-90% rise time or between return stroke peak and the width of the current waveform at half of its peak value. Parameters of the lightning flashes triggered in Florida and Alabama are similar to each other but are different from those of triggered lightning recorded in New Mexico during the 1981 Thunderstorm Research International Program. Continuing currents that follow return stroke current peaks and last for more than 10 ms exhibit a variety of wave shapes that we have subdivided into four categories. All such continuing currents appear to start with a current pulse presumably associated with an M component. A brief summary of lightning parameters important for lightning protection, in a form convenient for practical use, is presented in an appendix.
A Fiber-Optic Current Sensor for Lightning Measurement Applications
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.
2015-01-01
An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.
A fiber-optic current sensor for lightning measurement applications
NASA Astrophysics Data System (ADS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.
2015-05-01
An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.
Fiberglass composite blades for the 2 MW Mod-1 wind turbine generator
NASA Technical Reports Server (NTRS)
Batesole, W. R.
1982-01-01
In mid-1979, NASA contracted with Kaman Aerospace Corporation for the design, manufacture, and ground testing of two 100 foot composite rotor blades intended for operation on the Mod-1 wind turbine. The Mod-1 blades have been completed and are currently stored at the Kaman facility. The design, tooling, fabrication, and testing phases which have been carried out to date, as well as testing still planned are described. Discussed are differences from the 150 foot blade which were introduced for cost and manufacturing improvement purposes. Also included is a description of the lightning protection system installed in the blades, and its development program. Actual costs and manhours expended for Blade No. 2 are provided as a base, along with a projection of costs for the blade in production. Finally, cost drivers are identified relative to future designs.
The electric field changes and UHF radiations caused by the triggered lightning in Japan
NASA Technical Reports Server (NTRS)
Kawasaki, Zen-Ichiro; Kanao, Tadashi; Matsuura, Kenji; Nakano, Minoru; Horii, Kenji; Nakamura, Koichi
1991-01-01
In the rocket triggered lightning experiment of fiscal 1989, researchers observed electromagnetic field changes and UHF electromagnetic radiation accompanying rocket triggered lightning. It was found that no rapid changes corresponding to the return stroke of natural lightning were observed in the electric field changes accompanying rocket triggered lightning. However, continuous currents were present. In the case of rocket triggered lightning to the tower, electromagnetic field changes corresponding to the initiation of triggered lightning showed a bipolar pulse of a relatively large amplitude. In contrast, the rocket triggered lightning to the ground did not have such a bipolar pulse. The UHF radiation accompanying the rocket triggered lightning preceded the waveform portions corresponding to the first changes in electromagnetic fields. The number of isolated pulses in the UHF radiation showed a correlation with the time duration from rocket launching up to triggered lightning. The time interval between consecutive isolated pulses tended to get shorter with the passage of time, just like the stepped leaders of natural lightning.
Cross-Referencing GLM and ISS-LIS with Ground-Based Lightning Networks
NASA Astrophysics Data System (ADS)
Virts, K.; Blakeslee, R. J.; Goodman, S. J.; Koshak, W. J.
2017-12-01
The Geostationary Lightning Mapper (GLM), in geostationary orbit aboard GOES-16 since late 2016, and the Lightning Imaging Sensor (LIS), installed on the International Space Station in February 2017, provide observations of total lightning activity from space. ISS-LIS samples the global tropics and mid-latitudes, while GLM observes the full thunderstorm life-cycle over the Americas and surrounding oceans. The launch of these instruments provides an unprecedented opportunity to compare lightning observations across multiple space-based optical lightning sensors. In this study, months of observations from GLM and ISS-LIS are cross-referenced with each other and with lightning detected by the ground-based Earth Networks Global Lightning Network (ENGLN) and the Vaisala Global Lightning Dataset 360 (GLD360) throughout and beyond the GLM field-of-view. In addition to calibration/validation of the new satellite sensors, this study provides a statistical comparison of the characteristics of lightning observed by the satellite and ground-based instruments, with an emphasis on the lightning flashes uniquely identified by the satellites.
2009-10-27
CAPE CANAVERAL, Fla. – As the sun rises over Launch Pad 39B at NASA's Kennedy Space Center in Florida, the rotating service structure and the arms of the vehicle stabilization system have been retracted from around the Constellation Program's 327-foot-tall Ares I-X rocket, resting atop its mobile launcher platform, for launch. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
2009-10-27
CAPE CANAVERAL, Fla. – Workers on Launch Pad 39B at NASA's Kennedy Space Center in Florida prepare the Constellation Program's 327-foot-tall Ares I-X rocket for launch. The rotating service structure and the arms of the vehicle stabilization system will be moved from around the rocket for liftoff. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
2009-10-27
CAPE CANAVERAL, Fla. - Workers on Launch Pad 39B at NASA's Kennedy Space Center in Florida make final preparations for launch of the Constellation Program's 327-foot-tall Ares I-X rocket. The rotating service structure and the arms of the vehicle stabilization system will be moved from around the rocket for liftoff. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
Flash-Bang Detector to Model the Attenuation of High-Energy Photons
NASA Astrophysics Data System (ADS)
Pagsanjan, N., III; Kelley, N. A.; Smith, D. M.; Sample, J. G.
2015-12-01
It has been known for years that lightning and thunderstorms produce gamma rays and x-rays. Terrestrial gamma-ray flashes (TGFs) are extremely bright bursts of gamma rays originating from thunderstorms. X-ray stepped leaders are bursts of x-rays coming from the lightning channel. It is known that the attenuation of these high-energy photons is a function of distance, losing energy and intensity at larger distances. To complement gamma-ray detectors on the ground it would be useful to measure the distance to the flash. Knowing the distance would allow for the true source fluence of gamma rays or x-rays to be modeled. A flash-bang detector, which uses a micro-controller, a photodiode, a microphone and temperature sensor will be able to detect the times at which lightning and thunder occurs. Knowing the speed of sound as function of temperature and the time difference between the flash and the thunder, the range to the lightning can be calculated. We will present the design of our detector as well as some preliminary laboratory test results.
Damage to metallic samples produced by measured lightning currents
NASA Technical Reports Server (NTRS)
Fisher, Richard J.; Schnetzer, George H.
1991-01-01
A total of 10 sample disks of 2024-T3 aluminum and 4130 ferrous steel were exposed to rocket-triggered lightning currents at the Kennedy Space Center test site. The experimental configuration was arranged so that the samples were not exposed to the preliminary streamer, wire-burn, or following currents that are associated with an upward-initiated rocket-triggered flash but which are atypical of naturally initiated lightning. Return-stroke currents and continuing currents actually attaching to the sample were measured, augmented by close-up video recordings of approximately 3 feet of the channel above the sample and by 16-mm movies with 5-ms resolution. From these data it was possible to correlate individual damage spots with streamer, return-stroke, and continuing currents that produced them. Substantial penetration of 80-mil aluminum was produced by a continuing current of submedian amplitude and duration, and full penetration of a 35-mil steel sample occurred under an eightieth percentile continuing current. The primary purpose of the data acquired in these experiments is for use in improving and quantifying the fidelity of laboratory simulations of lightning burnthrough.
NASA Technical Reports Server (NTRS)
Trost, T. F.; Zaepfel, K. P.
1980-01-01
A set of electromagnetic sensors, or electrically-small antennas, is described. The sensors are designed for installation on an F-106 research aircraft for the measurement of electric and magnetic fields and currents during a lightning strike. The electric and magnetic field sensors mount on the aircraft skin. The current sensor mounts between the nose boom and the fuselage. The sensors are all on the order of 10 cm in size and should produce up to about 100 V for the estimated lightning fields. The basic designs are the same as those developed for nuclear electromagnetic pulse studies. The most important electrical parameters of the sensors are the sensitivity, or equivalent area, and the bandwidth (or rise time). Calibration of sensors with simple geometries is reliably accomplished by a geometric analysis; all the sensors discussed possess geometries for which the sensitivities have been calculated. For the calibration of sensors with more complex geometries and for general testing of all sensors, two transmission lines were constructed to transmit known pulsed fields and currents over the sensors.
NASA Astrophysics Data System (ADS)
Ringhausen, J.
2017-12-01
This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.
Lightning NOx Production and Its Consequences for Tropospheric Chemistry
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.
2005-01-01
Cloud-resolving case-study simulations of convective transport and lightning NO production have yielded results which are directly applicable to the design of lightning parameterizations for global chemical transport models. In this work we have used cloud-resolving models (the Goddard Cumulus Ensemble Model (GCE) and MMS) to drive an off-line cloud-scale chemical transport model (CSCTM). The CSCTM, in conjunction with aircraft measurements of NO x in thunderstorms and ground-l;>ased lightning observations, has been used to constrain the amount of NO produced per flash. Cloud and chemistry simulations for several case studies of storms in different environments will be presented. Observed lightning flash rates have been incorporated into the CSCTM, and several scenarios of NO production per intracloud (IC) and per cloud-to-ground (CG) flash have been tested for each storm. The resulting NOx mixing ratios are compared with aircraft measurements taken within the storm (typically the anvil region) to determine the most likely NO production scenario. The range of values of NO production per flash (or per meter of lightning channel length) that have been deduced from the model will be shown and compared with values of production in the literature that have been deduced from observed NO spikes and from anvil flux calculations. Results show that on a per flash basis, IC flashes are nearly as productive of NO as CG flashes. This result simplifies the lightning parameterization for global models (ie., an algorithm for estimating the IC/CG ratio is not necessary). Vertical profiles of lightning NOx mass at the end of the 3-D storm simulations have been summarized to yield suggested profiles for use in global models. Estimates of mean NO production per flash vary by a factor of three from one simulated storm to another. When combined with the global flash rate of 44 flashes per second from NASA's Optical Transient Detector (OTD) measurements, these estimates and the results from other techniques yield global NO production rates of2-9 TgN/year. Simulations of the photochemistry over the 24 hours following a storm has been performed to determine the additional ozone production which can be attributed to lightning NO. Convective transport of HOx precursors leads to the generation of a HOx plume which substantially aids the downstream ozone production.
NASA Technical Reports Server (NTRS)
Pickering, K. E.; Barth, M. C.; Koshak, W.; Bucsela, E. J.; Allen, D. J.; Weinheimer, A.; Ryerson, T.; Huntrieser, H.; Bruning, E.; MacGorman, D.;
2012-01-01
Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the aircraft data and WRF-Chem model and observed flash rates, average NO(x) production per flash can be estimated. Ozone production downwind of observed storms can be estimated from the WRF-Chem simulations and the specific downwind flights.
The NASA Lightning Nitrogen Oxides Model (LNOM): Application to Air Quality Modeling
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold; Khan, Maudood; Biazar, Arastoo; Wang, Lihua
2011-01-01
Recent improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are discussed. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark)(NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NO(x) (= NO + NO2). The latest LNOM estimates of lightning channel length distributions, lightning 1-m segment altitude distributions, and the vertical profile of lightning NO(x) are presented. The primary improvement to the LNOM is the inclusion of non-return stroke lightning NOx production due to: (1) hot core stepped and dart leaders, (2) stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NO(x) for an August 2006 run of CMAQ is discussed.
Terrestrial gamma-ray flash production by lightning
NASA Astrophysics Data System (ADS)
Carlson, Brant E.
Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared to the results of Monte Carlo simulations of the physics of energetic photon production and propagation in air. These comparisons are used to constrain the TGF source altitude, energy, and directional distribution, and indicate a broadly-beamed low-altitude source inconsistent with production far above thunderstorms as previously suggested. The details of energetic electron production by electric fields in air are then examined. In particular, the source of initial high-energy electrons that are accelerated and undergo avalanche multiplication to produce bremsstrahlung is studied and the properties of these initial seed particles as produced by cosmic rays are determined. The number of seed particles available indicates either extremely large amplification of the number of seed particles or an alternate source of seeds. The low-altitude photon source and alternate source of seed particles required by these studies suggest a production mechanism closely-associated with lightning. A survey of lightning physics in the context of TGF emission indicates that current pulses along lightning channels may trigger TGF production by both producing strong electric fields and a large population of candidate seed electrons. The constraints on lightning physics, thunderstorm physics, and TGF physics all allow production by this mechanism. A computational model of this mechanism is then presented on the basis of a method of moments simulation of charge and current on a lightning channel. Calculation of the nearby electric fields then drives Monte Carlo simulations of energetic electron dynamics which determine the properties of the resulting bremsstrahlung. The results of this model compare quite well with satellite observations of TGFs subject to requirements on the ambient electric field and the current pulse magnitude and duration. The model makes quantitative predictions about the TGF source altitude, directional distribution, and lightning association that are in overall agreement with existing TGF observations and may be tested in more detail in future experiments.
Is the F-35B the Right Fit for the MAGTF?
2012-05-01
F-35C Lightning II, consolidating three separate models of tactical aircraft into a fifth generation strike fighter. The F-35 provides "Day One...current replacement solution for the Marine Corps is the F-35B and F-35C Lightning II, consolidating three separate models of tactical aircraft into a...66.9 million. This aircraft has been operationally tested and is a familiar model of aircraft to the Marine Corps (see Appendix E). The F/A-18E or F
Walsh, Katie M; Cooper, Mary Ann; Holle, Ron; Rakov, Vladimir A; Roeder, William P; Ryan, Michael
2013-01-01
To present recommendations for the education, prevention, and management of lightning injuries for those involved in athletics or recreation. Lightning is the most common severe-storm activity encountered annually in the United States. The majority of lightning injuries can be prevented through an aggressive educational campaign, vacating outdoor activities before the lightning threat, and an understanding of the attributes of a safe place from the hazard. This position statement is focused on supplying information specific to lightning safety and prevention and treatment of lightning injury and providing lightning-safety recommendations for the certified athletic trainer and those who are involved in athletics and recreation.
The Lightning Nitrogen Oxides Model (LNOM): Status and Recent Applications
NASA Technical Reports Server (NTRS)
Koshak, William; Khan, Maudood; Peterson, Harold
2011-01-01
Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) are discussed. Recent results from an August 2006 run of the Community Multiscale Air Quality (CMAQ) modeling system that employs LNOM lightning NOx (= NO + NO2) estimates are provided. The LNOM analyzes Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx. The latest LNOM estimates of (a) lightning channel length distributions, (b) lightning 1-m segment altitude distributions, and (c) the vertical profile of NOx are presented. The impact of including LNOM-estimates of lightning NOx on CMAQ output is discussed.
NASA Technical Reports Server (NTRS)
Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey; Chronis, Themis
2015-01-01
Using satellite-based methods that provide accurate 0-1 hour convective initiation (CI) nowcasts, and rely on proven success coupling satellite and radar fields in the Corridor Integrated Weather System (CIWS; operated and developed at MIT-Lincoln Laboratory), to subsequently monitor for first-flash lightning initiation (LI) and later period lightning trends as storms evolve. Enhance IR-based methods within the GOES-R CI Algorithm (that must meet specific thresholds for a given cumulus cloud before the cloud is considered to have an increased likelihood of producing lightning next 90 min) that forecast LI. Integrate GOES-R CI and LI fields with radar thresholds (e.g., first greater than or equal to 40 dBZ echo at the -10 C altitude) and NWP model data within the WDSS-II system for LI-events from new convective storms. Track ongoing lightning using Lightning Mapping Array (LMA) and pseudo-Geostationary Lightning Mapper (GLM) data to assess per-storm lightning trends (e.g., as tied to lightning jumps) and outline threat regions. Evaluate the ability to produce LI nowcasts through a "lightning threat" product, and obtain feedback from National Weather Service forecasters on its value as a decision support tool.
Measuring Method for Lightning Channel Temperature.
Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R
2016-09-26
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.
Measuring Method for Lightning Channel Temperature
NASA Astrophysics Data System (ADS)
Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.
2016-09-01
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.
NASA Technical Reports Server (NTRS)
Griffin, Charles F.; James, Arthur M.
1985-01-01
The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.
Assessing Operational Total Lightning Visualization Products
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.; Darden, Christopher B.; Nadler, David J.
2010-01-01
In May 2003, NASA's Short-term Prediction Research and Transition (SPoRT) program successfully provided total lightning data from the North Alabama Lightning Mapping Array (NALMA) to the National Weather Service (NWS) office in Huntsville, Alabama. The major accomplishment was providing the observations in real-time to the NWS in the native Advanced Weather Interactive Processing System (AWIPS) decision support system. Within days, the NALMA data were used to issue a tornado warning initiating seven years of ongoing support to the NWS' severe weather and situational awareness operations. With this success, SPoRT now provides real-time NALMA data to five forecast offices as well as working to transition data from total lightning networks at Kennedy Space Center and the White Sands Missile Range to the surrounding NWS offices. The only NALMA product that has been transitioned to SPoRT's partner NWS offices is the source density product, available at a 2 km resolution in 2 min intervals. However, discussions with users of total lightning data from other networks have shown that other products are available, ranging from spatial and temporal variations of the source density product to the creation of a flash extent density. SPoRT and the Huntsville, Alabama NWS are evaluating the utility of these variations as this has not been addressed since the initial transition in 2003. This preliminary analysis will focus on what products will best support the operational warning decision process. Data from 19 April 2009 are analyzed. On this day, severe thunderstorms formed ahead of an approaching cold front. Widespread severe weather was observed, primarily south of the Tennessee River with multiple, weak tornadoes, numerous severe hail reports, and wind. This preliminary analysis is the first step in evaluation which product(s) are best suited for operations. The ultimate goal is selecting a single product for use with all total lightning networks to streamline training and science sharing.
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning nitrogen oxides, NOx = NO + NO 2 . This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Data from the National Lightning Detection Network TM (NLDN) is also employed. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the LMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting raw NOx profiles are discussed.
Optimizing Precipitation Thresholds for Best Correlation Between Dry Lightning and Wildfires
NASA Astrophysics Data System (ADS)
Vant-Hull, Brian; Thompson, Tollisha; Koshak, William
2018-03-01
This work examines how to adjust the definition of "dry lightning" in order to optimize the correlation between dry lightning flash count and the climatology of large (>400 km2) lightning-ignited wildfires over the contiguous United States (CONUS). The National Lightning Detection Network™ and National Centers for Environmental Prediction Stage IV radar-based, gauge-adjusted precipitation data are used to form climatic data sets. For a 13 year analysis period over CONUS, a correlation of 0.88 is found between annual totals of wildfires and dry lightning. This optimal correlation is found by defining dry lightning as follows: on a 0.1° hourly grid, a precipitation threshold of no more than 0.3 mm may accumulate during any hour over a period of 3-4 days preceding the flash. Regional optimized definitions vary. When annual totals are analyzed as done here, no clear advantage is found by weighting positive polarity cloud-to-ground (+CG) lightning differently than -CG lightning. The high variability of dry lightning relative to the precipitation and lightning from which it is derived suggests it would be an independent and useful climate indicator.
Lightning attachment process to common buildings
NASA Astrophysics Data System (ADS)
Saba, M. M. F.; Paiva, A. R.; Schumann, C.; Ferro, M. A. S.; Naccarato, K. P.; Silva, J. C. O.; Siqueira, F. V. C.; Custódio, D. M.
2017-05-01
The physical mechanism of lightning attachment to grounded structures is one of the most important issues in lightning physics research, and it is the basis for the design of the lightning protection systems. Most of what is known about the attachment process comes from leader propagation models that are mostly based on laboratory observations of long electrical discharges or from observations of lightning attachment to tall structures. In this paper we use high-speed videos to analyze the attachment process of downward lightning flashes to an ordinary residential building. For the first time, we present characteristics of the attachment process to common structures that are present in almost every city (in this case, two buildings under 60 m in São Paulo City, Brazil). Parameters like striking distance and connecting leaders speed, largely used in lightning attachment models and in lightning protection standards, are revealed in this work.
NASA Astrophysics Data System (ADS)
Ilhamsyah, Y.; Koesmaryono, Y.; Hidayat, R.; Murjaya, J.; Nurjaya, I. W.; Rizwan
2017-02-01
Climate change would lead to such hydrometeorological disaster as: flash-flood, landslide, hailstone, lightning, and twister become more likely to happen in the future. In terms of lightning event, one research question arise of where lightning would be mostly to strike over the Maritime Continent (MC)?. The objective of the research is to investigate region with high-density of lightning activity over MC by mapping climatological features of lightning flashes derived from onboard NASA-TRMM Satellite, i.e. Optical Transient Detector/Lightning Imaging Sensor (OTD/LIS). Based on data retrieved since 1995-2013, it is seasonally observed that during transition season March to May, region with high vulnerability of lightning flashes cover the entire Sumatra Island, the Malacca Strait, and Peninsular Malaysia as well as Java Island. High-frequent of lightning activity over the Malacca Strait is unique since it is the only sea-region in the world where lightning flashes are denser. As previously mentioned that strong lightning activity over the strait is driven by mesoscale convective system of Sumatra Squalls due to convergences of land breeze between Sumatra and Peninsular Malaysia. Lightning activity over the strait is continuously observed throughout season despite the intensity reduced. Java Island, most populated island, receive high-density of lightning flashes during rainy season (December to February) but small part in the northwestern of Java Island, e.g., Bogor and surrounding areas, the density of lightning flashes are high throughout season. Northern and southern parts of Kalimantan and Central part of Sulawesi are also prone to lightning activity particularly during transition season March to May and September to November. In the eastern part of MC, Papua receive denser lightning flashes during September to November. It is found that lightning activity are mostly concentrated over land instead of ocean which is in accordance with diurnal convective precipitation event due to the existence of numerous mountainous island in MC. The malacca strait however is the only exception and turn into a unique characteristic of convective system over MC and the only sea-region in the world where lightning activity is the greatest.
NASA Astrophysics Data System (ADS)
Wu, Fan; Cui, Xiaopeng; Zhang, Da-Lin
2018-06-01
Nowcasting short-duration (i.e., <6 h) rainfall (SDR) events is examined using total [i.e., cloud-to-ground (CG) and intra-cloud (IC)] lightning observations over the Beijing Metropolitan Region (BMR) during the warm seasons of 2006-2007. A total of 928 moderate and 554 intense SDR events, i.e., with the respective hourly rainfall rates (HRR) of 10-20 and ≥20 mm h-1, are utilized to estimate sharp-increasing rates in rainfall and lightning flash, termed as rainfall and lightning jumps, respectively. By optimizing the parameters in a lightning jump and a rainfall jump algorithm, their different jump intensity grades are verified for the above two categories of SDR events. Then, their corresponding graded nowcast-warning models are developed for the moderate and intense SDR events, respectively, with a low-grade warning for hitting more SDR events and a high-grade warning for reducing false alarms. Any issued warning in the nowcast-warning models is designed to last for 2 h after the occurrence of a lightning jump. It is demonstrated that the low-grade warnings can have the probability of detection (POD) of 67.8% (87.0%) and the high-grade warnings have the false alarms ratio (FAR) of 27.0% (22.2%) for the moderate (intense) SDR events, with an averaged lead time of 36.7 (52.0) min. The nowcast-warning models are further validated using three typical heavy-rain-producing storms that are independent from those used to develop the models. Results show that the nowcast-warning models can provide encouraging early warnings for the associated SDR events from the regional to meso-γ scales, indicating that they have a great potential in being applied to the other regions where high-resolution total lightning observations are available.
The North Alabama Lightning Mapping Array (LMA): A Network Overview
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Bailey, J.; Buechler, D.; Goodman, S. J.; McCaul, E. W., Jr.; Hall, J.
2005-01-01
The North Alabama Lightning Mapping Array (LMA) is s a 3-D VHF regional lightning detection system that provides on-orbit algorithm validation and instrument performance assessments for the NASA Lightning Imaging Sensor, as well as information on storm kinematics and updraft evolution that offers the potential to improve severe storm warning lead time by up t o 50% and decrease te false alarm r a t e ( for non-tornado producing storms). In support of this latter function, the LMA serves as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. The LMA, which became operational i n November 2001, consists of VHF receivers deployed across northern Alabama and a base station located at the National Space Science and Technology Center (NSSTC), which is on t h e campus of the University of Alabama in Huntsville. The LMA system locates the sources of impulsive VHF radio signals s from lightning by accurately measuring the time that the signals aririve at the different receiving stations. Each station's records the magnitude and time of the peak lightning radiation signal in successive 80 ms intervals within a local unused television channel (channel 5, 76-82 MHz in our case ) . Typically hundreds of sources per flash can be reconstructed, which i n t u r n produces accurate 3-dimensional lightning image maps (nominally <50 m error within 150 la. range). The data are transmitted back t o a base station using 2.4 GHz wireless Ethernet data links and directional parabolic grid antennas. There are four repeaters in the network topology and the links have an effective data throughput rate ranging from 600 kbits s -1 t o 1.5 %its s -1. This presentation provides an overview of t h e North Alabama network, the data processing (both real-time and post processing) and network statistics.
NASA Astrophysics Data System (ADS)
Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.
2016-08-01
A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.
2009-10-28
CAPE CANAVERAL, Fla. – Two of the lightning towers frame the Ares I-X test rocket as it takes off from Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT Oct. 28. NASA’s Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/ Sandra Joseph and Kevin O'Connell
14 CFR 25.581 - Lightning protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For metallic... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lightning protection. 25.581 Section 25.581...
14 CFR 25.581 - Lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For metallic... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lightning protection. 25.581 Section 25.581...
14 CFR 25.581 - Lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For metallic... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lightning protection. 25.581 Section 25.581...
14 CFR 25.581 - Lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For metallic... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Lightning protection. 25.581 Section 25.581...
Lightning Burns and Electrical Trauma in a Couple Simultaneously Struck by Lightning
Eyerly-Webb, Stephanie A.; Solomon, Rachele; Lee, Seong K.; Sanchez, Rafael; Carrillo, Eddy H.; Davare, Dafney L.; Kiffin, Chauniqua; Rosenthal, Andrew
2017-01-01
More people are struck and killed by lightning each year in Florida than any other state in the United States. This report discusses a couple that was simultaneously struck by lightning while walking arm-in-arm. Both patients presented with characteristic lightning burns and were admitted for hemodynamic monitoring, serum labs, and observation and were subsequently discharged home. Despite the superficial appearance of lightning burns, serious internal electrical injuries are common. Therefore, lightning strike victims should be admitted and evaluated for cardiac arrhythmias, renal injury, and neurological sequelae.
Aerosols and lightning activity: The effect of vertical profile and aerosol type
NASA Astrophysics Data System (ADS)
Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A.
2016-12-01
The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been utilized for the first time in a study regarding lightning activity modulation due to aerosols. Lightning activity observations, obtained by the ZEUS long range Lightning Detection Network, European Centre for Medium range Weather Forecasts (ECMWF) Convective Available Potential Energy (CAPE) data and Cloud Fraction (CF) retrieved by MODIS on board Aqua satellite have been combined with CALIPSO CALIOP data over the Mediterranean basin and for the period March to November, from 2007 to 2014. The results indicate that lightning activity is enhanced during days characterized by higher Aerosol Optical Depth (AOD) values, compared to days with no lightning. This study contributes to existing studies on the link between lightning activity and aerosols, which have been based just on columnar AOD satellite retrievals, by performing a deeper analysis into the effect of aerosol profiles and aerosol types. Correlation coefficients of R = 0.73 between the CALIPSO AOD and the number of lightning strikes detected by ZEUS and of R = 0.93 between ECMWF CAPE and lightning activity are obtained. The analysis of extinction coefficient values at 532 nm indicates that at an altitudinal range exists, between 1.1 km and 2.9 km, where the values for extinction coefficient of lightning-active and non-lightning-active cases are statistically significantly different. Finally, based on the CALIPSO aerosol subtype classification, we have investigated the aerosol conditions of lightning-active and non-lightning-active cases. According to the results polluted dust aerosols are more frequently observed during non-lightning-active days, while dust and smoke aerosols are more abundant in the atmosphere during the lightning-active days.
Walsh, K M; Bennett, B; Cooper, M A; Holle, R L; Kithil, R; López, R E
2000-10-01
To educate athletic trainers and others about the dangers of lightning, provide lightning-safety guidelines, define safe structures and locations, and advocate prehospital care for lightning-strike victims. Lightning may be the most frequently encountered severe-storm hazard endangering physically active people each year. Millions of lightning flashes strike the ground annually in the United States, causing nearly 100 deaths and 400 injuries. Three quarters of all lightning casualties occur between May and September, and nearly four fifths occur between 10:00 AM and 7:00 PM, which coincides with the hours for most athletic or recreational activities. Additionally, lightning casualties from sports and recreational activities have risen alarmingly in recent decades. The National Athletic Trainers' Association recommends a proactive approach to lightning safety, including the implementation of a lightning-safety policy that identifies safe locations for shelter from the lightning hazard. Further components of this policy are monitoring local weather forecasts, designating a weather watcher, and establishing a chain of command. Additionally, a flash-to-bang count of 30 seconds or more should be used as a minimal determinant of when to suspend activities. Waiting 30 minutes or longer after the last flash of lightning or sound of thunder is recommended before athletic or recreational activities are resumed. Lightning- safety strategies include avoiding shelter under trees, avoiding open fields and spaces, and suspending the use of land-line telephones during thunderstorms. Also outlined in this document are the prehospital care guidelines for triaging and treating lightning-strike victims. It is important to evaluate victims quickly for apnea, asystole, hypothermia, shock, fractures, and burns. Cardiopulmonary resuscitation is effective in resuscitating pulseless victims of lightning strike. Maintenance of cardiopulmonary resuscitation and first-aid certification should be required of all persons involved in sports and recreational activities.
Global optical lightning flash rates determined with the Forte satellite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Light, T.; Davis, S. M.; Boeck, W. L.
2003-01-01
Using FORTE photodiode detector (PDD) observations of lightning, we have determined the geographic distribution of nighttime flash rate density. We estimate the PDD flash detection efficiency to be 62% for total lightning through comparison to lightning observations by the TRMM satellite's Lightning Imaging Sensor (LIS), using cases in which FORTE and TRMM viewed the same storm. We present here both seasonal and l,ot,al flash rate maps. We examine some characteristics of the optical emissions of lightning in both high and low flash rate environments, and find that while lightning occurs less frequently over ocean, oceanic lightning flashes are somewhat moremore » powerful, on average, than those over land.« less
Walsh, Katie M.; Cooper, Mary Ann; Holle, Ron; Rakov, Vladimir A.; Roeder, William P.; Ryan, Michael
2013-01-01
Objective: To present recommendations for the education, prevention, and management of lightning injuries for those involved in athletics or recreation. Background: Lightning is the most common severe-storm activity encountered annually in the United States. The majority of lightning injuries can be prevented through an aggressive educational campaign, vacating outdoor activities before the lightning threat, and an understanding of the attributes of a safe place from the hazard. Recommendations: This position statement is focused on supplying information specific to lightning safety and prevention and treatment of lightning injury and providing lightning-safety recommendations for the certified athletic trainer and those who are involved in athletics and recreation. PMID:23672391
2009-03-25
CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1 nears the top of Launch Pad 39B at NASA's Kennedy Space Center in Florida via the crawler-transporter underneath. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Seen around the service structures on the pad are the new 600-foot lightning towers and masts erected for the Ares launches. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett
2009-03-25
CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1 is moving to Launch Pad 39B at NASA's Kennedy Space Center in Florida via the crawler-transporter underneath. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Seen around the service structures on the pad are the new 600-foot lightning towers and masts erected for the Ares launches. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett
The start of lightning: Evidence of bidirectional lightning initiation.
Montanyà, Joan; van der Velde, Oscar; Williams, Earle R
2015-10-16
Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.
Measuring Method for Lightning Channel Temperature
Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.
2016-01-01
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5–50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases. PMID:27665937
NASA Technical Reports Server (NTRS)
Edgar, B. C.; Turman, B. N.
1982-01-01
Satellite observations of lightning were correlated with ground-based measurements of lightning from data bases obtained at three separate sites. The percentage of ground-based observations of lightning that would be seen by an orbiting satellite was determined.
NASA Technical Reports Server (NTRS)
Mata, C. T.; Wilson, J. G.
2012-01-01
The NASA Kennedy Space Center (KSC) and the Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the U.S. National Lightning Detection Network (NLDN), and a volumetric mapping array, the lightning detection and ranging II (LDAR II) system: These systems are used to monitor and characterize lightning that is potentially hazardous to launch or ground operations and hardware. These systems are not perfect and both have documented missed lightning events when compared to the existing lightning surveillance system at Launch Complex 39B (LC39B). Because of this finding it is NASA's plan to install a lightning surveillance system around each of the active launch pads sharing site locations and triggering capabilities when possible. This paper shows how the existing lightning surveillance system at LC39B has performed in 2011 as well as the plan for the expansion around all active pads.
Lightning protection: challenges, solutions and questionable steps in the 21st century
NASA Astrophysics Data System (ADS)
Berta, István
2011-06-01
Besides the special primary lightning protection of extremely high towers, huge office and governmental buildings, large industrial plants and resident parks most of the challenges were connected to the secondary lightning protection of sensitive devices in Information and Communication Technology. The 70 year history of Budapest School of Lightning Protection plays an important role in the research and education of lightning and development of lightning protection. Among results and solutions the Rolling Sphere designing method (RS) and the Probability Modulated Attraction Space (PMAS) theory are detailed. As a new field Preventive Lightning Protection (PLP) has been introduced. The PLP method means the use of special preventive actions only for the duration of the thunderstorm. Recently several non-conventional lightning protection techniques have appeared as competitors of the air termination systems formed of conventional Franklin rods. The questionable steps, non-conventional lightning protection systems reported in the literature are the radioactive lightning rods, Early Streamer Emission (ESE) rods and Dissipation Arrays (sometimes called Charge Transfer Systems).
NASA Astrophysics Data System (ADS)
Bourriez, F.; Sauvaud, J.-A.; Pinçon, J.-L.; Berthelier, J.-J.; Parrot, M.
2016-02-01
The DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) spacecraft detects short bursts of lightning-induced electron precipitation (LEP) simultaneously with newly injected upgoing whistlers. The LEP occurs within < 1 s of the causative lightning discharge. First in situ observations of the size and location of the region affected by the LEP precipitation are presented on the basis of a statistical study made over Europe using the DEMETER energetic particle detector, wave electric field experiment, and networks of lightning detection (Météorage, the UK Met Office Arrival Time Difference network (ATDnet), and the World Wide Lightning Location Network (WWLLN)). The LEP is shown to occur significantly north of the initial lightning and extends over some 1000 km on each side of the longitude of the lightning. In agreement with models of electron interaction with obliquely propagating lightning-generated whistlers, the distance from the LEP to the lightning decreases as lightning proceed to higher latitudes.
Lightning Protection System for Space Shuttle
NASA Technical Reports Server (NTRS)
1977-01-01
The suitability and cost effectiveness of using a lightning mast for the shuttle service and access tower (SSAT) similar to the type used for the Apollo Soyuz Test Project (ASTP) mobile launcher (ML) was evaluated. Topics covered include: (1) ASTP launch damage to mast, mast supports, grounded overhead wires, and the instrumentation system; (2) modifications required to permit reusing the ASTP mast on the SSAT; (3) comparative costing factors per launch over a 10 year period in repetitive maintenance and refurbishment of the existing and modified masts, mast supports, grounded overhead wires, and ground instrumentation required to sustain mechanical and electrical integrity of the masts; (4) effects of blast testing samples of the ASTP ML type mast (corrosion and electrical flashover); (5) comparison of damages from ASTP launch and from blast testing.
Payload canister for Discovery is lifted in place for transfer
NASA Technical Reports Server (NTRS)
1998-01-01
At left, the payload canister for Space Shuttle Discovery is lifted from its canister movement vehicle to the top of the Rotating Service Structure on Launch Pad 39-B. Discovery (right), sitting atop the Mobile Launch Platform and next to the Fixed Service Structure (FSS), is scheduled for launch on Oct. 29, 1998, for the STS-95 mission. That mission includes the International Extreme Ultraviolet Hitchhiker (IEH-3), the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar- observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process. At the top of the FSS can be seen the 80-foot lightning mast . The 4- foot-high lightning rod on top helps prevent lightning current from passing directly through the Space Shuttle and the structures on the pad.
NASA Technical Reports Server (NTRS)
Carey, Lawrence D.; Schultz, Chris J.; Petersen, Walter A.; Rudlosky, Scott D.; Bateman, Monte; Cecil, Daniel J.; Blakeslee, Richard J.; Goodman, Steven J.
2011-01-01
The planned GOES-R Geostationary Lightning Mapper (GLM) will provide total lightning data on the location and intensity of thunderstorms over a hemispheric spatial domain. Ongoing GOES-R research activities are demonstrating the utility of total flash rate trends for enhancing forecasting skill of severe storms. To date, GLM total lightning proxy trends have been well served by ground-based VHF systems such as the Northern Alabama Lightning Mapping Array (NALMA). The NALMA (and other similar networks in Washington DC and Oklahoma) provide high detection efficiency (> 90%) and location accuracy (< 1 km) observations of total lightning within about 150 km from network center. To expand GLM proxy applications for high impact convective weather (e.g., severe, aviation hazards), it is desirable to investigate the utility of additional sources of continuous lightning that can serve as suitable GLM proxy over large spatial scales (order 100 s to 1000 km or more), including typically data denied regions such as the oceans. Potential sources of GLM proxy include ground-based long-range (regional or global) VLF/LF lightning networks such as the relatively new Vaisala Global Lightning Dataset (GLD360) and Weatherbug Total Lightning Network (WTLN). Before using these data in GLM research applications, it is necessary to compare them with LMAs and well-quantified cloud-to-ground (CG) lightning networks, such as Vaisala s National Lightning Detection Network (NLDN), for assessment of total and CG lightning location accuracy, detection efficiency and flash rate trends. Preliminary inter-comparisons from these lightning networks during selected severe weather events will be presented and their implications discussed.
Development and Testing of the VAHIRR Radar Product
NASA Technical Reports Server (NTRS)
Barrett, Joe III; Miller, Juli; Charnasky, Debbie; Gillen, Robert; Lafosse, Richard; Hoeth, Brian; Hood, Doris; McNamara, Todd
2008-01-01
Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program. VAHIRR is calculated at every horizontal position in the coverage area of the radar and can be displayed similar to a two-dimensional derived reflectivity product, such as composite reflectivity or echo tops. It is the arithmetic product of two quantities not currently generated by the Weather Surveillance Radar 1988 Doppler (WSR-88D): a volume average of the reflectivity measured in dBZ and the average cloud thickness based on the average echo top height and base height. This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service's (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.
NASA Astrophysics Data System (ADS)
Lyu, F.; Cummer, S. A.; Weinert, J. L.; McTague, L. E.; Solanki, R.; Barrett, J.
2014-12-01
Lightning processes radiated extremely wideband electromagnetic signals. Lightning images mapped by VHF interferometry and VHF time of arrival lightning mapping arrays enable us to understand the lightning in-cloud detail development during the extent of flash that can not always be captured by cameras because of the shield of cloud. Lightning processes radiate electromagnetically over an extremely wide bandwidth, offering the possibility of multispectral lightning radio imaging. Low frequency signals are often used for lightning detection, but usually only for ground point location or thunderstorm tracking. Some recent results have demonstrated lightning LF 3D mapping of discrete lightning pulses, but imaging of continuous LF emissions have not been shown. In this work, we report a GPS-synchronized LF near field interferometric-TOA 3D lightning mapping array applied to image the development of lightning flashes on second time scale. Cross-correlation, as used in broadband interferometry, is applied in our system to find windowed arrival time differences with sub-microsecond time resolution. However, because the sources are in the near field of the array, time of arrival processing is used to find the source locations with a typical precision of 100 meters. We show that this system images the complete lightning flash structure with thousands of LF sources for extensive flashes. Importantly, this system is able to map both continuous emissions like dart leaders, and bursty or discrete emissions. Lightning stepped leader and dart leader propagation speeds are estimated to 0.56-2.5x105 m/s and 0.8-2.0x106 m/s respectively, which are consistent with previous reports. In many aspects our LF images are remarkably similar to VHF lightning mapping array images, despite the 1000 times difference in frequency, which may suggest some special links between the LF and VHF emission during lightning processes.
NASA Astrophysics Data System (ADS)
Cooper, M.; Martin, R.; Wespes, C.; Coheur, P. F.; Clerbaux, C.; Murray, L. T.
2014-12-01
Nitrogen oxides (NOx ≡ NO + NO2) in the free troposphere largely control the production of ozone (O3), an important greenhouse gas and atmospheric oxidant. As HNO3 is the dominant sink of tropospheric NOx, improved understanding of its production and loss mechanisms can help to better constrain NOx emissions, and in turn improve understanding of ozone production and its effect on climate. However, this understanding is inhibited by the scarcity of direct measurements of free tropospheric HNO3, particularly in the tropics. We interpret tropical tropospheric nitric acid columns from the IASI satellite instrument with a global chemical transport model (GEOS-Chem). Overall GEOS-Chem generally agrees with IASI, however we find that the simulation underestimates IASI nitric acid over Southeast Asia by a factor of two. The bias is confirmed by comparing the GEOS-Chem simulation with additional satellite (HIRDLS, ACE-FTS) and aircraft (PEM-Tropics A and PEM-West B) observations of the middle and upper troposphere. We show that this bias can be explained by the parameterization of lightning NOx emissions, primarily from the misrepresentation of concentrated subgrid lightning NOx plumes. We tested a subgrid lightning plume parameterization and found that an additional 0.5 Tg N with an ozone production efficiency of 15 mol/mol would reduce the regional nitric acid bias from 92% to 6% without perturbing the rest of the tropics. Other sensitivity studies such as modified NOx yield per flash, increased altitude of lightning NOx emissions, or changes to convective mass flux or wet deposition of nitric acid required unrealistic changes to reduce the bias. This work demonstrates the importance of a comprehensive lightning parameterization to constraining NOx emissions.
Developing the TRYAD Science Instrument
NASA Astrophysics Data System (ADS)
Van Eck, K. T.; Jenke, P.; Briggs, M. S.; Fuchs, J.; Capps, L.
2017-12-01
Terrestrial gamma-ray flashes (TGFs) are brief MeV gamma-ray flashes that are associated with thunderstorms, around 12km in altitude, and are viewed by orbiting satellites. These bright flashes of high energy photons were discovered in 1994. The two major models for TGFs that originate in thunderstorms are the Lightning Leader and Relativistic Feedback Discharge (RFD) model. Both depend on energetic electrons radiating via bremsstrahlung emission. The Lightning Leader model theorizes that lightning step leaders can accelerate electrons to relativistic speeds. The RFD model states that an energetic seed particle can be accelerated to relativistic speeds by strong electric fields inside of a thunderstorm. The main difference in the results of the two models is as follows; the Lightning Leader model results in a wider beam of gamma-rays than the RFD model because the electric field of a thunderstorm is more structured than that of lightning. The TRYAD mission will be the first to fly two detectors, inside CubeSats, in formation to detect TGFs from multiple points in the sky. The data from the CubeSats and the World Wide Lightning Location Network (WWLLN) will likely provide enough insight to constrain or eliminate some of the existing models for TGFs.This summer was spent testing components and constructing the engineering model of the scientific instrument that will be used to detect TGFs. The detector is made up of four lead-doped plastic scintillators which are coupled to arrays of Silicon Photomultipliers (SiPM). The signal from the SiPM array is then fed into a discriminator where a lower energy estimate can be determined and photon counts are recorded. I will present the progress made over the summer constructing the engineering model.
NASA Technical Reports Server (NTRS)
Bateman, M. G.; Mach, D. M.; McCaul, M. G.; Bailey, J. C.; Christian, H. J.
2008-01-01
The Lightning Imaging Sensor (LIS) aboard the TRMM satellite has been collecting optical lightning data since November 1997. A Lightning Mapping Array (LMA) that senses VHF impulses from lightning was installed in North Alabama in the Fall of 2001. A dataset has been compiled to compare data from both instruments for all times when the LIS was passing over the domain of our LMA. We have algorithms for both instruments to group pixels or point sources into lightning flashes. This study presents the comparison statistics of the flash data output (flash duration, size, and amplitude) from both algorithms. We will present the results of this comparison study and show "point-level" data to explain the differences. AS we head closer to realizing a Global Lightning Mapper (GLM) on GOES-R, better understanding and ground truth of each of these instruments and their respective flash algorithms is needed.
Hinkelbein, J; Spelten, O; Wetsch, W A
2013-01-01
Up to 32.2% of patients in a burn center suffer from electrical injuries. Of these patients, 2-4% present with lightning injuries. In Germany, approximately 50 people per year are injured by a lightning strike and 3-7 fatally. Typically, people involved in outdoor activities are endangered and affected. A lightning strike usually produces significantly higher energy doses as compared to those in common electrical injuries. Therefore, injury patterns vary significantly. Especially in high voltage injuries and lightning injuries, internal injuries are of special importance. Mortality ranges between 10 and 30% after a lightning strike. Emergency medical treatment is similar to common electrical injuries. Patients with lightning injuries should be transported to a regional or supraregional trauma center. In 15% of all cases multiple people may be injured. Therefore, it is of outstanding importance to create emergency plans and evacuation plans in good time for mass gatherings endangered by possible lightning.
NASA Astrophysics Data System (ADS)
Orville, Richard E.
2004-03-01
Lightning Physics and Effects is not a lightning book; it is a lightning encyclopedia. Rarely in the history of science has one contribution covered a subject with such depth and thoroughness as to set the enduring standard for years, perhaps even decades, to come. This contribution covers all aspects of lightning, including lightning physics, lightning protection, and the interaction of lightning with a variety of objects and systems as well as the environment. The style of writing is well within the ability of the technical non-expert and anyone interested in lightning and its effects. Potential readers will include physicists; engineers working in the power industry, communications, computer, and aviation industries; atmospheric scientists; geophysicists; meteorologists; atmospheric chemists; foresters; ecologists; physicians working in the area of electrical trauma; and, lastly, architects. This comprehensive reference volume contains over 300 illustrations, 70 tables with quantitative information, and over 6000 reference and bibliography entries.
Evidence for lightning on Venus
NASA Technical Reports Server (NTRS)
Strangeway, R. J.
1992-01-01
Lightning is an interesting phenomenon both for atmospheric and ionospheric science. At the Earth lightning is generated in regions where there is strong convection. Lightning also requires the generation of large charge-separation electric fields. The energy dissipated in a lightning discharge can, for example, result in chemical reactions that would not normally occur. From an ionospheric point of view, lightning generates a broad spectrum of electromagnetic radiation. This radiation can propagate through the ionosphere as whistler mode waves, and at the Earth the waves propagate to high altitudes in the plasmasphere where they can cause energetic particle precipitation. The atmosphere and ionosphere of Venus are quite different from those on the Earth, and the presence of lightning at Venus has important consequences for our knowledge of why lightning occurs and how the energy is dissipated in the atmosphere and ionosphere. As discussed here, it now appears that lightning occurs in the dusk local time sector at Venus.
Lightning NOx and Impacts on Air Quality
NASA Technical Reports Server (NTRS)
Murray, Lee T.
2016-01-01
Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.
Lightning: Nature's Probe of Severe Weather for Research and Operations
NASA Technical Reports Server (NTRS)
Blakeslee, R.J.
2007-01-01
Lightning, the energetic and broadband electrical discharge produced by thunderstorms, provides a natural remote sensing signal for the study of severe storms and related phenomena on global, regional and local scales. Using this strong signal- one of nature's own probes of severe weather -lightning measurements prove to be straightforward and take advantage of a variety of measurement techniques that have advanced considerably in recent years. We briefly review some of the leading lightning detection systems including satellite-based optical detectors such as the Lightning Imaging Sensor, and ground-based radio frequency systems such as Vaisala's National Lightning Detection Network (NLDN), long range lightning detection systems, and the Lightning Mapping Array (LMA) networks. In addition, we examine some of the exciting new research results and operational capabilities (e.g., shortened tornado warning lead times) derived from these observations. Finally we look forward to the next measurement advance - lightning observations from geostationary orbit.
Trends in Lightning Electrical Energy Derived from the Lightning Imaging Sensor
NASA Astrophysics Data System (ADS)
Bitzer, P. M.; Koshak, W. J.
2016-12-01
We present results detailing an emerging application of space-based measurement of lightning: the electrical energy. This is a little-used attribute of lightning data which can have applications for severe weather, lightning physics, and wildfires. In particular, we use data from the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS) to find the temporal and spatial variations in the detected spectral energy density. This is used to estimate the total lightning electrical energy, following established methodologies. Results showing the trend in time of the electrical energy, as well as the distribution around the globe, will be highlighted. While flashes have been typically used in most studies, the basic scientifically-relevant measured unit by LIS is the optical group data product. This generally corresponds to a return stroke or IC pulse. We explore how the electrical energy varies per LIS group, providing an extension and comparison with previous investigations. The result is an initial climatology of this new and important application of space-based optical measurements of lightning, which can provide a baseline for future applications using the Geostationary Lightning Mapper (GLM), the European Lightning Imager (LI), and the International Space Station Lightning Imaging Sensor (ISS/LIS) instruments.
Oceanic Lightning versus Continental Lightning: VLF Peak Current Discrepancies
NASA Astrophysics Data System (ADS)
Dupree, N. A., Jr.; Moore, R. C.
2015-12-01
Recent analysis of the Vaisala global lightning data set GLD360 suggests that oceanic lightning tends to exhibit larger peak currents than continental lightning (lightning occurring over land). The GLD360 peak current measurement is derived from distant measurements of the electromagnetic fields emanated during the lightning flash. Because the GLD360 peak current measurement is a derived quantity, it is not clear whether the actual peak currents of oceanic lightning tend to be larger, or whether the resulting electromagnetic field strengths tend to be larger. In this paper, we present simulations of VLF signal propagation in the Earth-ionosphere waveguide to demonstrate that the peak field values for oceanic lightning can be significantly stronger than for continental lightning. Modeling simulations are performed using the Long Wave Propagation Capability (LWPC) code to directly evaluate the effect of ground conductivity on VLF signal propagation in the 5-15 kHz band. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-Ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. Furthermore, we evaluate the effect of return stroke speed on these results.
A projected decrease in lightning under climate change
NASA Astrophysics Data System (ADS)
Finney, Declan L.; Doherty, Ruth M.; Wild, Oliver; Stevenson, David S.; MacKenzie, Ian A.; Blyth, Alan M.
2018-03-01
Lightning strongly influences atmospheric chemistry1-3, and impacts the frequency of natural wildfires4. Most previous studies project an increase in global lightning with climate change over the coming century1,5-7, but these typically use parameterizations of lightning that neglect cloud ice fluxes, a component generally considered to be fundamental to thunderstorm charging8. As such, the response of lightning to climate change is uncertain. Here, we compare lightning projections for 2100 using two parameterizations: the widely used cloud-top height (CTH) approach9, and a new upward cloud ice flux (IFLUX) approach10 that overcomes previous limitations. In contrast to the previously reported global increase in lightning based on CTH, we find a 15% decrease in total lightning flash rate with IFLUX in 2100 under a strong global warming scenario. Differences are largest in the tropics, where most lightning occurs, with implications for the estimation of future changes in tropospheric ozone and methane, as well as differences in their radiative forcings. These results suggest that lightning schemes more closely related to cloud ice and microphysical processes are needed to robustly estimate future changes in lightning and atmospheric composition.
Characteristics of Lightning Within Electrified Snowfall Events Using Lightning Mapping Arrays
NASA Astrophysics Data System (ADS)
Schultz, Christopher J.; Lang, Timothy J.; Bruning, Eric C.; Calhoun, Kristin M.; Harkema, Sebastian; Curtis, Nathan
2018-02-01
This study examined 34 lightning flashes within four separate thundersnow events derived from lightning mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each lightning flash, as well as the correspondence between the LMA observations and lightning data taken from national lightning networks like the National Lightning Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the data set. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km2, with a maximum flash extent of 2,300 km2, a minimum of 3 km2, and a median of 128 km2. An average of 2.29 NLDN flashes were recorded per LMA-derived lightning flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN-identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six lightning flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses lightning's interaction with the human-built environment and provides an example of lightning within heavy snowfall observed by Geostationary Operational Environmental Satellite-16's Geostationary Lightning Mapper.
Characteristics of Lightning within Electrified Snowfall Events using Lightning Mapping Arrays.
Schultz, Christopher J; Lang, Timothy J; Bruning, Eric C; Calhoun, Kristin M; Harkema, Sebastian; Curtis, Nathan
2018-02-27
This study examined 34 lightning flashes within four separate thundersnow events derived from lightning mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each lightning flash, as well as the correspondence between the LMA observations and lightning data taken from national lightning networks like the National Lightning Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the dataset. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km 2 , with a maximum flash extent of 2300 km 2 , a minimum of 3 km 2 , and a median of 128 km 2 . An average of 2.29 NLDN flashes were recorded per LMA-derived lightning flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six lightning flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses lightning's interaction with the human built environment and provides an example of lightning within heavy snowfall observed by GOES-16's Geostationary Lightning Mapper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchard, D., E-mail: mitcharddr@cardiff.ac.uk; Clark, D.; Carr, D.
A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum wasmore » reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.« less
NASA Technical Reports Server (NTRS)
Christian, Hugh
2003-01-01
Our knowledge of the global distribution of lightning has improved dramatically since the 1995 launch of the Optical Transient Detector (OTD) followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous seven-year record of global lightning activity. These lightning observations have provided a new global perspective on total lightning activity. For the first time, total lightning activity (CG and IC) has been observed over large regions with high detection efficiencies and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised global flash rate estimate (46 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe weather. Accurate flash rate estimates are now available for large areas of the earth (+/- 72deg latitude) Ocean-land contrasts as a function of season are clearly revealed, as are orographic effects and seasonal and interannual variability. The data set indicates that air mass thunderstorms, not large storm systems dominate global activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated hat this capability could lead to significantly improved severe weather warning times and reduced false warning rates.