Science.gov

Sample records for lightning test program

  1. 1994 Triggered Lightning Test Program: Measured responses of a reinforced concrete building under direct lightning attachments

    SciTech Connect

    Schnetzer, G.H.; Chael, J.; Davis, R.; Fisher, R.J.; Magnotti, P.J.

    1995-08-01

    A rocket-triggered lightning test was carried out during the summer of 1994 on a specially designed steel reinforced concrete test building located at Ft. McClellan, Alabama. Currents, voltages, and magnetic fields were measured at 24 instrumented locations during 42 return strokes triggered to designated points on the structure and its lightning protection systems. As was found during an earlier similar lightning test of an earth covered munitions storage building, the buried power service conduits carried a much larger fraction of incident stroke current away from the building than did the intended grounding elements of the lightning protection system. Electrical breakdown and subsequent arcing occurred repeatedly to create dominant current paths to earth that were not accounted for in pretest linear modeling. Potential hazard level transient voltages, surprisingly more resistive than inductive in nature, were recorded throughout the structure. Also surprisingly, strikes to a single grounded protection mast system resulted in internal environments that were generally comparable to those occurring during strikes to roof-mounted air terminals. A description of the test structure, experimental procedures, and a full set of the resultant data are presented in this two-volume report.

  2. 1994 Triggered lightning test program: Measured responses of a reinforced concrete building under direct lightning attachments, Volume 2: Test data

    SciTech Connect

    Schnetzer, G.H.; Chael, J.; Davis, R.

    1995-08-01

    A rocket-triggered lightning test was carried out during the summer of 1994 on a specially designed steel reinforced concrete test building located at Ft. McClellan, Alabama. Currents, voltages, and magnetic fields were measured at 24 instrumented locations during 42 return strokes triggered to designated points on the structure and its lightning protection system. Detailed descriptions of the test structure, measurements, and test procedures are given in Volume 1 of this report. The present volume contains plots of the complete set of test data.

  3. ASTP simulated lightning test report

    NASA Technical Reports Server (NTRS)

    Blount, R. L.; Gadbois, R. D.; Suiter, D. L.; Zill, J. A.

    1974-01-01

    A simulated lightning test was conducted on the backup spacecraft for the Apollo Soyuz Test Project mission (CSM-119) to determine the susceptibility of the Apollo spacecraft to damage from the indirect effects of lightning. It is demonstrated that induced lightning effects from low-level injected currents can be scaled linearly to those which are obtained in a full threat lightning stroke. Test results indicate that: (1) many of the power and signal critical circuits would fail if subjected to full-threat lightning, (2) pyrotechnic circuits are safe for full-threat lightning, and (3) common-mode voltages exceeded the failure criteria level for all but three of the circuits tested.

  4. Simulated and rocket-triggered lightning testing of the Lightning-Invulnerable Device System (LIDS)

    NASA Astrophysics Data System (ADS)

    Hasbrouck, Richard T.

    A Lightning Invulnerable Device System (LIDS) has been developed to protect nuclear explosive test device systems at the U.S. Department of Energy's Nevada Test Site (NTS) against accidental detonation by lightning. In a series of full threat-level tests of a prototype LIDS canister, high-energy storage capacitor banks were used to generate high current rate of rise (di/dt = 200 kA/microsec) and high-peak-current (200 kA), simulated-lightning, transient inputs to the LIDS. Subsequently, researchers participated in the NASA Rocket-Triggered Lightning Program (RTLP). In these experiments, a grounded wire is carried into a highly electrified cloud by a small rocket, causing the canister to be struck by actual lightning. Results indicate that the LIDS provides an extremely effective way to prevent threat-level lightning transients from reaching the safety-critical components within the canister.

  5. Lightning tests of the orbiter pyrotechnic escape system

    NASA Technical Reports Server (NTRS)

    Cohen, R.; Schulte, E. H.

    1977-01-01

    An experimental test program was undertaken to demonstrate that the Space Shuttle Orbiter Vehicle pyrotechnics actuated Crew Escape System was not subject to failure resulting from a lightning strike in the vicinity of the cockpit. A test sample representing a full-scale portion of the Orbiter Outer Panel was preheated to 325 F and struck with three different current waveforms to simulate the various effects of lightning: (1) 2 micro sec risetime, to 180 kA pulse to evaluate fast current rise shock effects; (2) a 205 kA, 100 micro sec wide pulse to evaluate full energy shock effects; and (3) a 490 ampere, 370 msec continuing current to evaluate the thermal effects of a lightning strike. These tests show that the Orbiter outer panel pyrotechnics are adequately protected against damage resulting from a lightning strike.

  6. Recent Lightning Experiments at the International Center for Lightning Research and Testing: From Ball Lightning to Gamma Rays

    NASA Astrophysics Data System (ADS)

    Uman, M. A.

    2008-12-01

    Recent lightning data and the instrumentation used to acquire it at the UF-FIT International Center for Lightning Research and Testing, located on about 1 square kilometer of flat ground at the Camp Blanding Army National Guard Base in north-central Florida, are discussed. The progress of several on-going studies is reviewed: (1) understanding the physics of the "classical" rocket-and-wire triggering of lightning from natural overhead thunderclouds, (2) attempting to generate ball lightning by allowing triggered-lightning to strike various materials and objects (e.g., tree-trunk sections, pools of salt water, silicon powder), (3) measuring the very close (100 m to 1 km) electric and magnetic fields of natural cloud-to-ground lightning, and (4) probing the relationship between lightning processes and the x-rays and gamma-rays associated with them.

  7. High current lightning test of space shuttle external tank lightning protection system

    NASA Technical Reports Server (NTRS)

    Mumme, E.; Anderson, A.; Schulte, E. H.

    1977-01-01

    During lift-off, the shuttle launch vehicle (external tank, solid rocket booster and orbiter) may be subjected to a lightning strike. Tests of a proposed lightning protection method for the external tank and development materials which were subjected to simulated lightning strikes are described. Results show that certain of the high resistant paint strips performed remarkably well in diverting the 50 kA lightning strikes.

  8. Lightning Pin Injection Testing on MOSFETS

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita

    2009-01-01

    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  9. Lightning testing at the subsystem level

    NASA Technical Reports Server (NTRS)

    Luteran, Frank

    1991-01-01

    Testing at the subsystem or black box level for lightning hardness is required if system hardness is to be assured at the system level. The often applied philosophy of lighting testing only at the system level leads to extensive end of the line design changes which result in excessive costs and time delays. In order to perform testing at the subsystem level two important factors must be defined to make the testing simulation meaningful. The first factor is the definition of the test stimulus appropriate to the subsystem level. Application of system level stimulations to the subsystem level usually leads to significant overdesign of the subsystem which is not necessary and may impair normal subsystem performance. The second factor is the availability of test equipment needed to provide the subsystem level lightning stimulation. Equipment for testing at this level should be portable or at least movable to enable efficient testing in a design laboratory environment. Large fixed test installations for system level tests are not readily available for use by the design engineers at the subsystem level and usually require special operating skills. The two factors, stimulation level and test equipment availability, must be evaluated together in order to produce a practical, workable test standard. The neglect or subordination of either factor will guarantee failure in generating the standard. It is not unusual to hear that test standards or specifications are waived because a specified stimulation level cannot be accomplished by in-house or independent test facilities. Determination of subsystem lightning simulation level requires a knowledge and evaluation of field coupling modes, peak and median levels of voltages and currents, bandwidths, and repetition rates. Practical limitations on test systems may require tradeoffs in lightning stimulation parameters in order to build practical test equipment. Peak power levels that can be generated at specified bandwidths with

  10. Lightning Simulation Test Technique Evaluation

    DTIC Science & Technology

    1988-10-01

    Example Resistive Response Measurement 94 43 Example dI/dt Response Measurement 95 44 Statistical Distribution of Swept CW Extrapolated Values - Nose...Aircraft 2 2 Prior Research and Development Tests on Full-Scale Air Vehicles 10 3 Summary of Simulation Technique Capabilities 14 4 Test Bed Resistance ...second L Inductance henrys R Resistance ohms V Potential difference volts STANDARD UNITS A amperes dB, dBm decibels Hz hertz kA kiloamps kV kilovolts

  11. Lightning Over the Technology Test Bed at MSFC

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Multiple lightning bolts struck the Technology Test Bed, formerly the S-IC Static Test Stand, at the Marshall Space Flight Center (MSFC) during a thunderstorm. This spectacular image of lightning was photographed by MSFC photographer Dernis Olive on August 29, 1990.

  12. Greased Lightning (GL-10) Flight Testing Campaign

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; McSwain, Robert G.; Beaton, Brian F.; Klassman, David W.; Theodore, Colin R.

    2017-01-01

    Greased Lightning (GL-10) is an aircraft configuration that combines the characteristics of a cruise efficient airplane with the ability to perform vertical takeoff and landing (VTOL). This aircraft has been designed, fabricated and flight tested at the small unmanned aerial system (UAS) scale. This technical memorandum will document the procedures and findings of the flight test experiments. The GL-10 design utilized two key technologies to enable this unique aircraft design; namely, distributed electric propulsion (DEP) and inexpensive closed loop controllers. These technologies enabled the flight of this inherently unstable aircraft. Overall it has been determined thru flight test that a design that leverages these new technologies can yield a useful VTOL cruise efficient aircraft.

  13. Test Report: Direct and Indirect Lightning Effects on Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.

  14. Space shuttle program: Lightning protection criteria document

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The lightning environment for space shuttle design is defined and requirements that the design must satisfy to insure protection of the vehicle system from direct and indirect effects of lightning are imposed. Specifications, criteria, and guidelines included provide a practical and logical approach to protection problems.

  15. Lightning threat warning system at the Tonopah Test Range

    SciTech Connect

    Smith, R

    1992-07-01

    This report documents the lightning threat warning system at the Tonopah Test Range and the technology it uses. The report outlines each of the system's individual components and the information each contributes.

  16. Lightning

    ERIC Educational Resources Information Center

    Pampe, William R.

    1970-01-01

    Presents basic physical theory for movement of electric charges in clouds, earth, and air during production of lightning and thunder. Amount of electrical energy produced and heating effects during typical thunderstorms is described. Generalized safety practices are given. (JM)

  17. Lightning

    ERIC Educational Resources Information Center

    Pampe, William R.

    1970-01-01

    Presents basic physical theory for movement of electric charges in clouds, earth, and air during production of lightning and thunder. Amount of electrical energy produced and heating effects during typical thunderstorms is described. Generalized safety practices are given. (JM)

  18. RSRM top hat cover simulator lightning test, volume 2. Appendix A: Resistance measurements. Appendix B: Lightning test data plots

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Resistance measurements are given in graphical for when a simulated lightning discharge strikes on an exposed top hat cover simulator. The test sequence was to measure the electric and magnetic fields induced inside a redesigned solid rocket motor case.

  19. External tank gaseous oxygen line simulated lightning tests

    NASA Technical Reports Server (NTRS)

    Smith, H. E.; Avery, R. M.

    1976-01-01

    Tests were made to evaluate the effects of lightning strikes on the shuttle external tank gaseous oxygen pressurization line. This line, designed to conduct gaseous oxygen may also act as a lightning conductor. Questions have been raised as to the potential hazard of this line as a lightning conductor with speculation as to the damage that might occur to the pressurization line, and the adjacent thermal protective surfaces, from a lightning strike. The region of investigation was from above the cone of the launch tower lightning protection to 15.24 km (50, 000 ft) altitude. Tests were performed on samples of thin wall stainless steel tubing filled with gaseous oxygen under simulated flight conditions. No specimen malfunctions occurred when the tests were conducted according to JSC specifications. Based on the JSC specifications and the results of these tests, it is concluded that a lightning strike will not cause a malfunction of the shuttle external tank gaseous oxygen line made of the representative material tested.

  20. F-35 Lightning II Program Quality Assurance and Corrective Action Evaluation

    DTIC Science & Technology

    2015-03-11

    No. DODIG-2015-092 M A R C H 1 1 , 2 0 1 5 F ‑ 35 Lightning II Program Quality Assurance and Corrective Action Evaluation Report Documentation...3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE F - 35 Lightning II Program Quality Assurance and Corrective Action Evaluation... F ‑ 35 Lightning II Program Quality Assurance and Corrective Action Evaluation Objective We inspected the F - 35 Lightning II Program ( F - 35 Program) at

  1. Assessment of lightning simulation test techniques, part 1

    NASA Astrophysics Data System (ADS)

    Butters, W. G.; Clifford, D. W.; Murphy, K. P.; Zeisel, K. S.

    1981-10-01

    The program objective was to assess the current pulse and shock-excitation lightning simulation test techniques. The current pulse test technique applies a pulsed current stimulus to the test article, while the shock-excitation technique first charges the test article to a high voltage which then produces a rapid voltage/current pulse on the test article as the spark gap (between the test article and the return conductors) breaks down. Direct comparisons of the induced voltage response on interior circuits were made for the two test techniques. The interior circuits were high-impedance differential wire pairs typical of many flight-critical in advanced aircraft. The program was divided into three tasks: (1) an analytical task to model both test techniques to provide a theoretical base, (2) comparative tests using an aluminum cylinder and simple interior circuits that were readily modeled, and (3) comparative tests on the flight control circuits of a full-scale YF-16 fighter aircraft. The cylinder test configuration was modeled as two coupled transmission line circuits. The generator, cylinder, return lines, and the output configuration between the cylinder and the return line comprise the primary tranmission line that interacts with an interior circuit transmission line via aperture coupling.

  2. Lightning Pin Injection Test: MOSFETS in "ON" State

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Saha, Sankalita; Wysocki, Philip F.; Celaya, Jose R.

    2011-01-01

    The test objective was to evaluate MOSFETs for induced fault modes caused by pin-injecting a standard lightning waveform into them while operating. Lightning Pin-Injection testing was performed at NASA LaRC. Subsequent fault-mode and aging studies were performed by NASA ARC researchers using the Aging and Characterization Platform for semiconductor components. This report documents the test process and results, to provide a basis for subsequent lightning tests. The ultimate IVHM goal is to apply prognostic and health management algorithms using the features extracted during aging to allow calculation of expected remaining useful life. A survey of damage assessment techniques based upon inspection is provided, and includes data for optical microscope and X-ray inspection. Preliminary damage assessments based upon electrical parameters are also provided.

  3. Lightning Protection

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Kit-built airplanes are more affordable because they are assembled by the owner and do not require Federal Aviation Administration (FAA) certification. The Glasair III, is an advanced technology homebuilt, constructed of a fiberglass and graphite fiber composite material, and equipped with digital instruments. Both technologies make the airplane more susceptible to lightning effects. When Glasair manufacturer, Stoddard-Hamilton, decided that lightning protection would enable more extensive instrument flight and make the plane more marketable, they proposed a joint development program to NASA Langley Research Center (LAR). Under a Small Business Innovation Research (SBIR) contract, Langley contractors designed and tested a lightning protection system, and the Glasair III-LP became the first kit-built composite aircraft to be lightning tested and protection-verified under FAA guidelines for general aviation aircraft.

  4. F-5F Shark Nose radome lightning test

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1980-01-01

    A unique F-5F radome wtih a geometry similar to a Shark Nose profile was tested with a high voltage Marx generator, 1,200,000 volts in order to demonstrate the effectiveness of the lightning protection system with currents from 5,000 amperes or greater. An edge discontinuity configuration is a characteristic feature in the forward region of the radome and occasionally serves as an attachment point. The results of nineteen attachment tests at various aspect angles with an air gap of one meter indicated that no damage occurred to the dielectric material of the radom. The test proved the effectiveness of the lightning protection system.

  5. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, workers measure the piling being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  6. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, pilings are being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  7. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  8. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler puts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  9. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling off a truck. The piling will be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  10. Follow-on cable coupling lightning test. Volume 3: Appendixes E and F

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following subject areas are covered: (1) Follow-on cable coupling lightning test swept continuous wave data plots, and (2) USBI cable coupling responses, EMA final test report (Lightning test results for the modified systems tunnel bonding on the Space Shuttle Solid Rocket Booster: tabulation of cable responses to threat level lightning testing; demonstration of linear extrapolation of swept continuous wave testing to NASA lightning specification).

  11. Lightning protection design and testing of an all composite wet wing for the Egrett

    NASA Technical Reports Server (NTRS)

    Burrows, B. J. C.; Haigh, S. J.; Chessum, C.; Dunkley, V. P.

    1991-01-01

    The Egrett aircraft has an all composite wing comprising CFC(carbon fiber composite)/Nomex sandwich skins, full length CFC main spar caps, and GFRP (glass fiber reinforced plastics) main and auxiliary spar webs. It also has short inboard CFC auxiliary spar caps. It has fine aluminum wires woven into the surface for protection. It has an integral fuel tank using the CFC/Nomex skins as the upper and lower tank walls, and lies between the forward auxiliary spar and the forward of the two main spar webs. The fuel tank is not bagged, i.e., it is in effect a wet wing tank. It has conventional capacitive type fuel gauging. The aircraft was cleared to IFR standards and so required full lightning protection and demonstration that it would survive the lightning environment. The lightning protection was designed for the wing (and also for the remainder of the aircraft). An inner wing test samples (which included a part of the fuel tank) were tested as part of the proving program. The protection design and the testing process are described. The intrinsic structural features are indicated that improve lightning protection design and which therefore minimize the weight and cost of any added lightning protection components.

  12. Direct and nearby lightning strike interaction with test power distribution lines

    NASA Astrophysics Data System (ADS)

    Schoene, Jens Daniel

    The interaction of direct and nearby rocket-triggered lightning with two unenergized three-phase power distribution lines of about 800 m length was studied at the International Center for Lightning Research and Testing in Florida. A horizontally-configured line was tested in 1999 and 2000, a vertically-configured line in 2001, 2002, and 2003, and a vertically-configured line with overhead ground wire in 2004. All lines were equipped with arresters and, additionally, in 2003, the vertical line had a polemounted transformer. During the 2000, 2001, and 2002 direct strike experiments, arresters frequently failed, but there was no arrester failures either during the 2003 direct strike experiment when the transformer was on the line or during the 2004 direct strike experiment when the lightning current was injected into the overhead ground wire. All line configurations except the one tested in 2004 commonly exhibited flashovers. The division of return stroke currents for the vertically-configured line was initially similar to the division on the horizontally-configured line (that is, the arresters closest to the strike point conducted the bulk of the impulsive current). After some tens of microseconds the currents in all arresters on the vertically-configured line equalized, while the close arrester currents on the horizontally-configured line still conducted significantly more current than the remote arresters. The lightning current division for direct strikes to a phase conductor is successfully modeled with the Electromagnetic Transient Program (EMTP) for the vertically-configured line and, if the residual voltage of the close arresters is reduced by 20%, successfully modeled for the horizontally-configured line. Currents on the vertically-configured line induced by nearby lightning strikes were measured and compared to results calculated using the LIOV-EMTP96 code. It was found that during a lightning strike 11 m from a grounded line pole, a significant fraction of

  13. Calibration tests on magnetic tape lightning current detectors

    NASA Technical Reports Server (NTRS)

    Crouch, K. E.

    1980-01-01

    The low cost, passive, peak lightning current detector (LCD) invented at the NASA/Kennedy Space Center, uses magnetic audio recording tape to sense the magnitude of the peak magnetic field around a conductor carrying lightning currents. Test results show that the length of audio tape erased was linearly related to the peak simulated lightning currents in a round conductor. Accuracies of + or - 10% were shown for measurements made using a stopwatch readout technique to determine the amount of tape erased by the lightning current. The stopwatch technique is a simple, low cost means of obtaining LCD readouts and can be used in the field to obtain immediate results. Where more accurate data are desired, the tape is played and the output recorded on a strip chart, oscilloscope, or some other means so that measurements can be made on that recording. Conductor dimensions, tape holder dimensions, and tape formulation must also be considered to obtain a more accurate result. If the shape of the conductor is other than circular (i.e., angle, channel, H-beam), an analysis of the magnetic field is required to use an LCD, especially at low current levels.

  14. A simulated lightning effects test facility for testing live and inert missiles and components

    NASA Technical Reports Server (NTRS)

    Craven, Jeffery D.; Knaur, James A.; Moore, Truman W., Jr.; Shumpert, Thomas H.

    1991-01-01

    Details of a simulated lightning effects test facility for testing live and inert missiles, motors, and explosive components are described. The test facility is designed to simulate the high current, continuing current, and high rate-of-rise current components of an idealized direct strike lightning waveform. The Lightning Test Facility was in operation since May, 1988, and consists of: 3 separate capacitor banks used to produce the lightning test components; a permanently fixed large steel safety cage for retaining the item under test (should it be ignited during testing); an earth covered bunker housing the control/equipment room; a charge/discharge building containing the charging/discharging switching; a remotely located blockhouse from which the test personnel control hazardous testing; and interconnecting cables.

  15. Assessment of the Pseudo Geostationary Lightning Mapper Products at the Spring Program and Summer Experiment

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Calhoun, Kristin K.; Terborg, Amanda M.

    2014-01-01

    Since 2010, the de facto Geostationary Lightning Mapper (GLM) demonstration product has been the Pseudo-Geostationary Lightning Mapper (PGLM) product suite. Originally prepared for the Hazardous Weather Testbed's Spring Program (specifically the Experimental Warning Program) when only four ground-based lightning mapping arrays were available, the effort now spans collaborations with several institutions and eight collaborative networks. For 2013, NASA's Short-term Prediction Research and Transition (SPoRT) Center and NOAA's National Severe Storms Laboratory have worked to collaborate with each network to obtain data in real-time. This has gone into producing the SPoRT variant of the PGLM that was demonstrated in AWIPS II for the 2013 Spring Program. Alongside the PGLM products, the SPoRT / Meteorological Development Laboratory's total lightning tracking tool also was evaluated to assess not just another visualization of future GLM data but how to best extract more information while in the operational environment. Specifically, this tool addressed the leading request by forecasters during evaluations; provide a time series trend of total lightning in real-time. In addition to the Spring Program, SPoRT is providing the PGLM "mosaic" to the Aviation Weather Center (AWC) and Storm Prediction Center. This is the same as what is used at the Hazardous Weather Testbed, but combines all available networks into one display for use at the national centers. This year, the mosaic was evaluated during the AWC's Summer Experiment. An important distinction between this and the Spring Program is that the Summer Experiment focuses on the national center perspective and not at the local forecast office level. Specifically, the Summer Experiment focuses on aviation needs and concerns and brings together operational forecaster, developers, and FAA representatives. This presentation will focus on the evaluation of SPoRT's pseudo-GLM products in these separate test beds. The emphasis

  16. Simulated lightning test shuttle .03 scale model. [(space shuttle orbiter)

    NASA Technical Reports Server (NTRS)

    Clifford, D. W.

    1974-01-01

    Lightning Attach Point tests were conducted for the space shuttle launch configuration (Orbiter, External Tank and Solid Rocket Boosters). A series of 250 long spark tests (15 to 20 foot sparks) determined that the orbiter may be struck on the nose, windshield brow, tail and wingtips during launch but not on the main engine nozzles which have been shown to be vulnerable to lightning damage. The orbiter main engine and SRB exhaust plumes were simulated electrically with physical models coated with graded resistance paints. The tests showed that the exhaust plumes from the SRB provide additional protection for the main engine nozzles. However, the tests showed that the Orbiter Thermal Protection System (TPS), which has also been shown to be vulnerable to lightning damage, may be struck during launch. Therefore further work is indicated in the areas of swept stroke studies on the model and on TPS panels. Further attach point testing is also indicated on the free-flying orbiter. Photographs of the test setup are shown.

  17. National Renewable Energy Laboratory program on lightning risk and wind turbine generator protection

    SciTech Connect

    Muljadi, E.; McNiff, B.

    1997-12-31

    In the early development of wind turbine generators (WTG) in the United States, wind farms were primarily located in California where lightning activity is the lowest in the United States. As such, lightning protection for wind turbines was not considered to be a major issue for designers or wind farm operators. However, wind turbine installations are expanding into the Midwest, Southwest and other regions of the United States where lightning activity is significantly more intense and lightning damage to wind turbines is more common. There is a growing need, therefore, to better understand lightning activity on wind farms and to improve wind turbine lightning protection systems. In support of the U.S. Department of Energy/Electric Power Research Institute (DOE/EPRI) Utility Wind Turbine Verification Program (TVP), the National Renewable Energy Laboratory (NREL) has recently begun to take steps to determine the extent of damage due to lightning and the effectiveness of various lightning protection techniques for wind power plants. Working through the TVP program, NREL will also perform outreach and education to (1) help manufacturers to provide equipment that is adequately designed to survive lightning, (2) make sure that operators are aware of effective safety procedures, and (3) help site designers and wind farm developers take the risk of lightning into account as effectively as possible.

  18. Follow-on cable coupling lightning test. Volume 2: Appendixes A, B, C, and D

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following information from the follow-on cable coupling lightning test of the Space Shuttle Booster is presented: (1) resistance measurements (cover-to-cover and cover-to-floor plate); (2) resistance measurements (external bond strap-to-case); (3) resistance measurements (internal bond strap-to-case) and; (4) follow-on cable coupling lightning test data plots. The bulk of the document comprises the follow-on cable coupling lightning test data plots.

  19. Tests of the Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval

    NASA Technical Reports Server (NTRS)

    Koshak, William; Solakiewicz, Richard; Attele, Rohan

    2011-01-01

    Satellite lightning imagers such as the NASA Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS) and the future GOES-R Geostationary Lightning Mapper (GLM) are designed to detect total lightning (ground flashes + cloud flashes). However, there is a desire to discriminate ground flashes from cloud flashes from the vantage point of space since this would enhance the overall information content of the satellite lightning data and likely improve its operational and scientific applications (e.g., in severe weather warning, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters (one of which is the ground flash fraction), a scalar function was minimized by a numerical method. In order to improve this optimization, a Grobner basis solution was introduced to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. In this study, we test the efficacy of the Grobner basis initialization using actual lightning imager measurements and ground flash truth derived from the national lightning network.

  20. Tests of the Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval

    NASA Astrophysics Data System (ADS)

    Koshak, W. J.; Solakiewicz, R. J.; Attele, R.

    2011-12-01

    Satellite lightning imagers such as the NASA Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS) and the future GOES-R Geostationary Lightning Mapper (GLM) are designed to detect total lightning (ground flashes + cloud flashes). However, there is a desire to discriminate ground flashes from cloud flashes from the vantage point of space since this would enhance the overall information content of the satellite lightning data and likely improve its operational and scientific applications (e.g., in severe weather warning, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters (one of which is the ground flash fraction), a scalar function was minimized by a numerical method. In order to improve this optimization, a Grobner basis solution was introduced to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. In this study, we test the efficacy of the Grobner basis initialization using actual lightning imager measurements and ground flash truth derived from the national lightning network.

  1. RSRM top hat cover simulator lightning test, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The test sequence was to measure electric and magnetic fields induced inside a redesigned solid rocket motor case when a simulated lightning discharge strikes an exposed top hat cover simulator. The test sequence was conducted between 21 June and 17 July 1990. Thirty-six high rate-of-rise Marx generator discharges and eight high current bank discharges were injected onto three different test article configurations. Attach points included three locations on the top hat cover simulator and two locations on the mounting bolts. Top hat cover simulator and mounting bolt damage and grain cover damage was observed. Overall electric field levels were well below 30 kilowatts/meter. Electric field levels ranged from 184.7 to 345.9 volts/meter and magnetic field levels were calculated from 6.921 to 39.73 amperes/meter. It is recommended that the redesigned solid rocket motor top hat cover be used in Configuration 1 or Configuration 2 as an interim lightning protection device until a lightweight cover can be designed.

  2. Lightning protection guidelines and test data for adhesively bonded aircraft structures

    NASA Technical Reports Server (NTRS)

    Pryzby, J. E.; Plumer, J. A.

    1984-01-01

    The highly competitive marketplace and increasing cost of energy has motivated manufacturers of general aviation aircraft to utilize composite materials and metal-to-metal bonding in place of conventional fasteners and rivets to reduce weight, obtain smoother outside surfaces and reduce drag. The purpose of this program is protection of these new structures from hazardous lightning effects. The program began with a survey of advance-technology materials and fabrication methods under consideration for future designs. Sub-element specimens were subjected to simulated lightning voltages and currents. Measurements of bond line voltages, electrical sparking, and mechanical strength degradation were made to comprise a data base of electrical properties for new technology materials and basic structural configurations. The second hase of the program involved tests on full scale wing structures which contained integral fuel tanks and which were representative of examples of new technology structures and fuel systems. The purpose of these tests was to provide a comparison between full scale structural measurements and those obtained from the sub-element specimens.

  3. Preliminary lightning tests: Optical fiber penetration of an exclusion region barrier

    SciTech Connect

    Dinallo, M.A. ); Fisher, R.J. )

    1992-08-01

    As part of the Direct Optical Initiation (DOI) program, an assessment of the possibility of introducing lightning energy into an exclusion region via an Optical Barrier Feedthrough (OBF) is being carried out. One postulated penetration mechanism is the tracking of current past the OBF on the surface of the dielectric optical fiber itself. During September and October of 1991, a series of tests was conducted on a closed metallic cylindrical test object representing the electrical exclusion region of a weapon. Median-level (30-kA) and severe (200-kA) simulated lightning return strokes, singly, doubly, and in combination with a moderate continuing current, were attached directly to the exterior portion of a fiber optic cable, which penetrated through a hole of controlled size into the interior of the exclusion region. The thickness of the barrier surrounding the hole was 0.06 in. Attempts were made to measure any conducted current flowing on the fiber at distances of 1 and 4 inches from the interior surface of the stainless steel top of the cylinder. Test parameter variations included diameter of the penetration hole (475 and 500 microns), length of the exterior portion of the cable and whether or not its jacket was present, and the applied test currents. It is concluded that no signal above measurement noise was recorded on any of the data shots that made up the test series. Measurement resolution was of the order of several amperes. Based on the highest recorded response of 8.5 A, corresponding to a 200-kA input, the OBF can be characterized by a direct-strike lightning attenuation factor of approximately 5 {times} lO{sup {minus}5} or better. Based on the more typically observed noise level of a few amps, the attenuation is commensurately greater.

  4. Lightning Protection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An airplane's wingtip tank is being struck by simulated lightning in a test conducted by Lightning Technologies, Inc., a firm specializing in design features to protect aircraft from the hazard of electrical phenomena. Much of the technology employed in tests originated in NASA - sponsored studies focusing on effects of lightning on aircraft structures, electrical systems, and fuel tanks, and on means of protecting against hazardous effects.

  5. A test technique for measuring lightning-induced voltages on aircraft electrical circuits

    NASA Technical Reports Server (NTRS)

    Walko, L. C.

    1974-01-01

    The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.

  6. Preliminary tests of vulnerability of typical aircraft electronics to lightning-induced voltages

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Walko, L. C.

    1974-01-01

    Tests made on two pieces of typical aircraft electronics equipment to ascertain their vulnerability to simulated lightning-induced transient voltages representative of those which might occur in flight when the aircraft is struck by lightning were conducted. The test results demonstrated that such equipment can be interfered with or damaged by transient voltages as low as 21 volts peak. Greater voltages can cause failure of semiconductor components within the equipment. The results emphasize a need for establishment of coordinated system susceptibility and component vulnerability criteria to achieve lightning protection of aerospace electrical and electronic systems.

  7. Overview of the Year-One Field Program Phase of the Thunderstorm Electrification and Lightning Experiment (TELEX) 2003

    NASA Astrophysics Data System (ADS)

    Rust, D.; Macgorman, D.; Schuur, T.; Straka, J.; Rison, B.; Hamlin, T.; Krehbiel, P.; Bruning, E.

    2003-12-01

    Recent research has raised several issues that have significant implications for understanding storm electrification and lightning. The scientific purpose of TELEX is to test and revise hypotheses concerning the inter-relationships among the wind field, microphysical characteristics, electrical structure, and lightning of isolated severe storms and of large storm systems (called mesoscale convective systems, MCSs). We conducted the first-year's field program of TELEX in central Oklahoma, 11 May-6 June. This was the initial spring field deployment for several new observing systems operating in central Oklahoma: a 10-cm wavelength polarimetric Doppler radar, a lightning mapping array (LMA), and a new mobile lab for storm intercept and coordination of mobile ballooning of electric field meters and data acquisition. Also, the electric field meter was substantially upgraded (both mechanically and electronically) to provide higher resolution data, including more accurate determination of instrument orientation using a three-axis flux gate magnetometer arrangement and a two-axis accelerometer. The improvements allow more accurate determination of the electric field vector, and thus inferred charge structure, in context of the three-dimensional structures of storm parameters and lightning. Presented in this paper are examples from among the seven storm-intercept missions during which fourteen balloon soundings were obtained with instrumented balloons carrying a radiosonde and electric field meter. Owing to a scarcity of isolated deep convection in the target area during the program, the flights are mostly from nighttime multicellular storms and MCSs. Electric fields ranging above 100 kV/m were measured.

  8. Lightning arrestor connector lead magnesium niobate qualification pellet test procedures.

    SciTech Connect

    Tuohig, W.; Mahoney, Patrick A.; Tuttle, Bruce Andrew; Wheeler, Jill Susanne

    2009-02-01

    Enhanced knowledge preservation for DOE DP technical component activities has recently received much attention. As part of this recent knowledge preservation effort, improved documentation of the sample preparation and electrical testing procedures for lead magnesium niobate--lead titanate (PMN/PT) qualification pellets was completed. The qualification pellets are fabricated from the same parent powders used to produce PMN/PT lightning arrestor connector (LAC) granules at HWF&T. In our report, the procedures for fired pellet surface preparation, electrode deposition, electrical testing and data recording are described. The dielectric measurements described in our report are an information only test. Technical reasons for selecting the electrode material, electrode size and geometry are presented. The electrical testing is based on measuring the dielectric constant and dissipation factor of the pellet during cooling from 280 C to 220 C. The most important data are the temperature for which the peak dielectric constant occurs (Curie Point temperature) and the peak dielectric constant magnitude. We determined that the peak dielectric constant for our procedure would be that measured at 1 kHz at the Curie Point. Both the peak dielectric constant and the Curie point parameters provide semi-quantitative information concerning the chemical and microstructural homogeneity of the parent material used for the production of PMN/PT granules for LACs. Finally, we have proposed flag limits for the dielectric data for the pellets. Specifically, if the temperature of the peak dielectric constant falls outside the range of 250 C {+-} 30 C we propose that a flag limit be imposed that will initiate communication between production agency and design agency personnel. If the peak dielectric constant measured falls outside the range 25,000 {+-} 10,000 we also propose that a flag limit be imposed.

  9. Lightning Technology: Proceedings of a Technical Symposium

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several facets of lightning technology are considered including phenomenology, measurement, detection, protection, interaction, and testing. Lightning electromagnetics, protection of ground systems, and simulated lightning testing are emphasized. The lightning-instrumented F-106 aircraft is described.

  10. An Approach to the Lightning Overvoltage Protection of Medium Voltage Lines in Severe Lightning Areas

    SciTech Connect

    Omidiora, M. A.; Lehtonen, M.

    2008-05-08

    This paper deals with the effect of shield wires on lightning overvoltage reduction and the energy relief of MOV (Metal Oxide Varistor) arresters from direct strokes to distribution lines. The subject of discussion is the enhancement of lightning protection in Finnish distribution networks where lightning is most severe. The true index of lightning severity in these areas is based on the ground flash densities and return stroke data collected from the Finnish meteorological institute. The presented test case is the IEEE 34-node test feeder injected with multiple lightning strokes and simulated with the Alternative Transients Program/Electromagnetic Transients program (ATP/EMTP). The response of the distribution line to lightning strokes was modeled with three different cases: no protection, protection with surge arresters and protection with a combination of shield wire and arresters. Simulations were made to compare the resulting overvoltages on the line for all the analyzed cases.

  11. Development and Testing of Operational Dual-Polarimetric Radar Based Lightning Initiation Forecast Techniques

    NASA Technical Reports Server (NTRS)

    Woodard, Crystal; Carey, Lawrence D.; Petersen, Walter A.; Felix, Mariana; Roeder, William P.

    2011-01-01

    Lightning is one of Earth s natural dangers, destructive not only to life but also physical property. According to the National Weather Service, there are on average 58 lightning fatalities each year, with over 300 related injuries (NWS 2010). The ability to forecast lightning is critical to a host of activities ranging from space vehicle launch operations to recreational sporting events. For example a single lightning strike to a Space Shuttle could cause billions of dollars of damage and possible loss of life. While forecasting that provides longer lead times could provide sporting officials with more time to respond to possible threatening weather events, thus saving the lives of player and bystanders. Many researchers have developed and tested different methods and tools of first flash forecasting, however few have done so using dual-polarimetric radar variables and products on an operational basis. The purpose of this study is to improve algorithms for the short-term prediction of lightning initiation through development and testing of operational techniques that rely on parameters observed and diagnosed using C-band dual-polarimetric radar.

  12. Colorado Lightning Mapping Array Collaborations through the GOES-R Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Szoke, Edward; Rydell, Nezette; Cox, Robert; Mazur, Rebecca

    2014-01-01

    For the past two years, the GOES-R Proving Ground has solicited proposals for its Visiting Scientist Program. NASA's Short-term Prediction Research and Transition (SPoRT) Center has used this opportunity to support the GOES-R Proving Ground by expanding SPoRT's total lightning collaborations. In 2012, this expanded the evaluation of SPoRT's pseudo-geostationary lightning mapper product to the Aviation Weather Center and Storm Prediction Center. This year, SPoRT has collaborated with the Colorado Lightning Mapping Array (COLMA) and potential end users. In particular, SPoRT is collaborating with the Cooperative Institute for Research in the Atmosphere (CIRA) and Colorado State University (CSU) to obtain these data in real-time. From there, SPoRT is supporting the transition of these data to the local forecast offices in Boulder, Colorado and Cheyenne, Wyoming as well as to Proving Ground projects (e.g., the Hazardous Weather Testbed's Spring Program and Aviation Weather Center's Summer Experiment). This presentation will focus on the results of this particular Visiting Scientist Program trip. In particular, the COLMA data are being provided to both forecast offices for initial familiarization. Additionally, several forecast issues have been highlighted as important uses for COLMA data in the operational environment. These include the utility of these data for fire weather situations, situational awareness for both severe weather and lightning safety, and formal evaluations to take place in the spring of 2014.

  13. Development and implementation of a propeller test capability for GL-10 "Greased Lightning" propeller design

    NASA Astrophysics Data System (ADS)

    Duvall, Brian Edward

    Interest in small unmanned aerial vehicles has increased dramatically in recent years. Hybrid vehicles which allow forward flight as a fixed wing aircraft and a true vertical landing capability have always had applications. Management of the available energy and noise associated with electric propeller propulsion systems presents many challenges. NASA Langley has developed the Greased Lightning 10 (GL-10) vertical takeoff, unmanned aerial vehicle with ten individual motors and propellers. All are used for propulsion during takeoff and contribute to acoustic noise pollution which is an identified nuisance to the surrounding users. A propeller test capability was developed to gain an understanding of how the noise can be reduced while meeting minimum thrust requirements. The designed propeller test stand allowed for various commercially available propellers to be tested for potential direct replacement of the current GL-10 propellers and also supported testing of a newly designed propeller provided by the Georgia Institute of Technology. Results from the test program provided insight as to which factors affect the noise as well as performance characteristics. The outcome of the research effort showed that the current GL-10 propeller still represents the best choice of all the candidate propellers tested.

  14. Synthesis and testing of a conducting polymeric composite material for lightning strike protection applications

    NASA Astrophysics Data System (ADS)

    Katunin, A.; Krukiewicz, K.; Turczyn, R.; Sul, P.; Łasica, A.; Catalanotti, G.; Bilewicz, M.

    2017-02-01

    Lightning strike protection is one of the important issues in the modern maintenance problems of aircraft. This is due to a fact that the most of exterior elements of modern aircraft is manufactured from polymeric composites which are characterized by isolating electrical properties, and thus cannot carry the giant electrical charge when the lightning strikes. This causes serious damage of an aircraft structure and necessity of repairs and tests before returning a vehicle to operation. In order to overcome this problem, usually metallic meshes are immersed in the polymeric elements. This approach is quite effective, but increases a mass of an aircraft and significantly complicates the manufacturing process. The approach proposed by the authors is based on a mixture of conducting and dielectric polymers. Numerous modeling studies which are based on percolation clustering using kinetic Monte Carlo methods, finite element modeling of electrical and mechanical properties, and preliminary experimental studies, allow achieving an optimal content of conducting particles in a dielectric matrix in order to achieve possibly the best electrical conductivity and mechanical properties, simultaneously. After manufacturing the samples with optimal content of a conducting polymer, mechanical and electrical characterization as well as high-voltage testing was performed. The application of such a material simplifies manufacturing process and ensures unique properties of aircraft structures, which allows for minimizing damage after lightning strike, as well as provide electrical bounding and grounding, interference shielding, etc. The proposed solution can minimize costs of repair, testing and certification of aircraft structures damaged by lightning strikes.

  15. A History of the Lightning Launch Commit Criteria and the Lightning Advisory Panel for America's Space Program

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J. (Editor); Willett, John C.; Christian, Hugh J.; Dye, James E.; Krider, E. Phillip; Madura, John T.; OBrien, T. Paul; Rust, W. David; Walterscheid, Richard L.

    2010-01-01

    The history of the Lightning Launch Commit Criteria (LLCC) used at all spaceports under the jurisdiction of the United States is provided. The formation and history of the Lightning Advisory Panel (LAP) that now advises NASA, the Air Force and the Federal Aviation Administration on LLCC development and improvement is emphasized. The period covered extends from the early days of space flight through 2010. Extensive appendices provide significant detail about important aspects that are only summarized in the main text.

  16. Overview of the 2003 and 2004 Field Program Phases of the Thunderstorm Electrification and Lightning Experiment (TELEX)

    NASA Astrophysics Data System (ADS)

    Rust, W. D.; Macgorman, D. R.; Schuur, T. J.; Bruning, E. C.; Weiss, S. A.; Straka, J.; Rison, W.; Hamlin, T.; Krehbiel, P. R.; Biggerstaff, M.; Apostololakopoulos, I.

    2004-12-01

    The scientific purpose of TELEX is to test and revise hypotheses concerning the inter-relationships among the wind field, microphysical characteristics, electrical structure, and lightning of isolated nonsevere and severe storms and mesoscale convective systems (MCSs). We conducted the field program of TELEX in central Oklahoma, 11 May-6 June 2003 and 9 May-20 June 2004. At the beginning of the 2003 field program, several new and upgraded observing systems were operating in central Oklahoma: the polarimetric part of the KOUN 11-cm wavelength Doppler radar, the Oklahoma three-dimensional Lightning Mapping Array (OK-LMA), and a mobile laboratory for storm intercept and mobile ballooning with up to four balloon soundings being possible simultaneously. Furthermore, the balloon-borne electric field meter was substantially upgraded the second year (both mechanically and electronically) to provide higher resolution data, including more accurate determination of instrument orientation to increase the resolution of three-dimensional electric field vectors in context of the three-dimensional structures of storm parameters and lightning. Presented in this paper are examples from both years in which instrumented balloons carrying a radiosonde and electric field meter obtained soundings. Other sensors were sometimes added to the instrument train by visiting researchers. In 2003, fourteen flights were made during seven missions. Owing to a scarcity of isolated deep convection in central Oklahoma during the 2003 program, the flights were mostly in nighttime multicellular storms and MCSs. In 2004, thirty-six flights were made during 13 ballooning missions. Soundings were made through nonsevere and severe storms and mesoscale convective systems. Several flights recorded data on both ascent and descent through the storm. Electric fields ranging above 150 kV/m were measured.

  17. Lightning Warning and Protection for DNA High Explosive Test-Bed.

    DTIC Science & Technology

    1986-08-01

    technical discussions during the program. hAc NTT- iii/iv CONTENTS - - - Sectio. 1. INTRODUCTION 1 2. THE THUNDERSTORM ; 3 3. MECHANISMS OF LIGHTNING...point discharge at the earth’s surface . is in the subcloud region below the negative charge center. These charges, together with their image charges...electric field polarity is )oposite thar used elsewhere in this report. 5 M4 The typical sequence of electric fields observed at the earth’s surface

  18. Lightning fire research in the Rocky Mountains

    Treesearch

    J. S. Barrows

    1954-01-01

    Lightning is the major cause of fires in Rocky Mountain forests. The lightning fire problem is the prime target of a broad research program now known as Project Skyfire. KEYWORDS: lightning, fire research

  19. Lightning Tracking Tool for Assessment of Total Cloud Lightning within AWIPS II

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.; Stano, Geoffrey T.; Sperow, Ken

    2014-01-01

    Total lightning (intra-cloud and cloud-to-ground) has been widely researched and shown to be a valuable tool to aid real-time warning forecasters in the assessment of severe weather potential of convective storms. The trend of total lightning has been related to the strength of a storm's updraft. Therefore a rapid increase in total lightning signifies the strengthening of the parent thunderstorm. The assessment of severe weather potential occurs in a time limited environment and therefore constrains the use of total lightning. A tool has been developed at NASA's Short-term Prediction Research and Transition (SPoRT) Center to assist in quickly analyzing the total lightning signature of multiple storms. The development of this tool comes as a direct result of forecaster feedback from numerous assessments requesting a real-time display of the time series of total lightning. This tool also takes advantage of the new architecture available within the AWIPS II environment. SPoRT's lightning tracking tool has been tested in the Hazardous Weather Testbed (HWT) Spring Program and significant changes have been made based on the feedback. In addition to the updates in response to the HWT assessment, the lightning tracking tool may also be extended to incorporate other requested displays, such as the intra-cloud to cloud-to-ground ratio as well as incorporate the lightning jump algorithm.

  20. Produce documents and media information. [on lightning

    NASA Technical Reports Server (NTRS)

    Alzmann, Melanie A.; Miller, G.A.

    1994-01-01

    Lightning data and information were collected from the United States, Germany, France, Brazil, China, and Australia for the dual purposes of compiling a global lightning data base and producing publications on the Marshall Space Flight Center's lightning program. Research covers the history of lightning, the characteristics of a storm, types of lightningdischarges, observations from airplanes and spacecraft, the future fole of planes and spacecraft in lightning studies, lightning detection networks, and the relationships between lightning and rainfall. Descriptions of the Optical Transient Dectector, the Lightning Imaging Sensor, and the Lightning Mapper Sensor are included.

  1. Post Launch Calibration and Testing of the Geostationary Lightning Mapper on GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Rafal, Marc; Cholvibul, Ruth; Clarke, Jared

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 s) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  2. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    NASA Astrophysics Data System (ADS)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  3. Post Launch Calibration and Testing of the Geostationary Lightning Mapper on the GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Rafal, Marc D.; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 microseconds) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  4. Quality Assurance Assessment of the F-35 Lightning II Program

    DTIC Science & Technology

    2013-09-30

    Defense Contract Management Agency should: • Provide a comprehensive quality assurance oversight plan for Joint Program Office approval to be...included in the memorandum of agreement. • Audit the execution of the quality assurance oversight plan throughout the F-35 supply chain. Management... plans deferred the procurement of 410 aircraft until 2017. In March 2012, JPO established a new acquisition program baseline for the F-35 program

  5. Lightning Protection and Structural Bonding for the B2 Test Stand

    NASA Technical Reports Server (NTRS)

    Kinard, Brandon

    2015-01-01

    With the privatization of the space industry, NASA has entered a new era. To explore deeper parts of the solar system, NASA is developing a new spacecraft, the Space Launch System (SLS), capable of reaching these destinations, such as an asteroid or Mars. However, the test stand that is capable of testing the stage has been unused for many years. In addition to the updating/repair of the stand, more steel is being added to fully support the SLS. With all these modifications, the lightning protection system must be brought up to code to assure the protection of all personnel and assets. Structural bonding is a part of the lightning protection system. The focus of this project was to assure proper structural bonding. To begin, all relevant technical standards and the construction specifications were reviewed. This included both the specifications for the lightning protection and for general construction. The drawings were reviewed as well. From the drawings, bolted structural joints were reviewed to determine whether bonding was necessary. Several bolted joints were determined to need bonding according to the notes in the drawings. This exceeds the industry standards. The bolted joints are an electrically continuous joint. During tests, the stand experiences heavy vibration that may weaken the continuity of the bolted joint. Therefore, the secondary bonding is implemented to ensure that the structural joint has low resistance. If the structural joint has a high resistance because of corrosion, a potential gradient can occur that can cause a side flash. Damage, injury, or death can occur from a side flash so they are to be prevented. A list of the identified structural joints was compiled and sent to the contractor to be bonded. That covers the scope of this project.

  6. Lightning accommodation systems for wind turbine generator safety

    NASA Technical Reports Server (NTRS)

    Bankaitis, H.

    1981-01-01

    The wind turbine safety program identifies the naturally occurring lightning phenomenon as a hazard with the potential to cause loss of program objectives, injure personnel, damage system instrumentation, structure or support equipment and facilities. Several candidate methods of lightning accommodation for each blade were designed, analyzed, and tested by submitting sample blade sections to simulated lightning. Lightning accommodation systems for composite blades were individually developed. Their effectiveness was evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system designs were reviewed on the basis of the analysis. This activity is directed at defining design and procedural constraints, requirements for safety devices and warning methods, special procedures, protective equipment and personnel training.

  7. Science of Ball Lightning (Fire Ball)

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Yoshi-Hiko

    1989-08-01

    The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Ball Lightning -- The Continuing Challenge * Hungarian Ball Lightning Observations in 1987 * Nature of Ball Lightning in Japan * Phenomenological and Psychological Analysis of 150 Austrian Ball Lightning Reports * Physical Problems and Physical Properties of Ball Lightning * Statistical Analysis of the Ball Lightning Properties * A Fluid-Dynamical Model for Ball Lightning and Bead Lightning * The Lifetime of Hill's Vortex * Electrical and Radiative Properties of Ball Lightning * The Candle Flame as a Model of Ball Lightning * A Model for Ball Lightning * The High-Temperature Physico-Chemical Processes in the Lightning Storm Atmosphere (A Physico-Chemical Model of Ball Lightning) * New Approach to Ball Lightning * A Calculation of Electric Field of Ball Lightning * The Physical Explanation to the UFO over Xinjiang, Northern West China * Electric Reconnection, Critical Ionization Velocity, Ponderomotive Force, and Their Applications to Triggered and Ball Lightning * The PLASMAK™ Configuration and Ball Lightning * Experimental Research on Ball Lightning * Performance of High-Voltage Test Facility Designed for Investigation of Ball Lightning * List of Participants

  8. Lightning hazards overview: Aviation requirements and interests

    NASA Technical Reports Server (NTRS)

    Corn, P. B.

    1979-01-01

    A ten-year history of USAF lightning incidents is presented along with a discussion of the problems posed by lightning to current aircraft, and the hazards it constitutes to the electrical and electronic subsystems of new technology aircraft. Lightning technical protection technical needs, both engineering and operational, include: (1) in-flight data on lightning electrical parameters; (2) tech base and guidelines for protection of advanced systems and structures; (3) improved laboratory test techniques; (4) analysis techniques for predicting induced effects; (5) lightning strike incident data from general aviation; (6) lightning detection systems; (7) pilot reports on lightning strikes; and (8) better training in lightning awareness.

  9. Lightning Protection against Winter Lightning

    NASA Astrophysics Data System (ADS)

    Sugimoto, Hitoshi

    Winter lightning, which occurs along the Sea of Japan coast, often damages transmission lines and distribution lines with the conventional lightning protection. These lines in mountainous areas suffer extensive damage from winter lightning. It is very important to investigate the features of lightning outages in detail to improve the lightning protection measures against winter lightning, therefore observations of lightning strokes to transmission lines and distribution lines as well as measurements of lightning surges on these lines have been carried out. And then the lightning performance of various protection methods has studied by experiments and analyses. Taking into account these studies, the effective methods have been adopted. This paper presents the lightning protection of transmission lines and distribution lines against winter lightning.

  10. Planetary lightning

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Clayton, R. N.; Buseck, P. R.; Hua, X.; Holsapple, K. A.; Esposito, L. W.; Aherns, T. J.; Hecht, J.

    The present state of knowledge concerning lightning on the planets is reviewed. Voyager data have clearly established the presence of lightning discharges at each of the four Jovian planets. In situ data for lightning on Venus are discussed in some detail, including reported quantitative occurrence rates and hypotheses concerning the relationship of Venusian lightning to VLF bursts observed in the Venus atmosphere.

  11. GOES Infrared and Reflectance 0-1 hour Lightning Initiation Indicators: Development and Initial Testing within a Convective Nowcasting System

    NASA Astrophysics Data System (ADS)

    Mecikalski, J. R.; Harris, R.; MacKenzie, W.; Durkee, P. A.; Iskenderian, H.; Bickmeier, L.; Nielsen, K. E.

    2010-12-01

    Within cumulus cloud fields that develop in conditionally unstable air masses, only a fraction of the cumuli may eventually develop into deep convection. Identifying which of these convective clouds most likely to generate lightning often starts with little more than a qualitative visual satellite analysis. The goal of this study is to identify the observed satellite infrared (IR) signatures associated with growing cumulus clouds prior to the first lightning strike, so-called lightning initiation (LI). This study quantifies the behavior of ten Geostationary Operational Environmental Satellite (GOES-12) IR interest fields in the 1-hour in advance of LI. A total of 172 lightning-producing storms that occurred during the 2009 convective season are manually tracked and studied over four regions: Northern Alabama, Central Oklahoma, the Kennedy Space Center and Washington D.C. Four-dimensional and cloud-to-ground lightning array data provide a total cloud lightning picture (in-cloud, cloud-to-cloud, cloud-to-air, cloud-to-ground) and thus precise LI points for each storm in both time and space. Statistical significance tests are conducted on observed trends for each of the ten LI fields to determine the unique information each field provides in terms of behavior prior to LI. Eight out of ten LI fields exhibited useful information at least 15 min in advance of LI, with 35 min being the average. Statistical tests on these eight fields are compared for separate large geographical areas. IR temperature thresholds are then determined as an outcome, which may be valuable when implementing a LI prediction algorithm into real-time satellite-based systems. The key LI indicators from GOES IR data (as well as 3.9 μm reflectance) will be presented. Beginning in 2010, the feasibility of using the satellite-based LI indicators found in the above analysis to forecast first lightning will be assessed within the Federal Aviation Administration’s (FAA) CoSPA nowcasting system. The goal

  12. Lightning injuries.

    PubMed

    O'Keefe Gatewood, Medley; Zane, Richard D

    2004-05-01

    Lightning is persistently one of the leading causes of death caused by environmental or natural disaster. To understand the pathophysiology and treatment of lightning injuries one must first discount the innumerable myths, superstitions, and misconceptions surrounding lightning. The fundamental difference between high voltage electrical injury and lightning is the duration of exposure to current. Reverse triage should be instituted in lightning strike victims because victims in cardiopulmonary arrest might gain the greatest benefit from resuscitation efforts, although there is no good evidence suggesting that lightning strike victims might benefit from longer than usual resuscitation times. Many of the injuries suffered by lightning strike victims are unique to lightning, and long-term sequelae should be anticipated and addressed in the lightning victim.

  13. In flight direct strike lightning research. [Using an F-106B Aircraft

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.

    1981-01-01

    The lightning generated electromagnetic environment effecting aircraft is studied. The program uses F-106B aircraft which operates in a thunderstorm environment and is specially instrumented for the lightning electromagnetic measurements. The instrumentation system is reviewed and typical results recorded by the research instrumentation during simulated lightning ground tests performed for a safety survey are presented along with several examples of direct strike data obtained during the summer of 1980.

  14. Gas spark switches with increased operating life for Marx generator of lightning test complex

    SciTech Connect

    Bykov, Yu. A.; Krastelev, E. G.

    2016-12-15

    A new design of gas spark switches with an increased operating life and stable dynamic characteristics for the Marx generator of the lightning test complex has been developed. The switches are characterized by the following parameters in the mode of operation: voltage up to 80 kV, discharge current up to 50 kA, flowing charge up to 3.5 C/pulse. An increased operating life is achieved by using torus-shaped electrodes with increased working surface area and a trigger electrode in the form of a thick disk with a hole located between them. Low breakdown delay time and high stability of breakdown voltage under dynamic conditions are provided by gas preionization in the spark gap using UV radiation of an additional corona discharge in the axial region.

  15. Gas spark switches with increased operating life for Marx generator of lightning test complex

    NASA Astrophysics Data System (ADS)

    Bykov, Yu. A.; Krastelev, E. G.

    2016-12-01

    A new design of gas spark switches with an increased operating life and stable dynamic characteristics for the Marx generator of the lightning test complex has been developed. The switches are characterized by the following parameters in the mode of operation: voltage up to 80 kV, discharge current up to 50 kA, flowing charge up to 3.5 C/pulse. An increased operating life is achieved by using torus-shaped electrodes with increased working surface area and a trigger electrode in the form of a thick disk with a hole located between them. Low breakdown delay time and high stability of breakdown voltage under dynamic conditions are provided by gas preionization in the spark gap using UV radiation of an additional corona discharge in the axial region.

  16. Improved test methods for determining lightning-induced voltages in aircraft

    NASA Technical Reports Server (NTRS)

    Crouch, K. E.; Plumer, J. A.

    1980-01-01

    A lumped parameter transmission line with a surge impedance matching that of the aircraft and its return lines was evaluated as a replacement for earlier current generators. Various test circuit parameters were evaluated using a 1/10 scale relative geometric model. Induced voltage response was evaluated by taking measurements on the NASA-Dryden Digital Fly by Wire F-8 aircraft. Return conductor arrangements as well as other circuit changes were also evaluated, with all induced voltage measurements being made on the same circuit for comparison purposes. The lumped parameter transmission line generates a concave front current wave with the peak di/dt near the peak of the current wave which is more representative of lightning. However, the induced voltage measurements when scaled by appropriate scale factors (peak current or di/dt) resulting from both techniques yield comparable results.

  17. Lightning Detection

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Lightning causes an estimated $50 million annually in damages to power lines, transformers and other electric utility equipment. Lightning strikes are not yet predictable, but U.S. East Coast Lightning Detection Network (LDN) is providing utilities and other clients data on lightning characteristics, flash frequency and location, and the general direction in which lightning associated storms are heading. Monitoring stations are equipped with direction finding antennas that detect lightning strikes reaching the ground by measuring fluctuations in the magnetic field. Stations relay strike information to SUNY-Albany-LDN operations center which is manned around the clock. Computers process data, count strikes, spot their locations, and note other characteristics of lightning, LDN's data is beamed to a satellite for broadcast to client's receiving stations. By utilizing real-time lightning strike information, managers are now more able to effectively manage their resources. This reduces outage time for utility customers.

  18. Direct-strike lightning photographs, swept-flash attachment patterns, and flight conditions for storm hazards 1982

    NASA Technical Reports Server (NTRS)

    Zaepfel, K. P.; Fisher, B. D.; Ott, M. S.

    1985-01-01

    As part of the NASA Langley Research Center Storm Hazards Program, 241 thunderstorm penetrations were made in 1982 with an F-106B airplane in order to record direct-strike lightning data and the associated flight conditions. During these penetrations, the airplane received 156 direct lightning strikes; in addition, lightning transient data were recorded from 26 nearby lightning flashes. The tests were conducted within 150 nautical miles of Hampton, Virginia, assisted by ground-based weather-radar guidance from the NASA Wallops Flight Facility. The photographs of the lightning attachments taken from two onboard 16-mm color movie cameras and the associated strike attachment patterns are presented. A table of the flight conditions recorded at the time of each lightning event, and a table in which the data are cross-referenced with the previously published lightning electromagnetic waveform data are included.

  19. Lightning protection technology for small general aviation composite material aircraft

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Setzer, T. E.; Siddiqi, S.

    1993-01-01

    An on going NASA (Small Business Innovative Research) SBIR Phase II design and development program will produce the first lightning protected, fiberglass, General Aviation aircraft that is available as a kit. The results obtained so far in development testing of typical components of the aircraft kit, such as the wing and fuselage panels indicate that the lightning protection design methodology and materials chosen are capable of protecting such small composite airframes from lightning puncture and structural damage associated with severe threat lightning strikes. The primary objective of the program has been to develop a lightening protection design for full scale test airframe and verify its adequacy with full scale laboratory testing, thus enabling production and sale of owner-built, lightning-protected, Stoddard-Hamilton Aircraft, Inc. Glasair II airplanes. A second objective has been to provide lightning protection design guidelines for the General Aviation industry, and to enable these airplanes to meet lightening protection requirements for certification of small airplanes. This paper describes the protection design approaches and development testing results obtained thus far in the program, together with design methodology which can achieve the design goals listed above. The presentation of this paper will also include results of some of the full scale verification tests, which will have been completed by the time of this conference.

  20. Lightning in aeronautics

    NASA Astrophysics Data System (ADS)

    Lago, F.

    2014-11-01

    It is generally accepted that a civilian aircraft is struck, on average, once or twice per year. This number tends to indicate that a lightning strike risk is far from being marginal and so requires that aircraft manufacturers have to demonstrate that their aircraft is protected against lightning. The first generation of aircrafts, which were manufactured mainly in aluminium alloy and had electromechanical and pneumatic controls, had a natural immunity to the effects of lightning. Nowadays, aircraft structures are made primarily with composite materials and flight controls are mostly electronic. This aspect of the "more composite and more electric" aircraft demands to aircraft manufacturers to pay a particular attention to the lightning protection and to its certification by testing and/or analysis. It is therefore essential to take this risk into account when designing the aircraft. Nevertheless, it is currently impossible to reproduce the entire lightning phenomenon in testing laboratories and the best way to analyse the lightning protection is to reproduce its effects. In this context, a number of standards and guides are produced by standards committees to help laboratories and aircraft manufacturers to perform realistic tests. Although the environment of a laboratory is quite different from those of a storm cloud, the rules of aircraft design, the know-how of aircraft manufacturers, the existence of international work leading to a better understanding of the lightning phenomenon and standards more precise, permit, today, to consider the risk as properly controlled.

  1. Automatic Test Program Generation.

    DTIC Science & Technology

    1978-03-01

    presents a test description language, NOPAL , in which a user may describe diagnostic tests, and a software system which automatically generates test...programs for an automatic test equipment based on the descriptions of tests. The software system accepts as input the tests specified in NOPAL , performs

  2. A Test Study of 50% Lightning Impulse Breakdown Voltage on Rod-Plane Gap with Two-Phase Mixture of Gas and Solid Particles

    NASA Astrophysics Data System (ADS)

    He, Zhenghao; Xu, Huaili; Bai, Jing; Yu, Fusheng; Hu, Feng; Li, Jin

    2007-12-01

    A test study on 50% lightning impulse breakdown voltage in two-phase mixture of gas and solid particles has been carried out in a specially designed discharge cabinet. A mechanical sieve is set up for sifting different solid particles into the discharge space uniformly. The lightning impulse voltage according with international electro-technical commission (IEC) standard is applied to the electrodes inside the discharge cabinet by the rule of up-down method in a total of 40 times. The results showed that the 50% lightning impulse breakdown voltage in two-phase mixture of gas and solid particles has its own features and is much different from that in air.

  3. Test-driven programming

    NASA Astrophysics Data System (ADS)

    Georgiev, Bozhidar; Georgieva, Adriana

    2013-12-01

    In this paper, are presented some possibilities concerning the implementation of a test-driven development as a programming method. Here is offered a different point of view for creation of advanced programming techniques (build tests before programming source with all necessary software tools and modules respectively). Therefore, this nontraditional approach for easier programmer's work through building tests at first is preferable way of software development. This approach allows comparatively simple programming (applied with different object-oriented programming languages as for example JAVA, XML, PYTHON etc.). It is predictable way to develop software tools and to provide help about creating better software that is also easier to maintain. Test-driven programming is able to replace more complicated casual paradigms, used by many programmers.

  4. The 1982 direct strike lightning data

    NASA Technical Reports Server (NTRS)

    Thomas, M. E.; Pitts, F. L.

    1983-01-01

    Wideband waveforms data which were obtained during the 1982 direct-strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in a thunderstorm environment to elicit strikes to the aircraft during this testing period. Electromagnetic field data were recorded to both attached lightning and free field excitation of the aircraft.

  5. Seat test program

    NASA Technical Reports Server (NTRS)

    Bricker, R. W.

    1979-01-01

    The test program has the objectives to: (1) evaluate severity of newspaper ignition source with contemporary seats (determine weight loss, visual damage, and if ignition source is severe enough to show improvement with new material configurations); (2) compare damage with jet A-1 ignition source; and (3) determine if materials for seat tests pass FAR 25 and obtain L01. Test configurations, data acquired, material test results, seat test results, and conclusions are presented.

  6. Ball lightning

    NASA Astrophysics Data System (ADS)

    Stenhoff, Mark

    Ball lightning is alleged by some to be a rare atmospheric phenomenon usually associated with thunderstorms, while others hold that it does not exist. This controversy has continued for centuries. This study comprises a critical evaluation of evidence for the existence of ball lightning. An historical review of the controversy is first presented, giving a chronological account of developments in ball lightning theories and of important observations alleged to be of the phenomenon. Other phenomena which might be mistaken for ball lightning are then subjected to a more detailed study than has hitherto been published, and the means by which such misidentifications could be recognized areestablished. A discussion of psychological and perceptual aspects indicates that descriptions could not always be taken at face value, and that many accounts of alleged ball lightning would be expected to contain substantial inaccuracies. The original intention to evaluate cases of alleged ball lightning already published in scientific journals was abandoned because there was no standardisation of information content, and because the majority of reports contained insufficient information for evaluation. Many reports had been written in a style which indicated an assumption that ball lightning was the cause of the event. Approximately 200 unpublished reports were therefore collected and subjected to evaluation. It was found that the majority of reports of alleged ball lightning could be explained by other means, and there was only a very small residue of reports which could not easily be thus explained. A large proportion of the reports could be attributed to corona discharge effects such as St Elmo's fire, or by familiar effects of conventional linear lightning. The validity of many previously published statistical studies of ball lightning was shown to be doubtful. The thesis concludes with a comparitive discussion of the merits and demerits of some of the diverse physical models

  7. LSZ-850 lightning sensor system

    NASA Astrophysics Data System (ADS)

    Coleman, Ernest W.

    1988-04-01

    The design and summary of test results of a new Honeywell Wideband Lightning Sensor System (LSZ-850) is presented. The unique method for identifying, direction-finding and ranging to a lightning stroke is discussed. The LSZ-850 Lightning Sensor System senses electrostatic and electromagnetic disturbances caused by lightning discharge activity. When a discharge occurs, the system carefully analyzes the lightning discharge and creates the proper symbol for display on the radar indicator. The system's computer determines the rate of lightning in a fixed geographical area and then displays the centroid of that area with the unique lightning rate symbol. Wide bandwidth, extensive signal processing and lightning stroke recognition algorithms are used. Tests on a number of lightning storms at distances to 100 nm indicate the angular resolution to be better than plus or minus 10 degrees, and may be in the range of less than 3 degrees with little or no systematic dependence on the number of active thunderstorm cells which are at different angles. Test results are presented which show the accuracy of the system in locating severe weather.

  8. A test and measurement technique for determining possible lightning-induced voltages in aircraft electrical circuits

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Walko, L. C.

    1975-01-01

    Transient analyzer consists of four 0.5 microfarads capacitors chargeable by self-contained solid state 50 KV dc power supply operating from standard 110 Vac line voltage. Unit can circulate unidirectional current impulses of up to 500 amperes through aircraft at waveshapes similar to those of natural lightning strokes.

  9. Lightning Phenomenology

    NASA Astrophysics Data System (ADS)

    Kawasaki, Zen

    This paper presents a phenomenological idea about lightning flash to share the back ground understanding for this special issue. Lightning discharges are one of the terrible phenomena, and Benjamin Franklin has led this natural phenomenon to the stage of scientific investigation. Technical aspects like monitoring and location are also summarized in this article.

  10. Evaluation of NASA SPoRT's Pseudo-Geostationary Lightning Mapper Products in the 2011 Spring Program

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Carcione, Brian; Siewert, Christopher; Kuhlman, Kristin M.

    2012-01-01

    NASA's Short-term Prediction Research and Transition (SPoRT) program is a contributing partner with the GOES-R Proving Ground (PG) preparing forecasters to understand and utilize the unique products that will be available in the GOES-R era. This presentation emphasizes SPoRT s actions to prepare the end user community for the Geostationary Lightning Mapper (GLM). This preparation is a collaborative effort with SPoRT's National Weather Service partners, the National Severe Storms Laboratory (NSSL), and the Hazardous Weather Testbed s Spring Program. SPoRT continues to use its effective paradigm of matching capabilities to forecast problems through collaborations with our end users and working with the developers at NSSL to create effective evaluations and visualizations. Furthermore, SPoRT continues to develop software plug-ins so that these products will be available to forecasters in their own decision support system, AWIPS and eventually AWIPS II. In 2009, the SPoRT program developed the original pseudo geostationary lightning mapper (PGLM) flash extent product to demonstrate what forecasters may see with GLM. The PGLM replaced the previous GLM product and serves as a stepping-stone until the AWG s official GLM proxy is ready. The PGLM algorithm is simple and can be applied to any ground-based total lightning network. For 2011, the PGLM used observations from four ground-based networks (North Alabama, Kennedy Space Center, Oklahoma, and Washington D.C.). While the PGLM is not a true proxy product, it is intended as a tool to train forecasters about total lightning as well as foster discussions on product visualizations and incorporating GLM-resolution data into forecast operations. The PGLM has been used in 2010 and 2011 and is likely to remain the primary lightning training tool for the GOES-R program for the near future. This presentation will emphasize the feedback received during the 2011 Spring Program. This will discuss several topics. Based on feedback

  11. 14 CFR 35.38 - Lightning strike.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lightning strike. 35.38 Section 35.38... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by... lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller...

  12. 14 CFR 35.38 - Lightning strike.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lightning strike. 35.38 Section 35.38... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by... lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller...

  13. 14 CFR 35.38 - Lightning strike.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Lightning strike. 35.38 Section 35.38... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by... lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller...

  14. 14 CFR 35.38 - Lightning strike.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lightning strike. 35.38 Section 35.38... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by... lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller...

  15. An experimental test of the 'transmission-line model' of electromagnetic radiation from triggered lightning return strokes

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Idone, V. P.; Orville, R. E.; Leteinturier, C.; Eybert-Berard, A.

    1988-01-01

    Peak currents, two-dimensional average propagation speeds, and electric field waveforms for a number of subsequent return strikes in rocket-triggered lightning flashes were measured in order to test the 'transmission-line model' of return-stroke radiation of Uman and McLain (1970). Reasonable agreement is found between the propagation speeds measured with the streak camera and those deduced from the transmission-line model. A modification of the model is proposed in which two wave fronts travel upward and downward away from a junction point a short distance above the ground.

  16. An experimental test of the 'transmission-line model' of electromagnetic radiation from triggered lightning return strokes

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Idone, V. P.; Orville, R. E.; Leteinturier, C.; Eybert-Berard, A.

    1988-01-01

    Peak currents, two-dimensional average propagation speeds, and electric field waveforms for a number of subsequent return strikes in rocket-triggered lightning flashes were measured in order to test the 'transmission-line model' of return-stroke radiation of Uman and McLain (1970). Reasonable agreement is found between the propagation speeds measured with the streak camera and those deduced from the transmission-line model. A modification of the model is proposed in which two wave fronts travel upward and downward away from a junction point a short distance above the ground.

  17. Lightning Effects in the Payload Changeout Room

    NASA Technical Reports Server (NTRS)

    Thomas, Garland L.; Fisher, Franklin A.; Collier, Richard S.; Medelius, Pedro J.

    1997-01-01

    Analytical and empirical studies have been performed to provide better understanding of the electromagnetic environment inside the Payload Changeout Room and Orbiter payload bay resulting from lightning strikes to the launch pad lightning protection system. The analytical studies consisted of physical and mathematical modeling of the pad structure and the Payload Changeout Room. Empirical testing was performed using a lightning simulator to simulate controlled (8 kA) lightning strikes to the catenary wire lightning protection system. In addition to the analyses and testing listed above, an analysis of the configuration with the vehicle present was conducted, in lieu of testing, by the Finite Difference, Time Domain method.

  18. Lightning - Apollo to Shuttle. [case histories and spacecraft protection

    NASA Technical Reports Server (NTRS)

    Durrett, W. R.

    1976-01-01

    The history of lightning striking NASA spacecraft and the development of lightning protection systems is reviewed from the Apollo 12 flight, involving a lightning strike thirty six seconds after launch, to the present date. Particular attention is paid to problems that may arise in this field in the context of planning and implementing the Space Shuttle program. The lightning protection design for Apollo is described: a folding mast mounted on top of the hammerhead crane on top of the Launcher Umbilical Tower, with a lightning rod on top. The effect of lightning storms on the launches of Apollos 12 through 17 is examined, as is the effect of lightning in the Skylab program. The lightning problems encountered by the Apollo-Soyuz mission and by the two unmanned Viking launches to Mars are discussed. The Lightning Detection And Ranging system for detecting RF emission from lightning discharges is described.

  19. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Christian, H. J.; Stewart, M. F.; Mach, D. M.; Bateman, M.; Walker, T. D.; Buechler, D.; Koshak, W. J.; OBrien, S.; Wilson, T.; Colley, E. C.; Abbott, T.; Carter, J.; Pavelitz, S.; Coker, C.

    2014-01-01

    In recent years, NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to provide global observations of total lightning after 17 years on-orbit. In April 2013, a space-qualified LIS built as the flight spare for TRMM, was selected for flight as a science mission on the International Space Station. The ISS LIS (or I-LIS as Hugh Christian prefers) will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of global lightning. More specifically, it measures lightning during both day and night, with storm scale resolution, millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that the characteristics of lightning that LIS measures can be quantitatively coupled to both thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will be exploring

  20. Reliable simulation of metal surface penetration by lightning continuing currents

    SciTech Connect

    Zischank, W.; Drumm, F.; Fisher, R.J.; Schnetzer, G.H.; Morris, M.E.

    1995-08-01

    Of specific interest to Sandia National Laboratories is the assessment and reduction of the potential safety threat posed by the penetration of metallic casings of munitions due to the direct attachment of lightning strikes. A program with the ultimate aim of quantifying the fidelity of laboratory test techniques used to simulate the penetration of metallic surfaces by lightning continuing currents has been undertaken. Descriptions of the program methodology, dominant factors found to influence test results, and data obtained so far are given. Based on considerations of fundamental arc phenomenology and on the acquired experimental data, a standard test configuration has been established, which has been demonstrated at two independent laboratories to produce consistent results that are generally corroborative of techniques suggested elsewhere in the lightning literature.

  1. Proceedings of the Thunder and Lighting Seminar and The 3D lightning Warning Workship Held in Las Cruces, New Mexico on February 27, 1990.

    DTIC Science & Technology

    1993-02-01

    siting, and management of instrumentation. It is important to recognize that although common range problems have been identified by mcans of surveys and...1988 Conf. on help during this project. At KSC, Ron Lightning and Static Elect., Oklahoma Wojtasinski, Program Manager , was most City, NOAA Special...SENSING ON THE NEVADA TEST SITE by Carven A. Scott I. INTRODUCTION Real-time lightning products from the Bureau of Land Management Automatic Lightning

  2. Lightning Science: Five Ways Lightning Strikes People

    MedlinePlus

    ... Products and Services Careers Contact Us Glossary Lightning Science: Five Ways Lightning Strikes People It is not ... of a streamer injury. For more on the science of lightning: National Severe Storms Laboratory NWS Colorado ...

  3. Manipulator comparative testing program

    SciTech Connect

    Draper, J.V.; Handel, S.J.; Sundstrom, E.; Herndon, J.N.; Fujita, Y.; Maeda, M.

    1986-01-01

    The Manipulator Comparative Testing Program examined differences among manipulator systems from the United States and Japan. The manipulator systems included the Meidensha BILARM 83A, the Model M-2 of Central Research Laboratories Division of Sargent Industries (CRL), and the GCA Corporation PaR Systems Model 6000. The site of testing was the Remote Operations Maintenance Demonstration (ROMD) facility, operated by the Fuel Recycle Division in the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL). In all stages of testing, operators using the CRL Model M-2 manipulator had consistently lower times to completion and error rates than they did using other machines. Performance was second best with the Meidensha BILARM 83A in master-slave mode. Performance with the BILARM in switchbox mode and the PaR 6000 manipulator was approximately equivalent in terms of criteria recorded in testing. These data show no impact of force reflection on task performance.

  4. Protuberance heating test program

    NASA Technical Reports Server (NTRS)

    Sieker, W. D.

    1966-01-01

    Results are presented of the protuberance heating test program. Four general protuberance shapes on a flat plate were tested. Presentation and evaluation of the data both on the protuberance and in the wake regions are made. The test program is an extension of the general protuberance heat transfer test. The additional series of tests was conducted to define the extent of wake heating and to assess the effects of Reynolds number variation on heating both on and around the protuberances. The protuberance models were mounted near the forward end of a six-foot instrumented test plate with stringers that simulated interstage and skirt structure of the Saturn S-4B stage. The tests were performed at Mach numbers of 2.49, 3.51, and 4.44. Reynolds numbers per foot of 3 million and 1.5 million were used for the two lower Mach numbers and 3 million for a Mach number of 4.44. The test Mach numbers simulated the Saturn S-4B flight conditions during the most severe aerodynamic heating period. The test Reynolds numbers were somewhat higher than the flight values, but lower values could not be used because of tunnel and instrumentation limitations. Oil flow runs were made on two representative models at various combinations of Mach number and Reynolds number to help define the extent of wake heating.

  5. Lightning research: A user's lament

    NASA Technical Reports Server (NTRS)

    Golub, C. N.

    1984-01-01

    As a user of devices and procedures for lightning protection, the author is asking the lightning research community for cookbook recipes to help him solve his problems. He is lamenting that realistic devices are scarce and that his mission does not allow him the time nor the wherewithal to bridge the gap between research and applications. A few case histories are presented. In return for their help he is offering researchers a key to lightning technology--the use of the Eastern Test Range and its extensive resources as a proving ground for their experiment in the lightning capital of the United States. A current example is given--a joint lightning characterization project to take place there. Typical resources are listed.

  6. Integrated Test Program Manual.

    DTIC Science & Technology

    1983-10-01

    of test requirements. program problems and conflicts. .:.0 Develop methods for assigning priorities 0 Secure engineering analyses of failures to...system modifications are evaluated, and esti- 3) To provide crews with analyses of their mates of the weapon system’s performance ship’s performance...the subsystem branches at Accuracy data are used to establish sufficient S. SSPO with analyses of the performance of impact and burst-height error

  7. Test of the principle of operation of a wideband magnetic direction finder for lightning return strokes

    NASA Technical Reports Server (NTRS)

    Herrman, B. D.; Uman, M. A.; Brantley, R. D.; Krider, E. P.

    1976-01-01

    The principle of operation of a wideband crossed-loop magnetic-field direction finder is studied by comparing the bearing determined from the NS and EW magnetic fields at various times up to 155 microsec after return stroke initiation with the TV-determined lightning channel base direction. For 40 lightning strokes in the 3 to 12 km range, the difference between the bearings found from magnetic fields sampled at times between 1 and 10 microsec and the TV channel-base data has a standard deviation of 3-4 deg. Included in this standard deviation is a 2-3 deg measurement error. For fields sampled at progressively later times, both the mean and the standard deviation of the difference between the direction-finder bearing and the TV bearing increase. Near 150 microsec, means are about 35 deg and standard deviations about 60 deg. The physical reasons for the late-time inaccuracies in the wideband direction finder and the occurrence of these effects in narrow-band VLF direction finders are considered.

  8. Lightning tests and analyses of tunnel bond straps and shielded cables on the Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Druen, William M.

    1993-01-01

    The purposes of the tests and analyses described in this report are as follows: (1) determine the lightning current survivability of five alternative changed designs of the bond straps which electrically bond the solid rocket booster (SRB) systems tunnel to the solid rocket motor (SRM) case; (2) determine the amount of reduction in induced voltages on operational flight (OF) tunnel cables obtained by a modified design of tunnel bond straps (both tunnel cover-to-cover and cover-to-motor case); (3) determine the contribution of coupling to the OF tunnel cables by ground electrical and instrumentation (GEI) cables which enter the systems tunnel from unshielded areas on the surfaces of the motor case; and (4) develop a model (based on test data) and calculate the voltage levels at electronic 'black boxes' connected to the OF cables that run in the systems tunnel.

  9. NASA Manned Launch Vehicle Lightning Protection Development

    NASA Technical Reports Server (NTRS)

    McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.

    2009-01-01

    Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the spacecraft and launch vehicles to withstand both the direct and indirect effects of lightning. A review of current Space Shuttle lightning constraints and protection methodology will be presented, as well as a historical review of Space Shuttle lightning requirements and design. The Space Shuttle lightning requirements document, NSTS 07636, Lightning Protection, Test and Analysis Requirements, (originally published as document number JSC 07636, Lightning Protection Criteria Document) was developed in response to the Apollo 12 lightning event and other experiences with NASA and the Department of Defense launch vehicles. This document defined the lightning environment, vehicle protection requirements, and design guidelines for meeting the requirements. The criteria developed in JSC 07636 were a precursor to the Society of Automotive Engineers (SAE) lightning standards. These SAE standards, along with Radio Technical Commission for Aeronautics (RTCA) DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, are the basis for the current Constellation lightning design requirements. The development and derivation of these requirements will be presented. As budget and schedule constraints hampered lightning protection design and verification efforts, the Space Shuttle elements waived the design requirements and relied on lightning avoidance in the form of launch commit criteria (LCC) constraints and a catenary wire system for lightning protection at the launch pads. A better understanding of the lightning environment has highlighted the vulnerability of the protection schemes and associated risk to the vehicle

  10. Manipulator comparative testing program

    SciTech Connect

    Draper, J.V.; Handel, S.J.; Sundstrom, E.; Herndon, J.N.; Fujita, Y.; Maida, M.

    1986-01-01

    The Manipulator Comparative Testing Program compared performance of selected manipulator systems under typical remote handling conditions. The site of testing was the Remote Operations and Maintenance Demonstration Facility operated by the Consolidated Fuel Reprocessing Program of the Oak Ridge National Laboratory. Three experiment examined differences among manipulator systems from the US and Japan. The manipulator systems included the Meidensha BILARM 83A, Central Research Laboratories' (CRL's) Model M-2, and GCA PaR systems Model 6000. Six manipulator and control mode combinations were evaluated: (a) the BILARM in master-slave mode without force reflection; (b) the BILARM in master-slave mode with force reflection; (c) the Model M-2 in master-slave mode without force reflection; (d) the Model M-2 in master-slave mode with force reflection; (e) the BILARM with switchbox controls; and (f) the PaR 6000 with switchbox controls. The experiments also examined differences between master-slave systems with and without force reflections, and differences between master-slave systems and switchbox-controlled systems.

  11. The CHUVA Lightning Mapping Campaign

    NASA Astrophysics Data System (ADS)

    Goodman, S. J.; Blakeslee, R. J.; Bailey, J. C.; Carey, L. D.; Hoeller, H.; Albrecht, R. I.; Machado, L. A.; Morales, C.; Pinto, O.; Saba, M. M.; Naccarato, K.; Hembury, N.; Nag, A.; Heckman, S.; Holzworth, R. H.; Rudlosky, S. D.; Betz, H.; Said, R.; Rauenzahn, K.

    2011-12-01

    The primary science objective for the CHUVA lightning mapping campaign is to combine measurements of total lightning activity, lightning channel mapping, and detailed information on the locations of cloud charge regions of thunderstorms with the planned observations of the CHUVA (Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement) field campaign. The lightning campaign takes place during the CHUVA intensive observation period October-December 2011 in the vicinity of São Luiz do Paraitinga with Brazilian, US, and European government, university and industry participants. Total lightning measurements that can be provided by ground-based regional 2-D and 3-D total lightning mapping networks coincident with overpasses of the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (LIS) and the SEVIRI (Spinning Enhanced Visible and Infrared Imager) on the Meteosat Second Generation satellite in geostationary earth orbit will be used to generate proxy data sets for the next generation US and European geostationary satellites. Proxy data, which play an important role in the pre-launch mission development and in user readiness preparation, are used to develop and validate algorithms so that they will be ready for operational use quickly following the planned launch of the GOES-R Geostationary Lightning Mapper (GLM) in 2015 and the Meteosat Third Generation Lightning Imager (LI) in 2017. To date there is no well-characterized total lightning data set coincident with the imagers. Therefore, to take the greatest advantage of this opportunity to collect detailed and comprehensive total lightning data sets, test and validate multi-sensor nowcasting applications for the monitoring, tracking, warning, and prediction of severe and high impact weather, and to advance our knowledge of thunderstorm physics, extensive measurements from lightning mapping networks will be

  12. The CHUVA Lightning Mapping Campaign

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Bailey, Jeffrey C.; Carey, Lawrence D.; Hoeller, Hartmut; Albrecht, Rachel I.; Morales, Carlos; Pinto, Osmar; Saba, Marcelo M.; Naccarato, Kleber; Hembury, Nikki; Nag, Amitabh; Heckman, Stan; Holzworth, Robert H.; Rudlosky, Scott D.; Betz, Hans-Dieter; Said, Ryan; Rauenzahn, Kim

    2011-01-01

    The primary science objective for the CHUVA lightning mapping campaign is to combine measurements of total lightning activity, lightning channel mapping, and detailed information on the locations of cloud charge regions of thunderstorms with the planned observations of the CHUVA (Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement) field campaign. The lightning campaign takes place during the CHUVA intensive observation period October-December 2011 in the vicinity of S o Luiz do Paraitinga with Brazilian, US, and European government, university and industry participants. Total lightning measurements that can be provided by ground-based regional 2-D and 3-D total lightning mapping networks coincident with overpasses of the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (LIS) and the SEVIRI (Spinning Enhanced Visible and Infrared Imager) on the Meteosat Second Generation satellite in geostationary earth orbit will be used to generate proxy data sets for the next generation US and European geostationary satellites. Proxy data, which play an important role in the pre-launch mission development and in user readiness preparation, are used to develop and validate algorithms so that they will be ready for operational use quickly following the planned launch of the GOES-R Geostationary Lightning Mapper (GLM) in 2015 and the Meteosat Third Generation Lightning Imager (LI) in 2017. To date there is no well-characterized total lightning data set coincident with the imagers. Therefore, to take the greatest advantage of this opportunity to collect detailed and comprehensive total lightning data sets, test and validate multi-sensor nowcasting applications for the monitoring, tracking, warning, and prediction of severe and high impact weather, and to advance our knowledge of thunderstorm physics, extensive measurements from lightning mapping networks will be collected

  13. NASA thunderstorm overflight program: Atmospheric electricity research. An overview report on the optical lightning detection experiment for spring and summer 1983

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.

    1984-01-01

    This report presents an overview of the NASA Thunderstorm Overflight Program (TOP)/Optical Lightning Experiment (OLDE) being conducted by the Marshall Space Flight Center and university researchers in atmospheric electricity. Discussed in this report are the various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used in 1983 to collect optical and electronic signatures from the lightning events. Samples of some of the photographic and electronic signatures are presented. Approximately 4132 electronic data samples of optical pulses were collected and are being analyzed by the NASA and university researchers. A number of research reports are being prepared for future publication. These reports will provide more detailed data analysis and results from the 1983 spring and summer program.

  14. Lightning Current Detector

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Lightning Current Detector (LCD) was developed to monitor the magnitude of lightning strikes. Information it supplies is useful in evaluating lightning protection designs for such systems as telephone cables, radio broadcast towers, power transmission equipment and oil well towers.

  15. Magnetic tape lightning current detectors

    NASA Technical Reports Server (NTRS)

    Crouch, K. E.; Jafferis, W.

    1980-01-01

    Development and application tests of a low cost, passive, peak lightning current detector (LCD) found it to provide measurements with accuracies of + or - 5 percent to + or - 10 percent depending on the readout method employed. The LCD uses magnetic audio recording tape to sense the magnitude of the peak magnetic field around a conductor carrying lightning currents. The test results showed that the length of audio tape erased was linearly related to the peak simulated lightning currents in a round conductor. Accuracies of + or - 10 percent were shown for measurements made using a stopwatch readout technique to determine the amount of tape erased by the lightning current. Where more accurate data are desired, the tape is played and the output recorded on a strip chart, oscilloscope, or some other means so that measurements can be made on that recording. Conductor dimensions, tape holder dimensions, and tape formulation must also be considered to obtain a more accurate result.

  16. Using Total Lightning Observations to Enhance Lightning Safety

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.

    2012-01-01

    Lightning is often the underrated threat faced by the public when it comes to dangerous weather phenomena. Typically, larger scale events such as floods, hurricanes, and tornadoes receive the vast majority of attention by both the general population and the media. This comes from the fact that these phenomena are large, longer lasting, can impact a large swath of society at one time, and are dangerous events. The threat of lightning is far more isolated on a case by case basis, although millions of cloud-to-ground lightning strikes hit this United States each year. While attention is given to larger meteorological events, lightning is the second leading cause of weather related deaths in the United States. This information raises the question of what steps can be taken to improve lightning safety. Already, the meteorological community s understanding of lightning has increased over the last 20 years. Lightning safety is now better addressed with the National Weather Service s access to the National Lightning Detection Network data and enhanced wording in their severe weather warnings. Also, local groups and organizations are working to improve public awareness of lightning safety with easy phrases to remember, such as "When Thunder Roars, Go Indoors." The impacts can be seen in the greater array of contingency plans, from airports to sports stadiums, addressing the threat of lightning. Improvements can still be made and newer technologies may offer new tools as we look towards the future. One of these tools is a network of sensors called a lightning mapping array (LMA). Several of these networks exist across the United States. NASA s Short-term Prediction Research and Transition Center (SPoRT), part of the Marshall Spaceflight Center, has access to three of these networks from Huntsville, Alabama, the Kennedy Space Center, and Washington D.C. The SPoRT program s mission is to help transition unique products and observations into the operational forecast environment

  17. Pompano subsea development -- Testing program

    SciTech Connect

    Nelson, R.; Berger, R.; Tyer, C.

    1996-12-31

    System reliability is essential for the economic success of any subsea oil and gas development. Testing programs can be developed to prove system reliability while still adhering to cost and schedule constraints. This paper describes a three-tiered equipment testing program that was employed for the Pompano Phase 2 subsea system. Program objectives, test descriptions, procedure development and test execution are discussed in detail. Lessons learned throughout the tests are also presented.

  18. Guide for School Testing Programs.

    ERIC Educational Resources Information Center

    Ward, Annie W., Ed.; And Others

    Basically, test directors have four systemwide and building level responsibilities: (1) planning, administration and evaluation of standardized testing programs; (2) application of measurement and evaluation to school problems; (3) classroom testing and evaluation; and (4) external testing programs. In a series of brief memos, measurement and…

  19. Guide for School Testing Programs.

    ERIC Educational Resources Information Center

    Ward, Annie W., Ed.; And Others

    Basically, test directors have four systemwide and building level responsibilities: (1) planning, administration and evaluation of standardized testing programs; (2) application of measurement and evaluation to school problems; (3) classroom testing and evaluation; and (4) external testing programs. In a series of brief memos, measurement and…

  20. Summary report of the Lightning and Static Electricity Committee

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.

    1979-01-01

    Lightning protection technology as applied to aviation and identifying these technology needs are presented. The flight areas of technical needs include; (1) the need for In-Flight data on lightning electrical parameters; (2) technology base and guidelines for protection of advanced systems and structures; (3) improved laboratory test techniques; (4) analysis techniques for predicting induced effects; (5) lightning strike incident data from General Aviation; (6) lightning detection systems; (7) obtain pilot reports of lightning strikes; and (8) better training in lightning awareness. The nature of each problem, timeliness, impact of solutions, degree of effort required, and the roles of government and industry in achieving solutions are discussed.

  1. Summary report of the Lightning and Static Electricity Committee

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.

    1979-01-01

    Lightning protection technology as applied to aviation and identifying these technology needs are presented. The flight areas of technical needs include; (1) the need for In-Flight data on lightning electrical parameters; (2) technology base and guidelines for protection of advanced systems and structures; (3) improved laboratory test techniques; (4) analysis techniques for predicting induced effects; (5) lightning strike incident data from General Aviation; (6) lightning detection systems; (7) obtain pilot reports of lightning strikes; and (8) better training in lightning awareness. The nature of each problem, timeliness, impact of solutions, degree of effort required, and the roles of government and industry in achieving solutions are discussed.

  2. Lightning Physics,

    DTIC Science & Technology

    1981-04-03

    Subsequent Lightning Return Strokes in the 1-200 km Range," Radio Science, 15, 1089-1094, 1980, G.I. Serhan , M.A. Uman, D.G. Childers, and Y.T. Lin. "Errors...Spectrum of First and Subsequent Liqhtning Return Strokes in the 1-200 km Ranqe," (Abstract), Trans. Am. Geophys. Union, 60, 270, (1979), G.I. Serhan

  3. Camp Blanding Lightning Mapping Array

    NASA Technical Reports Server (NTRS)

    Blakeslee,Richard; Christian, Hugh; Bailey, Jeffrey; Hall, John; Uman, Martin; Jordan, Doug; Krehbiel, Paul; Rison, William; Edens, Harald

    2011-01-01

    A seven station, short base-line Lightning Mapping Array was installed at the Camp Blanding International Center for Lightning Research and Testing (ICLRT) during April 2011. This network will support science investigations of Terrestrial Gamma-Ray Flashes (TGFs) and lightning initiation using rocket triggered lightning at the ICLRT. The network operations and data processing will be carried out through a close collaboration between several organizations, including the NASA Marshall Space Flight Center, University of Alabama in Huntsville, University of Florida, and New Mexico Tech. The deployment was sponsored by the Defense Advanced Research Projects Agency (DARPA). The network does not have real-time data dissemination. Description, status and plans will be discussed.

  4. Lightning superbolts

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    A rare type of lightning bolt previously not thought to occur in flatlands has been identified in Oklahoma prairie storms and could pose a danger to structures not built to withstand it. Researchers at NOAA say the discovery could indicate that buildings or power plants designed on the assumption that such destructive bolts do not occur in flatland might not be safe. The positive charge cloud-to-ground flashes once were thought to strike only when triggered by a tall structure or mountaintop, or, on rare occasions, at the end of a storm.‘Most storms never produce this kind of lightning. In a few storms, there may be one positive bolt, just as the storm is dissipating—sort of the last gasp of the storm,’ according to David Rust of the National Severe Storms Laboratory. Rust added that the triggered bolts often are very high current, making them especially destructive. ‘We know these bolts don't occur in garden variety storms. We are trying to find if the occurrence of this kind of lightning is linked with storm severity,’ Rust said

  5. Strapdown gyro test program

    NASA Technical Reports Server (NTRS)

    Irvine, R. B.; Vanalstine, R.

    1977-01-01

    The power spectral noise characteristic performance of the Teledyne two-degree-of-freedom dry tuned gimbal gyroscope was determined. Tests were conducted using a current configuration SDG-5 gyro in conjunction with test equipment with minor modification. Long term bias stability tests were conducted as well as some first difference performance tests. The gyro, test equipment, and the tests performed are described. Results are presented.

  6. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; Pavelitz, S.; Coker, C.

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  7. Taming the Standardized Testing Program.

    ERIC Educational Resources Information Center

    Nettleton, Aileen L.

    The city-wide standardized testing program of Madison Public Schools was reviewed by a committee of a cross-section of school system educators as part of a total effort to design a testing program more sensitive to the needs of the system. As a result, standardized testing was reduced to reading (grades 1, 2, 3, 4, 5, and 8) and mathematics (grade…

  8. Lightning safety guidelines.

    PubMed

    Zimmermann, Christoph; Cooper, Mary Ann; Holle, Ronald L

    2002-06-01

    On average, lightning causes more casualties annually in the United States than any other storm-related phenomenon except floods. Although 90% of those injured survive, they may have permanent sequelae and disability. Many of these people incur injuries or are killed by lightning because of misinformation and inappropriate behavior during thunderstorms. A few simple precautions can reduce lightning injury risk. To standardize recommended actions during thunderstorms, the Lightning Safety Group (LSG), composed of lightning experts from many lightning-related backgrounds, met at the American Meteorological Society meeting Phoenix, AZ, in January 1998 to collectively address personal lightning safety. This paper is a summary of the recommendations developed by the LSG.

  9. Mobilestar field test program

    NASA Technical Reports Server (NTRS)

    Rubow, Wayne

    1988-01-01

    Various field tests were performed in order to gain practical experience and a broader understanding of mobile communications. The first phase consisted of CW propagation tests to develop firsthand experience of propagation phenomena. From this information, estimates of the feasibility and accuracy of power control were possible. The next phase tested the idea of power control. Equipment representative of that expected to be used in an actual mobile satellite communication system was assembled and tested under a variety of environments.

  10. A Cubesat Mission to Venus: A Low-Cost Approach to the Investigation of Venus Lightning

    NASA Astrophysics Data System (ADS)

    Majid, W.; Duncan, C.; Kuiper, T.; Russell, C. T.; Hart, R. A.; Lightsey, E.

    2013-12-01

    The occurrence of Venus lightning has been detected by atmospheric probes and landers on Venus; by ionospheric satellites; by an orbiting visible spectrometer; at radio frequencies by the Galileo spacecraft while flying by Venus; and by an Earth-based telescope. However, none of these detectors has enabled us to determine the global occurrence rate of lightning in the atmosphere of Venus, nor the altitude at which this lightning is generated. Such measurements are needed in order to determine the processes that generate Venus lightning and to establish the importance of Venus lightning in controlling the chemical composition of the Venus atmosphere. A simple and affordable mission to perform this mapping could be achieved with CubeSat technology. A mother spacecraft with at least three CubeSat partners using RF detection could map the occurrence of lightning globally and determine its altitude of origin, with triangulation of precisely timed RF event arrivals. Such a mission would provide space for complementary investigations and be affordable under the Discovery mission program. We are embarking on a program to develop CubeSat-based instrumentation for such a mission. The initial task is to develop a lightning detector in a CubeSat development kit using a software defined radio (SDR) operating at decameter wavelengths (5-50 MHz). This involves algorithm development as well as selecting or developing radio hardware for a CubeSat. Two units will be tested on the ground in a lightning zone such as New Mexico, where the Long Wavelength Array operates in the same frequency range. When the concept has been proven, flight subsystems such as solar panels, attitude sensing and communication radios will be added to the CubeSats to test performance in low Earth orbit. Experience gained from flight would enable a cluster of sensors to be proposed for a future Venus mission.

  11. Lightning Technology.

    DTIC Science & Technology

    1980-04-01

    33-38, 1975. 6. Schonland, B.F.J., The Lightning Discharge, Handbuch der Physik , 22, 576-628, Springer-Verlag, OHG, Berlin, 1956. 25 (K,z) R GROUND o... Dictionary of Electrical and Electronic Terms, IEEE Std 100-1977, New York, John Wiley & Sons, Inc., 1977. 313 cc C 0J 0J o -4 0$4j 4j)4J 0 1.4 >- ~ o 0 0 .,.C...Electric Power Research Institute) EL-1140, Project 1141 Final Report, Sept. 1979. 8. IEEE Standard Dictionary of Electrical and Electronics Terms, Wiley

  12. Test chip assembler and test program generator

    NASA Technical Reports Server (NTRS)

    Pina, C. A.

    1985-01-01

    One of the major problems in working at the geometry level for the generation of either test structure or functional circuit designs is the amount of labor involved in the design phase. To reduce the amount of labor involved in both the design and test of the structures used, JPL has developed a design and test program consisting of a Test Chip Assembler (TCA) and a Test Program Generator (TPG), which creates the geometrical description of the structures and generates the necessary test information using a high-level language. This system reduces the design time for a test chip by a factor of 30. To analyze the data obtained from wafer probing, a statistical package called STMJPL was developed. Some of the capabilities of the JPL software (STMJPL) are described.

  13. Lightning: Understanding it and protecting systems from its effects

    SciTech Connect

    Hasbrouck, R.T.

    1989-04-10

    This tutorial will raise the reader's level of lightning consciousness by providing an overview of the atmospheric electrification process and by discussing the development and characteristics of a lightning discharge. Next, techniques and instrumentation for lightning threat warning, detection and tracking will be presented. Finally, the principles of protection will be discussed, along with several methods for testing that protection. 15 refs., 16 figs.

  14. The 1983 direct strike lightning data, part 1

    NASA Technical Reports Server (NTRS)

    Thomas, Mitchel E.

    1985-01-01

    Data waveforms are presented which were obtained during the 1983 direct strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. Part 1 contains 435 pages of lightning strike data in chart form.

  15. The 1983 direct strike lightning data, part 2

    NASA Technical Reports Server (NTRS)

    Thomas, Mitchel E.

    1985-01-01

    Data waveforms are presented which were obtained during the 1983 direct strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. Part 2 contains 443 pages of lightning strike data in chart form.

  16. Evaluation of the damages caused by lightning current flowing through bearings

    NASA Technical Reports Server (NTRS)

    Celi, O.; Pigini, A.; Garbagnati, E.

    1991-01-01

    A laboratory for lightning current tests was set up allowing the generation of the lightning currents foreseen by the Standards. Lightning tests are carried out on different objects, aircraft materials and components, evaluating the direct and indirect effects of lightning. Recently a research was carried out to evaluate the effects of the lightning current flow through bearings with special reference to wind power generator applications. For this purpose, lightning currents of different amplitude were applied to bearings in different test conditions and the damages caused by the lightning current flow were analyzed. The influence of the load acting on the bearing, the presence of lubricant and the bearing rotation were studied.

  17. Lightning on exoplanets and brown dwarfs: modelling lightning energies and radio powers

    NASA Astrophysics Data System (ADS)

    Hodosán, Gabriella; Helling, Christiane; Vorgul, Irena

    2017-04-01

    Lightning is a well studied though not fully understood phenomenon occurring not just on Earth but on other Solar System planets, such as Jupiter and Saturn, as well. Both observations and theoretical work suggest that the conditions in extrasolar planetary and brown dwarf atmospheres are good for lightning to occur. However, due to the lack of exo-lightning observations, we do not know how lightning in extrasolar atmospheres is similar or different from what is known from the Solar System. The aim of this study is to apply our knowledge of lightning production, derived mostly from Earth lightning, to the potential lightning discharge characteristics on extrasolar objects. In terms of observations, the power spectrum of lightning carries information regarding radiated power densities. From the total radiated power it is also possible to determine the energy dissipated from lightning discharges. However, modelling the power spectrum involves several steps and various parameters, including a characterization of the electric field. As such, we built a model and conducted a parameter study in order to explore the possible lightning powers and energies in different types of extrasolar atmospheres, such as giant planetary and brown dwarf atmospheres. We tested our model on Solar System cases based on previously published parameters in the literature, such as the duration of the discharge or the frequency at which the peak power is released. Our tests reproduce these published values for Earth, Jupiter and Saturn, and validate our model. When applying the model to extrasolar lightning discharges, we found that in giant gas planet atmospheres of 1500 K < Teff < 2000 K and log(g) = 3.0 the dissipation energy of lightning can reach as high as 1019 J, which is ten orders of magnitude larger than the average total energy of Earth lightning.

  18. A hartmann test reduction program.

    PubMed

    Schulte, D H

    1968-01-01

    A generalized Fortran program for the reduction of Hartmann test data has been written. A brief review of the mathematical echnique is given, along with a discussion of the measuring methods and the results of some tests of the accuracy of the program.

  19. F-35 Lightning II Joint Strike Fighter (JSF) Program: Background, Status, and Issues

    DTIC Science & Technology

    2008-08-29

    Program: Background, Status, and Issues 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Congressional Research Service,The Library of Congress,101 Independence...Ave SE,Washington,DC,20540-7500 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR

  20. F-35 Lightning II Joint Strike Fighter (JSF) Program: Background, Status, and Issues

    DTIC Science & Technology

    2009-02-17

    Program: Background, Status, and Issues 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Congressional Research Service,The Library of Congress,101...Independence Ave, SE,Washington,DC,20540 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S

  1. Effectiveness of spacecraft testing programs

    NASA Technical Reports Server (NTRS)

    Krausz, A.

    1980-01-01

    The need for testing under simulated mission operational conditions is discussed and the results of such tests are reviewed from the point of view of the user. A brief overview of the usal test sequences for high reliability long life spacecraft is presented and the effectiveness of the testing program is analyzed in terms of the defects which are discovered by such tests. The need for automation, innovative mechanical test procedures, and design for testability is discussed.

  2. New Mission to Measure Global Lightning from the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.

    2015-12-01

    Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) from November 1997 to April 2015 between 38° N/S latitudes, and its Optical Transient Detector predecessor that acquired observation from May 1995 to April 2000 over 75° N/S latitudes. In February 2016, as an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission. The LIS on ISS will continue observations of the amount, rate, and radiant energy of total lightning over the Earth. More specifically, LIS measures lightning during both day and night, with storm scale resolution (~4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines. This mission will also extend TRMM time series observations, expand the latitudinal coverage to 54° latitude, provide real-time lightning data to operational users, espically over data sparse oceanic regions, and enable cross-sensor observations and calibrations that includes the new GOES-R Geostationary Lightning Mapper (GLM) and the Meteosat

  3. The Development of the Puerto Rico Lightning Detection Network for Meteorological Research

    NASA Technical Reports Server (NTRS)

    Legault, Marc D.; Miranda, Carmelo; Medin, J.; Ojeda, L. J.; Blakeslee, Richard J.

    2011-01-01

    A land-based Puerto Rico Lightning Detection Network (PR-LDN) dedicated to the academic research of meteorological phenomena has being developed. Five Boltek StormTracker PCI-Receivers with LTS-2 Timestamp Cards with GPS and lightning detectors were integrated to Pentium III PC-workstations running the CentOS linux operating system. The Boltek detector linux driver was compiled under CentOS, modified, and thoroughly tested. These PC-workstations with integrated lightning detectors were installed at five of the University of Puerto Rico (UPR) campuses distributed around the island of PR. The PC-workstations are left on permanently in order to monitor lightning activity at all times. Each is networked to their campus network-backbone permitting quasi-instantaneous data transfer to a central server at the UPR-Bayam n campus. Information generated by each lightning detector is managed by a C-program developed by us called the LDN-client. The LDN-client maintains an open connection to the central server operating the LDN-server program where data is sent real-time for analysis and archival. The LDN-client also manages the storing of data on the PC-workstation hard disk. The LDN-server software (also an in-house effort) analyses the data from each client and performs event triangulations. Time-of-arrival (TOA) and related hybrid algorithms, lightning-type and event discriminating routines are also implemented in the LDN-server software. We also have developed software to visually monitor lightning events in real-time from all clients and the triangulated events. We are currently monitoring and studying the spatial, temporal, and type distribution of lightning strikes associated with electrical storms and tropical cyclones in the vicinity of Puerto Rico.

  4. DOE HEPA filter test program

    SciTech Connect

    1998-05-01

    This standard establishes essential elements of a Department of Energy (DOE) program for testing HEPA filters to be installed in DOE nuclear facilities or used in DOE-contracted activities. A key element is the testing of HEPA filters for performance at a DOE Filter Test Facility (FTF) prior to installation. Other key elements are (1) providing for a DOE HEPA filter procurement program, and (2) verifying that HEPA filters to be installed in nuclear facilities appear on a Qualified Products List (QPL).

  5. Lightning at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Gibbons, W. C.; Boyd, B. F.; Jafferis, W.

    1986-01-01

    Kennedy Space Center (KSC) is situated in an area that experiences one of the world's highest rates of cloud-ground lightning strikes, about 600-2000 strikes per summer. Two lightning detection systems have been implemented, the Launch Pad Lightning Warning System (LPLWS) and the Lightning Location and Protection system (LLP). The LPLWS consists of field mills of eight vertically oriented stator sections mounted 10 in. above ground and alternately covered and uncovered as the rotor turns. Differential voltages between covered and uncovered sections furnish electric field amplitude and polarity data. Ten samples per second are telemetered to a central processing facility. The system is used during launch and landing. The LLP has high and low gain components, the former being two direction finder antennas with 100 m strike position finding accuracy, the latter featuring medium gain antennas for 500 m accuracy in locating strikes. The LLP system is used primarily to warn personnel of strike conditions and to lift warnings to avoid lost work time. Several experimental programs have been initiated for triggering lightning strikes and controlling their locations.

  6. Lightning at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Gibbons, W. C.; Boyd, B. F.; Jafferis, W.

    1986-01-01

    Kennedy Space Center (KSC) is situated in an area that experiences one of the world's highest rates of cloud-ground lightning strikes, about 600-2000 strikes per summer. Two lightning detection systems have been implemented, the Launch Pad Lightning Warning System (LPLWS) and the Lightning Location and Protection system (LLP). The LPLWS consists of field mills of eight vertically oriented stator sections mounted 10 in. above ground and alternately covered and uncovered as the rotor turns. Differential voltages between covered and uncovered sections furnish electric field amplitude and polarity data. Ten samples per second are telemetered to a central processing facility. The system is used during launch and landing. The LLP has high and low gain components, the former being two direction finder antennas with 100 m strike position finding accuracy, the latter featuring medium gain antennas for 500 m accuracy in locating strikes. The LLP system is used primarily to warn personnel of strike conditions and to lift warnings to avoid lost work time. Several experimental programs have been initiated for triggering lightning strikes and controlling their locations.

  7. Nanosecond resolution of .E, .H and .I in aircraft lightning test rigs

    NASA Astrophysics Data System (ADS)

    Burrows, B. J. C.

    1983-06-01

    Many designs of test rig have emerged in recent years incorporating hardwired connections and design incorporating series open arcs at each end of the aircraft. Important characteristics of the test rigs are not specified, but these characteristics control the generation of large (and usually HF) transients through the fast coupling processes. Both lumped element and distributed element representation of these test rigs and the capacitor banks driving them are given, and the effects of parameter and geometry variations are highlighted. It is shown that quantitative analysis of fast transients (dot-D, dot-B) requires much closer specification of the test rig performance including switch closure time, capacitor bank and connecting line inductance, and the transmission line impedance of the test rig. Tests on the Fly-by-Wire Jaguar at Warton near Preston in England showed the need for developing a quantitative relationship between HF transients and the fast coupling processes.

  8. Lightning Instrumentation at KSC

    NASA Technical Reports Server (NTRS)

    Colon, Jose L.; Eng, D.

    2003-01-01

    This report summarizes lightning phenomena with a brief explanation of lightning generation and lightning activity as related to KSC. An analysis of the instrumentation used at launching Pads 39 A&B for measurements of lightning effects is included with alternatives and recommendations to improve the protection system and upgrade the actual instrumentation system. An architecture for a new data collection system to replace the present one is also included. A novel architecture to obtain lightning current information from several sensors using only one high speed recording channel while monitoring all sensors to replace the actual manual lightning current recorders and a novel device for the protection system are described.

  9. The Unit of Lightning

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Boeck, William L.; Christian, Hugh J.

    1999-01-01

    For the past century, scientists have made quantitative measurements of lightning discharges. In the process, they refined the definition of a lightning unit, or basic quantum of lightning, in order to base it on observable parameters. Although many components of a lightning discharge have been identified, lightning usually occur in groups of discharges or pulses that, although complex, can be organized into units of flashes. This unit definition is based mainly on measurements of lightning from electric field, video, and ground flash lightning locating networks. More recent instrumentation with various combinations of high sensitivity, high temporal, or high spatial resolution often measure signals produced by lightning that do not cleanly divide into flashes. The data from these systems indicate the need or a more fundamental unit for lightning. Such a unit would be of benefit for both basic understanding of lightning and comparing lightning information between instruments. Without a common lightning unit definition, intercomparisons are difficult. For an example, the Lightning Detection And Ranging system (LDAR) at Kennedy Space Center (KSC) have detected ,flash' rates as high as 600 per minute while analysis based on the Advanced Ground Based Field Mill network (AGBFM) detect only 33 "flashes" per minute in the same area and time periods. The satellite based Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) sometimes see single "flashes" that last longer than 10 seconds. Such long duration flashes are not found in electric field records or ground strike location system data sets. The unit of lightning should be based on the fundamental components of the lightning discharge. This should make the unit as generally applicable as possible. For example, studies of NO(x) production by lightning depend on parameters of the individual lightning channels and not the summary flash characteristics. For such studies, the best unit of lightning may be

  10. Infrasound from lightning measured in Ivory Coast

    NASA Astrophysics Data System (ADS)

    Farges, T.; Matoza, R. S.

    2011-12-01

    It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes, ...). Some of the IMS stations are located where worldwide lightning detection networks (e.g. WWLLN) have a weak detection capability but lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of lightning flashes can be detected with this technique, giving better results locally than worldwide lightning detection networks. An IMS infrasound station has been installed in Ivory Coast for 8 years. The optical space-based instrument OTD measured a rate of 10-20 flashes/km^2/year in that country and showed strong seasonal variations (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 3 years of data (2005-2008).

  11. Analysis of the US Air Force Defense Meteorological Satellite Program Imagery for Global Lightning

    NASA Technical Reports Server (NTRS)

    Scharfen, Gregory R.

    1999-01-01

    The U. S. Air Force operates the Defense Meteorological Satellite Program (DMSP), a system of near-polar orbiting satellites designed for use in operational weather forecasting and other applications. DMSP satellites carry a suite of sensors that provide images of the earth and profiles of the atmosphere. The National Snow and Ice Data Center (NSIDC) at the University of Colorado has been involved with the archival of DMSP data and its use for several research projects since 1979. This report summarizes the portion of this involvement funded by NASA.

  12. Nevada Test Site closure program

    SciTech Connect

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use.

  13. Lightning Physics and Effects

    NASA Astrophysics Data System (ADS)

    Orville, Richard E.

    2004-03-01

    Lightning Physics and Effects is not a lightning book; it is a lightning encyclopedia. Rarely in the history of science has one contribution covered a subject with such depth and thoroughness as to set the enduring standard for years, perhaps even decades, to come. This contribution covers all aspects of lightning, including lightning physics, lightning protection, and the interaction of lightning with a variety of objects and systems as well as the environment. The style of writing is well within the ability of the technical non-expert and anyone interested in lightning and its effects. Potential readers will include physicists; engineers working in the power industry, communications, computer, and aviation industries; atmospheric scientists; geophysicists; meteorologists; atmospheric chemists; foresters; ecologists; physicians working in the area of electrical trauma; and, lastly, architects. This comprehensive reference volume contains over 300 illustrations, 70 tables with quantitative information, and over 6000 reference and bibliography entries.

  14. Updated Lightning Safety Recommendations.

    ERIC Educational Resources Information Center

    Vavrek, R. James; Holle, Ronald L.; Lopez, Raul E.

    1999-01-01

    Summarizes the recommendations of the Lightning Safety Group (LSG), which was first convened during the 1998 American Meteorological Society Conference. Findings outline appropriate actions under various circumstances when lightning threatens. (WRM)

  15. The Lightning Discharge

    ERIC Educational Resources Information Center

    Orville, Richard E.

    1976-01-01

    Correspondence of Benjamin Franklin provides authenticity to a historical account of early work in the field of lightning. Present-day theories concerning the formation and propagation of lightning are expressed and photographic evidence provided. (CP)

  16. The Lightning Discharge

    ERIC Educational Resources Information Center

    Orville, Richard E.

    1976-01-01

    Correspondence of Benjamin Franklin provides authenticity to a historical account of early work in the field of lightning. Present-day theories concerning the formation and propagation of lightning are expressed and photographic evidence provided. (CP)

  17. Updated Lightning Safety Recommendations.

    ERIC Educational Resources Information Center

    Vavrek, R. James; Holle, Ronald L.; Lopez, Raul E.

    1999-01-01

    Summarizes the recommendations of the Lightning Safety Group (LSG), which was first convened during the 1998 American Meteorological Society Conference. Findings outline appropriate actions under various circumstances when lightning threatens. (WRM)

  18. Global Lightning Activity

    NASA Technical Reports Server (NTRS)

    Christian, Hugh J.

    2004-01-01

    Our knowledge of the global distribution of lightning has improved dramatically since the advent of spacebased lightning observations. Of major importance was the 1995 launch of the Optical Transient Detector (OTD), followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous eight-year record of global lightning activity. These lightning observations have provided a new global perspective on total lightning activity. For the first time, total lightning activity (cloud-to-ground and intra-cloud) has been observed over large regions with high detection efficiency and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised global flash rate estimate (44 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe weather. Accurate flash rate estimates are now available over large areas of the earth (+/- 72 deg. latitude). Ocean-land contrasts as a function of season are clearly reveled, as are orographic effects and seasonal and interannual variability. The space-based observations indicate that air mass thunderstorms, not large storm system dominate global activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated that this capability could lead to significantly improved severe weather warning times and reduced false warning rates. This talk will summarize our space-based lightning measurements, will discuss how lightning observations can be used to monitor severe weather, and

  19. Lightning safety of animals.

    PubMed

    Gomes, Chandima

    2012-11-01

    This paper addresses a concurrent multidisciplinary problem: animal safety against lightning hazards. In regions where lightning is prevalent, either seasonally or throughout the year, a considerable number of wild, captive and tame animals are injured due to lightning generated effects. The paper discusses all possible injury mechanisms, focusing mainly on animals with commercial value. A large number of cases from several countries have been analyzed. Economically and practically viable engineering solutions are proposed to address the issues related to the lightning threats discussed.

  20. Optical Detection of Lightning from Space

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Christian, Hugh J.

    1998-01-01

    Optical sensors have been developed to detect lightning from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based lightning detection offers three unique capabilities: (1) the ability to reliably detect lightning over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) lightning, and (3) the ability to detect lightning with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite lightning research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global lightning climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed.

  1. Transient Pressure Test Article Test Program

    NASA Technical Reports Server (NTRS)

    Vibbart, Charles M.

    1989-01-01

    The Transient Pressure Test Article (TPTA) test program is being conducted at a new test facility located in the East Test Area at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This facility, along with the special test equipment (STE) required for facility support, was constructed specifically to test and verify the sealing capability of the Redesigned Solid Rocket Motor (RSRM) field, igniter, and nozzle joints. The test article consists of full scale RSRM hardware loaded with inert propellant and assembled in a short stack configuration. The TPTA is pressurized by igniting a propellant cartridge capable of inducing a pressure rise rate which stimulates the ignition transient that occurs during launch. Dynamic loads are applied during the pressure cycle to simulate external tank attach (ETA) strut loads present on the ETA ring. Sealing ability of the redesigned joints is evaluated under joint movement conditions produced by these combined loads since joint sealing ability depends on seal resilience velocity being greater than gap opening velocity. Also, maximum flight dynamic loads are applied to the test article which is either pressurized to 600 psia using gaseous nitrogen (GN2) or applied to the test article as the pressure decays inside the test article on the down cycle after the ignition transient cycle. This new test facility is examined with respect to its capabilities. In addition, both the topic of test effectiveness versus space vehicle flight performance and new aerospace test techniques, as well as a comparison between the old SRM design and the RSRM are presented.

  2. Thunderclouds and Lightning Conductors

    ERIC Educational Resources Information Center

    Martin, P. F.

    1973-01-01

    Discusses the historical background of the development of lightning conductors, describes the nature of thunderclouds and the lightning flash, and provides a calculation of the electric field under a thundercloud. Also discussed are point discharge currents and the attraction theory of the lightning conductor. (JR)

  3. Thunderclouds and Lightning Conductors

    ERIC Educational Resources Information Center

    Martin, P. F.

    1973-01-01

    Discusses the historical background of the development of lightning conductors, describes the nature of thunderclouds and the lightning flash, and provides a calculation of the electric field under a thundercloud. Also discussed are point discharge currents and the attraction theory of the lightning conductor. (JR)

  4. AUSSAT battery life test program

    NASA Technical Reports Server (NTRS)

    Gorian, P. W.; Pickett, D. F., Jr.; Bogner, R. S.; Chao, T. I.; Jordan, J. P.; Clark, K. B.

    1985-01-01

    AUSSAT Pty. Ltd., the Australian National Satellite organization, has contracted with the Hughes Aircraft Company (HAC) for the construction of 3 satellites based on the now familiar HS-376 product line. As part of the AUSSAT contract, HAC is conducting an extensive NiCd battery life test program. The life test program, objectives and test results to date are described. Particular emphasis is given to the evaluation of the FS2117 separator as a future replacement for the Pellon 2505 separator of which only a very limited quantity remains.

  5. Accelerated leach test development program

    SciTech Connect

    Fuhrmann, M.; Pietrzak, R.F.; Heiser, J.; Franz, E.M.; Colombo, P.

    1990-11-01

    In FY 1989, a draft accelerated leach test for solidified waste was written. Combined test conditions that accelerate leaching were validated through experimental and modeling efforts. A computer program was developed that calculates test results and models leaching mechanisms. This program allows the user to determine if diffusion controls leaching and, if this is the case, to make projections of releases. Leaching mechanisms other than diffusion (diffusion plus source term partitioning and solubility limited leaching) are included in the program is indicators of other processes that may control leaching. Leach test data are presented and modeling results are discussed for laboratory scale waste forms composed of portland cement containing sodium sulfate salt, portland cement containing incinerator ash, and vinyl ester-styrene containing sodium sulfate. 16 refs., 38 figs., 5 tabs.

  6. Nowcasting and forecasting of lightning activity: the Talos project.

    NASA Astrophysics Data System (ADS)

    Lagouvardos, Kostas; Kotroni, Vassiliki; Kazadzis, Stelios; Giannaros, Theodore; Karagiannidis, Athanassios; Galanaki, Elissavet; Proestakis, Emmanouil

    2015-04-01

    Thunder And Lightning Observing System (TALOS) is a research program funded by the Greek Ministry of Education with the aim to promote excellence in the field of lightning meteorology. The study focuses on exploring the real-time observations provided by the ZEUS lightning detection system, operated by the National Observatory of Athens since 2005, as well as the 10-year long database of the same system. More precisely the main research issues explored are: - lightning climatology over the Mediterranean focusing on lightning spatial and temporal distribution, on the relation of lightning with topographical features and instability and on the importance of aerosols in lightning initiation and enhancement. - nowcasting of lightning activity over Greece, with emphasis on the operational aspects of this endeavour. The nowcasting tool is based on the use of lightning data complemented by high-time resolution METEOSAT imagery. - forecasting of lightning activity over Greece based on the use of WRF numerical weather prediction model. - assimilation of lightning with the aim to improve the model precipitation forecast skill. In the frame of this presentation the main findings of each of the aforementioned issues are highlighted.

  7. Lightning return stroke models

    NASA Technical Reports Server (NTRS)

    Lin, Y. T.; Uman, M. A.; Standler, R. B.

    1980-01-01

    We test the two most commonly used lightning return stroke models, Bruce-Golde and transmission line, against subsequent stroke electric and magnetic field wave forms measured simultaneously at near and distant stations and show that these models are inadequate to describe the experimental data. We then propose a new return stroke model that is physically plausible and that yields good approximations to the measured two-station fields. Using the new model, we derive return stroke charge and current statistics for about 100 subsequent strokes.

  8. DOD Space Test Program (STP)

    NASA Technical Reports Server (NTRS)

    Smith, Llwyn

    1995-01-01

    This paper describes the Space Test Program (STP) which provides access to space for the DOD-wide space research and development (R&D) community. STP matches a ranked list of sanctioned experiments with available budgets and searches for the most cost effective mechanisms to get the experiments into space. The program has successfully flown over 350 experiments, using dedicated freeflyer spacecraft, secondary space on the Space Shuttle, and various host satellites.

  9. MSFC shuttle lightning research

    NASA Technical Reports Server (NTRS)

    Vaughan, Otha H., Jr.

    1993-01-01

    The shuttle mesoscale lightning experiment (MLE), flown on earlier shuttle flights, and most recently flown on the following space transportation systems (STS's), STS-31, -32, -35, -37, -38, -40, -41, and -48, has continued to focus on obtaining additional quantitative measurements of lightning characteristics and to create a data base for use in demonstrating observation simulations for future spaceborne lightning mapping systems. These flights are also providing design criteria data for the design of a proposed shuttle MLE-type lightning research instrument called mesoscale lightning observational sensors (MELOS), which are currently under development here at MSFC.

  10. MSFC shuttle lightning research

    NASA Technical Reports Server (NTRS)

    Vaughan, Otha H., Jr.

    1993-01-01

    The shuttle mesoscale lightning experiment (MLE), flown on earlier shuttle flights, and most recently flown on the following space transportation systems (STS's), STS-31, -32, -35, -37, -38, -40, -41, and -48, has continued to focus on obtaining additional quantitative measurements of lightning characteristics and to create a data base for use in demonstrating observation simulations for future spaceborne lightning mapping systems. These flights are also providing design criteria data for the design of a proposed shuttle MLE-type lightning research instrument called mesoscale lightning observational sensors (MELOS), which are currently under development here at MSFC.

  11. NEP Space Test Program Objective

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of the Nuclear Electric Propulsion (NEP) space test program is to launch an NEP satellite powered by the Russion Topaz 2 reactor by Dec. 1995. The primary goals of the NEP space test program are as follows: (1) demonstrate the feasibility of launching a space nuclear power system; (2) demonstrate and orbit adjust capability using NEP; (3) evaluate the in-orbit performance of the Topaz 2 reactor and selected electric thrusters; and (4) measure, analyze, and model the NEP self-induced environment. The discussion is presented in vugraph form.

  12. 14 CFR 420.71 - Lightning protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operations and withdrawal of the public to public area distance prior to an electrical storm, or for an... prior to an electrical storm. (4) Testing and inspection. Lightning protection systems shall be...

  13. Ionospheric effects of whistler waves from rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Agrawal, D.; Cotts, B.; Golkowski, M.; Moore, R. C.

    2011-12-01

    Lightning-induced electron precipitation (LEP) is one of the primary mechanisms for energetic electron loss from Earth's radiation belts. The spatial and temporal structure of LEP are affected by parameters such as lightning location and the return stroke peak current and spectral distribution. While previous works have emphasized lightning location and return stroke peak current in quantifying lightning's role in radiation belt electron loss, the spectrum of the lightning return stroke has received far less attention. Rocket-triggered lightning experiments performed at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida, provide a means to evaluate the spectral content of individual lightning return strokes. Using an integrated set of numerical models we calculate the latitudinal dependence of the precipitation signature using observed rocket-triggered lightning channel-base currents. Results indicate that return strokes with higher ELF (3 Hz - 3 kHz) content cause proportionally more ionospheric ionization and precipitate more electrons at higher latitudes than return strokes with higher VLF (3 kHz - 30 kHz) content. The ability to directly measure the channel-base current of the rocket-triggered lightning return stroke enables us to determine the relationship between lightning source spectrum and the removal of energetic electrons from the Earth's radiation belts and to predict the geographic location and magnitude of electron precipitation in both the northern and southern hemispheres.

  14. Synopsis of Direct and Indirect Lightning Effects on Composite Materials

    NASA Technical Reports Server (NTRS)

    Clark, Tony

    1998-01-01

    NASA's Space Environments and Effects (SEE) Program funded a study on electromagnetic environmental effect issues of composite materials used by the aerospace industry. The results of which are published by Ross Evans, Tec-Masters Inc., in NASA-CR-4783, "Test Report - Direct and Indirect Lightning Effects on Composite Materials." Indirect effects include the electric and magnetic field shielding provided by a composite material illuminated by a near or direct lightning strike. Direct effects includes the physical damage of composites and/or assembly joint with a direct strike injection. This paper provides a synopsis of NASA-CR-4783. A short description is provided of the direct and indirect tests performed during the sturdy. General results and design guidelines are discussed.

  15. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    USGS Publications Warehouse

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  16. Shower bath economizer test program

    SciTech Connect

    Hall, J.A.

    1987-10-01

    The shower bath economizer (SBE) is a simple counterflow heat exchanger which transfers heat from warm exiting shower drain water to cold incoming water. This report describes a comprehensive test program conducted by the Tennessee Valley Authority (TVA) to assess the technical and economic feasibility of the SBE. 11 figs., 6 tabs.

  17. Aircraft Lightning Electromagnetic Environment Measurement

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  18. Optical guidance vidicon test program

    NASA Technical Reports Server (NTRS)

    Eiseman, A. R.; Stanton, R. H.; Voge, C. C.

    1976-01-01

    A laboratory and field test program was conducted to quantify the optical navigation parameters of the Mariner vidicons. A scene simulator and a camera were designed and built for vidicon tests under a wide variety of conditions. Laboratory tests characterized error sources important to the optical navigation process and field tests verified star sensitivity and characterized comet optical guidance parameters. The equipment, tests and data reduction techniques used are described. Key test results are listed. A substantial increase in the understanding of the use of selenium vidicons as detectors for spacecraft optical guidance was achieved, indicating a reduction in residual offset errors by a factor of two to four to the single pixel level.

  19. Mission Adaptive Wing test program

    NASA Technical Reports Server (NTRS)

    Birk, Frank T.; Smith, Rogers E.

    1986-01-01

    With the completion of the F-111 test-bed Mission Adaptive Wing (MAW) test program's manual flight control system, emphasis has been shifted to flight testing of MAW automatic control modes. These encompass (1) cruise camber control, (2) maneuver camber control, (3) maneuver load control, and (4) maneuver enhancement and load alleviation control. The aircraft is currently cleared to a 2.5-g maneuvering limit due to generally higher variable-incidence wing pivot loads than had been anticipated, especially at the higher wing-camber settings. Buffet is noted to be somewhat higher than expected at the higher camber settings.

  20. Volcanic Lightning in Eruptions of Sakurajima Volcano

    NASA Astrophysics Data System (ADS)

    Edens, Harald; Thomas, Ronald; Behnke, Sonja; McNutt, Stephen; Smith, Cassandra; Farrell, Alexandra; Van Eaton, Alexa; Cimarelli, Corrado; Cigala, Valeria; Eack, Ken; Aulich, Graydon; Michel, Christopher; Miki, Daisuke; Iguchi, Masato

    2016-04-01

    In May 2015 a field program was undertaken to study volcanic lightning at the Sakurajima volcano in southern Japan. One of the main goals of the study was to gain a better understanding of small electrical discharges in volcanic eruptions, expanding on our earlier studies of volcanic lightning at Augustine and Redoubt volcanoes in Alaska, USA, and Eyjafjallajökull in Iceland. In typical volcanic eruptions, electrical activity occurs at the onset of an eruption as a near-continual production of VHF emissions at or near to the volcanic vent. These emissions can occur at rates of up to tens of thousands of emissions per second, and are referred to as continuous RF. As the ash cloud expands, small-scale lightning flashes of several hundred meters length begin to occur while the continuous RF ceases. Later on during the eruption larger-scale lightning flashes may occur within the ash cloud that are reminiscent of regular atmospheric lightning. Whereas volcanic lightning flashes are readily observed and reasonably well understood, the nature and morphology of the events producing continuous RF are unknown. During the 2015 field program we deployed a comprehensive set of instrumentation, including a 10-station 3-D Lightning Mapping Array (LMA) that operated in 10 μs high time resolution mode, slow and fast ΔE antennas, a VHF flat-plate antenna operating in the 20-80 MHz band, log-RF waveforms within the 60-66 MHz band, an infra-red video camera, a high-sensitivity Watec video camera, two high-speed video cameras, and still cameras. We give an overview of the Sakurajima field program and present preliminary results using correlated LMA, waveforms, photographs and video recordings of volcanic lightning at Sakurajima volcano.

  1. A Lightning Safety Primer for Camps.

    ERIC Educational Resources Information Center

    Attarian, Aram

    1992-01-01

    Provides the following information about lightning, which is necessary for camp administrators and staff: (1) warning signs of lightning; (2) dangers of lightning; (3) types of lightning injuries; (4) prevention of lightning injury; and (5) helpful training tips. (KS)

  2. A Lightning Safety Primer for Camps.

    ERIC Educational Resources Information Center

    Attarian, Aram

    1992-01-01

    Provides the following information about lightning, which is necessary for camp administrators and staff: (1) warning signs of lightning; (2) dangers of lightning; (3) types of lightning injuries; (4) prevention of lightning injury; and (5) helpful training tips. (KS)

  3. Grounding and lightning protection. Volume 5

    SciTech Connect

    Robinson, M.D.

    1987-12-31

    Grounding systems protect personnel and equipment by isolating faulted systems and dissipating transient currents. Lightning protection systems minimize the possible consequences of a direct strike by lightning. This volume focuses on design requirements of the grounding system and on present-day concepts used in the design of lightning protection systems. Various types of grounding designs are presented, and their advantages and disadvantages discussed. Safety, of course, is the primary concern of any grounding system. Methods are shown for grounding the non-current-carrying parts of electrical equipment to reduce shock hazards to personnel. Lightning protection systems are installed on tall structures (such as chimneys and cooling towers) to minimize the possibility of structural damage caused by direct lightning strokes. These strokes may carry currents of 200,000 A or more. The volume examines the formation and characteristics of lightning strokes and the way stroke characteristics influence the design of lightning protection systems. Because a large portion of the grounding system is buried in soil or concrete, it is not readily accessible for inspection or repair after its installation. The volume details the careful selection and sizing of materials needed to ensure a long, maintenance-free life for the system. Industry standards and procedures for testing the adequacy of the grounding system are also discussed.

  4. JPS heater and sensor lightning qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  5. JPS heater and sensor lightning qualification

    NASA Astrophysics Data System (ADS)

    Cook, M.

    1989-10-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  6. Lightning protection for shuttle propulsion elements

    NASA Technical Reports Server (NTRS)

    Goodloe, Carolyn C.; Giudici, Robert J.

    1991-01-01

    The results of lightning protection analyses and tests are weighed against the present set of waivers to the NASA lightning protection specification. The significant analyses and tests are contrasted with the release of a new and more realistic lightning protection specification, in September 1990, that resulted in an inordinate number of waivers. A variety of lightning protection analyses and tests of the Shuttle propulsion elements, the Solid Rocket Booster, the External Tank, and the Space Shuttle Main Engine, were conducted. These tests range from the sensitivity of solid propellant during shipping to penetration of cryogenic tanks during flight. The Shuttle propulsion elements have the capability to survive certain levels of lightning strikes at certain times during transportation, launch site operations, and flight. Changes are being evaluated that may improve the odds of withstanding a major lightning strike. The Solid Rocket Booster is the most likely propulsion element to survive if systems tunnel bond straps are improved. Wiring improvements were already incorporated and major protection tests were conducted. The External Tank remains vulnerable to burn-through penetration of its skin. Proposed design improvements include the use of a composite nose cone and conductive or laminated thermal protection system coatings.

  7. First Lightning Flashes on Saturn

    NASA Image and Video Library

    2010-04-14

    NASA Cassini spacecraft captured the first lightning flashes on Saturn. The storm that generated the lightning lasted from January to October 2009, making it the longest-lasting lightning storm known in the solar system.

  8. Correlated observations of three triggered lightning flashes

    NASA Technical Reports Server (NTRS)

    Idone, V. P.; Orville, R. E.; Hubert, P.; Barret, L.; Eybert-Berard, A.

    1984-01-01

    Three triggered lightning flashes, initiated during the Thunderstorm Research International Program (1981) at Langmuir Laboratory, New Mexico, are examined on the basis of three-dimensional return stroke propagation speeds and peak currents. Nonlinear relationships result between return stroke propagation speed and stroke peak current for 56 strokes, and between return stroke propagation speed and dart leader propagation speed for 32 strokes. Calculated linear correlation coefficients include dart leader propagation speed and ensuing return stroke peak current (32 strokes; r = 0.84); and stroke peak current and interstroke interval (69 strokes; r = 0.57). Earlier natural lightning data do not concur with the weak positive correlation between dart leader propagation speed and interstroke interval. Therefore, application of triggered lightning results to natural lightning phenomena must be made with certain caveats. Mean values are included for the three-dimensional return stroke propagation speed and for the three-dimensional dart leader propagation speed.

  9. Recent Advancements in Lightning Jump Algorithm Work

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  10. Infrasound from lightning measured in Ivory Coast

    NASA Astrophysics Data System (ADS)

    Farges, T.; Millet, C.; Matoza, R. S.

    2012-04-01

    It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes, …). Some of the IMS stations are located where worldwide lightning detection networks (e.g. WWLLN) have a weak detection capability but lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of lightning flashes can be detected with this technique, giving better results locally than worldwide lightning detection networks. An IMS infrasound station has been installed in Ivory Coast for 9 years. The lightning rate of this region is 10-20 flashes/km2/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 4 years of data (2005-2009). For short lightning distances (less than 20 km), up to 60 % of lightning detected by WWLLN has been one-to-one correlated

  11. Periodontal Stain Test Diagnosis Program

    DTIC Science & Technology

    1989-01-01

    inflammatory loss of attachment and bone in adolescents ; lesions are often associated with incisors and first molars; no evidence of systemic disease . RISK...FACTORS: When determining susceptibility to periodontal disease , patients in the previous classifications should be considered high risk patients if...AD-A247 28411i 11111l l l1113111! Eilli UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL PERIODONTAL STAIN TEST DIAGNOSIS PROGRAM D T IC Prof. E.J. Burkes

  12. PUMA test program for SBWR

    SciTech Connect

    Ishii, M.; Revankar, S.T.; Dowlati, R.

    1996-03-01

    The objective of the PUMA integral test program is to obtain confirmatory test data for the SBWR Developed by the General Electric-Nuclear Energy Company. The program was initiated in July 1993 under the sponsorship of the NRC. The SBWR has a simplified coolant circulation system and a passive emergency cooling system. The engineered safety systems and safety-grade systems in the SBWR are: (1) the Automatic Depressurization System (ADS), (2) the Gravity-Driven Cooling System (GDCS), (3) the Passive Containment Cooling System (PCCS), (4) the Isolation Condenser Systems (ICS), and (5) the Pressure Suppression Pool (SP). The GDCS and PCCS are new designs unique to the SBWR and do not exist in operating BWRs. The ICS is similar to those in some operating BWRs. The PCCS is designed for low-pressure operation for the containment cooling, but the ICS is capable of high pressure operation as well to cool the reactor pressure vessel. The PUMA design was completed based on an extensive scaling analysis. The PUMA facility having 1/4 height and 1/400 volume scales is constructed. Various facility characterization tests and instrumentation and data acquisition system checks are performed presently. The facility acceptance test will be performed in November and integral tests will be initiated.

  13. Electrostatic protection of the solar power satellite and rectenna. Part 2: Lightning protection of the rectenna

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Computer simulations and laboratory tests were used to evaluate the hazard posed by lightning flashes to ground on the Solar Power Satellite rectenna and to make recommendations on a lightning protection system for the rectenna. The distribution of lightning over the lower 48 of the continental United States was determined, as were the interactions of lightning with the rectenna and the modes in which those interactions could damage the rectenna. Lightning protection was both required and feasible. Several systems of lightning protection were considered and evaluated. These included two systems that employed lightning rods of different lengths and placed on top of the rectenna's billboards and a third, distribution companies; it consists of short lightning rods all along the length of each billboard that are connected by a horizontal wire above the billboard. The distributed lightning protection system afforded greater protection than the other systems considered and was easier to integrate into the rectenna's structural design.

  14. Global Lightning Activity

    NASA Technical Reports Server (NTRS)

    Christian, Hugh

    2003-01-01

    Our knowledge of the global distribution of lightning has improved dramatically since the 1995 launch of the Optical Transient Detector (OTD) followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous seven-year record of global lightning activity. These lightning observations have provided a new global perspective on total lightning activity. For the first time, total lightning activity (CG and IC) has been observed over large regions with high detection efficiencies and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised global flash rate estimate (46 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe weather. Accurate flash rate estimates are now available for large areas of the earth (+/- 72deg latitude) Ocean-land contrasts as a function of season are clearly revealed, as are orographic effects and seasonal and interannual variability. The data set indicates that air mass thunderstorms, not large storm systems dominate global activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated hat this capability could lead to significantly improved severe weather warning times and reduced false warning rates.

  15. Tortuosity of lightning

    NASA Astrophysics Data System (ADS)

    Hill, R. D.

    Characteristics of lightning tortuosity from a number of investigations are studied, and the tentative conclusion reached is that tortuosity stems primarily from a lack of electric field directivity at the head of the lightning flash leader. There is strong evidence that the tortuosity of a lightning flash is polarity-dependent, and the influence of an induced junction leader on the initial oncoming leader is indicated.

  16. Lightning Injury: A Review

    DTIC Science & Technology

    2008-01-01

    who do not arrest) by hypertension , tachycardia, non-specific EKG changes, and contraction-band myocardial necrosis. Myocardial infarction, however, is...aspects, pathophysiology, and treatment. Adv Trauma 1989;4:241–88. [35] Cherington M, Yarnell PR. Ball lightning encephalopathy . J Burn Care Rehab...D. MRI in lightning encephalopathy . Neurology 1993;43(7): 1437–8. [88] Milton WJ, Hal O’Dell R, Warner EG. MRI of lightning injury: early white

  17. Polar Lightning on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Images taken by the New Horizons Long-Range Reconnaissance Imager (LORRI) of Jupiter's night side showed lightning strikes. Each 'strike' is probably the cumulative brightness of multiple strikes. This is the first lightning seen at high latitudes on Jupiter; it demonstrates that convection is not confined to lower latitudes, implying an internal driving heat source. Their power is consistent with previous lightning measurements at Jupiter's lower latitudes, equivalent to extremely bright terrestrial 'super bolts.'

  18. An improved wave impedance approach for locating close lightning stroke from single station observation and its validation

    NASA Astrophysics Data System (ADS)

    Chen, Mingli; Lu, Tao; Du, Yaping

    2015-01-01

    An improved wave impedance approach for locating close lightning strokes based on single station observation was proposed and practiced. In the approach, a lightning stroke was modelled with an electrical dipole carrying current components in VLF/LF frequency bands. For a lightning stroke, the ratio of its electrical and magnetic fields at ground is theoretically a function of the frequency and distance to the stroke. Distance of the stroke can then be obtained by fitting the theoretical function with the observed data. The approach was examined by applying it to broadband VLF/LF electrical and magnetic fields observed simultaneously at one station for several strokes in ranges of 10-50 km. Furthermore, a prototypal single-station lightning location system (S-LLS), which can be analogized to a modified VLF/LF broadband magnetic direction-finder programmed with the proposed lightning stroke distance determining approach, was built up and tested. Comparisons of individual stroke locations with the local lightning location network show that the S-LLS has a good location accuracy of 0.1-4 km for close strokes in ranges of 15-60 km, but has a poor location accuracy of 12.4-26 km for distant strokes in ranges of 80-130 km.

  19. Ionospheric effects of whistler waves from rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Cotts, B. R. T.; Gołkowski, M.; Moore, R. C.

    2011-12-01

    Lightning-induced electron precipitation (LEP) is one of the primary mechanisms for energetic electron loss from Earth's radiation belts. While previous works have emphasized lightning location and the return stroke peak current in quantifying lightning's role in radiation belt electron loss, the spectrum of the lightning return stroke has received far less attention. Rocket-triggered lightning experiments performed at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida, provide a means to directly measure the spectral content of individual lightning return strokes. Using an integrated set of numerical models and directly observed rocket-triggered lightning channel-base currents we calculate the latitudinal dependence of the precipitation signature. Model results indicate that rocket-triggered lightning may produce detectable LEP events and that return strokes with higher ELF (3 Hz-3 kHz) content cause proportionally more ionospheric ionization and precipitate more electrons at higher latitudes than return strokes with proportionally higher VLF (3 kHz-30 kHz) content. The predicted spatio-temporal signature of the induced electron precipitation is highly dependent upon the return stroke spectral content. As a result, we postulate that rocket-triggered lightning experiments enable us to the estimate the spectral profile of energetic electrons precipitated from the Earth's radiation belts.

  20. Dual laser gyro test program

    NASA Astrophysics Data System (ADS)

    Jones, Malcolm E.; Moore, Kim Eric

    This paper addresses the results of a comparative test evaluation of two similar-sized but otherwise dissimilar ring laser gyroscopes (RLG's). Both units were tested side by side, with the input axes (IA's) parallel, on the same test table. This report describes the rationale and design factors considered important to the test objectives. Emphasis was placed upon the evaluation of the scale factor (SF) linearity, drift rate stability (short term and long term), and derived rate. Conclusions drawn were (1) that dual operation had an observable but insignificant effect on the test results, (2) that the benefits of dual operation outweighed the additional design and analysis efforts required at the outset of the program, and (3) that the performance characteristics of the two test articles were significantly different. The differences between the two test articles (1) led to suggestions which could direct one vendor toward obtaining improved performance and (2) resulted in the creation of a conceptually new method (DELTA TIME-COUNT histogram) for quickly assessing the quality of laser gyros (or any digital sensor device for that matter).

  1. Central Hyperadrenergic State After Lightning Strike

    PubMed Central

    Parsaik, Ajay K.; Ahlskog, J. Eric; Singer, Wolfgang; Gelfman, Russell; Sheldon, Seth H.; Seime, Richard J.; Craft, Jennifer M.; Staab, Jeffrey P.; Kantor, Birgit; Low, Phillip A.

    2013-01-01

    Objective To describe and review autonomic complications of lightning strike. Methods Case report and laboratory data including autonomic function tests in a subject who was struck by lightning. Results A 24-year-old man was struck by lightning. Following that, he developed dysautonomia, with persistent inappropriate sinus tachycardia and autonomic storms, as well as posttraumatic stress disorder (PTSD) and functional neurologic problems. Interpretation The combination of persistent sinus tachycardia and episodic exacerbations associated with hypertension, diaphoresis, and agitation were highly suggestive of a central hyperadrenergic state with superimposed autonomic storms. Whether the additional PTSD and functional neurologic deficits were due to a direct effect of the lightning strike on the CNS or a secondary response is open to speculation. PMID:23761114

  2. Lightning vulnerability of fiber-optic cables.

    SciTech Connect

    Martinez, Leonard E.; Caldwell, Michele

    2008-06-01

    One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very important case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.

  3. Lightning and Climate

    NASA Astrophysics Data System (ADS)

    Williams, E.

    2012-12-01

    Lightning is of interest in the domain of climate change for several reasons: (1) thunderstorms are extreme forms of moist convection, and lightning flash rate is a sensitive measure of that extremity, (2) thunderstorms are deep conduits for delivering water substance from the boundary layer to the upper troposphere and stratosphere, and (3) global lightning can be monitored continuously and inexpensively within a natural framework (the Earth-ionosphere waveguide and Schumann resonances). Lightning and temperature, and lightning and upper tropospheric water vapor, are positively correlated on weather-related time scales (diurnal, semiannual, and annual) with a lightning temperature sensitivity of order 10% per oC. Lightning also follows temperature variations on the ENSO time scale, both locally and globally. The response of lightning in some of its extreme forms (exceptional flash rates and the prevalence of sprite-producing mesoscale lightning, for example) to temperature variations will be addressed. Consistently obtained records of lightning activity on longer time scales are scarce as stable detection networks are uncommon. As a consequence, thunder day data have been used to extend the lightning record for climate studies, with evidence for increases over decades in urban areas. Global records of lightning following Schumann resonance intensity and from space-based optical sensors (OTD and LIS) are consistent with the record of ionospheric potential representing the global electrical circuit in showing flat behavior over the few decades. This flatness is not well understood, though the majority of all lightning flashes are found in the tropics, the most closely regulated portion of the atmosphere. Other analysis of frequency variations of Schumann resonances in recent decades shows increased lightning in the northern hemisphere, where the global warming is most pronounced. The quantity more fundamental than temperature for lightning control is cloud buoyancy

  4. [Neurological diseases after lightning strike : Lightning strikes twice].

    PubMed

    Gruhn, K M; Knossalla, Frauke; Schwenkreis, Peter; Hamsen, Uwe; Schildhauer, Thomas A; Tegenthoff, Martin; Sczesny-Kaiser, Matthias

    2016-06-01

    Lightning strikes rarely occur but 85 % of patients have lightning-related neurological complications. This report provides an overview about different modes of energy transfer and neurological conditions related to lightning strikes. Moreover, two case reports demonstrate the importance of interdisciplinary treatment and the spectrum of neurological complications after lightning strikes.

  5. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  6. Spallation source materials test program

    SciTech Connect

    Maloy, S.A.; Sommer, W.F.

    1997-12-01

    A spallation source materials program has been developed to irradiate and test candidate materials (Inconel 718, 316L and 304L stainless steel, modified 9Cr-1Mo(T91), Al6061-T6, Al5052-O) for use in the Accelerator Production of Tritium (APT) target and blanket in prototypic proton and neutron fluxes at prototypic temperatures. The study uses the 800 MeV, 1mA proton accelerator at the Los Alamos Neutron Science Center (LANSCE) which produces a Gaussian beam with 2 sigma = 3 cm. The experimental set-up contains prototypic modules of the tungsten neutron source and the lead/aluminum blanket with mechanical testing specimens of candidate APT materials placed in specific locations in the irradiation area. These specimens have been irradiated for greater than 3,600 hours with a maximum proton fluence of 4--5 {times} 10{sup 21} p/cm{sup 2} in the center of the proton beam. Specimens will yield some of the first data on the effect of proton irradiation to high dose on the materials` properties from tensile tests, 3 pt. bend tests, fracture toughness tests, pressurized tubes, U-bend stress corrosion cracking specimens, corrosion measurements and microstructural characterization of transmission electron microscopy specimens.

  7. A fully enclosed, compact standard lightning impulse generator for testing ultra-high-voltage-class gas-insulated switchgears with high capacitance.

    PubMed

    Wen, Tao; Zhang, Qiaogen; Zhang, Lingli; Zhao, Junping; Liu, Xuandong; Li, Xiaoang; Guo, Can; You, Haoyang; Chen, Weijiang; Yin, Yu; Shi, Weidong

    2016-03-01

    At present, conducting standard lightning impulse (LI) tests in the field for gas-insulated switchgear (GIS) equipment is difficult because of the high capacitance of the test equipment and large circuit inductance of traditional impulse devices, which leads to a wavefront time T(f) ≥ 2.5 μs. A novel fully enclosed, compact standard LI generator for testing ultra-high-voltage-class GIS equipment with high capacitance is presented to solve the problem of T(f) exceeding the standard during LI voltage tests for actual large-sized equipment. The impulse generator is installed in a metal vessel filled with SF6 or SF6/N2 gas mixture at a pressure of 0.3-0.5 MPa, providing a more compact structure and a lower series inductance. A newly developed conical voltage sensor is used to accurately measure the output voltage waveform. Two test modes (via bushing docking and direct docking) for the GIS test based on the impulse generator are introduced. Calculation results show that the impulse generator can generate an LI test waveform following the present IEC standard for the test of equipment with capacitance >10,000 pF.

  8. A fully enclosed, compact standard lightning impulse generator for testing ultra-high-voltage-class gas-insulated switchgears with high capacitance

    NASA Astrophysics Data System (ADS)

    Wen, Tao; Zhang, Qiaogen; Zhang, Lingli; Zhao, Junping; Liu, Xuandong; Li, Xiaoang; Guo, Can; You, Haoyang; Chen, Weijiang; Yin, Yu; Shi, Weidong

    2016-03-01

    At present, conducting standard lightning impulse (LI) tests in the field for gas-insulated switchgear (GIS) equipment is difficult because of the high capacitance of the test equipment and large circuit inductance of traditional impulse devices, which leads to a wavefront time Tf ≥ 2.5 μs. A novel fully enclosed, compact standard LI generator for testing ultra-high-voltage-class GIS equipment with high capacitance is presented to solve the problem of Tf exceeding the standard during LI voltage tests for actual large-sized equipment. The impulse generator is installed in a metal vessel filled with SF6 or SF6/N2 gas mixture at a pressure of 0.3-0.5 MPa, providing a more compact structure and a lower series inductance. A newly developed conical voltage sensor is used to accurately measure the output voltage waveform. Two test modes (via bushing docking and direct docking) for the GIS test based on the impulse generator are introduced. Calculation results show that the impulse generator can generate an LI test waveform following the present IEC standard for the test of equipment with capacitance >10 000 pF.

  9. Birth of ball lightning

    NASA Astrophysics Data System (ADS)

    Lowke, J. J.; Smith, D.; Nelson, K. E.; Crompton, R. W.; Murphy, A. B.

    2012-10-01

    Many observations of ball lightning report a ball of light, about 10 cm in diameter, moving at about walking speed, lasting up to 20 s and frequently existing inside of houses and even aeroplanes. The present paper reports detailed observations of the initiation or birth of ball lightning. In two cases, navigation crew of aircraft saw ball lightning form at the windscreen inside the cockpit of their planes. In the first case, the ball lightning occurred during a thunderstorm, with much lightning activity outside of the plane. In the second case, large "horns" of electrical corona were seen outside of the plane at the surface of the radome, just prior to the formation of the ball lightning. A third case reports ball lightning formed inside of a house, during a thunderstorm, at a closed glass window. It is proposed, based on two-dimensional calculations of electron and ion transport, that ball lightning in these cases is driven and formed by atmospheric ions impinging and collecting on the insulating surface of the glass or Perspex windows. This surface charge can produce electric fields inside of the cockpit or room sufficient to sustain an electric discharge. Charges of opposite sign to those outside of the window accumulate on the inside surface of the glass, leaving a ball of net charge moving inside of the cockpit or room to produce a pulsed discharge on a microsecond time scale.

  10. Lightning-Transient Recorder

    NASA Technical Reports Server (NTRS)

    Grumm, R. L.

    1984-01-01

    Battery-powered system operates for more than one year. Recorder digitizes and records up to 146 current samples at selected intervals during lightning stroke. System continues to store time tags of lightning strokes even if transient current memory is full.

  11. Lightning injury: a review.

    PubMed

    Ritenour, Amber E; Morton, Melinda J; McManus, John G; Barillo, David J; Cancio, Leopoldo C

    2008-08-01

    Lightning is an uncommon but potentially devastating cause of injury in patients presenting to burn centers. These injuries feature unusual symptoms, high mortality, and significant long-term morbidity. This paper will review the epidemiology, physics, clinical presentation, management principles, and prevention of lightning injuries.

  12. Lightning Often Strikes Twice

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contrary to popular misconception, lightning often strikes the same place twice. Certain conditions are just ripe for a bolt of electricity to come zapping down; and a lightning strike is powerful enough to do a lot of damage wherever it hits. NASA created the Accurate Location of Lightning Strikes technology to determine the ground strike point of lightning and prevent electrical damage in the immediate vicinity of the Space Shuttle launch pads at Kennedy Space Center. The area surrounding the launch pads is enmeshed in a network of electrical wires and components, and electronic equipment is highly susceptible to lightning strike damage. The accurate knowledge of the striking point is important so that crews can determine which equipment or system needs to be retested following a strike. Accurate to within a few yards, this technology can locate a lightning strike in the perimeter of the launch pad. As an added bonus, the engineers, then knowing where the lightning struck, can adjust the variables that may be attracting the lightning, to create a zone that will be less susceptible to future strikes.

  13. Determining the probability of lightning striking the Device Assembly Facility

    SciTech Connect

    Hasbrouck, R.T.

    1996-06-07

    The likelihood of lightning striking a new facility at the Nevada Test Site (NTS) has been considered in conjunction with a Lightning Hazard Mitigation study for that facility. Probability was estimated using both an older {open_quotes}traditional{close_quotes} method and a new method in which five years of actual NTS lightning strike data was analyzed. We believe the new method provides a more credible estimate. An important finding is that the NTS data exhibits a distribution of return-stroke peak-current amplitudes that is significantly less severe than that generally used by the lightning protection community, or found in other parts of the United States.

  14. Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kawakami, Hirohide

    Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch

  15. North Alabama Total Lightning Climatology in Support of Lightning Safety Operations

    NASA Astrophysics Data System (ADS)

    Stano, G. T.; Schultz, C. J.; Koshak, W. J.

    2015-12-01

    The North Alabama Lightning Mapping Array (NALMA) was installed in 2001 to observe total lightning (cloud-to-ground and intra-cloud) and study its relationship to convective activity. NALMA has served as ground-truth for the Tropical Rainfall Measuring Mission Lightning Imager (TRMM-LIS) and will again for the GOES-R Geostationary Lightning Mapper (GLM). Also, NASA's Short-term Prediction Research and Transition Center (SPoRT) has transitioned these data to National Weather Service Weather Forecast Offices to evaluate the impact in operations since 2003. This study focuses on seasonal and diurnal observations from NALMA's 14 year history. This is initially intended to improve lightning safety at Marshall Space Flight Center, but has other potential applications. Improvements will be made by creating a dataset to investigate temporal, spatial, and seasonal patterns in total lightning over the Tennessee Valley, compare these observations to background environmental parameters and the TRMM-LIS climatology, and investigate applying these data to specific points of interest. Unique characteristics, such as flash extent density and length of flashes can be investigated, which are unavailable from other lightning networks like the National Lightning Detection Network (NLDN). The NALMA and NLDN data can be combined such that end users can use total lightning to gain lead time on the initial cloud-to-ground flash of a storm and identify if lightning is extending far from the storm's core. This spatial extent can be analyzed to determine how often intra-cloud activity may impinge on a region of interest and how often a cloud-to-ground strike may occur in the region. The seasonal and diurnal lightning maps can aid with planning of various experiments or tests that often require some knowledge about future weather patterns months in advance. The main goal is to develop a protocol to enhance lightning safety everywhere once the Geostationary Lightning Mapper (GLM) is on orbit

  16. Generation of lightning in Jupiter's water cloud.

    PubMed

    Gibbard, S; Levy, E H; Lunine, J I

    1995-12-07

    Lightning is a familiar feature of storms on the Earth, and has also been seen on Jupiter and inferred indirectly to occur on Venus and Neptune. On Jupiter, lightning may be important as a source of energy to drive chemical reactions in the atmosphere, perhaps determining the abundances of molecules such as CO, HCN and C2H2. Lightning may be generated in Jupiter's water clouds by a mechanism similar to that which operates in terrestrial thunderstorms. Here we investigate the development of lightning by modelling the thunderstorm separation of electrical charge on precipitating ice particles at varying depths in Jupiter's atmosphere. We find that lightning can indeed be generated in the jovian water clouds, and that--in agreement with estimates from the analysis of Voyager images--it is most likely to occur at the 3- or 4-bar pressure level. Our model also predicts that a condensed-water abundance in the range of at least 1-2 g m-3 is required for lightning to occur in jovian thunderstorms--a prediction that may be tested when the Galileo probe arrives at Jupiter on 7 December 1995.

  17. Lightning protection design external tank /Space Shuttle/

    NASA Technical Reports Server (NTRS)

    Anderson, A.; Mumme, E.

    1979-01-01

    The possibility of lightning striking the Space Shuttle during liftoff is considered and the lightning protection system designed by the Martin Marietta Corporation for the external tank (ET) portion of the Shuttle is discussed. The protection system is based on diverting and/or directing a lightning strike to an area of the spacecraft which can sustain the strike. The ET lightning protection theory and some test analyses of the system's design are reviewed including studies of conductivity and thermal/stress properties in materials, belly band feasibility, and burn-through plug grounding and puncture voltage. The ET lightning protection system design is shown to be comprised of the following: (1) a lightning rod on the forward most point of the ET, (2) a continually grounded, one inch wide conductive strip applied circumferentially at station 371 (belly band), (3) a three inch wide conductive belly band applied over the TPS (i.e. the insulating surface of the ET) and grounded to a structure with eight conductive plugs at station 536, and (4) a two inch thick TPS between the belly bands which are located over the weld lands.

  18. Testing program overview: What does a good program look like

    SciTech Connect

    Hegedus, A.S. )

    1992-01-01

    A good testing program is vital to the safe, reliable, and efficient operation of a nuclear facility. A testing program consists of more than scheduling, performing, and reviewing results. It includes seven interrelated critical elements, all of which are necessary to provide complete control over a station's testing program. The personnel at Peach Bottom atomic power station wanted to evaluate their testing program. The result was a report that described the framework for a complete testing program. Once the framework was developed, an implementation team was formed to develop the specific plan and schedule for modifying the existing program to conform to the framework.

  19. Progeria Research Foundation Diagnostic Testing Program

    MedlinePlus

    ... Interview with John Tacket Find the Other 150 Medical Research NEW! Lonafarnib Pre-clinical Drug Supply Program What's ... Scientific Publications Grand Rounds Workshop 2010 Videos Home » Medical Research » Diagnostic Testing The PRF Diagnostic Testing Program The ...

  20. GOES-R Geostationary Lightning Mapper Performance Specifications and Algorithms

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.

  1. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  2. The 1981 direct strike lightning data. [utilizing the F-106 aircraft

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Thomas, M. E.

    1982-01-01

    Data waveforms obtained during the 1981 direct strike lightning tests, utilizing the NASA F-106B aircraft specially instrumented for lightning electromagnetic measurements are presented. The aircraft was operated in a thunderstorm environment to elicit strikes. Electromagnetic field data were recorded for both attached lightning and free field excitation of the aircraft.

  3. Lightning protection. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning designs, materials, construction, and testing of various types of lightning protection for domestic and commercial electric power systems. Topics include electronic and electrical equipment from lightning and electrical surges, and data and protection devices for lightning strikes on structures, ships, and aircraft. Also included are lightning arresters for electric power distribution systems, plants, transmission lines, and substations. (Contains a minimum of 162 citations and includes a subject term index and title list.)

  4. Experiments of Wind Turbine Blades with Rocket Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Minowa, Masayuki; Sumi, Shinichi; Minami, Masayasu; Horii, Kenji

    This paper describes the results of the experiments of wind turbine blades with rocket triggered lightning. A number of wind power stations have been projected and planted. Lightning damage to wind turbines has been an increasing problem recently. So development on protection of wind power plants from lightning is necessary to be fully run for the future. In the experiments, the 1.8m long blade was struck by the lightning discharge triggered by rocket. For the blade kept dry inside, the very strong discharge of positive peak current 28kV, total charge 520 Coulombs, was triggered, but the breakdown did not occur through the blade into inside. Another blade polluted by salty wet inside was struck by the lightning discharge of negative peak current of 4kA with 0.5 Coulombs. The lightning was small, nevertheless, the blade was broken at the upper edge and the blade was disconnected by crack. For the protection of blade, the blade surface was covered with stainless steel plate. The blade itself was safe when the big positive lightning discharged, while most part of stainless steel cover was burned out. Supplement breakdown tests of wind turbine blade were carried out with lightning impulse voltage in laboratory. As a result, it became clear that the blade kept dry inside was an effective lightning protection of wind turbine blades.

  5. 47 CFR 73.1620 - Program tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Program tests. 73.1620 Section 73.1620... Rules Applicable to All Broadcast Stations § 73.1620 Program tests. (a) Upon completion of construction..., program tests may be conducted in accordance with the following: (1) The permittee of a nondirectional...

  6. 47 CFR 73.713 - Program tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Program tests. 73.713 Section 73.713... International Broadcast Stations § 73.713 Program tests. (a) Upon completion of construction of an international..., the permittee may request authority to conduct program tests. Such request shall be filed with the...

  7. 47 CFR 73.713 - Program tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Program tests. 73.713 Section 73.713... International Broadcast Stations § 73.713 Program tests. (a) Upon completion of construction of an international..., the permittee may request authority to conduct program tests. Such request shall be filed with the...

  8. 47 CFR 73.1620 - Program tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Program tests. 73.1620 Section 73.1620... Rules Applicable to All Broadcast Stations § 73.1620 Program tests. (a) Upon completion of construction..., program tests may be conducted in accordance with the following: (1) The permittee of a nondirectional...

  9. Infrasound Observations from Lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Thomas, R. J.; Jones, K. R.

    2008-12-01

    To provide additional insight into the nature of lightning, we have investigated its infrasound manifestations. An array of three stations in a triangular configuration, with three sensors each, was deployed during the Summer of 2008 (July 24 to July 28) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) sources due to lightning. Hyperbolic formulations of time of arrival (TOA) measurements and interferometric techniques were used to locate lightning sources occurring over and outside the network. A comparative analysis of simultaneous Lightning Mapping Array (LMA) data and infrasound measurements operating in the same area was made. The LMA locates the sources of impulsive RF radiation produced by lightning flashes in three spatial dimensions and time, operating in the 60 - 66 MHz television band. The comparison showed strong evidence that lightning does produce infrasound. This work is a continuation of the study of the frequency spectrum of thunder conducted by Holmes et al., who reported measurements of infrasound frequencies. The integration of infrasound measurements with RF source localization by the LMA shows great potential for improved understanding of lightning processes.

  10. The Sandia transportable triggered lightning instrumentation facility

    NASA Technical Reports Server (NTRS)

    Schnetzer, George H.; Fisher, Richard J.

    1991-01-01

    Development of the Sandia Transportable Triggered Lightning Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of a munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a lightning response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered lightning test site. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck of by aircraft, and its instrumentation for measuring incident lightning channel currents and the responses of the systems under test. Measurements of return-stroke current peaks obtained with the SATTLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within approximately 7 percent. Continuing currents were measured with a resolution of approximately 2.5 A. This field trial demonstrated the practicality of using a transportable triggered lightning facility for specialized test applications.

  11. The Sandia Transportable Triggered Lightning Instrumentation Facility

    SciTech Connect

    Schnetzer, G.H.; Fisher, R.J.

    1991-01-01

    Development of the Sandia Transportable Triggered Lightning Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a lightning response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during the summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered lightning test site in Florida. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck or by aircraft, and its instrumentation for measuring incident lightning channel currents and the responses of systems under test. Measurements of return-stroke current peaks obtained with the SATLLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within {approximately}7 percent. Continuing currents were measured with a resolution of {approximately}2.5 A. This field trial demonstrated the practicality of using a transportable triggered lightning facility for specialized test applications. 5 refs., 12 figs., 1 tab.

  12. Mast material test program (MAMATEP)

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Rutledge, Sharon K.

    1988-01-01

    The Mast Material Test Program (MAMATEP) at NASA Lewis is discussed. Objectives include verifying the need for, and evaluating the performance of, various protection techniques for the Solar Array Assembly mast of the Space Station Photovoltaic Power Module. Mast material samples were evaluated in terms of mass and bending modulus, measured before and after environmental exposure. Test environments included atomic oxygen exposure (RF plasma asher), thermal cycling, and mechanical flexing. Protective coatings included CV-1144 silicon, a Ni/Au/InSn eutectic, and an open weave, Al braid. Results indicate that unprotected samples degrade in an atomic oxygen environment at a steady rate. Open weave, Al braid offers little protection for the fiberglass-epoxy sample in an asher environment. Ni/Au/InSn eutectic offers excellent protection in an asher environment prior to thermal cycling and mechanical flexing. Long duration asher results from unprotected samples indicate that, even though the fiberglass-epoxy degrades, a protection technique may not be necessary to ensure structural integrity. However, a protection technique may be desirable to limit or contain the amount of debris generated by the degradation of the fiberglass-epoxy.

  13. A mobile test facility based on a magnetic cumulative generator to study the stability of the power plants under impact of lightning currents

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.

    2016-12-01

    The report presents the results of the development and field testing of a mobile test facility based on a helical magnetic cumulative generator (MCGTF). The system is designed for full-scale modeling of lightning currents to study the safety of power plants of any type, including nuclear power plants. Advanced technologies of high-energy physics for solving both engineering and applied problems underlie this pilot project. The energy from the magnetic cumulative generator (MCG) is transferred to a high-impedance load with high efficiency of more than 50% using pulse transformer coupling. Modeling of the dynamics of the MEG that operates in a circuit with lumped parameters allows one to apply the law of inductance output during operation of the MCG, thus providing the required front of the current pulse in the load without using any switches. The results of field testing of the MCGTF are presented for both the ground loop and the model load. The ground loop generates a load resistance of 2-4 Ω. In the tests, the ohmic resistance of the model load is 10 Ω. It is shown that the current pulse parameters recorded in the resistive-inductive load are close to the calculated values.

  14. A mobile test facility based on a magnetic cumulative generator to study the stability of the power plants under impact of lightning currents

    SciTech Connect

    Shurupov, A. V.; Zavalova, V. E. Kozlov, A. V.; Shurupov, M. A.

    2016-12-15

    The report presents the results of the development and field testing of a mobile test facility based on a helical magnetic cumulative generator (MCGTF). The system is designed for full-scale modeling of lightning currents to study the safety of power plants of any type, including nuclear power plants. Advanced technologies of high-energy physics for solving both engineering and applied problems underlie this pilot project. The energy from the magnetic cumulative generator (MCG) is transferred to a high-impedance load with high efficiency of more than 50% using pulse transformer coupling. Modeling of the dynamics of the MEG that operates in a circuit with lumped parameters allows one to apply the law of inductance output during operation of the MCG, thus providing the required front of the current pulse in the load without using any switches. The results of field testing of the MCGTF are presented for both the ground loop and the model load. The ground loop generates a load resistance of 2–4 Ω. In the tests, the ohmic resistance of the model load is 10 Ω. It is shown that the current pulse parameters recorded in the resistive-inductive load are close to the calculated values.

  15. Lightning mapping system

    NASA Technical Reports Server (NTRS)

    Lennon, C.; Maier, L.

    1991-01-01

    A Lightning Detection and Ranging (LDAR) System is being implemented at KSC in Florida. The first operational use is expected in the late summer of 1991. The system is designed to map the location of in-cloud and cloud-to-ground lightning based on the time of arrival (TOA) of electromagnetic radiation. The system detects very high frequency (VHF) radiation and designed to map the volumetric extent of lightning. The system implements two independent antenna arrays to provide a fast data quality check, as necessary for a real-time warning system. The system performance goals and a comparison with a similar system implemented in the mid-1970's is made.

  16. Note on lightning temperature

    NASA Astrophysics Data System (ADS)

    Alanakyan, Yu. R.

    2015-10-01

    In this paper, some features of the dynamics of a lightning channel that emerges after the leader-streamer process, are theoretically studied. It is shown that the dynamic pinch effect in the channel becomes possible if a discharge current before the main (quasi-steady) stage of a lightning discharge increases rapidly. The ensuing magnetic compression of the channel increases plasma temperature to several million degrees leading to a soft x-ray flash within the highly ionized plasma. The relation between the plasma temperature and the channel radius during the main stage of a lightning discharge is derived.

  17. Note on lightning temperature

    SciTech Connect

    Alanakyan, Yu. R.

    2015-10-15

    In this paper, some features of the dynamics of a lightning channel that emerges after the leader-streamer process, are theoretically studied. It is shown that the dynamic pinch effect in the channel becomes possible if a discharge current before the main (quasi-steady) stage of a lightning discharge increases rapidly. The ensuing magnetic compression of the channel increases plasma temperature to several million degrees leading to a soft x-ray flash within the highly ionized plasma. The relation between the plasma temperature and the channel radius during the main stage of a lightning discharge is derived.

  18. Advances in lightning research

    NASA Astrophysics Data System (ADS)

    Cooray, Vernon; Rachidi, Farhad

    2017-02-01

    This is the part II of a special issue dedicated to lightning research, consisting of papers presented at the 32nd International Conference on Lightning Protection (ICLP), held in Shanghai, China, in 2014, and several contributions invited by the guest editors to complement the subject matter of the papers selected from the ICLP. The papers from the ICLP were selected by the session chairmen of the ICLP and passed through the rigorous review process of the Journal of Solar Terrestrial and Atmospheric Physics (JASTP). The papers presented in this special issue contain subject matter pertinent to all aspects of lightning research both theoretical and experimental.

  19. 14 CFR 35.38 - Lightning strike.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by tests, analysis based on tests, or experience on similar designs, that the propeller can withstand...

  20. A NASA Lightning Parameterization for CMAQ

    NASA Technical Reports Server (NTRS)

    Koshak, William; Khan, Maudood; Biazar, Arastoo; Newchurch, Mike; McNider, Richard

    2009-01-01

    Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, lightning modeling for CMAQ is highly oversimplified. This leads to very poor estimates of lightning-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA lightning model, called the Lightning Nitrogen Oxides Model (LNOM) that combines state-of-the-art lightning measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of lightning NOx production for CMAQ. NASA satellite lightning data is used in conjunction with ground-based lightning detection systems to assure that the best representation of lightning frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and

  1. A NASA Lightning Parameterization for CMAQ

    NASA Technical Reports Server (NTRS)

    Koshak, William; Khan, Maudood; Biazar, Arastoo; Newchurch, Mike; McNider, Richard

    2009-01-01

    Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, lightning modeling for CMAQ is highly oversimplified. This leads to very poor estimates of lightning-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA lightning model, called the Lightning Nitrogen Oxides Model (LNOM) that combines state-of-the-art lightning measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of lightning NOx production for CMAQ. NASA satellite lightning data is used in conjunction with ground-based lightning detection systems to assure that the best representation of lightning frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and

  2. Optical Spectra of Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Walker, T. D.; Biagi, C. J.; Hill, J. D.; Jordan, D. M.; Uman, M. A.; Christian, H. J., Jr.

    2009-12-01

    In August 2009, the first optical spectra of triggered lightning flashes were acquired. Data from two triggered lightning flashes were obtained at the International Center for Lightning Research and Testing in north-central Florida. The spectrometer that was used has an average dispersion of 260 Å/mm resulting in an average resolution of 5 Å when mated to a Photron (SA1.1) high-speed camera. The spectra captured with this system had a free spectral range of 3800-8000 Å. The spectra were captured at 300,000 frames per second. The spectrometer's vertical field of view was 3 m at an altitude 50 m above the launch tower, intended to view the middle of the triggering wire. Preliminary results show that the copper spectrum dominated the earliest part of the flash and copper lines persisted during the total lifetime of the detectable spectrum. Animations over the lifetime of the stroke from the initial wire illumination to multiple return strokes show the evolution of the spectrum. In addition, coordinated high speed channel base current, electric field and imagery measurements of the exploding wire, downward leaders, and return strokes were recorded. Quantitative analysis of the spectral evolution will be discussed in the context of the overall flash development.

  3. Lightning detection from space

    NASA Astrophysics Data System (ADS)

    Orville, R. E.

    Efforts to detect the frequency of terrestrial lightning using spaceborne instrumentation are reviewed. Lightning occurs in intracloud, cloud-to-ground first return strokes, and cloud-to-ground subsequent strokes. Satellite detection of the strokes can be through sensing of HF radio waves and optical techniques. Currently, the radio detection offers no reliable spatial distribution data, while further perfection of a VHF interferometer might. Optical remote sensing has been performed with the OSO-5, -2, the Vela, and the DMSP satellites. The detectors were photometers, which have a simplistic operation and good spatial resolution. It has been found that more lightning occurs over land than over water, and strikes are globally present at a frequency near 100 strokes/sec. A CCD device for optically detecting lightning from space with a 10 x 10 sq km resolution is presented.

  4. Quantification and identification of lightning damage in tropical forests.

    PubMed

    Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo

    2017-07-01

    Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the

  5. PHETS (Permanent High Explosive Test Site) Lightning Hardening Program: Misty Picture Event

    DTIC Science & Technology

    1988-06-01

    1967), wire, electrical, insulated high temperature. d. Rural Electrification Administration Specifications--REA PE-210 (April, 1967), Crystalline...November 1961) Insulation, Electrical, (Amendment 5: June 20, 1968) Synthetic-Resin Composition, Nonrigid e. Rural Electrification Administration

  6. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; Goodman, S.

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  7. Lightning interaction with launch facilities

    NASA Astrophysics Data System (ADS)

    Mata, C. T.; Rakov, V. A.

    2009-12-01

    Lightning is a major threat to launch facilities. In 2008 and 2009 there have been a significant number of strikes within 5 nautical miles of Launch Complexes 39A and 39B at the Kennedy Space Center. On several occasions, the Shuttle Space Vehicle (SSV) was at the pad. Fortunately, no accidents or damage to the flight hardware occurred, but these events resulted in many launch delays, one launch scrub, and many hours of retesting. For complex structures, such as launch facilities, the design of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some “unprotected” or “exposed” areas. In order to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate origins of downward propagating leaders and a lognormal distribution to generate returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for a large number of years using a long term ground flash density that corresponds to the geographical region where the structures being analyzed are located or will be installed. The output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution. This tool was used in designing the lightning protection system of Launch Complex 39B at the Kennedy Space Center, FL, for NASA’s Constellation program. The tool allowed the designers to select the position of the towers and to design the catenary wire system to minimize the probability of direct strikes to the spacecraft and associated ground support equipment. This tool can be used to evaluate

  8. Lightning effects on aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  9. Lightning Initiation and Propagation

    DTIC Science & Technology

    2009-08-22

    of in-cloud and cloud-to-ground lightning on the regions of the atmosphere (a) between thundercloud tops and the ionosphere and (b) in the ionosphere ...resolution 8 channel telescopic photometer array (presently under construction by Dr. Moore) (e) Additions to ionospheric high-speed photometer arrays...24 (e) Observed sub-microsecond properties of elves from correlated triggered and natural lightning measurements at close range (f) Ionospheric

  10. The Sandia Lightning Simulator.

    SciTech Connect

    Martinez, Leonard E.; Caldwell, Michele

    2005-01-01

    The Sandia Lightning Simulator at Sandia National Laboratories can provide up to 200 kA for a simulated single lightning stroke, 100 kA for a subsequent stroke, and hundreds of Amperes of continuing current. It has recently been recommissioned after a decade of inactivity and the single-stroke capability demonstrated. The simulator capabilities, basic design components, upgrades, and diagnostic capabilities are discussed in this paper.

  11. Upward Lightning in Brazil

    NASA Astrophysics Data System (ADS)

    Schumann, C.; Saba, M. M.; Alves, J.; Warner, T. A.; Albrecht, R. I.; Bie, L. L.

    2012-12-01

    Observations of upward lightning from tall objects have been reported since 1939. Interest in this subject has grown recently, some of it because of the rapid expansion of wind power generation. Also, with the increasing number of tall buildings and towers, there will be a corresponding increase in the number of upward lightning flashes from these structures. Reports from recent field observations are beginning to address the nature of upward lightning initiation, but much still needs to be learned. Examples are studies of upward lightning from towers in winter thunderstorms in Japan (Wang and Takagi, 2010; and Lu et al., 2009) and summer thunderstorms in Europe (Miki et al., 2005; Flache et al., 2008; and Diendorfer et al., 2009; Zhou et al., 2011) and in North America (Mazur and Ruhnke, 2011; Hussein et al., 2011; Warner, 2011, and Warner et al., 2011). Up to January 2012, no upward flash had ever been registered in Brazil. With the help of some video cameras, we recorded 15 upward lightning which started from one of the towers located on Peak Jaraguá in the city of São Paulo. This paper describes the first results of this field campaign. A combination of high-speed video and standard definition video were used to record upward lightning flashes from multiple towers in Sao Paulo, Brazil, a city located in southeastern Brazil with a population over 10 million people, an average elevation of around 800 meters above sea level, and a flash density of 15 flashes/km2/year. Observations of 15 upward flashes made with these assets were analyzed along with BrasilDAT Lightning Detection Network and a lightning mapping array (LMA) and electric field sensors.

  12. Lightning Protection for Explosive Facilities

    SciTech Connect

    Ong, M

    2001-12-01

    Lawrence Livermore National Laboratory funds construction of lightning protection systems to protect explosive processing and storage facilities. This paper provides an intuitive understanding of the lighting risks and types of lightning protection available. Managers can use this information to decide if limited funds should be spent constructing a lightning protection system for their own facilities. This paper answers the following questions: (1) Why do you need lightning protection systems? (2) How do lightning protection systems work? and (3) Why are there no documented cases of lightning problems at existing explosive facilities?

  13. Interaction of lightning with power distribution lines

    NASA Astrophysics Data System (ADS)

    Mata, Carlos Tomas

    Triggered-lightning experiments were conducted in 1996, 1999, and 2000 to study the responses of overhead power distribution lines to lightning at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida. The lightning was artificially initiated (triggered) from natural thunderclouds using the rocket-and-wire technique, and its current was directed to a phase conductor at midspan or at a pole near the center of the line. Experimental results and associated EMTP modeling are presented in this dissertation for the following line configurations: (1)a two-conductor, 740-m overhead distribution line with 2 arrester stations in 1996; (2)a four- conductor, 245-m overhead distribution line with 2 arrester stations in 1999; and (3)a four-conductor, 829-m overhead distribution line with 6 arrester stations in 2000. The three-phase lines tested in 1999 and 2000 were standard designs of a major Florida power company. Lightning peak currents injected into the lines ranged from 7 to 57 kA. Voltages and currents were measured at various locations along the line. Video and photographic cameras were used to image lightning channels and detect line flashovers. The significant results of the research are (1)flashovers between conductors were observed, both accompanied and not accompanied by arrester failures, (2)an arrester failed on seven of eight direct lightning strikes to the line in 2000, (3)arcing between conductors may prevent failures of arresters connected to the struck phase, (4)the bulk of the lightning current flows from the struck phase to neutral through the arresters closest to the strike point, (5)the withstand energy of the arresters can be exceeded due to the contribution from multiple strokes and/or relatively low-level, long-lasting current components, (6)the distribution of charge transferred to ground among multiple neutral grounds, which is determined by low-frequency, low-current grounding resistances is different from the

  14. Situational Lightning Climatologies

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred

    2010-01-01

    Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. It was believed there were two flow systems, but it has been discovered that actually there are seven distinct flow regimes. The Applied Meteorology Unit (AMU) has recalculated the lightning climatologies for the Shuttle Landing Facility (SLF), and the eight airfields in the National Weather Service in Melbourne (NWS MLB) County Warning Area (CWA) using individual lightning strike data to improve the accuracy of the climatologies. The software determines the location of each CG lightning strike with 5-, 10-, 20-, and 30-nmi (.9.3-, 18.5-, 37-, 55.6-km) radii from each airfield. Each CG lightning strike is binned at 1-, 3-, and 6-hour intervals at each specified radius. The software merges the CG lightning strike time intervals and distance with each wind flow regime and creates probability statistics for each time interval, radii, and flow regime, and stratifies them by month and warm season. The AMU also updated the graphical user interface (GUI) with the new data.

  15. The physics of lightning

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.; Uman, Martin A.

    2014-01-01

    Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field. By what physical mechanism or mechanisms is lightning initiated in the thundercloud? What is the maximum cloud electric field magnitude and over what volume of the cloud? What, if any, high energy processes (runaway electrons, X-rays, gamma rays) are involved in lightning initiation and how? What is the role of various forms of ice and water in lightning initiation? What physical mechanisms govern the propagation of the different types of lightning leaders (negative stepped, first positive, negative dart, negative dart-stepped, negative dart-chaotic) between cloud and ground and the leaders inside the cloud? What is the physical mechanism of leader attachment to elevated objects on the ground and to the flat ground? What are the characteristics

  16. The Physics of Lightning

    NASA Astrophysics Data System (ADS)

    Rakov, V. A.

    2013-11-01

    An overview of the physics of cloud-to-ground lightning is given, including its initiation, propagation, and attachment to ground. Discharges artificially initiated (triggered) from natural thunderclouds using the rocket-and-wire technique are discussed with a view toward studying properties of natural lightning. Both conventional and runaway breakdown mechanisms of lightning initiation in thunderclouds are reviewed, as is the role of the lower positive charge region in facilitating different types of lightning. New observations of negative-leader stepping and its attachment to ground are compared to similar processes in long laboratory sparks. The mechanism and parameters of compact intracloud lightning discharges that are thought to be the most intense natural producers of HF-VHF (3-300 MHz) radiation on Earth are reviewed. The M-component mode of charge transfer to ground and its difference from the leader/return-stroke mode are discussed. Lightning interaction with the ionosphere and the production of energetic radiation (X-rays and gamma radiation) by cloud-to-ground leaders are considered.

  17. Cable coupling lightning transient qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.

  18. Partnership Council MGUE Test Program

    DTIC Science & Technology

    2015-04-29

    representative operational threat environments • Utilization of Live Sky M NAV signals - MGUE Test Operations • Racks: Static Tests • RQ-11 B Raven...Integration, Static /Dynamic Tests First Successful Flight Data Collection of Integrated M-Code Receiver 2015 04 29 _Partnership Council MGU E Test

  19. Electro-Optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewica, R. J.

    1998-01-01

    Electric field measurements are fundamental to the study of thunderstorm electrification, thundercloud charge structure, and the determination of the locations and magnitudes of charges deposited by lightning. Continuous field observations can also be used to warn of impending electrical hazards. For example, the USAF Eastern Range (ER) and NASA Kennedy Space Center (KSC) in Florida currently operate a ground-based network of electric field mill sensors to warn against lightning hazards to space vehicle operations/launches. The sensors provide continuous recordings of the ambient field. Others investigators have employed flat-plate electric field antennas to detect changes In the ambient field due to lightning. In each approach, electronic circuitry is used to directly detect and amplify the effects of the ambient field on an exposed metal conductor (antenna plate); in the case of continuous field recordings, the antenna plate is alternately shielded and unshielded by a grounded conductor. In this work effort, an alternate optical method for detecting lightning-caused electric field changes is Introduced. The primary component in the detector is an anisotropic electro-optic crystal of potassium di-hydrogen phosphate (chemically written as KH2PO4 (KDP)). When a voltage Is placed across the electro-optic crystal, the refractive Indices of the crystal change. This change alters the polarization state of a laser light beam that is passed down the crystal optic axis. With suitable application of vertical and horizontal polarizers, a light transmission measurement is related to the applied crystal voltage (which in turn Is related to the lightning caused electric field change). During the past two years, all critical optical components were procured, assembled, and aligned. An optical housing, calibration set-up, and data acquisition system was integrated for breadboard testing. The sensor was deployed at NASA Marshall Space Flight Center (MSFC) in the summer of 1998 to

  20. Electro-Optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewica, R. J.

    1998-01-01

    Electric field measurements are fundamental to the study of thunderstorm electrification, thundercloud charge structure, and the determination of the locations and magnitudes of charges deposited by lightning. Continuous field observations can also be used to warn of impending electrical hazards. For example, the USAF Eastern Range (ER) and NASA Kennedy Space Center (KSC) in Florida currently operate a ground-based network of electric field mill sensors to warn against lightning hazards to space vehicle operations/launches. The sensors provide continuous recordings of the ambient field. Others investigators have employed flat-plate electric field antennas to detect changes In the ambient field due to lightning. In each approach, electronic circuitry is used to directly detect and amplify the effects of the ambient field on an exposed metal conductor (antenna plate); in the case of continuous field recordings, the antenna plate is alternately shielded and unshielded by a grounded conductor. In this work effort, an alternate optical method for detecting lightning-caused electric field changes is Introduced. The primary component in the detector is an anisotropic electro-optic crystal of potassium di-hydrogen phosphate (chemically written as KH2PO4 (KDP)). When a voltage Is placed across the electro-optic crystal, the refractive Indices of the crystal change. This change alters the polarization state of a laser light beam that is passed down the crystal optic axis. With suitable application of vertical and horizontal polarizers, a light transmission measurement is related to the applied crystal voltage (which in turn Is related to the lightning caused electric field change). During the past two years, all critical optical components were procured, assembled, and aligned. An optical housing, calibration set-up, and data acquisition system was integrated for breadboard testing. The sensor was deployed at NASA Marshall Space Flight Center (MSFC) in the summer of 1998 to

  1. Space Shuttle wind tunnel testing program

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Hillje, E. R.

    1984-01-01

    A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.

  2. Smart CMOS image sensor for lightning detection and imaging.

    PubMed

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  3. User's Guide - WRF Lightning Assimilation

    EPA Pesticide Factsheets

    This document describes how to run WRF with the lightning assimilation technique described in Heath et al. (2016). The assimilation method uses gridded lightning data to trigger and suppress sub-grid deep convection in Kain-Fritsch.

  4. A preliminary test of the application of the Lightning Detection and Ranging System (LDAR) as a thunderstorm warning and location device for the FHA including a correlation with updrafts, turbulence, and radar precipitation echoes

    NASA Technical Reports Server (NTRS)

    Poehler, H. A.

    1978-01-01

    Results of a test of the use of a Lightning Detection and Ranging (LDAR) remote display in the Patrick AFB RAPCON facility are presented. Agreement between LDAR and radar precipitation echoes of the RAPCON radar was observed, as well as agreement between LDAR and pilot's visual observations of lightning flashes. A more precise comparison between LDAR and KSC based radars is achieved by the superposition of LDAR precipitation echoes. Airborne measurements of updrafts and turbulence by an armored T-28 aircraft flying through the thunderclouds are correlated with LDAR along the flight path. Calibration and measurements of the accuracy of the LDAR System are discussed, and the extended range of the system is illustrated.

  5. Systems tunnel linear shaped charge lightning strike

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the systems tunnel linear shaped charge (LSC) was performed at the Thiokol Lightning Test Complex in Wendover, Utah, on 23 Jun. 1989. The test article consisted of a 160-in. section of the LSC enclosed within a section of the systems tunnel. The systems tunnel was bonded to a section of a solid rocket motor case. All test article components were full scale. The systems tunnel cover of the test article was subjected to three discharges (each discharge was over a different grounding strap) from the high-current generator. The LSC did not detonate. All three grounding straps debonded and violently struck the LSC through the openings in the systems tunnel floor plates. The LSC copper surface was discolored around the areas of grounding strap impact, and arcing occurred at the LSC clamps and LSC ends. This test verified that the present flight configuration of the redesigned solid rocket motor systems tunnel, when subjected to simulated lightning strikes with peak current levels within 71 percent of the worst-case lightning strike condition of NSTS-07636, is adequate to prevent LSC ignition. It is therefore recommended that the design remain unchanged.

  6. Lightning medicine in South Africa.

    PubMed

    Blumenthal, Ryan; Trengrove, Estelle; Jandrell, Ian R; Saayman, Gert

    2012-06-06

    South Africa has a rich history of lightning research; however, research on the clinical and pathological effects and features of lightning-related injury (keraunomedicine or lightning medicine) remains neglected locally. By providing an overview of keraunomedicine and focussing on South African perspectives, we hope to raise awareness and propose that a concerted and co-ordinated attempt be made to report and collate data regarding lightning strike victims in South Africa.

  7. Plotting Lightning-Stroke Data

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Garst, R. A.

    1986-01-01

    Data on lightning-stroke locations become easier to correlate with cloudcover maps with aid of new graphical treatment. Geographic region divided by grid into array of cells. Number of lightning strokes in each cell tabulated, and value representing density of lightning strokes assigned to each cell. With contour-plotting routine, computer draws contours of lightning-stroke density for region. Shapes of contours compared directly with shapes of storm cells.

  8. Struck-by-lightning deaths in the United States.

    PubMed

    Adekoya, Nelson; Nolte, Kurt B

    2005-05-01

    The objective of the research reported here was to examine the epidemiologic characteristics of struck-by-lightning deaths. Using data from both the National Centers for Health Statistics (NCHS) multiple-cause-of-death tapes and the Census of Fatal Occupational Injuries (CFOI), which is maintained by the Bureau of Labor Statistics, the authors calculated numbers and annualized rates of lightning-related deaths for the United States. They used resident estimates from population microdata files maintained by the Census Bureau as the denominators. Work-related fatality rates were calculated with denominators derived from the Current Population Survey of employment data. Four illustrative investigative case reports of lightning-related deaths were contributed by the New Mexico Office of the Medical Investigator. It was found that a total of 374 struck-by-lightning deaths had occurred during 1995-2000 (an average annualized rate of 0.23 deaths per million persons). The majority of deaths (286 deaths, 75 percent) were from the South and the Midwest. The numbers of lightning deaths were highest in Florida (49 deaths) and Texas (32 deaths). A total of 129 work-related lightning deaths occurred during 1995-2002 (an average annual rate of 0.12 deaths per million workers). Agriculture and construction industries recorded the most fatalities at 44 and 39 deaths, respectively. Fatal occupational injuries resulting from being struck by lightning were highest in Florida (21 deaths) and Texas (11 deaths). In the two national surveillance systems examined, incidence rates were higher for males and people 20-44 years of age. In conclusion, three of every four struck-by-lightning deaths were from the South and the Midwest, and during 1995-2002, one of every four struck-by-lightning deaths was work-related. Although prevention programs could target the entire nation, interventions might be most effective if directed to regions with the majority of fatalities because they have the

  9. A survey of laser lightning rod techniques

    NASA Technical Reports Server (NTRS)

    Barnes, Arnold A., Jr.; Berthel, Robert O.

    1991-01-01

    The work done to create a laser lightning rod (LLR) is discussed. Some ongoing research which has the potential for achieving an operational laser lightning rod for use in the protection of missile launch sites, launch vehicles, and other property is discussed. Because of the ease with which a laser beam can be steered into any cloud overhead, an LLR could be used to ascertain if there exists enough charge in the clouds to discharge to the ground as triggered lightning. This leads to the possibility of using LLRs to test clouds prior to launching missiles through the clouds or prior to flying aircraft through the clouds. LLRs could also be used to probe and discharge clouds before or during any hazardous ground operations. Thus, an operational LLR may be able to both detect such sub-critical electrical fields and effectively neutralize them.

  10. Structural Analysis of Lightning Protection System for New Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cope, Anne; Moore, Steve; Pruss, Richard

    2008-01-01

    This project includes the design and specification of a lightning protection system for Launch Complex 39 B (LC39B) at Kennedy Space Center, FL in support of the Constellation Program. The purpose of the lightning protection system is to protect the Crew Launch Vehicle (CLV) or Cargo Launch Vehicle (CaLV) and associated launch equipment from direct lightning strikes during launch processing and other activities prior to flight. The design includes a three-tower, overhead catenary wire system to protect the vehicle and equipment on LC39B as described in the study that preceded this design effort: KSC-DX-8234 "Study: Construct Lightning Protection System LC3 9B". The study was a collaborative effort between Reynolds, Smith, and Hills (RS&H) and ASRC Aerospace (ASRC), where ASRC was responsible for the theoretical design and risk analysis of the lightning protection system and RS&H was responsible for the development of the civil and structural components; the mechanical systems; the electrical and grounding systems; and the siting of the lightning protection system. The study determined that a triangular network of overhead catenary cables and down conductors supported by three triangular free-standing towers approximately 594 ft tall (each equipped with a man lift, ladder, electrical systems, and communications systems) would provide a level of lightning protection for the Constellation Program CLV and CaLV on Launch Pad 39B that exceeds the design requirements.

  11. Lightning fires in southwestern forests

    Treesearch

    Jack S. Barrows

    1978-01-01

    Lightning is the leading cause of fires in southwestern forests. On all protected private, state and federal lands in Arizona and New Mexico, nearly 80 percent of the forest, brush and range fires are ignited by lightning. The Southwestern region leads all other regions of the United States both in total number of lightning fires and in the area burned by these fires...

  12. Faraday Cage Protects Against Lightning

    NASA Technical Reports Server (NTRS)

    Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.

    1992-01-01

    Faraday cage protects electronic and electronically actuated equipment from lightning. Follows standard lightning-protection principles. Whether lightning strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.

  13. Developing a corporate drug testing program

    SciTech Connect

    Hanrath, D.A. )

    1990-10-01

    Management reaction to employee drug abuse at a gas distribution company resulted in the development and implementation of a corporate drug testing program before DOT mandated drug testing. The author explains the background, planning, operation and communication work involved.

  14. Test-Anxiety Program and Test Gains with Nursing Classes

    ERIC Educational Resources Information Center

    Evans, Ginger; Ramsey, Gary; Driscoll, Richard

    2010-01-01

    Nursing programs can be highly stressful, and nursing students have been found to be more test-anxious than other students. The present investigation examines a practical program to reduce test-anxiety impairment and improve academic performance for a significant number of highly anxious nursing students. Incoming nursing students were screened…

  15. Crashworthy Troop Seat Testing Program

    DTIC Science & Technology

    1977-11-01

    73 3 . .... .... Page CRASHWORTHY TROOP SEAT TESTING--TASK III ........ .. 74 Task III Requirements. .. . ............ 74 Fabrication and...required, as a result of component testing 81 "Singley, G. T. III , "Full Scale Crash Testing of a CH-47C Helicopter", AHS Paper No. 1084, presented at... Figura 42. Stroked vertical. attenuatorg.j F i-uro 43.* Strokeid di~acqollI ittonuators. ......... 4.J r) -44 fie,~ ww 544 t- 0) S.. ........ , V i c l

  16. Exploring Lightning Jump Characteristics

    NASA Technical Reports Server (NTRS)

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.

    2014-01-01

    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  17. Guide for School Testing Programs.

    ERIC Educational Resources Information Center

    Ward, Annie W., Ed.; And Others

    A number of brief papers are presented to provide guidelines for test directors of school systems. This collection is intended for both newly appointed and experienced directors. Contributions were solicited from practicing directors of testing; the authors include Anthony J. Allen, Margaret Backman, Joan Bollenbacker, Gerald Hanna, James Lawson;…

  18. 2009 GED Testing Program Statistical Report

    ERIC Educational Resources Information Center

    GED Testing Service, 2010

    2010-01-01

    The "2009 GED[R] Testing Program Statistical Report" is the 52nd annual report in the program's 68-year history of providing a second opportunity for adults without a high school credential to earn their jurisdiction's GED credential. The report provides candidate demographic and GED Test performance statistics as well as historical…

  19. Test Preparation Programs: Counselors' Views and Involvement.

    ERIC Educational Resources Information Center

    Michael, Noreen; Edwards, Patricia A.

    1991-01-01

    Surveyed 90 elementary and secondary school counselors to examine strategies employed in test preparation programs, degree to which counselors follow structured curriculum in presenting test-taking activities to students, extent to which counselors target particular strategies, and how counselors evaluate program success. Found counselors more…

  20. The start of lightning: Evidence of bidirectional lightning initiation

    PubMed Central

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R.

    2015-01-01

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel – without any masking by cloud. PMID:26471123

  1. The start of lightning: Evidence of bidirectional lightning initiation.

    PubMed

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R

    2015-10-16

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.

  2. Lightning mapping sensor study

    NASA Technical Reports Server (NTRS)

    Norwood, V.

    1983-01-01

    A technology assessment to determine how a world-wide, continuous measurement of lightning could be achieved from a geostationary platform is provided. Various approaches to the detector sensors are presented. It was first determined that any existing detector chips would require some degree of modification in order to meet the lightning mapper sensor requirements. The elements of the system were then analyzed, categorized, and graded for study emphasis. The recommended approach for the lightning mapper sensor is to develop a monolithic array in which each detector cell has circuitry that implements a two-step photon-collecting method for a very high dynamic range with good measurement accuracy. The efficiency of the array is compatible with the use of a conventional refractive optics design having an aperture in the neighborhood of 7 to 10 cm.

  3. Lightning activity on Jupiter

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Bar-Nun, A.; Scarf, F. L.; Look, A. F.; Hunt, G. E.

    1982-01-01

    Photographic observations of the nightside of Jupiter by the Voyager 1 spacecraft show the presence of extensive lightning activity. Detection of whistlers by the plasma wave analyzer confirms the optical observations and implies that many flashes were not recorded by the Voyager camera because the intensity of the flashes was below the threshold sensitivity of the camera. Measurements of the optical energy radiated per flash indicate that the observed flashes had energies similar to that for terrestrial superbolts. The best estimate of the lightning energy dissipation rate of 0.0004 W/sq m was derived from a consideration of the optical and radiofrequency measurements. The ratio of the energy dissipated by lightning compared to the convective energy flux is estimated to be between 0.000027 and 0.00005. The terrestrial value is 0.0001.

  4. Analysis of ELF Radio Atmospherics Radiated by Rocket-Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Dupree, N. A.; Moore, R. C.; Pilkey, J. T.; Uman, M. A.; Jordan, D. M.; Caicedo, J. A.; Hare, B.; Ngin, T. K.

    2014-12-01

    Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) along with pertinent Lightning Mapping Array (LMA) data are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the radio atmospheric (sferic) waveform observed at the receiver locations under various ionospheric conditions. We identify fitted exponential electron density profiles that accurately describe the observed propagation delays, phase delays, and signal amplitudes. The ability to infer ionospheric characteristics using distant ELF observations greatly enhances ionospheric remote sensing capabilities, especially in regard to interpreting observations of transient luminous events (TLEs) and other ionospheric effects associated with lightning.

  5. Examination of Height of Transmission Line and Lightning Striking Distance concerning Lightning Shielding Effect Prediction

    NASA Astrophysics Data System (ADS)

    Sakata, Tadashi; Yamamoto, Kazuo; Sekioka, Shozo; Yokoyama, Shigeru

    We examined the lightning frequency reported by Eriksson and the lightning current distribution shown in IEC 62305-1. The lightning striking coefficient is assumed to be related to height of structures. The lightning current distribution to ground which was applicable to the electro-geometric model is estimated. Using the assumption of lightning striking distance coefficient and the estimated lightning current distribution, we calculated the lightning frequency and the lightning current distribution, concerning lightning shielding effect in transmission lines. The calculation results of the lightning frequency and the lightning current distributions were compared with the observation results, and agree satisfactorily with them.

  6. Natural and artificially initiated lightning

    NASA Technical Reports Server (NTRS)

    Uman, Martin A.; Krider, E. Philip

    1989-01-01

    An evaluation is made of the development status of theories and experimental results concerning both natural and artificially triggered lightning, with a view to prospective research efforts able to deepen understanding of these phenomena. Over the last decade, great progress has been made in methods for identifying and locating natural cloud-to-ground lightning; nationwide lightning-sensor networks employing wideband magnetic direction-finding technology to yield lightning locations in real time are currently operational in the U.S., France, Japan, and Sweden. Triggered lightning, which is the primary atmospheric electricity hazard to aircraft and launch vehicles, research must be done on meteorological and electrical environments associated with the threat.

  7. Natural and artificially initiated lightning

    NASA Technical Reports Server (NTRS)

    Uman, Martin A.; Krider, E. Philip

    1989-01-01

    An evaluation is made of the development status of theories and experimental results concerning both natural and artificially triggered lightning, with a view to prospective research efforts able to deepen understanding of these phenomena. Over the last decade, great progress has been made in methods for identifying and locating natural cloud-to-ground lightning; nationwide lightning-sensor networks employing wideband magnetic direction-finding technology to yield lightning locations in real time are currently operational in the U.S., France, Japan, and Sweden. Triggered lightning, which is the primary atmospheric electricity hazard to aircraft and launch vehicles, research must be done on meteorological and electrical environments associated with the threat.

  8. Testing programs for the Multimission Modular Spacecraft

    NASA Technical Reports Server (NTRS)

    Greenwell, T. J.

    1978-01-01

    The Multimission Modular Spacecraft (MMS) provides a standard spacecraft bus to a user for a variety of space missions ranging from near-earth to synchronous orbits. The present paper describes the philosophy behind the MMS module test program and discusses the implementation of the test program. It is concluded that the MMS module test program provides an effective and comprehensive customer buy-off at the subsystem contractor's plant, is an optimum approach for checkout of the subsystems prior to use for on-orbit servicing in the Shuttle Cargo Bay, and is a cost-effective technique for environmental testing.

  9. Artificial Neural Network applied to lightning flashes

    NASA Astrophysics Data System (ADS)

    Gin, R. B.; Guedes, D.; Bianchi, R.

    2013-05-01

    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  10. First Cloud-to-Ground Lightning Timing Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2013-01-01

    NASA's LSP, GSDO and other programs use the probability of cloud-to-ground (CG) lightning occurrence issued by the 45th Weather Squadron (45 WS) in their daily and weekly lightning probability forecasts. These organizations use this information when planning potentially hazardous outdoor activities, such as working with fuels, or rolling a vehicle to a launch pad, or whenever personnel will work outside and would be at-risk from lightning. These organizations would benefit greatly if the 45 WS could provide more accurate timing of the first CG lightning strike of the day. The Applied Meteorology Unit (AMU) has made significant improvements in forecasting the probability of lightning for the day, but forecasting the time of the first CG lightning with confidence has remained a challenge. To address this issue, the 45 WS requested the AMU to determine if flow regimes, wind speed categories, or a combination of the two could be used to forecast the timing of the first strike of the day in the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) lightning warning circles. The data was stratified by various sea breeze flow regimes and speed categories in the surface to 5,000-ft layer. The surface to 5,000-ft layer was selected since that is the layer the 45 WS uses to predict the behavior of sea breeze fronts, which are the dominant influence on the occurrence of first lightning in Florida during the warm season. Due to small data sample sizes after stratification, the AMU could not determine a statistical relationship between flow regimes or speed categories and the time of the first CG strike.. As expected, although the amount and timing of lightning activity varies by time of day based on the flow regimes and speed categories, there are extended tails of low lightning activity making it difficult to specify times when the threat of the first lightning flash can be avoided. However, the AMU developed a graphical user interface with input from the 45 WS

  11. Variation of a Lightning NOx Indicator for National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Koshak, William; Vant-Hull, B.; McCaul, E. W.; Peterson, H. S.

    2014-01-01

    Lightning nitrogen oxides (LNOx) indirectly influences our climate since these molecules are important in controlling the concentration of ozone (O3) and hydroxyl radicals (OH) in the atmosphere [Huntrieser et al., 1998]. In support of the National Climate Assessment (NCA) program, satellite Lightning Imaging Sensor (LIS; Christian et al. [1999]; Cecil et al. [2014]) data is used to estimate LNOx production over the southern portion of the conterminous US for the 16 year period 1998-2013.

  12. Lightning Radio Source Retrieval Using Advanced Lightning Direction Finder (ALDF) Networks

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Blakeslee, Richard J.; Bailey, J. C.

    1998-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of lightning radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National Lightning Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).

  13. Propulsion Induced Effects Test Program

    NASA Technical Reports Server (NTRS)

    Cappuccio, Gelsomina; Won, Mark; Bencze, Dan

    1999-01-01

    The objective of this milestone is to assess the propulsion/airframe integration characteristics of the Technology Concept Airplane and design variations through computational analysis and experimental subsonic through supersonic wind tunnel testing. The Milestone will generate a comprehensive CFD and wind tunnel data base of the baseline, and design variations. Emphasis will be placed on establishing the propulsion induced effects on the flight performance of the Technology Concept Airplane with all appropriate wind tunnel corrections.

  14. Electrical Arc Ignition Testing for Constellation Program

    NASA Technical Reports Server (NTRS)

    Sparks, Kyle; Gallus, Timothy; Smith, Sarah

    2009-01-01

    NASA Johnson Space Center (JSC) Materials and Processes Branch requested that NASA JSC White Sands Test Facility (WSTF) perform testing for the Constellation Program to evaluate the hazard of electrical arc ignition of materials that could be in close proximity to batteries. Specifically, WSTF was requested to perform wire-break electrical arc tests to determine the current threshold for ignition of generic cotton woven fabric samples with a fixed voltage of 3.7 V, a common voltage for hand-held electrical devices. The wire-break test was developed during a previous test program to evaluate the hazard of electrical arc ignition inside the Extravehicular Mobility Unit [1].

  15. Varistor-particle lightning arrestor connector performance under simulated extreme lightning currents

    SciTech Connect

    Fisher, R.J.; Kostas, J.G.

    1989-01-01

    Varistor-particle lightning arrestor connectors have been tested under simulated lightning currents of peak amplitude up to 185 kA. Each connector was attached to a circuit of representative interest, in which currents were measured at various points. These currents were reproduced in post-test circuit modeling, during which voltages were determined throughout the circuit and response sensitivity to statistical variations in post-breakdown contact-arc voltage was demonstrated. In all cases, resultant downstream circuit voltages were well below the 1500-V criterion. 6 refs., 10 figs., 3 tabs.

  16. Measurement of characteristics of lightning at high altitudes

    NASA Technical Reports Server (NTRS)

    Coquelet, M.; Gall, D.

    1981-01-01

    New development in aeronautical technology -- the use of composite materials, new electronic components, electric flight controls -- have made aircraft potentially more and more vulnerable to the effects of lightning. In-flight tests were conducted to evaluate the current in a bolt of lightning, to measure voltage surge in the onboard circuitry and in certain pieces of equipment, and to document the relationship lightning bolt current and the voltage surge so as to develop a theoretical model and thuds to become acquainted with the significant

  17. Regional estimates of lightning production of nitrogen oxides

    NASA Astrophysics Data System (ADS)

    Biazar, Arastoo P.; McNider, Richard T.

    1995-11-01

    Summertime distribution of lightning over the United States and the potential importance of lightning-generated NOx (NO + NO2) was investigated by using data from the National Lightning Detection Network (NLDN) for June, July, and August 1989 through 1992. The data were compiled and gridded to yield hourly and monthly flash densities. Without correcting the data for the network's detection efficiency, on the average, 10 million flashes occur over the United States each summer with 2.6 strokes occurring per flash. The densest concentration of flashes is over the Southeast. In 1989 the summertime lightning activity (9.4 million flashes) accounted for 70% of the annual flashes. To investigate the regional characteristics of lightning, the data were also compiled for the eastern United States and a smaller subdomain of the southeastern United States. NOx production rates of 0.36×1026, 4×1026, and 30×1026 molecules/flash were chosen to represent the low, median, and high end of estimates suggested by different investigators. Using these three production rates and hourly gridded flash densities, lightning-generated NOx emissions were calculated. These estimates were compared to anthropogenic emissions derived from the 1985 National Acid Precipitation Assessment Program (NAPAP) inventory. Based on the high production rate, NOx emissions produced by lightning are comparable to monthly anthropogenic NOx emissions in the Southeast during the summer. Even for the low production rate, hourly emissions of lightning-produced NOx frequently exceed anthropogenic emissions, with the highest frequencies in the Southeast. These results suggest that estimates of lightning-generated NOx in the rural southeastern United States are not negligible and that this natural source of NOx could play a significant role in summertime tropospheric ozone production in the Southeast. Given the importance of NOx in ozone photochemistry, especially in NOx-limited regimes, this natural source cannot

  18. Optical characteristics of lightning

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.

    1985-01-01

    A study of the optical characteristics of cloud-to-ground dischargers and how they compare with intracloud flashes was completed. Time resolved optical (7774A) and electric field-change waveforms were measured above clouds from a U2 airplane coincident with ground-based measurements of lightning. The optical pulse trains are studied for within and between flash variability. Specifically, for each flash researchers examine the 10, 50 (full width half maximum), and 90 percent pulse widths; the 10-10, 10-50, 10-90, and 10-peak percent amplitude rise times; the radiances (optical power densities); radiant energy densities; and pulse intervals. The optical pulse characteristics of first strokes, subsequent strokes, the intracloud components of cloud-to-ground flashes and intracloud flashes as viewed from above cloud are shown to exhibit very similar waveshapes, radiances and radiant energy densities. Descriptive statistics on these pulse categories were tabulated for 25 visually confirmed cloud-to-ground flashes (229 optical pulses) and 232 intracloud flashes (3126 optical pulses). A companion study of lightning observations above and below cloud in storms, storm complexes, and mesoscale convective systems has also been completed. Researchers compared the mapping of total lightning activity from above clouds with ground-based measurements and storm evolution. Although the total (IC + CG) lightning activity is the more representative indication of thunderstorm growth and decay, the ground strike data can be used to locate, diagnose, and track storm evolution in a number of instances.

  19. Lightning control by lasers

    NASA Astrophysics Data System (ADS)

    2009-03-01

    Powerful lightning strikes pose a significant threat to buildings and people, but imagine if it were possible to control and direct them with a laser beam. Nature Photonics spoke to Jérôme Kasparian, a researcher from the University of Geneva and co-ordinator of the Teramobile project, about the idea.

  20. Lightning protection of aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, F. A.; Plumer, J. A.

    1977-01-01

    The current knowledge concerning potential lightning effects on aircraft and the means that are available to designers and operators to protect against these effects are summarized. The increased use of nonmetallic materials in the structure of aircraft and the constant trend toward using electronic equipment to handle flight-critical control and navigation functions have served as impetus for this study.

  1. The Origin of Lightning.

    ERIC Educational Resources Information Center

    Weewish Tree, 1979

    1979-01-01

    A heavenly source gives an orphaned Cherokee boy 12 silver arrows and directs him to kill the chief of the cruel Manitos (spirits). When the boy fails in his mission, the angry Manitos turn him into lightning, condemning him to flash like his silver arrows across the skies forever. (DS)

  2. The LATEST Project: Operational Assessment of Total Lightning Data in the U.S.

    NASA Technical Reports Server (NTRS)

    Goodman, Steven

    2004-01-01

    A government, university, and industry alliance has joined forces to transition total lightning observations from ground-based research networks and NASA satellites (LIS/TRMM) to improve the short range prediction of severe weather. This interest builds on the desire of the U.S Weather Research Program to foster a national Nowcasting Test Bed, with this specific transition activity initiated through the NASA short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL. A kick-off national workshop sponsored by the SPoRT Center was held in Huntsville April 1-2 to identify the common goals and objectives of the research and operational community, and to assign roles and responsibilities within the alliance. The workshop agenda, presentations, and summary are available at the SPoRT Center Web site ( h h under the "Meetings" tab. The next national workshop is planned for 2005 in Dallas, TX. The NASA North Alabama regional Lightning Mapping Array &MA) has been operational in the Huntsville area for 3 years, and has continuously sampled a variety of severe weather systems during that period. A gridded version of the LMA total lightning data is currently being supplied to National Weather Service offices in Huntsville, Nashville and Birmingham through the NWS AWES decision support system, for the purposes of assessing the utility of the data in the nowcasting of severe weather such as tornadoes, damaging straight line winds, flash flooding and other weather hazards (lightning induced forest fires, microbursts). While the raw LMA data have been useful to NWS forecasters, even greater utility would be realized if higher-order data products could be supplied through AWIPS along with the gridded data over a larger domain. In 2003-2004 additional LMA systems have been deployed across the southern US. from Florida to New Mexico, providing an opportunity for more than 20 NWS forecast offices to evaluate the incremental value of total lightning data in the

  3. The LATEST Project: Operational Assessment of Total Lightning Data in the U.S.

    NASA Technical Reports Server (NTRS)

    Goodman, Steven

    2004-01-01

    A government, university, and industry alliance has joined forces to transition total lightning observations from ground-based research networks and NASA satellites (LIS/TRMM) to improve the short range prediction of severe weather. This interest builds on the desire of the U.S Weather Research Program to foster a national Nowcasting Test Bed, with this specific transition activity initiated through the NASA short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL. A kick-off national workshop sponsored by the SPoRT Center was held in Huntsville April 1-2 to identify the common goals and objectives of the research and operational community, and to assign roles and responsibilities within the alliance. The workshop agenda, presentations, and summary are available at the SPoRT Center Web site ( h h under the "Meetings" tab. The next national workshop is planned for 2005 in Dallas, TX. The NASA North Alabama regional Lightning Mapping Array &MA) has been operational in the Huntsville area for 3 years, and has continuously sampled a variety of severe weather systems during that period. A gridded version of the LMA total lightning data is currently being supplied to National Weather Service offices in Huntsville, Nashville and Birmingham through the NWS AWES decision support system, for the purposes of assessing the utility of the data in the nowcasting of severe weather such as tornadoes, damaging straight line winds, flash flooding and other weather hazards (lightning induced forest fires, microbursts). While the raw LMA data have been useful to NWS forecasters, even greater utility would be realized if higher-order data products could be supplied through AWIPS along with the gridded data over a larger domain. In 2003-2004 additional LMA systems have been deployed across the southern US. from Florida to New Mexico, providing an opportunity for more than 20 NWS forecast offices to evaluate the incremental value of total lightning data in the

  4. Assessment of DOE-sponsored lightning research at the University of Florida

    SciTech Connect

    Not Available

    1980-08-01

    Lightning causes damage in excess of $5 million per yr to US power distribution equipment. Therefore, research programs have been undertaken to improve lightning data gathering methods, to develop damage prediction models, and to lower lightning damage. The experimental work of research studies in Florida on this subject was evaluated, and was found to be worthwhile. Continued funding of data analysis activities is recommended. (LCL)

  5. Notification: Evaluation of the Antimicrobial Testing Program

    EPA Pesticide Factsheets

    Project #OPE-FY16-0001, August 26, 2015. The OIG’s objective is to determine whether the Antimicrobial Testing Program ensures the efficacy of EPA-registered hospital sterilants, disinfectants and tuberculocides.

  6. Students in a Water-Testing Program

    ERIC Educational Resources Information Center

    Offutt, Thomas W.

    1975-01-01

    Describes a cooperative program in Ohio which involves the Ohio EPA, universities and public schools all involved in water testing. The philosophy of the program is based on students investigating a problem, applying science tools to understand the problem and then using the social sciences as instruments to affect change. (BR)

  7. 2006 GED Testing Program Statistical Report

    ERIC Educational Resources Information Center

    GED Testing Service, 2007

    2007-01-01

    The 2006 GED[R] Testing Program Statistical Report is the 49th annual report in the program's 65-year history of providing a second opportunity to adults without a high school diploma to earn their jurisdiction's General Educational Development (GED) credential, and, as a result, advance their educational, personal, and professional aspirations.…

  8. 2007 GED Testing Program Statistical Report

    ERIC Educational Resources Information Center

    GED Testing Service, 2008

    2008-01-01

    The "2007 GED[R] Testing Program Statistical Report" is the 50th annual report in the program's 66-year history of providing a second opportunity for adults without a high school diploma to earn their jurisdiction's GED credential, and, as a result, advance their educational, personal, and professional aspirations. Section I, "Who…

  9. System-Wide Tests of Occupational Programs.

    ERIC Educational Resources Information Center

    Perlmutter, Deborah E.

    This report presents the background methodology, findings, and recommendations of three studies that comprised System-Wide Tests of Occupational Programs, a 4-year research program to assess the impact of vocational education using various followup techniques. Part 1 focuses on Project CATCH (Career Training Choice), a followup study of students…

  10. A simple lightning parameterization for calculating global lightning distributions

    NASA Technical Reports Server (NTRS)

    Price, Colin; Rind, David

    1992-01-01

    A simple parameterization has been developed to simulate global lightning distributions. Convective cloud top height is used as the variable in the parameterization, with different formulations for continental and marine thunderstorms. The parameterization has been validated using two lightning data sets: one global and one regional. In both cases the simulated lightning distributions and frequencies are in very good agreement with the observed lightning data. This parameterization could be used for global studies of lightning climatology; the earth's electric circuit; in general circulation models for modeling global lightning activity, atmospheric NO(x) concentrations, and perhaps forest fire distributions for both the present and future climate; and, possibly, even as a short-term forecasting aid.

  11. MIUS integration and subsystems test program

    NASA Technical Reports Server (NTRS)

    Beckham, W. S., Jr.; Shows, G. C.; Redding, T. E.; Wadle, R. C.; Keough, M. B.; Poradek, J. C.

    1976-01-01

    The MIUS Integration and Subsystems Test (MIST) facility at the Lyndon B. Johnson Space Center was completed and ready in May 1974 for conducting specific tests in direct support of the Modular Integrated Utility System (MIUS). A series of subsystems and integrated tests was conducted since that time, culminating in a series of 24-hour dynamic tests to further demonstrate the capabilities of the MIUS Program concepts to meet typical utility load profiles for a residential area. Results of the MIST Program are presented which achieved demonstrated plant thermal efficiencies ranging from 57 to 65 percent.

  12. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.

  13. Investigation of Lightning Rod Shielding Angle

    NASA Astrophysics Data System (ADS)

    Nayel, Mohamed

    This paper studies those parameters affecting the shielding angle of the lightning rod (Franklin Rod) above very tall buildings. It was recommended that the shielding angle of the lightning rod is about 45°∼60°. The downward lightning leader is modeled by using discrete line charges to consider the exponential distribution of charges through the downward leader. The voltage condition used by Rizk is used to investigate the inception of the upward lightning leader. Different air conditions (relative air density and air humidity) are considered for more practical simulation. The influences of lightning parameters and lightning rod height on the shielding angle are studied. The results shows that, lightning leader parameters, lightning rod height and ground slope have series effects on the lightning rod shielding angle. Based on the results, a lightning rod shielding angle for shielding design is recommended to decrease the lightning stroke to the lightning rod.

  14. Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.

    2009-01-01

    The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.

  15. The effects of lightning on digital flight control systems

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Malloy, W. A.; Craft, J. B.

    1975-01-01

    Present practices in lightning protection of aircraft deal primarily with the direct effects of lightning, such as structural damage and ignition of fuel vapors. There is increasing evidence of troublesome electromagnetic effects, however, in aircraft employing solid-state microelectronics in critical navigation, instrumentation and control functions. The potential impact of these indirect effects on critical systems such as digital fly-by-wire (DFBW) flight controls has been studied by several recent research programs, including an experimental study of lightning-induced voltages in the NASA F8 DFBW airplane. The results indicate a need for positive steps to be taken during the design of future fly-by-wire systems to minimize the possibility of hazardous effects from lightning.

  16. Attempts to Create Ball Lightning with Triggered Lightning

    DTIC Science & Technology

    2009-10-01

    or to meteors . Since ball lightning and meteors are both referred to in the literature from that time period as "fireballs", it is not surprising...that some reports of the effects of fireballs that actually refer to meteors have been misinterpreted as being due to ball lightning. Ball lightning...212 ms after the full ignition of the triggering wire. However, the primary silicon particle shower did not begin until around 520 ms after the

  17. Balloon launched decelerator test program: Post-test test report

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.

    1972-01-01

    Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.

  18. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    NASA Technical Reports Server (NTRS)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  19. Program Helps Design Tests Of Developmental Software

    NASA Technical Reports Server (NTRS)

    Hops, Jonathan

    1994-01-01

    Computer program called "A Formal Test Representation Language and Tool for Functional Test Designs" (TRL) provides automatic software tool and formal language used to implement category-partition method and produce specification of test cases in testing phase of development of software. Category-partition method useful in defining input, outputs, and purpose of test-design phase of development and combines benefits of choosing normal cases having error-exposing properties. Traceability maintained quite easily by creating test design for each objective in test plan. Effort to transform test cases into procedures simplified by use of automatic software tool to create cases based on test design. Method enables rapid elimination of undesired test cases from consideration and facilitates review of test designs by peer groups. Written in C language.

  20. Pressure vessel burst test program - Initial program paper

    NASA Technical Reports Server (NTRS)

    Cain, Maurice R.; Sharp, Douglas E.; Coleman, Michael D.; Webb, Bobby L.

    1990-01-01

    The current status of a pressure vessel burst test program, aimed at the study of the blast waves and fragmentation characteristics of ruptured gas-filled pressure vessels, is reported. The program includes a series of test plans, each involving multiple bursts with burst pressures ranging to 7500 psig. The discussion covers the identification of concerns and hazards, application of the data generated, and a brief review of the current methods for assessing vessel safety and burst parameters. Attention is also given to pretest activities, including completed vessel and facility/instrumentation preparation and results of completed preliminary burst tests.

  1. Oceanic Lightning versus Continental Lightning: VLF Peak Current Discrepancies

    NASA Astrophysics Data System (ADS)

    Dupree, N. A., Jr.; Moore, R. C.

    2015-12-01

    Recent analysis of the Vaisala global lightning data set GLD360 suggests that oceanic lightning tends to exhibit larger peak currents than continental lightning (lightning occurring over land). The GLD360 peak current measurement is derived from distant measurements of the electromagnetic fields emanated during the lightning flash. Because the GLD360 peak current measurement is a derived quantity, it is not clear whether the actual peak currents of oceanic lightning tend to be larger, or whether the resulting electromagnetic field strengths tend to be larger. In this paper, we present simulations of VLF signal propagation in the Earth-ionosphere waveguide to demonstrate that the peak field values for oceanic lightning can be significantly stronger than for continental lightning. Modeling simulations are performed using the Long Wave Propagation Capability (LWPC) code to directly evaluate the effect of ground conductivity on VLF signal propagation in the 5-15 kHz band. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-Ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. Furthermore, we evaluate the effect of return stroke speed on these results.

  2. Lightning detection and exposure algorithms for smartphones

    NASA Astrophysics Data System (ADS)

    Wang, Haixin; Shao, Xiaopeng; Wang, Lin; Su, Laili; Huang, Yining

    2015-05-01

    This study focuses on the key theory of lightning detection, exposure and the experiments. Firstly, the algorithm based on differential operation between two adjacent frames is selected to remove the lightning background information and extract lighting signal, and the threshold detection algorithm is applied to achieve the purpose of precise detection of lightning. Secondly, an algorithm is proposed to obtain scene exposure value, which can automatically detect external illumination status. Subsequently, a look-up table could be built on the basis of the relationships between the exposure value and average image brightness to achieve rapid automatic exposure. Finally, based on a USB 3.0 industrial camera including a CMOS imaging sensor, a set of hardware test platform is established and experiments are carried out on this platform to verify the performances of the proposed algorithms. The algorithms can effectively and fast capture clear lightning pictures such as special nighttime scenes, which will provide beneficial supporting to the smartphone industry, since the current exposure methods in smartphones often lost capture or induce overexposed or underexposed pictures.

  3. Assessing Operational Total Lightning Visualization Products

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Darden, Christopher B.; Nadler, David J.

    2010-01-01

    In May 2003, NASA's Short-term Prediction Research and Transition (SPoRT) program successfully provided total lightning data from the North Alabama Lightning Mapping Array (NALMA) to the National Weather Service (NWS) office in Huntsville, Alabama. The major accomplishment was providing the observations in real-time to the NWS in the native Advanced Weather Interactive Processing System (AWIPS) decision support system. Within days, the NALMA data were used to issue a tornado warning initiating seven years of ongoing support to the NWS' severe weather and situational awareness operations. With this success, SPoRT now provides real-time NALMA data to five forecast offices as well as working to transition data from total lightning networks at Kennedy Space Center and the White Sands Missile Range to the surrounding NWS offices. The only NALMA product that has been transitioned to SPoRT's partner NWS offices is the source density product, available at a 2 km resolution in 2 min intervals. However, discussions with users of total lightning data from other networks have shown that other products are available, ranging from spatial and temporal variations of the source density product to the creation of a flash extent density. SPoRT and the Huntsville, Alabama NWS are evaluating the utility of these variations as this has not been addressed since the initial transition in 2003. This preliminary analysis will focus on what products will best support the operational warning decision process. Data from 19 April 2009 are analyzed. On this day, severe thunderstorms formed ahead of an approaching cold front. Widespread severe weather was observed, primarily south of the Tennessee River with multiple, weak tornadoes, numerous severe hail reports, and wind. This preliminary analysis is the first step in evaluation which product(s) are best suited for operations. The ultimate goal is selecting a single product for use with all total lightning networks to streamline training and

  4. Industrial accidents triggered by lightning.

    PubMed

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents.

  5. Stennis personnel participate in test program

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Fernando Figueroa (left), an aerospace technologist at Stennis, and John Schmatzel (center), a professor on loan from Rowan University in Glassboro, N.J., joined Ray Wang, president of Mobitrum Corp., in Silver Springs, Md., to test a virtual sensor instrument in development. The test was performed as part of NASA's Facilitated Access to the Space Environment for Technology Development and Training program.

  6. Stennis personnel participate in test program

    NASA Image and Video Library

    2008-09-09

    Fernando Figueroa (left), an aerospace technologist at Stennis, and John Schmatzel (center), a professor on loan from Rowan University in Glassboro, N.J., joined Ray Wang, president of Mobitrum Corp., in Silver Springs, Md., to test a virtual sensor instrument in development. The test was performed as part of NASA's Facilitated Access to the Space Environment for Technology Development and Training program.

  7. Stennis personnel participate in test program

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Fernando Figueroa (left), an aerospace technologist at Stennis, and John Schmatzel (center), a professor on loan from Rowan University in Glassboro, N.J., joined Ray Wang, president of Mobitrum Corp., in Silver Springs, Md., to test a virtual sensor instrument in development. The test was performed as part of NASA's Facilitated Access to the Space Environment for Technology Development and Training program.

  8. Kentucky's Vocational Beginning Teacher Testing Program Handbook.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort. Office of Vocational Education.

    This handbook is designed to provide teacher applicants and vocational educators with general information about Kentucky's Beginning Vocational Teacher Testing Program. Information is provided on amended chapter 396 of Kentucky's Revised Statute, which stipulates that all new/beginning teachers successfully complete appropriate written tests and…

  9. Program for Area Concentration Achievement Testing.

    ERIC Educational Resources Information Center

    Golden, Anthony J.

    The Program for Area Concentration Achievement Testing (PACAT) produces the cooperative assessment instrument known as the Area Concentration Achievement Test (ACAT). The ACAT uses a model designed specifically to measure curricular strengths and weaknesses and to provide this information at the departmental level. PACAT has developed 57…

  10. Analysis and calculation of lightning-induced voltages in aircraft electrical circuits

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.

    1974-01-01

    Techniques to calculate the transfer functions relating lightning-induced voltages in aircraft electrical circuits to aircraft physical characteristics and lightning current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of lightning-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, developed earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of lightning waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential lightning-induced voltages in electrical circuits of complete aircraft in the design stage.

  11. Adaptive sparse signal processing for discrimination of satellite-based radiofrequency (RF) recordings of lightning events

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.

    2015-05-01

    For over two decades, Los Alamos National Laboratory programs have included an active research effort utilizing satellite observations of terrestrial lightning to learn more about the Earth's RF background. The FORTE satellite provided a rich satellite lightning database, which has been previously used for some event classification, and remains relevant for advancing lightning research. Lightning impulses are dispersed as they travel through the ionosphere, appearing as nonlinear chirps at the receiver on orbit. The data processing challenge arises from the combined complexity of the lightning source model, the propagation medium nonlinearities, and the sensor artifacts. We continue to develop modern event classification capability on the FORTE database using adaptive signal processing combined with compressive sensing techniques. The focus of our work is improved feature extraction using sparse representations in overcomplete analytical dictionaries. We explore two possible techniques for detecting lightning events, and showcase the algorithms on few representative data examples. We present preliminary results of our work and discuss future development.

  12. Analysis and Assessment of Peak Lightning Current Probabilities at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Vaughan, W. W.

    1999-01-01

    This technical memorandum presents a summary by the Electromagnetics and Aerospace Environments Branch at the Marshall Space Flight Center of lightning characteristics and lightning criteria for the protection of aerospace vehicles. Probability estimates are included for certain lightning strikes (peak currents of 200, 100, and 50 kA) applicable to the National Aeronautics and Space Administration Space Shuttle at the Kennedy Space Center, Florida, during rollout, on-pad, and boost/launch phases. Results of an extensive literature search to compile information on this subject are presented in order to answer key questions posed by the Space Shuttle Program Office at the Johnson Space Center concerning peak lightning current probabilities if a vehicle is hit by a lightning cloud-to-ground stroke. Vehicle-triggered lightning probability estimates for the aforementioned peak currents are still being worked. Section 4.5, however, does provide some insight on estimating these same peaks.

  13. Testing electroexplosive devices by programmed pulsing techniques

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.; Menichelli, V. J.

    1976-01-01

    A novel method for testing electroexplosive devices is proposed wherein capacitor discharge pulses, with increasing energy in a step-wise fashion, are delivered to the device under test. The size of the energy increment can be programmed so that firing takes place after many, or after only a few, steps. The testing cycle is automatically terminated upon firing. An energy-firing contour relating the energy required to the programmed step size describes the single-pulse firing energy and the possible sensitization or desensitization of the explosive device.

  14. Program overview of peacekeeper flight test planning

    NASA Astrophysics Data System (ADS)

    Woodbury, S.; Gorman, R. G.

    1983-11-01

    This paper will present an overview of the planning involved in designing the flight test program for the Peacekeeper weapon system. Items to be discussed are: the Peacekeeper missile and launch facilities description; the overall flight test objectives progression from first flight through initial operational capability (IOC); mission design and data acquisition; impact of range safety constraints; requirement for development of new range sensors; program plans for mission evaluation and the integration of test reports; and a short discussion of the universal documentation system (UDS).

  15. CLIC RF High Power Production Testing Program

    SciTech Connect

    Syratchev, I.; Riddone, G.; Tantawi, S.G.; /SLAC

    2011-11-02

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation. The testing program overview and test results available to date are presented.

  16. Propulsion Induced Effects (PIE) Test Program

    NASA Technical Reports Server (NTRS)

    Cappuccio, Gelsomina; Won, Mark J.

    1999-01-01

    The Propulsion Induced Effects (PIE) test program is being lead by NASA Ames for Configuration Aerodynamics (CA). Representatives from CA, Technology Integration (TI), Inlet, and the Nozzle ITD's are working with Ames in defining and executing this test program. The objective of the CA 4-14 milestone is to assess the propulsion/airframe integration characteristics of the Technology Concept Airplane (TCA) and design variations using computational and experimental methods. The experimental aspect includes static calibrations, transonic and supersonic wind tunnel testing. The test program will generate a comprehensive database that will include all appropriate wind tunnel corrections, with emphasis placed on establishing the propulsion induced effects on the flight performance of the TCA.

  17. Lightning mapper sensor design study

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Poon, C. W.; Shelton, J. C.; Laverty, N. P.; Cook, R. D.

    1983-01-01

    World-wide continuous measurement of lightning location, intensity, and time during both day and night is to be provided by the Lightning Mapper (LITMAP) instrument. A technology assessment to determine if the LITMAP requirements can be met using existing sensor and electronic technologies is presented. The baseline concept discussed in this report is a compromise among a number of opposing requirements (e.g., ground resolution versus array size; large field of view versus narrow bandpass filter). The concept provides coverage for more than 80 percent of the lightning events as based on recent above-cloud NASA/U2 lightning measurements.

  18. Ball lightning risk to aircraft

    NASA Astrophysics Data System (ADS)

    Doe, R.; Keul, A.

    2009-04-01

    Lightning is a rare but regular phenomenon for air traffic. Aircraft are designed to withstand lightning strikes. Research on lightning and aircraft can be called detailed and effective. In the last 57 years, 18 reported lightning aviation disasters with a fatality figure of at least 714 persons occurred. For comparison, the last JACDEC ten-year average fatality figure was 857. The majority encountered lightning in the climb, descent, approach and/or landing phase. Ball lightning, a metastable, rare lightning type, is also seen from and even within aircraft, but former research only reported individual incidents and did not generate a more detailed picture to ascertain whether it constitutes a significant threat to passenger and aircraft safety. Lacking established incident report channels, observations were often only passed on as "air-travel lore". In an effort to change this unsatisfactory condition, the authors have collected a first international dataset of 38 documented ball lightning aircraft incidents from 1938 to 2001 involving 13 reports over Europe, 13 over USA/Canada, and 7 over Russia. 18 (47%) reported ball lightning outside the aircraft, 18 (47%) inside, 2 cases lacked data. 8 objects caused minor damage, 8 major damage (total: 42%), only one a crash. No damage was reported in 18 cases. 3 objects caused minor crew injury. In most cases, ball lightning lasted several seconds. 11 (29%) incidents ended with an explosion of the object. A cloud-aircraft lightning flash was seen in only 9 cases (24%) of the data set. From the detailed accounts of air personnel in the last 70 years, it is evident that ball lightning is rarely, but consistently observed in connection with aircraft and can also occur inside the airframe. Reports often came from multiple professional witnesses and in several cases, damages were investigated by civil or military authorities. Although ball lightning is no main air traffic risk, the authors suggest that incident and accident

  19. Theoretical design of lightning panel

    NASA Astrophysics Data System (ADS)

    Emetere, M. E.; Olawole, O. F.; Sanni, S. E.

    2016-02-01

    The light trapping device (LTD) was theoretically designed to suggests the best way of harvesting the energy derived from natural lightning. The Maxwell's equation was expanded using a virtual experimentation via a MATLAB environment. Several parameters like lightning flash and temperature distribution were consider to investigate the ability of the theoretical lightning panel to convert electricity efficiently. The results of the lighting strike angle on the surface of the LTD shows the maximum power expected per time. The results of the microscopic thermal distribution shows that if the LTD casing controls the transmission of the heat energy, then the thermal energy storage (TES) can be introduced to the lightning farm.

  20. Lightning protection of distribution lines

    SciTech Connect

    McDermott, T.E. ); Short, T.A. ); Anderson, J.G. , Pittsfield, MA )

    1994-01-01

    This paper reports a study of distribution line lightning performance, using computer simulations of lightning overvoltages. The results of previous investigations are extended with a detailed model of induced voltages from nearby strokes, coupled into a realistic power system model. The paper also considers the energy duty of distribution-class surge arresters exposed to direct strokes. The principal result is that widely separated pole-top arresters can effectively protect a distribution line from induced-voltage flashovers. This means that nearby lightning strokes need not be a significant lightning performance problem for most distribution lines.

  1. A review of advances in lightning observations during the past decade in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Lü, Weitao; Chen, Shaodong; Zheng, Dong; Zhang, Yang; Yan, Xu; Chen, Lüwen; Dong, Wansheng; Dan, Jianru; Pan, Hanbo

    2016-08-01

    This paper reviews recent advances in understanding the physical processes of artificially triggered lightning and natural lightning as well as the progress in testing lightning protection technologies, based on a series of lightning field campaigns jointly conducted by the Chinese Academy of Meteorological Sciences and Guangdong Meteorological Bureau since 2006. During the decade-long series of lightning field experiments, the technology of rocket-wire artificially triggered lightning has been improved, and has successfully triggered 94 lightning flashes. Through direct lightning current waveform measurements, an average return stroke peak current of 16 kA was obtained. The phenomenon that the downward leader connects to the lateral surface of the upward leader in the attachment process was discovered, and the speed of the upward leader during the connection process being significantly greater than that of the downward leader was revealed. The characteristics of several return strokes in cloud-to-ground lighting have also been unveiled, and the mechanism causing damage to lightning protection devices (i.e., ground potential rise within the rated current) was established. The performance of three lightning monitoring systems in Guangdong Province has also been quantitatively assessed.

  2. Peach Bottom test element program. Final report

    SciTech Connect

    Saurwein, J.J.; Holzgraf, J.F.; MIller, C.M.; Myers, B.F.; Wallroth, C.F.

    1982-11-01

    Thirty-three test elements were irradiated in the Peach Bottom high-temperature gas-cooled reactor (HTGR) as part of the testing program for advanced HTGRs. Extensive postirradiation examinations and evaluations of 21 of these irradiation experiments were performed. The test element irradiations were simulated using HTGR design codes and data. Calculated fuel burnups, power profiles, fast neutron fluences, and temperatures were verified via destructive burnup measurements, gamma scanning, and in-pile thermocouple readings corrected for decalibration effects. Analytical techniques were developed to improve the quality of temperature predictions through feedback of nuclear measurements into thermal calculations. Dimensional measurements, pressure burst tests, diametral compression tests, ring-cutting tests, strip-cutting tests, and four-point bend tests were performed to measure residual stress, strain, and strength distributions in H-327 graphite structures irradiated in the test elements.

  3. Current Technology of the Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    Rodeheffer, D.; Rison, W.; Krehbiel, P. R.; Edens, H. E.; Thomas, R. J.

    2013-12-01

    The Lightning Mapping Array (LMA) is continuing to be developed technology-wise, involving both hardware configurations and software, to further simplify the deployment, operation and sensitivity of networks. This has included developing stations that operate on a complete standalone basis, utilizing battery backed-up solar power and cell phone data modems for connecting into the internet. Solid state disks not requiring cooling are used for onsite data storage, allowing the electronics to be housed in an RF-tight enclosure and the VHF receiving antenna to be co-located immediately above the station electronics, rather than 50 to 100 feet away. The combined changes enable stations to be placed in remote, RF-quiet locations for excellent sensitivity, and to have only a 4'x 4' freestanding footprint on the ground for ease of deployment. Networks that take advantage of the solar/cell modem design are the West Texas LMA (Texas Tech University), the Houston LMA (Texas A&M), and the North Colorado LMA (NMT/CSU), initially utilized in the 2012 DC3 atmospheric chemistry program. A similar network (operated in conjunction with NASA/MSFC) was set up on a temporary basis in Southern France leading up to the HyMeX field program in September and October of 2012. Each of the above networks is remotely monitored via the internet and feeds its data on a minute-by-minute basis back to a central processing computer at NM Tech (or TTU), where it is processed in real time and posted on the web in the two- and ten-minute time intervals. Examples of archived and current realtime data for the North Colorado LMA can be seen at http://lightning.nmt.edu/colma/ and /colma/current/. Finally, based on successful experiences with the above networks, we have developed what is termed the 'Sitetest' network, consisting of 9 or 10 stations each mounted on wooden pallets with lightweight enclosures and simple antenna hardware. The network was initially operated at Kennedy Space Center to test out

  4. Broadband interferometry of lightning

    NASA Astrophysics Data System (ADS)

    Stock, Michael

    A lightning interferometer is an instrument which determines the direction to a lightning-produced radio point source by correlating the signal received at two or more antennas. Such instruments have been used with great success for several decades in the study of the physical processes present in a lightning flash. However, previous instruments have either been sensitive to only a narrow radio bandwidth so that the correlation can be done using analog hardware, or have been sensitive to a wide bandwidth but only recorded a short duration of the radiation produced by a lightning flash. In this dissertation, a broad bandwidth interferometer is developed which is capable of recording the VHF radio emission over the entire duration of a lightning flash. In order to best utilize the additional data, the standard processing techniques have been redeveloped from scratch using a digital cross correlation algorithm. This algorithm can and does locate sources as faint as the noise level of the antennas, typically producing 100,000 or more point source locations over the course of a lightning flash. At very low received power levels, the likelihood that a signal received at the antenna will be affected by the environmental noise is substantially higher. For this reason, the processing allows for the integration windows of the cross correlation to be heavily overlapped. In this way, the location of each event can be based on a distribution of windows. Further, noise identification techniques which leverage the heavily overlapped windows have been developed based on: the closure delay, the standard deviation, the correlation amplitude, and the number of contributing windows. The filtration techniques have proven to be very successful at identifying and removing mis-located sources, while removing the minimum number of low amplitude sources which are well located. In the past, lightning interferometers have been limited to using only two perpendicular baselines to determine the

  5. RF radiation from lightning

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1978-01-01

    Radiation from lightning in the RF band from 3-300 MHz were monitored. Radiation in this frequency range is of interest as a potential vehicle for monitoring severe storms and for studying the lightning itself. Simultaneous measurements were made of RF radiation and fast and slow field changes. Continuous analogue recordings with a system having 300 kHz of bandwidth were made together with digital records of selected events (principally return strokes) at greater temporal resolution. The data reveal patterns in the RF radiation for the entire flash which are characteristic of flash type and independent of the frequency of observation. Individual events within the flash also have characteristic RF patterns. Strong radiation occurs during the first return strokes, but delayed about 20 micron sec with respect to the begining of the return stroke; whereas, RF radiation from subsequent return strokes tends to be associated with cloud processes preceding the flash with comparatively little radiation occurring during the return stroke itself.

  6. Lightning flash characteristics

    SciTech Connect

    Orville, R.E.; Henderson, R.W.; Pyle, R.B.

    1986-08-01

    A magnetic direction finding network for the detection of lightning cloud-to-ground strikes has been installed along the East Coast of the United States. Most of the lightning occurring from Maine to Florida and as far west as Ohio, Kentucky, and Alabame is detected. Time, location, flash polarity, stroke count, and magnetic field initial peak amplitude are recorded in real time. Flash locations, time, and polarity are displayed routinely for research and operational purposes. The data are being compiled into a data base to provide statistical information necassary for the prediction of the surge performance of electric power lines and the improvement of surge protection practices. Preliminary results are presented in this report.

  7. Remote lightning monitor system

    NASA Technical Reports Server (NTRS)

    Lennon, C. L.; Britt, T. O. (Inventor)

    1978-01-01

    An apparatus for monitoring, analyzing and accurately determining the value of peak current, the peak rate of change in current with respect to time and the rise time of the electrical currents generated in an electrical conductive mast that is located in the vicinity where lightning is to be monitored is described. The apparatus includes an electrical coil for sensing the change in current flowing through the mast and generating a voltage responsive. An on-site recorder and a recorder control system records the voltages produced responsive to lightning strikes and converts the voltage to digital signals for being transmitted back to the remote command station responsive to command signals. The recorder and the recorder control system are carried within an RFI proof environmental housing into which the command signals are fed by means of a fiber optic cable so as to minimize electrical interference.

  8. FNAS lightning detection

    NASA Technical Reports Server (NTRS)

    Miller, George P.; Alzmann, Melanie A.

    1993-01-01

    A review of past and future investigations into lightning detection from space was incorporated into a brochure. Following the collection of background information, a meeting was held to discuss the format and contents of the proposed documentation. An initial outline was produced and decided upon. Photographs to be included in the brochure were selected. Quotations with respect to printing the document were requested. In the period between 28 March and June 1993, work continued on compiling the text. Towards the end of this contract, a review of the brochure was undertaken by the technical monitor. Photographs were being revised and additional areas of lightning research were being considered for inclusion into the brochure. Included is a copy of the draft (and photographs) which is still being edited by the technical monitor at the time of this report.

  9. Ball Lightning Investigations

    NASA Astrophysics Data System (ADS)

    Bychkov, V. L.; Nikitin, A. I.; Dijkhuis, G. C.

    Ball lightning (BL) researches' review and theoretical models of three different authors are presented. The general review covers investigations from 1838 until the present day, and includes a discussion on observation data, experimental modeling, and theoretical approaches. Section 6.1 is written by Bychkov and Nikitin; authors of the sections 6.2, 6.3 and 6.4 are, respectively, Bychkov, Nikitin and Dijkhuis.

  10. A Probabilistic, Facility-Centric Approach to Lightning Strike Location

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.; Roeder, William p.; Merceret, Francis J.

    2012-01-01

    A new probabilistic facility-centric approach to lightning strike location has been developed. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collisionith spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.

  11. Tropospheric sources of NO(x) - Lightning and biology

    NASA Astrophysics Data System (ADS)

    Levine, J. S.; Augustsson, T. R.; Anderson, I. C.; Hoell, J. M., Jr.; Brewer, D. A.

    Laboratory tests were performed to quantify the expected NO(x) production by lightning and biological processes. Attention was focused on energy deposition by lightning and the oxygen partial pressure of soil, and one-dimensional photochemical models were defined for the tropospheric distributions of NO and HNO3 for various NO source strengths. The Lightning Facility data were compared with air samples of N2O production gathered during over 2 yr of flights through storms. Soil NO(x) productions were studied in terms of nitrification processes involving Nitrosomonas europaea and Alcaligenes faecalis bacteria, which change ammonium to nitrite and release NO and N2O as byproducts. The results indicate that atmospheric NO(x) is generated at two tropospheric levels, with lightning and soil bacteria being significant contributors.

  12. Tropospheric sources of NO(x) - Lightning and biology

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Augustsson, T. R.; Anderson, I. C.; Hoell, J. M., Jr.; Brewer, D. A.

    1984-01-01

    Laboratory tests were performed to quantify the expected NO(x) production by lightning and biological processes. Attention was focused on energy deposition by lightning and the oxygen partial pressure of soil, and one-dimensional photochemical models were defined for the tropospheric distributions of NO and HNO3 for various NO source strengths. The Lightning Facility data were compared with air samples of N2O production gathered during over 2 yr of flights through storms. Soil NO(x) productions were studied in terms of nitrification processes involving Nitrosomonas europaea and Alcaligenes faecalis bacteria, which change ammonium to nitrite and release NO and N2O as byproducts. The results indicate that atmospheric NO(x) is generated at two tropospheric levels, with lightning and soil bacteria being significant contributors.

  13. First images of thunder: Acoustic imaging of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  14. Lightning Scaling Laws Revisited

    NASA Technical Reports Server (NTRS)

    Boccippio, D. J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Scaling laws relating storm electrical generator power (and hence lightning flash rate) to charge transport velocity and storm geometry were originally posed by Vonnegut (1963). These laws were later simplified to yield simple parameterizations for lightning based upon cloud top height, with separate parameterizations derived over land and ocean. It is demonstrated that the most recent ocean parameterization: (1) yields predictions of storm updraft velocity which appear inconsistent with observation, and (2) is formally inconsistent with the theory from which it purports to derive. Revised formulations consistent with Vonnegut's original framework are presented. These demonstrate that Vonnegut's theory is, to first order, consistent with observation. The implications of assuming that flash rate is set by the electrical generator power, rather than the electrical generator current, are examined. The two approaches yield significantly different predictions about the dependence of charge transfer per flash on storm dimensions, which should be empirically testable. The two approaches also differ significantly in their explanation of regional variability in lightning observations.

  15. TRIP illumines lightning

    NASA Astrophysics Data System (ADS)

    Hill, R. D.

    It is 8 yr since important measurements of lightning in single-cell thunderstorms were made during the Thunderstorm Research International Project (TRIP), yet no theoretical interpretation of the lightning generation mechanism from the data has been made. This tardiness in interpreting the data is undoubtedly related to the existing confusion in lightning generation theories.According to Chalmers [1967], there are two classes of thunderstorm charge separation theories: those that rely on gravitation and those that do not involve gravitation. In the gravitational class, Chalmers again distinguished two types of processes: those in which ions are naturally generated (e.g., by cosmic rays, etc.) and are then attached to particles in the cloud and those in which some process (e.g., collision, coagulation, etc.) generates positive and negatively charged particles from neutrals in the cloud. Some of these two process types, cited in Chalmers' work, are given in Table 1, together with some of the scientists who originally proposed these processes.

  16. LOGMIS Programmed Texts, Tests and Answers.

    DTIC Science & Technology

    1979-04-01

    This publication contains the programmed text and related test and answer booklets produced to teach field users correct procedures for utilization of the Army’s Logistics Management Information System (LOGMIS). It was prepared by ARINC Research Corporation under Contract DAEA18-77-C-0184 for the Logistics Evaluation Branch, Plans and Programs Division of the Assistant Chief of Staff for Logistics, U.S. Army Communications Command. (Author)

  17. Lithium-Ion Verification Test Program

    NASA Technical Reports Server (NTRS)

    McKissock, Barbara; Manzo, Michelle; Miller, Thomas; Reid, Concha; Bennett, William; Gemeiner, Russel

    2006-01-01

    Need for technology verification for aerospace applications. Structure flexible program that will allow assessment of current technology capabilities. Provide information about various vendors. Provide for assessment of technology developments. Developed statistical DOE to interpret relationships in data and to address program test goals and resource limitations. Data will be used to develop a model to predict life of cells as a function of DOD, temperature, and EOCV.

  18. Triggered-Lightning Interaction with a Lightning Protective System: Current Distribution and Electromagnetic Environment

    NASA Technical Reports Server (NTRS)

    Mata, C. T.; Rakov, V. A.; Mata, A. G.

    2010-01-01

    A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC3913) at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras; currents through the nine downconductors of the new lightning protection system for LC3913; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. A 20:1 scaled down model of the new Lightning Protection System (LPS) of LC39B was built at the International Center for Lightning Research and Testing, Camp Blanding, FL. This scaled down lightning protection system was instrumented with the transient recorders, digitizers, and sensors to be used in the final instrumentation installation at LC3913. The instrumentation used at the ICLRT is also a scaled-down instrumentation of the LC39B instrumentation. The scaled-down LPS was subjected to seven direct lightning strikes and six (four triggered and two natural nearby flashes) in 2010. The following measurements were acquired at the ICLRT: currents through the nine downconductors; two dl-/dt, 3-axis stations, one at the center of the LPS (underneath the catenary wires), and another 40 meters south from the center of the LPS; ten dE/dt stations, nine of them on the perimeter of the LPS and one at the center of the LPS (underneath the catenary wire system); and the incident current. Data from representative events are presented and analyzed in this paper.

  19. Lightning attachment patterns and flight conditions for storm hazards, 1980

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Keyser, G. L., Jr.; Deal, P. L.

    1982-01-01

    As part of the NASA Langley Research Center Storm Hazards Program, 69 thunderstorm pentrations were made in 1980 with an F-106B airplane in order to record direct strike lightning data and the associated flight conditions. Ground based weather radar measurements in conjunction with these penetrations were made by NOAA National Severe Storms Laboratory in Oklahoma and by NASA Wallops Flight Center in Virginia. In 1980, the airplane received 10 direct lightning strikes; in addition, lightning transient data were recorded from 6 nearby flashes. Following each flight, the airplane was thoroughly inspected for evidence of lightning attachment, and the individual lightning attachment points were plotted on isometric projections of the airplane to identify swept flash patterns. This report presents pilot descriptions of the direct strikes to the airplane, shows the strike attachment patterns that were found, and discusses the implications of the patterns with respect to aircraft protection design. The flight conditions are also included. Finally, the lightning strike scenarios for three U.S. Air Force F-106A airplanes which were struck during routine operations are given in the appendix to this paper.

  20. An Algorithm for Obtaining the Distribution of 1-Meter Lightning Channel Segment Altitudes for Application in Lightning NOx Production Estimation

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Koshak, William J.

    2009-01-01

    An algorithm has been developed to estimate the altitude distribution of one-meter lightning channel segments. The algorithm is required as part of a broader objective that involves improving the lightning NOx emission inventories of both regional air quality and global chemistry/climate models. The algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand; VHF source amplitude thresholding and smoothing were applied to optimize results. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. One-meter channel segment altitude distributions were also obtained for the different seasons.

  1. Electric power system test and verification program

    NASA Technical Reports Server (NTRS)

    Rylicki, Daniel S.; Robinson, Frank, Jr.

    1994-01-01

    Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.

  2. CCDs at ESO: A Systematic Testing Program

    NASA Astrophysics Data System (ADS)

    Abbott, T. M. C.; Warmels, R. H.

    ESO currently offers a stable of 12 CCDs for use by visiting astronomers. It is incumbent upon ESO to ensure that these devices perform according to their advertised specifications (Abbott 1994). We describe a systematic, regular testing program for CCDs which is now being applied at La Silla. These tests are designed to expose failures which may not have catastrophic effects but which may compromise observations. The results of these tests are stored in an archive, accessible to visiting astronomers, and will be subject to trend analysis. The test are integrated in the CCD reduction package of the Munich Image Data Analysis System (ESO-MIDAS).

  3. Testing of concurrent programs and partial specifications

    SciTech Connect

    Hamlet, D.

    1982-12-01

    The testing problems of concurrent systems include those of sequential programs, but there are two additional difficulties: the scheduling of tasks may alter the behavior, making tests misleading; testing may be conducted at an early stage of development, by users who are not software experts. Concurrent process systems can be modeled by a collection of finite-state transducers, in a way that displays their unique problems. The specification languages PAISLey and Gist approach the definition of concurrent systems differently, but both permit users to execute partially defined systems. The declarative language PROLOG, although not explicitly designed for concurrent programming, exhibits similar characteristics. Prototype execution has some unexpected implications for testing, and for final implementation.

  4. The NASA atomic oxygen effects test program

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Brady, Joyce A.

    1988-01-01

    The NASA Atomic Oxygen Effects Test Program was established to compare the low earth orbital simulation characteristics of existing atomic oxygen test facilities and utilize the collective data from a multitude of simulation facilities to promote understanding of mechanisms and erosion yield dependence upon energy, flux, metastables, charge, and environmental species. Four materials chosen for this evaluation include Kapton HN polyimide, FEP Teflon, polyethylene, and graphite single crystals. The conditions and results of atomic oxygen exposure of these materials is reported by the participating organizations and then assembled to identify degrees of dependency of erosion yields that may not be observable from any single atomic oxygen low earth orbital simulation facility. To date, the program includes 30 test facilities. Characteristics of the participating test facilities and results to date are reported.

  5. Hydraulic Diagnostics and Fault Isolation Test Program.

    DTIC Science & Technology

    1987-02-13

    and Fault Isolation Test Program was to demonstrate and evaluate the practicality of a fault detection and isolation system on an aircraft. The...system capable of fault detection and isolation in a hydraulic subsystem through the use of sensors and a microprocessor (Fig. 1). The microprocessor...DISCUSSION 2.1 DESCRIPTION OF HYDRAULIC SYSTEM SIMULATOR The fault detection and isolation test arrangement consisted of a high pressure, lightweight

  6. Cooperative field test program for wind systems

    SciTech Connect

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  7. High Time Resolution Lightning Mapping Lightning Mapping Observations of a Small Thunderstorm during STEPS

    NASA Astrophysics Data System (ADS)

    Rison, W.; Krehbiel, P.; Thomas, R.; Hamlin, T.; Harlin, J.

    2001-12-01

    During the 2000 STEPS (Severe Thunderstorm Electrification and Precipitation Study) program, the New Mexico Tech Lightning Mapping Array (LMA) was operated in high time resolution mode [Rison et al., 2000] for several days. On July 11 a small thunderstorm formed over the northern part of the LMA network while the LMA was in this mode. The lightning mapping observations show that the electrical structure of the thunderstorm changed significantly during its lifetime. The electrical development of the storm as inferred from the lightning mapping observations will be presented. In high time resolution mode the LMA records the time of the strongest VHF radiation received in 10 μ s windows (compared to 100~μ s windows in normal time resolution mode). In high time resolution mode the LMA can produce significantly more detailed images of continuous radiation processes (such as stepped leaders, dart leaders and K-changes). Cloud-to-ground discharges examined in the July 11 storm show significant branching in stepped leaders, and there is sufficient detail in stepped and dart leaders and K-changes that good velocities for relatively fast leader processes (107 m/s) can be determined. [1ex] Rison, W., P. Krehbiel, R. Thomas, T. Hamlin, and J. Harlin, A Time-of-Arrival Lightning Mapping System with High Time Resolution, Abstract A52C-01, Fall Ann. Mtg. Amer. Geophys. Union, EOS, 81, p. F47, 2000.

  8. Fourteen Years of Assessment: Regents' Testing Program.

    ERIC Educational Resources Information Center

    Bridges, Jean Bolen

    In 1972, the Board of Regents of the University System of Georgia instituted the Regents' Testing Program (RTP) to provide systemwide information on the status of student competence in reading and writing and to provide a uniform means of identifying those students who fail to attain minimum levels of competence in these areas. Since 1972, some…

  9. Crime Laboratory Proficiency Testing Research Program.

    ERIC Educational Resources Information Center

    Peterson, Joseph L.; And Others

    A three-year research effort was conducted to design a crime laboratory proficiency testing program encompassing the United States. The objectives were to: (1) determine the feasibility of preparation and distribution of different classes of physical evidence; (2) assess the accuracy of criminalistics laboratories in the processing of selected…

  10. Systematic and Scalable Testing of Concurrent Programs

    DTIC Science & Technology

    2013-12-16

    the FiSC tool [165], or the KLEE tool [29]. These tools store a portion of the in-memory and on-disk state so that they can later reconstruct this...Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE : Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs. In

  11. United States Ski Team Fitness Testing Program.

    ERIC Educational Resources Information Center

    Gettman, Larry R.

    Presented is a fitness profile designed to identify the individual athlete's strengths and weaknesses. Specifically, the areas of fitness examined are a) muscular strength; b) cardiovascular respiratory function; c) body composition; and d) motor abilities, agility, and speed. The procedures in the testing program involve the following: a) the…

  12. French Flight Test Program LEA Status

    DTIC Science & Technology

    2010-09-01

    PROMETHEE program ([9]); • A3CP ([10]); • PTAH-SOCAR (MBDA- Astrium ST); and • Cooperation with research laboratories (Ref11 to Ref13). Today...several PTAH-SOCAR C/SiC composite panels have been successfully tested by MBDA and Astrium ST in representative conditions and long accumulated

  13. Crime Laboratory Proficiency Testing Research Program.

    ERIC Educational Resources Information Center

    Peterson, Joseph L.; And Others

    A three-year research effort was conducted to design a crime laboratory proficiency testing program encompassing the United States. The objectives were to: (1) determine the feasibility of preparation and distribution of different classes of physical evidence; (2) assess the accuracy of criminalistics laboratories in the processing of selected…

  14. 14 CFR 25.581 - Lightning protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lightning protection. 25.581 Section 25.581... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For...

  15. 14 CFR 25.581 - Lightning protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning protection. 25.581 Section 25.581... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For...

  16. 14 CFR 25.581 - Lightning protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lightning protection. 25.581 Section 25.581... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For...

  17. 14 CFR 25.581 - Lightning protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lightning protection. 25.581 Section 25.581... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For...

  18. 14 CFR 25.581 - Lightning protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Lightning protection. 25.581 Section 25.581... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For...

  19. The Goes-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved storm diagnostic capability with the Advanced Baseline Imager. The GLM will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. In this paper we will report on new Nowcasting and storm warning applications being developed and evaluated at various NOAA Testbeds.

  20. The GOES-R Series Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas M.

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument development. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (an engineering development unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms

  1. Research on Winter Lightning in Japan

    NASA Astrophysics Data System (ADS)

    Ishii, Masaru

    Winter lightning in Japan is known for such characteristics as frequent occurrence of upward lightning and of positive ground flashes. On the engineering side, higher frequencies of troubles at transmission lines or wind turbines in winter due to lightning than those in summer have been experienced in the winter thunderstorm area of Japan, despite the much smaller number of lightning strokes in winter observed by lightning location systems (LLS). Such frequent troubles by lightning in the cold season are unique in Japan, which have promoted intensive research on winter lightning in Japan since 1980s.

  2. Space shuttle orbiter vehicle star tracker test program plan

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1974-01-01

    The development model test program was written to provide guidance for essential star tracker test support to the Space Shuttle Orbiter Program. The program organization included test equipment preparation, prototype baseline/acceptance tests, prototype total performance tests, and prototype special tests. Test configurations, preparation phase, documentation, scheduling, and manpower requirements are discussed. The test program permits an early evaluation of the tracker's performance prior to completion and testing of the final flight models.

  3. Static tests of the propulsion system. [Propfan Test Assessment program

    NASA Technical Reports Server (NTRS)

    Withers, C. C.; Bartel, H. W.; Turnberg, J. E.; Graber, E. J.

    1987-01-01

    Advanced, highly-loaded, high-speed propellers, called propfans, are promising to revolutionize the transport aircraft industry by offering a 15- to 30-percent fuel savings over the most advanced turbofans without sacrificing passenger comfort or violating community noise standards. NASA Lewis Research Center and industry have been working jointly to develop the needed propfan technology. The NASA-funded Propfan Test Assessment (PTA) Program represents a key element of this joint program. In PTA, Lockheed-Georgia, working in concert with Hamilton Standard, Rohr Industries, Gulfstream Aerospace, and Allison, is developing a propfan propulsion system which will be mounted on the left wing of a modified Gulfstream GII aircraft and flight tested to verify the in-flight characteristics of a 9-foot diameter, single-rotation propfan. The propfan, called SR-7L, was designed and fabricated by Hamilton Standard under a separate NASA contract. Prior to flight testing, the PTA propulsion system was static tested at the Rohr Brown Field facility. In this test, propulsion system operational capability was verified and data was obtained on propfan structural response, system acoustic characteristics, and system performance. This paper reports on the results of the static tests.

  4. Correlation of satellite lightning observations with ground-based lightning experiments in Florida, Texas and Oklahoma

    NASA Technical Reports Server (NTRS)

    Edgar, B. C.; Turman, B. N.

    1982-01-01

    Satellite observations of lightning were correlated with ground-based measurements of lightning from data bases obtained at three separate sites. The percentage of ground-based observations of lightning that would be seen by an orbiting satellite was determined.

  5. Nevada Test Site Radiation Protection Program

    SciTech Connect

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  6. Analysis of electrical transients created by lightning

    NASA Technical Reports Server (NTRS)

    Nanevicz, J. E.; Vance, E. F.

    1980-01-01

    A series of flight tests was conducted using a specially-instrumented NASA Learjet to study the electrical transients created on an aircraft by nearby lightning. The instrumentation included provisions for the time-domain and frequency-domain recording of the electrical signals induced in sensors located both on the exterior and on the interior of the aircraft. The design and calibration of the sensors and associated measuring systems is described together with the results of the flight test measurements. The results indicate that the concept of providing instrumentation to follow the lightning signal from propagation field, to aircraft skin current, to current on interior wiring is basically sound. The results of the measurement indicate that the high frequency signals associated with lightning stroke precursor activity are important in generating electromagnetic noise on the interior of the aircraft. Indeed, the signals produced by the precursors are often of higher amplitude and of longer duration that the pulse produced by the main return stroke.

  7. Data and results of a laboratory investigation of microprocessor upset caused by simulated lightning-induced analog transients

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.

    1984-01-01

    A methodology was developed a assess the upset susceptibility/reliability of a computer system onboard an aircraft flying through a lightning environment. Upset error modes in a general purpose microprocessor were studied. The upset tests involved the random input of analog transients which model lightning induced signals onto interface lines of an 8080 based microcomputer from which upset error data was recorded. The program code on the microprocessor during tests is designed to exercise all of the machine cycles and memory addressing techniques implemented in the 8080 central processing unit. A statistical analysis is presented in which possible correlations are established between the probability of upset occurrence and transient signal inputs during specific processing states and operations. A stochastic upset susceptibility model for the 8080 microprocessor is presented. The susceptibility of this microprocessor to upset, once analog transients have entered the system, is determined analytically by calculating the state probabilities of the stochastic model.

  8. Three Dimensional Lightning Launch Commit Criteria Visualization Tool

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2014-01-01

    Lightning occurrence too close to a NASA LSP or future SLS program launch vehicle in flight would have disastrous results. The sensitive electronics on the vehicle could be damaged to the point of causing an anomalous flight path and ultimate destruction of the vehicle and payload.According to 45th Weather Squadron (45 WS) Lightning Launch Commit Criteria (LLCC), a vehicle cannot launch if lightning is within 10 NM of its pre-determined flight path. The 45 WS Launch Weather Officers (LWOs) evaluate this LLCC for their launch customers to ensure the safety of the vehicle in flight. Currently, the LWOs conduct a subjective analysis of the distance between lightning and the flight path using data from different display systems. A 3-D display in which the lightning data and flight path are together would greatly reduce the ambiguity in evaluating this LLCC. It would give the LWOs and launch directors more confidence in whether a GO or NO GO for launch should be issued. When lightning appears close to the path, the LWOs likely err on the side of conservatism and deem the lightning to be within 10 NM. This would cause a costly delay or scrub. If the LWOs can determine with a strong level of certainty that the lightning is beyond 10 NM, launch availability would increase without compromising safety of the vehicle, payload or, in the future, astronauts.The AMU was tasked to conduct a market research of commercial, government, and open source software that might be able to ingest and display the 3-D lightning data from the KSC Lightning Mapping Array (LMA), the 45th Space Wing Weather Surveillance Radar (WSR), the National Weather Service in Melbourne Weather Surveillance Radar 1988 Doppler (WSR-88D), and the vehicle flight path data so that all can be visualized together. To accomplish this, the AMU conducted Internet searches for potential software candidates and interviewed software developers.None of the available off-the-shelf software had a 3-D capability that could

  9. Observations of volcanic Lightning (Invited)

    NASA Astrophysics Data System (ADS)

    Thomas, R. J.; Behnke, S. A.; Krehbiel, P. R.; Rison, W.; Edens, H. E.; McNutt, S. R.

    2010-12-01

    We have made detailed observations of lightning during four volcanic eruptions using lightning mapping array (LMA) stations. In January 2006 we observed several explosive eruptions from Augustine Volcano in Alaska with two LMA stations. While two stations only gave us the direction to the lightning it gave a detailed time history of the lightning in relationship to the eruption as measured by seismic and acoustic instruments. We inferred that there were two phases (explosive and plume) and three types of lightning (small discharges near the vent, larger discharges in the volcanic column, thunderstorm like lightning in the plume). In May 2008 we mapped lightning in the plume of Chaitan (Chile) three weeks after the initial eruption. In 2009 we observed the entire sequence of explosive eruptions of Redoubt Volcano in Alaska with 4 distant stations. This provided good 2-D locations of the electrical activity. In 2010 we mapped much of the eruption of Eyjafjallajökull using 6 LMA stations that provided 3-D locations. All the observations have reinforced the basic conclusions that we found at the Augustine eruption, and let us expand and refine the these ideas.

  10. Test program, helium II orbital resupply coupling

    NASA Technical Reports Server (NTRS)

    Hyatt, William S.

    1991-01-01

    The full scope of this program was to have included development tests, design and production of custom test equipment and acceptance and qualification testing of prototype and protoflight coupling hardware. This program was performed by Ball Aerospace Systems Division, Boulder, Colorado until its premature termination in May 1991. Development tests were performed on cryogenic face seals and flow control devices at superfluid helium (He II) conditions. Special equipment was developed to allow quantified leak detection at large leak rates up to 8.4 x 10(exp -4) SCCS. Two major fixtures were developed and characterized: The Cryogenic Test Fixture (CTF) and the Thermal Mismatch Fixture (Glovebox). The CTF allows the coupling hardware to be filled with liquid nitrogen (LN2), liquid helium (LHe) or sub-cooled liquid helium when hardware flow control valves are either open or closed. Heat leak measurements, internal and external helium leakage measurements, cryogenic proof pressure tests and external load applications are performed in this fixture. Special reusable MLI closures were developed to provide repeatable installations in the CTF. The Thermal Mismatch Fixture allows all design configurations of coupling hardware to be engaged and disengaged while measuring applied forces and torques. Any two hardware components may be individually thermally preconditioned within the range of 117 deg K to 350 deg K prior to engage/disengage cycling. This verifies dimensional compatibility and operation when thermally mismatched. A clean, dry GN2 atmosphere is maintained in the fixture at all times. The first shipset of hardware was received, inspected and cycled at room temperature just prior to program termination.

  11. Balloon launched Viking decelerator test program

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Michel, F. C.

    1973-01-01

    Four BLDT flights were conducted during the summer of 1972. The purpose of these tests was to qualify the Viking parachute system behind the full-scale Viking entry vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. A summary of the test series is presented. Test conditions ranged from a Mach number of 2.0 to 0.5 and dynamic pressure from 11.7 to 4.4 psf. This range of conditions covers the uncertainty in entry conditions at Mars due to atmospheric and entry performance uncertainties. Emphasis is placed on parachute performance and simulated Mars entry vehicle motions as influenced by the parachute performance. Conclusions are presented regarding the ability of the parachute to perform within the operational parameters required for a successful soft Martian landing. A list of references which covers all reports in the qualification test program is included.

  12. Test and Evaluation of Program Slicing Tools

    DTIC Science & Technology

    2012-12-19

    and engineering databases. Berzins received BS, MS, EE, and PhD degrees from MIT and has been on the faculty at the University of Texas and the...slice. C. Existing Tools A thesis (Lim & Ben Kahia, 2011) was done at the Naval Postgraduate School (NPS) in which the students tried to find a...reduction of testing effort (Unpublished master’s thesis ). Naval Postgraduate School, Monterey, CA. Weiser, M. (1984). Program slicing. IEEE

  13. Understanding the Lightning Leader

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Richard

    2011-10-01

    Before the flash and the bang that lay-people think of as lightning, it is necessary to break down a channel of air several kilometers long through what is known as the leader process. We have been studying the growth of lightning leaders for nearly a decade through a combination of balloon-borne electric field measurements on balloons and on the ground, time of arrival radio-measurements, and high-speed video cameras. Our combination of techniques can penetrate clouds and shows the development of both positive and negative leader channels growing at about 0.001c and carrying net-charge around the sky as they try to minimize electrostatic energy. Recent analysis has revealed the existence of step-recoil waves that propagate away from the tip of a growing leader as well as K-changes that propagate toward the leader tip. These waves probably help keep the leader hot and conductive enough to allow it to persist over the several hundred milliseconds it needs to reach ground.[4pt] In collaboration with William Winn, Ken Eack, Jeff LaPierre, New Mexico Tech, Langmuir Lab; William Hager, University of Florida; and Gaopeng Lu, Duke University, ECE Dept.

  14. Lightning flash characteristics, 1987

    SciTech Connect

    Orville, R.E.; Henderson, R.W.; Pyle, R.B.

    1989-08-01

    A magnetic direction finding system for the detection of lightning flashes to ground has operated in the eastern part of the United States since 1982 and has now expanded to cover over 80 percent of the contiguous United States. Complete coverage is planned for the end of 1988. Time, location, flash polarity, multiplicity (the number of strokes per flash) and the initial peak magnetic radiation field amplitude are recorded in real time. Flash locations, time, polarity, peak current, and multiplicity are displayed routinely for research and operational uses. New results for 1987 include the flash density for strikes to ground in the peak current ranges 0--35 kA, 35--65 kA, 65--100 kA and greater than 100 kA. The lightning information is available to utilities through a satellite communication link for real time access or by phone lines for access to historical data, where the last five million flashes are available. The flash information is being compiled into a data base to provide statistical information necessary for the prediction of the surge performance of electric power lines and the improvement of surge protection practices. Results for the year 1987 are presented in this report. 13 refs., 25 figs.

  15. Terrestrial gamma-ray flash production by lightning

    NASA Astrophysics Data System (ADS)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared

  16. A County Superintendent's View Of The California State Testing Program

    ERIC Educational Resources Information Center

    Hoffman, Glenn W.

    1972-01-01

    The purposes of this paper are to (1) consider the state testing program from the county point of view, (2) relate the testing program to other state required programs, and (3) make some suggestions for the future. (Author)

  17. Long-Term Materials Test Program: materials exposure test plan

    SciTech Connect

    1981-12-01

    The Long Term Materials Test Program is designed to identify promising corrosion resistant materials for coal-fired gas turbine applications. Resistance of materials to long term accelerated corrosion will be determined through realistic PFB environmental exposure of candidate turbine materials for up to 14,000 hours. Selected materials also will be evaluated for their ability to withstand the combined erosive and corrosive aspects of the PFB effluent. A pressurized fluidized bed combustor facility has been constructed at the General Electric Coal Utilization Research Laboratory at Malta, New York. The 12-inch diameter combustor will burn high sulfur coal with moderate-to-high chlorine and alkali levels and utilize dolomite as the sulfur sorbent. Hot gas cleanup is achieved using three stages of cyclone separators. Downstream of the cylone separators, a low velocity test section (approx. 30 ft/s) capable of housing 180 pin specimens 1/4'' diameter has been installed to assess the corrosion resistance of the various materials at three different temperatures ranging from 1300 to 1600/sup 0/F. Following the low velocity test section is a high velocity test section consisting of four cascades of airfoil shaped specimens, six specimens per cascade. This high velocity test section is being used to evaluate the combined effects of erosion and corrosion on the degradation of gas turbine materials at gas velocities of 800 to 1400 ft/s. This report summarizes the materials selection and materials exposure test plan for the Long Term Materials Test.

  18. Lithium-Ion Verification Test Program

    NASA Technical Reports Server (NTRS)

    McKissock, Barbara; Manzo, Michelle; Miller, Thomas; Reid, Concha; Bennett, William; Gemeiner, Russel

    2004-01-01

    In order to assess the capabilities of current aerospace lithium-ion cells to perform long-term NASA missions, low-earth-orbits (LEO) testing to evaluate long-term cycle life was initiated. A flexible program was developed at NASA Glenn Research Center to enable assessment of technology developments as they occur as well as provide information about different cell vendors and cell designs. Following extensive characterization testing, cells are tested using LEO charge and discharge profiles under ten different combinations of test conditions that were statistically chosen to determine the effects of depth-of-discharge, temperature, and end-of-charge voltage on LEO cycle life. Four cells from each vendor are tested at each specific combination of conditions. Conditions included in the test matrix are depth-of-discharges of 20%, 30, 35%, and 40%; temperatures of 20, 30, and 40 C; and end-of-charge voltages of 3.85 V, 3.95 V, and 4.05 V. Cells are randomly assigned to packs and packs are randomly assigned to test conditions. The capacity of the cells to 3.0 V at the conditions of the test is being periodically measured. The results of this testing will be used to model cell performance and degradation as a function of test operating conditions. Cells are being evaluated in 4-cell series strings with charge voltage limits being applied to individual cells by charge control units designed and built at NASA Glenn Research Center. Testing is being performed at the Naval Surface Warfare Center/Crane Division in Crane, IN. Testing was initiated in September 2004 with 40 Ah cells from Saft and 30 Ah cells from Lithion. The test program is being expanded with the addition of cells from MSA and the addition of small cell modules is being considered. Preliminary results showing voltage, temperature, usable capacity per unit mass, and voltage dispersion as their changes over time for the cells at 20 C is presented.

  19. 16 CFR 1209.33 - Reasonable testing program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION Certification § 1209.33 Reasonable testing program. (a... standard, a reasonable testing program shall be used to support certificates of compliance for cellulose insulation. (b) Requirements of testing program. A reasonable testing program for cellulose insulation is...

  20. 16 CFR 1209.33 - Reasonable testing program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION Certification § 1209.33 Reasonable testing program. (a... standard, a reasonable testing program shall be used to support certificates of compliance for cellulose insulation. (b) Requirements of testing program. A reasonable testing program for cellulose insulation is...

  1. Editorial - Advances in lightning research

    NASA Astrophysics Data System (ADS)

    2015-12-01

    This is the part I of a special issue dedicated to lightning research, consisting of papers presented at the 32nd International Conference on Lightning Protection (ICLP), held in Shanghai, China, in 2014, and several contributions invited by the guest editors to complement the subject matter of the papers selected from the ICLP. The papers from the ICLP were selected by the session chairmen of the ICLP and passed through the rigorous review process of the Journal of Solar Terrestrial and Atmospheric Physics (JASTP). The papers presented in this special issue contain subject matter pertinent to all aspects of lightning research both theoretical and experimental.

  2. Lightning Current Parameters of Upward Lightning Flashes Observed at the 200-m Fukui Chimney in Winter

    NASA Astrophysics Data System (ADS)

    Wada, A.; Asakawa, A.; Miki, M.; Shindo, T.

    2003-12-01

    For over twenty years we have been observing the lightning flashes at the 200-m-tall chimney in the Fukui thermal power plant in winter in Japan. The local IKL (thunderstorm days) is about 40 in this area and the lightning flashes at the chimney are recorded about 40 times in a winter season. When the lightning strikes the 5-m lightning rod on top of the chimney, lightning currents are measured by using coaxial shunt-resistors installed at the base of the lightning rod. Lightning progressing features was measured by the 40X40 pin photodiode array system. The system records luminosity changes in the lightning channel by measuring the differences between signals from different photodiodes. At a distance of 630 m from the chimney, a vertical lightning channel of 1000 m is divided by using 40 diode elements. Electromagnetic field changes that accompany lightning flashes are also measured by using several types of antennas. These simultaneous measurements classified the behavior of winter lightning flashes. All recorded lightning flash was the lightning discharge initiated by the upward leader from the chimney. Most lightning (about 90 percent) was the lightning discharge initiated by the upward-moving positively charged leader. The lightning initiated by the upward-moving negatively charged leader was only about 10 percent. Some of the lightning produced the subsequent discharge processes following the upward leader development. There are many differences between the lightning current parameters of upward lightning flashes and the downward lightning flashes. Interestingly, the upward leader currents observed at the chimney are big compared to the downward leader currents estimated by the several methods. We will report the properties of lightning current parameters based on the data collected at the 200-m-tall chimney in winter. These statistical data of lightning current parameters are classified especially from the point of view of lightning discharge types.

  3. Lightning Observations with the Upgraded Lanmguir Lab Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    Rison, W.; Krehbiel, P. R.; Hunyady, S.; Edens, H. E.; Aulich, G. D.

    2010-12-01

    The Langmuir Lab Lightning Mapping Array (LMA) is located on and around the Magdalena Mountains in central New Mexico. Recently there have been several improvements to the LMA which have dramatically increased its sensitivity. By switching most stations to solar power (which allows us to place them far from buildings and power lines) and reducing the noise of the power supply, the station-generated and local environmental noise has been reduced to levels near the theoretical thermal value. Because of the recent switch to digital television, the LMA is no longer degraded by the anthropogenic noise of distant VHF television transmitters, due to the stations mostly being switched to UHF. The distant interference was a particularly bad problem for the stations located high in the Magdalena Mountains. The combination of lower threshold values and increasing the number of stations to 16 enables lower-power sources to be detected above the local noise levels and hence located by the system. We are now able to observe the positive leaders (which produce a much lower level of VHF radiation than negative leaders) which propagate upward from a triggering rocket. Lightning channels in natural lightning discharges are also much more clearly defined than in the past. Minor discharges (with one or a few LMA-detected sources) between larger lightning flashes are routinely observed. Much more detail is observed from distant lightning discharges. (However, the increased sensitivity does not reduce the vertical and radial errors for lightning observed outside the array.) In addition to the more sensitive LMA, we continue to improve our array of high-resolution electrostatic field change stations, which provides considerable information on lightning-induced charge transfer. We will present examples of observations of natural and triggered lightning, showing the increased detail now available from the recent improvements to the Langmuir Lab LMA.

  4. Severe stunned myocardium after lightning strike.

    PubMed

    Rivera, Jaime; Romero, Karla Alejandra; González-Chon, Octavio; Uruchurtu, Eduardo; Márquez, Manlio Fabio; Guevara, Milton

    2007-01-01

    To report the development of myocardial stunning and severe heart failure after lightning strike with total recovery of function. Case report. Coronary care unit at Medica Sur Clinic, Mexico. A 42-yr-old woman who was hit by lightning developed rapid and progressive hemodynamic deterioration manifested by cardiogenic shock that required invasive monitoring. Twenty-four hours after the strike, intravenous levosimendan and intra-aortic balloon pump were initiated because the patient demonstrated no significant response to management with conventional inotropic agents. Two days later, echocardiographic signs of systolic and diastolic dysfunction improved markedly. Dual-isotope-imaging myocardial perfusion testing with technetium-99m-sestamibi and thallium-201, performed 9 days after admission, showed normal perfusion and normal left ventricular systolic function. The patient exhibited complete recovery of function. The exact mechanism of abnormal contractility in the absence of direct electrofulguration is unknown but may be explained by release of oxygen free radicals, proteolysis of the contractile apparatus, and cytosolic overload of intracellular calcium, followed by reduced myofilament sensitivity to calcium. These abnormalities are consistent with stunned myocardium. Lightning strike may cause serious contractile dysfunction in the absence of irreversible myocardial injury, but the exact mechanism of this phenomenon remains unknown. We propose that lighting strike can cause myocardial stunning resulting in severe but reversible left ventricular dysfunction. The patient's recovery was facilitated by support treatment including administration of levosimendan, which increases the intracellular sensitivity to calcium, a mechanism disturbed in patients with myocardial stunning.

  5. Multifractal analysis of lightning channel for different categories of lightning

    NASA Astrophysics Data System (ADS)

    Miranda, F. J.; Sharma, S. R.

    2016-07-01

    A study from the point of view of complex systems is done for lightning occurred at Diamantina, Sete Lagoas and São José dos Campos, during the summer from September 2009 to April 2010. For the first time, multifractal analyses were performed for different lightning categories: two-dimensional, three-dimensional, non-branched, branched, cloud, cloud-to-ground, single and multiple. We found that when using two-dimensional images of natural lightning embedded in three dimensions to perform multifractal analysis, the interpretation of the multifractal spectrum must be restricted to identification of the multi (mono) fractal character of lightning channel and to estimation of fractal dimension. We have also observed that, on the average, each category has a specific value of fractal dimension. Categories in which branches and tortuosity are more usual, like branched and cloud categories, exhibited largest fractal dimensions due to more complexity of lightning channels. The results suggest that single and multiple lightning have similar complexities in their channels, leading to the same average values of fractal, information and correlation dimensions for both categories.

  6. Columbia University flow instability experimental program: Volume 6. Single annulus tests, transient test program

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1992-09-01

    The coolant in the Savannah River Site (SRS) production nuclear reactor assemblies is circulated as a subcooled liquid under normal operating conditions. This coolant is evenly distributed throughout multiple annular flow channels with a uniform pressure profile across each coolant flow channel. During the postulated Loss of Coolant Accident (LOCA), which is initiated by a hypothetical guillotine pipe break, the coolant flow through the reactor assemblies is significantly reduced. The flow reduction and accompanying power reduction (after shutdown is initiated) occur in the first 1 to 2 seconds of the LOCA. This portion of the LOCA is referred to as the Flow Instability phase. This report presents the experimental results for the transient portion of the single annulus test program. The test program was designed to investigate the onset of flow instability in an annular geometry similar to the MARK 22 reactor. The test program involved testing of both a ribless heater and a ribbed heater under steady state as well as transient conditions. The ribbed heater testing is currently underway and will be reported separately. The steady state portion of this test program with ribless heater was completed and reported in report No. CU-HTRF-T3A. The present report presents transient test results obtained from a ribless, uniform annulus test section. A total of thirty five transients were conducted with six cases in which flow excursion occurred. No unstable conditions resulted for tests in which the steady state Q{sub ratio} OFI limit was not exceeded.

  7. Rationales for the Lightning Flight-Commit Criteria

    NASA Technical Reports Server (NTRS)

    Willett, John C. (Editor); Merceret, Francis J.; Krider, E. Philip; Dye, James E.; OBrien, T. Paul; Rust, W. David; Walterscheid, Richard L.; Madura, John T.; Christian, Hugh J.

    2010-01-01

    Since natural and artificially-initiated (or "triggered") lightning are demonstrated hazards to the launch of space vehicles, the American space program has responded by establishing a set of Lightning Flight Commit Criteria (LFCC), also known as Lightning Launch Commit Criteria (LLCC), and associated Definitions to mitigate the risk. The LLCC apply to all Federal Government ranges and similar LFCC have been adopted by the Federal Aviation Administration for application at state-operated and private spaceports. The LLCC and Definitions have been developed, reviewed, and approved over the years of the American space program, progressing from relatively simple rules in the mid-twentieth century (that were inadequate) to a complex suite for launch operations in the early 21st century. During this evolutionary process, a "Lightning Advisory Panel (LAP)" of top American scientists in the field of atmospheric electricity was established to guide it. Details of this process are provided in a companion document entitled "A History of the Lightning Launch Commit Criteria and the Lightning Advisory Panel for America s Space program" which is available as NASA Special Publication 2010-216283. As new knowledge and additional operational experience have been gained, the LFCC/LLCC have been updated to preserve or increase their safety and to increase launch availability. All launches of both manned and unmanned vehicles at all Federal Government ranges now use the same rules. This simplifies their application and minimizes the cost of the weather infrastructure to support them. Vehicle operators and Range safety personnel have requested that the LAP provide a detailed written rationale for each of the LFCC so that they may better understand and appreciate the scientific and operational justifications for them. This document provides the requested rationales

  8. How My Program Passed the Turing Test

    NASA Astrophysics Data System (ADS)

    Humphrys, Mark

    In 1989, the author put an ELIZA-like chatbot on the Internet. The conversations this program had can be seen - depending on how one defines the rules (and how seriously one takes the idea of the test itself) - as a passing of the Turing Test. This is the first time this event has been properly written. This chatbot succeeded due to profanity, relentless aggression, prurient queries about the user, and implying that they were a liar when they responded. The element of surprise was also crucial. Most chatbots exist in an environment where people expectto find some bots among the humans. Not this one. What was also novel was the onlineelement. This was certainly one of the first AI programs online. It seems to have been the first (a) AI real-time chat program, which (b) had the element of surprise, and (c) was on the Internet. We conclude with some speculation that the future of all of AI is on the Internet, and a description of the "World- Wide-Mind" project that aims to bring this about.

  9. Expanding the Operational Use of Total Lightning Ahead of GOES-R

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Wood, Lance; Garner, Tim; Nunez, Roland; Kann, Deirdre; Reynolds, James; Rydell, Nezette; Cox, Rob; Bobb, William R.

    2015-01-01

    NASA's Short-term Prediction Research and Transition Center (SPoRT) has been transitioning real-time total lightning observations from ground-based lightning mapping arrays since 2003. This initial effort was with the local Weather Forecast Offices (WFO) that could use the North Alabama Lightning Mapping Array (NALMA). These early collaborations established a strong interest in the use of total lightning for WFO operations. In particular the focus started with warning decision support, but has since expanded to include impact-based decision support and lightning safety. SPoRT has used its experience to establish connections with new lightning mapping arrays as they become available. The GOES-R / JPSS Visiting Scientist Program has enabled SPoRT to conduct visits to new partners and expand the number of operational users with access to total lightning observations. In early 2014, SPoRT conducted the most recent visiting scientist trips to meet with forecast offices that will used the Colorado, Houston, and Langmuir Lab (New Mexico) lightning mapping arrays. In addition, SPoRT met with the corresponding Center Weather Service Units (CWSUs) to expand collaborations with the aviation community. These visits were an opportunity to learn about the forecast needs of each office visited as well as to provide on-site training for the use of total lightning, setting the stage for a real-time assessment during May-July 2014. With five lightning mapping arrays covering multiple geographic locations, the 2014 assessment has demonstrated numerous uses of total lightning in varying situations. Several highlights include a much broader use of total lightning for impact-based decision support ranging from airport weather warnings, supporting fire crews, and protecting large outdoor events. The inclusion of the CWSUs has broadened the operational scope of total lightning, demonstrating how these data can support air traffic management, particularly in the Terminal Radar Approach

  10. Daylight spectra of individual lightning flashes in the 370-690 nm region

    NASA Technical Reports Server (NTRS)

    Orville, R. E.

    1980-01-01

    An optical multichannel analyzer slit spectrometer coupled to a minicomputer was used to record lightning spectra. This is the first successful application of a slit spectrometer to the study of individual lightning flashes and it was accomplished in the daytime. Over 300 spectra were obtained in 1978 and 1979 and are correlated with other experiments in the Thunderstorm Research International Program (TRIP). The spectra duplicate previously published nighttime data but reveal for the first time the relative intensity of H-alpha (656.3 nm) and H-beta (486.1 nm) emissions above their daytime absorption features. These are the characteristic Fraunhofer C and F lines in the solar spectrum. This result suggests that the observation of lightning from space may be accomplished by monitoring the hydrogen emissions from lightning which occur on earth, or on other planets with hydrogen in their atmospheres, such as Jupiter and Venus where lightning recently has been reported.

  11. BPX insulation irradiation program test results

    SciTech Connect

    McManamy, T.J. ); Kanemoto, G. ); Snook, P.G. . Plasma Physics Lab.)

    1991-01-01

    The toroidal field coil insulation for the Burning Plasma Experiment (BPX) is expected to receive a radiation dose of nearly 10{sup 10} rad and to withstand significant mechanical stresses. An irradiation test program was performed at the Idaho National Engineering Laboratory (INEL) using the Advanced Technology Reactor (ATR) for irradiations to doses on the order of 3 {times} 10{sup 10} rad. The flexure and shear strength with compression of commercially procured sheet material were reported earlier. A second series of tests has been performed to slightly higher dose levels with vacuum impregnated materials, glass strand material, and Spaulrad-S sheet samples. Vacuum impregnation with a Shell 9405 resin and 9470 hardener was used to produce bonded copper squares and flexure samples of both pure resin and resin with S-glass. A new test fixture was developed to test the bonded samples in shear without applied compression. The Spaulrad-S flexure samples demonstrated a loss of strength with irradiation, similar to previous results. The pure resin lost nearly all flexibility, while the S-glass-reinforced samples retained between 30% and 40% of the initial flexure strength. The S-glass strands showed a 30% loss of strength at the higher dose level when tested in tension. The bonded copper squares had a low room-temperature shear strength of approximately 17 MPa before irradiation, which was unchanged in the irradiated samples. Shear testing of unirradiated bonded copper squares with ten different types of surface treatment revealed that the low shear strength resulted from the polyurethane primer used. In the later series of test, the epoxy-based primers and DZ-80 from Ciba-Geigy did much better, with shear strengths on the order of 40 MPa. These samples also demonstrated a resistance to cryogenic shock. One irradiated bonded sample was tested up 10 210 MPa in compression, the limit of the test fixture, without failure.

  12. Lightning strike protection of composites

    NASA Astrophysics Data System (ADS)

    Gagné, Martin; Therriault, Daniel

    2014-01-01

    Aircraft structures are being redesigned to use fiber-reinforced composites mainly due to their high specific stiffness and strength. One of the main drawbacks from changing from electrically conductive metals to insulating or semi-conducting composites is the higher vulnerability of the aircraft to lightning strike damage. The current protection approach consists of bonding a metal mesh to the surface of the composite structure, but this weight increase negatively impact the fuel efficiency. This review paper presents an overview of the lightning strike problematic, the regulations, the lightning damage to composite, the current protection solutions and other material or technology alternatives. Advanced materials such as polymer-based nanocomposites and carbon nanotube buckypapers are promising candidates for lightweight lightning strike protection technology.

  13. 2016 T Division Lightning Talks

    SciTech Connect

    Ramsey, Marilyn Leann; Adams, Luke Clyde; Ferre, Gregoire Robing; Grantcharov, Vesselin; Iaroshenko, Oleksandr; Krishnapriyan, Aditi; Kurtakoti, Prajvala Kishore; Le Thien, Minh Quan; Lim, Jonathan Ng; Low, Thaddeus Song En; Lystrom, Levi Aaron; Ma, Xiaoyu; Nguyen, Hong T.; Pogue, Sabine Silvia; Orandle, Zoe Ann; Reisner, Andrew Ray; Revard, Benjamin Charles; Roy, Julien; Sandor, Csanad; Slavkova, Kalina Polet; Weichman, Kathleen Joy; Wu, Fei; Yang, Yang

    2016-11-29

    These are the slides for all of the 2016 T Division lightning talks. There are 350 pages worth of slides from different presentations, all of which cover different topics within the theoretical division at Los Alamos National Laboratory (LANL).

  14. Lightning in the Protoplanetary Nebula?

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.

    1997-01-01

    Lightning in the protoplanetary nebula has been proposed as a mechanism for creating meteoritic chondrules: enigmatic mm-sized silicate spheres formed in the nebula by the brief melting of cold precursors.

  15. Lightning protection of wind turbines

    NASA Technical Reports Server (NTRS)

    Dodd, C. W.

    1982-01-01

    Possible damages to wind turbine components due to lightning strikes are discussed and means to prevent the damage are presented. A low resistance path to the ground is noted to be essential for any turbine system, including metal paths on nonmetal blades to conduct the strike. Surge arrestors are necessary to protect against overvoltages both from utility lines in normal operation and against lightning damage to control equipment and contactors in the generator. MOS structures are susceptible to static discharge injury, as are other semiconductor devices, and must be protected by the presence of static protection circuitry. It is recommended that the electronics be analyzed for the circuit transient response to a lightning waveform, to induced and dc current injection, that input/output leads be shielded, everything be grounded, and lightning-resistant components be chosen early in the design phase.

  16. Lightning in the Protoplanetary Nebula?

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.

    1997-01-01

    Lightning in the protoplanetary nebula has been proposed as a mechanism for creating meteoritic chondrules: enigmatic mm-sized silicate spheres formed in the nebula by the brief melting of cold precursors.

  17. Variation of a Lightning NOx Indicator for National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; McCaul, Eugene W., Jr.; Peterson, Harold S.; Vant-Hull, Brian

    2014-01-01

    During the past couple of years, an analysis tool was developed by the NASA Marshall Space Flight Center (MSFC) for the National Climate Assessment (NCA) program. The tool monitors and examines changes in lightning characteristics over the conterminous US (CONUS) on a continual basis. In this study, we have expanded the capability of the tool so that it can compute a new climate assessment variable that is called the Lightning NOx Indicator (LNI). Nitrogen oxides (NOx = NO + NO2) are known to indirectly influence our climate, and lightning NOx is the most important source of NOx in the upper troposphere (particularly in the tropics). The LNI is derived using Lightning Imaging Sensor (LIS) data and is computed by summing up the product of flash area x flash brightness over all flashes that occur in a particular region and period. Therefore, it is suggested that the LNI is a proxy to lightning NOx production. Specifically, larger flash areas are consistent with longer channel length and/or more energetic channels, and hence more NOx production. Brighter flashes are consistent with more energetic channels, and hence more NOx production. The location of the flash within the thundercloud and the optical scattering characteristics of the thundercloud are of course complicating factors. We analyze LIS data for the years 2003-2013 and provide geographical plots of the time-evolution of the LNI in order to determine if there are any significant changes or trends between like seasons, or from year to year.

  18. Inferring Selected Cloud Properties from Satellite Lightning Data

    NASA Technical Reports Server (NTRS)

    Schroeder, Vicki; Baker, M. B.

    1999-01-01

    The recent advent of satellite lightning detection programs has introduced a new potential for obtaining global information about other (hard to measure) cloud properties. We have made use of observations together with numerical model studies to show that positive correlations exist between: (1) lightning flashrate (F) and vertical velocity (w); and (2) flashrate (F) and the amount of condensate (water and ice) lofted through the -10 C isotherm (C(sub u)). The lightning flashrate appears to be very sensitive to the magnitude of the updraft velocity, with F increasing rapidly with w above a threshold of w approx. = 5-10 m/s. By contrast, we have found that the flashrate/condensate relationship appears to be approximately linear. We are currently refining the F-updraft and F-condensate relationships with further model studies before applying them to lightning data from the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS). We hope, with this method, to provide estimates of the large scale vertical water transport by continental convective systems over seasonal timescales.

  19. The geographical distribution of lightning: Forestry and range requirements and interests

    NASA Technical Reports Server (NTRS)

    Vance, D. L.

    1979-01-01

    In an attempt to reduce the response time of the initial attack forces to lightning-caused fire, a lightning detection system that effectively locates accurate directions to lightning discharges to over 200 miles from the detection equipment was developed. The system was first tested in Alaska in 1975. Since that time, further development and operational testing led to the implementation of wide area networks. For the 1979 fire season an eight station network in Alaska is to be implemented that will cover virtually all of the lightning-caused fire areas in the state. In the western United States, an eighteen station network that will cover approximately 85% of eleven states is to be implemented. For the first time, large scale ground discharge lightning distribution information is to be available.

  20. Fatal lightning strikes in Malaysia.

    PubMed

    Murty, O P; Kian, Chong Kah; Ari Husin, Mohammed Husrul; Nanta Kumar, Ranjeev Kumar; Mohammed Yusuf, Wan Yuhana W

    2009-09-01

    Lightning strike is a natural phenomenon with potentially devastating effects and represents one of the important causes of deaths from environmental phenomena. Almost every organ system may be affected as lightning current passes through the human body taking the shortest pathways between the contact points. A 10 years retrospective study (1996-2005) was conducted at University Hospital Kuala Lumpur (20 cases) also including cases during last 3 years from Hospital Tengku Ampuan Rahimah, Klang (7 cases) from the autopsy reports at Forensic Pathology Units of these 2 hospitals. Both these hospitals are attached to University of Malaya. There were 27 fatal cases of lightning strike with male preponderance(92.59%) and male to female ratio of 12.5:1. Majority of victims of lightning strike were from the age group between 30 and 39 years old. Most of the victims were foreign workers. Indonesians workers contributed to 59.26% of overall cases. Majority of them were construction workers who attributed i.e.11 of 27 cases (40.74%). Most of the victims were brought in dead (37.04%). In majority of the cases the lightning incidence occurred in the evenings, with the frequency of 15 of 27 cases (62.5%). The month of December represented with the highest number of cases (5 cases of 23 cases); 2004 had the highest incidence of lightning strike which was 5 (19.23%). Lightning strike incidence occurred when victims had taken shelter (25.9%) under trees or shades. Lightning strike in open areas occurred in 10 of 27 cases (37.0%). Head and neck were the most commonly affected sites with the incidence of 77.78% and 74% respectively in all the victims. Only 29.63% of the cases presented with ear bleeding.

  1. FORTE satellite observations of VHF radiation from lightning discharges

    SciTech Connect

    Junor, William; Suszcynsky, D. M.; Jacobson, A. R.

    2004-01-01

    The Los Alamos National Laboratory/Sandia National Laboratory FORTE satellite is described and its capabilities for global remote sensing of lightning in the radio regime are described. Some results from 7 years of successful operation are presented. A future global lightning monitoring mission, VGLASS, is described. The FORTE satellite program has provided a powerful tool for the observation and understanding of the natural RF background due to thunderstorm activity. Unfortunately, because of hardware failures, the satellite ceased operation in late summer of 2003 after 6 years of very successful operation.

  2. New x-ray observations of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Uman, M. A.; Rassoul, H. K.; Rakov, V. A.; Al Dayeh, M.; Caraway, L.; Rambo, K. J.; Jordan, D. M.; Jerauld, J.; Chrest, A.; Wright, B.; Smyth, C.

    2003-12-01

    We report preliminary results from the x-ray observations of rocket-triggered lightning made in the summer of 2003 at the International Center for Lightning Research and Testing at Camp Blanding, FL. A total of 26 dart leader/return stroke sequences were observed, using eight NaI(Tl)/PMT detectors plus two identical control detectors with no scintillator. The detectors were enclosed in five thick aluminum boxes, designed to keep out RF noise, water and light, and placed between 5 m and 650 m from the lightning channels. X-rays were measured 0 - 100 microseconds just prior to the return strokes in 73 percent of these events, supporting earlier measurements of energetic radiation from triggered lightning. Using bronze collimators and attenuators, the emission was found to be composed of multiple, very brief bursts of x-rays with energies extending up to about 200 keV, with each burst typically lasting less than 1 microsecond. The x-ray emission was also observed to be spatially and temporally associated with the dart leaders, with the brightest bursts coming from the direction of the dart leader when it was within about 50 m of the ground. Finally, for one triggered lightning event, an intense burst of gamma-rays, lasting more than 300 microseconds, with energies up to 10 MeV was observed during the initial continuous current phase, associated with a large current pulse, from a distance of 650 m from the launcher. These x-ray observations suggest that copious numbers of runaway electrons are commonly produced during lightning, implying that the electric fields associated with some phases of lighting may be much stronger than previously thought. These results have important implications for the physics of lightning discharges.

  3. Lightning safety awareness of visitors in three California national parks.

    PubMed

    Weichenthal, Lori; Allen, Jacoby; Davis, Kyle P; Campagne, Danielle; Snowden, Brandy; Hughes, Susan

    2011-09-01

    To assess the level of lightning safety awareness among visitors at 3 national parks in the Sierra Nevada Mountains of California. A 12-question, short answer convenience sample survey was administered to participants 18 years of age and over concerning popular trails and points of interest with known lightning activity. There were 6 identifying questions and 5 knowledge-based questions pertaining to lightning that were scored on a binary value of 0 or 1 for a total of 10 points for the survey instrument. Volunteers in Fresno, California, were used as a control group. Participants were categorized as Sequoia and Kings Canyon National Park (SEKI), frontcountry (FC), or backcountry (BC); Yosemite National Park (YNP) FC or BC; and Fresno. Analysis of variance (ANOVA) was used to test for differences between groups. 467 surveys were included for analysis: 77 in Fresno, 192 in SEKI, and 198 in YNP. National park participants demonstrated greater familiarity with lightning safety than individuals from the metropolitan community (YNP 5.84 and SEKI 5.65 vs Fresno 5.14, P = .0032). There were also differences noted between the BC and FC subgroups (YNP FC 6.07 vs YNP BC 5.62, P = .02; YNP FC 6.07 vs SEKI FC 5.58, P = .02). Overall results showed that participants had certain basic lightning knowledge but lacked familiarity with other key lightning safety recommendations. While there are statistically significant differences in lightning safety awareness between national parks and metropolitan participants, the clinical impact of these findings are debatable. This study provides a starting point for providing educational outreach to visitors in these national parks. Copyright © 2011 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  4. Lightning instrumentation for warning and measurement

    NASA Technical Reports Server (NTRS)

    Wojtasinski, R. J.

    1973-01-01

    A presentation of instrumentation techniques used at Kennedy Space Center for assessing the hazards of lightning, measure lightning currents, induced voltage effects and assess the probability of lightning strikes to launch structures. The electric field and sferics are measured to determine the lightning hazard from the clouds. Measurements are made on launch structures to determine the magnitude of lightning currents and the induced voltages. Photographs are taken to ascertain the location of lightning strikes. Data is analyzed and presented on operations personnel and the Weather Office for assessment of impact on launch critical electromechanical systems and industrial operations.

  5. Packaging Waste and Hitting Home Runs: How Education and Lightning Strike Detection Technology Supports Company and Community Activities

    SciTech Connect

    Deecke, T.A.; Hyde, J.V.; Hylko, J.M.

    2006-07-01

    The weather is the most significant and unmanageable variable when performing environmental remediation activities. This variable can contribute to the failure of a project in two ways: 1) severe injury to an employee or employees following a cloud-to-ground lightning strike without prior visual or audible warnings; and 2) excessive 'down time' associated with mobilization and demobilization activities after a false alarm (e.g., lightning was seen in the distance but was actually moving away from the site). Therefore, in order for a project to be successful from both safety and financial viewpoints, the uncertainties associated with inclement weather, specifically lightning, need to be understood to eliminate the element of surprise. This paper discusses educational information related to the history and research of lightning, how lightning storms develop, types of lightning, the mechanisms of lightning injuries and fatalities, and follow-up medical treatment. Fortunately, lightning storm monitoring does not have to be either costly or elaborate. WESKEM, LLC selected the Boltek StormTracker Lightning Detection System with the Aninoquisi Lightning 2000{sup TM} software. This fixed system, used in combination with online weather web pages, monitors and alarms WESKEM, LLC field personnel in the event of an approaching lightning storm. This application was expanded to justify the purchase of the hand-held Sky Scan Lightning/Storm Detector Model P5 used by the Heath Youth Athletic Association (HYAA) which is a non-profit, charitable organization offering sports programs for the youth and young adults in the local community. Fortunately, a lightning injury or fatality has never occurred on a WESKEM Paducah project or an HYAA-sponsored event. Using these fixed and hand-held systems will continue to prevent such injuries from occurring in the foreseeable future. (authors)

  6. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  7. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOx Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  8. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Astrophysics Data System (ADS)

    Carey, L. D.; Koshak, W. J.; Peterson, H. S.; Matthee, R.; Bain, A. L.

    2013-12-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOX). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOX production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOX production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOX production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOX are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  9. Lightning in superconductors.

    PubMed

    Vestgården, J I; Shantsev, D V; Galperin, Y M; Johansen, T H

    2012-01-01

    Crucially important for application of type-II superconductor films is the stability of the vortex matter--magnetic flux lines penetrating the material. If some vortices get detached from pinning centres, the energy dissipated by their motion will facilitate further depinning, and may trigger a massive electromagnetic breakdown. Up to now, the time-resolved behaviour of these ultra-fast events was essentially unknown. We report numerical simulation results revealing the detailed dynamics during breakdown as within nanoseconds it develops branching structures in the electromagnetic fields and temperature, with striking resemblance of atmospheric lightning. During a dendritic avalanche the superconductor is locally heated above its critical temperature, while electrical fields rise to several kV/m as the front propagates at instant speeds near up to 100 km/s. The numerical approach provides an efficient framework for understanding the ultra-fast coupled non-local dynamics of electromagnetic fields and dissipation in superconductor films.

  10. Lightning and thermal injuries.

    PubMed

    Sanford, Arthur; Gamelli, Richard L

    2014-01-01

    Electrical burns are classified as either high voltage (1000 volts and higher) or low voltage (<1000 volts). The typical injury with a high-voltage electrical contact is one where subcutaneous fat, muscles, and even bones are injured. Lower voltages may have lesser injuries. The electrical current has the potential to injure via three mechanisms: injury caused by current flow, an arc injury as the current passes from source to an object, and a flame injury caused by ignition of material in the local environment. Different tissues also have different resistance to the conduction of electricity. Voltage, current (amperage), type of current (alternating or direct), path of current flow across the body, duration of contact, and individual susceptibility all determine what final injury will occur. Devitalized tissue must be evaluated and debrided. Ocular cataracts may develop over time following electrical injury. Lightning strikes may conduct millions of volts of electricity, yet the effects can range from minimal cutaneous injuries to significant injury comparable to a high-voltage industrial accident. Lightning strikes commonly result in cardiorespiratory arrest, for which CPR is effective when begun promptly. Neurologic complications from electrical and lightning injuries are highly variable and may present early or late (up to 2 years) after the injury. The prognosis for electricity-related neurologic injuries is generally better than for other types of traumatic causes, suggesting a conservative approach with serial neurologic examinations after an initial CT scan to rule out correctable causes. One of the most common complications of electrical injury is a cardiac dysrhythmia. Because of the potential for large volumes of muscle loss and the release of myoglobin, the presence of heme pigments in the urine must be evaluated promptly. Presence of these products of breakdown of myoglobin and hemoglobin puts the injured at risk for acute renal failure and must be

  11. Description and Status of the North Alabama Lightning Mapping Array

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard J.; Christian, Hugh J.; Bailey, Jeffrey C.; Buechler, Dennis E.; Hall, John M.; McCaul, Eugene W.; Stano, Geoffrey T.

    2011-01-01

    The North Alabama Lightning Mapping Array (LMA) is a network LMA detectors that detects and maps lightning using VHF radiation (TV Channel 5) in a region centered about Huntsville, Alabama that includes North Alabama, Central Tennessee and parts of Georgia and Mississippi. The North Alabama LMA has been in operation since late 2001, and has been providing real time data to regional National Weather Service (NSF) Weather Forecast Offices (WFOs) since mid 2003 through the NASA Short-term Prediction Research and Transition (SPoRT) center. Data from this network (as well as other from other LMA systems) are now being used to create proxy Geostationary Lightning Mapper (GLM) data sets for GOES-R risk reduction and algorithm development activities. In addition, since spring 2009 data are provided to the Storm Prediction Center in support of Hazardous Weather Testbed and GOES-R Proving Ground activities during the Spring Program. Description, status and plans will be discussed.

  12. Lightning Detection in a Flash

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In a joint project with NASA's Kennedy Space Center, Global Atmospherics, Inc. (GAI), participated in the upgrade and commercialization of the Lightning Detection and Ranging (LDAR) System. Under a Space Act Agreement, GAI and Kennedy agreed to the joint development of a new LDAR system that meets the needs of both NASA and private industry. The resulting development was a volumetric lightning mapping system. NASA operates a three- dimensional LDAR system capable of determining the exact location and altitude of in-cloud and cloud-to-cloud lightning. Under the Space Act Agreement, GAI contributed its wealth of experience and resources to update and improve the current lightning mapping system used by NASA. Previously, commercial systems were only capable of locating cloud-to-ground lightning. The resulting innovations allowed GAI to position the LDAR system for commercial applications. The upgraded product has the ability to measure in-cloud and cloud-to-cloud lightning. Notable improvements have also been made in the system's location accuracy and signal detection. The new product, known as LDAR II, is targeted for use by utility providers, aviation companies, airports, and commercial space vehicle launch facilities. Presently, forecasting services, research facilities, and a utility company are using the system.

  13. Lightning Imaging via VHF Emission

    NASA Astrophysics Data System (ADS)

    Kawasaki, Z.

    2015-12-01

    Osaka University has been developing interferometric lightning mapping systems for some time, first with narrow band VHF interferometers, and then with broadband digital VHF interferometers (DITF). Recently, a collaboration between New Mexico Tech and Osaka University resulted in the development of the NMT INTF. All of these interferometric lightning mapping systems have added greatly to our understanding of lightning physics. The next generation of digital broadband VHF interferometer is now being developed in Osaka, called the Lightning Imaging via VHF Emission (LIVE) interferometer. LIVE is capable of mapping lightning in real-time with sub-millisecond time resolution, or through post processing with sub-microsecond time resolution. Near-field corrections have been developed, so that sources very close to the array can be located accurately, and so that the baselines can lengthened for improved angular resolution. LIVE is capable of locating lighting over more than a 75 dB range of brightnesses, allowing the system to be extremely sensitive, and the long baselines allow for location uncertainties as low as tens of meters. Presented are observations of lightning recorded in the Kasai area of Japan, as well as the Pengerang region of Malaysia showing the capabilities of the LIVE interferometer.

  14. [PFBC Hot Gas Cleanup Test Program

    SciTech Connect

    Not Available

    1992-10-01

    Four hundred and fifty four clay bonded silicon carbide Schumacher Dia Schumalith candle filters were purchased for installation in the Westinghouse Advanced Particle Filtration (APF) system at the American Electric Power (AEP) plant in Brilliant, Ohio. A surveillance effort has been identified which will monitor candle filter performance and life during hot gas cleaning in AEP's pressurized fluidized-bed combustion system. A description of the candle surveillance program, strategy for candle filter location selection, as well as candle filter post-test characterization is provided in this memo. The period of effort for candle filter surveillance monitoring is planned through March 1994.

  15. Evaluation of lightning accommodation systems for wind-driven turbine rotors

    SciTech Connect

    Bankaitis, H

    1982-03-01

    Several concepts of lightning accommodation systems for wind-driven turbine rotor blades were evaluated by submitting them to simulated lightning tests. Test samples representative of epoxy-fiberglass and wood-epoxy composite structural materials were submitted to a series of high-voltage and high-current damage tests. The high-voltage tests were designed to determine the strike points and current paths through the sample and the need for, and the most proper type of, lightning accommodation. The high-current damage tests were designed to determine the capability of the potential lightning accommodation system to sustain the 200-kA lightning current without causing damage to the composite structure. The observations and data obtained in the series of tests of lightning accommodation systems clearly led to the conclusions that composite-structural-material rotor blades require a lightning accommodation system; that the concepts tested prevent internal streamering; and that keeping discharge currents on the blade surface precludes structure penetration. Induced voltage effects or any secondary effects on the integral components of the total system could not be addressed. Further studies should be carried out to encompass effects on the total system design.

  16. Experiments of artificially triggered lightning and its application in Conghua, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Yang, Shaojie; Lu, Weitao; Zheng, Dong; Dong, Wansheng; Li, Bin; Chen, Shaodong; Zhang, Yang; Chen, Luwen

    2014-01-01

    The Guangdong Comprehensive Observation Experiment on Lightning Discharge (GCOELD) was conducted from 2006 to 2011 in Conghua, Guangdong, China. In GCOELD, the acoustical, optical, electrical and magnetic signals of triggered lightning and natural lightning were measured. For the triggered lightning, the peak current of the return strokes (RSs) ranged from 6.67 to 31.93 kA. The transferred charge within 1 ms after the beginning of the RS ranged from 0.44 to 4.16 C. The peak currents showed different-function correlations with average rate of rise between 10 and 90%, maximum rate of rise, charge transfer and action integral. The 2D propagation speed of the upward positive leader for the triggered lightning was of the order of 104-105 m s- 1. The speed of the downward negative leader involved in altitude-triggered lightning was approximately 105 m s- 1. The characteristics of induced voltages produced by triggered lightning on a power line and signal line of an automatic weather station were measured and analyzed. The maximum induced voltage generated by the RS on the overhead power line (1200 m in length and 2 m above the ground) exceeded 10 kV. The maximum induced voltage on a vertical 10-m signal line was 3.10 kV. The triggered-lightning technique was also used to test the detection efficiency and location precision of the lightning location system (LLS) in Guangdong. It was explored that the Guangdong LLS yielded detection efficiency and location error of 92% and 760 m, respectively, for triggered flashes. For RSs of the triggered lightning, the peak currents given by the LLS deviated from those measured at the base of the lightning channel by 16% on average.

  17. Pressure vessel burst test program. II

    NASA Technical Reports Server (NTRS)

    Cain, Maurice R.; Sharp, Douglas E.; Coleman, Michael D.

    1991-01-01

    The current status is disucssed of a program to study the characteristics of blast waves and fragmentation generated by ruptured gas-filled pressure vessels. Current methods for assessing vessel safety and burst parameters are briefly reviewed, and pneumatic burst testing operations and testing results are examined. A comparison is made with current methods for burst assessment. It is tentatively concluded that, at close distances, vessel burst overpressures are less than those of high-explosive (HE) blasts with equivalent energy and are greater than HE far from the vessel. The impulse appears to be the same for both vessel bursts and equivalent energy HE blasts. The functional relationship between shock velocity and overpressure ratio appears to be the same for vessel bursts as for HE blasts. The initial shock overpressure appears to be much less than vessel pressure and may be found using the one-dimensional shock tube equation.

  18. Coal Ash Corrosion Resistant Materials Testing Program

    SciTech Connect

    McDonald, D K

    2003-04-22

    The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles' Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

  19. The North Alabama Lightning Warning Product

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis E.; Blakeslee, R. J.; Stano, G. T.

    2009-01-01

    The North Alabama Lightning Mapping Array NALMA has been collecting total lightning data on storms in the Tennessee Valley region since 2001. Forecasters from nearby National Weather Service (NWS) offices have been ingesting this data for display with other AWIPS products. The current lightning product used by the offices is the lightning source density plot. The new product provides a probabalistic, short-term, graphical forecast of the probability of lightning activity occurring at 5 min intervals over the next 30 minutes . One of the uses of the current lightning source density product by the Huntsville National Weather Service Office is to identify areas of potential for cloud-to-ground flashes based on where LMA total lightning is occurring. This product quantifies that observation. The Lightning Warning Product is derived from total lightning observations from the Washington, D.C. (DCLMA) and North Alabama Lightning Mapping Arrays and cloud-to-ground lightning flashes detected by the National Lightning Detection Network (NLDN). Probability predictions are provided for both intracloud and cloud-to-ground flashes. The gridded product can be displayed on AWIPS workstations in a manner similar to that of the lightning source density product.

  20. Department of Defense Space Test Program

    NASA Astrophysics Data System (ADS)

    Sims, Eleni M.; Zdenek, Jeffery S.

    2000-11-01

    During the 1960's, as the importance of the space environment was recognized, it became apparent that space systems technologies needed to be developed at a rapid rate. The Department of Defense (DoD) realized that before developing and deploying space systems for operational use, the needed to be tested in space. At that time no organization of funds were readily available to provide timely spaceflight for military space systems. As a result, the DoD Space Test Program (STP) was created in 1966 by a memorandum from the Director of Defense Research and Engineering (DDR&E). The purpose of this program was to provide flight opportunities for all DoD research and development activities in an economic and efficient manner. For a payload to be flown by STP it must first be sponsored by a DoD organization. The payload is then briefed through a series of service review boards until it reaches the DoD level. The DoD Space Experiment Review Board (SERB) makes the final selections and gives STP a ranked list of payloads to attempt to fly. This process happens annually, and STP flies as many payloads as funding and opportunity allow.

  1. A Lightning Channel Retrieval Algorithm for the North Alabama Lightning Mapping Array (LMA)

    NASA Technical Reports Server (NTRS)

    Koshak, William; Arnold, James E. (Technical Monitor)

    2002-01-01

    A new multi-station VHF time-of-arrival (TOA) antenna network is, at the time of this writing, coming on-line in Northern Alabama. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The network will support on-going ground validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. It will also provide for many interesting and detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and will offer many interesting comparisons with other meteorological/geophysical wets associated with lightning and thunderstorms. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. In this study, a new revised channel mapping retrieval algorithm is introduced. The algorithm is an extension of earlier work provided in Koshak and Solakiewicz (1996) in the analysis of the NASA Kennedy Space Center (KSC) Lightning Detection and Ranging (LDAR) system. As in the 1996 study, direct algebraic solutions are obtained by inverting a simple linear system of equations, thereby making computer searches through a multi-dimensional parameter domain of a Chi-Squared function unnecessary. However, the new algorithm is developed completely in spherical Earth-centered coordinates (longitude, latitude, altitude), rather than in the (x, y, z) cartesian coordinates employed in the 1996 study. Hence, no mathematical transformations from (x, y, z) into spherical coordinates are required (such transformations involve more numerical error propagation, more computer program coding, and slightly more CPU computing time). The new algorithm also has a more realistic

  2. The Ethics of Test Preparation at Intensive English Language Programs.

    ERIC Educational Resources Information Center

    Palmer, Ian C.

    It is concluded from a review of the literature and consideration of the type and objectives of tests and programs in English as a second language that, just as limiting an instructional program to what is to be tested in standardized tests would be inappropriate, so would constructing such a program without regard for what was to be tested. It is…

  3. Expert System for Test Program Set Fault Candidate Selection

    DTIC Science & Technology

    1989-09-01

    This report describes an application of expert system technology to test program set (TPS) verification and validation. The goals of this project are...Keywords: Expert system , Artificial intelligence, Automatic test equipment (ATE), Test program set (TPS), Automatic test program generation (ATPG), Fault inspection, Verification and validation, TPS acceptance tool.

  4. The Ethics of Test Preparation at Intensive English Language Programs.

    ERIC Educational Resources Information Center

    Palmer, Ian C.

    It is concluded from a review of the literature and consideration of the type and objectives of tests and programs in English as a second language that, just as limiting an instructional program to what is to be tested in standardized tests would be inappropriate, so would constructing such a program without regard for what was to be tested. It is…

  5. Estimation of input energy in rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Jayakumar, Vinod; Rakov, Vladimir A.; Miki, Megumu; Uman, Martin A.; Schnetzer, George H.; Rambo, Keith J.

    2006-03-01

    Electric fields in the immediate vicinity (within 0.1 to 1.6 m) of the triggered-lightning channel were measured with Pockels sensors at the International Center for Lightning Research and Testing at Camp Blanding, Florida. These fields and the associated currents measured at the base of a 2-m strike object were used to compute the input power and energy, each per unit channel length and as a function of time, associated with return strokes in rocket-triggered lightning. In doing so, we assumed that the vertical component of the electric field at horizontal distances of 0.1 to 1.6 m from the lightning attachment point is not much different from the longitudinal electric field inside the channel (Borovsky, 1995). The estimated mean input energy over the first 50 μs or so is between 103 and 104 J/m, consistent with predictions of gas dynamic models, but one to two orders of magnitude smaller than Krider et al.'s (1968) estimate for a natural-lightning first stroke, based on the conversion of measured optical energy to total energy using energy ratios observed in laboratory long-spark experiments. The mean channel radius and resistance per unit channel length at the instance of peak power are estimated to be 0.32 cm and 7.5 Ω/m, respectively.

  6. Magnetic Anomaly Caused By Lightning On Archaeological Sites

    NASA Astrophysics Data System (ADS)

    Verrier, V.; Mathe, P. E.; Rochette, P.; Jones, G.

    Recent developments in archeological surveying have seen the emergence of mag- netic methods, commonly involving near surface measurements of low field magnetic susceptibility. However, these technics remain inefficient to detect either deep buried features or material which susceptibility constrast with the enclosing material is too low. An alternate way to assess site location and archeological features in these cases is provided by the mapping of total magnetic field or field gradient anomalies, due to the induced or remanent magnetizations of the material. REFERENCES : Verrier, V., Rochette, P., Richard, P. and Lojou, J.Y., Paleomagnetic expertise of ground lightning impacts, in 25th Int. Conf. Lightning Protection, Rhodos, p. 166-169, 2000. When remanence dominate, the archeological signal may be complicated by the su- perimposition of an anomaly due to lightning. Locally, the electric discharge generates a strong pulse of magnetic field. The materials around an impact acquired a lightning induced remanent magnetization (LIRM) which endures as long as the materials are not removed. In order to characterize the LIRM signature, some studies were realised on struck sites where the impact point is known. In each case, the LIRM hypothesis was tested on discrete samples collected around the impact, on which the lightning magnetic field intensity was determined (Verrier, 2000). The typical LIRM anomaly was also mapped with the G-858 MagMapper. It consists in a relatively strong dipole associated with maxima that are usually not aligned SN, clearly distinguishable from the archeological signature.

  7. Lightning NOx and Impacts on Air Quality

    NASA Technical Reports Server (NTRS)

    Murray, Lee T.

    2016-01-01

    Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.

  8. Measuring Method for Lightning Channel Temperature

    PubMed Central

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-01-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5–50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases. PMID:27665937

  9. Measuring Method for Lightning Channel Temperature.

    PubMed

    Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R

    2016-09-26

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  10. Lightning NOx and Impacts on Air Quality

    NASA Technical Reports Server (NTRS)

    Murray, Lee T.

    2016-01-01

    Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.

  11. ScienceCast 88: Dark Lightning

    NASA Image and Video Library

    2013-01-07

    Researchers studying thunderstorms have made a surprising discovery: The lightning we see with our eyes has a dark competitor that discharges storm clouds and flings antimatter into space. Scientists are scrambling to understand "dark lightning."

  12. 49 CFR 176.120 - Lightning protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Stowage § 176.120 Lightning protection. A lightning...

  13. Comparison between model predictions and observations of ELF radio atmospherics generated by rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Dupree, N. A.; Moore, R. C.

    2011-12-01

    Model predictions of the ELF radio atmospheric generated by rocket-triggered lightning are compared with observations performed at Arrival Heights, Antarctica. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. ELF observations performed at Arrival Heights, Antarctica during rocket-triggered lightning experiments at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida are presented. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with LWPC to predict the sferic waveform observed at Arrival Heights under various ionospheric conditions. This paper critically compares observations with model predictions.

  14. ELF Sferics Produced by Rocket-Triggered Lightning and Observed at Great Distances

    NASA Astrophysics Data System (ADS)

    Dupree, N. A.; Moore, R. C.; Fraser-Smith, A. C.

    2013-12-01

    Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics as a function of return stroke. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica, although this work focuses on observations performed in Greenland. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the sferic waveform observed at the receiver locations under various ionospheric conditions. LWPC was developed by the Naval Ocean Systems Center over a period of many years. It is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. This paper critically compares observations with model predictions, and in particular analyzes Earth-ionosphere waveguide excitation as a function of return stroke. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning.

  15. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis

    2004-01-01

    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  16. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis

    2004-01-01

    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  17. Infrasonic Observations from Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.

    2009-12-01

    We measured acoustic signals during both triggered and natural lightning. A comparative analysis of simultaneous data from the Lightning Mapping Array (LMA), acoustic measurements and digital high-speed photography operating in the same area was made. Acoustic emissions, providing quantitative estimates of acoustic power and spectral content, will complement coincident investigations, such as X-ray emissions. Most cloud-to-ground lightning flashes lower negative charge to ground, but flashes that lower positive charge to ground are often unusually destructive and are less understood. The New Mexico Tech Lightning Mapping Array (LMA) locates the sources of impulsive RF radiation produced by lightning flashes in three spatial dimensions and time, operating in the 60 - 66 MHz television band. However, positive breakdown is rarely detected by the LMA and positive leader channels are outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped (or partially mapped because they may have recoil events). Acoustic and electric field instruments are a good complement to the LMA, since they can detect both negative and positive leaders. An array of five stations was deployed during the Summer of 2009 (July 20 to August 13) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered lightning. The stations were located at close (57 m), medium (303 and 537 m) and far (1403 and 2556 m) distances surrounding the triggering site. Each station consisted of five sensors, one infrasonic and one in the audio range at the center, and three infrasonic in a triangular configuration. This research will provide a more complete picture, and provide further insight into the nature of lightning.

  18. The GOES-R GeoStationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning

  19. Lightning Mapper Sensor Lens Assembly S.O. 5459: Project Management Plan

    NASA Technical Reports Server (NTRS)

    Zeidler, Janet

    1999-01-01

    Kaiser Electro-Optics, Inc. (KEO) has developed this Project Management Plan for the Lightning Mapper Sensor (LMS) program. KEO has integrated a team of experts in a structured program management organization to meet the needs of the LMS program. The project plan discusses KEO's approach to critical program elements including Program Management, Quality Assurance, Configuration Management, and Schedule.

  20. The Intracloud to Cloud-to-Ground Lightning Ratio Associated with Extreme Weather Over the Contiguous United States

    NASA Technical Reports Server (NTRS)

    Crey, Lawrence D.; Petersen, Walter A.; Christian, Hugh J., Jr.

    2009-01-01

    This poster reviews the program to estimate the intracloud (IC) to cloud-to-ground (CG) ratio (Z = IC/CG) of a large sample of extreme (i.e., severe) weather events over the contiguous United States (CONUS) using coincident Optical Transient Detector (OTD) [or Lightning Image Sensor (LIS)] and National Lightning Detection Network (NLDN) observations

  1. Properties of Lightning Strike Protection Coatings

    NASA Astrophysics Data System (ADS)

    Gagne, Martin

    Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity

  2. The effects of lightning and high altitude electromagnetic pulse on power distribution lines

    SciTech Connect

    Uman, M.A.; Rubinstein, M.; Yacoub, Z.

    1995-01-01

    We simultaneously recorded the voltages induced by lightning on both ends of an unenergized 448-meter long unenergized electric power line and the lightning vertical electric and horizontal magnetic fields at ground level near the line. The lightning data studied and presented here were due both to cloud lightning and to very close (about 20 m from the line) artificially initiated lightning. For cloud sources, a frequency-domain computer program called EMPLIN was used to calculate induced line voltages as a function of source elevation, angle of incidence, and wave polarization of the radiated cloud discharge pulses in order to compare with the measurements. For very-close lightning, the measured line voltages could be grouped into two categories, those in which multiple, similarly shaped, evenly spaced pulses were observed, which we call oscillatory, and those dominated by a principal pulse with subsidiary oscillations of much smaller amplitude, which we call impulsive. The amplitude of the induced voltage ranged from tens of kilovolts for oscillatory voltages to hundreds of kilovolts for impulsive voltages. A new technique is derived for the calculation of the electromagnetic fields from nearby lightning to ground above an imperfectly conducting ground. This technique was used in conjunction with an existing time domain coupling theory and lightning return stroke model to calculate voltages at either end of the line. The results show fair agreement with the measured oscillatory voltage waveforms if corona is ignored and improved results when corona effects are modeled. The modeling of the impulsive voltage, for which local flashover probably successful. In an attempt to understand better the sources of the line voltages for very close lightning, measurements of the horizontal and vertical electric fields 30 m from triggered lightning were obtained.

  3. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence

    SciTech Connect

    Uman, M A; Rakov, V A; Elisme, J O; Jordan, D M; Biagi, C J; Hill, J D

    2008-10-01

    The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we give sets of constants for these expressions so that they yield approximately the median and extreme negative lightning parameters presented in this report. Expressions for the median negative lightning waveforms are plotted. Finally, we provide information on direct-strike lightning damage to metals such as stainless steel, which could be used as components of storage containers for nuclear waste materials; and we describe UF's new experimental research program to add to the sparse data base on the properties of positive lightning. Our literature survey, referred to above, is included in four Appendices. The following four sections (II, III, IV, and V) of this final report deal with related aspects of the research: Section II. Recommended Direct-Strike Median and Extreme Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and Appendix 4. Lightning Damage to Metal Surfaces.

  4. Direct Measurements of NOx Produced by Lightning

    NASA Astrophysics Data System (ADS)

    Rahman, M.; Cooray, V.; Rakov, V. A.; Uman, M. A.; Liyanage, P.; Decarlo, B. A.; Jerauld, J.; Olsen, R. C.

    2006-12-01

    We present the first direct measurements of NOx generated by lightning. In July 2005, three negative lightning flashes were triggered using the rocket-and-wire technique at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida. The NOx produced by these three rocket- triggered flashes was measured, using the chemiluminescence method, by isolating a 3-cm long section of the lightning channel within a discharge chamber whose volume was 0.77 m3. We measured NOx individually for the first flash, which was triggered on July 15, and cumulatively for the other two flashes, which were triggered within about eleven minutes of each other on July 31. The July 15 flash contained only an initial- stage current and no return strokes. Each of the July 31 flashes contained an initial-stage current and either one or two return strokes. The initial-stage current in each case had a duration in the range from 260 to 360 ms, and one return stroke in each July 31 flash was followed by a continuing current whose duration was greater than 40 ms. The NOx production by the July 15 flash without return strokes (total charge transfer of 77 C) was 2.0×10^{22} molecules per meter of lightning channel, and that by the two July 31 flashes with return strokes (total charge transfer of 108 C) was 2.4×10^{22} molecules per meter. The NOx production per unit charge for these two measurements was similar: 2.6×1020 and 2.2×1020 molecules per meter per coulomb. It appears that the NOx production is primarily from long-duration, steady currents, as opposed to microsecond-scale impulsive return stroke currents. This observation implies that cloud discharges, which transfer, on average, larger charges than ground discharges, but do not contain return strokes (although they do contain typically shorter and presumably smaller amplitude microsecond-scale pulses) may be as effective as (or more effective than) cloud-to-ground discharges in producing NOx in the

  5. Analysis of direct and nearby lightning strike data for aircraft

    NASA Technical Reports Server (NTRS)

    Giri, D. V.; Noss, R. S.; Phuoc, D. B.; Tesche, F. M.

    1983-01-01

    A method for interpreting direct strike and nearby strike lightning data on aircraft is discussed. The theoretical basis for the interpretation involves a transmission line model for the aircraft, and is discussed. Results of applying this model to the F-106 aircraft are presented and in the natural resonances are computed for several different electrical representations of the aircraft. The signal processing techniques useful for extracting pole (resonance) information from experimental data are discussed, and the use of these techniques on the measured lightning data is illustrated. Finally, the results of a related ground-based lightning experiment are discussed and data are presented. The purpose of this test was to gain additional understanding of the resonance properties of the F-106 aircraft.

  6. Measurements of lightning rod responses to nearby strikes

    NASA Astrophysics Data System (ADS)

    Moore, C. B.; Aulich, G. D.; Rison, W.

    2000-05-01

    Following Benjamin Franklin's invention of the lightning rod, based on his discovery that electrified objects could be discharged by approaching them with a metal needle in hand, conventional lightning rods in the U.S. have had sharp tips. In recent years, the role of the sharp tip in causing a lightning rod to act as a strike receptor has been questioned leading to experiments in which pairs of various sharp-tipped and blunt rods have been exposed beneath thunderclouds to determine the better strike receptor. After seven years of tests, none of the sharp Franklin rods or of the so-called “early streamer emitters” has been struck, but 12 blunt rods with tip diameters ranging from 12.7 mm to 25.4 mm have taken strikes. Our field experiments and our analyses indicate that the strike-reception probabilities of Franklin's rods are greatly increased when their tips are made moderately blunt.

  7. Optical Emissions Associated with Stepping Lightning Leaders in Cloud-to-Ground Lightning Flashes

    NASA Astrophysics Data System (ADS)

    Xu, W.; Celestin, S. J.; Pasko, V. P.

    2014-12-01

    Intense and brief bursts of X-ray emissions have been detected from the ground during natural cloud-to-ground (CG) [Moore et al., GRL, 28, 2141-2144, 2001] and rocket-triggered lightning flashes [Dwyer et al., Science, 299, 694-697, 2003]. The measurements at the International Center for Lightning Research and Testing (ICLRT) have further revealed that discrete and intense bursts of X-rays were closely correlated with the formation of leader steps during CGs [Dwyer et al., GRL, 32, L01803, 2005]. The mechanism of relativistic runaway electron avalanches (RREAs) in large-scale thunderstorm electric fields has been ruled out for this energetic phenomenon as it is not capable of explaining the observed energy spectra [Dwyer, GRL, 31, L12102, 2004]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically how the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders could instead be responsible for these X-ray bursts during negative CGs, and for terrestrial gamma-ray flashes (TGFs) [Fishman et al., Science, 264, 1313-1316, 1994] during intra-cloud lightning flashes (IC). In addition to intense X-ray emissions, Stolzenburg et al. [JGR, 118, 2918-2937, 2013] have suggested that the impulsive breakdown associated with initial leaders during the initial breakdown (IB) stages of CGs and ICs can generate considerable amount of visible light. The purpose of the present work is to quantify the optical emissions resulting from the excitation of air molecules produced during the acceleration process of thermal runaway electrons in the highly inhomogeneous electric field produced around lightning leader tip region in negative CGs. For this purpose, a full energy range Monte Carlo model combined with an optical emission model is employed to simulate, from first principles, the dynamics of electrons in the energy range from sub-eV to GeV and the subsequent generation of

  8. Optical Emissions Associated with Stepping Lightning Leaders in Cloud-to-Ground Lightning Flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Intense and brief bursts of X-ray emissions have been detected from the ground during natural cloud-to-ground (CG) [Moore et al., GRL, 28, 2141-2144, 2001] and rocket-triggered lightning flashes [Dwyer et al., Science, 299, 694-697, 2003]. The measurements at the International Center for Lightning Research and Testing (ICLRT) have further revealed that discrete and intense bursts of X-rays were closely correlated with the formation of leader steps during CGs [Dwyer et al., GRL, 32, L01803, 2005]. The mechanism of relativistic runaway electron avalanches (RREAs) in large-scale thunderstorm electric fields has been ruled out for this energetic phenomenon as it is not capable of explaining the observed energy spectra [Dwyer, GRL, 31, L12102, 2004]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically how the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders could instead be responsible for these X-ray bursts during negative CGs, and for terrestrial gamma-ray flashes (TGFs) [Fishman et al., Science, 264, 1313-1316, 1994] during intra-cloud lightning flashes (IC). In addition to intense X-ray emissions, Stolzenburg et al. [JGR, 118, 2918-2937, 2013] have suggested that the impulsive breakdown associated with initial leaders during the initial breakdown (IB) stages of CGs and ICs can generate considerable amount of visible light. The purpose of the present work is to quantify the optical emissions resulting from the excitation of air molecules produced during the acceleration process of thermal runaway electrons in the highly inhomogeneous electric field produced around lightning leader tip region in negative CGs. For this purpose, a full energy range Monte Carlo model combined with an optical emission model is employed to simulate, from first principles, the dynamics of electrons in the energy range from sub-eV to GeV and the subsequent generation of

  9. Microcomputer Network for Computerized Adaptive Testing (CAT): Program Listing.

    ERIC Educational Resources Information Center

    Quan, Baldwin; And Others

    This program listing is a supplement to the Microcomputer Network for Computerized Adaptive Testing (CAT). The driver textfile program allows access to major subprograms of the CAT project. The test administration textfile program gives examinees a prescribed set of subtests. The parameter management textfile program establishes a file containing…

  10. Microcomputer Network for Computerized Adaptive Testing (CAT): Program Listing.

    ERIC Educational Resources Information Center

    Quan, Baldwin; And Others

    This program listing is a supplement to the Microcomputer Network for Computerized Adaptive Testing (CAT). The driver textfile program allows access to major subprograms of the CAT project. The test administration textfile program gives examinees a prescribed set of subtests. The parameter management textfile program establishes a file containing…

  11. 49 CFR 176.120 - Lightning protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Lightning protection. 176.120 Section 176.120 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 1 (Explosive) Materials Stowage § 176.120 Lightning protection. A lightning...

  12. 49 CFR 176.120 - Lightning protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Lightning protection. 176.120 Section 176.120 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 1 (Explosive) Materials Stowage § 176.120 Lightning protection. A lightning...

  13. 49 CFR 176.120 - Lightning protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Lightning protection. 176.120 Section 176.120 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 1 (Explosive) Materials Stowage § 176.120 Lightning protection. A lightning...

  14. 49 CFR 176.120 - Lightning protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Lightning protection. 176.120 Section 176.120 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 1 (Explosive) Materials Stowage § 176.120 Lightning protection. A lightning...

  15. Lightning activity and aerosols over the Mediterranean

    NASA Astrophysics Data System (ADS)

    Proestakis, Emmanouil; Kazadzis, Stelios; Kotroni, Vassiliki; Lagouvardos, Kostas; Kazantzidis, Andreas

    2015-04-01

    Lightning activity has received extended scientific attention over the past decades. Several international studies on lightning activity and initiation mechanisms have related the increased aerosol concentrations to lightning enhancement. In the frame of TALOS project, we investigated the effect of aerosols on lightning activity over the Mediterranean Sea. Cloud to ground lightning activity data from ZEUS lightning detection network operated and maintained by the National Observatory of Athens, were used along with atmospheric optical depth (AOD) data retrieved by MODIS, on board Aqua satellite. The analysis covers a period of nine years, spanning from 2005 up to 2013. The results show the importance of aerosols in lightning initiation and enhancement. It is shown that the mean AOD of the days with lightning activity per season is larger than the mean seasonal AOD in 90% of the under study domain. Furthermore, lightning activity increase with increasing aerosol loading was found to be more pronounced during summertime and for atmospheric optical depth values up to 0.4. Additionally, during summertime, the spatial analysis showed that the percentage of days with lightning activity is increasing with increasing aerosol loading. Finally, time series for the period 2005-2013 of the days with lightning activity and AOD differences showed similar temporal behavior. Overall, both the spatial and temporal analysis showed that lightning activity is correlated to aerosol loading and that this characteristic is consistent for all seasons.

  16. Detection of VHF lightning from GPS orbit

    SciTech Connect

    Suszcynsky, D. M.

    2003-01-01

    Satellite-based VHF' lightning detection is characterized at GPS orbit by using a VHF receiver system recently launched on the GPS SVN 54 satellite. Collected lightning triggers consist of Narrow Bipolar Events (80%) and strong negative return strokes (20%). The results are used to evaluate the performance of a future GPS-satellite-based VHF global lightning monitor.

  17. Lightning Protection for Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Olson, G. O.

    1985-01-01

    Lightning protection system consisting of two layers of aluminum foil separated by layer of dielectric material protects graphite/epoxy composite structures on aircraft. Protective layer is secondarily applied lightning protection system, prime advantage of which is nullification of thermal and right angle effect of lightning arc attachment to graphite/epoxy laminate.

  18. Experimental generation of volcanic lightning

    NASA Astrophysics Data System (ADS)

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel; Kueppers, Ulrich; Scheu, Bettina; Dingwell, Donald B.

    2014-05-01

    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity. Direct measurement of the electric potential at the crater, where the electric activity in the volcanic plume is first observed, is severely impeded, limiting progress in its investigation. We have achieved volcanic lightning in the laboratory during rapid decompression experiments of gas-particle mixtures under controlled conditions. Upon decompression (from ~100 bar argon pressure to atmospheric pressure), loose particles are vertically accelerated and ejected through a nozzle of 2.8 cm diameter into a large tank filled with air at atmospheric conditions. Because of their impulsive character, our experiments most closely represent the conditions encountered in the gas-thrust region of the plume, when ash is first ejected from the crater. We used sieved natural ash with different grain sizes from Popocatépetl (Mexico), Eyjafjallajökull (Iceland), and Soufrière Hills (Montserrat) volcanoes, as well as micrometric glass beads to constrain the influence of material properties on lightning. We monitored the dynamics of the particle-laden jets with a high-speed camera and the pressure and electric potential at the nozzle using a pressure transducer and two copper ring antennas connected to a high-impedance data acquisition system, respectively. We find that lightning is controlled by the dynamics of the particle-laden jet and by the abundance of fine particles. Two main conditions are required to generate lightning: 1) self-electrification of the particles and 2) clustering of the particles driven by the jet fluid dynamics. The relative movement of clusters of charged particles within the plume generates the gradient in electrical potential, which is necessary for lightning. In this manner it is the gas-particle dynamics together with the evolving particle-density distribution within different regions of

  19. Human Machine Interface Programming and Testing

    NASA Technical Reports Server (NTRS)

    Foster, Thomas Garrison

    2013-01-01

    Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.

  20. Parameters of triggered-lightning flashes in Florida and Alabama

    SciTech Connect

    Fisher, R.J.; Schnetzer, G.H.; Thottappillil, R.; Rakov, V.A.; Uman, M.A.; Goldberg, J.D.

    1993-12-20

    Channel base currents from triggered lightning were measured at the NASA Kennedy Space Center, Florida, during summer 1990 and at Fort McClellan, Alabama, during summer 1991. Additionally, 16-mm cinematic records with 3- or 5-ms resolution were obtained for all flashes, and streak camera records were obtained for three of the Florida flashes. The 17 flashes analyzed contained 69 strokes, all lowering negative charge from cloud to ground. Statistics on interstroke interval, no-current interstroke interval, total stroke duration, total stroke charge, total stroke action integral ({integral}i{sup 2}dt), return stroke current wave front characteristics, time to half peak value, and return stroke peak current are presented. Return stroke current pulses, characterized by rise times of the order of a few microseconds or less and peak values in the range of 4 to 38 kA, were found not to occur until after any preceding current at the bottom of the lightning channel fell below the noise level of less than 2 A. A relatively strong positive correlation was found between return stroke current average rate of rise and current peak. There was essentially no correlation between return stroke current peak and 10-90% rise time or between return stroke peak and the width of the current waveform at half of its peak value. Parameters of the lightning flashes triggered in Florida and Alabama are similar to each other but are different from those of triggered lightning recorded in New Mexico during the 1981 Thunderstorm Research International Program. Continuing currents that follow return stroke current peaks and last for more than 10 ms exhibit a variety of wave shapes that the authors have subdivided into four categories. All such continuing currents appear to start with a current pulse presumably associated with an M component. A brief summary of lightning parameters important for lightning protection, is presented in an appendix. 43 refs., 11 figs., 5 tabs.

  1. A Model-Based Process for Translating Test Programs.

    DTIC Science & Technology

    1996-09-13

    first language , converting the extracted test strategy into an asymmetric dependency model, converting the dependency model into a model based test strategy, extracting code segments from the existing test program, translating the extracted code segments into the second language, and merging the model based test strategy and the translated code segments into a new test program in the second

  2. Tropic lightning: myth or menace?

    PubMed

    McCarthy, John

    2014-11-01

    Lightning is one of the leading causes of death related to environmental disaster. Of all lightning fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai'i has had zero documented lightning fatalities since weather data tracking was initiated in 1959. There is a common misconception that lightning does not strike the ground in Hawai'i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. Lightning damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on "reverse triage" and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications.

  3. Modern Protection Against Lightning Strikes

    NASA Astrophysics Data System (ADS)

    Moore, C.

    2005-05-01

    The application of science to provide protection against lightning strikes began around 1750 when Benjamin Franklin who invented the lightning rod in an effort to discharge thunderclouds. Instead of preventing lightning as he expected, his rods have been quite successful as strike receptors, intercepting cloud-to ground discharges and conducting them to Earth without damage to the structures on which they are mounted. In the years since Franklin's invention there has been little attention paid to the rod configuration that best serves as a strike receptor but Franklin's original ideas continue to be rediscovered and promoted. Recent measurements of the responses of variously configured rods to nearby strikes indicate that sharp-tipped rods are not the optimum configuration to serve as strike receptors since the ionization of the air around their tips limits the strength of the local electric fields created by an approaching lightning leader. In these experiments, fourteen blunt-tipped rods exposed in strike-reception competitions with nearby sharp-tipped rods were struck by lightning but none of the sharp-tipped rods were struck.

  4. Tropic Lightning: Myth or Menace?

    PubMed Central

    2014-01-01

    Lightning is one of the leading causes of death related to environmental disaster. Of all lightning fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai‘i has had zero documented lightning fatalities since weather data tracking was initiated in 1959. There is a common misconception that lightning does not strike the ground in Hawai‘i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. Lightning damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on “reverse triage” and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications. PMID:25478304

  5. Positive lightning and severe weather

    NASA Astrophysics Data System (ADS)

    Price, C.; Murphy, B.

    2003-04-01

    In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive lightning occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.

  6. Spacecraft Testing Programs: Adding Value to the Systems Engineering Process

    NASA Technical Reports Server (NTRS)

    Britton, Keith J.; Schaible, Dawn M.

    2011-01-01

    Testing has long been recognized as a critical component of spacecraft development activities - yet many major systems failures may have been prevented with more rigorous testing programs. The question is why is more testing not being conducted? Given unlimited resources, more testing would likely be included in a spacecraft development program. Striking the right balance between too much testing and not enough has been a long-term challenge for many industries. The objective of this paper is to discuss some of the barriers, enablers, and best practices for developing and sustaining a strong test program and testing team. This paper will also explore the testing decision factors used by managers; the varying attitudes toward testing; methods to develop strong test engineers; and the influence of behavior, culture and processes on testing programs. KEY WORDS: Risk, Integration and Test, Validation, Verification, Test Program Development

  7. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.

    2016-12-01

    Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) and its Optical Transient Detector (OTD) predecessor that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) spanning a period from May 1995 through April 2015. As an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense (DoD) Space Test Program-Houston 5 (STP-H5) mission. The STP-H5 payload containing LIS is scheduled launch from NASA's Kennedy Space Center to the ISS in November 2016, aboard the SpaceX Cargo Resupply Services-10 (SpaceX-10) mission, installed in the unpressurized "trunk" of the Dragon spacecraft. After the Dragon is berth to ISS Node 2, the payload will be removed from the trunk and robotically installed in a nadir-viewing location on the external truss of the ISS. Following installation on the ISS, the LIS Operations Team will work with the STP-H5 and ISS Operations Teams to power-on LIS and begin instrument checkout and commissioning. Following successful activation, LIS orbital operations will commence, managed from the newly established LIS Payload Operations Control Center (POCC) located at the National Space Science Technology Center (NSSTC) in Huntsville, AL. The well-established and robust processing, archival, and distribution infrastructure used for TRMM was easily adapted to the ISS mission, assuring that lightning

  8. The Sao Paulo Lightning Mapping Array (SPLMA): Prospects to GOES-R GLM and CHUVA

    NASA Technical Reports Server (NTRS)

    Albrecht, Rachel I.; Carrey, Larry; Blakeslee, Richard J.; Bailey, Jeffrey C.; Goodman, Steven J.; Bruning, Eric C.; Koshak, William; Morales, Carlos A.; Machado, Luiz A. T.; Angelis, Carlos F.; hide

    2010-01-01

    This paper presents the characteristics and prospects of a Lightning Mapping Array to be deployed at the city of S o Paulo (SPLMA). This LMA network will provide CHUVA campaign with total lightning, lightning channel mapping and detailed information on the locations of cloud charge regions for the thunderstorms investigated during one of its IOP. The real-time availability of LMA observations will also contribute to and support improved weather situational awareness and mission execution. For GOES-R program it will form the basis of generating unique and valuable proxy data sets for both GLM and ABI sensors in support of several on-going research investigations

  9. Application of triggered lightning numerical models to the F106B and extension to other aircraft

    NASA Technical Reports Server (NTRS)

    Ng, Poh H.; Dalke, Roger A.; Horembala, Jim; Rudolph, Terence; Perala, Rodney A.

    1988-01-01

    The goal of the F106B Thunderstorm Research Program is to characterize the lightning environment for aircraft in flight. This report describes the application of numerical electromagnetic models to this problem. Topics include: (1) Extensive application of linear triggered lightning to F106B data; (2) Electrostatic analysis of F106B field mill data; (3) Application of subgrid modeling to F106B nose region, including both static and nonlinear models; (4) Extension of F106B results to other aircraft of varying sizes and shapes; and (5) Application of nonlinear model to interaction of F106B with lightning leader-return stroke event.

  10. 49 CFR 219.601 - Railroad random drug testing programs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Railroad random drug testing programs. 219.601... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Random Alcohol and Drug Testing Programs § 219.601 Railroad random drug testing programs. (a) Submission. Each railroad must submit for FRA...

  11. 16 CFR 1209.33 - Reasonable testing program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION Certification § 1209.33 Reasonable testing program. (a... insulation. (b) Requirements of testing program. A reasonable testing program for cellulose insulation is one which demonstrates with reasonable certainty that insulation certified to comply with the standard will...

  12. 16 CFR 1209.33 - Reasonable testing program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION Certification § 1209.33 Reasonable testing program. (a... insulation. (b) Requirements of testing program. A reasonable testing program for cellulose insulation is one which demonstrates with reasonable certainty that insulation certified to comply with the standard will...

  13. 49 CFR 219.601 - Railroad random drug testing programs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Railroad random drug testing programs. 219.601... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Random Alcohol and Drug Testing Programs § 219.601 Railroad random drug testing programs. (a) Submission. Each railroad must submit for FRA...

  14. 49 CFR 219.601 - Railroad random drug testing programs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Railroad random drug testing programs. 219.601... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Random Alcohol and Drug Testing Programs § 219.601 Railroad random drug testing programs. (a) Submission. Each railroad must submit for FRA...

  15. 49 CFR 219.601 - Railroad random drug testing programs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Railroad random drug testing programs. 219.601... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Random Alcohol and Drug Testing Programs § 219.601 Railroad random drug testing programs. (a) Submission. Each railroad must submit for FRA...

  16. 49 CFR 219.607 - Railroad random alcohol testing programs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Railroad random alcohol testing programs. 219.607... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Random Alcohol and Drug Testing Programs § 219.607 Railroad random alcohol testing programs. (a) Each railroad must submit for FRA...

  17. 49 CFR 219.607 - Railroad random alcohol testing programs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Railroad random alcohol testing programs. 219.607... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Random Alcohol and Drug Testing Programs § 219.607 Railroad random alcohol testing programs. (a) Each railroad must submit for FRA...

  18. 49 CFR 219.607 - Railroad random alcohol testing programs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Railroad random alcohol testing programs. 219.607... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Random Alcohol and Drug Testing Programs § 219.607 Railroad random alcohol testing programs. (a) Each railroad must submit for FRA...

  19. Activation of the Navy's indirect effects lightning simulation laboratory

    NASA Technical Reports Server (NTRS)

    Whitaker, Mike

    1991-01-01

    The Naval Air Test Center is currently the Navy's lead lab for electromagnetic effects testing. As part of this charter, it has been performing lightning effects testing on Navy aircraft in support of specification compliance since 1973. An overview is presented of lightning test and evaluation efforts at NATC, both past and present, as well as its plans for the future. The array of simulation capabilities presently operational are described, and a high level look is given to the test methodology now being used. The principal discussion centers on the results from the recent air launched ordnance test and testing of the Navy's A-6E all weather attack aircraft. Particular attention is paid to the NATC's test approach, including details about coaxial return construction, aircraft preparation, and the test waveforms and data acquisition systems that were used.

  20. Artificial lightning data as proxy data for the algorithm development for the geostationary lightning imager

    NASA Astrophysics Data System (ADS)

    Finke, U.

    2009-12-01

    The geostationary Meteosat Third Generation (MTG) will carry the Lightning Imager (LI) for the detection and location of the total lightning by optical means. The Lightning Imager will continuously observe the full visible disk and provide lightning data with high uniformity over land and ocean during day and night. Its main operational applications are the nowcasting of severe storms and the warning of lightning strike threat. For the development of the data processor prototype a proxy data set is necessary as a reference data set in order to prove the function of the algorithms under the expected observation conditions. Additionally, a set of proxy data simulating the optical pulses originating from lightning can be used to optimize the performance of the detecting instrument. This contribution presents the methodology and the results of the generation of artificial lightning data. The artificial data set is created by random number generators which produces data obeying the same statistical distribution characteristics as real data. The generator bases on the empirical distribution density functions of the lightning characteristics which were derived from optical lightning observations by low orbit satellites (LIS) and ground based observations of lightning. The resulting artificial data represent optical lightning pulses as seen on the upper cloud surface. They are characterized by their distribution on three scales: the distribution of photons in a single lightning pulse, the distribution of lightning flashes in a single storm and the distribution of storms on the globe. The artificial data are used as input for the data processing and product generating algorithms. The elementary product of the lightning imager are the detected lightning pulses with their time, location and optical energy. These data are the basis for the generation of the various meteorological products such as lightning densities in geographical areas, storm cells with their motion