Science.gov

Sample records for lightwave synthesized frequency

  1. Development of frequency synthesizer for fast frequency hopping communication equipment

    NASA Astrophysics Data System (ADS)

    Sekizawa, Shinya; Moriyama, Eimatsu

    1990-06-01

    A frequency synthesizer with rapid operation is necessary for the development of fast frequency hopping communication systems in land mobile radios. On the other hand, accuracy is not so important in the fast frequency hopping systems when envelope detection is employed in a receiver. Currently, there are several types of frequency synthesizers. However, they are not sufficient in terms of switching speed, size and cost. A frequency synthesizer with rapid hopping based on a new operating principle is proposed and developed. It is a small synthesizer, consisting of digital devices, available at a low cost. The experimental results show that the synthesizer has the switching performance necessary for frequency hopping land mobile radios. This paper describes the operating principle and the experimental results of the proposed synthesizer.

  2. VCO PLL Frequency Synthesizers for Spacecraft Transponders

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Mysoor, Narayan; Lux, James; Cook, Brian

    2007-01-01

    Two documents discuss a breadboard version of advanced transponders that, when fully developed, would be installed on future spacecraft to fly in deep space. These transponders will be required to be capable of operation on any deepspace- communications uplink frequency channel between 7,145 and 7,235 MHz, and any downlink frequency channel between 8,400 and 8,500 MHz. The document focuses on the design and operation of frequency synthesizers for the receiver and transmitter. Heretofore, frequency synthesizers in deep-space transponders have been based on dielectric resonator oscillators (DROs), which do not have the wide tuning bandwidth necessary to tune over all channels in the uplink or downlink frequency bands. To satisfy the requirement for tuning bandwidth, the present frequency synthesizers are based on voltage-controlled-oscillator (VCO) phase-locked loops (PLLs) implemented by use of monolithic microwave integrated circuits (MMICs) implemented using inGaP heterojunction bipolar transistor (HBT) technology. MMIC VCO PLL frequency synthesizers similar to the present ones have been used in commercial and military applications but, until now, have exhibited too much phase noise for use in deep-space transponders. The present frequency synthesizers contain advanced MMIC VCOs, which use HBT technology and have lower levels of flicker (1/f) phase noise. When these MMIC VCOs are used with high-speed MMIC frequency dividers, it becomes possible to obtain the required combination of frequency agility and low phase noise.

  3. Digital Frequency Synthesizer For Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Satorius, Edgar; Robinett, J. Loris, Jr.; Olson, Erlend

    1992-01-01

    Report discusses conceptual digital frequency synthesizer part of programmable local oscillator in radar-astronomy system. Phase must remain continuous during adjustments of frequency, phase noise must be low, and spectral purity must be high. Discusses theory of operation in some mathematical detail and presents new analysis of spectral purity of output.

  4. Frequency noise in frequency swept fiber laser.

    PubMed

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2013-04-01

    This Letter presents a measurement of the spectral content of frequency shifted pulses generated by a lightwave synthesized frequency sweeper. We found that each pulse is shifted in frequency with very high accuracy. We also discovered that noise originating from light leaking through the acousto- optical modulators and forward propagating Brillouin scattering appear in the spectrum.

  5. Optical Frequency Synthesizer for Precision Spectroscopy

    NASA Astrophysics Data System (ADS)

    Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Knight, J. C.; Wadsworth, W. J.; Russell, P. St. J.

    2000-09-01

    We have used the frequency comb generated by a femtosecond mode-locked laser and broadened to more than an optical octave in a photonic crystal fiber to realize a frequency chain that links a 10 MHz radio frequency reference phase-coherently in one step to the optical region. By comparison with a similar frequency chain we set an upper limit for the uncertainty of this new approach to 5.1×10-16. This opens the door for measurement and synthesis of virtually any optical frequency and is ready to revolutionize frequency metrology.

  6. Overview Of Coherent Lightwave Communications

    NASA Astrophysics Data System (ADS)

    Sunak, Harish R. D.

    1989-02-01

    In this paper, an overview of coherent lightwave communications (CLC) was given for the new comer to the field and also to discuss the various components of a CLC system to highlight the papers that were to be presented in the session to follow during the day. The topics covered included: (i) comparison of CLC to direct detection system, (ii) advantages of CLC systems, (iii) modulation formats and their relative advantages, (iv) polarization controllers and polarization preserving fibers, (v) examples of systems demonstrated in the laboratory, (vi) application areas of CLC in long-haul communications, local area networks and space communications. The reader is refered to (i) the many excellent articles in this proceeding, (ii) to the following references, for further details an all aspects of coherent lightwave communications.

  7. Differential processing for frequency chirp measurement using optical pulse synthesizer

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Ken; Seki, Satoshi; Tsuda, Hiroyuki; Takenouchi, Hirokazu; Kurokawa, Takashi

    2017-03-01

    In this study, we introduced an optical pulse synthesizer (OPS) to measure frequency chirps of optical pulses by differential processing. The OPS has a single-chip integrated structure of all elements for the differential filtering and enables stable measurement. Because the exact filter causes a large loss, we employed a phase-only filter, whose frequency response was only in phase. We measured chirp rates of pulses which were induced by propagating standard single mode fibers with different lengths. The retrieved chirp rates were comparable to calculated results. We simulated accuracy of the method and concluded that our experiment had phase control accuracy within 0.07π.

  8. Large-scale planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Bidnyk, Serge; Zhang, Hua; Pearson, Matt; Balakrishnan, Ashok

    2011-01-01

    By leveraging advanced wafer processing and flip-chip bonding techniques, we have succeeded in hybrid integrating a myriad of active optical components, including photodetectors and laser diodes, with our planar lightwave circuit (PLC) platform. We have combined hybrid integration of active components with monolithic integration of other critical functions, such as diffraction gratings, on-chip mirrors, mode-converters, and thermo-optic elements. Further process development has led to the integration of polarization controlling functionality. Most recently, all these technological advancements have been combined to create large-scale planar lightwave circuits that comprise hundreds of optical elements integrated on chips less than a square inch in size.

  9. Allan deviation computations of a linear frequency synthesizer system using frequency domain techniques

    NASA Technical Reports Server (NTRS)

    Wu, Andy

    1995-01-01

    Allan Deviation computations of linear frequency synthesizer systems have been reported previously using real-time simulations. Even though it takes less time compared with the actual measurement, it is still very time consuming to compute the Allan Deviation for long sample times with the desired confidence level. Also noises, such as flicker phase noise and flicker frequency noise, can not be simulated precisely. The use of frequency domain techniques can overcome these drawbacks. In this paper the system error model of a fictitious linear frequency synthesizer is developed and its performance using a Cesium (Cs) atomic frequency standard (AFS) as a reference is evaluated using frequency domain techniques. For a linear timing system, the power spectral density at the system output can be computed with known system transfer functions and known power spectral densities from the input noise sources. The resulting power spectral density can then be used to compute the Allan Variance at the system output. Sensitivities of the Allan Variance at the system output to each of its independent input noises are obtained, and they are valuable for design trade-off and trouble-shooting.

  10. Possible applications of atomic frequency standards with an internal high resolution digital synthesizer

    NASA Technical Reports Server (NTRS)

    Detoma, E.; Stern, A.

    1993-01-01

    The applications of Atomic Frequency Standards with an internal synthesizer (thereafter referred as 'Synthesized Frequency Standards or Oscillators') with a special emphasis on the Rb oscillator are reviewed. A fractional frequency synthesizer, developed by SEPA, was incorporated in the Frequency Locked Loop of a TFL Rubidium Frequency Standard. This combination allows a frequency settability in steps of 1.5 x 10(exp -12) (optional 1 x 10(exp -13) over a range of 6 x 10(exp -9) without having to resort to change the C-field to tune the output frequency of the device. This capability, coupled to the excellent short term stability of the Rb frequency standard, opens new possibilities for time and frequency users in the various fields (time metrology, navigation, communication, etc.) in which stable frequency standards find their application.

  11. Low-latency digital frequency synthesizer using the residue number system

    NASA Technical Reports Server (NTRS)

    Chren, William A., Jr.

    1993-01-01

    A low-latency frequency synthesizer using the Direct Digital Synthesis (DDS) technique has been designed. Called the Residue Assisted Frequency Synthesizer (RAFS), it exhibits frequency switching times which are reduced by more than 50 percent below previously published designs. The switching speed advantage is made possible by the use of the Residue Number System, which allows the pipeline lengths in the Phase Accumulator and other circuitry to be reduced significantly.

  12. Lightwave coupler utilizing a tapered buffer layer.

    PubMed

    Kishioka, K

    1988-06-01

    We discuss the performance of a lightwave coupler utilizing a tapered buffer layer. The coupler with a ridge waveguide is fabricated on a glass substrate and high coupling efficiencies of 75% and 50% are measured for the operations of coupling from the waveguide to a light beam and from the laser beam into the waveguide, respectively. Further, experimental results of the rigid connection between the optical fiber and the waveguide are demonstrated. We also describe how the coupler differs from the conventional tapered guiding-layer coupler.

  13. Surface Acoustic Wave Microwave Oscillator and Frequency Synthesizer.

    DTIC Science & Technology

    1980-06-01

    AD-A086 336 TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/ A /5 SURFACE ACOUSTIC WAVE MICROWA VE OSC ILLATOR AND FR EQUENCY SYNTME--ETC(U...DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703 HISAŕ 78 UNCLASSIFIED 6 URTSfaceIO A si WHS ae Micowvef scilltr nermepteOt󈧫 BEFORE COEPETINFOR RE~~~ a ...D OKUI UBRj~ ~~n SpaReT ParkWCAIO OP T05HIS A .11eu.0t13..... IINCLASSTFTF[ gCUNTY CLASSIFICATION OF THIS PAOI(Whin DEla AIRIm Fminimum frequency step

  14. Interferometric diameter determination of a silicon sphere using a traceable single laser frequency synthesizer

    NASA Astrophysics Data System (ADS)

    Wu, Xuejian; Li, Yan; Wei, Haoyun; Yang, Honglei; Yang, Guoce; Zhang, Jitao

    2013-11-01

    To determine the absolute diameter of a silicon sphere for the Avogadro constant project, we present a phase-shifting interferometer based on a flat etalon and a traceable single laser frequency synthesizer. By using an optical frequency comb to calibrate a frequency-tunable diode laser, the single laser frequency synthesizer can produce an arbitrary laser frequency with a relative uncertainty of 9.2 × 10-12 in the range of 4 THz. According to the laser frequency tuning system, the Carré algorithm with arbitrary but equal phase steps is employed to calculate the fractional interference phases. The absolute diameter is obtained by measuring the fractional and integral parts based on the principles of phase-shifting interferometry and frequency-sweeping interferometry, respectively. The uncertainty of a single diameter measurement in air is estimated to be 5 nm, whose uncertainty sources from the laser frequency and the phase-shifting algorithm are negligible.

  15. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    The design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator is presented. The intended applications of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  16. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  17. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37-43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  18. A fast-settling frequency-presetting PLL frequency synthesizer with process variation compensation and spur reduction

    NASA Astrophysics Data System (ADS)

    Xiaozhou, Yan; Xiaofei, Kuang; Nanjian, Wu

    2009-04-01

    This paper proposes a fast-settling frequency-presetting PLL frequency synthesizer. A mixed-signal VCO and a digital processor are developed to accurately preset the frequency of VCO and greatly reduce the settling time. An auxiliary tuning loop is introduced in order to reduce reference spur caused by leakage current. The digital processor can automatically compensate presetting frequency variation with process and temperature, and control the operation of the auxiliary tuning loop. A 1.2 GHz integer-N synthesizer with 1 MHz reference input was implemented in a 0.18 μm process. The measured results demonstrate that the typical settling time of the synthesizer is less than 3 μs, and the phase noise is -108 dBc/Hz@ 1MHz. The reference spur is -52 dBc.

  19. A full-duplex CATV/wireless-over-fiber lightwave transmission system.

    PubMed

    Li, Chung-Yi; Lu, Hai-Han; Ying, Cheng-Ling; Cheng, Chun-Jen; Lin, Che-Yu; Wan, Zhi-Wei; Chen, Jian-Hua

    2015-04-06

    A full-duplex CATV/wireless-over-fiber lightwave transmission system consisting of one broadband light source (BLS), two optical interleavers (ILs), one intensity modulator, and one phase modulator is proposed and experimentally demonstrated. The downstream light is optically promoted from 10Gbps/25GHz microwave (MW) data signal to 10Gbps/100GHz and 10Gbps/50GHz millimeter-wave (MMW) data signals in fiber-wireless convergence, and intensity-modulated with 50-550 MHz CATV signal. For up-link transmission, the downstream light is phase-remodulated with 10Gbps/25GHz MW data signal in fiber-wireless convergence. Over a 40-km single-mode fiber (SMF) and a 10-m radio frequency (RF) wireless transport, bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed to perform well in such full-duplex CATV/wireless-over-fiber lightwave transmission systems. This full-duplex 100-GHz/50-GHz/25-GHz/550-MHz lightwave transmission system is an attractive alternative. This transmission system not only presents its advancement in the integration of fiber backbone and CATV/wireless feeder networks, but also it provides the advantages of a communication channel for higher data rates and bandwidth.

  20. A fractional-N frequency synthesizer for wireless sensor network nodes

    NASA Astrophysics Data System (ADS)

    Xiao, Ma; Zhankun, Du; Chang, Liu; Ke, Liu; Yuepeng, Yan; Tianchun, Ye

    2014-12-01

    This paper presents a fractional-N frequency synthesizer for wireless sensor network (WSN) nodes. The proposed frequency synthesizer adopts a phase locked loop (PLL) based structure, which employs an LC voltage-controlled oscillator (VCO) with small VCO gain (KVCO) and frequency step (fstep) variations, a charge pump (CP) with current changing in proportion with the division ratio and a 20-bit ΔΣ modulator, etc. To realize constant KVCO and fstep, a novel capacitor sub-bands grouping method is proposed. The VCO sub-groups' sizes are arranged according to the maximal allowed KVCO variation of the system. Besides, a current mode logic divide-by-2 circuit with inside-loop buffers ensures the synthesizer generates I/Q quadrature signals robustly. This synthesizer is implemented in a 0.13 μm CMOS process. Measurement results show that the frequency synthesizer has a frequency span from 2.07 to 3.11 GHz and the typical phase noise is -86.34 dBc/Hz at 100 kHz offset and -114.17 dBc/Hz at 1 MHz offset with a loop bandwidth of about 200 kHz, which meet the WSN nodes' requirements.

  1. A wide-range programmable frequency synthesizer based on a finite state machine filter

    NASA Astrophysics Data System (ADS)

    Alser, Mohammed H.; Assaad, Maher M.; Hussin, Fawnizu A.

    2013-11-01

    In this article, an FPGA-based design and implementation of a fully digital wide-range programmable frequency synthesizer based on a finite state machine filter is presented. The advantages of the proposed architecture are that, it simultaneously generates a high frequency signal from a low frequency reference signal (i.e. synthesising), and synchronising the two signals (signals have the same phase, or a constant difference) without jitter accumulation issue. The architecture is portable and can be easily implemented for various platforms, such as FPGAs and integrated circuits. The frequency synthesizer circuit can be used as a part of SERDES devices in intra/inter chip communication in system-on-chip (SoC). The proposed circuit is designed using Verilog language and synthesized for the Altera DE2-70 development board, with the Cyclone II (EP2C35F672C6) device on board. Simulation and experimental results are included; they prove the synthesizing and tracking features of the proposed architecture. The generated clock signal frequency of a range from 19.8 MHz to 440 MHz is synchronized to the input reference clock with a frequency step of 0.12 MHz.

  2. Impact Of Redundancy On Undersea Lightwave Systems

    NASA Astrophysics Data System (ADS)

    Brewer, S. Theodore

    1990-01-01

    Undersea lightwave systems represent a fascinating and challenging application of photonics engineering. Economy, transmission quality and long-term reliability are the hallmarks of these new systems. The optical fiber medium offers very high channel capacity for voice and all other digitally encoded signals. The high capacity results in low cost per channel. Concerning transmission quality, today digital transmission on undersea cables carries signals halfway round the world with quiet, virtually error - free performance. Furthermore, the short, direct path of the undersea route minimizes signal delay, making a significant contribution to customer satisfaction with voice, data, video conferencing, and other interactive services. We needed to achieve these important advances in economy and quality of transmission, and yet deliver systems with the traditional 25 year life and high reliability. This was the dilemma, to achieve extraordinarily high reliability with technologies which lacked extensive high-reliability background. Redundancy in several forms allowed us to introduce this advanced technology with high confidence of meeting the goal of 25 years of reliable system service. Following some historical notes on undersea cables, we describe the forms and levels of redundancy used in AT&T's SL Undersea cable systems. We then indicate how redundancy was implemented and it's impact on system reliability. Finally, we do a bit of crystal gazing concerning redundancy and reliability in the rapidly evolving optical undersea cable network.

  3. Low-phase-noise frequency synthesizer for the trapped atom clock on a chip.

    PubMed

    Ramirez-Martinez, Fernando; Lours, Michel; Rosenbusch, Peter; Reinhard, Friedemann; Reichel, Jakob

    2010-01-01

    We report on the realization of a 6.834-GHz synthesis chain for the trapped atom clock on a chip (TACC) that is being developed at LNE-SYRTE. The chain is based on the frequency multiplication of a 100-MHz reference signal to obtain a signal at 6.4 GHz. It uses a comb generator based on a monolithic GaAs nonlinear transmission line. This is a novelty in the fabrication of high-stability microwave synthesizers. Measurements give a low flicker phase noise of -85 dBrad(2)/Hz at 1-Hz offset frequency and a white phase noise floor < -115 dBrad(2)/Hz. Based on these results, we estimate that the performance of the synthesizer is at least one order of magnitude better than the stability goal of TACC. This ensures that the synthesizer will not be limiting the clock performance.

  4. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  5. Frequency synthesized and continuously tunable IR laser sources in 9-11 microns

    NASA Technical Reports Server (NTRS)

    Cheo, P. K.

    1984-01-01

    A review of high-resolution microwave-tuned IR laser source with frequency-synthesized outputs exceeding 100 mW is presented. Details are given on system configuration, design parameters, tradeoff analysis, system optimization, and fabrication procedure, along with measured performance characteristics.

  6. Hybrid lightwave subcarrier CATV/16-QAM/16-QAM OFDM transmission system.

    PubMed

    Chen, Chia-Yi; Wu, Po-Yi; Lu, Hai-Han; Lin, Ying-Pyng; Jhang, Tai-Wei; Ying, Cheng-Ling

    2013-11-15

    A hybrid lightwave subcarrier CATV/16-QAM/16-QAM orthogonal frequency-division multiplexing (OFDM) transmission system employing light injection/optoelectronic feedback techniques and photonic crystal fiber (PCF) is proposed and demonstrated. Good performance of carrier-to-noise ratio (CNR), composite second order, and composite triple beat were obtained for the CATV band, and high CNR and low bit error rate values were achieved for the 16-QAM and 16-QAM OFDM bands over a combination of 80 km single-mode fiber (SMF) and 2.86 km PCF transport.

  7. A fully-differential phase-locked loop frequency synthesizer for 60-GHz wireless communication

    NASA Astrophysics Data System (ADS)

    Lixue, Kuang; Baoyong, Chi; Lei, Chen; Wen, Jia; Zhihua, Wang

    2014-12-01

    A 40-GHz phase-locked loop (PLL) frequency synthesizer for 60-GHz wireless communication applications is presented. The electrical characteristics of the passive components in the VCO and LO buffers are accurately extracted with an electromagnetic simulator HFSS. A differential tuning technique is utilized in the voltage controlled oscillator (VCO) to achieve higher common-mode noise rejection and better phase noise performance. The VCO and the divider chain are powered by a 1.0 V supply while the phase-frequency detector (PFD) and the charge pump (CP) are powered by a 2.5 V supply to improve the linearity. The measurement results show that the total frequency locking range of the frequency synthesizer is from 37 to 41 GHz, and the phase noise from a 40 GHz carrier is -97.2 dBc/Hz at 1 MHz offset. Implemented in 65 nm CMOS, the synthesizer consumes a DC power of 62 mW, including all the buffers.

  8. Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer.

    PubMed

    Tao, Juan-Juan; Zhou, Min-Kang; Zhang, Qiao-Zhen; Cui, Jia-Feng; Duan, Xiao-Chun; Shao, Cheng-Gang; Hu, Zhong-Kun

    2015-09-01

    During gravity measurements with Raman type atom interferometry, the frequency of the laser used to drive Raman transition is scanned by chirping the frequency of a direct digital synthesizer (DDS), and the local gravity is determined by precisely measuring the chip rate α of DDS. We present an effective method that can directly evaluate the frequency chirp rate stability of our DDS. By mixing a pair of synchronous linear sweeping signals, the chirp rate fluctuation is precisely measured with a frequency counter. The measurement result shows that the relative α instability can reach 5.7 × 10(-11) in 1 s, which is neglectable in a 10(-9) g level atom interferometry gravimeter.

  9. Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer

    SciTech Connect

    Tao, Juan-Juan; Zhou, Min-Kang E-mail: zmk@hust.edu.cn; Zhang, Qiao-Zhen; Cui, Jia-Feng; Duan, Xiao-Chun; Shao, Cheng-Gang; Hu, Zhong-Kun E-mail: zmk@hust.edu.cn

    2015-09-15

    During gravity measurements with Raman type atom interferometry, the frequency of the laser used to drive Raman transition is scanned by chirping the frequency of a direct digital synthesizer (DDS), and the local gravity is determined by precisely measuring the chip rate α of DDS. We present an effective method that can directly evaluate the frequency chirp rate stability of our DDS. By mixing a pair of synchronous linear sweeping signals, the chirp rate fluctuation is precisely measured with a frequency counter. The measurement result shows that the relative α instability can reach 5.7 × 10{sup −11} in 1 s, which is neglectable in a 10{sup −9} g level atom interferometry gravimeter.

  10. A low phase noise and low spur PLL frequency synthesizer for GNSS receivers

    NASA Astrophysics Data System (ADS)

    Sen, Li; Jinguang, Jiang; Xifeng, Zhou; Jianghua, Liu

    2014-01-01

    A low phase noise and low spur phase locked loop (PLL) frequency synthesizer for use in global navigation satellite system (GNSS) receivers is proposed. To get a low spur, the symmetrical structure of the phase frequency detector (PFD) produces four control signals, which can reach the charge pump (CP) simultaneously, and an improved CP is realized to minimize the charge sharing and the charge injection and make the current matched. Additionally, the delay is controllable owing to the programmable PFD, so the dead zone of the CP can be eliminated. The output frequency of the VCO can be adjusted continuously and precisely by using a programmable LC-TANK. The phase noise of the VCO is lowered by using appropriate MOS sizes. The proposed PLL frequency synthesizer is fabricated in a 0.18 μm mixed-signal CMOS process. The measured phase noise at 1 MHz offset from the center frequency is -127.65 dBc/Hz and the reference spur is -73.58 dBc.

  11. Recent progress on planar lightwave circuit technology for optical communication

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi

    2009-11-01

    Silica waveguide planar lightwave circuit (PLC) technology is very useful for fabricating compact and high performance optical devices for optical communication. Wavelength multiplexers and optical switches for ROADM and OXC are still being developed to improve performance further. New devices for an advanced modulation format can also be fabricated with PLC technology.

  12. A ROM-Less Direct Digital Frequency Synthesizer Based on Hybrid Polynomial Approximation

    PubMed Central

    Omran, Qahtan Khalaf; Islam, Mohammad Tariqul; Misran, Norbahiah; Faruque, Mohammad Rashed Iqbal

    2014-01-01

    In this paper, a novel design approach for a phase to sinusoid amplitude converter (PSAC) has been investigated. Two segments have been used to approximate the first sine quadrant. A first linear segment is used to fit the region near the zero point, while a second fourth-order parabolic segment is used to approximate the rest of the sine curve. The phase sample, where the polynomial changed, was chosen in such a way as to achieve the maximum spurious free dynamic range (SFDR). The invented direct digital frequency synthesizer (DDFS) has been encoded in VHDL and post simulation was carried out. The synthesized architecture exhibits a promising result of 90 dBc SFDR. The targeted structure is expected to show advantages for perceptible reduction of hardware resources and power consumption as well as high clock speeds. PMID:24892092

  13. A ROM-less direct digital frequency synthesizer based on hybrid polynomial approximation.

    PubMed

    Omran, Qahtan Khalaf; Islam, Mohammad Tariqul; Misran, Norbahiah; Faruque, Mohammad Rashed Iqbal

    2014-01-01

    In this paper, a novel design approach for a phase to sinusoid amplitude converter (PSAC) has been investigated. Two segments have been used to approximate the first sine quadrant. A first linear segment is used to fit the region near the zero point, while a second fourth-order parabolic segment is used to approximate the rest of the sine curve. The phase sample, where the polynomial changed, was chosen in such a way as to achieve the maximum spurious free dynamic range (SFDR). The invented direct digital frequency synthesizer (DDFS) has been encoded in VHDL and post simulation was carried out. The synthesized architecture exhibits a promising result of 90 dBc SFDR. The targeted structure is expected to show advantages for perceptible reduction of hardware resources and power consumption as well as high clock speeds.

  14. Hardware Implementation of 32-Bit High-Speed Direct Digital Frequency Synthesizer

    PubMed Central

    Ibrahim, Salah Hasan; Ali, Sawal Hamid Md.; Islam, Md. Shabiul

    2014-01-01

    The design and implementation of a high-speed direct digital frequency synthesizer are presented. A modified Brent-Kung parallel adder is combined with pipelining technique to improve the speed of the system. A gated clock technique is proposed to reduce the number of registers in the phase accumulator design. The quarter wave symmetry technique is used to store only one quarter of the sine wave. The ROM lookup table (LUT) is partitioned into three 4-bit sub-ROMs based on angular decomposition technique and trigonometric identity. Exploiting the advantages of sine-cosine symmetrical attributes together with XOR logic gates, one sub-ROM block can be removed from the design. These techniques, compressed the ROM into 368 bits. The ROM compressed ratio is 534.2 : 1, with only two adders, two multipliers, and XOR-gates with high frequency resolution of 0.029 Hz. These techniques make the direct digital frequency synthesizer an attractive candidate for wireless communication applications. PMID:24991635

  15. Amorphous hollow carbon spheres synthesized using radio frequency plasma-enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Yang, G. M.; Xu, Q.; Tian, H. W.; Wang, X.; Zheng, W. T.

    2008-10-01

    We report a method to synthesize amorphous hollow carbon spheres, with diameters ranging from 100 to 800 nm, which are dispersed among bent graphitized carbon nanotubes using radio frequency plasma-enhanced chemical vapour deposition in mixed CH4/H2 gases. The products are characterized by techniques including scanning electron microscopy, energy-dispersive x-ray spectroscopy, Raman spectroscopy and transmission electron microscopy. It is found that MgO and Ni nanoparticles together with hydrogen play important roles in the formation of the spheres. A possible formation mechanism for the carbon composites has been proposed.

  16. Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Da; Kimura, Hiroto; Hayashi, Kenta; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Yasui, Takeshi

    2016-09-01

    A terahertz (THz) frequency synthesizer based on photomixing of two near-infrared lasers with a sub-THz to THz frequency offset is a powerful tool for spectroscopy of polar gas molecules due to its broad spectral coverage; however, its frequency accuracy and resolution are relatively low. To tune the output frequency continuously and widely while maintaining its traceability to a frequency standard, we developed a photomixing THz synthesizer phase-locked to dual optical frequency combs (OFCs). While the phase-locking to dual OFCs ensured continuous tuning within a spectral range of 120 GHz, in addition to the traceability to the frequency standard, use of a broadband uni-traveling carrier photodiode for photomixing enabled the generation of CW-THz radiation within a frequency range from 0.2 to 1.5 THz. We demonstrated THz frequency-domain spectroscopy of gas-phase acetonitrile CH3CN and its isotope CH3 13CN in the frequency range of 0.600-0.720 THz using this THz synthesizer. Their rotational transitions were assigned with a frequency accuracy of 8.42 × 10-8 and a frequency resolution of 520 kHz. Furthermore, the concentration of the CH3CN gas at 20 Pa was determined to be (5.41 ± 0.05) × 1014 molecules/cm3 by curve fitting analysis of the measured absorbance spectrum, and the mixture ratio of the mixed CH3CN/CH3 13CN gas was determined to be 1:2.26 with a gas concentration of 1014-1015 molecules/cm3. The developed THz synthesizer is highly promising for high-precision THz-FDS of low-pressure molecular gases and will enable the qualitative and quantitative analyses of multiple gases.

  17. Hybrid and monolithic integration of planar lightwave circuits (PLCs)

    NASA Astrophysics Data System (ADS)

    Chen, Ray T.

    2008-02-01

    In this paper, we review the status of monolithic and hybrid integration of planar lightwave circuits (PLCs). Building blocks needed for system integration based on polymeric materials, III-V semiconductor materials, LiNbO 3 and SOI on Silicon are summarized with pros and cons. Due to the maturity of silicon CMOS technology, silicon becomes the platform of choice for optical application specific integrated circuits (OASICs). However, the indirect bandgap of silicon makes the formation of electrically pumped silicon laser a remote plausibility which requires hybrid integration of laser sources made out of III-V compound semicouductor.

  18. Loop Design Optimization of Fourth-Order Fractional-N PLL Frequency Synthesizers

    NASA Astrophysics Data System (ADS)

    Lee, Jun Gyu; Xu, Zule; Masui, Shoichi

    We propose a methodology of loop design optimization for fourth-order fractional-N phase locked loop (PLL) frequency synthesizers featuring a short settling time of 5µsec for applications in an active RFID (radio frequency identification) and automobile smart-key systems. To establish the optimized design flow, equations presenting the relationship between the specification and PLL loop parameters in terms of settling time, loop bandwidth, phase margin, and phase noise are summarized. The proposed design flow overcomes the settling time inaccuracy in conventional second-order approximation methods by obtaining the accurate relationship between settling time and loop bandwidth with the MATLAB Control System Toolbox for the fourth-order PLLs. The proposed flow also features the worst-case design by taking account of the process, voltage, and temperature (PVT) variations in loop filter components, and considers the tradeoff between phase noise and area. The three-step optimization process consists of 1) the derivation of the accurate relationship between the settling time and loop bandwidth for various PVT conditions, 2) the derivation of phase noise and area as functions of area-dominant filter capacitance, and 3) the derivation of all PLL loop components values. The optimized design result is compared with circuit simulations using an actually designed fourth-order fractional-N PLL in a 1.8V 0.18µm CMOS technology. The error between the design and simulation for the setting time is reduced from 0.63µsec in the second-order approximation to 0.23µsec in the fourth-order optimization that proves the validity of the proposed method for the high-speed settling operations.

  19. A Direct Diode Laser System Using a Planar Lightwave Circuit

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kazuo; Matsubara, Hiroyuki; Ichikawa, Tadashi; Maeda, Mitsutoshi; Ito, Hiroshi

    2008-08-01

    In this paper we propose a direct diode laser (DDL) system consisting of laser diode (LD) bars, a planar lightwave circuit (PLC), and an optical fiber. We have developed a PLC as an optical power combiner and an LD mounting technology that is suitable for coupling to the PLC. A DDL system is presented that consists of six LD-PLC optical modules for the laser-welding of highly heat-resistant plastics. The total output power is in the 200 W class, with a spot diameter of 5.52 mm for the major axis and 5.00 mm for the minor axis at a focal length of 50 mm. The total output efficiency is 60.9% from the laser diode to the welding torch.

  20. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations.

    PubMed

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun

    2015-12-14

    A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.

  1. Hybrid planar lightwave circuits for defense and aerospace applications

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing < 5 grams. These chip-based transceivers have been measured to withstand harsh g-forces, including sinusoidal vibrations with amplitude of 20 g acceleration, followed by mechanical shock of 500 g acceleration. The components operate over a wide range of temperatures, with no device failures after extreme temperature cycling through a range of > 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  2. Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit.

    PubMed

    Chen, Changming; Niu, Xiaoyan; Han, Chao; Shi, Zuosen; Wang, Xinbin; Sun, Xiaoqiang; Wang, Fei; Cui, Zhanchen; Zhang, Daming

    2014-05-05

    A transparent reconfigurable optical add-drop multiplexer (ROADM) module composed of AWG-based wavelength-channel-selectors monolithically integrated with Mach-Zehnder interferometer (MZI) thermo-optic (TO) waveguide switch arrays and arrayed waveguide true-time-delay (TTD) lines is designed and fabricated using polymer photonic lightwave circuit technology. Negative-type fluorinated photoresist and grafting modified organic-inorganic hybrid materials were synthesized as the waveguide core and cladding, respectively. The one-chip transmission loss is ~6 dB and the crosstalk is less than ~30 dB for the transverse-magnetic (TM) mode. The actual maximum modulation depths of different thermo-optic switches are similar, ~15.5 dB with 1.9 V bias. The maximum power consumption of a single switch is less than 10 mW. The delay time basic increments are measured from 140 ps to 20 ps. Proposed novel ROADM is flexible and scalable for the dense wavelength division multiplexing network.

  3. Temperature and frequency dependent dielectric properties of electrically conducting oxidatively synthesized polyazomethines and their structural, optical, and thermal characterizations

    NASA Astrophysics Data System (ADS)

    Dineshkumar, Sengottuvelu; Muthusamy, Athianna; Chandrasekaran, J.

    2017-01-01

    Three azomethine diol monomers were synthesized by condensing with methanolic solution of aromatic aldehydes with ethylenediamine. These monomers were oxidatively polymerized using NaOCl as an oxidant. The structures of the monomers and polymers were confirmed by various spectroscopic techniques. Spectral results showed that the repeating units are linked by Csbnd C and Csbnd Osbnd C couplings. The polyazomethines have fluorescent property with high stokes shift. Solid state electrical conductivity of polymers both in I2 doped and undoped states, temperature and frequency dependent dielectric measurements were made by two probe method. The electrical conductivities of polyazomethines were compared based on the charge densities on imine nitrogens obtained from Huckel calculation. The conductivity of polymers increases with increase in iodine vapour contact time. Among the synthesized polymers PHNAE has shown high dielectric constant at low applied frequency of 50 Hz at 393 K due the presence of bulky naphthalene unit in polymer chain.

  4. Synthesizing High-Frequency (1-25 HZ) Regional Phases at Large Distances (>1000 KM) Using Generalized Screen Propagators (GSP)

    DTIC Science & Technology

    2004-09-01

    seismology and earthquake seismology . The generalized screen propagator (GSP) is based on the one-way wave equation and the one-return approximation. The...High-Frequency (1-25 HZ) Regional Phases at Large Distances O (>1000 KM) Using Generalized Screen Propagators (GSP) SApproved for public release...DTRA 01-97-1-0004 Synthesizing High-Freguency (1-25 HZ) Regional Phases at Large Distances (1 > 1000 KM) Using Generalized Screen Propagators (GSP) 5b

  5. A 3 to 5 GHz low-phase-noise fractional-N frequency synthesizer with adaptive frequency calibration for GSM/PCS/DCS/WCDMA transceivers

    NASA Astrophysics Data System (ADS)

    Yaohua, Pan; Niansong, Mei; Hu, Chen; Yumei, Huang; Zhiliang, Hong

    2012-01-01

    A low-phase-noise Σ—Δ fractional-N frequency synthesizer for GSM/PCS/DCS/WCDMA transceivers is presented. The voltage controlled oscillator is designed with a modified digital controlled capacitor array to extend the tuning range and minimize phase noise. A high-resolution adaptive frequency calibration technique is introduced to automatically choose frequency bands and increase phase-noise immunity. A prototype is implemented in 0.13 μm CMOS technology. The experimental results show that the designed 1.2 V wideband frequency synthesizer is locked from 3.05 to 5.17 GHz within 30 μs, which covers all five required frequency bands. The measured in-band phase noise are -89, -95.5 and -101 dBc/Hz for 3.8 GHz, 2 GHz and 948 MHz carriers, respectively, and accordingly the out-of-band phase noise are -121, -123 and -132 dBc/Hz at 1 MHz offset, which meet the phase-noise-mask requirements of the above-mentioned standards.

  6. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip

    PubMed Central

    Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T.; Xuan, Yi; Leaird, Daniel E.; Wang, Xi; Gan, Fuwan; Weiner, Andrew M.; Qi, Minghao

    2015-01-01

    Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics. PMID:25581847

  7. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip.

    PubMed

    Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T; Xuan, Yi; Leaird, Daniel E; Wang, Xi; Gan, Fuwan; Weiner, Andrew M; Qi, Minghao

    2015-01-12

    Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics.

  8. Lightwave-driven quasiparticle collisions on a subcycle timescale

    NASA Astrophysics Data System (ADS)

    Langer, F.; Hohenleutner, M.; Schmid, C. P.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.

    2016-05-01

    Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances—called quasiparticles—such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.

  9. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Antonova, K.; Duta, L.; Szekeres, A.; Stan, G. E.; Mihailescu, I. N.; Anastasescu, M.; Stroescu, H.; Gartner, M.

    2017-02-01

    Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A1LO mode frequency was analysed and connected to the orientation of the particles' optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers' properties is discussed on this basis.

  10. A Voltage Controlled Oscillator for a Phase-Locked Loop Frequency Synthesizer in a Silicon-on-Sapphire Process

    SciTech Connect

    Garrison, Sean

    2009-05-21

    Engineers from a government-owned engineering and manufacturing facility were contracted by government-owned research laboratory to design and build an S-band telemetry transmitter using Radio Frequency Integrated Circuit (RFIC) technology packaged in a Low-Temperature Co-fired Ceramic (LTCC) Multi-Chip Module. The integrated circuit technology chosen for the Phase-Locked Loop Frequency Synthesizer portion of the telemetry transmitter was a 0.25 um CMOS process that utilizes a sapphire substrate and is fabricated by Peregrine Semiconductor corporation. This thesis work details the design of the Voltage Controlled Oscillator (VCO) portion of the PLL frequency synthesizer and constitutes an fully integrated VCO core circuit and a high-isolation buffer amplifier. The high-isolation buffer amplifier was designed to provide 16 dB of gain for 2200-3495 MHz as well as 60 dB of isolation for the oscillator core to provide immunity to frequency pulling due to RF load mismatch. Actual measurements of the amplifier gain and isolation showed the gain was approximately 5 dB lower than the simulated gain when all bond-wire and test substrate parasitics were taken into account. The isolation measurements were shown to be 28 dB at the high end of the frequency band but the measurement was more than likely compromised due to the aforementioned bond-wire and test substrate parasitics. The S-band oscillator discussed in this work was designed to operate over a frequency range of 2200 to 2300 MHz with a minimum output power of 0 dBm with a phase-noise of -92 dBc/Hz at a 100 kHz offset from the carrier. The tuning range was measured to be from 2215 MHz to 2330 MHz with a minimum output power of -7 dBm over the measured frequency range. A phase-noise of -90 dBc was measured at a 100 kHz offset from the carrier.

  11. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    SciTech Connect

    Schaefer, R. T.; Mojarradi, M.; MacAskill, J. A.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-15

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  12. A hybrid lightwave transport system based on a BLS with an OSNR enhancement scheme

    NASA Astrophysics Data System (ADS)

    Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Lin, Chun-Yu; Wu, Chang-Jen; Lin, Hung-Hsien

    2016-04-01

    A hybrid lightwave transport system based on a broadband light source (BLS) with an optical signal-to-noise ratio (OSNR) enhancement scheme for millimeter-wave (MMW)/radio-over-fiber (RoF)/cable television (CATV) signal transmission is proposed and experimentally demonstrated. Unlike traditional hybrid lightwave transport systems for signal transmission, in which a transmitting site needs multiple wavelength-selected distributed feedback laser diodes (DFB LDs) to support various services, such proposed systems employ a phase modulator to provide multiple optical carriers for various applications. Over an 80 km single-mode fiber (SMF) transmission, the bit error rate (BER)/carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB) perform brilliantly for hybrid 100 GHz MMW/50 GHz MMW/10 GHz RoF/550 MHz CATV signal transmission. Such a hybrid lightwave transport system would be attractive for fiber trunk applications to provide broadband integrated services.

  13. A reconfigurable multi-mode multi-band transmitter with integrated frequency synthesizer for short-range wireless communication

    NASA Astrophysics Data System (ADS)

    Nan, Qi; Fan, Chen; Lingwei, Zhang; Xiaoman, Wang; Baoyong, Chi

    2013-09-01

    A reconfigurable multi-mode direct-conversion transmitter (TX) with integrated frequency synthesizer (FS) is presented. The TX as well as the FS is designed with a flexible architecture and frequency plan, which helps to support all the 433/868/915 MHz ISM band signals, with the reconfigurable bandwidth from 250 kHz to 2 MHz. In order to save power and chip area, only one 1.8 GHz VCO is adopted to cover the whole frequency range. All the operation modes can be regulated in real time by configuring the integrated register-bank through an SPI interface. Implemented in 180 nm CMOS, the FS achieves a frequency coverage of 320-460 MHz and 620-920 MHz. The lowest phase noise can be -107 dBc/Hz at a 100 kHz offset and -126 dBc/Hz at a 1 MHz offset. The transmitter features a + 10.2 dBm peak output power with a +9.5 dBm 1-dB-compression point and 250 kHz/500 kHz/1 MHz/2 MHz reconfigurable signal bandwidth.

  14. Research support for the Laboratory for Lightwave Technology

    NASA Astrophysics Data System (ADS)

    Morse, T. F.

    1992-12-01

    The Laboratory for Lightwave Technology at Brown University is one of the few university laboratories at which it is possible to design, fabricate, and characterize optical fibers of not only traditional, but of unusual design. These fibers have an increasingly important role in a host of applications of significance to the defense requirements of the United States. Among these are the following: fiber lasers for the measurement of clear air turbulence (in an important eye-safe region of the spectrum); and fiber sensors for the measurement of temperature and strain, not only in high temperature composite materials, but in structural concrete, which is important for roads, runways, and buildings. We are also engaged in research, an outgrowth of our work in optical fibers, on novel techniques for the formation of nanophase oxide particles, both ceramic and amorphous. The work on amorphous oxides is associated with our MCVD and OVD laboratories. In these labs, we have proposed and studied a new technique for the formation of multi-component oxides to be used in the doping of optical fiber preforms. In this synthesis, an aerosol of organometallic precursors is convectively transported into a reaction zone where it is pyrolized. The liquid aerosol is homogeneous at the molecular level, so that subsequent reactions produce glasses that are not phase separated. This has also been used to study the synthesis of high temperature ceramic nanophase single crystal oxides that may be produced at a high rate. The synthesis of both glasses and ceramics using novel techniques has meshed with our research in novel optical fibers and fiber sensors. In this report, we discuss the general activities of our laboratory.

  15. Application of telecom planar lightwave circuits for homeland security sensing

    NASA Astrophysics Data System (ADS)

    Veldhuis, Gert J.; Elders, Job; van Weerden, Harm; Amersfoort, Martin

    2004-03-01

    Over the past decade, a massive effort has been made in the development of planar lightwave circuits (PLCs) for application in optical telecommunications. Major advances have been made, on both the technological and functional performance front. Highly sophisticated software tools that are used to tailor designs to required functional performance support these developments. In addition extensive know-how in the field of packaging, testing, and failure mode and effects analysis (FMEA) has been built up in the struggle for meeting the stringent Telcordia requirements that apply to telecom products. As an example, silica-on-silicon is now a mature technology available at several industrial foundries around the world, where, on the performance front, the arrayed-waveguide grating (AWG) has evolved into an off-the-shelf product. The field of optical chemical-biological (CB) sensors for homeland security application can greatly benefit from the advances as described above. In this paper we discuss the currently available technologies, device concepts, and modeling tools that have emerged from the telecommunications arena and that can effectively be applied to the field of homeland security. Using this profound telecom knowledge base, standard telecom components can readily be tailored for detecting CB agents. Designs for telecom components aim at complete isolation from the environment to exclude impact of environmental parameters on optical performance. For sensing applications, the optical path must be exposed to the measurand, in this area additional development is required beyond what has already been achieved in telecom development. We have tackled this problem, and are now in a position to apply standard telecom components for CB sensing. As an example, the application of an AWG as a refractometer is demonstrated, and its performance evaluated.

  16. A Multi-Functional Planar Lightwave Circuit for Optical Signal Processing Applications

    NASA Astrophysics Data System (ADS)

    Samadi, Payman

    Ultrafast optical signal processing is now a necessary tool in several domains of science and technology such as high-speed telecommunication, biomedicine, microscopy and radar systems. Optical arbitrary waveform generation is an optical signal processing function which has applications in optical telecommunication networks, sampling, and photonically-assisted RF waveform generation. Furthermore, performing optical signal processing in photonic integrated circuits is crucial for system integration and overcoming the speed limitations in electrical to optical conversion. In this thesis, we introduce a silica-based planar lightwave circuit which performs several optical signal processing functions. We start by reviewing the material system used to fabricate the device. We justify the choice of the material for our application and explain the fabrication process and the experiments to characterize the device. Then we introduce the fundamental theory of our device which is based on pulse repetition rate multiplication (PRRM) and shaping. We review the theory of direct time-domain approach to perform the PRRM and shaping. Experiments to measure the impulse response of the device, perform PRRM and polarization dependence characterization is shown as well. Three main applications of our device is presented next. First we use the PLC device with non-linear optics to generate multiple pulse trains at different wavelengths and different repetition rates. Second, we use the fundamental of the previous application to perform demultiplexing of optical time division multiplexed signals. Our approach is flexible in a sense that it can demultiplex any tributary channel of lower rate data, also it works for both amplitude and phase modulated data. Finally, using the second generation of our PLC device, we photonically generate radio frequency waveforms. We are able to generate various pulse shapes which are generally hard to generate using electronics at frequencies up to 80 GHz

  17. Extracting S-parameters of bilateral electro-optic network for lightwave component analyzer calibration

    NASA Astrophysics Data System (ADS)

    Frolov, D.; Levchenko, A.; Korotkov, K.

    2015-11-01

    A new method for extracting E/O and O/E S-parameters of a bilateral electro-optic network (BEON) is theoretically proposed. It is based on measuring reflection coefficients from three optical loads: an absorber and two mirrors. This technique includes two series of reflections measurements: first when loads are connected to optical port of BEON directly and second when loads are connected in series with optical waveguide of fixed length. Using two BEONs and this calibration technique allows to make calibrated lightwave measurements with a standard microwave network analyzer without using additional electro-optical equipment such as lightwave component analyzer or optical heterodyne techniques.

  18. High-frequency properties of oil-phase-synthesized ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Ding, Hao-Feng; Yang, Hai-Tao; Liu, Li-Ping; Ren, Xiao; Song, Ning-Ning; Shen, Jun; Zhang, Xiang-Qun; Cheng, Zhao-Hua; Zhao, Guo-Ping

    2015-02-01

    Monodispersive ZnO nanoparticles each with a hexagonal wurtzite structure are facilely prepared by the high-temperature organic phase method. The UV-visible absorption peak of ZnO nanoparticles presents an obvious blue-shift from 385 nm of bulk ZnO to 369 nm. Both the real part and the image part of the complex permittivity of ZnO nanoparticles from 0.1 GHz to 10 GHz linearly decrease without obvious resonance peak appearing. The real parts of intrinsic permittivity of ZnO nanoparticles are about 5.7 and 5.0 at 0.1 GHz and 10 GHz respectively, and show an obvious size-dependent behavior. The dielectric loss angle tangent (tanδ) of ZnO nanoparticles with a different weight ratio shows a different decreasing law with the increase of frequency. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274370 and 51471185) and the National Basic Research Program of China (Grant Nos. 2012CB933102 and 2011CB921801).

  19. LightWAVE: Waveform and Annotation Viewing and Editing in a Web Browser.

    PubMed

    Moody, George B

    2013-09-01

    This paper describes LightWAVE, recently-developed open-source software for viewing ECGs and other physiologic waveforms and associated annotations (event markers). It supports efficient interactive creation and modification of annotations, capabilities that are essential for building new collections of physiologic signals and time series for research. LightWAVE is constructed of components that interact in simple ways, making it straightforward to enhance or replace any of them. The back end (server) is a common gateway interface (CGI) application written in C for speed and efficiency. It retrieves data from its data repository (PhysioNet's open-access PhysioBank archives by default, or any set of files or web pages structured as in PhysioBank) and delivers them in response to requests generated by the front end. The front end (client) is a web application written in JavaScript. It runs within any modern web browser and does not require installation on the user's computer, tablet, or phone. Finally, LightWAVE's scribe is a tiny CGI application written in Perl, which records the user's edits in annotation files. LightWAVE's data repository, back end, and front end can be located on the same computer or on separate computers. The data repository may be split across multiple computers. For compatibility with the standard browser security model, the front end and the scribe must be loaded from the same domain.

  20. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  1. Optimization and Implementation of Scaling-Free CORDIC-Based Direct Digital Frequency Synthesizer for Body Care Area Network Systems

    PubMed Central

    Juang, Ying-Shen; Ko, Lu-Ting; Chen, Jwu-E.; Sung, Tze-Yun; Hsin, Hsi-Chin

    2012-01-01

    Coordinate rotation digital computer (CORDIC) is an efficient algorithm for computations of trigonometric functions. Scaling-free-CORDIC is one of the famous CORDIC implementations with advantages of speed and area. In this paper, a novel direct digital frequency synthesizer (DDFS) based on scaling-free CORDIC is presented. The proposed multiplier-less architecture with small ROM and pipeline data path has advantages of high data rate, high precision, high performance, and less hardware cost. The design procedure with performance and hardware analysis for optimization has also been given. It is verified by Matlab simulations and then implemented with field programmable gate array (FPGA) by Verilog. The spurious-free dynamic range (SFDR) is over 86.85 dBc, and the signal-to-noise ratio (SNR) is more than 81.12 dB. The scaling-free CORDIC-based architecture is suitable for VLSI implementations for the DDFS applications in terms of hardware cost, power consumption, SNR, and SFDR. The proposed DDFS is very suitable for medical instruments and body care area network systems. PMID:23251230

  2. Optimization and implementation of scaling-free CORDIC-based direct digital frequency synthesizer for body care area network systems.

    PubMed

    Juang, Ying-Shen; Ko, Lu-Ting; Chen, Jwu-E; Sung, Tze-Yun; Hsin, Hsi-Chin

    2012-01-01

    Coordinate rotation digital computer (CORDIC) is an efficient algorithm for computations of trigonometric functions. Scaling-free-CORDIC is one of the famous CORDIC implementations with advantages of speed and area. In this paper, a novel direct digital frequency synthesizer (DDFS) based on scaling-free CORDIC is presented. The proposed multiplier-less architecture with small ROM and pipeline data path has advantages of high data rate, high precision, high performance, and less hardware cost. The design procedure with performance and hardware analysis for optimization has also been given. It is verified by Matlab simulations and then implemented with field programmable gate array (FPGA) by Verilog. The spurious-free dynamic range (SFDR) is over 86.85 dBc, and the signal-to-noise ratio (SNR) is more than 81.12 dB. The scaling-free CORDIC-based architecture is suitable for VLSI implementations for the DDFS applications in terms of hardware cost, power consumption, SNR, and SFDR. The proposed DDFS is very suitable for medical instruments and body care area network systems.

  3. Issues in chaos synchronization: Subharmonic destruction, multi-valued mappings, and chaotic lightwave communication

    NASA Astrophysics Data System (ADS)

    Lewis, Clifford Tureman

    A wide range of issues concerning the theory and practice of generalized synchronization of chaos are examined in detail. Due in part to the straightforward geometrical interpretation of identical synchronization, the corresponding theory has been firmly established. However, generalized synchronization, which corresponds to the formation of a continuous mapping between non- identical sub-systems, still possesses many facets which have not been examined in depth. Thus, a comprehensive theory of generalized synchronization is still being constructed. In this dissertation, studies concerning several scarcely examined aspects of generalized synchronization are presented. First, a mechanism is examined by which synchronization is lost in non-identical systems with different fundamental frequencies of oscillation. This mechanism, which is the subharmonic transition, is fundamentally different than previously examined mechanisms that are commonly cited in synchronization studies. Second, an examination of the properties of the generalized synchronization mapping when it is no longer a one-to-one mapping is presented. Most previously studied characteristics of generalized synchronization concern synchronization mappings which are one-to-one and invertible. The study in this dissertation shows interesting structure when the mapping is multi-valued, and thus is not invertible. The final portion of this dissertation concerns chaotic lightwave communication, a practical application of synchronization using erbium-doped fiber ring lasers to optically transmit a modulated bit string across a fiber optic channel using the chaotic laser intensity waveform as the carrier. Development of a successful communications scheme is a five-fold task. First, an empirical model of an erbium-doped fiber ring laser, which includes all the physically relevant variables, is derived from first principles. Next, the amount of chaos present in the laser model must be quantified. Subsequently, the

  4. SEMICONDUCTOR INTEGRATED CIRCUITS: A low-jitter RF PLL frequency synthesizer with high-speed mixed-signal down-scaling circuits

    NASA Astrophysics Data System (ADS)

    Lu, Tang; Zhigong, Wang; Hong, Xue; Xiaohu, He; Yong, Xu; Ling, Sun

    2010-05-01

    A low-jitter RF phase locked loop (PLL) frequency synthesizer with high-speed mixed-signal down-scaling circuits is proposed. Several techniques are proposed to reduce the design complexity and improve the performance of the mixed-signal down-scaling circuit in the PLL. An improved D-latch is proposed to increase the speed and the driving capability of the DMP in the down-scaling circuit. Through integrating the D-latch with 'OR' logic for dual-modulus operation, the delays associated with both the 'OR' and D-flip-flop (DFF) operations are reduced, and the complexity of the circuit is also decreased. The programmable frequency divider of the down-scaling circuit is realized in a new method based on deep submicron CMOS technology standard cells and a more accurate wire-load model. The charge pump in the PLL is also realized with a novel architecture to improve the current matching characteristic so as to reduce the jitter of the system. The proposed RF PLL frequency synthesizer is realized with a TSMC 0.18-μm CMOS process. The measured phase noise of the PLL frequency synthesizer output at 100 kHz offset from the center frequency is only -101.52 dBc/Hz. The circuit exhibits a low RMS jitter of 3.3 ps. The power consumption of the PLL frequency synthesizer is also as low as 36 mW at a 1.8 V power supply.

  5. A 220-1100 MHz low phase-noise frequency synthesizer with wide-band VCO and selectable I/Q divider

    NASA Astrophysics Data System (ADS)

    Hua, Chen; Renjie, Gong; Xu, Cheng; Yulin, Zhang; Zhong, Gao; Guiliang, Guo; Yuepeng, Yan

    2014-12-01

    This paper presents a low phase-noise fractional-N frequency synthesizer which provides an in-phase/quadrature-phase (I/Q) signal over a frequency range of 220-1100 MHz for wireless networks of industrial automation (WIA) applications. Two techniques are proposed to achieve the wide range. First, a 1.4-2.2 GHz ultralow gain voltage-controlled oscillator (VCO) is adopted by using 128 tuning curves. Second, a selectable I/Q divider is employed to divide the VCO frequency by 2 or 3 or 4 or 6. Besides, a phase-switching prescaler is proposed to lower PLL phase noise, a self-calibrated charge pump is used to suppress spur, and a detect-boosting phase frequency detector is adopted to shorten settling time. With a 200 kHz loop bandwidth, lowest measured phase noise is -106 dBc/Hz at a 10 kHz offset and -131 dBc/Hz at a 1 MHz offset. Fabricated in the TSMC 0.18 μm CMOS process, the synthesizer occupies a chip area of 1.2 mm2, consumes only 15 mW from the 1.8 V power supply, and settles within 13.2 μs. The synthesizer is optimized for the WIA applications, but can also be used for other short-range wireless communications, such as 433, 868, 916 MHz ISM band applications.

  6. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    NASA Astrophysics Data System (ADS)

    François, B.; Calosso, C. E.; Abdel Hafiz, M.; Micalizio, S.; Boudot, R.

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad2/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad2/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10-14 for the Cs cell clock and 2 × 10-14 for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10-15 level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  7. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    SciTech Connect

    François, B.; Calosso, C. E.; Micalizio, S.; Abdel Hafiz, M.; Boudot, R.

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  8. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.

    PubMed

    François, B; Calosso, C E; Abdel Hafiz, M; Micalizio, S; Boudot, R

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad(2)/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad(2)/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10(-14) for the Cs cell clock and 2 × 10(-14) for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10(-15) level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  9. A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-VLLC integration

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Shing; Lu, Hai-Han; Li, Chung-Yi; Chen, Bo-Rui; Lin, Hung-Hsien; Lin, Dai-Hua

    2016-04-01

    A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-visible laser light communication (VLLC) integration is proposed and experimentally demonstrated. To be the first one of its kind in employing light injection and optoelectronic feedback techniques in a fiber-VLLC integration lightwave transmission system, the light is successfully directly modulated with Community Access Television (CATV), 16-QAM, and 16-QAM-OFDM signals. Over a 40 km SMF and a 10 m free-space VLLC transport, good performances of carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB)/bit error rate (BER) are achieved for CATV/16-QAM/16-QAM-OFDM signals transmission. Such a hybrid lightwave transmission system would be very useful since it can provide broadband integrated services including CATV, Internet, and telecommunication services over both distribute fiber and in-building networks.

  10. A broadband chip-scale optical frequency synthesizer at 2.7 × 10(-16) relative uncertainty.

    PubMed

    Huang, Shu-Wei; Yang, Jinghui; Yu, Mingbin; McGuyer, Bart H; Kwong, Dim-Lee; Zelevinsky, Tanya; Wong, Chee Wei

    2016-04-01

    Optical frequency combs-coherent light sources that connect optical frequencies with microwave oscillations-have become the enabling tool for precision spectroscopy, optical clockwork, and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but Kerr nonlinear dynamics in high-Q solid-state microresonators has recently demonstrated promising features as alternative platforms. The advance not only fosters studies of chip-scale frequency metrology but also extends the realm of optical frequency combs. We report the full stabilization of chip-scale optical frequency combs. The microcomb's two degrees of freedom, one of the comb lines and the native 18-GHz comb spacing, are simultaneously phase-locked to known optical and microwave references. Active comb spacing stabilization improves long-term stability by six orders of magnitude, reaching a record instrument-limited residual instability of [Formula: see text]. Comparing 46 nitride frequency comb lines with a fiber laser frequency comb, we demonstrate the unprecedented microcomb tooth-to-tooth relative frequency uncertainty down to 50 mHz and 2.7 × 10(-16), heralding novel solid-state applications in precision spectroscopy, coherent communications, and astronomical spectrography.

  11. A broadband chip-scale optical frequency synthesizer at 2.7 × 10−16 relative uncertainty

    PubMed Central

    Huang, Shu-Wei; Yang, Jinghui; Yu, Mingbin; McGuyer, Bart H.; Kwong, Dim-Lee; Zelevinsky, Tanya; Wong, Chee Wei

    2016-01-01

    Optical frequency combs—coherent light sources that connect optical frequencies with microwave oscillations—have become the enabling tool for precision spectroscopy, optical clockwork, and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but Kerr nonlinear dynamics in high-Q solid-state microresonators has recently demonstrated promising features as alternative platforms. The advance not only fosters studies of chip-scale frequency metrology but also extends the realm of optical frequency combs. We report the full stabilization of chip-scale optical frequency combs. The microcomb’s two degrees of freedom, one of the comb lines and the native 18-GHz comb spacing, are simultaneously phase-locked to known optical and microwave references. Active comb spacing stabilization improves long-term stability by six orders of magnitude, reaching a record instrument-limited residual instability of 3.6mHz/τ. Comparing 46 nitride frequency comb lines with a fiber laser frequency comb, we demonstrate the unprecedented microcomb tooth-to-tooth relative frequency uncertainty down to 50 mHz and 2.7 × 10−16, heralding novel solid-state applications in precision spectroscopy, coherent communications, and astronomical spectrography. PMID:27152341

  12. Tunable silica-on-silicon planar lightwave circuits for signal processing applications

    NASA Astrophysics Data System (ADS)

    Callender, Claire L.; Dumais, Patrick; Jacob, Sarkis; Blanchetière, Chantal; Ledderhof, Chris; Samadi, Payman; Kostko, Irina A.; Xia, Bing; Chen, Lawrence R.

    2009-06-01

    The development of silica planar lightwave circuits (PLCs) employing multiple phase-shifting elements to achieve optical signal processing is presented. Thermo-optic switching in Mach Zehnder interferometer (MZI) structures has been demonstrated with typical switching powers of 250-300 mW. 6-loop lattice-form MZI devices designed with specific filter responses have been fabricated, packaged, and tested. 10 GHz to 40 GHz pulse repetition rate multiplication has been achieved, and the tunability of the 6 phase control elements allows the generation of arbitrary 4-bit binary code patterns. Further improvements in complexity, power consumption, loss, and polarization sensitivity in these devices are discussed.

  13. High-performance p-i-n/HBT monolithic photoreceivers for lightwave communications

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Chandra S.; Lunardi, Leda M.

    1995-12-01

    Long wavelength optoelectronic integrated circuits (OEICs) have made impressive progress in the last decade and their performance has become attractive enough to be considered as part of lightwave communication systems. This paper reviews these aspects of OEICs, with emphasis on monolithic photoreceivers which incorporate heterojunction bipolar transistors for the electronic functions. We review single channel p-i-n/HBT photoreceivers with speeds up to 12 Gb/s and multi-channel array-type receivers suitable for WDM applications with an aggregate throughput of 20 Gb/s.

  14. Bidirectional phase-modulated hybrid cable television/radio-over-fiber lightwave transport systems.

    PubMed

    Chen, Chia-Yi; Wu, Po-Yi; Lu, Hai-Han; Lin, Ying-Pyng; Gao, Ming-Cian; Wen, Jian-Ying; Chen, Hwan-Wen

    2013-02-15

    A bidirectional phase-modulated hybrid cable television/radio-over-fiber lightwave transport system employing fiber Bragg grating tilt filter as a phase modulation-to-intensity modulation conversion scheme is proposed and demonstrated. Impressive performances of carrier-to-noise ratio, composite second-order, composite triple-beat, and bit-error rate are obtained in our proposed systems over a combination of 40 km single-mode fiber-and 1.43 km photonic crystal fiber transmission.

  15. Semiconductor laser amplifier and its optoelectronic properties for application in lightwave communication systems

    NASA Astrophysics Data System (ADS)

    Luc, V. V.; Eliseev, Petr G.; Man'ko, M. A.; Tsotsoriya, M. V.

    1992-12-01

    Output power and fiber-to-fiber gain along with infernal gain of the active element and optoelectronic signal curves at different values of input power versus pumping current are measured for the amplifier modules on the base of AR-coated InGaAsP/InP BH diodes. It is shown that diagnostics of the amplifier module oper''ation regime may be performed by voltage measurements and the optoelectronic signal can be used to monitor optical information passage in the regenerator device or for the distributed access the data transmitted in the lightwave comrnunicat ion systems. I.

  16. Hybrid integration platform based on silica-on-silicon planar lightwave circuit

    NASA Astrophysics Data System (ADS)

    Lin, Wenhua; Sun, C. Jacob; Schmidt, Kevin M.

    2007-02-01

    While silica waveguide PLC products have been deployed in various systems and applications, hybrid integration of semiconductor opto-electronic devices on silica-based planar lightwave circuit (PLC) has become the mainstream platform for small form factor, low-cost and high volume integrated transceiver modules. One of the main benefits of hybrid integration is the wafer-scale process, which greatly reduces chip/module size and assembly cost. This paper reviews the development of this technology, and as an example, presents a hybrid integrated transmitter with four wavelengths on silica PLC chip for LX4 and 10GbE applications.

  17. Proposed design for high precision refractive index sensor using integrated planar lightwave circuit

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Fujii, Yusaku; Zhang, Shulian; Hou, Wenmei

    2009-07-01

    A high precision and compact refractive index sensor is proposed. The combination of coarse measurement utilizing the change of the angle of refraction and fine measurement utilizing the phase change is newly proposed to measure absolute refractive index precisely. The proposed method does not need expensive optical measurement equipment such as an optical spectrum analyzer. The integrated planar lightwave circuit (PLC) technology enables us to obtain a compact sensor that is preferable for the practical use. The principle, design, and some configurations for precise refractive index measurement are described.

  18. Compact silica-on-silicon planar lightwave circuits for high speed optical signal processing

    NASA Astrophysics Data System (ADS)

    Callender, C. L.; Dumais, P.; Blanchetiere, C.; Jacob, S.; Ledderhof, C.; Smelser, C. W.; Yadav, K.; Albert, J.

    2012-02-01

    Silica-on-silicon planar lightwave circuit (PLC) technology is well established and provides a low loss and stable photonic device platform. However, limitations in size and integration of active components remain. Engineering of the layer structure in silica PLCs to achieve high-index contrast, compact device architectures and monolithically integrated optical nonlinearities is described. Modeling of properties of doped-silica layers provides a design strategy for optimization of waveguide loss and birefringence. Optical nonlinearities in poled silica layers have been demonstrated, and recent work to incorporate these into functional device structures and exploit them for high speed modulation is reported.

  19. Hybrid-integrated coherent receiver using silica-based planar lightwave circuit technology

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hoi; Choe, Joong-Seon; Choi, Kwang-Seong; Youn, Chun-Ju; Kim, Duk-Jun; Jang, Sun-Hyok; Kwon, Yong-Hwan; Nam, Eun-Soo

    2011-12-01

    A hybrid-integrated coherent receiver module has been achieved using flip-chip bonding technology, consisting of a silica-based 90°-hybrid planar lightwave circuit (PLC) platform, a spot-size converter integrated waveguide photodiode (SSC-WG-PD), and a dual-channel transimpedance amplifier (TIA). The receiver module shows error-free operation up to 40Gb/s and OSNR sensitivity of 11.5 dB for BER = 10-3 at 25 Gb/s.

  20. Dual-quadrature coherent receiver for 100G Ethernet applications based on polymer planar lightwave circuit.

    PubMed

    Wang, Jin; Kroh, Marcel; Theurer, Abongwa; Zawadzki, Crispin; Schmidt, Detlef; Ludwig, Reinhold; Lauermann, Matthias; Zhang, Ziyang; Beling, Andreas; Matiss, Andreas; Schubert, Colja; Steffan, Andreas; Keil, Norbert; Grote, Norbert

    2011-12-12

    A dual-quadrature coherent receiver based on a polymer planar lightwave circuit (PLC) is presented. This receiver comprises two separate optical 90°-hybrid chips made of polymer waveguides and hybridly integrated with InGaAs/InP photodiode (PD) arrays. The packaged receiver was successfully operated in 112 Gbit/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments. In back-to-back configuration the OSNR requirement for a BER value of 10(-3) was 15.1 dB which has to be compared to a theoretical limit of 13.8 dB.

  1. Polymer planar lightwave circuit based hybrid-integrated coherent receiver for advanced modulation signals

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Han, Yang; Liang, Zhongcheng; Chen, Yongjin

    2012-11-01

    Applying coherent detection technique to advanced modulation formats makes it possible to electronically compensate the signal impairments. A key issue for a successful deployment of coherent detection technique is the availability of cost-efficient and compact integrated receivers, which are composed of an optical 90° hybrid mixer and four photodiodes (PDs). In this work, three different types of optical hybrids are fabricated with polymer planar lightwave circuit (PLC), and hybridly integrated with four vertical backside illuminated III-V PDs. Their performances, such as the insertion loss, the transmission imbalance, the polarization dependence and the phase deviation of 90° hybrid will be discussed.

  2. A highly stable mm-wave synthesizer realized by mixing two lasers locked to an optical frequency comb generator

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru; Ueda, Akitoshi; Horikoshi, Munekazu; Nakagawa, Ken'ichi; Ishiguro, Masato; Ueda, Ken-ichi; Ito, Hiroshi

    2004-10-01

    Millimeter signal generation with high spectral purity and low phase fluctuations up to 100 GHz were demonstrated with an optical method in which two external-cavity laser diodes were phase-locked to an electro-optic modulator (EOM)-based optical frequency comb generator (OFCG). The additional phase noise caused from the cavity fluctuation in OFCG was completely canceled, and the phase noise of the heterodyne beat note of two LDs was determined only by that of the signal generator below offset frequency of 10 kHz. The detailed investigation of such a high frequency signal had never been done before, and the measured frequency of 100 GHz was limited only by the bandwidth of the phase noise detection system, and can be expanded up to more than 1 THz.

  3. Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems

    NASA Technical Reports Server (NTRS)

    Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip

    2010-01-01

    Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for

  4. The radiation hardness and temperature stability of Planar Light-wave Circuit splitters for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Ryder, N. C.; Hamilton, P.; Huffman, B. T.; Teng, P. K.; Weidberg, A. R.; Issever, C.

    2011-10-01

    High Luminosity LHC (HL-LHC) Inner Tracker designs may include the sharing of Timing, Trigger and Control (TTC) signals between several tracker modules. This is possible because the highest frequency signals are common to all modules. Such designs are an attractive option because they reduce the number of optical links required and hence the cost. These designs will require optical signal splitters that are radiation hard up to high doses and capable of operating in cold temperatures. Optical splitters are available as either fused-fibre splitters or Planar Light-wave Circuit (PLC) splitters. PLC splitters are preferable because they are smaller than fused-fibre splitters. A selection of PLC splitters from different manufacturers and of two different technologies (silica and glass based) have been tested for radiation hardness up to a dose of 500 kGy(Si) and for temperature stability. All the tested splitters displayed small increases in insertion losses ( < 0.1 dB) in reducing the operating temperature from 25°C to -25°C. The silica based splitters from all manufacturers did not exhibit significant radiation induced insertion losses, despite the high dose they were exposed to. The glass based sample, however, had a per channel radiation induced insertion loss of up to 1.16 dB. Whilst the silica based splitters can be considered as qualified for HL-LHC use with regards to radiation hardness, the glass technology would require further testing at a lower, more realistic, dose to also be considered as a potential component for HL-LHC upgrade designs.

  5. Size and frequency of gaps in newly synthesized DNA of xeroderma pigmentosum human cells irradiated with ultraviolet light

    SciTech Connect

    Meneghini, R.; Cordeiro-Stone, M.; Schumacher, R.I.

    1981-01-01

    Native newly synthesized DNA from human cells (xeroderma pigmentosum type) irradiated with ultraviolet light releases short pieces of DNA (L-DNA) when incubated with the single-strand specific S/sub 1/ nuclease. This is not observed in the case of unirradiated cells. Previous experiments had shown that the L-DNA resulted from the action of S/sub 1/ nuclease upon gaps, i.e., single-stranded DNA discontinuities in larger pieces of double-stranded DNA. We verified that the duplex L-DNA, that arises from the inter-gap regions upon S/sub 1/ nuclease treatment, has a size which approximates the distance between two pyrimidine dimers on the same strand. A method was devised to measure the size of the gaps. These parameters have been considered in the proposition of a model for DNA synthesis on a template containing pyrimidine dimers.

  6. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. II. The frequency of planets orbiting M dwarfs

    SciTech Connect

    Clanton, Christian; Gaudi, B. Scott

    2014-08-20

    In contrast to radial velocity (RV) surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion (∼0.1 M {sub Jup}) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf RV surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian (>M {sub Jup}) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methods are consistent. Finally, we combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters (1 ≲ m{sub p} sin i/M {sub Jup} ≲ 13) with periods 1 ≤ P/days ≤ 10{sup 4} is f{sub J}=0.029{sub −0.015}{sup +0.013}, a median factor of 4.3 (1.5-14 at 95% confidence) smaller than the inferred frequency of such planets around FGK stars of 0.11 ± 0.02. However, we find the frequency of all giant planets with 30 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub G}=0.15{sub −0.07}{sup +0.06}, only a median factor of 2.2 (0.73-5.9 at 95% confidence) smaller than the inferred frequency of such planets orbiting FGK stars of 0.31 ± 0.07. For a more conservative definition of giant planets (50 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4}), we find f{sub G{sup ′}}=0.11±0.05, a median factor of 2.2 (0.73-6.7 at 95% confidence) smaller than that inferred for FGK stars of 0.25 ± 0.05. Finally, we find the frequency of all planets with 1 ≤ m{sub p} sin i/M {sub ⊕} ≤ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub p} = 1.9 ± 0.5.

  7. Lightwave Communications.

    ERIC Educational Resources Information Center

    Rheam, Harry

    1993-01-01

    Describes simple and inexpensive labs for introducing students to fiber optic communications. Students investigate light as a carrier wave; look into the difficulties associated with "light" communication; and learn about modulation, optical fibers, and critical angles. (PR)

  8. Two-Dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof

    NASA Technical Reports Server (NTRS)

    Ai, Jun (Inventor); Dimov, Fedor (Inventor)

    2015-01-01

    A large coherent two-dimensional (2D) spatial filter array (SFA), 30 by 30 or larger, is produced by coupling a 2D planar lightwave circuit (PLC) array with a pair of lenslet arrays at the input and output side. The 2D PLC array is produced by stacking a plurality of chips, each chip with a plural number of straight PLC waveguides. A pupil array is coated onto the focal plane of the lenslet array. The PLC waveguides are produced by deposition of a plural number of silica layers on the silicon wafer, followed by photolithography and reactive ion etching (RIE) processes. A plural number of mode filters are included in the silica-on-silicon waveguide such that the PLC waveguide is transparent to the fundamental mode but higher order modes are attenuated by 40 dB or more.

  9. Hollow-fiber evanescent light-wave atom-bottle trap

    NASA Astrophysics Data System (ADS)

    Dowling, Jonathan P.

    1997-05-01

    Recent theoretical and experimental demonstrations have shown that blue-detuned laser light, propagating in the annular core-cladding region of a hollow-glass fiber, produces a repulsive, evanescent light-wave potential in the hollow, that can be used to guide near-resonant atoms down the fiber. In this work, I show that slight modifications to the hollow-fiber geometry can be used to turn this atom guide into an atom-bottle trap. The trap can be open and shut by varying the aperture angle at which light couples into the fiber, allowing the atoms to be easily loaded. This trap has an advantage over other optical atom traps in that the atoms move coherently in a field-free region with only brief specular reflections at the step-like potential walls.

  10. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    SciTech Connect

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

    2016-03-01

    Here we demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.

  11. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    PubMed Central

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

    2016-01-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost. PMID:26927022

  12. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    DOE PAGES

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; ...

    2016-03-01

    Here we demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneathmore » an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.« less

  13. Super-high-frequency shielding properties of excimer-laser-synthesized-single-wall-carbon-nanotubes/polyurethane nanocomposite films

    NASA Astrophysics Data System (ADS)

    Aïssa, B.; Laberge, L. L.; Habib, M. A.; Denidni, T. A.; Therriault, D.; El Khakani, M. A.

    2011-04-01

    Electromagnetic shielding attenuation (ESA) properties of carbon nanotubes/polymer nanocomposite films, in the super high frequency (SHF) X-band (7-12 GHz) domain are studied. The nanocomposite films consisted of thermoset polyurethane (PU) resin blended with single-walled carbon nanotubes (SWCNTs) mats, and deposited on fused quartz substrates. Two different approaches were used to achieve the nanocomposite films, namely (i) through the on-substrate "all-laser" growth approach of SWCNTs directly onto substrate, followed by their infiltration by the PU resin, and (ii) by appropriately dispersing the chemically-purified SWCNTs (in the soot form) into the PU matrix and their subsequent deposition onto quartz substrates by means of a solvent casting process. Characterizations of the ESA properties of the developed nanocomposite films show that they exhibit systematically a deep shielding band, centered at around 9.5 GHz, with an attenuation as high as |- 30| dB, recorded for SWCNT loads of 2.5 wt. % and above. A direct correlation is established between the electrical conductivity of the nanocomposite films and their electromagnetic shielding capacity. The SWCNTs/PU nanocomposites developed here are highly promising shielding materials as SHF notch filters, as their ESA capacity largely exceeds the target value of |- 20| dB generally requested for commercial applications.

  14. Super-high-frequency shielding properties of excimer-laser-synthesized-single-wall-carbon-nanotubes/polyurethane nanocomposite films

    SciTech Connect

    Aiessa, B.; Habib, M. A.; Denidni, T. A.; El Khakani, M. A.; Laberge, L. L.; Therriault, D.

    2011-04-15

    Electromagnetic shielding attenuation (ESA) properties of carbon nanotubes/polymer nanocomposite films, in the super high frequency (SHF) X-band (7-12 GHz) domain are studied. The nanocomposite films consisted of thermoset polyurethane (PU) resin blended with single-walled carbon nanotubes (SWCNTs) mats, and deposited on fused quartz substrates. Two different approaches were used to achieve the nanocomposite films, namely (i) through the on-substrate ''all-laser'' growth approach of SWCNTs directly onto substrate, followed by their infiltration by the PU resin, and (ii) by appropriately dispersing the chemically-purified SWCNTs (in the soot form) into the PU matrix and their subsequent deposition onto quartz substrates by means of a solvent casting process. Characterizations of the ESA properties of the developed nanocomposite films show that they exhibit systematically a deep shielding band, centered at around 9.5 GHz, with an attenuation as high as |- 30| dB, recorded for SWCNT loads of 2.5 wt. % and above. A direct correlation is established between the electrical conductivity of the nanocomposite films and their electromagnetic shielding capacity. The SWCNTs/PU nanocomposites developed here are highly promising shielding materials as SHF notch filters, as their ESA capacity largely exceeds the target value of |- 20| dB generally requested for commercial applications.

  15. High frequency dielectric response and magnetic studies of Zn1-xTbxFe2O4 nanocrystalline ferrites synthesized via micro-emulsion technique

    NASA Astrophysics Data System (ADS)

    Azhar Khan, Muhammad; Sabir, Muhammad; Mahmood, Azhar; Asghar, M.; Mahmood, K.; Afzal Khan, M.; Ahmad, Iqbal; Sher, Muhammad; Farooq Warsi, Muhammad

    2014-06-01

    Tb3+-doped nanocrystalline zinc ferrites with a nominal composition of Zn1-xTbxFe2O4 (x=0, 0.03, 0.06, 0.09, 0.12 and 0.15) were prepared by micro-emulsion method and were annealed at 600 °C for 8.5 h. The synthesized samples were characterized by thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) and dielectric measurement techniques. The powder XRD patterns confirm the single phase cubic spinel structure, indicated that doping nanoferrites with small concentrations of terbium ions allowed their entrance to the spinel lattice and the crystallite size is found in the range of 16-24 nm. The dielectric constant (ε) and dielectric loss (tanδ) of all the samples were measured in the frequency range 100 MHz-3 GHz at room temperature. The dielectric constant and dielectric loss of the samples are found to decrease with increase in frequency and Tb3+ content. The reduction in the dielectric parameters is attributed to the obstruction incorporated in electron exchange mechanism caused by the lockup among iron and terbium cations. The magnetic properties revealed that these terbium doped nanocrystalline zinc ferrites exhibit ferrimagnetic behavior. The high saturation magnetization and coercivity along with smaller dielectric parameters having Tb-contents suggests that the materials are suitable for applications in memory devices and high frequency applications.

  16. Highly integrated planar lightwave circuits based on plasmonic and Si nano-waveguides

    NASA Astrophysics Data System (ADS)

    He, Sailing; Han, Zhanghua; Liu, Liu; Dai, Daoxin

    2006-09-01

    Planar lightwave circuits (PLC) based on nanophotonic waveguides are becoming more and more attractive because of their ultrasmall sizes and possibility for realizing large scale monolithic integration with a very high integration density. In this paper we discuss two attractive types of nanophotonic waveguides based on dielectrics or metals. For the dielectric type, a silicon-on-insulator (SOI) strip waveguide is considered, and ultra-compact photonic integrated devices such as polarization-insensitive arrayed waveguide grating (de)multiplexers are obtained. Based on the fact that light can be confined tightly in a single interface between a metal and dielectric, a surface plasmon (SP) waveguide can offer a tight confinement for the light field. The cross-sectional size of an SP waveguide could be pushed down to tens of nanometers, i.e. beyond the diffraction limit. An accurate anaylysis for an SP waveguide formed by a dielectric nano-trench in a metal is presented. A novel subwavelength index-guided multimode plasmonic waveguide is introduced and an ultra-compact MMI power splitter is designed.

  17. Lightwave-driven quasiparticle collisions on a sub-cycle timescale

    PubMed Central

    Langer, F.; Hohenleutner, M.; Schmid, C.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.

    2016-01-01

    Ever since Ernest Rutherford first scattered α-particles from gold foils1, collision experiments have revealed unique insights into atoms, nuclei, and elementary particles2. In solids, many-body correlations also lead to characteristic resonances3, called quasiparticles, such as excitons, dropletons4, polarons, or Cooper pairs. Their structure and dynamics define spectacular macroscopic phenomena, ranging from Mott insulating states via spontaneous spin and charge order to high-temperature superconductivity5. Fundamental research would immensely benefit from quasiparticle colliders, but the notoriously short lifetimes of quasiparticles6 have challenged practical solutions. Here we exploit lightwave-driven charge transport7–24, the backbone of attosecond science9–13, to explore ultrafast quasiparticle collisions directly in the time domain: A femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying wave packet dynamics, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands17–19 of the optical excitation. A full quantum theory explains our observations microscopically. This approach opens the door to collision experiments with a broad variety of complex quasiparticles and suggests a promising new way of sub-femtosecond pulse generation. PMID:27172045

  18. The FlashBake oven: Lightwave oven delivers high-quality, quick cooking

    SciTech Connect

    Gregerson, J.

    1995-06-01

    The FlashBake oven is a well-publicized new electrotechnology that over 40 utilities are promoting for commercial food service applications, but is it worth its high price? E Source research shows that this $5,000 to $8,500 lightwave oven can increase sales and profitability in a number of applications, thus paying for itself within months to a year or two. The FlashBake does so by cooking foods less than two inches thick in two minutes or less, as quickly as microwave ovens do, but with quality equal to or greater than that of conventional gas and electric ovens. The FlashBake makes sense for restaurants and kiosks that offer quick-order menus, as well as for full-menu restaurants that can use the FlashBake during slow periods (instead of larger ovens) and during busy periods (for extra capacity). In these target market applications, the FlashBake is likely to use less energy due to its extremely low idle energy use. It is not well suited to banquet and institutional kitchens that require large numbers of the same item to be cooked and ready simultaneously. The FlashBake has only one tray, so cooking large volumes may take longer, require more labor, and use more energy than a conventional oven that has multiple cooking racks. Energy use is rarely a major concern of those who buy FlashBake ovens, since energy for cooking represents a small fraction of a restaurant`s overall operating costs. The main selling point of the FlashBake is menu and productivity enhancement.

  19. Compact and Athermal DQPSK Demodulator with Silica-Based Planar Lightwave Circuit

    NASA Astrophysics Data System (ADS)

    Nasu, Yusuke; Sakamaki, Yohei; Hattori, Kuninori; Kamei, Shin; Hashimoto, Toshikazu; Saida, Takashi; Takahashi, Hiroshi; Inoue, Yasuyuki

    We present a full description of a polarization-independent athermal differential quadrature phase shift keying (DQPSK) demodulator that employs silica-based planar lightwave circuit (PLC) technology. Silica-based PLC DQPSK demodulator has good characteristics including low polarization dependence, mass producibility, etc. However delay line interferometer (DLI) of demodulator had the large temperature dependence of its optical characteristics, so it required large power consumption to stabilize the chip temperature by the thermo-electric cooler (TEC). We previously made a quick report about an athermal DLI to reduce a power consumption by removing the TEC. In this paper, we focus on the details of the design and the fabrication method we used to achieve the athermal characteristics, and we describe the thermal stability of the signal demodulation and the reliability of our demodulator. We described two athermalization methods; the athermalization of the transmission spectrum and the athermalization of the polarization property. These methods were successfully demonstrated with keeping a high extinction ratio and a small footprint by introducing a novel interwoven DLI configuration. This configuration can also limit the degradation of the polarization dependent phase shift (PDf) to less than 1/10 that with the conventional configuration when the phase shifters on the waveguide are driven. We used our demodulator and examined its demodulation performance for a 43Gbit/s DQPSK signal. We also verified its long-term reliability and thermal stability against the rapid temperature change. As a result, we confirmed that our athermal demodulator performed sufficiently well for use in DQPSK systems.

  20. Analysis of dispersion compensation for position-dependence in externally modulated CATV lightwave systems by using chirped fiber grating

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Liu, Feng; Cai, Haiwen; Qu, Ronghui; Fang, Zujie

    2005-10-01

    The dispersion compensation characteristics of the chirped fiber grating (CFG) for different dispersion compensation positions are analyzed in externally modulated cable television (CATV) lightwave system and the analytic expression of the composite second order (CSO) distortion is derived. The analyses give a reasonable explanation for the position-dependent effect of CFG dispersion compensator, which was found in practical systems. Moreover, the theoretical result is also verified by an experiment. It is believed that the theory will be helpful in designing optical CATV fiber links with nodes at proper positions both for intensity amplification and dispersion compensation.

  1. Arrayed Waveguide Gratings and Their Application Using Super-High-Δ Silica-Based Planar Lightwave Circuit Technology

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Uetsuka, Hisato

    This paper reviews our recent progress on arrayed waveguide gratings (AWGs) using super-high-Δ silica-based planar lightwave circuit (PLC) technology and their application to integrated optical devices. Factors affecting the chip size of AWGs and the impact of increasing relative index difference Δ on the chip size are investigated, and the fabrication result of a compact athermal AWG using 2.5%-Δ silica-based waveguides is presented. As an application of super-high-Δ AWGs to integrated devices, a flat-passband multi/demultiplexer consisting of an AWG and cascaded MZIs is presented.

  2. PULSE SYNTHESIZING GENERATOR

    DOEpatents

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  3. Synthesizing speech

    NASA Astrophysics Data System (ADS)

    Siltanen, Samuli

    2015-01-01

    Samuli Siltanen explains how solving an "inverse problem" will improve the quality of life of people who can't speak and have to use voice synthesizers - particularly women and children, whose only current option is to sound like an adult male.

  4. Waveform synthesizer

    DOEpatents

    Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A method of producing optical and electrical pulses of desired shape. An optical pulse of arbitrary but defined shape illuminates one end of an array of optical fiber waveguides of differing lengths to time differentiate the input pulse. The optical outputs at the other end of the array are combined to form a synthesized pulse of desired shape.

  5. A planar lightwave circuit based micro interrogator and its applications to the interrogation of multiplexed optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Xiao, Gaozhi; Mrad, Nezih; Guo, Honglei; Zhang, Zhiyi; Yao, Jianping

    2008-12-01

    Optical fiber Bragg grating sensors have found potential applications in many fields, but the lack of a simple, field deployable and low cost interrogation system is hindering their deployment. To tackle this, we have developed a micro optical sensor interrogator using a monolithically integrated planar lightwave circuit based echelle diffractive grating demultiplexer and a detector array. The design and development of this device are presented in this paper. It has been found that the measurement range of this micro interrogator is more than 25 nm with better than 1 pm resolution. This paper also reports the applications of the micro interrogator developed to the monitoring of commercial optical fiber Bragg grating (FBG) temperature sensors and mechanical sensors. The results obtained are very satisfactory and in some cases, they are better than those obtained using commercial bench top lab equipment.

  6. High efficient coupling between wedged-shaped fiber and planar lightwave circuit chip using gradient refractive-index media

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Qu, Shuting; Xiao, Jinbiao; Sun, Xiaohan

    2006-10-01

    Planar lightwave circuit (PLC) chips based on III-V semiconductor MQW rib waveguide promise to be not only a solution to information access, but also direct the issues of bandwidth, pin count, reliability and complexity. Nanopositioning and precision alignment addresses vital importance in high-efficient connectivity between PLC chips and fiber arrays. Refractive-index mismatching between fused silica and III-V compound is one of the most serious problem which remains unsolved on one hand as well as mode field mismatching which can be mitigated in other hand through gradient geometry structure such as tapered spot size converter (SSC) and specialty fibers such as wedge-shaped fiber (WSF). Spherical gradient refractive-index (SGRIN) media intervened between WSF and MQW rib waveguide is put forward. The GRIN media virtually eliminates the reflection losses associated with the fused silica-air interface and III-V semiconductor-air interface. The beam spot emitted from WSF are observed by digital camera and the fundamental mode of MQW rib waveguide was calculated out. Lightwave propagation and mode field evolution in the WSF-SGRIN-PLC system is simulated by FDTD method with the coupling loss of 8.54dB at a wavelength of 1.55μm. An LED signal is injected into WSF, transmitted along GRIN media and PLC waveguide and output through single mode fiber (SMF). Optical power meter-based measurement verifies the whole system coupling loss to be consistent with the numeric estimation. The approach provides an experimental prototype for coupling and packaging technique of integrated photonic devices, hence supplying foundation for photonic network.

  7. Synthesizing Chaos

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan; Corron, Ned; Hayes, Scott; Pethel, Shawn

    2007-03-01

    Chaos is usually attributed only to nonlinear systems. Yet it was recently shown that chaotic waveforms can be synthesized by linear superposition of randomly polarized basis functions. The basis function contains a growing oscillation that terminates in a large pulse. We show that this function is easily realized when viewed backward in time as a pulse followed by ringing decay. Consequently, a linear filter driven by random pulses outputs a waveform that, when viewed backward in time, exhibits essential qualities of chaos, i.e. determinism and a positive Lyapunov exponent. This phenomenon suggests that chaos may be connected to physical theories whose framework is not that of a deterministic dynamical system. We demonstrate that synthesizing chaos requires a balance between the topological entropy of the random source and the dissipation in the filter. Surprisingly, using different encodings of the random source, the same filter can produce both Lorenz-like and R"ossler-like waveforms. The different encodings can be viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing the Lorenz and R"ossler paradigms of nonlinear dynamics. Thus, the language of deterministic chaos provides a useful description for a class of signals not generated by a deterministic system.

  8. Reconfigurable Delay Time Polymer Planar Lightwave Circuit for an X-band Phased-Array Antenna Demonstration

    NASA Astrophysics Data System (ADS)

    Howley, Brie; Wang, Xiaolong; Chen, Maggie; Chen, Ray T.

    2007-03-01

    A 4-bit polymer optoelectronic true-time delay (TTD) device is demonstrated. The planar lightwave circuit (PLC) is composed of monolithically integrated low-loss passive polymer waveguide delay lines and five cascaded 2 x 2 polymer thermooptic switches. Waveguide junction offsets and air trenches simultaneously reduce the bending loss and device area. Simulations are used to optimize the trench and offset structures for fabrication. The 16 time delays generated by the device are measured to be in the range from 0 to 177 ps in 11.8-ps increments. The packaged PLC has an insertion loss of up to 14.9 dB, and the delay switching speed is 2 ms. An eight-element X-band phased-array antenna system is constructed to demonstrate the beam-steering capabilities of the 4-bit-delay devices. The TTD devices are shown to steer the far-field radiation pattern between 0° and -14.5°.

  9. Programmable electronic synthesized capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.

  10. Ferrimagnetic resonance excitation by light-wave mixing in a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Gutjahr-Löser, Th.; Krieger, W.; Walther, H.; Kirschner, J.

    1999-12-01

    Ferrimagnetic resonance is measured in a scanning tunneling microscope. The infrared light of two lasers is focused into the tunneling junction and a difference-frequency signal in the microwave region is generated. This microwave signal is used to excite spin waves in an yttrium-iron-garnet film with a thin Au capping. The coupling of the light to the tunneling junction is explained by an antenna mechanism. Characteristic antenna patterns of the angle-dependent receiving efficiency are obtained. The mixing of the two laser frequencies is due to the nonlinearity of the tunneling junction. The microwave signal obtained is absorbed in the ferromagnetic sample if the resonance condition is fulfilled. This method might allow the measurement of magnetic properties with a lateral resolution down to the nm scale.

  11. Oblique superposition of two elliptically polarized lightwaves using geometric algebra: is energy-momentum conserved?

    PubMed

    Sze, Michelle Wynne C; Sugon, Quirino M; McNamara, Daniel J

    2010-11-01

    In this paper, we use Clifford (geometric) algebra Cl(3,0) to verify if electromagnetic energy-momentum density is still conserved for oblique superposition of two elliptically polarized plane waves with the same frequency. We show that energy-momentum conservation is valid at any time only for the superposition of two counter-propagating elliptically polarized plane waves. We show that the time-average energy-momentum of the superposition of two circularly polarized waves with opposite handedness is conserved regardless of the propagation directions of the waves. And, we show that the resulting momentum density of the superposed waves generally has a vector component perpendicular to the momentum densities of the individual waves.

  12. Synthesized light transients.

    PubMed

    Wirth, A; Hassan, M Th; Grguras, I; Gagnon, J; Moulet, A; Luu, T T; Pabst, S; Santra, R; Alahmed, Z A; Azzeer, A M; Yakovlev, V S; Pervak, V; Krausz, F; Goulielmakis, E

    2011-10-14

    Manipulation of electron dynamics calls for electromagnetic forces that can be confined to and controlled over sub-femtosecond time intervals. Tailored transients of light fields can provide these forces. We report on the generation of subcycle field transients spanning the infrared, visible, and ultraviolet frequency regimes with a 1.5-octave three-channel optical field synthesizer and their attosecond sampling. To demonstrate applicability, we field-ionized krypton atoms within a single wave crest and launched a valence-shell electron wavepacket with a well-defined initial phase. Half-cycle field excitation and attosecond probing revealed fine details of atomic-scale electron motion, such as the instantaneous rate of tunneling, the initial charge distribution of a valence-shell wavepacket, the attosecond dynamic shift (instantaneous ac Stark shift) of its energy levels, and its few-femtosecond coherent oscillations.

  13. Quantum control of a molecular ionization process by using Fourier-synthesized laser fields

    NASA Astrophysics Data System (ADS)

    Ohmura, Hideki; Saito, Naoaki

    2015-11-01

    In photoexcitation processes, if the motion of excited electrons can be precisely steered by the instantaneous electric field of an arbitrary waveform of a Fourier-synthesized laser field, the resultant matter response can be achieved within one optical cycle, usually within the attosecond (1 as =10-18s) regime. Fourier synthesis of laser fields has been achieved in various ways. However, the general use of Fourier-synthesized laser fields for the control of matter is extremely limited. Here, we report the quantum control of a nonlinear response of a molecular ionization process by using Fourier-synthesized laser fields. The directionally asymmetric molecular tunneling ionization induced by intense (5.0 ×1012W /c m2) Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light achieves the orientation-selective ionization; we utilized the orientation-selective ionization for measurement of the relative phase differences between the fundamental and each harmonic light. Our findings impact not only light-wave engineering but also the control of matter, possibly triggering the creation and establishment of a new methodology that uses Fourier-synthesized laser fields.

  14. Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hänsch, Theodor W.; Picqué, Nathalie

    Much of modern research in the field of atomic, molecular, and optical science relies on lasers, which were invented some 50 years ago and perfected in five decades of intense research and development. Today, lasers and photonic technologies impact most fields of science and they have become indispensible in our daily lives. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. Through the development of optical frequency comb techniques, technique a setup of the size 1 ×1 m2, good for precision measurements of any frequency, and even commercially available, has replaced the elaborate previous frequency-chain schemes for optical frequency measurements, which only worked for selected frequencies. A true revolution in optical frequency measurements has occurred, paving the way for the creation of all-optical clocks clock with a precision that might approach 10-18. A decade later, frequency combs are now common equipment in all frequency metrology-oriented laboratories. They are also becoming enabling tools for an increasing number of applications, from the calibration of astronomical spectrographs to molecular spectroscopy. This chapter first describes the principle of an optical frequency comb synthesizer. Some of the key technologies to generate such a frequency comb are then presented. Finally, a non-exhaustive overview of the growing applications is given.

  15. Psychoacoustic Analysis of Synthesized Jet Noise

    NASA Technical Reports Server (NTRS)

    Okcu, Selen; Rathsam, Jonathan; Rizzi, Stephen A.

    2013-01-01

    An aircraft noise synthesis capability is being developed so the annoyance caused by proposed aircraft can be assessed during the design stage. To make synthesized signals as realistic as possible, high fidelity simulation is required for source (e.g., engine noise, airframe noise), propagation and receiver effects. This psychoacoustic study tests whether the jet noise component of synthesized aircraft engine noise can be made more realistic using a low frequency oscillator (LFO) technique to simulate fluctuations in level observed in recordings. Jet noise predictions are commonly made in the frequency domain based on models of time-averaged empirical data. The synthesis process involves conversion of the frequency domain prediction into an audible pressure time history. However, because the predictions are time-invariant, the synthesized sound lacks fluctuations observed in recordings. Such fluctuations are hypothesized to be perceptually important. To introduce time-varying characteristics into jet noise synthesis, a method has been developed that modulates measured or predicted 1/3-octave band levels with a (<20Hz) LFO. The LFO characteristics are determined through analysis of laboratory jet noise recordings. For the aft emission angle, results indicate that signals synthesized using a generic LFO are perceived as more similar to recordings than those using no LFO, and signals synthesized with an angle-specific LFO are more similar to recordings than those synthesized with a generic LFO.

  16. Multiplexed chirp waveform synthesizer

    DOEpatents

    Dudley, Peter A.; Tise, Bert L.

    2003-09-02

    A synthesizer for generating a desired chirp signal has M parallel channels, where M is an integer greater than 1, each channel including a chirp waveform synthesizer generating at an output a portion of a digital representation of the desired chirp signal; and a multiplexer for multiplexing the M outputs to create a digital representation of the desired chirp signal. Preferably, each channel receives input information that is a function of information representing the desired chirp signal.

  17. Dynamic Gain Equalizer Using Hybrid Integrated Silica-Based Planar Lightwave Circuits With LiNbO3 Phase Shifter Array

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Chiba, Takafumi; Tanaka, Kotaro; Himi, Susumu; Uetsuka, Hisato

    2006-01-01

    This paper proposes a dynamic gain equalizer (DGE) using hybrid integrated silica-based planar lightwave circuits (PLCs) with a LiNbO3 (LN) phase shifter array to achieve a DGE that offers both excellent optical performance and control of the phase shifters. The structure consists of two PLCs having arrayed-waveguide gratings (AWGs) and couplers directly attached to the LN phase shifter array at its end faces. To reduce polarization-dependent characteristics, a polarization diversity technique using a polarization beam splitter (PBS) and a circulator was employed. To reduce polarization-dependent loss (PDL) due to the reflected light at the PLC-LN interfaces, tilted waveguides from the normal direction to the interfaces were introduced, and the relation between PDL and power reflectivity was theoretically investigated. A hybrid integrated DGE using super-high-Delta PLCs and a 25-channel electrooptic (EO) phase shifter array was demonstrated. The PDL was effectively suppressed with the introduced polarization diversity technique, and the measured spectra were in good agreement with designed profiles. These results indicate that the proposed hybrid integrated DGE offers good performance and controllability for practical applications.

  18. The cylindrical air holes of the negative-refraction photonic crystal double flat lens group for lightwave target detection and imaging

    NASA Astrophysics Data System (ADS)

    Lu, Jian; Shen, Yang; Shen, TingGen; Lian, YingFei; Wang, FeiFei; Xu, Yang

    2013-06-01

    The influence of the cylindrical air holes of the negative-refraction photonic crystal (NR-PC) double flat lens group on the performance of lightwave target detection and imaging is studied in this paper using the finite-difference time-domain (FDTD) method. Numerical simulations indicate that significant enhancement of the scattering signal can be obtained by using a NR-PC flat lens; consequently, great improvement of the refocusing gain as well as the imaging resolution will be provided. We further research the effects of different positions for target detection by using a NR-PC double flat lens group with cylindrical air holes. Then we use defective air holes instead of perfect ones. By using a dynamic scanning scheme, we find that the distance between two flats could be changed flexibly. And it could improve the lateral resolution of target scanning and enlarge the distance between the target and flat greatly. In conclusion, our investigation optimized the performance of the detection and imaging system, and provided the basis for converting an idealized left-handed material lens into a physically realizable NR-PC double flat lens group.

  19. 300-MHz-repetition-rate, all-fiber, femtosecond laser mode-locked by planar lightwave circuit-based saturable absorber.

    PubMed

    Kim, Chur; Kim, Dohyun; Cheong, YeonJoon; Kwon, Dohyeon; Choi, Sun Young; Jeong, Hwanseong; Cha, Sang Jun; Lee, Jeong-Woo; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2015-10-05

    We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.

  20. Micro/nanoscale self-aligned optical couplings of the self-organized lightwave network (SOLNET) formed by excitation lights from outside

    NASA Astrophysics Data System (ADS)

    Yoshimura, Tetsuzo; Nawata, Hideyuki

    2017-01-01

    The self-organized lightwave network (SOLNET) provides "optical solder," which enables self-aligned optical couplings between misaligned optical devices with different core sizes. We propose a low-cost SOLNET formation method, in which write beams are generated within optical devices by excitation lights from outside. Simulations based on the finite-difference time-domain method reveal that the two-photon processes enhance optical-solder capabilities. In couplings between 600-nm-wide waveguides opposed with 32-μm distance a wide lateral misalignment tolerance of 2 μm to maintain <1 dB loss at 650 nm in wavelength is obtained. The coupling loss at 1-μm lateral misalignment is 0.4 dB. In couplings between 3-μm-wide and 600-nm-wide waveguides, losses at 650 nm are 0.1 dB for no misalignments and 0.9 dB for 1-μm misalignment. These results suggest that SOLNETs provide optical solder with mode size converting functions.

  1. Stereo matching image processing by synthesized color and the characteristic area by the synthesized color

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Mutoh, Eiichiro; Kumagai, Hideo

    2014-09-01

    We have developed the stereo matching image processing by synthesized color and the corresponding area by the synthesized color for ranging the object and image recognition. The typical images from a pair of the stereo imagers may have some image disagreement each other due to the size change, missed place, appearance change and deformation of characteristic area. We constructed the synthesized color and corresponding color area with the same synthesized color to make the distinct stereo matching. We constructed the synthesized color and corresponding color area with the same synthesized color by the 3 steps. The first step is making binary edge image by differentiating the focused image from each imager and verifying that differentiated image has normal density of frequency distribution to find the threshold level of binary procedure. We used Daubechies wavelet transformation for the procedures of differentiating in this study. The second step is deriving the synthesized color by averaging color brightness between binary edge points with respect to horizontal direction and vertical direction alternatively. The averaging color procedure was done many times until the fluctuation of averaged color become negligible with respect to 256 levels in brightness. The third step is extracting area with same synthesized color by collecting the pixel of same synthesized color and grouping these pixel points by 4 directional connectivity relations. The matching areas for the stereo matching are determined by using synthesized color areas. The matching point is the center of gravity of each synthesized color area. The parallax between a pair of images is derived by the center of gravity of synthesized color area easily. The experiment of this stereo matching was done for the object of the soccer ball toy. From this experiment we showed that stereo matching by the synthesized color technique are simple and effective.

  2. The Journal Synthesizing Activity.

    ERIC Educational Resources Information Center

    Garber, Zev

    The journal synthesizing activity is intended to combine aspects of the formal essay with that of a diary. Activities associated with lecture topics are written up as short journal entries of approximately five typewritten pages and are turned in during the weekly class session at which the related topic is being discussed. The journal project…

  3. Wisdom, Intelligence & Creativity Synthesized

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    2009-01-01

    How is it that smart administrators who want to do a good job often find themselves in situations that degenerate into confrontation and, ultimately, termination? In this article, the author discusses why in terms of a model of leadership--which he refers to it as WICS, an acronym for wisdom, intelligence and creativity synthesized. He describes…

  4. Synthesized night vision goggle

    NASA Astrophysics Data System (ADS)

    Zhou, Haixian

    2000-06-01

    A Synthesized Night Vision Goggle that will be described int his paper is a new type of night vision goggle with multiple functions. It consists of three parts: main observing system, picture--superimposed system (or Cathode Ray Tube system) and Charge-Coupled Device system.

  5. Synthesize Modes and Correlate

    SciTech Connect

    Mayes, Randall Lee; Hensley, Daniel P.

    2005-10-01

    SMAC is an automated experimental modal parameter extraction package which determines the natural frequencies of vibration, viscous damping ratios and mode shapes from experimental accelerance frequency response functions (FRFs). It is written in the MATLAB interpretive matrix language and has a graphical user interface.

  6. Vector magnetometry and lightwave defect imaging sensor technologies for internal pipe inspection systems. Phase 1 and 2 feasibility study, conceptual design, and prototype development. Final report, March 1991-July 1993

    SciTech Connect

    Carroll, S.; Fowler, T.; Peters, E.; Power, W.; Reed, M.

    1994-01-05

    The Gas Research Institute (GRI) has been sponsoring the development of a vehicle and sensors for an integrated nondestructive internal inspection system for natural gas distribution pipes. Arthur D. Little has developed two sensor technologies, Vector Magnetometry (VM) and Lightwave Defect Imaging (LDI) for the system. The Vector Magnetometry sensor utilizes multiple arrays of miniature detection coils (fluxgate magnetometer elements); a three-axis array measures both the amplitude and phase of the magnetic leakage field that occurs in the vicinity of pipe wall defects. This technology is applicable to both cast iron and steel pipe.

  7. Explaining Synthesized Software

    NASA Technical Reports Server (NTRS)

    VanBaalen, Jeffrey; Robinson, Peter; Lowry, Michael; Pressburger, Thomas; Lau, Sonie (Technical Monitor)

    1998-01-01

    Motivated by NASA's need for high-assurance software, NASA Ames' Amphion project has developed a generic program generation system based on deductive synthesis. Amphion has a number of advantages, such as the ability to develop a new synthesis system simply by writing a declarative domain theory. However, as a practical matter, the validation of the domain theory for such a system is problematic because the link between generated programs and the domain theory is complex. As a result, when generated programs do not behave as expected, it is difficult to isolate the cause, whether it be an incorrect problem specification or an error in the domain theory. This paper describes a tool we are developing that provides formal traceability between specifications and generated code for deductive synthesis systems. It is based on extensive instrumentation of the refutation-based theorem prover used to synthesize programs. It takes augmented proof structures and abstracts them to provide explanations of the relation between a specification, a domain theory, and synthesized code. In generating these explanations, the tool exploits the structure of Amphion domain theories, so the end user is not confronted with the intricacies of raw proof traces. This tool is crucial for the validation of domain theories as well as being important in everyday use of the code synthesis system. It plays an important role in validation because when generated programs exhibit incorrect behavior, it provides the links that can be traced to identify errors in specifications or domain theory. It plays an important role in the everyday use of the synthesis system by explaining to users what parts of a specification or of the domain theory contribute to what pieces of a generated program. Comments are inserted into the synthesized code that document these explanations.

  8. SYNTH: A spectrum synthesizer

    NASA Astrophysics Data System (ADS)

    Hensley, W. K.; McKinnon, A. D.; Miley, H. S.; Panisko, M. E.; Savard, R. M.

    1993-10-01

    A computer code has been written at the Pacific Northwest Laboratory (PNL) to synthesize the results of typical gamma ray spectroscopy experiments. The code, dubbed SYNTH, allows a user to specify physical characteristics of a gamma ray source, the quantity of the nuclides producing the radiation, the source-to-detector distance and the presence of absorbers, the type and size of the detector, and the electronic set up used to gather the data. In the process of specifying the parameters needed to synthesize a spectrum, several interesting intermediate results are produced, including a photopeak transmission function versus energy, a detector efficiency curve, and a weighted list of gamma and x rays produced from a set of nuclides. All of these intermediate results are available for graphical inspection and for printing. SYNTH runs on personal computers. It is menu driven and can be customized to user specifications. SYNTH contains robust support for coaxial germanium detectors and some support for sodium iodide detectors. SYNTH is not a finished product. A number of additional developments are planned. However, the existing code has been compared carefully to spectra obtained from National Institute for Standards and Technology (NIST) certified standards with very favorable results. Examples of the use of SYNTH and several spectral results are presented.

  9. Method for synthesizing HMX

    DOEpatents

    McGuire, Raymond R.; Coon, Clifford L.; Harrar, Jackson E.; Pearson, Richard K.

    1984-01-01

    A method and apparatus for electrochemically synthesizing N.sub.2 O.sub.5 cludes oxidizing a solution of N.sub.2 O.sub.4 /HNO.sub.3 at an anode, while maintaining a controlled potential between the N.sub.2 O.sub.4 /HNO.sub.3 solution and the anode. A potential of about 1.35 to 2.0 V vs. SCE is preferred, while a potential of about 1.80 V vs. SCE is most preferred. Thereafter, the N.sub.2 O.sub.5 is reacted with either 1.5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN) or 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT) to form cyclotetramethylenetetraamine (HMX).

  10. Arbitrary optical frequency synthesis traced to an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Cai, Zihang; Zhang, Weipeng; Yang, Honglei; Li, Yan; Wei, Haoyun

    2016-11-01

    An arbitrary optical frequency synthesizer with a broad tuning range and high frequency accuracy is presented. The system includes an external cavity diode laser (ECDL) as the output laser, an Erbium-doped optical frequency comb being a frequency reference, and a control module. The optical frequency from the synthesizer can be continuously tuned by the large-scale trans-tooth switch and the fine intra-tooth adjustment. Robust feedback control by regulating the current and PZT voltage enables the ECDL to phase-lock to the Erbium-doped optical frequency comb, therefore to keep stable frequency output. In the meanwhile, the absolute frequency of the synthesizer is determined by the repetition rate, the offset frequency and the beat frequency. All the phase lock loops in the system are traced back to a Rubidium clock. A powerful and friendly software is developed to make the operation convenient by integrating the functions of frequency setting, tuning, tracing, locking and measuring into a LabVIEW interface. The output frequency tuning span and the uncertainty of the system are evaluated as >6 THz and <3 kHz, respectively. The arbitrary optical frequency synthesizer will be a versatile tool in diverse applications, such as synthetic wavelength based absolute distance measurement and frequency-stabilized Cavity Ring-Down Spectroscopy.

  11. MM-wave synthesizer has 8-to-15-GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Fortunato, M. P.; Ishikawa, K. Y.

    1982-05-01

    Millimeter-wave sweeper IMPATT diodes are combined with microprocessor control and opamp circuitry to give a fast and accurate W-band synthesizer. The breakthrough in millimeter-wave frequency synthesizer development derives from the ability to lock virtually any millimeter-wave IMPATT. The considerable improvement in SSB phase noise of a phase-locked sweeper IMPATT versus a free-running Gunn, fixed-tuned IMPATT, and free-running sweeper IMPATT is illustrated. The spectra of a free-running and a phase-locked sweeper IMPATT are compared. A block diagram of the complete millimeter-wave synthesizer is included, together with typical W-band synthesizer specifications.

  12. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  13. Doclet To Synthesize UML

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2005-01-01

    The RoseDoclet computer program extends the capability of Java doclet software to automatically synthesize Unified Modeling Language (UML) content from Java language source code. [Doclets are Java-language programs that use the doclet application programming interface (API) to specify the content and format of the output of Javadoc. Javadoc is a program, originally designed to generate API documentation from Java source code, now also useful as an extensible engine for processing Java source code.] RoseDoclet takes advantage of Javadoc comments and tags already in the source code to produce a UML model of that code. RoseDoclet applies the doclet API to create a doclet passed to Javadoc. The Javadoc engine applies the doclet to the source code, emitting the output format specified by the doclet. RoseDoclet emits a Rose model file and populates it with fully documented packages, classes, methods, variables, and class diagrams identified in the source code. The way in which UML models are generated can be controlled by use of new Javadoc comment tags that RoseDoclet provides. The advantage of using RoseDoclet is that Javadoc documentation becomes leveraged for two purposes: documenting the as-built API and keeping the design documentation up to date.

  14. Surface Acoustic Wave Microwave Oscillator and Frequency Synthesizer.

    DTIC Science & Technology

    1981-09-01

    at the MTG output. SAW filters with passbands centered at 526.5, 567 and 607.5 MHz following the multitone generation module would serve to attenuate...particular Seometry described in the figure as the grourd plane (Ll) distance is moved closer to the dielectric. Very good agreement has been obtained...level differential logic circuits in the divider, an emitter- follower /diode level shifter with diode peaked differential lowpass filter, and a variable

  15. Ohmic Contacts for Technology for Frequency Agile Digitally Synthesized Transmitters

    DTIC Science & Technology

    2010-07-01

    Catalyzed by Ru) Gold potassium cyanide 0.2 g/L Hydrazine hydrate 4ml/L NaOH (pH adjustment) As needed PH 12.2 Temperature 70 - 80°C Table V. Second...electroless Au bath (auto-catalytic). [7] Au Bath #2 (Auto-catalytic) Gold potassium cyanide 5.8 g/L Potassium cyanide 6.5 g/L KOH 11.2 g/L KBH4...result in a non- uniform plating potential (and a non-uniform deposition rate) across the wa- fer. Alternatively, a selective electroless process can

  16. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing.

    PubMed

    Xie, Shangran; Pang, Meng; Bao, Xiaoyi; Chen, Liang

    2012-03-12

    The dependence of Brillouin linewidth and peak frequency on lightwave state of polarization (SOP) due to fiber inhomogeneity in single mode fiber (SMF) is investigated by using Brillouin optical time domain analysis (BOTDA) system. Theoretical analysis shows fiber inhomogeneity leads to fiber birefringence and sound velocity variation, both of which can cause the broadening and asymmetry of the Brillouin gain spectrum (BGS) and thus contribute to the variation of Brillouin linewidth and peak frequency with lightwave SOP. Due to fiber inhomogeneity both in lateral profile and longitudinal direction, the measured BGS is the superposition of several spectrum components with different peak frequencies within the interaction length. When pump or probe SOP changes, both the peak Brillouin gain and the overlapping area of the optical and acoustic mode profile that determine the peak efficiency of each spectrum component vary within the interaction length, which further changes the linewidth and peak frequency of the superimposed BGS. The SOP dependence of Brillouin linewidth and peak frequency was experimentally demonstrated and quantified by measuring the spectrum asymmetric factor and fitting obtained effective peak frequency respectively via BOTDA system on standard step-index SMF-28 fiber. Experimental results show that on this fiber the Brillouin spectrum asymmetric factor and effective peak frequency vary in the range of 2% and 0.06MHz respectively over distance with orthogonal probe input SOPs. Experimental results also show that in distributed fiber Brillouin sensing, polarization scrambler (PS) can be used to reduce the SOP dependence of Brillouin linewidth and peak frequency caused by fiber inhomogeneity in lateral profile, however it maintains the effects caused by fiber inhomogeneity in longitudinal direction. In the case of non-ideal polarization scrambling using practical PS, the fluctuation of effective Brillouin peak frequency caused by fiber inhomogeneity

  17. Reactanceless synthesized impedance bandpass amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1985-01-01

    An active R bandpass filter network is formed by four operational amplifier stages interconnected by discrete resistances. One pair of stages synthesize an equivalent input impedance of an inductance (L sub eq) in parallel with a discrete resistance (R sub o) while the second pair of stages synthesizes an equivalent input impedance of a capacitance (C sub eq) serially coupled to another discrete resistance (R sub i) coupled in parallel with the first two stages. The equivalent input impedances aggregately define a tuned resonant bandpass filter in the roll-off regions of the operational amplifiers.

  18. Information Retrieval for Ecological Syntheses

    ERIC Educational Resources Information Center

    Bayliss, Helen R.; Beyer, Fiona R.

    2015-01-01

    Research syntheses are increasingly being conducted within the fields of ecology and environmental management. Information retrieval is crucial in any synthesis in identifying data for inclusion whilst potentially reducing biases in the dataset gathered, yet the nature of ecological information provides several challenges when compared with…

  19. Method of synthesizing pyrite nanocrystals

    DOEpatents

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  20. Laboratory Syntheses of Insect Pheromones.

    ERIC Educational Resources Information Center

    Cormier, Russell A.; Hoban, James N.

    1984-01-01

    Provides background information and procedures for the multi-step synthesis of tiger moth and boll weevil pheromones (sex attractants). These syntheses require several laboratory periods. The tiger moth pheromone synthesis is suitable for introductory organic chemistry while the boll weevil pheromone is recommended for an advanced laboratory…

  1. Mode synthesizing atomic force microscopy and mode-synthesizing sensing

    SciTech Connect

    Passian, Ali; Thundat, Thomas George; Tetard, Laurene

    2013-05-17

    A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

  2. Frequency-multiplexing ability of complex-valued Hebbian learning in logic gates.

    PubMed

    Kawata, Sotaro; Hirose, Akira

    2008-04-01

    Lightwave has attractive characteristics such as spatial parallelism, temporal rapidity in signal processing, and frequency band vastness. In particular, the vast carrier frequency bandwidth promises novel information processing. In this paper, we propose a novel optical logic gate that learns multiple functions at frequencies different from one another, and analyze the frequency-domain multiplexing ability in the learning based on complex-valued Hebbian rule. We evaluate the averaged error function values in the learning process and the error probabilities in the realized logic functions. We investigate optimal learning parameters as well as performance dependence on the number of learning iterations and the number of parallel paths per neuron. Results show a trade-off among the learning parameters such as learning time constant and learning gain. We also find that when we prepare 10 optical path differences and conduct 200 learning iterations, the error probability completely decreases to zero in a three-function multiplexing case. However, at the same time, the error probability is tolerant of the path number. That is, even if the path number is reduced by half, error probability is found almost zero. The results can be useful to determine neural parameters for future optical neural network systems and devices that utilize the vast frequency bandwidth for frequency-domain multiplexing.

  3. TSS-Thermal Synthesizer System

    NASA Technical Reports Server (NTRS)

    Chimenti, Edward; Rickman, Steven; Vogt, Robert; Longo, Carlos R. Ortiz; Bauman, Noel; Lepore, Joseph; Mackey, Phil; Pavlovsky, James, II; Welch, Mark; Fogerson, Peter; Dawber, Mark; Fong, Cynthia Jone; Hecke, Peter; Morrison, Susan; Castillo, Ernie; Chou, ZU; Fried, Lawrence; Howard, Jerry; Lombardi, Mike; Middleton, Jack

    1996-01-01

    Thermal Synthesizer System (TSS) is integrated set of thermal-analysis application programs designed to solve problems encountered by thermal engineers. Combines functionality of Systems Improved Numerical Differencing Analyzer/Fluid Integrator (SINDA/FLUINT) and radiation analysis with friendly and easily understood user-interface environment coupled with powerful interactive color graphics and geometric modeling capability. Enables thermal engineers to spend more time solving engineering problems instead of laboriously constructing and verifying math models. Written in FORTRAN and C language.

  4. Catalytic method for synthesizing hydrocarbons

    DOEpatents

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  5. Catalytic method for synthesizing hydrocarbons

    DOEpatents

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1984-01-01

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  6. Stereoselective Syntheses of Soman Analog

    DTIC Science & Technology

    1993-04-28

    AD-A283 855 AD_ _ _ _ CONTRACT NO: DAMDl7-88-C-8021 0 / TITLE: STEREOSELECTIVE SYNTHESES OF SOMAN ANALOG SUBTITLE: Synthesis of Pentacoordinate...SUPPLEMENTARY NOTES SUBTITLE: Synthesis of Pentacoordinate Phosphorus Compounds, "Bait and Switch" Compounds, and Soman Simulants as Hapten. for Production of...simulant. We reporit a detailed study on the synthesis , isolation and characterization of the four pure enantiomners; of [(S or R)-4 -amino-2,2-diniethyl-2

  7. Method for synthesizing powder materials

    DOEpatents

    Buss, R.J.; Ho, P.

    1988-01-21

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400/degree/K (127/degree/C). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material. 1 fig.

  8. Physiologically driven avian vocal synthesizer

    NASA Astrophysics Data System (ADS)

    Sitt, Jacobo D.; Arneodo, Ezequiel M.; Goller, Franz; Mindlin, Gabriel B.

    2010-03-01

    In this work, we build an electronic syrinx, i.e., a programmable electronic device capable of integrating biomechanical model equations for the avian vocal organ in order to synthesize song. This vocal prosthesis is controlled by the bird’s neural instructions to respiratory and the syringeal motor systems, thus opening great potential for studying motor control and its modification by sensory feedback mechanisms. Furthermore, a well-functioning subject-controlled vocal prosthesis can lay the foundation for similar devices in humans and thus provide directly health-related data and procedures.

  9. Method of synthesizing tungsten nanoparticles

    SciTech Connect

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  10. Plamonics for Biomolecular Sensors and THz Metamaterial Waveguides (Near and Far-Field Interfaces to DNA. Guided Nanostructures from RF to Lightwave: Exploiting the Spectrum)

    DTIC Science & Technology

    2014-12-17

    surface bound modes named spoofed surface plasmon polariton (SSPP) modes. Such modes mimic the common optical surface plasmon mode traveling at...Triangle Park, NC 27709-2211 Terahertz, Biosensing, Mach Zehnder Interferometer, Multiplexer and Spoof surface Plasmon Polariton REPORT DOCUMENTATION PAGE...frequencies, the textured surfaces on a subwavelength scale can support surface bound modes named spoofed surface plasmon polariton (SSPP) modes. Such modes

  11. Phillips SA8016BW 2.5 GHz Synthesizer SEE Testing

    NASA Technical Reports Server (NTRS)

    Carts, Marty; Ladbury, Ray; Marshall, Paul W.; Mackey, Susan

    2008-01-01

    This viewgraph presentation reviews the Single Event Effects (SEE) testing of the Phillips SA8016BW 2.5 GHz Synthesizer that was chose by the GLAST Program for Frequency Generation. Included in this are diagrams of the phased-locked loop (PLL), the synthesizer, and heater.

  12. Frequency hopping millimeter wave reflectometer

    NASA Astrophysics Data System (ADS)

    Cupido, L.; Sánchez, J.; Estrada, T.

    2004-10-01

    Reflectometry techniques are employed to study density fluctuations in fusion plasmas either using one channel or two channels with slightly different frequencies, to probe simultaneously closely spaced plasma layers (for radial correlation studies). The present article describes a novel system with increasing measuring capability utilizing only one single frequency that can be hopped during the discharge. This broadband fast hopping mm-wave reflectometer (BFHR) has been developed for both ASDEX upgrade (Max Plank Institute-Garching-Germany) and TJ-II stellarator (CIEMAT-Spain). The BFHR incorporates frequency synthesizers at microwave frequencies multiplied into the millimeter-wave range and uses heterodyne detection for sensitive phase and amplitude measurements.

  13. Kerr optical frequency combs: theory, applications and perspectives

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-06-01

    The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.

  14. Molecular Syntheses of Extended Materials

    NASA Astrophysics Data System (ADS)

    Paley, Daniel W.

    Bottom-up molecular synthesis is a route to chemically and crystallographically uniform polymers and solid-state materials. Through the use of molecular precursors, we gain atomic-level control of functionality and fine-tuning of the collective properties of materials. This dissertation presents two studies that demonstrate this approach. Ring-opening alkyne metathesis polymerization is a possible approach to monodisperse conjugated polymers, but its applications have been limited by difficult syntheses and high air sensitivity of known organometallic ROAMP initiators. We designed a dimeric, air-stable molybdenum alkylidyne with a tris(phenolate) supporting ligand. The precatalyst is activated by addition of methanol and polymerizes cyclooctynes with excellent chemical selectivity and functional group tolerance. The Nuckolls and Roy groups have introduced a new family of solid-state compounds synthesized from cobalt chalcogenide clusters Co6Q 8(PR3)6 and fullerenes. The first examples of these materials crystallized in superatom lattices with the symmetry of simple inorganic solids CdI2 (P-3m1) and NaCl (Fm-3m). This dissertation reveals that further members of the family feature extraordinary diversity of structure, including a pseudo-trigonal array of fulleride dimers in [Co 6Te8(PEt3)6]2[C140 ][C70]2 and a heterolayered van der Waals cocrystal [Co6Se8(PEt2phen)6][C 60]5. In addition to these unusual crystal structures, this dissertation presents a method for assigning redox states from crystallographic data in Co6Q8 clusters. Finally, a detailed guide to the collection and solution of single-crystal X-ray data is presented. The guide is intended for independent study by new crystallographers.

  15. Colloidal Metamaterials at Optical Frequencies

    DTIC Science & Technology

    2014-07-18

    AFRL-OSR-VA-TR-2014-0184 Colloidal Metamaterials at Optical Frequencies Jennifer Dionne LELAND STANFORD JUNIOR UNIV CA Final Report 07/18/2014...Prescribed by ANSI Std. Z39.18 Colloidal Metamaterials at Optical Frequencies Annual Report, June 30, 2014 A. Investigators PI: Jennifer Dionne...team has combined theoretical and experimental methods to produce a colloidally -synthesized metamaterial fluid, or “metafluid,” exhibiting strong

  16. Synthese de champs sonores adaptative

    NASA Astrophysics Data System (ADS)

    Gauthier, Philippe-Aubert

    La reproduction de champs acoustiques est une approche physique au probleme technologique de la spatialisation sonore. Cette these concerne l'aspect physique de la reproduction de champs acoustiques. L'objectif principal est l'amelioration de la reproduction de champs acoustiques par "synthese de champs acoustiques" ("Wave Field Synthesis", WFS), une approche connue, basee sur des hypotheses de champ libre, a l'aide du controle actif par l'ajout de capteurs de l'erreur de reproduction et d'une boucle fermee. Un premier chapitre technique (chapitre 4) expose les resultats d'appreciation objective de la WFS par simulations et mesures experimentales. L'effet indesirable de la salle de reproduction sur les qualites objectives de la WFS fut illustre. Une premiere question de recherche fut ensuite abordee (chapitre 5), a savoir s'il est possible de reproduire des champs progressifs en salle dans un paradigme physique de controle actif: cette possibilite fut prouvee. L'approche technique privilegiee, "synthese de champs adaptative" ("Adaptive Wave Field Synthesis" [AWFS]), fut definie, puis simulee (chapitre 6). Cette approche d'AWFS comporte une originalite en controle actif et en reproduction de champs acoustiques: la fonction cout quadratique representant la minimisation des erreurs de reproduction inclut une regularisation de Tikhonov avec solution a priori qui vient de la WFS. L'etude de l'AWFS a l'aide de la decomposition en valeurs singulieres (chapitre 7) a permis de comprendre les mecanismes propres a l'AWFS. C'est la deuxieme principale originalite de la these. L'algorithme FXLMS (LMS et reference filtree) est modifie pour l'AWFS (chapitre 8). Le decouplage du systeme par decomposition en valeurs singulieres est illustre dans le domaine du traitement de signal et l'AWFS basee sur le controle independant des modes de rayonnement est simulee (chapitre 8). Ce qui constitue la troisieme originalite principale de cette these. Ces simulations du traitement de signal

  17. Synthesizing Diamond from Liquid Feedstock

    NASA Technical Reports Server (NTRS)

    Tzeng, Yonhua

    2005-01-01

    A relatively economical method of chemical vapor deposition (CVD) has been developed for synthesizing diamond crystals and films. Unlike prior CVD methods for synthesizing diamond, this method does not require precisely proportioned flows of compressed gas feedstocks or the use of electrical discharges to decompose the feedstocks to obtain free radicals needed for deposition chemical reactions. Instead, the feedstocks used in this method are mixtures of common organic liquids that can be prepared in advance, and decomposition of feedstock vapors is effected simply by heating. The feedstock used in this method is a solution comprising between 90 and 99 weight percent of methanol and the balance of one or more other oxyhydrocarbons that could include ethanol, isopropanol, and/or acetone. This mixture of compounds is chosen so that dissociation of molecules results in the desired proportions of carbon-containing radicals (principally, CH3) and of OH, H, and O radicals. Undesirably, the CVD temperature and pressure conditions thermodynamically favor the growth of graphite over the growth of diamond. The H radicals are desirable because they help to stabilize the growing surface of diamond by shifting the thermodynamic balance toward favoring the growth of diamond. The OH and O radicals are desirable because they preferentially etch graphite and other non-diamond carbon, thereby helping to ensure the net deposition of pure diamond. The non-methanol compounds are included in the solution because (1) methanol contains equal numbers of C and O atoms; (2) an excess of C over O is needed to obtain net deposition of diamond; and (3) the non-methanol molecules contain multiple carbon atoms for each oxygen atom and thus supply the needed excess carbon A typical apparatus used in this method includes a reservoir containing the feedstock liquid and a partially evacuated stainless-steel reaction chamber. The reservoir is connected to the chamber via tubing and a needle valve or

  18. Composites comprising biologically-synthesized nanomaterials

    DOEpatents

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  19. "Comments on Slavin": Synthesizing Causal Inferences

    ERIC Educational Resources Information Center

    Briggs, Derek C.

    2008-01-01

    When causal inferences are to be synthesized across multiple studies, efforts to establish the magnitude of a causal effect should be balanced by an effort to evaluate the generalizability of the effect. The evaluation of generalizability depends on two factors that are given little attention in current syntheses: construct validity and external…

  20. Synthesizing Regression Results: A Factored Likelihood Method

    ERIC Educational Resources Information Center

    Wu, Meng-Jia; Becker, Betsy Jane

    2013-01-01

    Regression methods are widely used by researchers in many fields, yet methods for synthesizing regression results are scarce. This study proposes using a factored likelihood method, originally developed to handle missing data, to appropriately synthesize regression models involving different predictors. This method uses the correlations reported…

  1. An ultrawide-bandwidth single-sideband modulator for terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Meijer, A. S.; Berden, G.; Arslanov, D. D.; Ozerov, M.; Jongma, R. T.; van der Zande, W. J.

    2016-11-01

    Wireless high-speed data communication using terahertz (THz) carrier frequencies is becoming reality with data rates beyond 100 Gbit s-1. Many of the mobile applications use internet access and require that THz wireless base stations are connected to a global network, such as the radio-over-fibre network. We present the realization of an ultrawide bandwidth THz optical single-sideband (OSSB) modulator for converting (free-space) THz signals to THz optical modulations with an increased spectral efficiency. THz OSSB will mitigate chromatic dispersion-induced propagation losses in optical fibres and support digital modulation schemes. We demonstrate THz OSSB for free-space radiation between 0.3 and 1.0 THz using a specially designed dichroic beamsplitter for signal and carrier, and a planar light-wave circuit with multimode interference structures. This arrangement of optical elements mimics the Hartley single-sideband modulator for electronics signals and accomplishes the required Hilbert transform without any frequency-dependent tuning element over an ultrawide THz spectrum.

  2. Internal noise of a phase-locked receiver with a loop-controlled synthesizer

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1979-01-01

    A local oscillator design that uses a digitally programmed frequency synthesizer instead of an analog VCO was proposed. The integral of the synthesizer input, the digital phase, is a convenient measure of integrated Doppler. The internal noise of such a receiver was examined. At high carrier margin, the local oscillator phase noise equals that of the Block IV receiver, about 2 deg rms at S-band, whereas the digital phase noise is about 0.5 deg rms.

  3. Wide-Range Filter-Based Sinusoidal Wave Synthesizer for Electrochemical Impedance Spectroscopy Measurements.

    PubMed

    Chia-Ling Wei; Yi-Wen Wang; Bin-Da Liu

    2014-06-01

    A filter-based wide-range programmable sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurement is proposed. The adopted filter is implemented with switched-capacitor circuits, so its corner frequency is accurate and adjustable by changing its switching frequency. The proposed sine wave synthesizer is implemented by using a 0.35 μm 2P4M 3.3 V mixed-signal polycide process. According to the measured results, the output frequency of the proposed synthesizer is 40 mHz-40 kHz . The measured total harmonic distortion is 0.073% at 10 Hz and 0.075% at 10 kHz, both of which are better than that of a typical function generator.

  4. Syntheses of Novel Nitrogen and Phosphorus Heterocycles.

    DTIC Science & Technology

    2014-09-26

    Chemicals and Materials Research Department, Ultrasystems, Inc. under Contract F49620-82-C-0021, "Syntheses of Novel Nitrogen and Phosphorus Hetero- * cycles ...ADl-NISS9 449 SYNTHESES OF NOVEL NITROGEN AND PHOSPHORUS HETEROCYCLES In (U) ULTRRSYSTENS INC IRVINE CR K L PRCIOREK ET RL. 26 RPR 85 SN-209?-F RFOSR...MICROCOPY RESOLUTION TEST CHART NATIONAL BURE&U OF STAOACS-963-A SR-I"I" s, -Ŕ 500 4 SYNTHESES OF NOVEL NITROGEN AND PHOSPHORUS HETEROCYCLES Contract No

  5. Effect of tactile vibration on annoyance to synthesized propfan noise

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.

    1981-01-01

    Design information that maximizes passenger comfort for propfan aircraft is presented. Predicted noise and vibration environments and the resultant passenger acceptability were studied. The effect of high frequency tactile vibration (i.e., greater than 30 Hz) on passenger reactions was analyzed. Passenger reactions to a wide range of noise with and without tactile vibration was studied. The passenger ride quality simulator was employed using subjects who evaluated either synthesized propeller noises only, or these noises combined with seat/arm vibration. The noises ranging from 80-100 dB consisted of a turbulent boundary layer noise with a factorial combination of five blade passage frequencies (50-200 Hz), two harmonic rolloffs, and three tone/noise ratios. It is indicated that passenger reaction (annoyance) to noise is not significantly changed in the presence of tactile vibration.

  6. Design of RF source based on Direct Digital Synthesizer

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Qiu, YueHong

    2013-01-01

    A new Radio Frequency (RF) source based on Direct Digital Synthesizer (DDS) is presented in this paper, to improve the performance of the Sound-light tunable filter. A DDS chip called AD9959 is used to produce RF signal. The AD9959 consists of four DDS cores that provide independent frequency, phase, and amplitude control on each channel, and FPGA is used to control AD9959, to ensure a high accurate signal source with multiple signal mode and four channels output is designed. This paper introduces the implementation of system including software and hardware. The test results show that the RF source has 0-200MHz bandwidth and resolution, stability and a series of functions fully realize the scheduled target.

  7. Thermoelectric Properties of Solution Synthesized Nanostructured Materials.

    PubMed

    Finefrock, Scott W; Yang, Haoran; Fang, Haiyu; Wu, Yue

    2015-01-01

    Thermoelectric nanocomposites made by solution synthesis and compression of nanostructured chalcogenides could potentially be low-cost, scalable alternatives to traditional solid-state synthesized materials. We review the progress in this field by comparing the power factor and/or the thermoelectric figure of merit, ZT, of four classes of materials: (Bi,Sb)2(Te,Se)3, PbTe, ternary and quaternary copper chalcogenides, and silver chalcogenides. We also discuss the thermal conductivity reduction associated with multiphased nanocomposites. The ZT of the best solution synthesized materials are, in several cases, shown to be equal to or greater than the corresponding bulk materials despite the generally reduced mobility associated with solution synthesized nanocomposites. For the solution synthesized materials with the highest performance, the synthesis and processing conditions are summarized to provide guidance for future work.

  8. ORGANIC SYNTHESES USING MICROWAVES AND SUPPORTED REAGENTS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although the use of dedicated MW equipment...

  9. The Trajectory Synthesizer Generalized Profile Interface

    NASA Technical Reports Server (NTRS)

    Lee, Alan G.; Bouyssounouse, Xavier; Murphy, James R.

    2010-01-01

    The Trajectory Synthesizer is a software program that generates aircraft predictions for Air Traffic Management decision support tools. The Trajectory Synthesizer being used by researchers at NASA Ames Research Center was restricted in the number of trajectory types that could be generated. This limitation was not sufficient to support the rapidly changing Air Traffic Management research requirements. The Generalized Profile Interface was developed to address this issue. It provides a flexible approach to describe the constraints applied to trajectory generation and may provide a method for interoperability between trajectory generators. It also supports the request and generation of new types of trajectory profiles not possible with the previous interface to the Trajectory Synthesizer. Other enhancements allow the Trajectory Synthesizer to meet the current and future needs of Air Traffic Management research.

  10. Method to synthesize metal chalcogenide monolayer nanomaterials

    SciTech Connect

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  11. Subnanometer Palladium Particles Synthesized by Atomic Layer Deposition

    SciTech Connect

    Feng, Hao P.; Libera, Joseph A.; Stair, Peter C.; Miller, Jeffrey T.; Elam, Jeffrey W.

    2011-06-03

    Monodispersed palladium nanoparticle catalysts were synthesized by atomic layer deposition (ALD) using alternating exposures of Pd hexafluoroacetylacetonate (Pd(hfac)₂) and formalin on an alumina support. The size of the ALD Pd particles could be tuned by adjusting the preparation conditions. Conventional ALD conditions produced Pd particles with an average size of 1.4 nm. Removal of surface hydroxyls from the alumina support by a chemical treatment using trimethyl aluminum (TMA) before performing Pd ALD led to nanoparticles larger than 2 nm. Ultrasmall (subnanometer) Pd particles were synthesized using low-temperature metal precursor exposures, followed by applying protective ALD alumina overcoats. The ALD Pd particles were characterized by transmission electron microscopy, extended X-ray absorption fine structure, and diffuse reflectance infrared Fourier transform spectroscopy techniques. The Pd loadings were measured by X-ray fluorescence. The catalytic performance of ALD Pd particles of different sizes was compared in the methanol decomposition reaction. The specific activity (normalized by Pd loading) of the ultrasmall Pd particles was higher than those of the larger particles. Considering the metal dispersion factor, the turnover frequency (TOF) of the ultrasmall Pd particles is comparable to that of the medium-sized (1.4 nm, on average) Pd particles synthesized under standard ALD conditions. The large Pd particles (>2 nm) are a factor of 2 less active than the smaller Pd particles.

  12. Microwave synthesizer using an on-chip Brillouin oscillator.

    PubMed

    Li, Jiang; Lee, Hansuek; Vahala, Kerry J

    2013-01-01

    Low-phase-noise microwave oscillators are important to a wide range of subjects, including communications, radar and metrology. Photonic-based microwave-wave sources now provide record, close-to-carrier phase-noise performance, and compact sources using microcavities are available commercially. Photonics-based solutions address a challenging scaling problem in electronics, increasing attenuation with frequency. A second scaling challenge, however, is to maintain low phase noise in reduced form factor and even integrated systems. On this second front, there has been remarkable progress in the area of microcavity devices with large storage time (high optical quality factor). Here we report generation of highly coherent microwaves using a chip-based device that derives stability from high optical quality factor. The device has a record low electronic white-phase-noise floor for a microcavity-based oscillator and is used as the optical, voltage-controlled oscillator in the first demonstration of a photonic-based, microwave frequency synthesizer. The synthesizer performance is comparable to mid-range commercial devices.

  13. Frequency generation and synthesis in the DRSS

    NASA Astrophysics Data System (ADS)

    Vanloock, P.; Devlieghere, J.

    1992-06-01

    The feasibility of a Tunable Frequency Converter (TFC) concept envisaged on board of the Data Relay System Satellites (DRSS), which requires a synthesizer with state of the art phase noise performance that is locked to a common, ultrastable oscillator, is addressed. The DRSS Ka band communication links are discussed with reference to the DRS system and the TCF. The aim is to provide an autonomous TCF unit demonstrating that the advanced channel selection scheme, with all frequency translations locked to one common reference, is feasible. Concept tradeoff and key elements of the frequency synthesizer are outlined. White noise filtering and reference frequency selection of the reference generator are discussed. The TFC unit allows payload reconfigurability via the frequency setting. The concept is extendable to all TFC types on board of the DRSS.

  14. Heterostructure-based high-speed/high-frequency electronic circuit applications

    NASA Astrophysics Data System (ADS)

    Zampardi, P. J.; Runge, K.; Pierson, R. L.; Higgins, J. A.; Yu, R.; McDermott, B. T.; Pan, N.

    1999-08-01

    With the growth of wireless and lightwave technologies, heterostructure electronic devices are commodity items in the commercial marketplace [Browne J. Power-amplifier MMICs drive commercial circuits. Microwaves & RF, 1998. p. 116-24.]. In particular, HBTs are an attractive device for handset power amplifiers at 900 MHz and 1.9 GHz for CDMA applications [Lum E. GaAs technology rides the wireless wave. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 11-13; "Rockwell Ramps Up". Compound Semiconductor, May/June 1997.]. At higher frequencies, both HBTs and p-HEMTs are expected to dominate the marketplace. For high-speed lightwave circuit applications, heterostructure based products on the market for OC-48 (2.5 Gb/s) and OC-192 (10 Gb/s) are emerging [http://www.nb.rockwell.com/platforms/network_access/nahome.html#5.; http://www.nortel.com/technology/opto/receivers/ptav2.html.]. Chips that operate at 40 Gb/ have been demonstrated in a number of research laboratories [Zampardi PJ, Pierson RL, Runge K, Yu R, Beccue SM, Yu J, Wang KC. hybrid digital/microwave HBTs for >30 Gb/s optical communications. IEDM Technical Digest, 1995. p. 803-6; Swahn T, Lewin T, Mokhtari M, Tenhunen H, Walden R, Stanchina W. 40 Gb/s 3 Volt InP HBT ICs for a fiber optic demonstrator system. Proceedings of the 1996 GaAs IC Symposium, 1996. p. 125-8; Suzuki H, Watanabe K, Ishikawa K, Masuda H, Ouchi K, Tanoue T, Takeyari R. InP/InGaAs HBT ICs for 40 Gbit/s optical transmission systems. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 215-8]. In addition to these two markets, another area where heterostructure devices are having significant impact is for data conversion [Walden RH. Analog-to digital convertor technology comparison. Proceedings of the 1994 GaAs IC Symposium, 1994. p. 217-9; Poulton K, Knudsen K, Corcoran J, Wang KC, Nubling RB, Chang M-CF, Asbeck PM, Huang RT. A 6-b, 4 GSa/s GaAs HBT ADC. IEEE J Solid-State Circuits 1995;30:1109-18; Nary K, Nubling R, Beccue S, Colleran W

  15. Introduction to the special issue on the 2011 Joint IEEE International Frequency Control Symposium and European Frequency and Time Forum.

    PubMed

    Burt, Eric; Gill, Patrick

    2012-03-01

    The 8 invited and 17 contributed papers in this special issue focus on the following topical areas covered at the 2011 Joint IEEE International Frequency Control Symposium and European Frequency and Time Forum, held in San Francisco, California: 1) Materials and Resonators; 2) Oscillators, Synthesizers, and Noise; 3) Microwave Frequency Standards; 4) Sensors and Transducers; 5) Timekeeping and Time and Frequency Transfer; and 6) Optical Frequency Standards.

  16. Characterization of synthesized and treated gem diamonds

    NASA Astrophysics Data System (ADS)

    Song, Ohsung

    2007-10-01

    Synthesized diamonds have been widely employed as polishing media for precise machining and noble substrates for microelectronics. The recent development of the split sphere press has led to the commercial HPHT (high pressure high temperature) synthesis of bulk gem diamonds from graphite and to the enhancement of low quality natural diamonds. Synthesized and treated diamonds are sometimes traded deceptively as high quality natural diamonds because it is hard to distinguish among these diamonds with conventional gemological characterization methods. Therefore, we need to develop a new identification method that is non-destructive, fast, and inexpensive. We proposed using new methods of UV fluorescence and X-ray Lang topography for checking the local HPHT stress field as well as using a vibrating sample magnetometer for checking ferromagnetic residue in synthesized diamonds to distinguish these diamonds from natural ones. We observe unique differences in the local stress field images in synthesized and treated diamonds using Lang topography and UV fluorescence characterization. Our result implies that our proposed methods may be appropriate for identification of the synthesized and treated diamonds.

  17. A Biochemical Magic Frequency

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1993-01-01

    Life is composed principally of four classes of biomolecules - protein, nucleic acid, polysaccharide and lipid. Using 1) estimates of the reducing equivalents (electron pairs) needed to synthesize these biomolecules from carbon dioxide, and 2) measurements of the molecular composition of different organisms, we calculated the average number of electron pairs required for the reduction of carbon dioxide to biological carbon (electron pairs/carbon atom). These calculations showed that the carbon of the Earths biosphere is at the reduction level of formaldehyde that requires 2 electron pairs/carbon atom to be synthesized from carbon dioxide. This was also the reduction level of carbon of individual organisms, except for those that stored large amounts of fuel as lipid. Since this chemical property of life is easily discovered and probably universal, it's most likely known by other intelligent life in the universe. It could be the one thing we know about other carbon-based life in the universe, and the one thing that other intelligent life knows about us. We believe this common knowledge that formaldehyde represents the reduction level of life's carbon could lead to the selection of the 72.83814 GHz line of the 0,0,0,1,0,1 ground-state rotational transition of formaldehyde as a frequency for interstellar communication.

  18. Synthesize, Synthesize, Synthesize.

    ERIC Educational Resources Information Center

    Nugent, Susan Monroe, Ed.

    1987-01-01

    Focusing on synthesis--the ability to recognize and create new ideas that subsume and relate to others--as one of the most sophisticated skills writers can attain, the articles in this journal present many ideas for teaching synthesis and a number of classroom approaches that combine the study of English with other fields. The following titles and…

  19. An automated Teflon microfluidic peptide synthesizer.

    PubMed

    Zheng, Hui; Wang, Weizhi; Li, Xiaojun; Wang, Zihua; Hood, Leroy; Lausted, Christopher; Hu, Zhiyuan

    2013-09-07

    We present a microfluidic synthesizer made entirely of Teflon material for solid phase peptide synthesis (SPPS). Solvent-resistant perfluoroalkoxy (PFA) was used to construct chip-sized devices featuring multiple tri-layer pneumatic microvalves. Using these devices, model peptides were automatically synthesized and cleaved in situ in a continuous-flow manner. The total coupling and cleavage time was significantly reduced compared to conventional bulk reactors. The synthesis of a decapeptide, for instance, took less than 6 h using our device while it usually takes more than three days using conventional reactors.

  20. SEMICONDUCTOR INTEGRATED CIRCUITS: A low-spurious fast-hopping MB-OFDM UWB synthesizer

    NASA Astrophysics Data System (ADS)

    Danfeng, Chen; Wei, Li; Ning, Li; Junyan, Ren

    2010-06-01

    A frequency synthesizer for the ultra-wide band (UWB) group #1 is proposed. The synthesizer uses a phase-locked loop (PLL) and single-sideband (SSB) mixers to generate the three center frequencies of the first band group by mixing 4224 MHz with ±264 MHz and 792 MHz, respectively. A novel multi-QSSB mixer is designed to combine the function of frequency selection and frequency conversion for low power and high linearity. The synthesizer is fabricated in Jazz 0.18-μm RF CMOS technology. The measured reference spur is as low as -69 dBc and the maximum spur is the LO leakage of -32 dBc. A low phase noise of -110 dBc/Hz @ 1 MHz offset and an integrated phase noise of 1.86° are achieved. The hopping time between different bands is less than 1.8 ns. The synthesizer consumes 30 mA from a 1.8 V supply.

  1. Microrheology of single microtubule filaments and synthesized cytoskeletal networks

    NASA Astrophysics Data System (ADS)

    Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The ability to sense and respond to external mechanical forces is crucial for cells in many processes such as cell growth and division. Common models on mechanotransduction rely on the conversion of mechanical stimuli to chemical signals in the cell periphery and their translocation by diffusion (passive) or molecular motors (active). These processes are rather slow (~ seconds) and it has been argued that the cytoskeleton itself might be able to transport a mechanical signal within microseconds via stress waves. Microtubules are the stiffest component of the cytoskeleton and thus ideal candidates for this purpose. We study the frequency dependent response of single microtubule filaments and small networks thereof in a bottom-up approach using several (N =2-10) time-multiplexed optical tweezers together with back focal plane interferometry. Small synthesized networks with a defined geometry are constructed using trapped Neutravidin beads as anchor points for biotinylated filaments. The network is then probed by a defined oscillation of one anchor (actor). The frequency dependent response of the remaining beads (sensors) is analyzed experimentally and modeled theoretically over a wide frequency range.

  2. Syntheses of novel substituted-boranophosphate nucleosides.

    PubMed

    Vyakaranam, Kamesh; Rana, Geeta; Spielvogel, Bernard F; Maguire, John A; Hosmane, Narayan S

    2002-01-01

    A number of substituted (borano) nucleic acids, 3'-[diethylphosphite(cyano, carboxy, or carbamoyl) borano] deoxynucleosides (3a-4c) and 5'-[diethylphosphite(cyano or carboxy) borano] deoxynucleosides (6a-7d) were prepared by a variety of synthetic procedures. The syntheses of the pyrophosphates (2a-2c), as precursors for 3a-4c, are also described.

  3. Method and apparatus for synthesizing filamentary structures

    DOEpatents

    Height, Murray J.; Howard, Jack B.; Vandersande, John B.

    2008-02-26

    Method and apparatus for producing filamentary structures. The structures include single-walled nanotubes. The method includes combusting hydrocarbon fuel and oxygen to establish a non-sooting flame and providing an unsupported catalyst to synthesize the filamentary structure in a post-flame region of the flame. Residence time is selected to favor filamentary structure growth.

  4. Evaluating Text-to-Speech Synthesizers

    ERIC Educational Resources Information Center

    Cardoso, Walcir; Smith, George; Fuentes, Cesar Garcia

    2015-01-01

    Text-To-Speech (TTS) synthesizers have piqued the interest of researchers for their potential to enhance the L2 acquisition of writing (Kirstein, 2006), vocabulary and reading (Proctor, Dalton, & Grisham, 2007) and pronunciation (Cardoso, Collins, & White, 2012; Soler-Urzua, 2011). Despite their proven effectiveness, there is a need for…

  5. Low frequency AC waveform generator

    DOEpatents

    Bilharz, Oscar W.

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  6. A PLL Synthesizer with Learning Repeatable Fluctuation of Input Signal

    NASA Astrophysics Data System (ADS)

    Ono, Hiroyuki

    This paper describes a high frequency PLL (Phase Locked Loop) synthesizer with a function of learning then eliminating repeatable fluctuation of timing intervals on series input pulses. Typical spindle encoder generates digital pulses according to the revolution speed. The intervals of each pulse have repeatable fluctuation every revolution by eccentricity or warpage of the encoder scale disk. This method provides a programmable counter for the loop counter of PLL circuit and an interval counter with memory in order to learn the repeatable fluctuation. After the learning process, the PLL generates very pure tone clock signal based on the real flutter components of the spindle revolution speed without influenced by encoder errors. This method has been applied to a hard disk test system in order to generate 3GHz read/write clock.

  7. Discrimination of synthesized English vowels by American and Korean listeners

    NASA Astrophysics Data System (ADS)

    Yang, Byunggon

    2004-05-01

    This study explored the discrimination of synthesized English vowel pairs by 27 American and Korean, male and female listeners. The average formant values of nine monophthongs produced by ten American English male speakers were employed to synthesize the vowels. Then, subjects were instructed explicitly to respond to AX discrimination tasks in which the standard vowel was followed by another one with the increment or decrement of the original formant values. The highest and lowest formant values of the same vowel quality were collected and compared to examine patterns of vowel discrimination. Results showed that the American and Korean groups discriminated the vowel pairs almost identically and their center formant frequency values of the high and low boundary fell almost exactly on those of the standards. In addition, the acceptable range of the same vowel quality was similar among the language and gender groups. The acceptable thresholds of each vowel formed an oval to maintain perceptual contrast from adjacent vowels. Pedagogical implications of those findings are discussed.

  8. Maize mitochondria synthesize organ-specific polypeptides

    SciTech Connect

    Newton, K.J.; Walbot, V.

    1985-10-01

    The authors detected both quantitative and qualitative organ-specific differences in the total protein composition of mitochondria of maize. Labeling of isolated mitochondria from each organ demonstrated that a few protein differences are due to changes in the polypeptides synthesized by the organelle. The synthesis of developmental stage-specific mitochondrial polypeptides was found in the scutella of developing and germinating kernels. The approximately 13-kDa polypeptide synthesized by mitochondria from seedlings of the Texas (T) male-sterile cytoplasm was shown to be constitutively expressed in all organs of line B37T tested. Methomyl, an insecticide known to inhibit the growth of T sterile plants, was shown to be an effective inhibitor of protein synthesis in mitochondria from T plants.

  9. Genome Mining for Ribosomally Synthesized Natural Products

    PubMed Central

    Velásquez, Juan E.; van der Donk, Wilfred

    2011-01-01

    In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally-synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications. PMID:21095156

  10. Syntheses and studies of organosilicon compounds

    SciTech Connect

    Xie, Ren

    1999-02-12

    The syntheses of polycarbosilanes and polysilanes as silicon carbide ceramic precursors have been active research areas in the Barton Research Group. In this thesis, the work is focused on the preparation of polycarbosilanes and polysilanes as stoichiometric silicon carbide precursor polymers. The syntheses of the precursor polymers are discussed and the conversions of these precursors to silicon carbide via pyrolysis are reported. The XRD pattern and elemental analyses of the resulting silicon carbide ceramics are presented. Silicon monoxide is an important intermediate in the production of silicon metal. The existence of silicon monoxide in gap phase has been widely accepted. In the second part of this thesis, the generation of gaseous silicon monoxide in four different reactors and the reactions of gaseous silicon monoxide towards organic compounds are discussed.

  11. Method of synthesizing a low density material

    DOEpatents

    Lorensen, L.E.; Monaco, S.B.

    1987-02-27

    A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.

  12. Including the Group Quarters Population in the US Synthesized Population Database

    PubMed Central

    Chasteen, Bernadette M.; Wheaton, William D.; Cooley, Philip C.; Ganapathi, Laxminarayana; Wagener, Diane K.

    2011-01-01

    In 2005, RTI International researchers developed methods to generate synthesized population data on US households for the US Synthesized Population Database. These data are used in agent-based modeling, which simulates large-scale social networks to test how changes in the behaviors of individuals affect the overall network. Group quarters are residences where individuals live in close proximity and interact frequently. Although the Synthesized Population Database represents the population living in households, data for the nation’s group quarters residents are not easily quantified because of US Census Bureau reporting methods designed to protect individuals’ privacy. Including group quarters population data can be an important factor in agent-based modeling because the number of residents and the frequency of their interactions are variables that directly affect modeling results. Particularly with infectious disease modeling, the increased frequency of agent interaction may increase the probability of infectious disease transmission between individuals and the probability of disease outbreaks. This report reviews our methods to synthesize data on group quarters residents to match US Census Bureau data. Our goal in developing the Group Quarters Population Database was to enable its use with RTI’s US Synthesized Population Database in the Modeling of Infectious Diseases Agent Study. PMID:21841972

  13. Syntheses and studies of acetylenic polymers

    SciTech Connect

    Yiwei, Ding

    1994-03-03

    Based on new diiodo aryl compounds a series of novel soluble polymers, poly(2,5-dialkoxy-1,4-phenyleneethynylene)s (PPE polymers) were synthesized using palladium-catalysis. The molecular weights (MW) range from 8,000 to 40,000. Properties such as absorption, fluorescence, and conductivity were studied. A PPE polymer with butoxy side chain exhibits a weak electrical conductivity (σ = 10-3 S/cm) after doping with AsF5. Absorption spectra in THF solution at room temperature (RT) show a maximum at 440 nm. However, absorption spectra of PPE polymers in the film state at (RT) show a maximum at 480 nm. PPE polymer-based light emitting diode (LED) devices have been prepared; greenish light from these LED devices can be observed. Poly(ethynylene-p-arylene-ethynylene-silylene)s were synthesized through the same palladium-catalyzed polymerization; MWs are between 6,000 and 82,000. Absorption and fluorescence were studied. Some of these polymers exhibit thermotropic liquid crystalline properties. In addition, nonlinear optical properties were briefly examined. Poly(silylene-ethynylene) homopolymers as well as alternating copolymers were synthesized through a novel palladium-catalyzed polymerization; MWs range from 56 x 103 to 5.3 x 103. Thermal stability of these was also investigated; char yields range from 56 to 83%. One of these polymers exhibits thermotropic liquid crystalline properties.

  14. New scheme of the microwave signal formation for quantum frequency standard on the atoms of caesium-133

    NASA Astrophysics Data System (ADS)

    Petrov, A. A.; Davydov, V. V.

    2016-11-01

    In present work several directions of quantum frequency standard modernization are considered. A new implementation of a frequency synthesizer and a magnetic field control unit are presented. Experimental study of a frequency synthesizer showed improvement parameters of a microwave-excitation signal, such as step frequency tuning, time frequency tuning, range of generating frequencies and spectral characteristics. Magnetic field control unit eliminates one of the most important perturbing factors affecting the long-term frequency stability. Daily frequency stability of quantum frequency standard improved on 15%.

  15. Traceability of laser frequency/wavelength calibration through the frequency comb at Inmetro

    NASA Astrophysics Data System (ADS)

    Silva, I. L. M.; Couceiro, I. B.; Torres, M. A. C.; Costa, P. A.; Grieneisen, H. P. H.

    2016-07-01

    The acquisition of a femtosecond laser comb by the Optical Metrology Division of Inmetro now allows for carrying out high precision calibrations of optical frequencies for lasers which are used as standards of the length unit with gauge block interferometers. The frequency comb is operated as an optical frequency synthesizer and is presently linked to the time unit by a 10 MHz oscillator which is disciplined by GPS. Laser frequencies are determined with accuracy in the range of few parts in 1012. This measurement method now links the length unit, meter, to the SI-second attending the recommendation by the BIPM.

  16. Thermal Conductivity Measurement of Synthesized Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Luo, S.; Mosenfelder, J. L.; Liu, W.; Staneff, G. D.; Ahrens, T. J.; Chen, G.

    2002-12-01

    Direct thermal conductivity (k) measurement of mantle minerals is crucial to constrain the thermal profile of the Earth as well as geodynamic studies of the mantle (e.g., to determine the Rayleigh number). We have embarked on systematic multi-anvil syntheses of dense polycrystalline specimens of mantle phases of adequate size and zero porosity for precise thermal conductivity measurements by the 3ω method (\\textit{Cahill and Pohl, Phys. Rev. B, 1987}) under elevated temperatures (T). Coesite and stishovite (see \\textit{Luo et al., GRL, 2002}) as well as majorite and wadsleyite have been synthesized; ringwoodite and perovskite are scheduled. Preliminary thermal conductivity measurements at ambient pressure on coesite (120 - 300 K, 9.53 Wm-1K-1 at 300 K) are consistent with prior room temperature data (\\textit{Yukutake & Shimada, PEPI, 1978}), while our stishovite data at 300 K appear to be low (1.96 Wm-1K-1). Efforts are being made to extend the measurement to higher temperatures (e.g., above Debye temperature Θ D), thus allowing determination of k(T) relationship (say, k~ T-n); success will depend on the decomposition kinetics of these metastable phases. The pressure dependence of k of these synthesized samples can also be measured (\\textit{e.g., Osako et al., HPMPS-6, 2002; Xu et al., EOS, 2001}). Recent thermal conductivity measurement on LiF and Al2O_3 from shock wave loading (\\textit{Holland & Ahrens, 1998}) is consistent with the modeling on MgO and Al2O_3 (\\textit{Manga & Jeanloz, JGR, 1997}) with classical theories. Thus, k values at modest pressures and T (say, above Θ D) would allow extrapolation of k to appropriate mantle conditions.

  17. Evaluating and synthesizing broadcasting satellite systems

    NASA Technical Reports Server (NTRS)

    Knouse, G. H.

    1974-01-01

    A system model and a computer program have been developed which are representative of broadcasting satellite systems employing several types of receiving terminals. The program provides a user-oriented tool for (1) evaluating performance/cost tradeoffs, (2) synthesizing minimum cost systems for a given set of system requirements, and (3) performing sensitivity analyses to identify critical user requirements, system parameters, and technology. The types of systems which can be evaluated are described, and the capabilities of the program are illustrated by means of several examples.

  18. Syntheses of Synthetic Hydrocarbons Via Alpha Olefins.

    DTIC Science & Technology

    1981-10-01

    Chem. Educ., 42, 502 (1965). 4. A. Priola, C. Corna , and S. Cesca, Macromolecules, 13, 1110 (1980). 5. R. F . Brown, Organic Chemistry, Wadsworth...AD-A110 380 GULF RESEARCH AND DEVELOPENT Co PITTSBURGH PA F /G T/A 1 SYNTHESES OF SYNTHETIC HYDROCARBONS VIA ALPHA OLEFINS.(U) OCT 81 B L CUPPLES, A...FOR THE COMMANDER F . D. CHERRY, Chief Nonmetallic Materials Division "If your address has changed, if you wish to be removed from our mailing list

  19. Biogenic synthesized nanoparticles and their applications

    NASA Astrophysics Data System (ADS)

    Singh, Abhijeet; Sharma, Madan Mohan

    2016-05-01

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO3 via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV-vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  20. Synthesizing new, high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Weaver, Claire; Aronson, Meigan

    2015-03-01

    Currently, there is no accepted theory behind type-II, high-temperature superconductors, but there is a distinct relationship between anti-ferromagnetism and superconductivity. Our research focuses on synthesizing new superconducting materials by observing the link between atomic structure and magnetic moments of anti-ferromagnetic compounds and attempting to reproduce the molecular physics of these known materials in new compounds. Consider the square-planar arrangement of the transition metal Fe in the Fe-pnictide superconductors of the ZrCuSiAs ``11 11'' and the ThCr2Si2 ``122'' structure types. We believe that the physics behind this superconductor, where Fe has d6 valence electrons, contributes to the superconducting state, not the presence of Fe itself. For this reason, we are synthesizing materials containing neighboring transition metals, like Mn and Co, combined with other elements in similar crystal lattice arrangements, having ionization properties that hopefully impose d6 valence electrons on the transition metals. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  1. Computer program for network synthesis by frequency response fit

    NASA Technical Reports Server (NTRS)

    Green, S.

    1967-01-01

    Computer program synthesizes a passive network by minimizing the difference in desired and actual frequency response. The program solves for the critical points of the error function /weighted least squares fit between calculated and desired frequency response/ by the multivariable Newton-Raphson method with components constrained to an admissible region.

  2. Algorithm That Synthesizes Other Algorithms for Hashing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2010-01-01

    An algorithm that includes a collection of several subalgorithms has been devised as a means of synthesizing still other algorithms (which could include computer code) that utilize hashing to determine whether an element (typically, a number or other datum) is a member of a set (typically, a list of numbers). Each subalgorithm synthesizes an algorithm (e.g., a block of code) that maps a static set of key hashes to a somewhat linear monotonically increasing sequence of integers. The goal in formulating this mapping is to cause the length of the sequence thus generated to be as close as practicable to the original length of the set and thus to minimize gaps between the elements. The advantage of the approach embodied in this algorithm is that it completely avoids the traditional approach of hash-key look-ups that involve either secondary hash generation and look-up or further searching of a hash table for a desired key in the event of collisions. This algorithm guarantees that it will never be necessary to perform a search or to generate a secondary key in order to determine whether an element is a member of a set. This algorithm further guarantees that any algorithm that it synthesizes can be executed in constant time. To enforce these guarantees, the subalgorithms are formulated to employ a set of techniques, each of which works very effectively covering a certain class of hash-key values. These subalgorithms are of two types, summarized as follows: Given a list of numbers, try to find one or more solutions in which, if each number is shifted to the right by a constant number of bits and then masked with a rotating mask that isolates a set of bits, a unique number is thereby generated. In a variant of the foregoing procedure, omit the masking. Try various combinations of shifting, masking, and/or offsets until the solutions are found. From the set of solutions, select the one that provides the greatest compression for the representation and is executable in the

  3. Low frequency ac waveform generator

    DOEpatents

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  4. Method and apparatus for synthesizing hydrocarbons

    DOEpatents

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1985-04-16

    A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

  5. Synthesizing Biomolecule-based Boolean Logic Gates

    PubMed Central

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  6. Intermetallic Nanocrystals: Syntheses and Catalytic Applications.

    PubMed

    Yan, Yucong; Du, Jingshan S; Gilroy, Kyle D; Yang, Deren; Xia, Younan; Zhang, Hui

    2017-02-24

    At the forefront of nanochemistry, there exists a research endeavor centered around intermetallic nanocrystals, which are unique in terms of long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure. In contrast to alloy nanocrystals with no elemental ordering, it is challenging to synthesize intermetallic nanocrystals with a tight control over their size and shape. Here, recent progress in the synthesis of intermetallic nanocrystals with controllable sizes and well-defined shapes is highlighted. A simple analysis and some insights key to the selection of experimental conditions for generating intermetallic nanocrystals are presented, followed by examples to highlight the viable use of intermetallic nanocrystals as electrocatalysts or catalysts for various reactions, with a focus on the enhanced performance relative to their alloy counterparts that lack elemental ordering. Within the conclusion, perspectives on future developments in the context of synthetic control, structure-property relationships, and applications are discussed.

  7. Energy storage materials synthesized from ionic liquids.

    PubMed

    Gebresilassie Eshetu, Gebrekidan; Armand, Michel; Scrosati, Bruno; Passerini, Stefano

    2014-12-01

    The advent of ionic liquids (ILs) as eco-friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in-depth review on the newly emerging IL-based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL-based syntheses of energy materials.

  8. Method and apparatus for synthesizing hydrocarbons

    DOEpatents

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1983-06-21

    A method and apparatus for synthesizing a mixture of hydrocarbons having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further includes Na present as a substitutional cation in an amount of about 5 to 10 atom %. At a temperature of about 340 to 360/sup 0/C, and at pressures of about 20 to 50 atm, CH/sub 3/OH is produced in an amount of about 90 wt % of the total hydrocarbon mixture, and comprised 1 mole % of the effluent gas.

  9. Molecular scale electronics: syntheses and testing

    NASA Astrophysics Data System (ADS)

    Reinerth, William A.; Jones, LeRoy, II; Burgin, Timothy P.; Zhou, Chong-wu; Muller, C. J.; Deshpande, M. R.; Reed, Mark A.; Tour, James M.

    1998-09-01

    This paper describes four significant breakthroughs in the syntheses and testing of molecular scale electronic devices. The 16-mer of oligo(2-dodecylphenylene ethynylene) was prepared on Merrifields resin using the iterative divergent/convergent approach which significantly streamlines the preparation of this molecular scale wire. The formation of self-assembled monolayers and multilayers on gold surfaces of rigid rod conjugated oligomers that have thiol, 0957-4484/9/3/016/img11-dithiol, thioacetyl, or 0957-4484/9/3/016/img11-dithioacetyl end groups have been studied. The direct observation of charge transport through molecules of benzene-1, 4-dithiol, which have been self-assembled onto two facing gold electrodes, has been achieved. Finally, we report initial studies into what effect varying the molecular alligator clip has on the molecule scale wire's conductivity.

  10. Simplification of Methods for PET Radiopharmaceutical Syntheses

    SciTech Connect

    Kilbourn, Michael, R.

    2011-12-27

    In an attempt to develop simplified methods for radiochemical synthesis of radiopharmaceuticals useful in Positron Emission Tomography (PET), current commercially available automated synthesis apparati were evaluated for use with solid phase synthesis, thin-film techniques, microwave-accelerated chemistry, and click chemistry approaches. Using combinations of these techniques, it was shown that these automated synthesis systems can be simply and effectively used to support the synthesis of a wide variety of carbon-11 and fluorine-18 labeled compounds, representing all of the major types of compounds synthesized and using all of the common radiochemical precursors available. These techniques are available for use to deliver clinically useful amounts of PET radiopharmaceuticals with chemical and radiochemical purities and high specific activities, suitable for human administration.

  11. Syntheses and degradations of fluorinated heterocyclics

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Kratzer, R. H.; Kaufman, J.; Rosser, R. W.

    1975-01-01

    The relative stability of two ring systems, the triazine rings and 1,2,4-oxadiazoles, which offer potential crosslinks useful for curing perfluoroalkyl ether elastomers, has been investigated. Tris (perfluoro-n-heptyl)-s-triazine, the perfluoroether substituted-s-triazine, 1,4-bis/(5-perfluoro-n-heptyl)-1,2,4-oxadiazolyl/benzene, its perfluoroalkyl ether substituted analog, and 3,5-bis-(perfluoro-n-heptyl)-1,2,4-oxadiazole were synthesized and subjected to thermal and oxidative degradation at 235 and 325 C and to hydrolytic degradation at 235 C. The perfluoroalkyl ether substituted triazine and 3,5-bis(perfluoro-n-heptyl)-1,2,4-oxadiazole were found to be stable under all conditions investigated.

  12. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  13. Syntheses and Structure Determinations of Calcium Thiolates.

    PubMed

    Chadwick, Scott; Englich, Ulrich; Noll, Bruce; Ruhlandt-Senge, Karin

    1998-09-07

    The exploration of synthetic methodologies toward heavy alkaline-earth chalcogenolates resulted in the preparation and structural characterization of a family of calcium thiolates, including [Ca(SC(6)F(5))(2)(py)(4)], 1 (py = pyridine), the separated ion-triple [Ca(18-crown-6)(NH(3))(3))][SMes](2).2THF, 2 (Mes = 2,4,6-tBu(3)C(6)H(2)), and the contact triple [Ca(18-crown-6)(SMes)(2)].THF, 3. Compound 1 was prepared by treating [Ca(N(SiMe(3))(2))(2)](2) with 4 equiv of HSC(6)F(5) under addition of pyridine. The thiolates 2 and 3 were synthesized by treatment of calcium metal dissolved in dry, liquid NH(3) under addition of 2 equiv of HSMes and crown ether or, alternatively, by the reduction of MesSSMes with calcium metal in dry, liquid ammonia. We also report two reaction products isolated during attempted calcium thiolate syntheses: [CaBr(4)(THF)(2)(&mgr;(2)-Li)(2)(THF)(4)], 4, isolated as the product of a salt elimination reaction between CaBr(2) and 2 equiv of [Li(THF)(n)()S-2,4,6-(i)()Pr(3)C(6)H(2)](m)(). [(NH(4))(py)(SC(6)F(5))], 5, was obtained as the sole product in the reaction of metallic calcium with HSC(6)F(5) in liquid ammonia under addition of pyridine. All compounds were characterized by single-crystal X-ray crystallography in addition to IR and NMR spectroscopy.

  14. Waveform Synthesizer For Imaging And Ranging Applications

    DOEpatents

    DUDLEY, PETER A.; [et al

    2004-11-30

    Frequency dependent corrections are provided for quadrature imbalance. An operational procedure filters imbalance effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of quadrature imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.

  15. Waveform Synthesizer For Imaging And Ranging Applications

    DOEpatents

    Dubbert, Dale F.; Dudley, Peter A.; Doerry, Armin W.; Tise, Bertice L.

    2004-12-28

    Frequency dependent corrections are provided for Local Oscillator (LO) feed-through. An operational procedure filters LO feed-through effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver, unwanted energies, such as LO feed-through energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of LO feed-through can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.

  16. CAFS: A Cesium Atomic Frequency Standard for GPS block IIR

    NASA Technical Reports Server (NTRS)

    Wisnia, Jeffry A.

    1993-01-01

    Kernco, Inc. was selected to design the Cesium Atomic Frequency Standards (CAFS) for the GPS Block IIR NAVSTAR satellites. These spacecraft are scheduled to be launched in the mid-1990's to replenish and upgrade the existing constellation of Global Positioning System satellites. The Block IIR CAFS output frequency is 13.4003378 MHz, the 686th submultiple of the cesium atomic resonance frequency. Using an integer submultiple simplifies the design of the atomic frequency standard's rf multiplier circuits, eliminating the secondary frequency synthesizer needed in previous designs. The GPS Block IIR CAFS design, particularly the improvements made on our earlier Block II design is described. Test results are included.

  17. Multilayer graphane synthesized under high hydrogen pressure

    DOE PAGES

    Antonov, V. E.; Bashkin, I. O.; Bazhenov, A. V.; ...

    2015-12-19

    A new hydrocarbon – hydrographite – with the composition close to CH is shown to form from graphite and gaseous hydrogen at pressures above 2 GPa and temperatures from 450 to 700 °C. Hydrographite is a black solid thermally stable under ambient conditions. When heated in vacuum, it decomposes into graphite and molecular hydrogen at temperatures from 500 to 650 °C. Powder X-ray diffraction characterizes hydrographite as a multilayer “graphane II” phase predicted by ab initio calculations [Wen X-D et al. PNAS 2011; 108:6833] and consisting of graphane sheets in the chair conformation stacked along the hexagonal c axis inmore » the -ABAB- sequence. The crystal structure of the synthesized phase belongs to the P63mc space group. Moreover, the unit cell parameters are a = 2.53(1) Å and c = 9.54(1) Å and therefore exceed the corresponding parameters of graphite by 2.4(2)% and 42.0(3)%. Stretching vibrations of C–H groups on the surface of the hydrographite particles are examined by infrared spectroscopy.« less

  18. Chemically synthesized FePt nanoclusters

    NASA Astrophysics Data System (ADS)

    Velasco, Victor; Abel, Frank; Hu, Xiaocao; Crespo, Patricia; Hadjipanayis, George

    2014-03-01

    FePt nanoparticles (NPs) are being widely investigated due to their high potential applications in magnetic recording media and biomedicine. These NPs are expected to be ideal candidates due to their excellent magnetic properties, such as high K and high Ms together with a high chemical stability. In this work, the FePt NPs have been synthesized by chemical routes according to the method reported by M. Chen et al.[2] At high temperature, surfactants together with iron pentacarbonyl are added to the solution and thermally decomposed. By controlling the injection temperature and the heating rate, we have been able to obtain homogeneous spherical clusters with an average size of 38 +/- 10 nm formed by 5 nm-FePt NPs. These clusters are found to be superparamagnetic above Tb of 55 K whereas at 5 K exhibit a coercive field of 1.2 kOe. Furthermore, these NPs seem to be highly stable in water after replacing the surfactants by TMAOH. These clusters appear to be good candidates for MRI and hyperthermia applications. This work was supported by NSF DMR-0302544.

  19. Oligodendrocyte Precursor Cells Synthesize Neuromodulatory Factors

    PubMed Central

    Sakry, Dominik; Yigit, Hatice; Dimou, Leda; Trotter, Jacqueline

    2015-01-01

    NG2 protein-expressing oligodendrocyte progenitor cells (OPC) are a persisting and major glial cell population in the adult mammalian brain. Direct synaptic innervation of OPC by neurons throughout the brain together with their ability to sense neuronal network activity raises the question of additional physiological roles of OPC, supplementary to generating myelinating oligodendrocytes. In this study we investigated whether OPC express neuromodulatory factors, typically synthesized by other CNS cell types. Our results show that OPC express two well-characterized neuromodulatory proteins: Prostaglandin D2 synthase (PTGDS) and neuronal Pentraxin 2 (Nptx2/Narp). Expression levels of the enzyme PTGDS are influenced in cultured OPC by the NG2 intracellular region which can be released by cleavage and localizes to glial nuclei upon transfection. Furthermore PTGDS mRNA levels are reduced in OPC from NG2-KO mouse brain compared to WT cells after isolation by cell sorting and direct analysis. These results show that OPC can contribute to the expression of these proteins within the CNS and suggest PTGDS expression as a downstream target of NG2 signaling. PMID:25966014

  20. Copper nanocoils synthesized through solvothermal method.

    PubMed

    Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang

    2015-11-26

    Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10-35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices.

  1. [Femicides in ethnic and racialized groups: syntheses].

    PubMed

    Meneghel, Stela Nazareth; Lerma, Betty Ruth Lozano

    2017-01-01

    The text entitled "Femicides in ethnic and racialized groups: syntheses" presents some of the discussions that took place during a seminar on this topic in Buenaventura. Buenaventura is the main Colombian port on the Pacific, a region rich in minerals and a corridor for the movement of goods, which makes it a strategic territory and a center for disputes. At the seminar, the social and political determinants of femicide were discussed, understanding it as a tactic of waging war against women. The forum provided a space for academic discussion, but also for grievances over inter-personal violence, the manifestation of feelings and the elaboration of pain and grief through the medium of art. We believe that the dissemination of this experience to the Brazilian public, in a country with ethnic, social and racial vulnerability similar to that in Colombia, will be of value to social and health workers. The scope of this paper is therefore to provide the opinion of its authors on the determinants of femicides and on actions to tackle them, in addition to a synthesis of the discussions and debates that permeated the event.

  2. Copper nanocoils synthesized through solvothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang

    2015-11-01

    Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10-35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices.

  3. Multistep sintering to synthesize fast lithium garnets

    NASA Astrophysics Data System (ADS)

    Xu, Biyi; Duan, Huanan; Xia, Wenhao; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    A multistep sintering schedule is developed to synthesize Li7La3Zr2O12 (LLZO) doped with 0.2 mol% Al3+. The effect of sintering steps on phase, relative density and ionic conductivity of Al-doped LLZO has been evaluated using powder X-Ray diffraction (XRD), scanning electron microscopy (SEM), 27Al magic spinning nuclear magnetic resonance (NMR) spectroscopy and electrochemical impedance spectroscopy (EIS). The results show that by holding the sample at 900 °C for 6 h, the mixture of tetragonal and cubic garnet phases are obtained; by continuously holding at 1100 °C for 6 h, the tetragonal phase completely transforms into cubic phase; by holding at 1200 °C, the relative density increases without decomposition of the cubic phase. The Al-LLZO pellets after multistep sintering exhibit cubic phase, relative density of 94.25% and ionic conductivity of 4.5 × 10-4 S cm-1 at room temperature. Based on the observation, a sintering model is proposed and discussed.

  4. Multilayer graphane synthesized under high hydrogen pressure

    SciTech Connect

    Antonov, V. E.; Bashkin, I. O.; Bazhenov, A. V.; Bulychev, B. M.; Fedotov, V. K.; Fursova, T. N.; Kolesnikov, A. I.; Kulakov, V. I.; Lukashev, R. V.; Matveev, D. V.; Sakharov, M. K.; Shulga, Y. M.

    2015-12-19

    A new hydrocarbon – hydrographite – with the composition close to CH is shown to form from graphite and gaseous hydrogen at pressures above 2 GPa and temperatures from 450 to 700 °C. Hydrographite is a black solid thermally stable under ambient conditions. When heated in vacuum, it decomposes into graphite and molecular hydrogen at temperatures from 500 to 650 °C. Powder X-ray diffraction characterizes hydrographite as a multilayer “graphane II” phase predicted by ab initio calculations [Wen X-D et al. PNAS 2011; 108:6833] and consisting of graphane sheets in the chair conformation stacked along the hexagonal c axis in the -ABAB- sequence. The crystal structure of the synthesized phase belongs to the P63mc space group. Moreover, the unit cell parameters are a = 2.53(1) Å and c = 9.54(1) Å and therefore exceed the corresponding parameters of graphite by 2.4(2)% and 42.0(3)%. Stretching vibrations of C–H groups on the surface of the hydrographite particles are examined by infrared spectroscopy.

  5. Mechanochemically Driven Syntheses of Boride Nanomaterials

    NASA Astrophysics Data System (ADS)

    Blair, Richard G.

    Solid state metathesis reactions have proven to be a viable route to the production of unfunctionalized nanomaterials. However, current implementations of this approach are limited to self-propagating reactions. We have been investigating mechanically driven metathesis reactions. The use of high-energy ball mills allows control of crystallite sizes without the use of a capping group. Reinforcement materials with crystallite sizes on the order of 5-30 nm can be produced in such a manner. Borides are of particular interest due to their strength, high melting point, and electrical conductivity. The ultimate goal of this work is to prepare oxide and capping group-free nanoparticles suitable for incorporation in thermoelectric, polymer, and ceramic composites. Ultimately this work will facilitate the production of improved thermoelectric materials that will provide robust, deployable, power generation modules to supplement or replace fuel cell, Stirling, and battery-derived power sources. It will also result in scalable, bulk syntheses of tough, refractory, conductive nanomaterials for polymer composites with improved electrical properties, ceramic composites with enhanced fracture toughness, and composites with enhanced neutron reflectance and/or absorbance.

  6. Why can't vertebrates synthesize trehalose?

    PubMed

    Argüelles, Juan-Carlos

    2014-10-01

    The non-reducing disaccharide trehalose is a singular molecule, which has been strictly conserved throughout evolution in prokaryotes (bacteria and archaea), lower eukaryotes, plants, and invertebrates, but is absent in vertebrates and-more specifically-in mammals. There are notable differences regarding the pivotal roles played by trehalose among distantly related organisms as well as in the specific metabolic pathways of trehalose biosynthesis and/or hydrolysis, and the regulatory mechanisms that control trehalose expression genes and enzymatic activities. The success of trehalose compared with that of other structurally related molecules is attributed to its exclusive set of physical properties, which account for its physiological roles and have also promoted important biotechnological applications. However, an intriguing question still remains: why are vertebrates in general, and mammals in particular, unable (or have lost the capacity) to synthesize trehalose? The search for annotated genomes of vertebrates reveals the absence of any functional trehalose synthase gene. Indeed, this is also true for the human genome, which contains, however, two genes encoding for isoforms of the hydrolytic activity (trehalase). Although we still lack a convincing answer, this striking difference might reflect the divergent evolutionary lineages followed by invertebrates and vertebrates. Alternatively, some clinical data point to trehalose as a toxic molecule when stored inside the human body.

  7. Copper nanocoils synthesized through solvothermal method

    PubMed Central

    Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang

    2015-01-01

    Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10–35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices. PMID:26607386

  8. Endothelial cells synthesize and process apolipoprotein B.

    PubMed

    Sivaram, P; Vanni-Reyes, T; Goldberg, I J

    1996-06-21

    We reported previously that a 116-kDa lipoprotein lipase (LPL)-binding protein from endothelial cells has sequence homology to the amino-terminal region of apolipoprotein (apo) B. We now tested whether endothelial cells synthesize apoB mRNA and protein. Primers were designed to the human apoB cDNA sequence and reverse transcription polymerase chain reaction was performed using total RNA isolated from bovine and human endothelial cells. With primers to the 5' region of the apoB mRNA (amino-terminal region of apoB protein) expected size PCR products were generated from both bovine and human endothelial cells as well as from mouse liver RNA, which was used as a control. Primers designed to the 3' region of apoB mRNA generated PCR products from human endothelial cells and HepG2 cells but not from bovine or mouse cells. These data suggest that endothelial cells contain full-length apoB mRNA and that the 5' or the amino-terminal region of apoB is highly conserved from mouse to human. This was confirmed by direct sequencing of the mouse and bovine PCR products. To test whether apoB protein was produced, bovine endothelial cell proteins were metabolically labeled with [35S]methionine/cysteine or [3H]leucine and immunoprecipitated with anti-human apoB antibodies. Using extracts from cells labeled for 1 h, monoclonal antibody 47, directed to the low density lipoprotein receptor binding region of apoB, precipitated a protein of approximate molecular mass 550,000, the size of full-length apoB. Immunoprecipitation of the 550-kDa protein was abolished in the presence of added unlabeled low density lipoprotein. From cells labeled for 16 h, a 116-kDa protein was immunoprecipitated by polyclonal anti-apoB antibodies. This protein was partly released from cells by heparin treatment. Pulse-chase analysis showed that the 116-kDa fragment appeared at the same time as the full-length apoB began disappearing. The immunoprecipitated 116-kDa fragment also bound labeled LPL on ligand blot

  9. Synthesized Spectra of Optically Thin Emission Lines

    NASA Astrophysics Data System (ADS)

    Olluri, K.; Gudiksen, B. V.; Hansteen, V. H.; De Pontieu, B.

    2015-03-01

    In recent years realistic 3D numerical models of the solar atmosphere have become available. The models attempt to recreate the solar atmosphere and mimic observations in the best way, in order to make it possible to couple complicated observations with physical properties such as the temperatures, densities, velocities, and magnetic fields. We here present a study of synthetic spectra created using the Bifrost code in order to assess how well they fit with previously taken solar data. A study of the synthetic intensity, nonthermal line widths, Doppler shifts, and correlations between any two of these three components of the spectra first assuming statistical equilibrium is made, followed by a report on some of the effects nonequilibrium ionization will have on the synthesized spectra. We find that the synthetic intensities compare well with the observations. The synthetic observations depend on the assumed resolution and point-spread function (PSF) of the instrument, and we find a large effect on the results, especially for intensity and nonthermal line width. The Doppler shifts produce the reported persistent redshifts for the transition region (TR) lines and blueshifts for the upper TR and corona lines. The nonthermal line widths reproduce the well-known turnoff point around (2-3) × 105 K, but with much lower values than those observed. The nonthermal line widths tend to increase with decreasing assumed instrumental resolution, also when nonequilibrium ionization is included. Correlations between the nonthermal line width of any two TR line studies as reported by Chae et al. are reproduced, while the correlations of intensity to line width are reproduced only after applying a PSF to the data. Doppler shift correlations reported by Doschek for the TR lines and correlations of Doppler shift to nonthermal line width of the Fe xii 19.5 line reported by Doschek et al. are reproduced.

  10. Human brain glial cells synthesize thrombospondin.

    PubMed Central

    Asch, A S; Leung, L L; Shapiro, J; Nachman, R L

    1986-01-01

    Thrombospondin, a 450-kDa multinodular glycoprotein with lectin-type activity, is found in human platelets, endothelial cells, fibroblasts, smooth muscle cells, monocytes, and granular pneumocytes. Thrombospondin interacts with heparin, fibrinogen, fibronectin, collagen, histidine-rich glycoprotein, and plasminogen. Recently, thrombospondin synthesis by smooth muscle cells has been reported to be augmented by platelet-derived growth factor. We present evidence that thrombospondin is present within and synthesized by astrocytic neuroglial cells. Heparin-Sepharose affinity chromatography of material derived from a human brain homogenate yielded a protein that, when reduced, had an apparent size of 180 kDa and comigrated with reduced platelet thrombospondin on NaDodSO4/PAGE. Immunoblot analysis with monospecific anti-thrombospondin confirmed the presence of immunoreactive thrombospondin. Indirect immunofluorescence of cultured human glial cells indicated the presence of thrombospondin. Metabolic labeling of glial cell cultures with [35S]methionine followed by immunoprecipitation with monospecific anti-thrombospondin revealed synthesis of a 180-kDa polypeptide that comigrated with platelet thrombospondin on NaDodSO4/PAGE. Cultured human glial cells were incubated for 48 hr in serum-free medium with purified platelet-derived growth factor at concentrations up to 50 ng/ml. Aliquots taken at intervals were analyzed by a quantitative double-antibody ELISA. The growth factor stimulated the release of thrombospondin into the culture medium by as much as 10-fold over control cultures. The presence of thrombospondin within glial cells of the central nervous system and the augmentation of its synthesis by platelet-derived growth factor suggest that thrombospondin may play an important role in regulating cell-cell and cell-matrix interactions during periods of cell division and growth. Images PMID:2939460

  11. Mode-synthesizing atomic force microscopy and mode-synthesizing sensing

    DOEpatents

    Passain, Ali; Thundat, Thomas George; Tetard, Laurene

    2014-07-22

    A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

  12. Syntheses and electronic structures of decamethylmetallocenes

    SciTech Connect

    Robbins, J.L.

    1981-04-01

    The synthesis of decamethylmanganocene ((eta-C/sub 5/(CH/sub 3/)/sub 5/)/sub 2/Mn or (Me/sub 5/Cp)/sub 2/Mn)) is described. Magnetic susceptibility and electron paramagnetic resonance (EPR) studies show that (Me/sub 5/Cp)/sub 2/Mn is a low-spin, 17-electron compound with an orbitally degenerate, /sup 2/E/sub 2g/ (e/sub 2g//sup 3/ a/sub 1g//sup 2/) ground state. An x-ray crystallographic study of (Me/sub 5/Cp)/sub 2/Mn shows that it is a monomeric, D/sub 5d/ decamethylmetallocene with metal to ring carbon distances that are about 0.3 A shorter than those determined for high-spin manganocenes. The syntheses of new (Me/sub 5/Cp)/sub 2/M (M = Mg,V,Cr,Co, and Ni) and ((Me/sub 5/Cp)/sub 2/M)PF/sub 6/ (M = Cr,Co, and Ni) compounds are described. In addition, a preparative route to a novel, dicationic decamethylmetallocene, ((Me/sub 5/Cp)/sub 2/Ni)(PF/sub 6/)/sub 2/ is reported. Infrared, nuclear magnetic resonance, magnetic susceptibility, and/or x-ray crystallographic studies indicate that all the above compounds are D/sub 5d/ or D/sub 5h/ decamethylmetallocenes with low-spin electronic configurations. Cyclic voltammetry studies verify the reversibility and the one-electron nature of the (Me/sub 5/Cp)/sub 2/M ..-->.. ((Me/sub 5/Cp)/sub 2/M)/sup +/ (M = Cr,Mn,Fe,Co,Ni), ((Me/sub 5/Cp)/sub 2/Mn)/sup -/ ..-->.. (Me/sub 5/Cp)/sub 2/Mn and ((Me/sub 5/Cp)/sub 2/Ni)/sup +/ ..-->.. (Me/sub 5/Cp)/sub 2/Ni)/sup 2 +/ redox reactions. These studies reveal that the neutral decamethylmetallocenes are much more easily oxidized than their metallocene counterparts. This result attests to the electron-donating properties of the ten substituent methyl groups. Proton and carbon-13 NMR data are reported for the diamagnetic Mg(II), Mn(I), Fe(II), Co(III), and Ni(IV) decamethylmetallocenes and for ((Me/sub 5/Cp)/sub 2/V(CO)/sub 2/)/sup +/. The uv-visible absorption spectra of the 15-, 18- and 20- electron decamethylmetallocenes are also reported.

  13. Stimulated low frequency Raman scattering in cupric oxide nanoparticles water suspension

    NASA Astrophysics Data System (ADS)

    Averyushkin, A. S.; Baranov, A. N.; Bulychev, N. A.; Kazaryan, M. A.; Kudryavtseva, A. D.; Strokov, M. A.; Tcherniega, N. V.; Zemskov, K. I.

    2017-04-01

    Cupric oxide nanoparticles with average size of 213.2 nm, were synthesized in acoustoplasma discharge for investigating their vibrational properties. The low-frequency acoustic mode in cupric oxide (CuO) nanoparticles has been studied by stimulated low-frequency Raman scattering (SLFRS). SLFRS conversion efficiency, threshold and frequency shift of the scattered light are measured.

  14. Synthesizing Smart Polymeric and Composite Materials

    NASA Astrophysics Data System (ADS)

    Gong, Chaokun

    ,1-phenylene)bismaleimide (MDPB). It showed the same healing ability as 2MEP4F while all starting materials are cheaper and commercially available. To further improve the mechanical strength of the PFA-MDPB healable polymer, epoxy as a strengthening component was mixed with PFA-MDPB healable polymer. The PFA, MDPB and epoxy composite polymers were further reinforced by carbon fiber as done with 2MEP4F matrix and the final composites were proved to have higher short beam shear strength than 2MEP4F while exhibiting a similar healing efficiency. Healable polymer MDPB (a two maleimide groups monomer) -- FGEEDR (a four furan groups monomer) was also designed and synthesized for transparent healable polymer. The MDPB-FGEEDR healable polymer was composited with silver nanowires (AgNWs) to afford healable transparent composite conductor. Razer blade cuts in the composite conductor could heal upon heating to recover the mechanical strength and electrical conductivity of the composite. The healing could be repeated for multiple times on the same cut location. The healing process was as fast as 3 minutes for conductivity to recover 97% of the original value. For electroactive polymer polypyrrole, the fast volume change upon electrical field change due to electrochemical oxidization or reduction was studied for actuation targeting toward a robotic application. The flexibility of polypyrrole was improved via copolymerization with pyrrole derivatives. Actuator devices are fabricated that more suitable for implantable medical device application than pyrrole homopolymer. The change of dipole re-orientation and thus dielectric constant of ferroelectric polymers and ceramics upon electrical field may be exploited for electrocaloric effect (ECE) and solid state refrigeration. For ferroelectric ceramics, we synthesized a series of Ba1-xSrxTiO3 nanoparticles with diameter ranging from 8-12 nm and characterized their dielectric and ferroelectric properties through hysteresis measurement. It was

  15. Frequency Comb Cooling Project

    DTIC Science & Technology

    2014-03-18

    frequency combs ). Recently the power and spectral coverage of frequency combs have grown considerably with projected 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...Aug-2011 18-May-2012 Approved for Public Release; Distribution Unlimited Final report on frequency comb cooling project The views, opinions and/or... frequency combs ). Recently the power and spectral coverage of frequency combs have grown considerably with projected average powers above 10 kW. We

  16. Synthesizing Virtual Oscillators to Control Islanded Inverters

    SciTech Connect

    Johnson, Brian B.; Sinha, Mohit; Ainsworth, Nathan G.; Dorfler, Florian; Dhople, Sairaj V.

    2016-08-01

    Virtual oscillator control (VOC) is a decentralized control strategy for islanded microgrids where inverters are regulated to emulate the dynamics of weakly nonlinear oscillators. Compared to droop control, which is only well defined in sinusoidal steady state, VOC is a time-domain controller that enables interconnected inverters to stabilize arbitrary initial conditions to a synchronized sinusoidal limit cycle. However, the nonlinear oscillators that are elemental to VOC cannot be designed with conventional linear-control design methods. We address this challenge by applying averaging- and perturbation-based nonlinear analysis methods to extract the sinusoidal steady-state and harmonic behavior of such oscillators. The averaged models reveal conclusive links between real- and reactive-power outputs and the terminal-voltage dynamics. Similarly, the perturbation methods aid in quantifying higher order harmonics. The resultant models are then leveraged to formulate a design procedure for VOC such that the inverter satisfies standard ac performance specifications related to voltage regulation, frequency regulation, dynamic response, and harmonic content. Experimental results for a single-phase 750 VA, 120 V laboratory prototype demonstrate the validity of the design approach. They also demonstrate that droop laws are, in fact, embedded within the equilibria of the nonlinear-oscillator dynamics. This establishes the backward compatibility of VOC in that, while acting on time-domain waveforms, it subsumes droop control in sinusoidal steady state.

  17. Digitally synthesized phased antenna for multibeam global positioning

    NASA Technical Reports Server (NTRS)

    Dunn, Charles E. (Inventor); Young, Lawrence E. (Inventor)

    2004-01-01

    In a system according to the proposed technique (see figure), the signal received by each element of the array antenna would be subjected to downconversion, and spread-spectrum demodulation and correlation as necessary; this processing would be performed separately from, and simultaneously with, similar processing of signals received by the other antenna elements. For the GPS implementation, following downconversion to baseband, the signals would be digitized, and all subsequent processing would be digital. In the digital process, residual carriers would be removed and each signal would be correlated with a locally generated model pseudo random-noise code, all following normal GPS procedure. As part of this procedure, accumulated values would be added in software and the resulting signals would be phase-shifted in software by the amounts necessary to synthesize the desired antenna directional gain pattern of peaks and nulls. The principal advantage of this technique over the conventional radio-frequency-combining technique is that the parallel digital baseband processing of the signals from the various antenna elements would be a relatively inexpensive and flexible means for exploiting the inherent multiple-peak/multiple-null aiming capability of a phased-array antenna. In the original intended GPS application, the peaks and nulls could be directed independently for each GPS signal being tracked by the GPS receiver. This will improve the SNR simultaneously for each GPS signal being tracked while steering multiple nulls toward sources of interference. The technique could also be applied to other code-division multiple-access communication systems.

  18. Beyond carbon K-edge harmonic emission using a spatial and temporal synthesized laser field.

    PubMed

    Pérez-Hernández, J A; Ciappina, M F; Lewenstein, M; Roso, L; Zaïr, A

    2013-02-01

    We present numerical simulations of high-order harmonic generation in helium using a temporally synthesized and spatially nonhomogeneous strong laser field. The combination of temporal and spatial laser field synthesis results in a dramatic cutoff extension far beyond the usual semiclassical limit. Our predictions are based on the convergence of three complementary approaches: resolution of the three dimensional time dependent Schrödinger equation, time-frequency analysis of the resulting dipole moment, and classical trajectory extraction. A laser field synthesized both spatially and temporally has been proven capable of generating coherent extreme ultraviolet photons beyond the carbon K edge, an energy region of high interest as it can be used to initiate inner-shell dynamics and study time-resolved intramolecular attosecond spectroscopy.

  19. AUTOMATIC FREQUENCY CONTROL SYSTEM

    DOEpatents

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  20. The Electronic Music Synthesizer and the Physics of Music

    ERIC Educational Resources Information Center

    Hartmann, W. M.

    1975-01-01

    Describes the principal modules of analog electronic music synthesizers and discusses some ways that a synthesizer has been used in demonstrations, in psychophysical experiments, and in an undergraduate laboratory course in the physics of music and acoustics. Considers the synthesis of both steady and transitory auditory phenomena. (Author/MLH)

  1. Precise Frequency Measurements Using a Superconducting Cavity Stabilized Oscillator

    NASA Technical Reports Server (NTRS)

    Strayer, D. M.; Yeh, N.-C.; Jiang, W.; Anderson, V. L.; Asplund, N.

    1999-01-01

    Many physics experiments call on improved resolution to better define the experimental results, thus improving tests of theories. Modern microwave technology combined with high-Q resonators can achieve frequency readout and control with resolutions up to a part in 10(exp 18). When the physical quantity in question in the experiment can be converted to a frequency or a change in frequency, a high-stability microwave oscillator can be applied to obtain state-of-the-art precision. In this work we describe the overall physical concepts and the required experimental procedures for optimizing a high-resolution frequency measurement system that employs a high-Q superconducting microwave cavity and a low-noise frequency synthesizer. The basic approach is to resolve the resonant frequencies of a high-Q (Q > 10(exp 10)) cavity to extremely high precision (one part in 10(exp 17)- 10(exp 18)). Techniques for locking the synthesizer frequency to a resonant frequency of the superconducting cavity to form an ultra-stable oscillator are described. We have recently set up an ultra-high-vacuum high-temperature annealing system to process superconducting niobium cavities, and have been able to consistently achieve Q > 10(exp 9). We have integrated high-Q superconducting cavities with a low-noise microwave synthesizer in a phase-locked-loop to verify the frequency stability of the system. Effects that disturb the cavity resonant frequency (such as the temperature fluctuations and mechanical vibrations) and methods to mitigate those effects are also considered. Applicability of these techniques to experiments will be discussed, and our latest experimental progress in achieving high-resolution frequency measurements using the superconducting-cavity-stabilized-oscillator will be presented.

  2. Precise frequency calibration using television video carriers

    NASA Technical Reports Server (NTRS)

    Burkhardt, Edward E.

    1990-01-01

    The availability of inexpensive and quick precise frequency calibration methods is limited. VLF and GPS do offer precise calibration. However, antenna placement, cost of equipment, and calibration time place many restrictions on the user. The USNO maintained line-10 television Time of Coincidence (TOC) of station WTTG, channel 5, Washington, DC requires a frequency stable video carrier. This video carrier, 77.24 MHz is controlled by the same cesium beam standard controlling the TOC of line-10. Excellent frequency comparisons against this video carrier have been accomplished at 95 miles (153 km). With stable propagation and a three foot wire antenna, a part in 10(exp 9) can be determined in a few minutes. Inexpensive field equipment with a synthesized 1 kHz offset from the video carrier offers parts in 10(exp 11) calibrations in a few minutes using an oscilloscope as a phase comparator.

  3. DDC Descriptor Frequencies.

    ERIC Educational Resources Information Center

    Klingbiel, Paul H.; Jacobs, Charles R.

    This report summarizes the frequency of use of the 7144 descriptors used for indexing technical reports in the Defense Documentation Center (DDC) collection. The descriptors are arranged alphabetically in the first section and by frequency in the second section. The frequency data cover about 427,000 AD documents spanning the interval from March…

  4. Eastern Frequency Response Study

    SciTech Connect

    Miller, N.W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2013-05-01

    This study was specifically designed to investigate the frequency response of the Eastern Interconnection that results from large loss-of-generation events of the type targeted by the North American Electric Reliability Corp. Standard BAL-003 Frequency Response and Frequency Bias Setting (NERC 2012a), under possible future system conditions with high levels of wind generation.

  5. Making Sense of Frequency.

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2002-01-01

    Responds to Ellis (2002), which focuses on frequency in language processing, language use, and language acquisition. Contextualizes the frequency factor in terms of the evolution of second language acquisition (SLA) research. Suggests that although relevant and important, the frequency factor requires greater definition and qualification.…

  6. Frequency Response Tool

    SciTech Connect

    Etingov, Pavel; Chassin, PNNL David; Zhang, PNNL Yu; PNNL,

    2014-03-13

    According to the North American Electric Reliability Corporation (NERC) definition: “Frequency response is a measure of an Interconnection’s ability to stabilize frequency immediately following the sudden loss of generation or load, and is a critical component of the reliable operation of the Bulk-Power System, particularly during disturbances and recoveries. Failure to maintain frequency can disrupt the operation of equipment and initiate disconnection of power plant equipment to prevent it from being damaged, which could lead to wide-spread blackouts.” Frequency Response Tool automates the power system frequency response analysis process. The tool performs initial estimation of the system frequency parameters (initial frequency, minimum frequency, settling point). User can visually inspect and adjust these parameters. The tool also calculates the frequency response performance metrics of the system, archives the historic events and baselines the system performance. Frequency response performance characteristics of the system are calculated using phasor measurement unit (PMU) information. Methodology of the frequency response performance assessment implemented in the tool complies with the NERC Frequency response standard.

  7. Static inverter with synchronous output waveform synthesized by time-optimal-response feedback

    NASA Technical Reports Server (NTRS)

    Kernick, A.; Stechschulte, D. L.; Shireman, D. W.

    1976-01-01

    Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.

  8. A compact micro-wave synthesizer for transportable cold-atom interferometers

    SciTech Connect

    Lautier, J.; Lours, M.; Landragin, A.

    2014-06-15

    We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of {sup 87}Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de métrologie et d'essais−Systémes de référence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of −65 dB rad{sup 2} Hz{sup −1} at 10 Hz offset frequency and a white phase noise level in the order of −120 dB rad{sup 2} Hz{sup −1} for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.

  9. The relative contributions of speaking fundamental frequency and formant frequencies to gender identification based on isolated vowels.

    PubMed

    Gelfer, Marylou Pausewang; Mikos, Victoria A

    2005-12-01

    The purpose of this study was to determine the accuracy with which listeners could identify the gender of a speaker from a synthesized isolated vowel based on the natural production of that speaker when (1) the fundamental frequency was consistent with the speaker's gender, (2) the fundamental frequency was inconsistent with the the speaker's gender, and (3) the speaker was transgendered. Ten male-to-female transgendered persons, 10 men and 10 women, served as subjects. Each speaker produced the vowels /i/, /u/, and //. These vowels were analyzed for fundamental frequency and the first three formant frequencies and bandwidths. Formant frequency and bandwidth information was used to synthesize two vowel tokens for each speaker, one at a fundamental frequency of 120 Hz and one at 240 Hz. Listeners were asked to listen to these tokens and determine whether the original speaker was male or female. Listeners were not aware of the use of transgendered speakers. Results showed that, in all cases, gender identifications were based on fundamental frequency, even when fundamental frequency and formant frequency information was contradictory.

  10. Frequency selective infrared sensors

    DOEpatents

    Davids, Paul; Peters, David W

    2013-05-28

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  11. Frequency selective infrared sensors

    SciTech Connect

    Davids, Paul; Peters, David W

    2014-11-25

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  12. Harmonic Frequency Lowering

    PubMed Central

    Kirchberger, Martin

    2016-01-01

    A novel algorithm for frequency lowering in music was developed and experimentally tested in hearing-impaired listeners. Harmonic frequency lowering (HFL) combines frequency transposition and frequency compression to preserve the harmonic content of music stimuli. Listeners were asked to make judgments regarding detail and sound quality in music stimuli. Stimuli were presented under different signal processing conditions: original, low-pass filtered, HFL, and nonlinear frequency compressed. Results showed that participants reported perceiving the most detail in the HFL condition. In addition, there was no difference in sound quality across conditions. PMID:26834122

  13. Phase-locked 10 MHz reference signal for frequency domain time-resolved fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Smith, Trevor A.; Bird, Damian K.; Nuske, John W.

    2007-05-01

    A complete electronic system that is suitable for use in megahertz frequency domain time-resolved fluorescence instruments based on mode-locked lasers is described. The circuit produces a 10MHz signal, phase locked to the mode-locked laser pulse frequency, which is required by many commercial frequency synthesizers as the external reference signal. This device is particularly useful in conjunction with ultrafast gated intensified charge coupled device cameras capable of being frequency modulated for time-resolved fluorescence imaging.

  14. Radio frequency spectrum management

    NASA Astrophysics Data System (ADS)

    Sujdak, E. J., Jr.

    1980-03-01

    This thesis is a study of radio frequency spectrum management as practiced by agencies and departments of the Federal Government. After a brief introduction to the international agency involved in radio frequency spectrum management, the author concentrates on Federal agencies engaged in frequency management. These agencies include the National Telecommunications and Information Administration (NTIA), the Interdepartment Radio Advisory Committee (IRAC), and the Department of Defense (DoD). Based on an analysis of Department of Defense frequency assignment procedures, recommendations are given concerning decentralizing military frequency assignment by delegating broader authority to unified commanders. This proposal includes a recommendation to colocate the individual Service frequency management offices at the Washington level. This would result in reduced travel costs, lower manpower requirements, and a common tri-Service frequency management data base.

  15. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  16. Method for synthesizing extremely high-temperature melting materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  17. Method for Synthesizing Extremeley High Temperature Melting Materials

    DOEpatents

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  18. Entanglement creation in a quantum-dot-nanocavity system by Fourier-synthesized acoustic pulses

    NASA Astrophysics Data System (ADS)

    Blattmann, Ralf; Krenner, Hubert J.; Kohler, Sigmund; Hänggi, Peter

    2014-01-01

    We explore the possibility of entangling an excitonic two-level system in a semiconductor quantum dot with a cavity defined on a photonic crystal by sweeping the cavity frequency across its resonance with the exciton transition. The dynamic cavity detuning is established by a radio frequency surface acoustic wave (SAW). It induces Landau-Zener transitions between the excitonic and the photonic degrees of freedom and thereby creates a superposition state. We optimize this scheme by using tailored Fourier-synthesized SAW pulses with up to five harmonics. The theoretical study is performed with a master equation approach for present state-of-the-art setups. Assuming experimentally demonstrated system parameters, we show that the composed pulses increase both the maximum entanglement and its persistence. The latter is only limited by the dominant dephasing mechanism, i.e., the photon loss from the cavity.

  19. Genetic basis of triticale breeding (x triticale). IV. Embryo culture for synthesizing primary hexaploid triticales

    SciTech Connect

    Gordei, I.A.; Khodortsova, L.F.

    1986-07-01

    Results are reported on enhancing the efficiency of embryo culture for synthesizing primary hexaploid triticales (AABBRR, 2n = 42). The antioxidant tomatoside has a positive effect on the reduction of progamous incompatibility of wheat with rye and increases the output of wheat-rye amphihaploids. It has been established that irradiation of embryos, cultured on nutrient medium, with helium-neon laser, increases significantly (P < 0.01) the regeneration frequency of the wheat-rye hybrid embryos. The highest frequency (40%) of amphidiploids was obtained by treating the plants with 0.15% colchicine through roots during the tillering phase. Hexaploid triticales from 11 cross combinations between tetraploid wheats (AABB, 2n = 28) and diploid rye (RR, 2n = 14) formed the initial material for breeding.

  20. High Resolution Spectroscopy Using a Tunable Thz Synthesizer Based on Photomixing

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Eliet, Sophie; Guinet, Mickael; Bocquet, Robin

    2011-06-01

    Optical heterodyning, also know as photomixing is an attractive solution as a single device able to cover the entire frequency range from 300 GHz to 3 THz. As the THz frequency is extracted from the difference frequency of two lasers, the accuracy with which the generated frequency is known is directly determined by the frequency accuracy of the lasers. In order to fully characterize the spectral fingerprint of a given molecule an accuracy approximately one order of magnitude finer than the Doppler linewidth is required, around 100 kHz for smaller polar compounds. To generate accurate cw-THz the frequency spacing of the modes of a Frequency Comb (FC) has been employed to constrain the emission frequency of a photomixing source.footnote{G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.} Two phase locked loops are implemented coherently locking the two cw-lasers (CW1 and CW2) to different modes of the FC. Although this solution allows accurate generation of narrowband THz the continuous tuning of the frequency presents some obstacles. To overcome these difficulties a system architecture with a third cw-laser (CW3) phase locked to CW2 has been implemented. The beatnote between CW2 and CW3 is free from the FC modes therefore the PLL frequency can be freely scanned over its entire operating range, in our case around 200 MHz. The most of polar compounds may be studied at high resolution in the THz domain with this synthesizer. Three different examples of THz analysis with atmospherical and astrophysical interests will be presented: The ground and vibrationnally excited states of H_2CO revisited in the 0.5-2 THz frequency region The rotational dependences of the broadening coefficients of CH_3Cl studied at high J and K values The molecular discrimination of a complex mixture containing methanol and ethanol. F. Hindle, A. Cuisset, G. Mouret, R. Bocquet Comptes Rendus Physique, 2008, 9: 262-275.

  1. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1991-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  2. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1993-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  3. SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

  4. Synthesizing SoTL Institutional Initiatives toward National Impact

    ERIC Educational Resources Information Center

    Simmons, Nicola

    2016-01-01

    This chapter draws on other authors' ideas in this issue, describing parallels and outlining distinctions toward a synthesized model for the development of SoTL initiatives at the institutional level and beyond.

  5. Biologically synthesized fluorescent CdS NPs encapsulated by PHB.

    PubMed

    Pandian, Sureshbabu Ram Kumar; Deepak, Venkataraman; Kalishwaralal, Kalimuthu; Gurunathan, Sangiliyandi

    2011-04-07

    Here an attempt was made to biologically synthesize fluorescent cadmium sulfide nanoparticles and to immobilize the synthesized nanoparticles in PHB nanoparticles. The present study uses Brevibacterium casei SRKP2 as a potential producer for the green synthesis of CdS nanoparticles. Biologically synthesized nanoparticles were characterized and confirmed using electron microscopy and XRD. The size distribution of the nanoparticles was found to be 10-30 nm followed by which the consequence of time, growth of the organism, pH, concentration of CdCl(2) and Na(2)S on the synthesis of nanoparticles were checked. Enhanced synthesis and fluorescence emission of CdS nanoparticles were achieved at pH 9. The synthesized CdS NPs were immobilized with PHB and were characterized. The fluorescent intensity of the CdS nanoparticles remained unaffected even after immobilization within PHB nanoparticles.

  6. A comparative study of TiO2 nanoparticles synthesized in premixed and diffusion flames

    NASA Astrophysics Data System (ADS)

    Ma, Hsiao-Kang; Yang, Hsiung-An

    2010-12-01

    Previous studies have been shown that synthesis of titania (TiO2) crystalline phase purity could be effectively controlled by the oxygen concentration through titanium tetra-isopropoxide (TTIP) via premixed flame from a Bunsen burner. In this study, a modified Hencken burner was used to synthesize smaller TiO2 nanoparticles via short diffusion flames. The frequency of collisions among particles would decrease and reduce TiO2 nanoparticle size in a short diffusion flame height. The crystalline structure of the synthesized nanoparticles was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) measurements. The characteristic properties of TiO2 nanoparticles synthesized from a modified Hencken burner were compared with the results from a Bunsen burner and commercial TiO2 (Degussa P25). The results showed that the average particle size of 6.63 nm from BET method was produced by a modified Hencken burner which was smaller than the TiO2 in a Bunsen burner and commercial TiO2. Moreover, the rutile content of TiO2 nanoparticles increased as the particle collecting height increased. Also, the size of TiO2 nanoparticles was highly dependent on the TTIP loading and the collecting height in the flame.

  7. Radio frequency detection assembly and method for detecting radio frequencies

    SciTech Connect

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  8. Vanadium oxide electrode synthesized by electroless deposition for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Wu, Haoran; Lian, Keryn

    2014-12-01

    A thin film vanadium oxide electrode was synthesized by a simple electroless deposition method. Surface and structural analyses revealed that the deposited oxide is a mixture of amorphous V2O5 and VO2. Electrochemical characterizations of the synthesized vanadium oxide showed capacitive behavior with good cycle life. The electroless deposition of vanadium oxide is inexpensive, easy to process, and environmentally benign, offering a promising route for electrode development for electrochemical capacitors.

  9. Degradation of methylene blue using biologically synthesized silver nanoparticles.

    PubMed

    Vanaja, M; Paulkumar, K; Baburaja, M; Rajeshkumar, S; Gnanajobitha, G; Malarkodi, C; Sivakavinesan, M; Annadurai, G

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time.

  10. Degradation of Methylene Blue Using Biologically Synthesized Silver Nanoparticles

    PubMed Central

    Vanaja, M.; Paulkumar, K.; Baburaja, M.; Rajeshkumar, S.; Gnanajobitha, G.; Malarkodi, C.; Sivakavinesan, M.; Annadurai, G.

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time. PMID:24772055

  11. Cooled Ion Frequency Standard

    DTIC Science & Technology

    1988-09-27

    on Frequency Standards and Metrology, Ancona , Italy (Springer Verlag, 1988) to be published. 8. "High Accuracy Spectroscopy of Stored Ions," D.J...Wineland, W.M. Itano, J.S. Bergquist, J.J. Bollinger, F. Diedrich and S.L. Gilbert, Proc. 4th Symp. on Frequency Standards and Metrology, Ancona , Italy...Proc. 4th Symp. on Frequency Standards and Metrology, Ancona , Italy (Springer Verlag, 1988) to be published. 10. "Quantative Study of Laser Cooling in

  12. Error removal in microchip-synthesized DNA using immobilized MutS.

    PubMed

    Wan, Wen; Li, Lulu; Xu, Qianqian; Wang, Zhefan; Yao, Yuan; Wang, Rongliang; Zhang, Jia; Liu, Haiyan; Gao, Xiaolian; Hong, Jiong

    2014-07-01

    The development of economical de novo gene synthesis methods using microchip-synthesized oligonucleotides has been limited by their high error rates. In this study, a low-cost, effective and improved-throughput (up to 32 oligos per run) error-removal method using an immobilized cellulose column containing the mismatch binding protein MutS was produced to generate high-quality DNA from oligos, particularly microchip-synthesized oligonucleotides. Error-containing DNA in the initial material was specifically retained on the MutS-immobilized cellulose column (MICC), and error-depleted DNA in the eluate was collected for downstream gene assembly. Significantly, this method improved a population of synthetic enhanced green fluorescent protein (720 bp) clones from 0.93% to 83.22%, corresponding to a decrease in the error frequency of synthetic gene from 11.44/kb to 0.46/kb. In addition, a parallel multiplex MICC error-removal strategy was also evaluated in assembling 11 genes encoding ∼21 kb of DNA from 893 oligos. The error frequency was reduced by 21.59-fold (from 14.25/kb to 0.66/kb), resulting in a 24.48-fold increase in the percentage of error-free assembled fragments (from 3.23% to 79.07%). Furthermore, the standard MICC error-removal process could be completed within 1.5 h at a cost as low as $0.374 per MICC.

  13. Error removal in microchip-synthesized DNA using immobilized MutS

    PubMed Central

    Wan, Wen; LI, Lulu; Xu, Qianqian; Wang, Zhefan; Yao, Yuan; Wang, Rongliang; Zhang, Jia; Liu, Haiyan; Gao, Xiaolian; Hong, Jiong

    2014-01-01

    The development of economical de novo gene synthesis methods using microchip-synthesized oligonucleotides has been limited by their high error rates. In this study, a low-cost, effective and improved-throughput (up to 32 oligos per run) error-removal method using an immobilized cellulose column containing the mismatch binding protein MutS was produced to generate high-quality DNA from oligos, particularly microchip-synthesized oligonucleotides. Error-containing DNA in the initial material was specifically retained on the MutS-immobilized cellulose column (MICC), and error-depleted DNA in the eluate was collected for downstream gene assembly. Significantly, this method improved a population of synthetic enhanced green fluorescent protein (720 bp) clones from 0.93% to 83.22%, corresponding to a decrease in the error frequency of synthetic gene from 11.44/kb to 0.46/kb. In addition, a parallel multiplex MICC error-removal strategy was also evaluated in assembling 11 genes encoding ∼21 kb of DNA from 893 oligos. The error frequency was reduced by 21.59-fold (from 14.25/kb to 0.66/kb), resulting in a 24.48-fold increase in the percentage of error-free assembled fragments (from 3.23% to 79.07%). Furthermore, the standard MICC error-removal process could be completed within 1.5 h at a cost as low as $0.374 per MICC. PMID:24829454

  14. Multi-Frequency Synthesis

    NASA Astrophysics Data System (ADS)

    Sault, R. J.; Conway, J. E.

    Multi-frequency synthesis is the practice of using visibility data measured over a range of frequencies when forming a continuum image. Because observing frequency is easier to vary than antenna location, it is an effective way of filling the (u,v) plane for an observation. Here we consider the artifacts in MFS images caused by source spectral variation. For frequency ranges of about 30%, for observations where only modest dynamic range is required, the artifacts of MFS can be completely ignored. For higher dynamic range observations, some calibration techniques and deconvolution algorithms are described which minimize the artifacts.

  15. Frequency Response Analysis Tool

    SciTech Connect

    Etingov, Pavel V.; Kosterev, Dmitry; Dai, T.

    2014-12-01

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.

  16. Probability and Relative Frequency

    NASA Astrophysics Data System (ADS)

    Drieschner, Michael

    2016-01-01

    The concept of probability seems to have been inexplicable since its invention in the seventeenth century. In its use in science, probability is closely related with relative frequency. So the task seems to be interpreting that relation. In this paper, we start with predicted relative frequency and show that its structure is the same as that of probability. I propose to call that the `prediction interpretation' of probability. The consequences of that definition are discussed. The "ladder"-structure of the probability calculus is analyzed. The expectation of the relative frequency is shown to be equal to the predicted relative frequency. Probability is shown to be the most general empirically testable prediction.

  17. Nonlinear Frequency Compression

    PubMed Central

    Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-01-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality. PMID:23539261

  18. Frequency selective terahertz retroreflectors

    NASA Astrophysics Data System (ADS)

    Williams, Richard James

    The use of novel optical structures operating at terahertz frequencies in industrial and military applications continues to grow. Some of these novel structures include gratings, frequency selective surfaces, metamaterials and metasurfaces, and retroreflectors. A retroreflector is a device that exhibits enhanced backscatter by concentrating the reflected wave in the direction of the source. Retroreflectors have applications in a variety of diverse fields such as aviation, radar systems, antenna technology, communications, navigation, passive identification, and metrology due to their large acceptance angles and frequency bandwidth. This thesis describes the design, fabrication, and characterization of a retroreflector designed for terahertz frequencies and the incorporation of a frequency selective surface in order to endow the retroreflector with narrow-band frequency performance. The radar cross section of several spherical lens reflectors operating at terahertz frequencies was investigated. Spherical lens reflectors with diameters ranging from 2 mm to 8 mm were fabricated from fused silica ball lenses and their radar cross section was measured at 100 GHz, 160 GHz, and 350 GHz. Crossed-dipole frequency selective surfaces exhibiting band-pass characteristics at 350 GHz fabricated from 12 um-thick Nickel screens were applied to the apertures of the spherical lens reflectors. The radar cross section of the frequency selective retroreflectors was measured at 160 GHz and 350 GHz to demonstrate proof-of-concept of narrow-band terahertz performance.

  19. Precision spectroscopy of hydrogen and femtosecond laser frequency combs.

    PubMed

    Hänsch, T W; Alnis, J; Fendel, P; Fischer, M; Gohle, C; Herrmann, M; Holzwarth, R; Kolachevsky, N; Udem, Th; Zimmermann, M

    2005-09-15

    Precision spectroscopy of the simple hydrogen atom has inspired dramatic advances in optical frequency metrology: femtosecond laser optical frequency comb synthesizers have revolutionized the precise measurement of optical frequencies, and they provide a reliable clock mechanism for optical atomic clocks. Precision spectroscopy of the hydrogen 1S-2S two-photon resonance has reached an accuracy of 1.4 parts in 10(14), and considerable future improvements are envisioned. Such laboratory experiments are setting new limits for possible slow variations of the fine structure constant alpha and the magnetic moment of the caesium nucleus mu(Cs) in units of the Bohr magneton mu(B).

  20. Electric modulus formalism and electrical transport property of ball mill synthesized nanocrystalline Mn doped ZrO2 solid solution

    NASA Astrophysics Data System (ADS)

    Saha, S.; Nandy, A.; Meikap, A. K.; Pradhan, S. K.

    2015-12-01

    Here we report the formation of Mn doped nanocrystalline ZrO2 solid solution synthesized by high energy ball-milling method and the transport mechanism in the temperature range 298 Kfrequency range 20 Hz-2 MHz. Rietveld method is employed for analysis of phase formation mechanism, structural and microstructural characterization of different phases and relative phase abundances using XRD patterns. The electrical study shows the dc conductivity enhances as the doping percentage increases. Complex electric modulus study shows low frequency region approaches to ideal Debye type behaviour while the high frequency side deviates. Alternating current conductivity is found to follow the power law σ'(f,T)∝fsTn. A transformation from small polaron hopping to correlated barrier hopping has been observed from the temperature dependence frequency exponent study. The contribution of grain boundary resistance is found to be dominating over the grain resistance in the ac conduction process.

  1. Low-power low-jitter PLL clock synthesizer for microprocessors with clock range 200-768 MHz

    NASA Astrophysics Data System (ADS)

    Baykov, V.; Garmash, A.

    2016-10-01

    In this article the results of the clock synthesizer development are shown. Different variants of voltage repeater for the system of automatic frequency tuning were analyzed. It was shown that for the purpose of energy consumption and jitter reducing the repeater on peripheral transistor can be used. The synthesizerwas created on the technology with design rules 180 nm. Scaling for the technology with design rules 90 nm is also possible.

  2. Multi-Frequency Synthesis

    NASA Astrophysics Data System (ADS)

    Conway, J. E.; Sault, R. J.

    Introduction; Image Fidelity; Multi-Frequency Synthesis; Spectral Effects; The Spectral Expansion; Spectral Dirty Beams; First Order Spectral Errors; Second Order Spectral Errors; The MFS Deconvolution Problem; Nature of The Problem; Map and Stack; Direct Assault; Data Weighting Methods; Double Deconvolution; The Sault Algorithm; Multi-Frequency Self-Calibration; Practical MFS; Conclusions

  3. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  4. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  5. Frequency Diverse Array Radar

    DTIC Science & Technology

    2010-09-01

    the methods for electronic scanning of antenna systems. Techniques that have been studied in this connection include frequency variation, phase shift...an array antenna instantaneously into a desired direction where no mechanical mechanism is involved in the scanning process. Electronic scanning... methods including phase scanning, time delay scanning, and frequency scanning have been used in various radar applications; however new and cheaper

  6. Microfabricated ion frequency standard

    DOEpatents

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  7. Iron oxide magnetic nanoparticles synthesized by atmospheric microplasmas

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Kaur, Parvin; Tan, Augustine Tuck Lee; Singh, Rajveer; Lee, Paul Choon Keat; Springham, Stuart Victor; Ramanujan, Raju V.; Rawat, R. S.

    2014-08-01

    This paper presents the synthesis of iron oxide nanoparticles using the atmospheric microplasma (AMP). The properties of iron oxide nanoparticles synthesized using AMP are compared with particles (i) formed in as-prepared solution and (ii) prepared using thermal decomposition method. Iron oxide nanoparticles prepared by all the 3 treatment methods exhibit quite soft ferromagnetic properties with coercivities less than 10 G. The AMP synthesis technique was found to be more efficient and better than thermal decomposition method due to ultra-shorter experiment time (around 2.5 min) as compared to 90 min required for thermal decomposition method. Moreover, AMP synthesized nanoparticles are better isolated and of smaller size than thermal decomposition ones. The effect of plasma discharge timings on synthesized nanoparticles has also been studied in this work. Coercivity of synthesized nanoparticles decreases with the increasing plasma discharge timings from 3 to 10 min. The nanoparticles synthesized using plasma discharge timing of 10 min exhibit the smallest coercivity of around 3 G. This suggests a high possibility of achieving super-paramagnetic nanoparticles by optimizing the plasma discharge timings of AMP.

  8. Evaluation of green synthesized silver nanoparticles against parasites.

    PubMed

    Marimuthu, Sampath; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Santhoshkumar, Thirunavukkarasu; Kirthi, Arivarasan Vishnu; Jayaseelan, Chidambaram; Bagavan, Asokan; Zahir, Abdul Abduz; Elango, Gandhi; Kamaraj, Chinnaperumal

    2011-06-01

    Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. The present study was based on assessments of the antiparasitic activities to determine the efficacies of synthesized silver nanoparticles (AgNPs) using aqueous leaf extract of Mimosa pudica Gaertn (Mimosaceae) against the larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector Culex quinquefasciatus Say (Diptera: Culicidae), and Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae). Parasite larvae were exposed to varying concentrations of aqueous extract of M. pudica and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of M. pudica and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus (LC(50) = 13.90, 11.73, and 8.98 mg/L, r (2) = 0.411, 0.286, and 0.479), respectively. This is the first report on antiparasitic activity of the plant extract and synthesized AgNPs.

  9. Techniques for estimating magnitude and frequency of floods on streams in Indiana

    USGS Publications Warehouse

    Glatfelter, D.R.

    1984-01-01

    A rainfall-runoff model was tlsed to synthesize long-term peak data at 11 gaged locations on small streams. Flood-frequency curves developed from the long-term synthetic data were combined with curves based on short-term observed data to provide weighted estimates of flood magnitude and frequency at the rainfall-runoff stations.

  10. A practical implementation of multi-frequency widefield frequency-domain FLIM

    PubMed Central

    Chen, Hongtao

    2013-01-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Here we describe a practical implementation of multi-frequency widefield FD-FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine wave modulation. This allows parallel multi-frequency FLIM measurement using the Fast Fourier Transform and the cross-correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restored the loss of optical resolution caused by the defocusing effect when the voltage at the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit-free lifetime analysis of FLIM images. Here our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multi-frequency FLIM system is a valuable and simple tool in fluorescence imaging studies. PMID:23296945

  11. [A method of synthesizing cicada sound for treatment of tinnitus].

    PubMed

    Wang, Yangjing; He, Peiyu; Pan, Fan; Cui, Tao; Wang, Haiyan

    2013-06-01

    Masking therapy can make patients accustom to tinnitus. This therapy is safe and easy to implement, so that it has become a widely used treatment of curing tinnitus. According to surveys of tinnitus sounds, cicada sound is one of the most usual tinnituses. Meanwhile, we have not hitherto found published papers concerning how to synthesize cicada sound and to use it to ameliorate tinnitus. Inspired by the human acoustics theory, we proposed a method to synthesize medical masking sound and to realize the diversity by illustrating the process of synthesizing various cicada sounds. In addition, energy attenuation problem in spectrum shifting process has been successfully solved. Simulation results indicated that the proposed method achieved decent results and would have practical value for the future applications.

  12. Frequency comb swept lasers

    PubMed Central

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C.; Fujimoto, James G.

    2010-01-01

    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a ~−1.2dB sensitivity roll off over ~3mm range, compared to conventional swept source and FDML lasers which have −10dB and −5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0–3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed. PMID:19997365

  13. Precision optical reference frequencies

    NASA Astrophysics Data System (ADS)

    Riehle, Fritz; Schnatz, Harald; Zinner, G.; Trebst, Tilmann; Helmcke, Juergen

    1999-05-01

    Optical reference frequencies are provided by lasers of which the frequencies are stabilized to suitable absorption lines. Presently, twelve reference frequencies/wavelengths within the wavelengths range from 243 nm to 10.3 micrometers are recommended by the International Committee of Weights and Measures as references for the realization of the meter and scientific applications. As typical examples, we describe a diode-pumped, frequency doubled YAG-laser stabilized to an absorption line of molecular iodine and a Ca-stabilized laser. The latter one has been developed in two versions, a transportable system utilizing a small beam of thermal Ca atoms and a stationary standard based on laser cooled and trapped Ca atoms. The frequency of the Ca standard based on cold Ca atoms has been measured by a frequency chain allowing a phase-coherent comparison against the primary standard of time and frequency, the caesium clock. Its value is vCa equals 455 986 240 494.13 kHz with a relative standard uncertainty of 2.5 (DOT) 10-13.

  14. Frequency comb swept lasers.

    PubMed

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C; Fujimoto, James G

    2009-11-09

    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a approximately -1.2dB sensitivity roll off over approximately 3mm range, compared to conventional swept source and FDML lasers which have -10dB and -5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0-3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed.

  15. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol.

  16. Intelligent switches of integrated lightwave circuits with core telecommunication functions

    NASA Astrophysics Data System (ADS)

    Izhaky, Nahum; Duer, Reuven; Berns, Neil; Tal, Eran; Vinikman, Shirly; Schoenwald, Jeffrey S.; Shani, Yosi

    2001-05-01

    We present a brief overview of a promising switching technology based on Silica on Silicon thermo-optic integrated circuits. This is basically a 2D solid-state optical device capable of non-blocking switching operation. Except of its excellent performance (insertion loss<5dB, switching time<2ms...), the switch enables additional important build-in functionalities. It enables single-to- single channel switching and single-to-multiple channel multicasting/broadcasting. In addition, it has the capability of channel weighting and variable output power control (attenuation), for instance, to equalize signal levels and compensate for unbalanced different optical input powers, or to equalize unbalanced EDFA gain curve. We examine the market segments appropriate for the switch size and technology, followed by a discussion of the basic features of the technology. The discussion is focused on important requirements from the switch and the technology (e.g., insertion loss, power consumption, channel isolation, extinction ratio, switching time, and heat dissipation). The mechanical design is also considered. It must take into account integration of optical fiber, optical planar wafer, analog electronics and digital microprocessor controls, embedded software, and heating power dissipation. The Lynx Photon.8x8 switch is compared to competing technologies, in terms of typical market performance requirements.

  17. Research Support for the Laboratory for Lightwave Technology

    DTIC Science & Technology

    1992-12-31

    position within the formwork while concrete is poured on it. Once the filling operation has been completed, and before hardening starts, the tube is...successfully implemented in practice by a construction company in Japan which reports monitoring concrete curing in a distribution tunnel using a...a motorway tunnel . During their embedding, fibers were protected by metallic tubes which were subsequently removed after the concrete pouring took

  18. Applications of compound fiber Bragg grating structures in lightwave communications

    NASA Astrophysics Data System (ADS)

    Chen, Lawrence R.

    Photonic networks have been identified as one solution that can satisfy the growing demand for bandwidth due to increased Internet traffic and the information superhighway. New enabling photonic technologies will be required in order to successfully implement, operate, and manage these all-photonic networks. In this thesis, we develop fiber Bragg grating technology for realizing photonic components that can perform a wide variety of optical signal processing functions for aggressive network management and performance requirements. First, we show how to tailor the spectral response of chirped moiré fiber Bragg gratings so that they can be used as transmission passband filters. We have fabricated filters having near ideal filter response which will be useful for providing wavelength selectivity in wavelength-division-multiplexed and wavelength routing networks. Second, we demonstrate the first hybrid wavelength- encodingt/time-spreading optical code-division multiple- access system using chirped moiré fiber Bragg gratings for encoding/decoding. Limitations imposed by the electronic bottleneck due to optical-to-electrical and electrical-to-optical conversions are overcome since all encoding/decoding operations are performed all- optically. Third, we realize a simple and cost-effective means using serial fiber Bragg grating arrays for performing power equalization among different wavelength channels in an erbium-doped fiber amplifier module. Such a module will be critical for compensating the deleterious effects of gain nonuniformity and transients in wavelength-division- multiplexed or wavelength routing networks. Finally, we demonstrate two different actively mode- locked erbium-doped fiber lasers that simultaneously emit two wavelengths with stable room-temperature operation. Wavelength spacings of 1.8 nm and 0.7 nm have been achieved-the closest reported to date. These lasers will find applications in high-performance transmission systems seeking to exploit combined wavelength-division- multiplexing/time-division-multiplexing access and as a diagnostic tool for photonic device testing/characterization.

  19. Radio frequency strain monitor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor); Rogowski, Robert S. (Inventor); Holben, Jr., Milford S. (Inventor)

    1989-01-01

    A radio frequency strain monitor includes a voltage controlled oscillator for generating an oscillating signal that is input into a propagation path. The propagation path is preferably bonded to the surface of a structure to be monitored and produces a propagated signal. A phase difference between the oscillating and propagated signals is detected and maintained at a substantially constant value which is preferably a multiple of 90.degree. by changing the frequency of the oscillating signal. Any change in frequency of the oscillating signal provides an indication of strain in the structure to which the propagation path is bonded.

  20. [Detection of synthesized microsomal hemoproteins (cytochrome P-448) using autofluorography].

    PubMed

    Chasovnikova, O B; Tsyrlov, I B

    1986-01-01

    Simple and informative method for the elucidation of de novo synthesized forms of microsomal cytochrome P-448 induced by 3-methylcholanthrene and 2,3,7,8-tetrachlordibenzo-p-dioxine has been developed. The method is based on gel fluorography upon electrophoretic separation of microsomal proteins obtained from the liver of rats pre-treated with the inducers of monooxygenase system components and then with 14C-leucine. At least two forms of cytochrome P-448 (with molecular weight of 56000 and 53000) were shown to be de novo synthesized under the influence of 3-methylcholanthrene and 2,3,7,8-tetrachlodbibenzo-p-dioxine.

  1. Stereocontrolled semi-syntheses of deguelin and tephrosin.

    PubMed

    Russell, David A; Freudenreich, Julien J; Ciardiello, Joe J; Sore, Hannah F; Spring, David R

    2017-02-21

    We describe stereocontrolled semi-syntheses of deguelin and tephrosin, anti-cancer rotenoids isolated from Tephrosia vogelii. Firstly, we present a new two-step transformation of rotenone into rot-2'-enonic acid via a zinc-mediated ring opening of rotenone hydrobromide. Secondly, following conversion of rot-2'-enonic acid into deguelin, a chromium-mediated hydroxylation provides tephrosin as a single diastereoisomer. An Étard-like reaction mechanism is proposed to account for the stereochemical outcome. Our syntheses of deguelin and tephrosin are operationally simple, scalable and high yielding, offering considerable advantages over previous methods.

  2. Diameter Controlled of Carbon Nanotubes Synthesized on Nanoporous Silicon Support

    NASA Astrophysics Data System (ADS)

    Asli, N. A.; Shamsudin, M. S.; Maryam, M.; Yusop, S. F. M.; Suriani, A. B.; Rusop, M.; Abdullah, S.

    2013-06-01

    Carbon nanotubes (CNTs) have been successfully synthesized on nanoporous silicon template (NPSiT) using botanical source, camphor oil. Diameter of CNTs synthesized was controlled by pore size of NPSiT prepared by photo-electrochemical anodization method. The diameter of CNTs grown on different NPSiT corresponded to the pore diameter of NPSiT. FESEM images showed self-organized bundles of fiber-like structures of CNTs with diameter of around 20nm which were successfully grown directly on nanoporous silicon while raman spectra obtained ratio of ID/IG at 0.67.

  3. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    SciTech Connect

    Bharti, Amardeep Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-08-28

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  4. 2-GHz frequency-domain fluorometer

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Laczko, Gabor; Gryczynski, Ignacy

    1986-10-01

    We developed a frequency-domain fluorometer which operates from 4 to 2000 MHz. The modulated excitation is provided by the harmonic content of a laser pulse train (3.76 MHz, 5 ps) from a synchronously pumped and cavity dumped dye laser. The phase angle and modulation of the emission are measured with a microchannel-plate photomultiplier (PMT). Cross-correlation detection is performed outside the PMT. The high-frequency signals for cross correlation were obtained by multiplication of the output from a 500-MHz frequency synthesizer. The performance was verified in several ways, including measurement of known time delays and examination of standard fluorophores. The detector displayed no detectable color effect, with the 300-600-nm difference being less than 5 ps. The precision of the measurements is adequate to detect differences of 20 ps for decay times of 500 ps. A correlation time of 53 ps was found for indole in water at 20 °C. The shortest correlation time we measured was 15 ps for indole in methanol/water (75/25) at 40 °C. Also, the 2-GHz data reveal the time-dependent ((t)1/2) terms found in the presence of collisional quenching. The degree of random error is about 0.3° of phase and 0.005 in modulation throughout the frequency range.

  5. Supernova frequency estimates

    SciTech Connect

    Tsvetkov, D.Y.

    1983-01-01

    Estimates of the frequency of type I and II supernovae occurring in galaxies of different types are derived from observational material acquired by the supernova patrol of the Shternberg Astronomical Institute.

  6. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  7. Frequency Hopping Transceiver Multiplexer

    DTIC Science & Technology

    1983-03-01

    8217 block number) frequency hopping, quadrature coupler, bandpass filter, coupling circuit, filter, helical resonator, matching network, PIN diode switch...which investigated the concept and feasibility of a 30MHz to 88MHz frequency hopping transceiver multiplexer. An approach which uses helical resonator...and Analysis 90 5.9.1 Helical Resonator 90 5.9.2 Shunt Capacitance Binary Bus Discussion 94 5.9.3 Resonator Design Decisions 97 5.9.4 Results and

  8. Microstructural and ionic transport studies of hydrothermally synthesized lanthanum fluoride nanoparticles

    SciTech Connect

    Patro, L. N. E-mail: kbharath@umd.edu; Kamala Bharathi, K. E-mail: kbharath@umd.edu; Ravi Chandra Raju, N.

    2014-12-15

    This article presents the structural and transport characteristics of hydrothermally synthesized LaF{sub 3} nanoparticles with an average crystallite size of 35nm. The phase formation of the material is confirmed by both X-ray diffraction and transmission electron microscopy techniques. In addition, phase purity of the LaF{sub 3} nanoparticles is corroborated by micro-Raman spectroscopy studies. The complex impedance plots at different temperatures reveal that the conductivity is predominantly due to the intrinsic bulk grains and the conductivity relaxation is non-Debye in nature. The frequency variation of conductivity exhibits dispersion at higher frequencies that can be explained with the frame work of Almond-West formalism. The conduction process is controlled by the mobility of the charge carriers and the charge of transport of mobile fluoride ions occur through hopping mechanism. The scaling behavior of both frequency dependence of conductivity and complex impedance plots at different temperatures confirm that the relaxation mechanism of the mobile fluoride ions is independent of temperature.

  9. Microstructural and ionic transport studies of hydrothermally synthesized lanthanum fluoride nanoparticles

    NASA Astrophysics Data System (ADS)

    Patro, L. N.; Kamala Bharathi, K.; Ravi Chandra Raju, N.

    2014-12-01

    This article presents the structural and transport characteristics of hydrothermally synthesized LaF3 nanoparticles with an average crystallite size of 35nm. The phase formation of the material is confirmed by both X-ray diffraction and transmission electron microscopy techniques. In addition, phase purity of the LaF3 nanoparticles is corroborated by micro-Raman spectroscopy studies. The complex impedance plots at different temperatures reveal that the conductivity is predominantly due to the intrinsic bulk grains and the conductivity relaxation is non-Debye in nature. The frequency variation of conductivity exhibits dispersion at higher frequencies that can be explained with the frame work of Almond-West formalism. The conduction process is controlled by the mobility of the charge carriers and the charge of transport of mobile fluoride ions occur through hopping mechanism. The scaling behavior of both frequency dependence of conductivity and complex impedance plots at different temperatures confirm that the relaxation mechanism of the mobile fluoride ions is independent of temperature.

  10. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines.

  11. Syntheses of sugar poly(orthoesters) through reverse anomeric effect.

    PubMed

    Li, Lingyao; Wang, Jun; Obrinske, Melissa; Milligan, Ian; O'Hara, Kylie; Bitterman, Lindsay; Du, Wenjun

    2015-04-25

    High molecular weight sugar poly(orthoesters) were synthesized through reverse anomeric effect (RAE). We demonstrated that when RAE-enabled promoters, such as 4-(dimethylamino)pyridine (DMAP), triphenylphosphine (TPP) or imidazole, were employed, efficient polymerizations were achieved, giving sugar poly(orthoesters) with molecular weights up to 18 kDa.

  12. Traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids

    NASA Technical Reports Server (NTRS)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    The paper describes the disk machine designed and constructed for the investigation of the traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids. The results of this experimental study are presented and compared with the theoretical predictions of traction according to the thermal and non-Newtonian theory recently presented by the authors.

  13. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    EPA Science Inventory

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  14. Branched nanostructures and method of synthesizing the same

    NASA Technical Reports Server (NTRS)

    Fonseca, Luis F. (Inventor); Resto, Oscar (Inventor); Sola, Francisco (Inventor)

    2009-01-01

    A branched nanostructure is synthesized. A porous material, with pores having a diameter of approximately 1 .mu.m or less, is placed in a vacuum. It is irradiated with an electron beam. This causes a trunk to grow from the porous material and further causes branches to grow from the trunk.

  15. Uses of a Vinylpyridine Polymer in Undergraduate Organic Syntheses.

    ERIC Educational Resources Information Center

    Getman, Damon; And Others

    1984-01-01

    Presents a series of syntheses in which poly-4-vinylpyridine is substituted for pyridine or other tertiary amines, avoiding some of the safety problems associated with traditional reagents and providing a readily recoverable and recyclable reactant. Background information, procedures used, and results are included. (JN)

  16. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-06-17

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines. 19 figs.

  17. Synthesizing a Life: An Interview with Carl Djerassi

    ERIC Educational Resources Information Center

    Cardellini, Liberato

    2011-01-01

    In this interview, Carl Djerassi recalls his first years, from his pleasant childhood, to how he escaped the Nazi persecutions, to his college education in America. He remembers how with his research group he won the race for synthesis of cortisone, and how they then synthesized norethindrone, the active ingredient in oral contraceptives. Djerassi…

  18. Syntheses of naturally occurring terphenyls and related compounds.

    PubMed

    Sawayama, Yusuke; Tsujimoto, Takashi; Sugino, Kumi; Nishikawa, Toshio; Isobe, Minoru; Kawagishi, Hirokazu

    2006-12-01

    Naturally occurring terphenyls and related compounds such as terferol and its corresponding quinone and phlebiarubrone were synthesized from 2,5-diphenyl-1,4-benzoquinone. According to the proposed biosynthetic pathway, chemical conversion of phlebiarubrone to ustalic acid, a toxic compound isolated from the poisonous mushroom, Tricholoma ustale, was examined to find a low-yield conversion to the ustalic acid dimethyl ester.

  19. Syntheses of Cyclic Guanidine-Containing Natural Products

    PubMed Central

    Ma, Yuyong; De, Saptarshi; Chen, Chuo

    2014-01-01

    Naturally occurring guanidine derivatives frequently display medicinally useful properties. Among them, the higher order pyrrole-imidazole alkaloids, the dragmacidins, the crambescidins/batzelladines, and the saxitoxins/tetradotoxins have stimulated the development of many new synthetic methods over the past decades. We provide here an overview of the syntheses of these cyclic guanidine-containing natural products. PMID:25684829

  20. Function generator for synthesizing complex vibration mode patterns

    NASA Technical Reports Server (NTRS)

    Naumann, E. C.; Hagood, G. J., Jr. (Inventor)

    1973-01-01

    A simple highly flexible device for synthesizing complex vibration mode patterns is described. These mode patterns can be used to identify vibration mode data. This device sums selected sine and cosine functions and then plots the sum against a linear function.

  1. Antimicrobial activity of the synthesized non-allergenic urushiol derivatives.

    PubMed

    Cho, Jeong-Yong; Park, Keun Young; Kim, Seon-Jae; Oh, Sejong; Moon, Jae-Hak

    2015-01-01

    Synthesized urushiol derivatives possessing different carbon atomic length in the alkyl side chain inhibited the growth of food spoilage and pathogenic microorganisms. Particularly, non-allergenic 3-pentylcatechol showed a broad antimicrobial spectrum on an agar plate. Most food spoilage and pathogenic microorganisms were sensitive to urushiol derivatives in the liquid culture. The morphologies of the microorganisms were changed after treatment of 3-pentylcatechol.

  2. Meta-Analysis: A Systematic Method for Synthesizing Counseling Research

    ERIC Educational Resources Information Center

    Whiston, Susan C.; Li, Peiwei

    2011-01-01

    The authors provide a template for counseling researchers who are interested in quantitatively aggregating research findings. Meta-analytic studies can provide relevant information to the counseling field by systematically synthesizing studies performed by researchers from diverse fields. Methodologically sound meta-analyses require careful…

  3. Synthesizing the Effect of Building Condition Quality on Academic Performance

    ERIC Educational Resources Information Center

    Gunter, Tracey; Shao, Jing

    2016-01-01

    Since the late 1970s, researchers have examined the relationship between school building condition and student performance. Though many literature reviews have claimed that a relationship exists, no meta-analysis has quantitatively examined this literature. The purpose of this review was to synthesize the existing literature on the relationship…

  4. Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles.

    PubMed

    Soni, Namita; Prakash, Soam

    2015-03-01

    Microbial synthesis of nanoparticles is a green approach that interconnects nanotechnology and microbial biotechnology. Here, we synthesized the silver nanoparticles (AgNPs) using bacterial strains of Listeria monocytogenes, Bacillus subtilius and Streptomyces anulatus. We tested the efficacy of AgNPs against the larvae, pupae and adults of Anopheles stephensi and Culex quinquefasciatus. We have also investigated the antifungal activity of AgNPs against the soil keratinophilic fungus of Chrysosporium keratinophilum. The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The results were obtained using a UV-visible spectrophotometer, and the images were recorded with a transmission electron microscope (TEM). The synthesized AgNPs were in varied shape and sizes. The larvae and pupae of Cx. quinquefasciatus were found highly susceptible to AgNPs synthesized using the L. monocytogenes, B. subtilius and S. anulatus than the An. stephensi, while the adults of An. stephensi were found more susceptible to the AgNPs synthesized using the L. monocytogenes, B. subtilius and S. anulatus the Cx. quinquefasciatus. Further, these nanoparticles have also been tested as antifungal activity against the entomopathogenic fungus C. keratinophilum. The higher zone of inhibition occurred at the concentration level of 50 μl. This study gives an innovative approach to develop eco-friendly AgNPs which act as an effective antifungal agent/fungicide and insecticide.

  5. A Model of Educational Leadership: Wisdom, Intelligence, and Creativity, Synthesized

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    2005-01-01

    This article presents a model of educational leadership--WICS--that encompasses "wisdom", "intelligence" and "creativity", "synthesized". The article opens with a general discussion of issues in models of leadership. Then it discusses the role of creativity in leadership, dividing the discussion into academic and practical aspects. Next it deals…

  6. Thermotoga lettingae can salvage cobinamide to synthesize vitamin B12.

    PubMed

    Butzin, Nicholas C; Secinaro, Michael A; Swithers, Kristen S; Gogarten, J Peter; Noll, Kenneth M

    2013-11-01

    We recently reported that the Thermotogales acquired the ability to synthesize vitamin B12 by acquisition of genes from two distantly related lineages, Archaea and Firmicutes (K. S. Swithers et al., Genome Biol. Evol. 4:730-739, 2012). Ancestral state reconstruction suggested that the cobinamide salvage gene cluster was present in the Thermotogales' most recent common ancestor. We also predicted that Thermotoga lettingae could not synthesize B12 de novo but could use the cobinamide salvage pathway to synthesize B12. In this study, these hypotheses were tested, and we found that Tt. lettingae did not synthesize B12 de novo but salvaged cobinamide. The growth rate of Tt. lettingae increased with the addition of B12 or cobinamide to its medium. It synthesized B12 when the medium was supplemented with cobinamide, and no B12 was detected in cells grown on cobinamide-deficient medium. Upstream of the cobinamide salvage genes is a putative B12 riboswitch. In other organisms, B12 riboswitches allow for higher transcriptional activity in the absence of B12. When Tt. lettingae was grown with no B12, the salvage genes were upregulated compared to cells grown with B12 or cobinamide. Another gene cluster with a putative B12 riboswitch upstream is the btuFCD ABC transporter, and it showed a transcription pattern similar to that of the cobinamide salvage genes. The BtuF proteins from species that can and cannot salvage cobinamides were shown in vitro to bind both B12 and cobinamide. These results suggest that Thermotogales species can use the BtuFCD transporter to import both B12 and cobinamide, even if they cannot salvage cobinamide.

  7. Thermotoga lettingae Can Salvage Cobinamide To Synthesize Vitamin B12

    PubMed Central

    Butzin, Nicholas C.; Secinaro, Michael A.; Swithers, Kristen S.; Gogarten, J. Peter

    2013-01-01

    We recently reported that the Thermotogales acquired the ability to synthesize vitamin B12 by acquisition of genes from two distantly related lineages, Archaea and Firmicutes (K. S. Swithers et al., Genome Biol. Evol. 4:730–739, 2012). Ancestral state reconstruction suggested that the cobinamide salvage gene cluster was present in the Thermotogales' most recent common ancestor. We also predicted that Thermotoga lettingae could not synthesize B12 de novo but could use the cobinamide salvage pathway to synthesize B12. In this study, these hypotheses were tested, and we found that Tt. lettingae did not synthesize B12 de novo but salvaged cobinamide. The growth rate of Tt. lettingae increased with the addition of B12 or cobinamide to its medium. It synthesized B12 when the medium was supplemented with cobinamide, and no B12 was detected in cells grown on cobinamide-deficient medium. Upstream of the cobinamide salvage genes is a putative B12 riboswitch. In other organisms, B12 riboswitches allow for higher transcriptional activity in the absence of B12. When Tt. lettingae was grown with no B12, the salvage genes were upregulated compared to cells grown with B12 or cobinamide. Another gene cluster with a putative B12 riboswitch upstream is the btuFCD ABC transporter, and it showed a transcription pattern similar to that of the cobinamide salvage genes. The BtuF proteins from species that can and cannot salvage cobinamides were shown in vitro to bind both B12 and cobinamide. These results suggest that Thermotogales species can use the BtuFCD transporter to import both B12 and cobinamide, even if they cannot salvage cobinamide. PMID:24014541

  8. Taenia solium tapeworms synthesize corticosteroids and sex steroids in vitro.

    PubMed

    Valdez, R A; Jiménez, P; Fernández Presas, A M; Aguilar, L; Willms, K; Romano, M C

    2014-09-01

    Cysticercosis is a disease caused by the larval stage of Taenia solium cestodes that belongs to the family Taeniidae that affects a number of hosts including humans. Taeniids tapeworms are hermaphroditic organisms that have reproductive units called proglottids that gradually mature to develop testis and ovaries. Cysticerci, the larval stage of these parasites synthesize steroids. To our knowledge there is no information about the capacity of T. solium tapeworms to metabolize progesterone or other precursors to steroid hormones. Therefore, the aim of this paper was to investigate if T. solium tapeworms were able to transform steroid precursors to corticosteroids and sex steroids. T. solium tapeworms were recovered from the intestine of golden hamsters that had been orally infected with cysticerci. The worms were cultured in the presence of tritiated progesterone or androstenedione. At the end of the experiments the culture media were analyzed by thin layer chromatography. The experiments described here showed that small amounts of testosterone were synthesized from (3)H-progesterone by complete or segmented tapeworms whereas the incubation of segmented tapeworms with (3)H-androstenedione, instead of (3)H-progesterone, improved their capacity to synthesize testosterone. In addition, the incubation of the parasites with (3)H-progesterone yielded corticosteroids, mainly deoxicorticosterone (DOC) and 11-deoxicortisol. In summary, the results described here, demonstrate that T. solium tapeworms synthesize corticosteroid and sex steroid like metabolites. The capacity of T. solium tapeworms to synthesize steroid hormones may contribute to the physiological functions of the parasite and also to their interaction with the host.

  9. Frequency Standards and Metrology

    NASA Astrophysics Data System (ADS)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and

  10. Structural and electrical studies of sol-gel synthesized nanocrystalline hexagonal yttrium iron manganite ceramics

    NASA Astrophysics Data System (ADS)

    Touthang, Jangkhohao; Maisnam, Mamata

    2017-03-01

    Hexagonal yttrium manganites, YMnO3, are interesting materials for their multiferroic behavior. Substituting suitable cations either at the Y-site or Mn-site offers great opportunities to produce a variety of manganites and tune their properties. Nanocrystalline yttrium iron manganites with the compositional formula Y1‑xFexMnO3, x = 0.0, 0.10, 0.15, 0.20 and 0.25, were synthesized by sol-gel autocombustion method. The prepared samples were heated at 1100∘C for 1 h. Another set of samples with compositional formula YFexMn1‑xO3, x = 0.0, 0.10, 0.15, 0.20 and 0.25, were also synthesized by the same method and heated at 1100∘C for 1 h. Various characterizations were done on these manganite systems synthesized by substituting iron at different sites. X-ray diffraction (XRD) technique studied the structure of the samples and analysis of XRD patterns confirmed the formation of hexagonal phase in the samples. Structural parameters such as lattice constants, crystallite size, theoretical density, etc. were determined using the XRD data. The unit cell dimensions have been found to agree with the standard data and the Debye-Scherrer crystallite size obtained from XRD data ranges from 42 nm to 77 nm. The room temperature frequency variations of electrical properties such as dielectric constant, dielectric loss and AC conductivity were measured in the range of 100 Hz-2 MHz and the variations showed a dispersive behavior for all the samples. The various measurements and the results obtained were studied and discussed in the paper.

  11. Monolithic THz Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Erickson, N. R.; Narayanan, G.; Grosslein, R. M.; Martin, S.; Mehdi, I.; Smith, P.; Coulomb, M.; DeMartinez, G.

    2001-01-01

    Frequency multipliers are required as local oscillator sources for frequencies up to 2.7 THz for FIRST and airborne applications. Multipliers at these frequencies have not previously been demonstrated, and the object of this work was to show whether such circuits are really practical. A practical circuit is one which not only performs as well as is required, but also can be replicated in a time that is feasible. As the frequency of circuits is increased, the difficulties in fabrication and assembly increase rapidly. Building all of the circuit on GaAs as a monolithic circuit is highly desirable to minimize the complexity of assembly, but at the highest frequencies, even a complete monolithic circuit is extremely small, and presents serious handling difficulty. This is compounded by the requirement for a very thin substrate. Assembly can become very difficult because of handling problems and critical placement. It is very desirable to make the chip big enough to that it can be seen without magnification, and strong enough that it may be picked up with tweezers. Machined blocks to house the chips present an additional challenge. Blocks with complex features are very expensive, and these also imply very critical assembly of the parts. It would be much better if the features in the block were as simple as possible and non-critical to the function of the chip. In particular, grounding and other electrical interfaces should be done in a manner that is highly reproducible.

  12. Effect of Synthesized Propeller Vibration on Passenger Annoyance in a Turboprop Interior Noise Environment

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.

    1982-01-01

    The effect of synthesized propeller vibration on passenger annoyance to aircraft noise was investigated in passenger ride quality apparatus. Passenger reactions of annoyance to a wide range of potential turboprop interior noise environments were obtained under three simulated vibration conditions: no vibration, armrest vibration, and armrest plus cabin vibration. The noises, ranging from 71 to 95 dB(A) consisted of a turbulent boundary layer with a factorial combination of five blade passage frequencies (50 to 200 Hz), two harmonic roll offs, and three tone to noise ratios. Results indicate that passenger annoyance to noise in the presence of armrest vibration did not significantly change. However, those passengers exposed to cabin plus armrest vibration while being exposed to noise lower rating for the combined cabin vibration and noise environment compared with the rating for the noise along environment. This result is predicted by the ride quality model.

  13. Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy

    SciTech Connect

    Vitry, P.; Bourillot, E.; Plassard, C.; Lacroute, Y.; Lesniewska, E.; Tetard, L.

    2014-08-04

    This paper reports on advances toward quantitative non-destructive nanoscale subsurface investigation of a nanofabricated sample based on mode synthesizing atomic force microscopy with heterodyne detection, addressing the need to correlate the role of actuation frequencies of the probe f{sub p} and the sample f{sub s} with depth resolution for 3D tomography reconstruction. Here, by developing a simple model and validating the approach experimentally through the study of the nanofabricated calibration depth samples consisting of buried metallic patterns, we demonstrate avenues for quantitative nanoscale subsurface imaging. Our findings enable the reconstruction of the sample depth profile and allow high fidelity resolution of the buried nanostructures. Non-destructive quantitative nanoscale subsurface imaging offers great promise in the study of the structures and properties of complex systems at the nanoscale.

  14. Improvement in electric and dielectric properties of nanoferrite synthesized via reverse micelle technique

    NASA Astrophysics Data System (ADS)

    Thakur, Sangeeta; Katyal, S. C.; Singh, M.

    2007-12-01

    Nano nickel zinc ferrite (Ni0.58Zn0.42Fe2O4) with fascinating dielectric properties which reveal a direction for application was synthesized by reverse micelle technique. Dielectric constant and dielectric losses are controlled up to a measurement temperature of around 473K at higher frequency range of 9-19MHz. The dielectric loss of the sample investigated at room temperature is only 0.003 at 19MHz. The presently studied nanoferrite also exhibits a high value of dc resistivity, 108Ωcm. High resistivity and low dielectric constant and loss can be corelated to small grain size and better compositional stoichiometry obtained as a result of processing via reverse micelle technique at low sintering temperature (773K).

  15. Pigment-Synthesizing Melanocytic Neoplasm With Protein Kinase C Alpha (PRKCA) Fusion

    PubMed Central

    Bahrami, Armita; Lee, Seungjae; Wu, Gang; Kerstetter, Justin; Rahvar, Maral; Li, Xinmin; Easton, John; Zhang, Jinghui; Barnhill, Raymond L.

    2016-01-01

    IMPORTANCE Melanocytic neoplasms with prominent pigment synthesis mimicking equine melanoma represent a rare variant of biologically indeterminate or low-grade malignant melanocytic tumors in which the molecular profile and exact histologic classification are not established. Tumors with these characteristics rarely occur as congenital lesions. We performed genomic analysis of a congenital pigment synthesizing melanocytic neoplasm with indeterminate biological potential. OBSERVATIONS The patient was a 5-month-old girl presenting with a 6-cm protuberant scalp mass, which had doubled in size since birth. Histologic examination showed heavily pigmented intradermal proliferation of large, epithelioid melanocytes with mild cytologic atypia, low mitotic activity, focal necrosis, and ulceration. RNA sequencing identified a novel ATPase, Ca2+ transporting, plasma membrane 4 (ATP2B4)–protein kinase C-alpha (PRKCA) fusion transcript. The fusion resulted in an in-frame linkage of the PRKCA catalytic domain with the N-terminal of ATP2B4 and high expression of the PRKCA kinase domain. Break-apart fluorescence in situ hybridization showed PRKCA rearrangement, and reverse transcriptase–polymerase chain reaction confirmed the presence of the fusion transcript. The patient was alive and well, with no evidence of recurrence, at the 1-year follow-up. CONCLUSIONS AND RELEVANCE To our knowledge, this is the first report of PRKCA fusions in melanocytic neoplasms. Future studies need to determine the frequency of PRKCA fusions in pigment-synthesizing melanocytic neoplasms. PMID:26676968

  16. Syntheses and structural studies of coordination polymers with microporous frameworks

    NASA Astrophysics Data System (ADS)

    Niu, Tianyan

    The purpose of this work is to synthesize microporous solids using coordination chemistry. The syntheses were carried by diffusion method. Starting reagents, solvent, concentration, reaction speed and time, and temperature were the variables used to optimize the syntheses. The resulting products were characterized by single crystal X-ray diffraction to determine their structures. X-ray powder diffraction, TGA, IR, elemental analysis, and electron microprobe were used to provide complementary or supporting information. Exploratory studies were carried out mainly on organotin-cyanometalate compounds [(RmSnIV)x{M(CN)n} y]. The compounds are made up of SnRm cations and M(CN) n anions. The structures adopted are determined by the number and size of the organic ligands attached to the Sn atoms and by the cyanometalate M(CN) n moiety. Several new compounds in this class were synthesized and structurally characterized. They are [(Bu3Sn)3M(CN)6] (M = Fe, Co), [(R2Sn)3{CO(CN)6}2·X] (R = vinyl, butyl, and propyl), and [(Ph3Sn)2Ni(CN) 4 Ph3SnOH·˜0.8CH3CN·˜0.2H 2O]. The compound [(Ph3Sn)2Ni(CN)4·Ph 3SnOH·˜0.8CH3CN·˜0.2H2O] is to our knowledge, the first three dimensional cyanometalate coordination polymer with expanded inorganic NbO structure. The framework is not interpenetrated and the large central cavity in the structure is filled by inclusion of Ph 3SnOH and other solvent molecules during synthesis. In addition to the investigation of organotin-cyanometalate compounds, other approaches to microporous solids were also studied. A new compound [Co(H 2O)2Ni(CN)4·4H2O] in the Hofmann's clathrate family was obtained. Five one dimensional polymers synthesized by the reaction of dirhodium(II) tetraacetate with 1,4-dicyanobenzene in different solvent systems were also synthesized, and the effect of solvent on the resulting structures was investigated.

  17. Hg(+) Frequency Standards

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.

  18. Frequency Tunable Wire Lasers

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor)

    2013-01-01

    The present invention provides frequency tunable solid-state radiation-generating devices, such as lasers and amplifiers, whose active medium has a size in at least one transverse dimension (e.g., its width) that is much smaller than the wavelength of radiation generated and/or amplified within the active medium. In such devices, a fraction of radiation travels as an evanescent propagating mode outside the active medium. It has been discovered that in such devices the radiation frequency can be tuned by the interaction of a tuning mechanism with the propagating evanescent mode.

  19. Effective Frequency Technique

    NASA Technical Reports Server (NTRS)

    Kirk, C. Laurence; Weng, Chi Y.

    2002-01-01

    An effective monochromatic frequency technique is described to represent the effects of finite spectral bandwidth for active and passive measurements centered on an absorption line, a trough region, or a slowly varying spectral feature. For Gaussian and rectangular laser line shapes, the effective frequency is shown to have a simple form which depends only on the instrumental line shape and bandwidth and not on the absorption line profile. The technique yields accuracies better than 0.1% for bandwidths less than 0.2 times the atmospheric line width.

  20. Fast Response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C(2)H(2).

    PubMed

    Cai, Minzhen; Outlaw, Ronald A; Quinlan, Ronald A; Premathilake, Dilshan; Butler, Sue M; Miller, John R

    2014-06-24

    The growth and electrical characteristics of vertically oriented graphene nanosheets grown by radio frequency plasma-enhanced chemical vapor deposition from C2H2 feedstock on nickel substrates and used as electrodes in symmetric electric double layer capacitors (EDLC) are presented. The nanosheets exhibited 2.7 times faster growth rate and much greater specific capacitance for a given growth time than CH4 synthesized films. Raman spectra showed that the intensity ratio of the D band to G band versus temperature initially decreased to a minimum value of 0.45 at a growth temperature of 750 °C, but increased rapidly with further temperature increase (1.15 at 850 °C). The AC specific capacitance at 120 Hz of these EDLC devices increased in a linear fashion with growth temperature, up to 265 μF/cm(2) (2 μm high film, 850 °C with 10 min growth). These devices exhibited ultrafast frequency response: the frequency response at -45° phase angle reached over 20 kHz. Consistent with the increase in D band to G band ratio, the morphology of the films became less vertical, less crystalline, and disordered at substrate temperatures of 800 °C and above. This deterioration in morphology resulted in an increase in graphene surface area and defect density, which, in turn, contributed to the increased capacitance, as well as a slight decrease in frequency response. The low equivalent series resistance varied from 0.07 to 0.08 Ω and was attributed to the significant carbon incorporation into the Ni substrate.

  1. Antibacterial and catalytic activities of green synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2015-01-01

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  2. Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites

    USGS Publications Warehouse

    Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.

    2010-01-01

    A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.

  3. Alumina lightweight ceramics modified with plasma synthesized nanopowders

    NASA Astrophysics Data System (ADS)

    Zake, I.; Svinka, R.; Svinka, V.; Palcevskis, E.

    2011-12-01

    The aim of this study is to clarify possibilities of using plasma synthesized Al2O3 and SiC nanopowders as additives in alumina lightweight ceramics prepared by slip casting. Each plasma synthesized nanopowder (PSNP) was incorporated in the material by a different method, because of their diverse influence on the properties of slip. Al2O3 PSNP was introduced in the matrix in form of aqueous suspension. SiC nanopowder was added directly to raw materials. Bending strength, bulk density, apparent porosity and thermal shock resistance were determined to evaluate the influence of these additives. The effect of Al2O3 PSNP addition on the properties of material depends on the initial sintering temperature. SiC particles during sintering oxidize into SiO2 and then in the reaction with alumina form mullite. Addition of SiC considerably improves bending strength and thermal shock resistance.

  4. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed Central

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  5. Design of optocoupler for synthesizing four color spectra

    NASA Astrophysics Data System (ADS)

    Liu, Zechun; Ge, Aiming; Tao, Xinran; Yang, Shengqi; Wang, Tianyi

    2016-07-01

    LEDs with the advantage of high luminous efficacy and long life time show the potential of replacing traditional luminaire. Most commercial white LED light sources use blue or ultraviolet chip coated with emitting phosphor, but the sensitivity and instability of such phosphors has become a big issue. The typical RGB-LED by using individual chips has the problem of spatial separation and insufficient spectral overlap which leads to low CRI. This study suggests a novel and high-efficiency design of fiber optical optocoupler to synthesize four colors emitted by separate LEDs to provide the ideal light sources by adjusting the individual LEDs separately. By choosing different colored light to be synthesized, this optocoupler can be used as light sources which can be highly controlled to offer the best lighting conditions. Compared with other widely used commercial LED sources, this new design of light sources can be used in special experiments which require multi-spectral light.

  6. Method and apparatus for synthesizing anhydrous HNO.sub.3

    DOEpatents

    Coon, Clifford L.; Harrar, Jackson E.; Pearson, Richard K.; McGuire, Raymond R.

    1984-01-01

    A method and apparatus for electrochemically synthesizing anhydrous HNO.sub.3 from an aqueous solution of HNO.sub.3 includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous HNO.sub.3 at an anode, while maintaining a controlled potential between the N.sub.2 O.sub.4 /aqueous HNO.sub.3 solution and the anode. A potential of about 1.80V vs. SCE is preferred. Anhydrous or aqueous HNO.sub.3 may be disposed at the cathode within the electrochemical cell. Aqueous HNO.sub.3 having a water content of up to about 12% by weight is utilized to synthesize anhydrous HNO.sub.3.

  7. Characteristics of uranium carbonitride microparticles synthesized using different reaction conditions

    NASA Astrophysics Data System (ADS)

    Silva, Chinthaka M.; Lindemer, Terrence B.; Voit, Stewart R.; Hunt, Rodney D.; Besmann, Theodore M.; Terrani, Kurt A.; Snead, Lance L.

    2014-11-01

    Three sets of experimental conditions were tested to synthesize uranium carbonitride (UC1-xNx) kernels from gel-derived urania-carbon microspheres. Primarily, three sequences of gases were used, N2 to N2-4%H2 to Ar, Ar to N2 to Ar, and Ar-4%H2 to N2-4%H2 to Ar-4%H2. Physical and chemical characteristics such as geometrical density, phase purity, and chemical compositions of the synthesized UC1-xNx were measured. Single-phase kernels were commonly obtained with densities generally ranging from 85% to 93% TD and values of x as high as 0.99. In-depth analysis of the microstrutures of UC1-xNx has been carried out and is discussed with the objective of large batch fabrication of high density UC1-xNx kernels.

  8. Hydrothermally synthesized barium fluoride nanocubes for thermoluminescence dosimetry

    NASA Astrophysics Data System (ADS)

    Bhadane, Mahesh S.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2016-05-01

    In this work, we report a hydrothermally synthesized Dy doped BaF2 (BaF2:Dy) nanocubes and its Thermoluminescence studies. The synthesized BaF2:Dy samples was found to posses FCC structure and having average size ~ 60-70 nm, as revealed through X-Ray Diffraction. Cubical morphology having size ~90 nm was observed from TEM analysis. The 60Co γ- ray irradiated BaF2:Dy TL dosimetric experiments shows a pre-dominant single glow peak at 153 °C, indicating a single level trap present as a metastable state. Furthermore, BaF2:Dy nanophosphor shows a sharp linear response from 10 Gy to 3 kGy, thus it can be applicable as a gamma dosimeter.

  9. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  10. Ultralight Weight Optical Systems Using Nano-Layered Synthesized Materials

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckinridge, James

    2014-01-01

    Optical imaging is important for many NASA science missions. Even though complex optical systems have advanced, the optics, based on conventional glass and mirrors, require components that are thick, heavy and expensive. As the need for higher performance expands, glass and mirrors are fast approaching the point where they will be too large, heavy and costly for spacecraft, especially small satellite systems. NASA Langley Research Center is developing a wide range of novel nano-layered synthesized materials that enable the development and fabrication of ultralight weight optical device systems that enable many NASA missions to collect science data imagery using small satellites. In addition to significantly reducing weight, the nano-layered synthesized materials offer advantages in performance, size, and cost.

  11. Method of synthesizing silica nanofibers using sound waves

    DOEpatents

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  12. Antibacterial and catalytic activities of green synthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Umadevi, M

    2015-01-25

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  13. Magnetic properties of cobalt ferrite synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Allaedini, Ghazaleh; Tasirin, Siti Masrinda; Aminayi, Payam

    2015-05-01

    In this study, the magnetic properties of nanocrystalline cobalt ferrite synthesized via the hydrothermal method have been investigated. The structural properties of the produced powders were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The observed XRD pattern confirmed the spinel/cubic structure of the prepared cobalt ferrite. The SEM pictures show that the simple hydrothermal method produces uniform sphere-shaped nanopowders. Moreover, infrared spectroscopy was used to confirm the formation of cobalt ferrite particles. Magnetic hysteresis was measured using a vibrating sample magnetometer in a maximum field of 10 kOe. The magnetization of the prepared nanoparticles was investigated, and the saturation magnetization ( M s), remanence ( M r), and coercivity ( H c) were derived from the hysteresis loops. The results revealed that the cobalt ferrite nanoparticles synthesized via the simple hydrothermal method exhibit superior magnetic properties.

  14. Two step continuous method to synthesize colloidal spheroid gold nanorods.

    PubMed

    Chandra, S; Doran, J; McCormack, S J

    2015-12-01

    This research investigated a two-step continuous process to synthesize colloidal suspension of spheroid gold nanorods. In the first step; gold precursor was reduced to seed-like particles in the presence of polyvinylpyrrolidone and ascorbic acid. In continuous second step; silver nitrate and alkaline sodium hydroxide produced various shape and size Au nanoparticles. The shape was manipulated through weight ratio of ascorbic acid to silver nitrate by varying silver nitrate concentration. The specific weight ratio of 1.35-1.75 grew spheroid gold nanorods of aspect ratio ∼1.85 to ∼2.2. Lower weight ratio of 0.5-1.1 formed spherical nanoparticle. The alkaline medium increased the yield of gold nanorods and reduced reaction time at room temperature. The synthesized gold nanorods retained their shape and size in ethanol. The surface plasmon resonance was red shifted by ∼5 nm due to higher refractive index of ethanol than water.

  15. Methods and apparatus for broadband frequency comb stabilization

    DOEpatents

    Cox, Jonathan A; Kaertner, Franz X

    2015-03-17

    Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.

  16. Monodispersive CoPt Nanoparticles Synthesized Using Chemical Reduction Method

    NASA Astrophysics Data System (ADS)

    Shen, Cheng-Min; Hui, Chao; Yang, Tian-Zhong; Xiao, Cong-Wen; En, Shu-Tang; Ding, Hao; Gao, Hong-Jun

    2008-04-01

    Monodispersive CoPt nanoparticles in sizes of about 2.2 nm are synthesized by superhydride reduction of CoCl2 and PtCl2 in diphenyl ether. The as-prepared nanoparticles show a chemically disordered A1 structure and are superparamagnetic. Thermal annealing transforms the A1 structure into chemically ordered L10 structure and the particles are ferromagnetic at room temperature.

  17. Activation of catalysts for synthesizing methanol from synthesis gas

    DOEpatents

    Blum, David B.; Gelbein, Abraham P.

    1985-01-01

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  18. Total syntheses of Prelactone V and Prelactone B.

    PubMed

    Raghavendra, S; Tadiparthi, Krishnaji; Yadav, J S

    2017-04-10

    The total syntheses of natural products Prelactone-V and Prelactone-B have been accomplished by a novel Chiron approach starting from d-glucose. The synthesis involves isopropylidene acetal formation of d-glucose using Poly(4-vinylpyridine) supported iodine as a catalyst, Tebbe olefination, Grignard reaction, Wittig olefination, selective mono deprotection of acetal using PMA/SiO2, hydrogenation and anti-1,3-diol formation are as key steps.

  19. Divergent Total Syntheses of Rhodomyrtosones A and B

    PubMed Central

    Gervais, Anais; Lazarski, Kiel E.; Porco, John A.

    2015-01-01

    Herein, we report total syntheses of the tetramethyldihydroxanthene natural product rhodomyrtosone B and the related bis-furan β-triketone natural product rhodomyrtosone A. Nickel-(II)-catalyzed 1,4-conjugate addition of an α-alkylidene-β-dicarbonyl substrate was developed to access the congener rhodomyrtosone B, and oxygenation of the same monoalkylidene derivative followed by cyclization was employed to obtain the bis-furan natural product rhodomyrtosone A. PMID:26351970

  20. Syntheses, Characterizations, and Applications of Molecular Metal Wires

    DTIC Science & Technology

    2011-08-05

    123). 6 A pyrazine-modulated oligo--pyridylamine ligand H3pzpz and its mononuclear copper (II) and cobalt (II) complexes have been synthesized and...structurally characterized. A pyrazine-modulated oligo--pyridylamino ligand H3pzpz and its mononuclear copper (II) and cobalt (II) complexes have...H3pzpz can be a quadridentate ligand and coordinates to metal atoms with all-anti mode in both copper and cobalt mononuclear complexes. The copper (II

  1. A complete algorithm for synthesizing modular fixtures for polygonal parts

    SciTech Connect

    Brost, R.C.; Goldberg, K.Y.

    1993-11-01

    Commercially-available nuclear fixturing systems typically include a square lattice of tapped and bushed holes with precision locating and clamping elements that can be rigidly attached to the lattice using dowel pins or expanding mandrels. Currently, human expertise is required to synthesize a suitable arrangements of these elements to hold a given part. Besides being time consuming, if the set of alternatives is not systematically explored, the designer may fail to find an acceptable fixture or may settle upon a suboptimal fixture. We consider a class of modular fixtures that prevent a part from translating or rotting in the plane using four point contacts on the part`s boundary. These fixtures are based on three round locators, each centered on a lattice point, and one translating clamp. We present an algorithm that accepts a polygonal part shape as input and synthesizes the set of all fixture designs that achieve form closure for the given part. The algorithm also allows the user to specify geometric access constraints on fixtures. If the part has n edges and its maximal diameter is d lattice units, the asymptotic running time of the algorithm is O(n{sup 5}d{sup 5}). We have implemented the algorithm and present example fixtures that it has synthesized. This implementation includes a metric to rank fixtures based on their ability to resist applied forces. We believe this is the first fixture synthesize algorithm that is complete in the sense that it is guaranteed to find an admissible fixture if one exists. Furthermore, the algorithm is guaranteed to find the optimal fixture, relative to any well-defined quality metric.

  2. Multifrequency Aperture-Synthesizing Microwave Radiometer System (MFASMR). Volume 1

    NASA Technical Reports Server (NTRS)

    Wiley, C. A.; Chang, M. U.

    1981-01-01

    Background material and a systems analysis of a multifrequency aperture - synthesizing microwave radiometer system is presented. It was found that the system does not exhibit high performance because much of the available thermal power is not used in the construction of the image and because the image that can be formed has a resolution of only ten lines. An analysis of image reconstruction is given. The system is compared with conventional aperture synthesis systems.

  3. Method of synthesizing metal doped diamond-like carbon films

    NASA Technical Reports Server (NTRS)

    Ueno, Mayumi (Inventor); Sunkara, Mahendra Kumar (Inventor)

    2003-01-01

    A method of synthesizing metal doped carbon films by placing a substrate in a chamber with a selected amount of a metalorganic compound. An electron cyclotron resonance is applied to the chamber in order to vaporize the metalorganic compound. The resonance is applied to the chamber until a metal doped carbon film is formed. The metalorganic compound is preferably selected from the group consisting of an organic salt of ruthenium, palladium, gold or platinum.

  4. Generation of Clutter within a Structured Target Synthesizer

    DTIC Science & Technology

    2012-09-01

    recognize false target generated by digital- image-synthesiser,” in Proceedings of the 2008 International Symposium on Information Science and...Jun Tang and Ying-ning Peng, “Research on deception jamming for countering ISAR,” in Proceedings of the 2009 IET International Radar Conference...Yuan Li, Xue-mei Luo and Ga-huan Lv, “The study of multi-false targets synthesizing technology against chirp ISAR,” in Proceedings of International

  5. Bioactive ceramic glasses in situ synthesized by laser melting

    NASA Astrophysics Data System (ADS)

    Taca, Mihaela; Vasile, Eugeniu; Boroica, Lucica; Udrea, Mircea; Medianu, Rares; Munteanu, Maria Cristina

    2008-10-01

    The synthesis of bioactive glass from raw materials even during the laser deposition process, could provide formation of a biocompatible layer on the metallic prosthesis. During the laser irradiation melting and ultrarapid solidification of ceramic materials occur and glasses controlled by the process parameters (especially laser power and solidification rate) will be obtained. The aim of the present paper is to study the influence of the processing parameters on the laser synthesized glasses chemical composition, structure and bioactive behaviour.

  6. Adenovirus DNA synthesized in the presence of aphidicolin.

    PubMed Central

    Oguro, M; Yamashita, T; Ariga, H; Nagano, H

    1984-01-01

    Adenovirus types 2 and 5 DNA synthesized in vivo and in vitro in the presence of aphidicolin were studied. Inhibition of adenoviral DNA synthesis by aphidicolin was only 70% even at a concentration of 30 micrograms/ml of aphidicolin, at which the cellular DNA synthesis was completely inhibited. When initiation of the viral DNA synthesis was synchronized with hydroxyurea and labeled with [3H]thymidine for 60 min, the viral DNA synthesized in the presence of 30 micrograms/ml of aphidicolin was not of full length (35 kb) but small (approximately 12 kb) by analysis of alkaline sucrose density gradient centrifugation. When initiation of the viral DNA synthesis was not synchronized, the viral DNAs ranging from full size to 12 kb were synthesized in the presence of aphidicolin, indicating that the nascent DNAs longer than about 12 kb can continue to elongate in the presence of aphidicolin. This 12 kb DNA was not derived from the degradation products of newly synthesized full size adenoviral DNA. The viral DNA synthesis was restored and the full size of adenoviral DNA was attained within 15 min following removal of aphidicolin. About 20% of the entire viral genome length from the 5'-end was not inhibited by aphidicolin, while the synthesis of interior fragments of the adenoviral DNA was markedly inhibited by aphidicolin, judging from the electrophoretic pattern on neutral agarose gel after digestion of DNA with Hind III. These results indicate that aphidicolin inhibits adenoviral DNA replication at the internal region located approximately 20-30% from both terminals. Images PMID:6420772

  7. HIGHER FREQUENCY ULTRASONIC LIGHT MODULATORS.

    DTIC Science & Technology

    LIGHT ), (*MODULATORS, (*ULTRASONIC RADIATION, MODULATORS), OPTICAL COMMUNICATIONS, BANDWIDTH, TRANSDUCERS, HIGH FREQUENCY, VERY HIGH FREQUENCY, ATTENUATION, DATA PROCESSING, OPTICAL EQUIPMENT, ANALOG COMPUTERS, THEORY.

  8. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    SciTech Connect

    Saha, Dipendu; Warren, Kaitlyn E; Naskar, Amit K

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  9. Antibacterial activity of silver nanoparticles synthesized from serine.

    PubMed

    Jayaprakash, N; Judith Vijaya, J; John Kennedy, L; Priadharsini, K; Palani, P

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV-Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443nm. The emission spectrum of Ag NPs showed an emission band at 484nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO3 against Gram-positive and Gram-negative bacteria.

  10. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    PubMed

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  11. A novel nanostructure of cadmium oxide synthesized by mechanochemical method

    SciTech Connect

    Tadjarodi, A.; Imani, M.

    2011-11-15

    Highlights: {yields} A novel nanostructure of CdO was synthesized by mechanochemical reaction followed by calcination. {yields} Mechanochemical method is a simple and low-cost to synthesize nanomaterials. {yields} The obtained precursor was characterized by FT-IR, NMR techniques and elemental analysis. {yields} SEM images showed cauliflower-like shape of sample with components average diameter of 68 nm. {yields} The rods and tubes bundles with single crystalline nature were revealed by ED pattern and TEM images. -- Abstract: Cauliflower-like cadmium oxide (CdO) nanostructure was synthesized by mechanochemical reaction followed calcination procedure. Cadmium acetate dihydrate and acetamide were used as reagents and the resulting precursor was calcinated at 450 {sup o}C for 2 h in air. The structures of the precursor and resultant product of the heating treatment were characterized using Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and elemental analysis, X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction pattern (ED). SEM and TEM images revealed the cauliflower-like morphology of the sample. This structure includes the bundles of rods and tubes in nanoscale, which combine with each other and form the resulting morphology with the average diameter, 68 nm of the components. ED pattern indicated the single crystal nature of the formed bundles.

  12. Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications

    PubMed Central

    Salazar-Marroquín, Elma Laura; Galán-Wong, Luis J.; Moreno-Medina, Víctor Ricardo; Reyes-López, Miguel Ángel; Pereyra-Alférez, Benito

    2016-01-01

    The members of the Bacillus thuringiensis group, commonly known as Bt, produce a huge number of metabolites, which show biocidal and antagonistic activity. B. thuringiensis is widely known for synthesizing Cry, Vip and Cyt proteins, active against insects and other parasporins with biocidal activity against certain types of cancerous cells. Nevertheless, B. thuringiensis also synthesizes compounds with antimicrobial activity, especially bacteriocins. Some B. thuringiensis bacteriocins resemble lantibiotics and other small linear peptides (class IIa) from the lactic acid bacteria bacteriocins classification system. Although many bacteriocins produced by Bt have been reported, there is no proper classification for them. In this work, we have grouped these based on molecular weight and functionality. Bacteriocins are small peptides synthesized by bacteria, presenting inhibitory activity against Gram-positive and Gram-negative bacteria and to a lesser extent against fungi. These molecules represent a good study model in the search for microbial control alternatives. Lactic acid bacteria produces a huge number of these types of molecules with great potential. Nonetheless, members of the Bacillus, cereus group, especially B. thuringiensis, emerge as an attractive alternative for obtaining bacteriocins showing novel activities. This review describes the potential applications of B. thuringiensis bacteriocins in the control of foodborne pathogens, environment and medical area. PMID:27340340

  13. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    SciTech Connect

    Wang, Qingfang; Wang, Zhiqiang; Yin, Xiaoqian; Zhou, Linxi; Zhang, Minghui

    2016-02-15

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molar ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.

  14. Human keratinocytes synthesize and secrete the extracellular matrix protein, thrombospondin.

    PubMed

    Wikner, N E; Dixit, V M; Frazier, W A; Clark, R A

    1987-02-01

    Thrombospondin (TSP) a glycoprotein originally identified as the endogenous lectin of platelets, is also synthesized by fibroblasts, endothelial cells, pneumocytes, smooth muscle cells, and macrophages. Thrombospondin is subdivided into functional domains which bind specifically to heparin, fibronectin, collagen, and to specific cellular receptors. It is found within the basement membranes of kidney, lung, smooth muscle, and skin. Thus TSP may serve as an important link between cells and matrices. Thrombospondin also has been reported at the epidermal-dermal junction. We wished to determine whether human keratinocytes synthesize and secrete TSP. Pure human keratinocytes were grown in defined medium without fibroblast feeder layers. Immunofluorescent staining with either rabbit polyclonal or mouse monoclonal antibodies to human platelet TSP yielded specific granular staining within the cytoplasm of keratinocytes. Culture media and cellular lysates were harvested from cultures metabolically labeled with [35S]methionine. Trichloroacetic acid precipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and autoradiography revealed a major labeled band comigrating with purified platelet TSP in both the media and the cellular lysates. Immunoprecipitation with either the polyclonal or the monoclonal anti-TSP antibodies followed by SDS-PAGE and autoradiography identified this band as TSP. Thus keratinocytes in culture synthesize and secrete TSP. Thrombospondin may play an important role in epidermal interactions with extracellular matrix.

  15. Characteristics of uranium carbonitride microparticles synthesized using different reaction conditions

    SciTech Connect

    Silva, Chinthaka M; Lindemer, Terrence; Voit, Stewart L; Hunt, Rodney Dale; Besmann, Theodore M; Terrani, Kurt A; Snead, Lance Lewis

    2014-11-01

    Three sets of different experimental conditions by changing the cover gases during the sample preparation were tested to synthesize uranium carbonitride (UC1-xNx) microparticles. In the first two sets of experiments using (N2 to N2-4%H2 to Ar) and (Ar to N2 to Ar) environments, single phase UC1-xNx was synthesized. When reducing environments (Ar-4%H2 to N2-4%H2 to Ar-4%H2) were utilized, theoretical densities up to 97% of single phase UC1-xNx kernels were obtained. Physical and chemical characteristics such as density, phase purity, and chemical compositions of the synthesized UC1-xNx materials for the diferent experimental conditions used are provided. In-depth analysis of the microstrutures of UC1-xNx has been carried out and is discussed with the objective of large batch fabrication of high density UC1-xNx kernels.

  16. A simple method for synthesizing and producing guitar sounds

    NASA Astrophysics Data System (ADS)

    Torres, Jesús A.; Rendón, Pablo L.

    2013-05-01

    An uncomplicated model is proposed to describe the transverse force exerted by a plucked string on a guitar bridge. This model incorporates the effect of internal damping, lending the synthesized sound a transient quality that makes it more realistic than sound produced without taking damping into account. The synthesized signals are then compared to actual measurements for both free and palm-muted vibrations, and show agreement in both cases. These synthesized signals can also be used to play MIDI files through a guitar acting as a modified loudspeaker cone, driving the instrument mechanically. The sound thus obtained is realistic and provides an interesting classroom exercise for an undergraduate audience. The main set-up is also affordable as a laboratory activity and for public demonstrations, and has the advantage of being simple to implement and flexible enough to allow different kinds of modification. It is, in fact, reliable enough to use as a tool for the comparison of different guitars driven in the same manner.

  17. The Nature of the Collagen Synthesized by Cultured Human Fibroblasts

    PubMed Central

    Layman, Don L.; McGoodwin, Ermona B.; Martin, George R.

    1971-01-01

    The hydroxyproline-containing proteins (hyproproteins) synthesized by cultured human fibroblasts have been partially characterized. The hyproprotein extracted from the cell layer was found to be similar to the collagen extracted from skin in the ratio of hydroxyproline to proline, chain composition, solubility, and resistance to proteolytic digestion. The hyproproteins isolated from the medium were different. About 20% of the peptide-bound hydroxyproline was found in randomly coiled chains. The α2 chains were present in considerable excess over the α1 chains, suggesting that the α2 chain may be synthesized in quantities greater than required to form a collagen molecule with a chain composition (α1)2α2. The remaining medium hyproprotein appeared to be an unusual form of native collagen which, unlike typical native collagen, was soluble under physiological conditions. This hyproprotein did not yield α chains when denatured and contained material that had a molecular weight greater than α chains. A similar size distribution was observed in the protein synthesized in the presence of β-aminopropionitrile, a specific inhibitor of collagen cross-linking. After treatment with pepsin, typical α1 and α2 chains were obtained from the protein in a 2:1 ratio. Since the medium protein is soluble and has properties different from the typical collagen molecule, it may represent a modified form that functions in the transport of collagen from the cell to the fiber. PMID:5277100

  18. Multiple Frequency Parametric Sonar

    DTIC Science & Technology

    2015-09-28

    300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...beams. However, the multiple nonlinear interactions are not taken advantage of in order to generate additional efficiencies, bandwidth, and SNR...array. [0050] It will be understood that many additional changes in details, materials , steps, and arrangements of parts which have been described

  19. Dual frequency optical cavity

    DOEpatents

    George, E.V.; Schipper, J.F.

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  20. Dual frequency optical cavity

    DOEpatents

    George, E. Victor; Schipper, John F.

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  1. Multiband frequency selective surface

    NASA Astrophysics Data System (ADS)

    Wu, Te-Kao

    1998-10-01

    This paper addresses the similarity of microwave/millimeter wave frequency selective surfaces (FSS) to optical filters. Specifically, the design approaches of the 4-band FSSs developed for NASA's CASSINI high gain antenna are described in detail. Representative RF test results are given to demonstrate the validity of these designs. These design approaches are very general and can be applied to multiband optical filters.

  2. Spread Spectrum Frequency Management

    DTIC Science & Technology

    1989-06-01

    theoretically predicted behavior of the new system. Thp experimental program must include field tests in real propagation and interference environments...technological developments and without adequate overall knowledge of propagation characteristics or of other important uses that might require... propagation characteristics at the different frequency levels. The history of major spectrum allocations is then a 7 record of decisions primarily

  3. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  4. Elimination of frequency noise from groundwater measurements

    SciTech Connect

    Chien, Y.M.; Bryce, R.W.; Strait, S.R.; Yeatman, R.A.

    1986-04-01

    Groundwater response to atmospheric fluctuation can be effectively removed from downhole-pressure records using the systematic approach. The technique is not as successful for removal of earth tides, due to a probable discrepancy between the actual earth tide and the theoretical earth tide. The advantage of the systematic technique is that a causative relationship is established for each component of the pressure response removed. This concept of data reduction is easily understood and well accepted. The disadvantage is that a record of the stress causing the pressure fluctuation must be obtained. This may be done by monitoring or synthesizing the stress. Frequency analysis offers a simpler way to eliminate the undesirable hydrologic fluctuations from the downhole pressure. Frequency analysis may prove to be impractical if the fluctuations being removed have broadband characteristics. A combination of the two techniques, such as eliminating the atmospheric effect with the systematic method and the earth-tide fluctuations with the frequency method, is the most effective and efficient approach.

  5. Food frequency questionnaires.

    PubMed

    Pérez Rodrigo, Carmen; Aranceta, Javier; Salvador, Gemma; Varela-Moreiras, Gregorio

    2015-02-26

    Food Frequency Questionnaires are dietary assessment tools widely used in epidemiological studies investigating the relationship between dietary intake and disease or risk factors since the early '90s. The three main components of these questionnaires are the list of foods, frequency of consumption and the portion size consumed. The food list should reflect the food habits of the study population at the time the data is collected. The frequency of consumption may be asked by open ended questions or by presenting frequency categories. Qualitative Food Frequency Questionnaires do not ask about the consumed portions; semi-quantitative include standard portions and quantitative questionnaires ask respondents to estimate the portion size consumed either in household measures or grams. The latter implies a greater participant burden. Some versions include only close-ended questions in a standardized format, while others add an open section with questions about some specific food habits and practices and admit additions to the food list for foods and beverages consumed which are not included. The method can be self-administered, on paper or web-based, or interview administered either face-to-face or by telephone. Due to the standard format, especially closed-ended versions, and method of administration, FFQs are highly cost-effective thus encouraging its widespread use in large scale epidemiological cohort studies and also in other study designs. Coding and processing data collected is also less costly and requires less nutrition expertise compared to other dietary intake assessment methods. However, the main limitations are systematic errors and biases in estimates. Important efforts are being developed to improve the quality of the information. It has been recommended the use of FFQs with other methods thus enabling the adjustments required.

  6. Microwave Frequency Multiplier

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  7. Optical properties of petal-like aggregated nanocrystalline zinc oxide synthesized by laser ablation

    SciTech Connect

    Jafarkhani, P.; Chehrghani, A.; Torkamany, M.J.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Petal like ZnO nanocrystals are synthesized by high frequency laser ablation in water. Black-Right-Pointing-Pointer Optical band gap of ZnO nanocrystals was tunable by changing the laser pulse energy. Black-Right-Pointing-Pointer Nonlinear optical properties and limiting threshold were obtained by Z-scan technique. -- Abstract: The results of the investigations carried out on the third-order nonlinearity in zinc oxide (ZnO) nanocrystals (NCs) by Z-scan technique are included in this paper. ZnO NCs show negative nonlinearity and good nonlinear absorption behavior at 532 nm. The third-order optical susceptibility {chi}(3) increases with enlargement of NCs due to the size dependent enhancement of exciton oscillator strength. The synthesis of ZnO NCs was performed by laser ablation from a high-purity metallic target of Zn in distilled water medium. For the ablation process, a high frequency pulsed Nd:YAG laser was employed operating at 532 nm with 100 ns pulse duration. UV-vis absorption spectroscopy illustrated the enhancement of the size of ZnO NCs upon increasing the laser pulse energy applied in ablation process. Accordingly the corresponding optical band gap (E{sub g}) decrease by increasing the size of NCs. X-ray diffraction (XRD) associated with transmission electron microscopy (TEM) was utilized to characterize the crystalline phase and also for determining the ZnO NCs morphology.

  8. Deep frequency modulation interferometry.

    PubMed

    Gerberding, Oliver

    2015-06-01

    Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers.

  9. Broadband frequency selective surface

    NASA Astrophysics Data System (ADS)

    Palma, D. A.; Wong, W. C.

    A method for designing broadband dichroic surfaces is described. A tripole and a Jerusalem cross are evaluated as candidate resonant elements. The effects of dielectric substrates on resonant frequency and bandwidth are investigated. The theoretical and measured frequency responses of tripoles and Jerusalem crosses are presented. It is observed that the metallic area of the tripole within a given period increases the bandwidth, the maximum theoretical bandwidth of the tripole dichroic sheet being about 50 percent; for a Jerusalem cross, increasing the metallic area of the two perpendicular strips and increasing the end cap capacitative loading increases the bandwidth to a theoretical maximum about 60 percent. Multilayered dichroic panels capable of producing a 4:1 stopband and 1.4:1 band separation have been designed for circular polarization and angles of incidence up to 40 degrees.

  10. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  11. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  12. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique.

  13. Extended frequency turbofan model

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Park, J. W.; Jaekel, R. F.

    1980-01-01

    The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.

  14. [Frequency dependance of compliance].

    PubMed

    Gayrard, P

    1975-01-01

    Resistance of peripheral or "small" airways is only a small part of the total pulmonary resistance (Raw). Even considerable obstruction in these airways will have little effect on total resistance. Conversely this will lead to inequality in the time constants of units in parallel, and dynamic lung compliance (C dyn) shall fall as respiratory frequence increases. C dyn is measured from simultaneous recordings of transpulmonary pressure (esophageal balloon) and volume obtained from a volume displacement plethysmograph. If Raw and static compliance are found to be normal, the frequency dependance of compliance will result from peripheral airway obstruction only. Early stages of chronic airway obstruction can be established by this method. However this appear not suitable for wide-scale studies.

  15. Clustered frequency comb.

    PubMed

    Matsko, Andrey B; Savchenkov, Anatoliy A; Huang, Shu-Wei; Maleki, Lute

    2016-11-01

    We show theoretically that it is feasible to generate a spectrally broad Kerr frequency comb consisting of several spectral clusters phase matched due to interplay among second- and higher-order group velocity dispersion contributions. We validate the theoretical analysis experimentally by driving a magnesium fluoride resonator, characterized with 110 GHz free spectral range, with a continuous wave light at 1.55 μm and observing two comb clusters separated by nearly two-thirds of an octave.

  16. FET Frequency Discriminator.

    DTIC Science & Technology

    1982-03-01

    conversion . characteristic of the frequency discriminator is significant and :ending upon the specific system - may be the limiting factor in the accu of...the results obtained did not .-" allow for the accurate determinat ion of the change in impedance, addit ional 14 -~ 12V - - Figure 7. Impedance plot...44*. -. 7 ’I -- -..- ,. -, 4., /-.,’ .3 8 V ............... ... .. .$, L- 12v - Figure 9. Impedance plot tor five diodes inl parallel. A circuit was

  17. Cooled Ion Frequency Standard.

    DTIC Science & Technology

    2014-09-26

    report on our measurement of the Hg gj factor. This was an important step in the project because of the necessity of "mixing" the Zeeman 201Hg th 201...reported in Phys. Rev. Lett. in April, concentrates on detailed measurements made of systematic effects in this system. Two key features are: (1) an...stored ion frequency standard systematic effects since laser cooling is easier to achieve than in Hg . 2. "Strongly coupled" liquid and solid plasmas

  18. Low frequency cavitation erosion

    NASA Astrophysics Data System (ADS)

    Pardue, Sally J.; Chandekar, Gautam

    2002-11-01

    Damage of diesel engine piston sleeve liners due to cavitation of the coolant fluid can be severe. Coolant fluid additives are used to inhibit cavitation damage, and are evaluated by industry suppliers using ASTM G32-98 Standard Test Method for Cavitation Erosion Using Vibratory Apparatus. The ASTM G32-98 test procedure uses an ultrasonic horn at 20 kHz to vibrate a test button in the coolant. The test button mass loss and surface appearance are studied to sort the performance of new coolant additives. Mismatch between good lab performers and actual engine test runs has raised concerns over the current lab test. The frequency range of the current test has been targeted for investigation. A low frequency, less than 2000 Hz, test rig was built to explore the cavitation damage. The test system did produce cavitation on the surface of the test button for a period of 36 h, with minimal mass loss. The test rig experienced cyclic fatigue when test times were extended. The work is now focusing on designing a better test rig for long duration tests and on developing numerical models in order to explore the effects of cavitation excitation frequency on surface erosion.

  19. Rapid frequency scan EPR.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-08-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x, y plane decays to baseline at the end of the scan, which typically is about 5T(2) after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5T(2). However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5T(2), even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B(1), periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation.

  20. Rapid Frequency Scan EPR

    PubMed Central

    Tseitlin, Mark; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x,y plane decays to baseline at the end of the scan, which typically is about 5 T2 after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5 T2. However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5 T2, even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B1, periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation. PMID:21664848

  1. Resonance frequency in ferromagnetic superlattices

    NASA Astrophysics Data System (ADS)

    Qiu, Rong-ke; Huang, An-dong; Li, Da; Zhang, Zhi-dong

    2011-10-01

    The resonance frequency in two-layer and three-layer ferromagnetic superlattices is studied, using the Callen's Green function method, the Tyablikov decoupling approximation and the Anderson-Callen decoupling approximation. The effects of interlayer exchange coupling, anisotropy, external magnetic field and temperature on the resonance frequency are investigated. It is found that the resonance frequencies increase with increasing external magnetic field. In a parameter region of the asymmetric system, each sublayer corresponds to its own resonance frequency. The anisotropy of a sublayer affects only the resonance frequency corresponding to this sublayer. The stronger the anisotropy, the higher is the resonance frequency. The interlayer exchange coupling affects only the resonance frequencies belonging to the sublayers connected by it. The stronger the interlayer exchange coupling, the higher are the resonance frequencies. All the resonance frequencies decrease as the reduced temperature increases. The results direct the method to enhance and adjust the resonance frequency of magnetic multilayered materials with a wide band.

  2. Analyzing and Synthesizing Phylogenies Using Tree Alignment Graphs

    PubMed Central

    Smith, Stephen A.; Brown, Joseph W.; Hinchliff, Cody E.

    2013-01-01

    Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe. PMID:24086118

  3. Flavonoid Properties in Plant Families Synthesizing Betalain Pigments (Review).

    PubMed

    Iwashina, Tsukasa

    2015-06-01

    The anthocyanin pigments are contained in the flowers, fruits, leaves and roots of almost plant species. On the other hand, distribution of the betacyanins are limited in eight families of the order Caryophyllales, i.e. Aizoaceae, Amaranthaceae, Basellaceae, Cactaceae, Didiereaceae, Nyctaginaceae, Phytolaccaceae and Portulacaceae. However, other flavonoids, i.e. flavones, C-glycosylflavones, flavonols, flavanones, dihydroflavonols, chalcones, aurones, and flavan and proanthocyanidins, are synthesized in betalain-containing families. In this review, distribution and properties of the flavonoids in eight betalain-containing families are described.

  4. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, Barry H.; Wright, Richard N.

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  5. Scalable syntheses of the BET bromodomain inhibitor JQ1.

    PubMed

    Syeda, Shameem Sultana; Jakkaraj, Sudhakar; Georg, Gunda I

    2015-06-03

    We have developed methods involving the use of alternate, safer reagents for the scalable syntheses of the potent BET bromodomain inhibitor JQ1. A one-pot three step method, involving the conversion of a benzodiazepine to a thioamde using Lawesson's reagent, followed by amidrazone formation and installation of the triazole moiety furnished JQ1. This method provides good yields and a facile purification process. For the synthesis of enantiomerically enriched (+)-JQ1, the highly toxic reagent diethyl chlorophosphate, used in a previous synthesis, was replaced with the safer reagent diphenyl chlorophosphate in the three-step one-pot triazole formation without effecting yields and enantiomeric purity of (+)-JQ1.

  6. Divergent Total Syntheses of (−)-Aspidospermine and (+)-Spegazzinine

    PubMed Central

    Lajiness, James P.; Jiang, Wanlong; Boger, Dale L.

    2012-01-01

    Divergent total syntheses of (+)-spegazzinine (1) and (−)-aspidospermine (2) and their extensions to the synthesis of C19-epi-aspidospermine and C3-epi-spegazzinine are detailed, confirming the relative stereochemistry and establishing the absolute configuration of (+)-spegazzinine. A powerful intramolecular [4 + 2]/[3 + 2] cycloaddition cascade of a 1,3,4-oxadiazole provided the pentacyclic skeleton and all the requisite stereochemistry of the natural products in a single reaction that forms three rings, four C–C bonds, and five stereocenters. PMID:22480368

  7. Novel penicillins synthesized by biotransformation using laccase from Trametes spec.

    PubMed

    Mikolasch, Annett; Niedermeyer, Timo Horst Johannes; Lalk, Michael; Witt, Sabine; Seefeldt, Simone; Hammer, Elke; Schauer, Frieder; Gesell, Manuela; Hessel, Susanne; Jülich, Wolf-Dieter; Lindequist, Ulrike

    2006-05-01

    Eight novel penicillins were synthesized by heteromolecular reaction of ampicillin or amoxicillin with 2,5-dihydroxybenzoic acid derivatives using a laccase from Trametes spec. All products inhibited the growth of several gram positive bacterial strains in the agar diffusion assay, among them methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. The products protected mice against an infection with Staphylococcus aureus lethal to the untreated animals. Cytotoxicity and acute toxicity of the new compounds were neglectable. The results show the usefulness of laccase for the synthesis of potential new antibiotics. The biological activity of the new compounds stimulates intensified pharmacological tests.

  8. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    SciTech Connect

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  9. Structural features of carbon materials synthesized by different methods

    NASA Astrophysics Data System (ADS)

    Streletskii, O. A.; Ivanenko, I. P.; Khvostov, V. V.; Savchenko, N. F.; Nishchak, O. Yu.; Aleksandrov, A. F.

    2016-10-01

    This paper presents the results of investigations of three types of carbon structures synthesized by different methods, such as arc discharge plasma enhanced chemical vapor deposition of carbon in a magnetic field, chemical dehydrohalogenation of the poly(vinyl chloride)/poly(vinylidene chloride) precursor, and pulsed plasma ion assisted deposition. It has been found that the samples prepared by different methods have a common feature, i.e., the presence of three-dimensional clusters based on sp 2- or sp 3-bonds surrounded by quasi-one-dimensional carbon chains. It has been shown that the structure of carbon materials changes depending on the synthesis conditions.

  10. Size evolution of ion beam synthesized Pb nanoparticles in Al

    PubMed Central

    2014-01-01

    The size evolution of Pb nanoparticles (NPs) synthesized by ion implantation in an epitaxial Al film has been experimentally investigated. The average radius R of Pb NPs was determined as a function of implantation fluence f. The R(f) data were analyzed using various growth models. Our observations suggest that the size evolution of Pb NPs is controlled by the diffusion-limited growth kinetics (R2∝f). With increasing implantation current density, the diffusion coefficient of Pb atoms in Al is evident to be enhanced. By a comparative analysis of the R(f) data, values of the diffusion coefficient of Pb in Al were obtained. PMID:25114640

  11. Syntheses of 4,6'-epoxymorphinan derivatives and their pharmacologies.

    PubMed

    Nemoto, Toru; Fujii, Hideaki; Narita, Minoru; Miyoshi, Kan; Nakamura, Atsushi; Suzuki, Tsutomu; Nagase, Hiroshi

    2008-04-15

    A modification of the message site in the skeleton of naltrexone was carried out to improve the potency and selectivity of the compound for an opioid receptor subtype. In the course of conversion, we synthesized 7-membered ring ether derivatives, which had an inserted OCH(2) group between 4- and 6-positions of morphinan skeleton. One of the 7-membered ring ether derivatives possessed more potent antagonistic activity than naltrexone for the mu opioid receptor. Another compound possessing 17-methyl group derived from noroxycodone may be a mu opioid receptor partial agonist and showed analgesic activity. We are currently examining the subtype selectivity of these compounds.

  12. Comparative sinterability of combustion synthesized and commercial titanium carbides

    SciTech Connect

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600/sup 0/C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables.

  13. Methods to Design and Synthesize Antibody-Drug Conjugates (ADCs)

    PubMed Central

    Yao, Houzong; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Antibody-drug conjugates (ADCs) have become a promising targeted therapy strategy that combines the specificity, favorable pharmacokinetics and biodistributions of antibodies with the destructive potential of highly potent drugs. One of the biggest challenges in the development of ADCs is the application of suitable linkers for conjugating drugs to antibodies. Recently, the design and synthesis of linkers are making great progress. In this review, we present the methods that are currently used to synthesize antibody-drug conjugates by using thiols, amines, alcohols, aldehydes and azides. PMID:26848651

  14. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  15. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  16. Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.

    1997-01-01

    The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.

  17. Proposal of an Algorithm to Synthesize Music Suitable for Dance

    NASA Astrophysics Data System (ADS)

    Morioka, Hirofumi; Nakatani, Mie; Nishida, Shogo

    This paper proposes an algorithm for synthesizing music suitable for emotions in moving pictures. Our goal is to support multi-media content creation; web page design, animation films and so on. Here we adopt a human dance as a moving picture to examine the availability of our method. Because we think the dance image has high affinity with music. This algorithm is composed of three modules. The first is the module for computing emotions from an input dance image, the second is for computing emotions from music in the database and the last is for selecting music suitable for input dance via an interface of emotion.

  18. Asymmetric Total Syntheses of Megacerotonic Acid and Shimobashiric Acid A

    PubMed Central

    Krabbe, Scott W.; Johnson, Jeffrey S.

    2015-01-01

    The asymmetric total syntheses of the α-benzylidene-γ-butyrolactone natural products megacerotonic acid and shimobashiric acid A have been accomplished in nine and 11 steps, respectively, from simple, commercially available starting materials. The key step for each synthesis is the (arene)RuCl(monosulfonamide)-catalyzed dynamic kinetic resolution-asymmetric transfer hydrogenation (DKR-ATH) of racemic α,δ-diketo-β-aryl esters to establish the absolute stereochemistry. Intramolecular diastereoselective Dieckmann cyclization forms the lactone core, and ketone reduction/alcohol elimination installs the α-arylidene. PMID:25699999

  19. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, Terje A.

    1985-01-01

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  20. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, T.A.

    1984-10-19

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  1. Synthesizing aluminum particles towards controlling electrostatic discharge ignition sensitivity

    SciTech Connect

    Eric S. Collins; Jeffery P. Gesner; Michelle L. Pantoya; Michael A. Daniels

    2014-02-01

    Aluminum particles were synthesized with shell thicknesses ranging from 2.7 to 8.3 nm and a constant diameter of 95 nm. These fuel particles were combined with molybdenum trioxide particles and the electrostatic discharge (ESD) sensitivity of the mixture was measured. Results show ignition delay increased as the alumina shell thickness increased. These results correlated with electrical resistivity measurements of the mixture which increased with alumina concentration. A model was developed using COMSOL for ignition of a single Al particle. The ignition delay in the model was consistent with the experimental results suggesting that the primary ESD ignition mechanism is joule heating.

  2. Laser synthesized nanopowders for polymer-based composites

    NASA Astrophysics Data System (ADS)

    Gavrila-Florescu, Lavinia; Sandu, Ion; Stan, Ana; Dutu, Elena; Voicu, Ion

    2012-09-01

    The paper presents the different laser-synthesized carbon and silicon carbide nanostructures used as fillers for composites with epoxy or phenol resin matrix reinforced with glass or carbon fiber. The effect of nanoadditives on the composites' mechanic and tribologic characteristics is presented. The addition of 2% nanocarbon or 5% SiC has led to the improvement of tensile strength and tensile modulus with 10-15% and 15-20%, respectively. The dry friction coefficient for nanocarbon-containing composites was decreased up to 25% for composites containing nanocarbon, whereas for carbon-carbon composites filled with silicon carbide, this parameter has increased with more than 50%.

  3. Fiber optic frequency transfer link

    NASA Technical Reports Server (NTRS)

    Primas, Lori E. (Inventor); Sydnor, Richard L. (Inventor); Lutes, George F. (Inventor)

    1991-01-01

    A reference frequency distribution system is disclosed for transmitting a reference frequency from a reference unit to a remote unit while keeping the reference frequency at the reference unit and the remote unit in phase. A fiber optic cable connects the reference unit to the remote unit. A frequency source at the reference unit produces a reference frequency having an adjustable phase. A fiber optic transmitter at the reference unit modulates a light beam with the reference frequency and transmits the light beam into the fiber optic cable. A 50/50 reflector at the remote unit reflects a first portion of the light beam from the reference unit back into the fiber optic cable to the reference unit. A first fiber optic receiver disposed at the remote unit receives a second portion of the light beam and demodulates the reference frequency to be used at the remote unit. A second fiber optic receiver disposed at the reference unit receives the first portion of the light beam and demodulates a reference frequency component. A phase conjugator is connected to the frequency source for comparing the phase of the reference frequency component to the phase of the reference frequency modulating the light beam being transmitted from the reference unit to maintain a conjugate (anti-symmetric) relationship between the reference frequency component and the reference frequency modulating the light beam where virtually no phase difference exists between the phase of the reference frequency component and the phase of the reference frequency modulating the light beam.

  4. DEMODULATION OF FREQUENCY OR SPACE MODULATED LIGHT.

    DTIC Science & Technology

    LIGHT , DEMODULATION), (*OPTICAL COMMUNICATIONS, FREQUENCY MODULATION), (*FREQUENCY MODULATION, LIGHT ), OPTICAL TRACKING, BEAMS(ELECTROMAGNETIC), DEFLECTION, MICROWAVE FREQUENCY, ELECTRON BEAMS, PHOTOCATHODES

  5. Taenia solium cysticerci synthesize androgens and estrogens in vitro.

    PubMed

    Valdéz, R A; Jiménez, P; Cartas, A L; Gómez, Y; Romano, M C

    2006-04-01

    Cysticerci from Taenia solium develop in the pig muscle and cause severe diseases in humans. Here we report on the capacity of T. solium cysticerci to synthesize sex steroid hormones. T. solium cysticerci were dissected from infected pork meat. Parasites were incubated for different periods in culture media plus antibiotics and tritiated steroid precursors. Blanks and parasite culture media were extracted and analyzed by thin-layer chromatography (TLC) in two different solvent systems. In some experiments, the scoleces were incubated separately. Results showed that T. solium cysticerci transform [(3)H]androstenedione to [(3)H]testosterone in a time-dependent manner. The production was confirmed in two different solvent systems. The incubation with [(3)H]testosterone yielded only small amounts of [(3)H]androstenedione. The recrystallization procedure further demonstrated that the metabolite identified by TLC was testosterone. The isolated scoleces incubated in the presence of [(3)H]androstenedione yielded [(3)H]testosterone and small quantities of [(3)H]17beta-estradiol. The results reported here demonstrate that T. solium cysticerci have the capacity to synthesize steroid hormones.

  6. Intrahepatic synthese of immunoglobulin G in chronic liver disease.

    PubMed

    Kronborg, I J; Knopf, P M

    1980-04-01

    A method has been developed to measure the in vitro production of immunoglobulin (Ig) by liver biopsy specimens. Five to 30 mg of liver tissue was cultured for 24 h in Dulbecco's modified Eagle's medium/10% foetal calf serum (FCS) containing radiolabelled leucine (L-[4,5-3H] leucine). The culture medium was collected, centrifuged and the supernatant dialysed to remove labelled leucine. The residual radioactivity was a measure of newly synthesized 3H-labelled proteins released into the medium. The quantity of IgG was determined by immunoprecipitation with monospecific antisera to IgG heavy chains. The presence of IgG in the supernatant was confirmed by chromatography on protein-A Sepharose column. In 6 biopsies without evidence of active inflammation (4 normal and 2 fatty liver by histological criteria) less than 1% of the protein synthesized was IgG. In contrast in the presence of active inflammation in 4 cases of alcoholic hepatitis the IgG percentage ranged from 2 to 6%. Maximal levels of IgG production were detected in 3 cases of chronic active hepatitis (CAH) and ranged from 5 to 30%. The increased Ig synthesis by the liver in alcoholic hepatitis and CAH is presumed to be an index of the intrahepatic host response and may have important implications for mechanisms of liver damage in these diseases.

  7. Boron Nitride Nanotubes Synthesized by Pressurized Reactive Milling Process

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    2004-01-01

    Nanotubes, because of their very high strength, are attractive as reinforcement materials for ceramic matrix composites (CMCs). Recently there has been considerable interest in developing and applying carbon nanotubes for both electronic and structural applications. Although carbon nanotubes can be used to reinforce composites, they oxidize at high temperatures and, therefore, may not be suitable for ceramic composites. Boron nitride, because it has a higher oxidation resistance than carbon, could be a potential reinforcement material for ceramic composites. Although boron nitride nanotubes (BNnT) are known to be structurally similar to carbon nanotubes, they have not undergone the same extensive scrutiny that carbon nanotubes have experienced in recent years. This has been due to the difficulty in synthesizing this material rather than lack of interest in the material. We expect that BNnTs will maintain the high strength of carbon nanotubes while offering superior performance for the high-temperature and/or corrosive applications of interest to NASA. At the NASA Glenn Research of preparing BN-nTs were investigated and compared. These include the arc jet process, the reactive milling process, and chemical vapor deposition. The most successful was a pressurized reactive milling process that synthesizes BN-nTs of reasonable quantities.

  8. Magnetic and Structural Properties of Chemically Synthesized Ni and

    NASA Astrophysics Data System (ADS)

    Bonder, Michael; Leslie-Pelecky, Diandra L.; Zhang, X. Q.; Rieke, R. D.

    1996-03-01

    The reduction of nickel salts using a technique developed by Rieke and co-workers produces highly chemically reactive particles with enhanced magnetic properties due to their nanoscale size. As-synthesized particles are 2-5 nm in diameter and range from superparamagnetic to ferromagnetic, depending on synthesis details. Grain sizes from 5 nm to 1000 nm have been produced by subsequent vacuum annealing. The maximum coercivities and remanence ratios are obtained during the first half-hour to hour of annealing. Coercivities in these systems may be up to ten times the value of bulk nickel, with remanence ratios approaching 0.5. Transmission electron microscopy shows that the nickel grains are square and sometimes embedded in a lithium halide matrix. Under appropriate synthesis and annealing conditions, the as-synthesized particles can be transformed into the metastable Ni_3C phase, which has important implications in catalysis. Comparison with Stoner-Wohlfarth and Holz-Scherrer predictions of the magnetic properties will be made.

  9. Construction of a cyanobacterium synthesizing cyclopropane fatty acids.

    PubMed

    Machida, Shuntaro; Shiraiwa, Yoshihiro; Suzuki, Iwane

    2016-09-01

    Microalgae have received much attention as a next-generation source of biomass energy. However, most of the fatty acids (FAs) from microalgae are multiply unsaturated; thus, the biofuels derived from them are fluid, but vulnerable to oxidation. In this study, we attempted to synthesize cyclopropane FAs in the cyanobacterium Synechocystis sp. PCC 6803 by expressing the cfa gene for cyclopropane FA synthase from Escherichia coli with the aim of producing FAs that are fluid and stable in response to oxidization. We successfully synthesized cyclopropane FAs in Synechocystis with a yield of ~30% of total FAs. Growth of the transformants was altered, particularly at low temperatures, but photosynthesis and respiration were not significantly affected. C16:1(∆9) synthesis in the desA(-)/desD(-) strain by expression of the desC2 gene for sn-2 specific ∆9 desaturase positively affected growth at low temperatures via promotion of various cellular processes, with the exceptions of photosynthesis and respiration. Estimation of the apparent activities of desaturases suggested that some acyl-lipid desaturases might recognize the lipid side chain.

  10. Synthesized voice approach callouts for air transport operations

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1980-01-01

    A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.

  11. A simple route to synthesize manganese germanate nanorods

    SciTech Connect

    Pei, L.Z. Yang, Y.; Yuan, C.Z.; Duan Taike; Zhang Qianfeng

    2011-06-15

    Manganese germanate nanorods have been synthesized by a simple route using germanium dioxide and manganese acetate as the source materials. X-ray diffraction observation shows that the nanorods are composed of orthorhombic and monoclinic manganese germanate phases. Scanning electron microscopy and transmission electron microscopy observations display that the manganese germanate nanorods have flat tips with the length of longer than 10 micrometers and diameter of 60-350 nm, respectively. The role of the growth conditions on the formation of the manganese germanate nanorods shows that the proper selection and combination of the growth conditions are the key factor for controlling the formation of the manganese germanate nanorods. The photoluminescence spectrum of the manganese germanate nanorods exhibits four fluorescence emission peaks centered at 422 nm, 472 nm, 487 nm and 530 nm showing the application potential for the optical devices. - Research Highlights: {yields} Manganese germanate nanorods have been synthesized by simple hydrothermal process. {yields} The formation of manganese germanate nanorods can be controlled by growth conditions. {yields} Manganese germanate nanorods exhibit good PL emission ability for optical device.

  12. Protein immobilization onto electrochemically synthesized CoFe nanowires

    PubMed Central

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2015-01-01

    CoFe nanowires have been synthesized by the electrodeposition technique into the pores of a polycarbonate membrane with a nominal pore diameter of 50 nm, and the composition of CoFe nanowires varying by changing the source concentration of iron. The synthesized nanowire surfaces were functionalized with amine groups by treatment with aminopropyltriethoxysilane (APTES) linker, and then conjugated with streptavidin-Cy3 protein via ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide coupling chemistry. The oxide surface of CoFe nanowire is easily modified with aminopropyltriethoxysilane to form an amine terminating group, which is covalently bonded to streptavidin-Cy3 protein. The physicochemical properties of the nanowires were analyzed through different characterization techniques such as scanning electron microscope, energy dispersive spectroscopy, and vibrating sample magnetometer. Fluorescence microscopic studies and Fourier transform infrared studies confirmed the immobilization of protein on the nanowire surface. In addition, the transmission electron microscope analysis reveals the thin protein layer which is around 12–15 nm on the nanowire surfaces. PMID:25609966

  13. Protein immobilization onto electrochemically synthesized CoFe nanowires.

    PubMed

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2015-01-01

    CoFe nanowires have been synthesized by the electrodeposition technique into the pores of a polycarbonate membrane with a nominal pore diameter of 50 nm, and the composition of CoFe nanowires varying by changing the source concentration of iron. The synthesized nanowire surfaces were functionalized with amine groups by treatment with aminopropyltriethoxysilane (APTES) linker, and then conjugated with streptavidin-Cy3 protein via ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide coupling chemistry. The oxide surface of CoFe nanowire is easily modified with aminopropyltriethoxysilane to form an amine terminating group, which is covalently bonded to streptavidin-Cy3 protein. The physicochemical properties of the nanowires were analyzed through different characterization techniques such as scanning electron microscope, energy dispersive spectroscopy, and vibrating sample magnetometer. Fluorescence microscopic studies and Fourier transform infrared studies confirmed the immobilization of protein on the nanowire surface. In addition, the transmission electron microscope analysis reveals the thin protein layer which is around 12-15 nm on the nanowire surfaces.

  14. Multifunctional Martian habitat composite material synthesized from in situ resources

    NASA Astrophysics Data System (ADS)

    Sen, S.; Carranza, S.; Pillay, S.

    2010-09-01

    The two primary requirements for a Martian habitat structure include effective radiation shielding against the Galactic Cosmic Ray (GCR) environment and sufficient structural and thermal integrity. To significantly reduce the cost associated with transportation of such materials and structures from earth, it is imperative that such building materials should be synthesized primarily from Martian in situ resources. This paper illustrates the feasibility of such an approach. Experimental results are discussed to demonstrate the synthesis of polyethylene (PE) from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with PE as the binding material. The radiation shielding effectiveness of the proposed composites is analyzed using results from radiation transport codes and exposure of the samples to high-energy beams that serve as a terrestrial proxy for the GCR environment. Mechanical and ballistic impact resistance properties of the proposed composite as a function of composition, processing parameters, and thermal variations are also discussed to evaluate the multifunctionality of such in situ synthesized composite materials.

  15. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles.

    PubMed

    Bawazer, Lukmaan A; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R; Schwenzer, Birgit; Morse, Daniel E

    2012-06-26

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  16. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

  17. Anticerebral Ischemia-Reperfusion Injury Activity of Synthesized Puerarin Derivatives

    PubMed Central

    Ji, Yubin; Yan, Xinjia

    2016-01-01

    When cerebral ischemia-reperfusion injury happened in patients, multiple pathological processes occur, such as leukocyte infiltration, platelet, and complement activation, which would result in cognitive dysfunction and inflammation. Puerarin has shown protective effect on injury of neural cell. In order to enhance this protective effect of puerarin, puerarin derivatives with different log⁡P values were designed and synthesized. The original phenolic hydroxyl in the puerarin molecules was substituted in order to change the blood-brain barrier permeability and thus enhance the efficacy for preventing cerebral ischemia/reperfusion injury. And the structure of the newly synthesized molecules was confirmed by 1H NMR spectroscopy and mass spectrometry. The mouse model of cerebral artery ischemia/reperfusion injury was established to test the anticerebral ischemia-reperfusion injury activity of the puerarin derivatives. The assays of the water maze, Y maze, brain cortex Ca2+-Mg2+-ATP enzyme, and iNOS enzyme activity were performed in this mouse model. The results showed that puerarin derivative P1-EA and P2-EA were resulting in an increased lipophilicity that enabled the derivatives to pass more efficiently through the blood-brain barrier, thus, improving the protective effects against cerebral ischemia/reperfusion injury. Therefore, derivatives of puerarin may serve as promising approach to improve neuron function in ischemia-reperfusion brain injury-related disorders. PMID:27807543

  18. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles

    SciTech Connect

    Bawazer, Lukmaan A.; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R.; Schwenzer, Birgit; Morse, Daniel E.

    2012-10-29

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  19. Thermally Stable Mesoporous Silica Spheres synthesized under Mild Conditions

    NASA Astrophysics Data System (ADS)

    Ziegler, Christopher; You, Eunyoung; Watkins, James

    2009-03-01

    Thermally stable, mesoporous silica spheres were synthesized using a one-pot technique under mild conditions. As-calcined silica spheres were shown to be highly porous with surface areas greater than 1000 m^2/g and pore volumes on the order of 1 cc/g. Pore walls were found to be highly resistant to collapse as a consequence of thermal treatment at temperatures exceeding 750 C or hydrothermal treatment in boiling water at temperatures exceeding 100 C for over 100 hours. ^29Si-^1H cross polarization NMR data indicate that the silica is highly condensed at the surface providing rationale for the exceptional pore wall stability observed. The mesoporous silica spheres were synthesized from tetraethyl orthosilicate (TEOS) at room temperature and near-neutral pH using cysteamine and cetyltrimethylammonium bromide (CTAB) in a mixed water and ethanol system. Sphere size was shown to be tunable by altering the relative amounts of ethanol, CTAB, or TEOS. Sphere diameters ranging from 30 nm to 560 nm were observed. The preparation method and characterization of these highly condensed, thermally stable, mesoporous silica spheres for applications including sensing, catalysis, purification, and payload encapsulation is presented.

  20. Frequency domain nonlinear optics

    NASA Astrophysics Data System (ADS)

    Legare, Francois

    2016-05-01

    The universal dilemma of gain narrowing occurring in fs amplifiers prevents ultra-high power lasers from delivering few-cycle pulses. This problem is overcome by a new amplification concept: Frequency domain Optical Parametric Amplification - FOPA. It enables simultaneous up-scaling of peak power and amplified spectral bandwidth and can be performed at any wavelength range of conventional amplification schemes, however, with the capability to amplify single cycles of light. The key idea for amplification of octave-spanning spectra without loss of spectral bandwidth is to amplify the broad spectrum ``slice by slice'' in the frequency domain, i.e. in the Fourier plane of a 4f-setup. The striking advantages of this scheme, are its capability to amplify (more than) one octave of bandwidth without shorting the corresponding pulse duration. This is because ultrabroadband phase matching is not defined by the properties of the nonlinear crystal employed but the number of crystals employed. In the same manner, to increase the output energy one simply has to increase the spectral extension in the Fourier plane and to add one more crystal. Thus, increasing pulse energy and shortening its duration accompany each other. A proof of principle experiment was carried out at ALLS on the sub-two cycle IR beam line and yielded record breaking performance in the field of few-cycle IR lasers. 100 μJ two-cycle pulses from a hollow core fibre compression setup were amplified to 1.43mJ without distorting spatial or temporal properties. Pulse duration at the input of FOPA and after FOPA remains the same. Recently, we have started upgrading this system to be pumped by 250 mJ to reach 40 mJ two-cycle IR few-cycle pulses and latest results will be presented at the conference. Furthermore, the extension of the concept of FOPA to other nonlinear optical processes will be discussed. Frequency domain nonlinear optics.

  1. Radar frequency radiation

    NASA Astrophysics Data System (ADS)

    Malowicki, E.

    1981-11-01

    A method is presented for the determination of radar frequency radiation power densities that the PAVE PAWS radar system could produce in its air and ground environment. The effort was prompted by the concern of the people in the vicinity of OTIS AFB MA and BEALE AFB CA about the possible radar frequency radiation hazard of the PAVE PAWS radar. The method is based on the following main assumptions that: (a) the total field can be computed as the vector summation of the individual fields due to each antenna element; (b) the individual field can be calculated using distances for which the field point is in the far field of the antenna element. An RFR computer program was coded for the RADC HE 6180 digital computer and exercised to calculate the radiation levels in the air and ground space for the present baseline and the possible Six DB and 10 DB growth systems of the PAVE PAWS radar system at OTIS AFB MA. The average radiation levels due to the surveillance fence were computed for three regions: in the air space in front of the radar, at the radar hazard fence at OTIS AFB MA and at representative ground points in the OTIS AFB vicinity. It was concluded that the radar frequency radiation of PAVE PAWS does not present a hazard to personnel provided there is no entry to the air hazard zone or to the area within the hazard fence. The method developed offers a cost effective way to determine radiation levels from a phased array radar especially in the near field and transition regions.

  2. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  3. High frequency pulsed electromigration

    NASA Astrophysics Data System (ADS)

    Malone, David Wayne

    Electromigration life tests were performed on copper-alloyed aluminum test structures that were representative of modern CMOS metallization schemes, complete with Ti/TiN cladding layers and a tungsten-plug contact at the cathode. A total of 18 electrical stress treatments were applied. One was a DC current of 15 mA. The other 17 were pulsed currents, varied according to duty cycle and frequency. The pulse amplitude was 15 mA (˜2.7 × 10sp6 A/cmsp2) for all treatments. Duty cycles ranged from 33.3% to 80%, and frequencies fell into three rough ranges-100 KHz, 1 MHz, and 100 MHz. The ambient test temperature was 200sp°C in all experiments. Six to 9 samples were subjected to each treatment. Experimental data were gathered in the form of test stripe resistance versus time, R(t). For purposes of lifetime analysis, "failure" was defined by the criterion R(t)/R(0) = 1.10, and the median time to failure, tsb{50}, was used as the primary basis of comparison between test groups. It was found that the dependence of tsb{50} on pulse duty cycle conformed rather well to the so-called "average current density model" for duty cycles of 50% and higher. Lifetimes were less enhanced for a duty cycle of 33.3%, but they were still considerably longer than an "on-time" model would predict. No specific dependence of tsb{50} on pulse frequency was revealed by the data, that is, reasonably good predictions of tsb{50} could be made by recognizing the dominant influence of duty cycle. These findings confirm that IC miniaturization can be more aggressively pursued than an on-time prediction would allow. It is significant that this was found to be true for frequencies on the order of 100 MHz, where many present day digital applications operate. Post-test optical micrographs were obtained for each test subject in order to determine the location of electromigration damage. The pulse duty cycle was found to influence the location. Most damage occurred at the cathode contact, regardless of

  4. Frequency Domain Identification Toolbox

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Juang, Jer-Nan; Chen, Chung-Wen

    1996-01-01

    This report documents software written in MATLAB programming language for performing identification of systems from frequency response functions. MATLAB is a commercial software environment which allows easy manipulation of data matrices and provides other intrinsic matrix functions capabilities. Algorithms programmed in this collection of subroutines have been documented elsewhere but all references are provided in this document. A main feature of this software is the use of matrix fraction descriptions and system realization theory to identify state space models directly from test data. All subroutines have templates for the user to use as guidelines.

  5. Microwave Frequency Polarizers

    NASA Technical Reports Server (NTRS)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  6. Frequency Assignment Subcommittee (FAS)

    DTIC Science & Technology

    2010-03-01

    4 • 4 GHz • 14 – 15 GHz • 7/8 GHz when IRAC approved 4 Frequency Application P ( t)rocess con  C l ith Ch l Pl C tomp y w anne ans on • Military...EXD • Change 141 date • Submit Renewals at least 60 days prior to expiration date  Can’t serial replace FRRS only record 6  IRAC docs listed...in NTIA Manual • One site, Poseidon Park, approved at IRAC but not signed by Chair – awaiting outcome of change to 7.11 paper b itt d b FASsu m e y

  7. Growth process of hydrogenated amorphous carbon films synthesized by atmospheric pressure plasma enhanced CVD using nitrogen and helium as a dilution gas

    NASA Astrophysics Data System (ADS)

    Mori, Takanori; Sakurai, Takachika; Sato, Taiki; Shirakura, Akira; Suzuki, Tetsuya

    2016-04-01

    Hydrogenated amorphous carbon films with various thicknesses were synthesized by dielectric barrier discharge-based plasma deposition under atmospheric pressure diluted with nitrogen (N2) and helium (He) at various pulse frequencies. The C2H2/N2 film showed cauliflower-like-particles that grew bigger with the increase in film’s thickness. At 5 kHz, the film with a thickness of 2.7 µm and smooth surface was synthesized. On the other hand, the films synthesized from C2H2/He had a smooth surface and was densely packed with domed particles. The domed particles extended with the increase in the film thickness, enabling it to grow successfully to 37 µm with a smooth surface.

  8. Impacts of frequency increment errors on frequency diverse array beampattern

    NASA Astrophysics Data System (ADS)

    Gao, Kuandong; Chen, Hui; Shao, Huaizong; Cai, Jingye; Wang, Wen-Qin

    2015-12-01

    Different from conventional phased array, which provides only angle-dependent beampattern, frequency diverse array (FDA) employs a small frequency increment across the antenna elements and thus results in a range angle-dependent beampattern. However, due to imperfect electronic devices, it is difficult to ensure accurate frequency increments, and consequently, the array performance will be degraded by unavoidable frequency increment errors. In this paper, we investigate the impacts of frequency increment errors on FDA beampattern. We derive the beampattern errors caused by deterministic frequency increment errors. For stochastic frequency increment errors, the corresponding upper and lower bounds of FDA beampattern error are derived. They are verified by numerical results. Furthermore, the statistical characteristics of FDA beampattern with random frequency increment errors, which obey Gaussian distribution and uniform distribution, are also investigated.

  9. Optical Reflection Measurement System Using A Swept Modulation Frequency Technique

    NASA Astrophysics Data System (ADS)

    Braun, David M.; Leyde, Kent W.

    1989-03-01

    A measurement system has been developed capable of mea-suring reflected optical power as low as 0.0025% with a spot size diam-eter of 24 Am. One application for this system is the characterization of small-area photodetectors. The operation of the measurement system is simple, allowing the operator to quickly make multiple reflection measurements, and it does not require a darkroom. The measurement system merges a microscope, for visual alignment and focusing of the laser beam, with a lightwave component analyzer using modulation vec-tor error correction. A measurement comparison between the analyzer-based system and a power-meter-based system showed that each sys-tem can measure reflections as low as 0.0025%. However, the analyzer-based system offers the advantage of identifying the location and magnitude of system reflections. The system operates at a wavelength of 1310 nm.

  10. Offset phase locking of noisy diode lasers aided by frequency division.

    PubMed

    Ivanov, E N; Esnault, F-X; Donley, E A

    2011-08-01

    For heterodyne phase locking, frequency division of the beat note between two oscillators can improve the reliability of the phase lock and the quality of the phase synchronization. Frequency division can also reduce the size, weight, power, and cost of the instrument by excluding the microwave synthesizer from the control loop when the heterodyne offset frequency is large (5 to 10 GHz). We have experimentally tested the use of a frequency divider in an optical phase-lock loop and compared the achieved level of residual phase fluctuations between two diode lasers with that achieved without the use of a frequency divider. The two methods achieve comparable phase stability provided that sufficient loop gain is maintained after frequency division to preserve the required bandwidth. We have also numerically analyzed the noise properties and internal dynamics of phase-locked loops subjected to a high level of phase fluctuations, and our modeling confirms the expected benefits of having an in-loop frequency divider.

  11. Dependence of microwave-excitation signal parameters on frequency stability of caesium atomic clock

    NASA Astrophysics Data System (ADS)

    Petrov, A. A.; Davydov, V. V.; Vologdin, V. A.; Zalyotov, D. V.

    2015-11-01

    New scheme of the microwave - excitation signal for the caesium atomic clock is based on method of direct digital synthesis. The theoretical calculations and experimental research showed decrease step frequency tuning by several orders and improvement the spectral characteristics of the output signal of frequency synthesizer. A range of generated output frequencies is expanded, and the possibility of detuning the frequency of the neighboring resonance of spectral line that makes it possible to adjust the C-field in quantum frequency standard is implemented. Experimental research of the metrological characteristics of the quantum frequency standard on the atoms of caesium - 133 with new design scheme of the microwave - excitation signal showed improvement in daily frequency stability on 1.2*10-14.

  12. Vowel generation for children with cerebral palsy using myocontrol of a speech synthesizer

    PubMed Central

    Niu, Chuanxin M.; Lee, Kangwoo; Houde, John F.; Sanger, Terence D.

    2015-01-01

    For children with severe cerebral palsy (CP), social and emotional interactions can be significantly limited due to impaired speech motor function. However, if it is possible to extract continuous voluntary control signals from the electromyograph (EMG) of limb muscles, then EMG may be used to drive the synthesis of intelligible speech with controllable speed, intonation and articulation. We report an important first step: the feasibility of controlling a vowel synthesizer using non-speech muscles. A classic formant-based speech synthesizer is adapted to allow the lowest two formants to be controlled by surface EMG from skeletal muscles. EMG signals are filtered using a non-linear Bayesian filtering algorithm that provides the high bandwidth and accuracy required for speech tasks. The frequencies of the first two formants determine points in a 2D plane, and vowels are targets on this plane. We focus on testing the overall feasibility of producing intelligible English vowels with myocontrol using two straightforward EMG-formant mappings. More mappings can be tested in the future to optimize the intelligibility. Vowel generation was tested on 10 healthy adults and 4 patients with dyskinetic CP. Five English vowels were generated by subjects in pseudo-random order, after only 10 min of device familiarization. The fraction of vowels correctly identified by 4 naive listeners exceeded 80% for the vowels generated by healthy adults and 57% for vowels generated by patients with CP. Our goal is a continuous “virtual voice” with personalized intonation and articulation that will restore not only the intellectual content but also the social and emotional content of speech for children and adults with severe movement disorders. PMID:25657622

  13. Structure and magnetic properties of rf thermally plasma synthesized Mn and Mn-Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Son, S.; Swaminathan, R.; McHenry, M. E.

    2003-05-01

    Plasma synthesis has previously been shown to be a viable route to producing nanocrystalline magnetite and Ni ferrite nanoparticles. In this work nanocrystalline powders of Mn and Mn-Zn ferrites have been synthesized using a 50 kW-3 MHz rf (radio frequency) induction plasma torch. We investigate these materials for soft magnetic applications. High-energy ball milled Mn + Fe powders and (Mn+Zn) +Fe powders (<10 μm) in the stoichiometric ratio of 1:2 were used as precursors for the ferrite synthesis. Compressed air was used in the oxygen source for oxidation of metal species in the plasma. X-ray diffraction patterns for the plasma-torched Mn ferrite and MnZn ferrite powders were indexed to the spinel ferrite crystal structure. An average grain size of ˜20 nm was determined from Scherrer analysis confirmed by transmission electron microscopy studies. The particles also exhibited faceted polygonal growth forms with the associated truncated cuboctahedral shapes. Room-temperature vibrating sample magnetometer measurements of the hysteretic response revealed saturation magnetization Ms and coercivity Hc of Mn ferrite are 23.65 emu/g and 20 Oe, respectively. The Néel temperatures of Mn ferrite powders before and after annealing (500 °C, 30 min) were determined to be 200 and 360 °C, respectively. Inductively coupled plasma chemical analysis and energy dispersive x-ray analysis data on the plasma-torched powders indicated deviations in the Mn or Zn contents than the ideal stoichiometry. MnZn ferrite was observed to have a Néel temperature increased by almost 400 °C as compared with as-synthesized Mn ferrite but with a larger coercivity of ˜35 Oe.

  14. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  15. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    PubMed Central

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  16. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  17. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  18. Magnetoresistive polyaniline-silicon carbide metacomposites: plasma frequency determination and high magnetic field sensitivity.

    PubMed

    Gu, Hongbo; Guo, Jiang; Khan, Mojammel Alam; Young, David P; Shen, T D; Wei, Suying; Guo, Zhanhu

    2016-07-20

    The Drude model modified by Debye relaxation time was introduced to determine the plasma frequency (ωp) in the surface initiated polymerization (SIP) synthesized β-silicon carbide (β-SiC)/polyaniline (PANI) metacomposites. The calculated plasma frequency for these metacomposites with different loadings of β-SiC nanoparticles was ranging from 6.11 × 10(4) to 1.53 × 10(5) rad s(-1). The relationship between the negative permittivity and plasma frequency indicates the existence of switching frequency, at which the permittivity was changed from negative to positive. More interestingly, the synthesized non-magnetic metacomposites, observed to follow the 3-dimensional (3-D) Mott variable range hopping (VRH) electrical conduction mechanism, demonstrated high positive magnetoresistance (MR) values of up to 57.48% and high MR sensitivity at low magnetic field regimes.

  19. Time, Frequency and Physical Measurement.

    ERIC Educational Resources Information Center

    Hellwig, Helmut; And Others

    1978-01-01

    Describes several developments in atomic clocks and frequency standards pointing out the feasibility and practicality in adopting a unified standard of time and frequency to replace other base standards of length, mass, and temperature. (GA)

  20. Oestradiol synthesized by female neurons generates sex differences in neuritogenesis

    PubMed Central

    Ruiz-Palmero, Isabel; Ortiz-Rodriguez, Ana; Melcangi, Roberto Cosimo; Caruso, Donatella; Garcia-Segura, Luis M.; Rune, Gabriele M.; Arevalo, Maria-Angeles

    2016-01-01

    Testosterone produced by the foetal testis is converted by male neurons to oestradiol, which masculinizes neuronal morphology. Female neurons are known to synthesize oestradiol in absence of exogenous testosterone. However, the role of neuronal oestradiol on the differentiation of foetal female neurons is unknown. Here we show that, due to endogenous neuronal oestradiol synthesis, female hippocampal neurons have higher expression of the neuritogenic protein Neurogenin 3 and enhanced neuritogenesis than males. Exogenous application of testosterone or its metabolite dihydrotestosterone increases Neurogenin 3 expression and promotes neuritogenesis in males, but reduces these parameters in females. Together our data indicate that gonadal-independent oestradiol synthesis by female neurons participates in the generation of sex differences in hippocampal neuronal development. PMID:27553191

  1. The stabilization and targeting of surfactant-synthesized gold nanorods

    NASA Astrophysics Data System (ADS)

    Rostro-Kohanloo, Betty C.; Bickford, Lissett R.; Payne, Courtney M.; Day, Emily S.; Anderson, Lindsey J. E.; Zhong, Meng; Lee, Seunghyun; Mayer, Kathryn M.; Zal, Tomasz; Adam, Liana; Dinney, Colin P. N.; Drezek, Rebekah A.; West, Jennifer L.; Hafner, Jason H.

    2009-10-01

    The strong cetyltrimethylammonium bromide (CTAB) surfactant responsible for the synthesis and stability of gold nanorod solutions complicates their biomedical applications. The critical parameter to maintain nanorod stability is the ratio of CTAB to nanorod concentration. The ratio is approximately 740 000 as determined by chloroform extraction of the CTAB from a nanorod solution. A comparison of nanorod stabilization by thiol-terminal PEG and by anionic polymers reveals that PEGylation results in higher yields and less aggregation upon removal of CTAB. A heterobifunctional PEG yields nanorods with exposed carboxyl groups for covalent conjugation to antibodies with the zero-length carbodiimide linker EDC. This conjugation strategy leads to approximately two functional antibodies per nanorod according to fluorimetry and ELISA assays. The nanorods specifically targeted cells in vitro and were visible with both two-photon and confocal reflectance microscopies. This covalent strategy should be generally applicable to other biomedical applications of gold nanorods as well as other gold nanoparticles synthesized with CTAB.

  2. Syntheses of neptunium trichloride and measurements of its melting temperature

    NASA Astrophysics Data System (ADS)

    Hayashi, Hirokazu; Takano, Masahide; Kurata, Masaki; Minato, Kazuo

    2013-09-01

    Neptunium trichloride (NpCl3) of high purity was synthesized by the solid state reaction of neptunium nitride with cadmium chloride. Lattice parameters of hexagonal NpCl3 were determined from the powder X-ray diffraction pattern to be a = 0.7428 ± 0.0001 nm and c = 0.4262 ± 0.0003 nm, which fairly agree with the reported values. The melting temperature of NpCl3 was measured on a sample of about 1 mg, hermetically encapsulated in a gold crucible with a differential thermal analyzer. The value determined was 1070 ± 3 K which is close to the recommended value (1075 ± 30 K) derived from the mean value of the melting temperature of UCl3 and of PuCl3.

  3. Oestradiol synthesized by female neurons generates sex differences in neuritogenesis.

    PubMed

    Ruiz-Palmero, Isabel; Ortiz-Rodriguez, Ana; Melcangi, Roberto Cosimo; Caruso, Donatella; Garcia-Segura, Luis M; Rune, Gabriele M; Arevalo, Maria-Angeles

    2016-08-24

    Testosterone produced by the foetal testis is converted by male neurons to oestradiol, which masculinizes neuronal morphology. Female neurons are known to synthesize oestradiol in absence of exogenous testosterone. However, the role of neuronal oestradiol on the differentiation of foetal female neurons is unknown. Here we show that, due to endogenous neuronal oestradiol synthesis, female hippocampal neurons have higher expression of the neuritogenic protein Neurogenin 3 and enhanced neuritogenesis than males. Exogenous application of testosterone or its metabolite dihydrotestosterone increases Neurogenin 3 expression and promotes neuritogenesis in males, but reduces these parameters in females. Together our data indicate that gonadal-independent oestradiol synthesis by female neurons participates in the generation of sex differences in hippocampal neuronal development.

  4. Benzoin Radicals as Reducing Agent for Synthesizing Ultrathin Copper Nanowires.

    PubMed

    Cui, Fan; Dou, Letian; Yang, Qin; Yu, Yi; Niu, Zhiqiang; Sun, Yuchun; Liu, Hao; Dehestani, Ahmad; Schierle-Arndt, Kerstin; Yang, Peidong

    2017-03-01

    In this work, we report a new, general synthetic approach that uses heat driven benzoin radicals to grow ultrathin copper nanowires with tunable diameters. This is the first time carbon organic radicals have been used as a reducing agent in metal nanowire synthesis. In-situ temperature dependent electron paramagnetic resonance (EPR) spectroscopic studies show that the active reducing agent is the free radicals produced by benzoins under elevated temperature. Furthermore, the reducing power of benzoin can be readily tuned by symmetrically decorating functional groups on the two benzene rings. When the aromatic rings are modified with electron donating (withdrawing) groups, the reducing power is promoted (suppressed). The controllable reactivity gives the carbon organic radical great potential as a versatile reducing agent that can be generalized in other metallic nanowire syntheses.

  5. Scalable syntheses of the BET bromodomain inhibitor JQ1

    PubMed Central

    Syeda, Shameem Sultana; Jakkaraj, Sudhakar; Georg, Gunda I.

    2015-01-01

    We have developed methods involving the use of alternate, safer reagents for the scalable syntheses of the potent BET bromodomain inhibitor JQ1. A one-pot three step method, involving the conversion of a benzodiazepine to a thioamde using Lawesson’s reagent, followed by amidrazone formation and installation of the triazole moiety furnished JQ1. This method provides good yields and a facile purification process. For the synthesis of enantiomerically enriched (+)-JQ1, the highly toxic reagent diethyl chlorophosphate, used in a previous synthesis, was replaced with the safer reagent diphenyl chlorophosphate in the three-step one-pot triazole formation without effecting yields and enantiomeric purity of (+)-JQ1. PMID:26034331

  6. Ubiquitination of newly synthesized proteins at the ribosome.

    PubMed

    Wang, Feng; Canadeo, Larissa A; Huibregtse, Jon M

    2015-07-01

    Newly synthesized proteins can be misfolded or damaged because of errors during synthesis or environmental insults (e.g., heat shock), placing a significant burden on protein quality control systems. In addition, numerous human diseases are associated with a deficiency in eliminating aberrant proteins or accumulation of aggregated proteins. Understanding the mechanisms of protein quality control and disposal pathways for misfolded proteins is therefore crucial for therapeutic intervention in these diseases. Quality control processes function at many points in the life cycle of proteins, and a subset act at the actual site of protein synthesis, the ribosome. Here we summarize recent advances in the role of the ubiquitin proteasome system in protein quality control during the process of translation.

  7. Ubiquitination of Newly Synthesized Proteins at the Ribosome

    PubMed Central

    Wang, Feng; Canadeo, Larissa A.; Huibregtse, Jon M.

    2015-01-01

    Newly synthesized proteins can be misfolded or damaged because of errors during synthesis or environmental insults (e.g., heat shock), placing a significant burden on protein quality control systems. In addition, numerous human diseases are associated with a deficiency in eliminating aberrant proteins or accumulation of aggregated proteins. Understanding the mechanisms of protein quality control and disposal pathways for misfolded proteins is therefore crucial for therapeutic intervention in these diseases. Quality control processes function at many points in the life cycle of proteins, and a subset act at the actual site of protein synthesis, the ribosome. Here we summarize recent advances in the role of the ubiquitin proteasome system in protein quality control during the process of translation. PMID:25701549

  8. Electroosmotic Pumps with Frits Synthesized from Potassium Silicate

    PubMed Central

    Robinson, Nathaniel D.

    2015-01-01

    Electroosmotic pumps employing silica frits synthesized from potassium silicate as a stationary phase show strong electroosmotic flow velocity and resistance to pressure-driven flow. We characterize these pumps and measure an electroosmotic mobility of 2.5×10-8 m2/V s and hydrodynamic resistance per unit length of 70 ×1017 Pa s/m4 with a standard deviation of less than 2% even when varying the amount of water used in the potassium silicate mixture. Furthermore, we demonstrate the simple integration of these pumps into a proof-of-concept PDMS lab-on-a-chip device fabricated from a 3D-printed template. PMID:26629907

  9. Concrete embedded dye-synthesized photovoltaic solar cell.

    PubMed

    Hosseini, T; Flores-Vivian, I; Sobolev, K; Kouklin, N

    2013-09-25

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology.

  10. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, B.H.; Wright, R.N.

    1993-12-14

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  11. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    SciTech Connect

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C. )

    1989-11-25

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.

  12. Synthesizing Econometric Evidence: The Case of Demand Elasticity Estimates.

    PubMed

    DeCicca, Philip; Kenkel, Don

    2015-06-01

    Econometric estimates of the responsiveness of health-related consumer demand to higher prices are often key ingredients for risk policy analysis. We review the potential advantages and challenges of synthesizing econometric evidence on the price-responsiveness of consumer demand. We draw on examples of research on consumer demand for health-related goods, especially cigarettes. We argue that the overarching goal of research synthesis in this context is to provide policy-relevant evidence for broad-brush conclusions. We propose three main criteria to select among research synthesis methods. We discuss how in principle and in current practice synthesis of research on the price-elasticity of smoking meets our proposed criteria. Our analysis of current practice also contributes to academic research on the specific policy question of the effectiveness of higher cigarette prices to reduce smoking. Although we point out challenges and limitations, we believe more work on research synthesis in this area will be productive and important.

  13. Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles

    PubMed Central

    Ramos Chagas, Gabriela; Darmanin, Thierry

    2015-01-01

    Summary Materials with bioinspired superhydrophobic properties are highly desirable for many potential applications. Here, nine novel monomers derived from indole are synthesized to obtain these properties by electropolymerization. These monomers differ by the length (C4F9, C6F13 and C8F17) and the position (4-, 5- and 6-position of indole) of the perfluorinated substituent. Polymeric films were obtained with C4F9 and C6F13 chains and differences in the surface morphology depend especially on the substituent position. The polyindoles exhibited hydrophobic and superhydrophobic properties even with a very low roughness. The best results are obtained with PIndole-6-F 6 for which superhydrophobic and highly oleophobic properties are obtained due to the presence of spherical nanoparticles and low surface energy compounds. PMID:26665079

  14. Horizontal axis wind turbine post stall airfoil characteristics synthesization

    NASA Technical Reports Server (NTRS)

    Tangler, James L.; Ostowari, Cyrus

    1995-01-01

    Blade-element/momentum performance prediction codes are routinely used for wind turbine design and analysis. A weakness of these codes is their inability to consistently predict peak power upon which the machine structural design and cost are strongly dependent. The purpose of this study was to compare post-stall airfoil characteristics synthesization theory to a systematically acquired wind tunnel data set in which the effects of aspect ratio, airfoil thickness, and Reynolds number were investigated. The results of this comparison identified discrepancies between current theory and the wind tunnel data which could not be resolved. Other factors not previously investigated may account for these discrepancies and have a significant effect on peak power prediction.

  15. Synthesizing Existing CSMA and TDMA Based MAC Protocols for VANETs

    PubMed Central

    Huang, Jiawei; Li, Qi; Zhong, Shaohua; Liu, Lianhai; Zhong, Ping; Wang, Jianxin; Ye, Jin

    2017-01-01

    Many Carrier Sense Multiple Access (CSMA) and Time Division Multiple Access (TDMA) based medium access control (MAC) protocols for vehicular ad hoc networks (VANETs) have been proposed recently. Contrary to the common perception that they are competitors, we argue that the underlying strategies used in these MAC protocols are complementary. Based on this insight, we design CTMAC, a MAC protocol that synthesizes existing strategies; namely, random accessing channel (used in CSMA-style protocols) and arbitral reserving channel (used in TDMA-based protocols). CTMAC swiftly changes its strategy according to the vehicle density, and its performance is better than the state-of-the-art protocols. We evaluate CTMAC using at-scale simulations. Our results show that CTMAC reduces the channel completion time and increases the network goodput by 45% for a wide range of application workloads and network settings. PMID:28208590

  16. Comparisons of synthesized and individual reinforcement contingencies during functional analysis.

    PubMed

    Fisher, Wayne W; Greer, Brian D; Romani, Patrick W; Zangrillo, Amanda N; Owen, Todd M

    2016-09-01

    Researchers typically modify individual functional analysis (FA) conditions after results are inconclusive (Hanley, Iwata, & McCord, 2003). Hanley, Jin, Vanselow, and Hanratty (2014) introduced a marked departure from this practice, using an interview-informed synthesized contingency analysis (IISCA). In the test condition, they delivered multiple contingencies simultaneously (e.g., attention and escape) after each occurrence of problem behavior; in the control condition, they delivered those same reinforcers noncontingently and continuously. In the current investigation, we compared the results of the IISCA with a more traditional FA in which we evaluated each putative reinforcer individually. Four of 5 participants displayed destructive behavior that was sensitive to the individual contingencies evaluated in the traditional FA. By contrast, none of the participants showed a response pattern consistent with the assumption of the IISCA. We discuss the implications of these findings on the development of accurate and efficient functional analyses.

  17. Guanidines: from classical approaches to efficient catalytic syntheses.

    PubMed

    Alonso-Moreno, Carlos; Antiñolo, Antonio; Carrillo-Hermosilla, Fernando; Otero, Antonio

    2014-05-21

    From organosuperbases capable of base-catalyzing organic reactions, through versatile 'ligand-sets' for use in coordination chemistry, to fundamental entities in medicinal chemistry, guanidines are amongst the most interesting, attractive, valuable, and versatile organic molecules. Since the discovery of these compounds, synthetic chemists have developed new methodologies that are mainly based on multi-step and stoichiometric reactions. Despite the fact that these methodologies are still being used by the interested scientific and industrial communities, drawbacks such as the poor availability of precursors, low yields, and use and production of undesirable substances highlight the need for safe, simple and efficient syntheses of these entities. This review focuses on the metal-mediated catalytic addition of amines to carbodiimides as an atom-economical alternative to the classical synthesis.

  18. Reduction of postsurgical adhesion formation with hydrogels synthesized by radiation

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Lee, Joon-Ho

    2005-07-01

    Biocompatible and biodegradable hydrogels based on carboxymethyl cellulose (CMC) and polyethyleneglycol (PEG) were prepared as physical barriers for preventing surgical adhesions. These interpolymeric hydrogels were synthesized by gamma irradiation crosslinking technique. A 1.5 cm × 1.5 cm of cecal serosa and an adjacent abdominal wall were abraded with bone burr until the serosal surface was disrupted and hemorrhagic but not perforated. The denuded cecum was covered with either CMC/PEG hydrogels or a solution from a CMC/PEG hydrogel. Control rat serosa was not covered. Two weeks later, the rats were sacrificed and the adhesion was scored on a 0-5 scale. Control rat showed a significantly higher incidence of adhesions than either the CMC/PEG hydrogels or a solution from the CMC/PEG hydrogel. In conclusion, these studies demonstrate that CMC/PEG hydrogels have a function of the prevention for an intra abdominal adhesion in a rat model.

  19. Electrochemical behavior of chemically synthesized selenium thin film.

    PubMed

    Patil, A M; Kumbhar, V S; Chodankar, N R; Lokhande, A C; Lokhande, C D

    2016-05-01

    The facile and low cost simple chemical bath deposition (CBD) method is employed to synthesize red colored selenium thin films. These selenium films are characterized for structural, morphological, topographical and wettability studies. The X-ray diffraction (XRD) pattern showed the crystalline nature of selenium thin film with hexagonal crystal structure. The scanning electron microscopy (SEM) study displays selenium nanoparticles ranging from 20 to 475 nm. A specific surface area of 30.5 m(2) g(-1) is observed for selenium nanoparticles. The selenium nanoparticles hold mesopores in the range of 1.39 nm, taking benefits of the good physicochemical stability and excellent porosity. Subsequently, the electrochemical properties of selenium thin films are deliberated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques. The selenium thin film shows specific capacitance (Cs) of 21.98 F g(-1) with 91% electrochemical stability.

  20. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate.

    PubMed

    Ecarot-Charrier, B; Bouchard, F; Delloye, C

    1989-11-25

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.

  1. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pathania, Deepak; Katwal, Rishu; Kaur, Harpreet

    2016-03-01

    In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.

  2. Synthesizing Existing CSMA and TDMA Based MAC Protocols for VANETs.

    PubMed

    Huang, Jiawei; Li, Qi; Zhong, Shaohua; Liu, Lianhai; Zhong, Ping; Wang, Jianxin; Ye, Jin

    2017-02-10

    Many Carrier Sense Multiple Access (CSMA) and Time Division Multiple Access (TDMA) based medium access control (MAC) protocols for vehicular ad hoc networks (VANETs) have been proposed recently. Contrary to the common perception that they are competitors, we argue that the underlying strategies used in these MAC protocols are complementary. Based on this insight, we design CTMAC, a MAC protocol that synthesizes existing strategies; namely, random accessing channel (used in CSMA-style protocols) and arbitral reserving channel (used in TDMA-based protocols). CTMAC swiftly changes its strategy according to the vehicle density, and its performance is better than the state-of-the-art protocols. We evaluate CTMAC using at-scale simulations. Our results show that CTMAC reduces the channel completion time and increases the network goodput by 45% for a wide range of application workloads and network settings.

  3. Profiling base excision repair glycosylases with synthesized transition state analogs.

    PubMed

    Chu, Aurea M; Fettinger, James C; David, Sheila S

    2011-09-01

    Two base excision repair glycosylase (BER) transition state (TS) mimics, (3R,4R)-1-benzyl (hydroxymethyl) pyrrolidin-3-ol (1NBn) and (3R,4R)-(hydroxymethyl) pyrrolidin-3-ol (1N), were synthesized using an improved method. Several BER glycosylases that repair oxidized DNA bases, bacterial formamidopyrimdine glycosylase (Fpg), human OG glycosylase (hOGG1) and human Nei-like glycosylase 1 (hNEIL1) exhibit exceptionally high affinity (K(d)∼pM) with DNA duplexes containing the 1NBn and 1N nucleotide. Notably, comparison of the K(d) values of both TS mimics relative to an abasic analog (THF) in duplex contexts paired opposite C or A suggest that these DNA repair enzymes use distinctly different mechanisms for damaged base recognition and catalysis despite having overlapping substrate specificities.

  4. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    PubMed

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study.

  5. Optical studies of ion-beam synthesized metal alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Magudapathy, P.; Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-01

    AuxAg1-x alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ˜45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar+ ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar+ ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of AuxAg1-x nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  6. Syncopation creates the sensation of groove in synthesized music examples

    PubMed Central

    Sioros, George; Miron, Marius; Davies, Matthew; Gouyon, Fabien; Madison, Guy

    2014-01-01

    In order to better understand the musical properties which elicit an increased sensation of wanting to move when listening to music—groove—we investigate the effect of adding syncopation to simple piano melodies, under the hypothesis that syncopation is correlated to groove. Across two experiments we examine listeners' experience of groove to synthesized musical stimuli covering a range of syncopation levels and densities of musical events, according to formal rules implemented by a computer algorithm that shifts musical events from strong to weak metrical positions. Results indicate that moderate levels of syncopation lead to significantly higher groove ratings than melodies without any syncopation or with maximum possible syncopation. A comparison between the various transformations and the way they were rated shows that there is no simple relation between syncopation magnitude and groove. PMID:25278923

  7. Electroosmotic Pumps with Frits Synthesized from Potassium Silicate.

    PubMed

    Nilsson, Sara; Erlandsson, Per G; Robinson, Nathaniel D

    2015-01-01

    Electroosmotic pumps employing silica frits synthesized from potassium silicate as a stationary phase show strong electroosmotic flow velocity and resistance to pressure-driven flow. We characterize these pumps and measure an electroosmotic mobility of 2.5 × 10(-8) m(2)/V s and hydrodynamic resistance per unit length of 70 × 10(17) Pa s/m(4) with a standard deviation of less than 2% even when varying the amount of water used in the potassium silicate mixture. Furthermore, we demonstrate the simple integration of these pumps into a proof-of-concept PDMS lab-on-a-chip device fabricated from a 3D-printed template.

  8. Fe3O4 nanowire arrays synthesized in AAO templates

    NASA Astrophysics Data System (ADS)

    Xue, D. S.; Zhang, L. Y.; Gui, A. B.; Xu, X. F.

    2005-02-01

    Fe3O4 nanowire arrays with an average diameter of about 120 nm and lengths up to 8 μm were synthesized in anodic aluminum oxide templates through electrodepositing and heat treating a precursor β-FeOOH. The nanowires have a polycrystalline spinel structure with a=8.31 Å and each nanowire is composed of fine particles. Influences of the sintering and the reducing temperatures on the products have been demonstrated by Mössbauer spectra and X-ray diffraction. It was found that high-coercivity nanowires can be obtained when the precursor was sintered at 500 °C in air and then reduced at 325 °C in H2. Hysteresis loops measured at room temperature show a clear perpendicular magnetic anisotropy.

  9. Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles.

    PubMed

    Ramos Chagas, Gabriela; Darmanin, Thierry; Guittard, Frédéric

    2015-01-01

    Materials with bioinspired superhydrophobic properties are highly desirable for many potential applications. Here, nine novel monomers derived from indole are synthesized to obtain these properties by electropolymerization. These monomers differ by the length (C4F9, C6F13 and C8F17) and the position (4-, 5- and 6-position of indole) of the perfluorinated substituent. Polymeric films were obtained with C4F9 and C6F13 chains and differences in the surface morphology depend especially on the substituent position. The polyindoles exhibited hydrophobic and superhydrophobic properties even with a very low roughness. The best results are obtained with PIndole-6-F 6 for which superhydrophobic and highly oleophobic properties are obtained due to the presence of spherical nanoparticles and low surface energy compounds.

  10. Mesoporous silica magnetite nanocomposite synthesized by using a neutral surfactant

    NASA Astrophysics Data System (ADS)

    Souza, K. C.; Salazar-Alvarez, G.; Ardisson, J. D.; Macedo, W. A. A.; Sousa, E. M. B.

    2008-05-01

    Magnetite nanoparticles coated by mesoporous silica were synthesized by an alternative chemical route using a neutral surfactant and without the application of any functionalization method. The magnetite (Fe3O4) nanoparticles were prepared by precipitation from aqueous media, and then coated with mesoporous silica by using nonionic block copolymer surfactants as the structure-directing agents. The mesoporous SiO2-coated Fe3O4 samples were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, N2 adsorption-desorption isotherms, transmission electron microscopy, 57Fe Mössbauer spectroscopy, and vibrating sample magnetometry. Our results revealed that the magnetite nanoparticles are completely coated by well-ordered mesoporous silica with free pores and stable (~8 nm thick) pore walls, and that the structural and magnetic properties of the Fe3O4 nanoparticles are preserved in the applied synthesis route.

  11. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    PubMed Central

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology. PMID:24067664

  12. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, Candido

    1999-01-01

    A method for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700.degree. C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite.

  13. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, C.

    1999-02-23

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs.

  14. Method for synthesizing metal bis(borano) hypophosphite complexes

    DOEpatents

    Cordaro, Joseph G.

    2013-06-18

    The present invention describes the synthesis of a family of metal bis(borano) hypophosphite complexes. One procedure described in detail is the syntheses of complexes beginning from phosphorus trichloride and sodium borohydride. Temperature, solvent, concentration, and atmosphere are all critical to ensure product formation. In the case of sodium bis(borano) hypophosphite, hydrogen gas was evolved upon heating at temperatures above 150.degree. C. Included in this family of materials are the salts of the alkali metals Li, Na and K, and those of the alkaline earth metals Mg and Ca. Hydrogen storage materials are possible. In particular the lithium salt, Li[PH.sub.2(BH.sub.3).sub.2], theoretically would contain nearly 12 wt % hydrogen. Analytical data for product characterization and thermal properties are given.

  15. Heteroatom-doped graphene materials: syntheses, properties and applications.

    PubMed

    Wang, Xuewan; Sun, Gengzhi; Routh, Parimal; Kim, Dong-Hwan; Huang, Wei; Chen, Peng

    2014-01-01

    Heteroatom doping can endow graphene with various new or improved electromagnetic, physicochemical, optical, and structural properties. This greatly extends the arsenal of graphene materials and their potential for a spectrum of applications. Considering the latest developments, we comprehensively and critically discuss the syntheses, properties and emerging applications of the growing family of heteroatom-doped graphene materials. The advantages, disadvantages, and preferential doping features of current synthesis approaches are compared, aiming to provide clues for developing new and controllable synthetic routes. We emphasize the distinct properties resulting from various dopants, different doping levels and configurations, and synergistic effects from co-dopants, hoping to assist a better understanding of doped graphene materials. The mechanisms underlying their advantageous uses for energy storage, energy conversion, sensing, and gas storage are highlighted, aiming to stimulate more competent applications.

  16. Hydrophilic polymer composites synthesized by electrospinning under dense carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wahyudiono, Okamoto, Koichi; Machmudah, Siti; Kanda, Hideki; Goto, Motonobu

    2015-12-01

    Electrospinning technique is feasible in some applications, it has attracted more attention in recent years. Various polymers have been successfully electrospun into ultrafine fibers in solvent solution and some in melt form. In this work, polyvinylpyrrolidone (PVP) as a hydrophilic polymer would be synthesized by electrospinning under dense carbon dioxide (CO2). The experiments were performed at 40 °C and ˜ 5 MPa. During the electrospinning process, the applied voltage was 10-17 kV and the distance of nozzle and collector was 8 cm. The concentration of PVP solution as a major component was 4 wt%. The results showed that the fibers surface morphology from PVP which blended with poly L-lactide acid (PLLA) were smooth with hollow core fibers at 5 MPa. At the same conditions, PVP-carbon nanotube was also successfully generated into electrospun fiber products with diameter ˜ 2 μm.

  17. Novel route to synthesize CuO nanoplatelets

    SciTech Connect

    Zarate, R.A. Hevia, F.; Fuentes, S.; Fuenzalida, V.M.; Zuniga, A.

    2007-04-15

    A new synthesis route to obtain high-purity cupric oxide, CuO, using the hydrothermal reaction of copper sulfide and a NaOH solution in an oxygen atmosphere has been developed. The synthesized products showed nanoplatelet-like morphologies with rectangular cross-sections and dimensions at the nanometric scale. Variations in the oxygen partial pressure and synthesis temperature produced changes in size and shape, being found that the proliferation of nanoplatelet structures occurred at 200 deg. C and 30 bar. - Graphical abstract: Transmission electron microscopy image of a CuO nanoplatelet. The inset is an electron diffraction pattern of this twined CuO nanoplatelet exhibiting a monoclinic crystal structure.

  18. High-yielding syntheses of hydrophilic, conjugatable chlorins and bacteriochlorins†

    PubMed Central

    McCarthy, Jason R.; Bhaumik, Jayeeta; Merbouh, Nabyl; Weissleder, Ralph

    2009-01-01

    SUMMARY Next-generation photodynamic therapy agents based upon the conjugation of multiple photosensitizers to a targeting backbone will allow for more efficacious light-based therapies. To this end, we have developed glucose-modified chlorins and bacteriochlorins featuring a reactive carboxylic acid linker for conjugation to targeting moities. The photosensitizers were synthesized in relatively high yields from meso-tetra(p-aminophenyl)porphyrin, and resulted in neutral, hydrophilic chromophores with superb absorption profiles in the far-red and near-infrared portions of the electromagnetic spectrum. In addition, conjugation of these photosensitizers to a model nanoscaffold (crosslinked dextran-coated nanoparticles) demonstrated that the inclusion of hydrophilic sugar moieties increased the number of dyes that can be loaded while maintaining suspension stability. The described compounds are expected to be particularly useful in the synthesis of a number of targeted nanotherapeutic systems. PMID:19675897

  19. Concanavalin A is synthesized as a glycoprotein precursor.

    PubMed

    Herman, E M; Shannon, L M; Chrispeels, M J

    1985-07-01

    Concanavalin A (Con A) is a tetrameric lectin which is synthesized in the cotyledons of developing jack-bean (Canavalia ensiformis (L.) D.C.) seeds and accumulates in the protein bodies of storage-parenchyma cells. The polypeptides of Con A have a molecular weight of 27000 and a relative molecular mass (Mr) of 30000 when analyzed by gel electrophoresis on denaturing polyacrylamide gels. In-vitro translation of RNA isolated from immature jack-bean cotyledons shows that Con A is synthesized as a polypeptide with Mr 34000. In-vivo pulse labeling of cotyledons with radioactive amino acids or glucosamine also resulted in the formation of a 34000-Mr polypeptide. In-vivo labeling with radioactive amino acids in the presence of tunicamycin yielded an additional polypeptide of 32000 Mr. Together these results indicate that Con A is cotranslationally processed by the removal of a signal sequence and the addition of an oligosaccharide side chain of corresponding size. Analysis of the structure of the oligogosaccharide side chain was accomplished through glycosidase digestion of glycopeptides isolated from [(3)H]glucosamine-labeled Con A. Incubation of the labeled glycopeptides with endoglycosidase H, α-mannosidase or β-N-acetylglucosaminidase, followed by gel filtration, allowed us to deduce that the oligosaccharide side chain of pro-Con A is a high-mannose oligosaccharide. Pulse-chase experiments with labeled amino acids are consistent with the interpretation that the glycosylated precursor of Con A is processed to mature Con A (Mr=30000). The 4000 decrease in Mr is interpreted to result from the removal of a small glycopeptide. The implications of the conversion of a glycoprotein pro-Con A to mature Con A are discussed in the context of the unique circular permutation of the primary structure of Con A.

  20. Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments

    PubMed Central

    Kennett, Douglas J.; Kennett, James P.; West, Allen; West, G. James; Bunch, Ted E.; Culleton, Brendan J.; Erlandson, Jon M.; Que Hee, Shane S.; Johnson, John R.; Mercer, Chris; Shen, Feng; Sellers, Marilee; Stafford, Thomas W.; Stich, Adrienne; Weaver, James C.; Wittke, James H.; Wolbach, Wendy S.

    2009-01-01

    The long-standing controversy regarding the late Pleistocene megafaunal extinctions in North America has been invigorated by a hypothesis implicating a cosmic impact at the Ållerød-Younger Dryas boundary or YDB (≈12,900 ± 100 cal BP or 10,900 ± 100 14C years). Abrupt ecosystem disruption caused by this event may have triggered the megafaunal extinctions, along with reductions in other animal populations, including humans. The hypothesis remains controversial due to absence of shocked minerals, tektites, and impact craters. Here, we report the presence of shock-synthesized hexagonal nanodiamonds (lonsdaleite) in YDB sediments dating to ≈12,950 ± 50 cal BP at Arlington Canyon, Santa Rosa Island, California. Lonsdaleite is known on Earth only in meteorites and impact craters, and its presence strongly supports a cosmic impact event, further strengthened by its co-occurrence with other nanometer-sized diamond polymorphs (n-diamonds and cubics). These shock-synthesized diamonds are also associated with proxies indicating major biomass burning (charcoal, carbon spherules, and soot). This biomass burning at the Younger Dryas (YD) onset is regional in extent, based on evidence from adjacent Santa Barbara Basin and coeval with broader continent-wide biomass burning. Biomass burning also coincides with abrupt sediment mass wasting and ecological disruption and the last known occurrence of pygmy mammoths (Mammuthus exilis) on the Channel Islands, correlating with broader animal extinctions throughout North America. The only previously known co-occurrence of nanodiamonds, soot, and extinction is the Cretaceous-Tertiary (K/T) impact layer. These data are consistent with abrupt ecosystem change and megafaunal extinction possibly triggered by a cosmic impact over North America at ≈12,900 ± 100 cal BP. PMID:19620728