Patterns of diffusibility of lignin and carbohydrate degrading systems in wood-rotting fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, S.L.
1979-09-01
In an attempt to identify organisms that produce diffusible lignin-degrading systems, a culturing apparatus was constructed which contained two compartments separated by a bacteriological membrane filter. Lignin-degrading fungi were grown with lignocellulose in one compartment, and diffusion channels were maintained through the membrane to sterile lignocellulose in the adjoining compartment. For the fungi tested, both lignin and carbohydrate were degraded when the mycelium and the substrate were in physical contact, but only carbohydrate was degraded significantly in the adjoining compartment containing sterile lignocellulose. Two organisms, Coriolus versicolor and Trichoderma reesii QM 9414 displayed slight diffusible lignin-degrading activity. Some fungi producedmore » more diffusible carbohydrate-degrading activity than others.« less
Pathways for degradation of lignin in bacteria and fungi.
Bugg, Timothy D H; Ahmad, Mark; Hardiman, Elizabeth M; Rahmanpour, Rahman
2011-11-01
Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes. There are also reports of bacteria that can degrade lignin, and recent work indicates that bacterial lignin breakdown may be more significant than previously thought. The review will discuss the enzymes for lignin breakdown in fungi and bacteria, and the catabolic pathways for breakdown of the β-aryl ether, biphenyl and other components of lignin in bacteria and fungi. The review will also discuss small molecule phenolic breakdown products from lignin that have been identified from lignin-degrading microbes, and includes a bioinformatic analysis of the occurrence of known lignin-degradation pathways in Gram-positive and Gram-negative bacteria.
Molecular genetics of lignin-degrading fungi and their applications in organopollutant degradation
Daniel Cullen
2002-01-01
This chapter provides an overview of the physiology and associated molecular genetics of wood- decaying fungi as they relate to organopollutant degradation. White-rot fungi are characterized by an ability to fragment all major structural polymers of wood including lignin. More poorly understood are the brown-rot fungi, which rapidly depolymerize cellulosic materials...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milstein, O.; Gersonde, R.; Huttermann, A.
1992-10-01
White rot basidiomycetes were able to biodegrade styrene (1-phenylethene) graft copolymers of lignin containing different proportions of lignin and polystyrene (poly(1-phenylethylene)). The biodegradation tests were run on lignin-styrene copolymerization products which contained 10.3, 32.2, and 50.4{percent} (wt/wt) lignin. The polymer samples were incubated with the white rot fungi Pleurotus ostreatus, Phanerochaete chrysosporium, and Trametes versicolor and the brown rot fungus Gloeophyllum trabeum. White rot fungi degraded the plastic samples at a rate which increased with increasing lignin content in the copolymer sample. Both polystyrene and lignin components of the copolymer were readily degraded. Polystyrene pellets were not degradable in thesemore » tests. Degradation was verified for both incubated and control samples by weight loss, quantitative UV spectrophotometric analysis of both lignin and styrene residues, scanning electron microscopy of the plastic surface, and the presence of enzymes active in degradation during incubation. Brown rot fungus did not affect any of the plastics. White rot fungi produced and secreted oxidative enzymes associated with lignin degradation in liquid media during incubation with lignin-polystyrene copolymer.« less
Wood decay: a submicroscopic view
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchette, R.A.
1980-01-01
Typical patterns of decay in softwoods are shown by ultrastructural differences revealed by SEM. Illustrative micrographs are reproduced showing fungi and their effects. Brown rot fungi (e.g. Fomitopsis pinicolor) degrade cellulose leaving a lignin skeleton. White rot fungi (e.g. Coriolus versicolor and Hirschioporus abietinus) degrade both lignin and cellulose. White pocket rots (e.g. Phellinus pini) primarily degrade lignin; they have potential for use in paper making, or the production of animal feed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadam, K.K.; Drew, S.W.
1986-01-01
The biodegradation of lignin by fungi was studied in shake flasks using /sup 14/C-labeled kraft lignin and in a deep-tank fermentor using unlabeled kraft lignin. Among the fungi screened, A. fumigatus - isolated in our laboratories - was most potent in lignin biotransformation. Dialysis-type fermentation, designed to study possible accumulation of low MW lignin-derived products, showed no such accumulation. Recalcitrant carbohydrates like microcrystalline cellulose supported higher lignolytic activity than easily metabolized carbohydrates like cellobiose. An assay developed to distinguish between CO/sub 2/ evolved from lignin and carbohydrate substrates demonstrated no stoichiometric correlation between the metabolism of the two cosubstrates. Themore » submerged fermentations with unlabeled liqnin are difficult to monitor since chemical assays do not give accurate and true results. Lignolytic efficiencies that allowed monitoring of such fermentations were defined. Degraded lignins were clearly superior to C. versicolor in all aspects of lignin degradation; A fumigatus brought about substantial demethoxylation and dehydroxylation, whereas C. versicolor degraded lignins closely resembled undegraded kraft lignin. There was a good agreement among the different indices of lignin degradation, namely, /sup 14/CO evolution, OCH/sub 3/ loss, OH loss, and monomer and dimer yield after permanganate oxidation.« less
Improving quality and digestibility of cocoa pod with white rot fungi
NASA Astrophysics Data System (ADS)
Mustabi, J.; Wedawati; Armayanti, A. K.
2018-05-01
White rot fungi is a type of fungus that is able to degrade lignin in the feed material from waste, so it can be used to increase the added value of cocoa pod as alternative feed ingredients to meet the nutritional needs of cattle. The purpose of this study is to investigate the use of white rot fungi in improving the quality and digestibility cocoa pod as feed. The study consisted of two phases, namely fermentation using three isolates of white rot fungi (Coprinus comatus, Corilopsis polyzona and Lentinus torulosus) on pod husks and quality testing in vitro digestibility of fermented. Results of analysis of variance show that the treatment was highly significant on the content of lignin, cellulose and hemicellulose pod husks. Fermented cocoa husks with white rot fungi can degrade lignin content of 1.42% - 12.28% and highly significant improved on in vitro digestibility of dry matter and organic matter. The conclusion, isolates of white rot fungi most active in degrading lignin was Lentinus torulosus isolates and less ability to degrade cellulose and hemicellulose.
SOLID-PHASE TREATMENT OF A PENTACHLOROPHENOL- CONTAMINATED SOIL USING LIGNIN-DEGRADING FUNGI
The abilities of three lignin-degrading fungi, Phanerochaete chrysosporium, Phanerochaete sordida, and Trametes hirsuta, to deplete pentachlorophenol (PCP) from soil contaminated with PCP and creosote were evaluated. A total of seven fungal and three control treatments ...
Arun, A; Eyini, M
2011-09-01
A total of 130 wild basidiomycetes fungi were collected and identified. The polycyclic aromatic hydrocarbons (PAHs) degradation by the potential Phellinus sp., Polyporus sulphureus (in liquid state fermentation (LSF), solid state fermentation (SSF), in soil) and lignin biodegradation were compared with those of a bacterial isolate and their corresponding cocultures. The PAHs degradation was higher in LSF and the efficiency of the organisms declined in SSF and in soil treatment. Phellinus sp. showed better degradation in SSF and in soil. Bacillus pumilus showed higher degradation in LSF. B. pumilus was seen to have lower lignin degradation than the fungal cultures and the cocultures could not enhance the degradation. Phellinus sp. which had higher PAHs and lignin degradation showed higher biosurfactant production than other organism. Manganese peroxidase (MnP) was the predominant enzyme in Phellinus sp. while lignin peroxidase (Lip) was predominant in P. sulphureus. Copyright © 2011 Elsevier Ltd. All rights reserved.
Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi.
Skyba, Oleksandr; Douglas, Carl J; Mansfield, Shawn D
2013-04-01
In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance.
Syringyl-Rich Lignin Renders Poplars More Resistant to Degradation by Wood Decay Fungi
Skyba, Oleksandr; Douglas, Carl J.
2013-01-01
In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance. PMID:23396333
Djarwanto; Tachibana, S
2010-06-15
This research was conducted in the aim of preventing wild fire through reducing potential energy source to become in situ fertilizer. To prevent forest fires by reducing wood waste using lignocellulose-degrading fungi, six fungal isolates were tested for lignin and cellulose-degrading activity with Acacia mangium leaves and twigs over a period of 1 to 3 months. The fungi degraded 8.9-27.1% of the lignin and 14-31% of the holocellulose. The degradation rate varied depending on the fungal species. An increase in incubation time tended to decrease the amounts of holocellulose and lignin. However, the hot water soluble tended to increase following a longer incubation period. From the results obtained here, more time was needed to degrade lignin rather than other components in the sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvine, R.L.
1995-07-24
To test the hypothesis that coal (leonardite) Solubilization and the subsequent depolymerization of the solubilized coal macromolecules are distinct events in lignin degrading fungi. In addition to T versicolor, Phanerochaete chrysosporium, another lignin degrading fungus that also has the ability to solubilize coal, will be studied. To test the hypothesis that the processes of coal (leonardite) solubilization and coal macro molecule depolymerization in lignin degrading fungi can be regulated by altering the nutritional status of the microorganism. Coal solubilization is expected to occur in nutrient rich media whereas depolymerization of solubilized coal macromolecules is expected to occur in nutrient limitedmore » media. To determine the role of extracellular enzymes (laccases, lignin peroxidases and Mn peroxidases) that are secreted by lignin degrading fungi during coal solubilization or coal macro molecule depolymerization. To assess the role of enzymatically generated oxygen radicals, non-radical active oxygen species, veratryl alcohol radicals and Mn{sup +++} complexes in coal macro molecule depolymerization. To characterize products of coal solubilization and coal macro molecule depolymerization that are formed by T. versicolor and P. chrysosporium and their respective extracellular enzymes. Solubilization products formed using oxalic acid and other metal chelators will also be characterized and compared.« less
Arantes, Valdeir; Milagres, Adriane M F; Filley, Timothy R; Goodell, Barry
2011-04-01
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe³+-reductants. Phenolates were the major compounds with Fe³+-reducing activity in both fungi and displayed Fe³+-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe³+ and H₂O₂ (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum--a model brown rot fungus--other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.
Woo, Hannah L; Hazen, Terry C
2018-01-01
The degradation of allochthonous terrestrial organic matter, such as recalcitrant lignin and hemicellulose from plants, occurs in the ocean. We hypothesize that bacteria instead of white-rot fungi, the model organisms of aerobic lignin degradation within terrestrial environments, are responsible for lignin degradation in the ocean due to the ocean's oligotrophy and hypersalinity. Warm oxic seawater from the Eastern Mediterranean Sea was enriched on lignin in laboratory microcosms. Lignin mineralization rates by the lignin-adapted consortia improved after two sequential incubations. Shotgun metagenomic sequencing detected a higher abundance of aromatic compound degradation genes in response to lignin, particularly phenylacetyl-CoA, which may be an effective strategy for marine microbes in fluctuating oxygen concentrations. 16S rRNA gene amplicon sequencing detected a higher abundance of Gammaproteobacteria and Alphaproteobacteria bacteria such as taxonomic families Idiomarinaceae , Alcanivoraceae , and Alteromonadaceae in response to lignin. Meanwhile, fungal Ascomycetes and Basidiomycetes remained at very low abundance. Our findings demonstrate the significant potential of bacteria and microbes utilizing the phenylacetyl-CoA pathway to contribute to lignin degradation in the Eastern Mediterranean where environmental conditions are unfavorable for fungi. Exploring the diversity of bacterial lignin degraders may provide important enzymes for lignin conversion in industry. Enzymes may be key in breaking down high molecular weight lignin and enabling industry to use it as a low-cost and sustainable feedstock for biofuels or other higher-value products.
Mäkelä, Miia R; Marinović, Mila; Nousiainen, Paula; Liwanag, April J M; Benoit, Isabelle; Sipilä, Jussi; Hatakka, Annele; de Vries, Ronald P; Hildén, Kristiina S
2015-01-01
The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics. Copyright © 2015 Elsevier Inc. All rights reserved.
Thanh Mai Pham, Le; Kim, Yong Hwan
2016-01-01
Using bioinformatic homology search tools, this study utilized sequence phylogeny, gene organization and conserved motifs to identify members of the family of O-methyltransferases from lignin-degrading fungus Phanerochaete chrysosporium. The heterologous expression and characterization of O-methyltransferases from P. chrysosporium were studied. The expressed protein utilized S-(5'-adenosyl)-L-methionine p-toluenesulfonate salt (SAM) and methylated various free-hydroxyl phenolic compounds at both meta and para site. In the same motif, O-methyltransferases were also identified in other white-rot fungi including Bjerkandera adusta, Ceriporiopsis (Gelatoporia) subvermispora B, and Trametes versicolor. As free-hydroxyl phenolic compounds have been known as inhibitors for lignin peroxidase, the presence of O-methyltransferases in white-rot fungi suggested their biological functions in accelerating lignin degradation in white-rot basidiomycetes by converting those inhibitory groups into non-toxic methylated phenolic ones. Copyright © 2015 Elsevier Inc. All rights reserved.
Insights into lignin degradation and its potential industrial applications.
Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O
2013-01-01
Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non-phenolic lignin model compounds. In addition to the peroxidases and laccases, fungi produce other accessory oxidases such as aryl-alcohol oxidase and the glyoxal oxidase that generate the hydrogen peroxide required by the peroxidases. Lignin-degrading enzymes have attracted the attention for their valuable biotechnological applications especially in the pretreatment of recalcitrant lignocellulosic biomass for biofuel production. The use of lignin-degrading enzymes has been studied in various applications such as paper industry, textile industry, wastewater treatment and the degradation of herbicides. Copyright © 2013 Elsevier Inc. All rights reserved.
DEMONSTRATION BULLETIN: FUNGAL TREATMENT BULLETIN
Fungal treatment technology uses white rot fungi (lignin degrading fungi) to treat organic contaminated soils in situ. Organic materials inoculated with the fungi are mechanically mixed into the contaminated soil. Using enzymes normally produced for wood degradation as well as ot...
Qin, Xing; Sun, Xianhua; Huang, Huoqing; Bai, Yingguo; Wang, Yuan; Luo, Huiying; Yao, Bin; Zhang, Xiaoyu; Su, Xiaoyun
2017-01-01
Manganese peroxidase is one of the Class II fungal peroxidases that are able to oxidize the low redox potential phenolic lignin compounds. For high redox potential non-phenolic lignin degradation, mediators such as GSH and unsaturated fatty acids are required in the reaction. However, it is not known whether carboxylic acids are a mediator for non-phenolic lignin degradation. The white rot fungus Irpex lacteus is one of the most potent fungi in degradation of lignocellulose and xenobiotics. Two manganese peroxidases ( Il MnP1 and Il MnP2) from I. lacteus CD2 were over-expressed in Escherichia coli and successfully refolded from inclusion bodies. Both Il MnP1 and Il MnP2 oxidized the phenolic compounds efficiently. Surprisingly, they could degrade veratryl alcohol, a non-phenolic lignin compound, in a Mn 2+ -dependent fashion. Malonate or oxalate was found to be also essential in this degradation. The oxidation of non-phenolic lignin was further confirmed by analysis of the reaction products using LC-MS/MS. We proved that Mn 2+ and a certain carboxylate are indispensable in oxidation and that the radicals generated under this condition, specifically superoxide radical, are at least partially involved in lignin oxidative degradation. Il MnP1 and Il MnP2 can also efficiently decolorize dyes with different structures. We provide evidence that a carboxylic acid may mediate oxidation of non-phenolic lignin through the action of radicals. MnPs, but not LiP, VP, or DyP, are predominant peroxidases secreted by some white rot fungi such as I. lacteus and the selective lignocellulose degrader Ceriporiopsis subvermispora . Our finding will help understand how these fungi can utilize MnPs and an excreted organic acid, which is usually a normal metabolite, to efficiently degrade the non-phenolic lignin. The unique properties of Il MnP1 and Il MnP2 make them good candidates for exploring molecular mechanisms underlying non-phenolic lignin compounds oxidation by MnPs and for applications in lignocellulose degradation and environmental remediation.
NASA Astrophysics Data System (ADS)
Derrien, Delphine; Bédu, Hélène; Buée, Marc; Kohler, Annegret; Goodell, Barry; Gelhaye, Eric
2017-04-01
Forest soils cover about 30% of terrestrial area and comprise between 50 and 80% of the global stock of soil organic carbon (SOC). The major precursor for this forest SOC is lignocellulosic material, which is made of polysaccharides and lignin. Lignin has traditionally been considered as a recalcitrant polymer that hinders access to the much more labile structural polysaccharides. This view appears to be partly incorrect from a microbiology perspective yet, as substrate alteration depends on the metabolic potential of decomposers. In forest ecosystems the wood-rotting Basidiomycota fungi have developed two different strategies to attack the structure of lignin and gain access to structural polysaccharides. White-rot fungi degrade all components of plant cell walls, including lignin, using enzymatic systems. Brown-rot fungi do not remove lignin. They generate oxygen-derived free radicals, such as the hydroxyl radical produced by the Fenton reaction, that disrupt the lignin polymer and depolymerize polysaccharides which then diffuse out to where the enzymes are located The objective of this study was to develop a model to investigate whether the lignin relative persistence could be related to the energetic advantage of brown-rot degradative pathway in comparison to white-rot degradative pathway. The model simulates the changes in substrate composition over time, and determines the energy gained from the conversion of the lost substrate into CO2. The energy cost for the production of enzymes involved in substrate alteration is assessed using information derived from genome and secretome analysis. For brown-rot fungus specifically, the energy cost related to the production of OH radicals is also included. The model was run, using data from the literature on populous wood degradation by Trametes versicolor, a white-rot fungus, and Gloeophyllum trabeum, a brown-rot fungus. It demonstrates that the brown-rot fungus (Gloeophyllum trabeum) was more efficient than the white-rot fungus (Trametes versicolor). The energy advantage could explain the emergence of the brown-rot degradative pathway from a white-rot degradative pathway and subsequently, the relative persistence of lignin in soil.
Ohashi, Yasunori; Uno, Yukiko; Amirta, Rudianto; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi
2011-04-07
Lignin degradation by white-rot fungi proceeds via free radical reaction catalyzed by oxidative enzymes and metabolites. Basidiomycetes called selective white-rot fungi degrade both phenolic and non-phenolic lignin substructures without penetration of extracellular enzymes into the cell wall. Extracellular lipid peroxidation has been proposed as a possible ligninolytic mechanism, and radical species degrading the recalcitrant non-phenolic lignin substructures have been discussed. Reactions between the non-phenolic lignin model compounds and radicals produced from azo compounds in air have previously been analysed, and peroxyl radical (PR) is postulated to be responsible for lignin degradation (Kapich et al., FEBS Lett., 1999, 461, 115-119). However, because the thermolysis of azo compounds in air generates both a carbon-centred radical (CR) and a peroxyl radical (PR), we re-examined the reactivity of the three radicals alkoxyl radical (AR), CR and PR towards non-phenolic monomeric and dimeric lignin model compounds. The dimeric lignin model compound is degraded by CR produced by reaction of 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), which under N(2) atmosphere cleaves the α-β bond in 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol to yield 4-ethoxy-3-methoxybenzaldehyde. However, it is not degraded by the PR produced by reaction of Ce(4+)/tert-BuOOH. In addition, it is degraded by AR produced by reaction of Ti(3+)/tert-BuOOH. PR and AR are generated in the presence and absence of veratryl alcohol, respectively. Rapid-flow ESR analysis of the radical species demonstrates that AR but not PR reacts with the lignin model compound. Thus, AR and CR are primary agents for the degradation of non-phenolic lignin substructures.
Ligninolytic Activity at 0 °C of Fungi on Oak Leaves Under Snow Cover in a Mixed Forest in Japan.
Miyamoto, Toshizumi; Koda, Keiichi; Kawaguchi, Arata; Uraki, Yasumitsu
2017-08-01
Despite the importance of litter decomposition under snow cover in boreal forests and tundra, very little is known regarding the characteristics and functions of litter-decomposing fungi adapted to the cold climate. We investigated the decomposition of oak leaves in a heavy snowfall forest region of Japan. The rate of litter weight loss reached 26.5% during the snow cover period for 7 months and accounted for 64.6% of the annual loss (41.1%). Although no statistically significant lignin loss was detected, decolourization portions of oak leaf litter, which was attributable to the activities of ligninolytic fungi, were observed during snow cover period. This suggests that fungi involved in litter decomposition can produce extracellular enzymes to degrade lignin that remain active at 0 °C. Fungi were isolated from oak leaves collected from the forest floor under the snow layer. One hundred and sixty-six strains were isolated and classified into 33 operational taxonomic units (OTUs) based on culture characteristics and nuclear rDNA internal transcribed spacer (ITS) region sequences. To test the ability to degrade lignin, the production of extracellular phenoloxidases by isolates was quantified at 0 °C. Ten OTUs (9 Ascomycota and 1 Basidiomycota) of fungi exhibited mycelial growth and ligninolytic activity. These results suggested that some litter-decomposing fungi that had the potential to degrade lignin at 0 °C significantly contribute to litter decomposition under snow cover.
Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study
NASA Astrophysics Data System (ADS)
Hedges, John I.; Blanchette, Robert A.; Weliky, Karen; Devol, Allan H.
1988-11-01
Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. This fungus increased the absolute (weight loss-corrected) yield of the vanillic acid CuO reaction product above its initial level and exponentially decreased the absolute yields of all other lignin-derived phenols. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Although two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. Wood degraded by the three brown-rot fungi exhibited porous cell walls with greatly reduced integrity. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 (12 week samples), total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural environments can be explained by white-rot fungal degradation.
Huang, Dan-Lian; Zeng, Guang-Ming; Feng, Chong-Ling; Hu, Shuang; Lai, Cui; Zhao, Mei-Hua; Su, Feng-Feng; Tang, Lin; Liu, Hong-Liang
2010-06-01
Microbial populations and their relationship to bioconversion during lignocellulosic waste composting were studied by quinone profiling. Nine quinones were observed in the initial composting materials, and 15 quinones were found in compost after 50days of composting. The quinone species Q-9(H2), Q-10 and Q-10(H2) which are indicative of certain fungi appeared at the thermophilic stage but disappeared at the cooling stage. Q-10, indicative of certain fungi, and MK-7, characteristic of certain bacteria, were the predominant quinones during the thermophilic stage and were correlated with lignin degradation at the thermophilic stage. The highest lignin degradation ratio (26%) and good cellulose degradation were found at the cooling stage and were correlated with quinones Q-9, MK-7 and long-chain menaquinones attributed to mesophilic fungi, bacteria and actinomycetes, respectively. The present findings will improve the understandings of microbial dynamics and roles in composting, which could provide useful references for development of composting technology. Copyright 2010. Published by Elsevier Ltd.
Degradation of Lignin by Cyathus Species
Abbott, Thomas P.; Wicklow, Donald T.
1984-01-01
The ability of 12 Cyathus species to degrade 14C-labeled lignin in kenaf was studied. The sum of 14C released into solution plus 14C released into the gas phase over a 32-day fermentation period was used to determine average daily rates of lignin biodegradation. Cyathus pallidus. C. africanus, and C. berkeleyanus delignified kenaf most rapidly. C. canna showed the greatest preference for lignin degradation over other plant components, and its rate of lignin degradation was only slightly lower than the three most active species. The apparent ability of fungi to metabolize low-molecular-weight lignin breakdown products correlated well with their overall delignification rates. C. stercoreus metabolized degradation products of lignin from wheat straw better than those from kenaf lignin, based on the amount of low-molecular-weight products left in solution. PMID:16346497
Chapter 5: Organopollutant Degradation by Wood Decay Basidiomycetes
Yitzhak Hadar; Daniel Cullen
2013-01-01
Wood decay fungi are obligate aerobes, deriving nutrients from the biological âcombustionâ of wood, using molecular oxygen as terminal electron acceptor (Kirk and Farrell 1987; Blanchette 1991). Non-specific extracellular enzymes are generally viewed as key components in lignin depolymerization. The major enzymes implicated in lignin degradation are lignin peroxidase (...
The emerging role for bacteria in lignin degradation and bio-product formation.
Bugg, Timothy D H; Ahmad, Mark; Hardiman, Elizabeth M; Singh, Rahul
2011-06-01
The microbial degradation of lignin has been well studied in white-rot and brown-rot fungi, but is much less well studied in bacteria. Recent published work suggests that a range of soil bacteria, often aromatic-degrading bacteria, are able to break down lignin. The enzymology of bacterial lignin breakdown is currently not well understood, but extracellular peroxidase and laccase enzymes appear to be involved. There are also reports of aromatic-degrading bacteria isolated from termite guts, though there are conflicting reports on the ability of termite gut micro-organisms to break down lignin. If biocatalytic routes for lignin breakdown could be developed, then lignin represents a potentially rich source of renewable aromatic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fungal biodegradation and enzymatic modification of lignin
Dashtban, Mehdi; Schraft, Heidi; Syed, Tarannum A.; Qin, Wensheng
2010-01-01
Lignin, the most abundant aromatic biopolymer on Earth, is extremely recalcitrant to degradation. By linking to both hemicellulose and cellulose, it creates a barrier to any solutions or enzymes and prevents the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Some basidiomycetes white-rot fungi are able to degrade lignin efficiently using a combination of extracellular ligninolytic enzymes, organic acids, mediators and accessory enzymes. This review describes ligninolytic enzyme families produced by these fungi that are involved in wood decay processes, their molecular structures, biochemical properties and the mechanisms of action which render them attractive candidates in biotechnological applications. These enzymes include phenol oxidase (laccase) and heme peroxidases [lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP)]. Accessory enzymes such as H2O2-generating oxidases and degradation mechanisms of plant cell-wall components in a non-enzymatic manner by production of free hydroxyl radicals (·OH) are also discussed. PMID:21968746
Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Phil Kersten; Michael Mozuch; Masahiro Samejima; Dan Cullen
2014-01-01
The white-rot basidiomycetes efficiently degrade all wood cell wall polymers. Generally, these fungi simultaneously degrade cellulose and lignin, but certain organisms, such as Ceriporiopsis subvermispora, selectively remove lignin in advance of cellulose degradation. However, relatively little is known about themechanismof selective ligninolysis. To...
Mechanisms of humic substances degradation by fungi
NASA Astrophysics Data System (ADS)
Chen, Y.; Hadar, Y.; Grinhut, T.
2012-04-01
Humic substances (HS) are formed by secondary synthesis reactions (humification) during the decay process and transformation of biomolecules originating from plants and other dead organisms. In nature, HS are extremely resistant to biological degradation. Thus, these substances are major components in the C cycle and in the biosphere and therefore, the understanding of the process leading to their formation and transformation and degradation is vital. Fungi active in the decomposition process of HS include mainly ascomycetes and basidiomycetes that are common in the upper layer of forest and grassland soils. Many basidiomycetes belong to the white-rot fungi (WRF) and litter-decomposing fungi (LDF). These fungi are considered to be the most efficient lignin degraders due to their nonspecific oxidizing enzymes: manganese peroxidase (MnP), lignin peroxidase (LiP) and laccase. Although bacteria dominate compost and participate in the turnover of HS, their ability to degrade stable macromolecules such as lignin and HS is limited. The overall objectives of this research were to corroborate biodegradation processes of HS by WRF. The specific objectives were: (i) To isolate, identify and characterize HS degrading WRF from biosolids (BS) compost; (ii) To study the biodegradation process of three types of HS, which differ in their structure, by WRF isolated from BS compost; and (iii) To investigate the mechanisms of HA degradation by WRF using two main approaches: (a) Study the physical and chemical analyses of the organic compounds obtained from direct fungal degradation of HA as well as elucidation of the relevant enzymatic reactions; and (b) Study the enzymatic and biochemical mechanisms involved during HA degradation. In order to study the capability of fungi to degrade HS, seventy fungal strains were isolated from biosolids (BS) compost. Two of the most active fungal species were identified based on rDNA sequences and designated Trametes sp. M23 and Phanerochaetesp., Y6. These strains were used throughout this study. This research shows that WRF are able to degrade different HA and under different culture conditions. We found that significant degradation occurred in high C/N media - conditions which are commonly present in the natural habitats of WRF. We suggest that in addition to lignin, these fungi play a crucial role during HS degradation in the environment. This work raises additional questions that are worth investigating in the future: what is the role of these fungi in dissolved organic matter degradation and its relationship to HA degradation? What is the detailed mechanism of iron reduction in Trametes sp. M23 as well as in other WRF? What is the exact involvement of hydroxyl radicals during degradation and what are the mechanisms of H2O2 production in Trametes sp. M23?
Degradation of Lignin in Agricultural Residues by locally Isolated Fungus Neurospora discreta.
Pamidipati, Sirisha; Ahmed, Asma
2017-04-01
Locally isolated fungus, Neurospora discreta, was evaluated for its ability to degrade lignin in two agricultural residues: cocopeat and sugarcane bagasse with varying lignin concentrations and structures. Using Klason's lignin estimation, high-performance liquid chromatography, and UV-visible spectroscopy, we found that N. discreta was able to degrade up to twice as much lignin in sugarcane bagasse as the well-known white rot fungus Phanerochaete chrysosporium and produced nearly 1.5 times the amount of lignin degradation products in submerged culture. Based on this data, N. discreta is a promising alternative to white rot fungi for faster microbial pre-treatment of agricultural residues. This paper presents the lignin degrading capability of N. discreta for the first time and also discusses the difference in biodegradability of cocopeat and sugarcane bagasse as seen from the analysis carried out using Fourier transform infrared spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerem, Z.; Friesem, D.; Hadar, Y.
Lignocellulose degradation and activities related to lignin degradation were studied in the solid-state fermentation of cotton stalks by comparison two white rot fungi, Pleurotus ostreatus and Phanerochaete chrysosporium. P. chrysosporium grew vigorously, resulting in rapid, nonselective degradation of 55% of the organic components of the cotton stalks within 15 days. In contrast, P. ostreatus grew more slowly with obvious selectivity for lignin degradation and resulting in the degradation of only 20% of the organic matter after 30 days of incubation. The kinetics of {sup 14}C-lignin mineralization exhibited similar differences. In cultures of P. chrysosporium, mineralization ceased after 18 days, resultingmore » in the release of 12% of the total radioactivity as {sup 14}CO{sub 2}. In P. ostreatus, on the other hand, 17% of the total radioactivity was released in a steady rate throughout a period of 60 days of incubation. Laccase activity was only detected in water extracts of the P. ostreatus fermentation. No lignin peroxidase activity was detected in either the water extract or liquid cultures of this fungus. 2-Keto-4-thiomethyl butyric acid cleavage to ethylene correlated to lignin degradation in both fungi. A study of fungal activity under solid-state conditions, in contrast to those done under defined liquid culture, may help to better understand the mechanism involved in lignocellulose degradation.« less
A field study to determine the ability of selected lignin-degrading fungi to remediate soil contaminated with creosote was performed at a wood-treating facility in south central Mississippi in the autumn of 1991. The effects of solid-phase bioremediation with Phanerochaete sordid...
Mechanism and potential applications of bio-ligninolytic systems in a CELSS
NASA Technical Reports Server (NTRS)
Sarikaya, A.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)
1997-01-01
A large amount of inedible plant material, generated as a result of plant growth in a Controlled Ecological Life Support System (CELSS), should be pretreated and converted into forms that can be recycled on earth as well as in space. The main portion of the inedible biomass is lignocellulosic material. Enzymatic hydrolysis of this cellulose would provide sugars for many other uses by recycling carbon, hydrogen, oxygen, and nitrogen through formation of carbon dioxide, heat, and sugars, which are potential foodstuffs. To obtain monosaccharides from cellulose, the protective effect of lignin should be removed. White-rot fungi degrade lignin more extensively and rapidly than other microorganisms. Pleurotus ostreatus degrades lignin effectively, and produces edible and flavorful mushrooms that increase the quality and nutritional value of the diet. This mushroom is also capable of metabolizing hemicellulose, thereby providing a food use of this pentose containing polysaccharide. This study presents the current knowledge of physiology and biochemistry of primary and secondary metabolisms of basidiomycetes, and degradation mechanism of lignin. A better understanding of the ligninolytic activity of white-rot fungi will impact the CELSS Program by providing insights on how edible fungi might be used to recycle the inedible portions of the crops.
Kameshwar, Ayyappa kumar Sista; Qin, Wensheng
2016-01-01
Lignin is a complex polyphenyl aromatic compound which exists in tight associations with cellulose and hemicellulose to form plant primary and secondary cell wall. Lignocellulose is an abundant renewable biomaterial present on the earth. It has gained much attention in the scientific community in recent years because of its potential applications in bio-based industries. Microbial degradation of lignocellulose polymers was well studied in wood decaying fungi. Based on the plant materials they degrade these fungi were classified as white rot, brown rot and soft rot. However, some groups of bacteria belonging to the actinomycetes, α-proteobacteria and β-proteobacteria were also found to be efficient in degrading lignocellulosic biomass but not well understood unlike the fungi. In this review we focus on recent advancements deployed for finding and understanding the lignocellulose degradation by microorganisms. Conventional molecular methods like sequencing 16s rRNA and Inter Transcribed Spacer (ITS) regions were used for identification and classification of microbes. Recent progression in genomics mainly next generation sequencing technologies made the whole genome sequencing of microbes possible in a great ease. The whole genome sequence studies reveals high quality information about genes and canonical pathways involved in the lignin and other cell wall components degradation. PMID:26884714
Elena Fernandez-Fueyo; Francisco J. Ruiz-Dueñas; Patricia Ferreira; Dimitrios Floudas; David S. Hibbett; Paulo Canessa; Luis F. Larrondo; Tim Y. James; Daniela Seelenfreund; Sergio Lobos; Rubén Polanco; Mario Tello; Yoichi Honda; Takahito Watanabe; Takashi Watanabe; Jae San Ryu; Christian P. Kubicek; Monika Schmoll; Jill Gaskell; Kenneth E. Hammel; Franz J. St. John; Amber Vanden Wymelenberg; Grzegorz Sabat; Sandra Splinter BonDurant; Khajamohiddin Syed; Jagjit S. Yadav; Harshavardhan Dodapaneni; Venkataramanan Subramanian; José L. Lavin; José A. Oguiza; Gumer Perez; Antonio G. Pisabarro; Lucia Ramirez; Francisco Santoyo; Emma Master; Pedro M. Coutinho; Bernard Henrissat; Vincent Lombard; Jon Karl Magnuson; Ursula Kües; Chiaki Hori; Kiyohiko Igarashi; Masahiro Samejima; Benjamin W. Held; Kerrie W. Barry; Kurt M. LaButti; Alla Lapidus; Erika A. Lindquist; Susan M. Lucas; Robert Riley; Asaf A. Salamov; Dirk Hoffmeister; Daniel Schwenk; Yitzhak Hadar; Oded Yarden; Ronald P. de Vries; Ad Wiebenga; Jan Stenlid; Daniel Eastwood; Igor V. Grigoriev; Randy M. Berka; Robert A. Blanchette; Phil Kersten; Angel T. Martinez; Rafael Vicuna; Daniel Cullen
2012-01-01
Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Floudas, Dimitrios; Binder, Manfred; Riley, Robert
Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non?lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin ofmore » lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.« less
Steffen, K T; Hofrichter, M; Hatakka, A
2000-12-01
Within a screening program, 27 soil litter-decomposing basidiomycetes were tested for ligninolytic enzyme activities using agar-media containing 2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonate), a humic acid or Mn2+ ions as indicator substrates. Most active species were found within the family Strophariaceae (Agrocybe praecox, Stropharia coronilla, S. rugosoannulata) and used for mineralisation experiments with a 14C-ring-labelled synthetic lignin (14C-DHP). The fungi mineralised around 25% of the lignin to 14CO2 within 12 weeks of incubation in a straw environment; about 20% of the lignin was converted to water-soluble fragments. Mn-peroxidase was found to be the predominant ligninolytic enzyme of all three fungi in liquid culture and its production was strongly enhanced in the presence of Mn2+ ions. The results of this study demonstrate that certain ubiquitous litter-decomposing basidiomycetes possess ligninolytic activities similar to the wood-decaying white-rot fungi, the most efficient lignin degraders in nature.
Bacterial enzymes involved in lignin degradation.
de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W
2016-10-20
Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the (bio)processing of lignocellulosic feedstocks, more effective degradation methods of lignin are in demand. Nature has found ways to fully degrade lignin through the production of dedicated ligninolytic enzyme systems. While such enzymes have been well thoroughly studied for ligninolytic fungi, only in recent years biochemical studies on bacterial enzymes capable of lignin modification have intensified. This has revealed several types of enzymes available to bacteria that enable them to act on lignin. Two major classes of bacterial lignin-modifying enzymes are DyP-type peroxidases and laccases. Yet, recently also several other bacterial enzymes have been discovered that seem to play a role in lignin modifications. In the present review, we provide an overview of recent advances in the identification and use of bacterial enzymes acting on lignin or lignin-derived products. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedges, J.I.; Weliky, K.; Devol, A.H.
1988-11-01
Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Althoughmore » two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural environments can be explained by white-rot fungal degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlberg, M.D.; Bockrath, B.C.; Speers, V.A.
Oxidized coals, including a naturally oxidized lignite identified as leonardite, are solubilized and sometimes degraded further by a variety of fungi and bacteria. Evidence for biosolubilization of coal was first presented by Fakoussa, and Cohen and Gabriele. Subsequent studies concentrated on screening organisms, characterization of the product, and determination of the biochemical mechanisms. Mechanisms of biosolubilization are poorly known and may vary with the species used and the media. There is evidence for both enzymatic degradation and alkaline solubilization. The objective of this study was to discover critical factors in solubilization and biosolubilization mechanisms by testing a variety of growthmore » media, growth conditions, and fungi. Lignin-degrading species were emphasized because of similarities between the structures in lignin and in low-rank coals. The results indicate that during idiophase (secondary metabolism), the fungi produce alkaline materials that solubilize leonardite.« less
The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes.
Floudas, Dimitrios; Binder, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A; Henrissat, Bernard; Martínez, Angel T; Otillar, Robert; Spatafora, Joseph W; Yadav, Jagjit S; Aerts, Andrea; Benoit, Isabelle; Boyd, Alex; Carlson, Alexis; Copeland, Alex; Coutinho, Pedro M; de Vries, Ronald P; Ferreira, Patricia; Findley, Keisha; Foster, Brian; Gaskell, Jill; Glotzer, Dylan; Górecki, Paweł; Heitman, Joseph; Hesse, Cedar; Hori, Chiaki; Igarashi, Kiyohiko; Jurgens, Joel A; Kallen, Nathan; Kersten, Phil; Kohler, Annegret; Kües, Ursula; Kumar, T K Arun; Kuo, Alan; LaButti, Kurt; Larrondo, Luis F; Lindquist, Erika; Ling, Albee; Lombard, Vincent; Lucas, Susan; Lundell, Taina; Martin, Rachael; McLaughlin, David J; Morgenstern, Ingo; Morin, Emanuelle; Murat, Claude; Nagy, Laszlo G; Nolan, Matt; Ohm, Robin A; Patyshakuliyeva, Aleksandrina; Rokas, Antonis; Ruiz-Dueñas, Francisco J; Sabat, Grzegorz; Salamov, Asaf; Samejima, Masahiro; Schmutz, Jeremy; Slot, Jason C; St John, Franz; Stenlid, Jan; Sun, Hui; Sun, Sheng; Syed, Khajamohiddin; Tsang, Adrian; Wiebenga, Ad; Young, Darcy; Pisabarro, Antonio; Eastwood, Daniel C; Martin, Francis; Cullen, Dan; Grigoriev, Igor V; Hibbett, David S
2012-06-29
Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.
Lignin biodegradation by the ascomycete Chrysonilia sitophila.
Rodríguez, J; Ferraz, A; Nogueira, R F; Ferrer, I; Esposito, E; Durán, N
1997-01-01
The lignin biodegradation process has an important role in the carbon cycle of the biosphere. The study of this natural process has developed mainly with the use of basidiomycetes in laboratory investigations. This has been a logical approach since most of the microorganisms involved in lignocellulosic degradation belong to this class of fungi. However, other microorganisms such as ascomycetes and also some bacteria, are involved in the lignin decaying process. This work focuses on lignin biodegradation by a microorganism belonging to the ascomycete class, Chrysonilia sitophila. Lignin peroxidase production and characterization, mechanisms of lignin degradation (lignin model compounds and lignin in wood matrix) and biosynthesis of veratryl alcohol are outstanding. Applications of C. sitophila for effluent treatment, wood biodegradation and single-cell protein production are also discussed.
NASA Astrophysics Data System (ADS)
Goñi, Miguel A.; Nelson, Bryan; Blanchette, Robert A.; Hedges, John I.
1993-08-01
The elemental compositions and yields of CuO-derived phenol dimers and monomers from woods degraded by different fungi under laboratory and natural conditions were compared to those from undegraded controls. In laboratory experiments, white-rot fungi caused pronounced mass losses, lowered the organic carbon content of the remnant woods, and decreased the absolute carbon-normalized yields of the major classes of lignin phenol dimers and monomers. White-rot decay induced large losses of some CuO reaction products, such as (β,1-diketone and α,l-monoketone dimers and syringyl monomers, and increased the absolute yields of individual acidic reaction products, such as dehydrodivanillic acid, vanillic acid, and 2-syringylsyringic acid. In contrast, the brown-rot fungus, Fomitopsis pinicola, was less efficient in decaying lignin, inducing lower absolute lignin phenol losses and, in some cases, increasing the organic carbon content of remnant woods. Several lignin constituents, mainly carboxyvanillyl monomers and α,2-methyl and α,5-monoketone dimers, were produced during brown-rot degradation. Similar diagenetic trends were also apparent in the five woods collected from the field, suggesting the differences between white- and brown-rot decay are still apparent after more extensive degradation in natural environments. The lignin compositions from a selected set of previously analyzed sedimentary mixtures were generally consistent with the diagenetic trends observed in both laboratory and field samples. In some cases, however, geochemical parameters such as elevated dimer/monomer and carboxyvanillyl/ vanillyl monomer ratios clearly distinguished certain sedimentary lignins. In these samples, other processes, such as extensive fungal decay, bacterial degradation, or a nonwoody vascular plant origin, could be important factors affecting lignin compositions.
The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes
Dimitrios Floudas; Manfred Binder; Robert Riely; Kerrie Barry; Robert A. Blanchette; Bernard Henrissat; Angel T. Martínez; Robert Otillar; Joseph W. Spatafora; Jagjit S. Yadav; Andrea Aerts; Isabelle Benoit; Alex Boyd; Alexis Carlson; Alex Copeland; Pedro M. Coutinho; Ronald P. deVries; Patricia Ferreira; Keisha Findley; Brian Foster; Jill Gaskell; Dylan Glotzer; Pawe³ Górecki; Joseph Heitman; Cedar Hesse; Chiaki Hori; Kiyohiko Igarashi; Joel A. Jurgens; Nathan Kallen; Phil Kersten; Annegret Kohler; Ursula Kües; T. K. ArunKumar; Alan Kuo; Kurt LaButti; Luis F. Larrondo; Erika Lindquist; Albee Ling; Vincent Lombard; Susan Lucas; Taina Lundell; Rachael Martin; David J. McLaughlin; Ingo Morgenstern; Emanuelle Morin; Claude Murat; Laszlo G. Nagy; Matt Nolan; Robin A. Ohm; Aleksandrina Patyshakuliyeva; Antonis Rokas; Francisco J. Ruiz-Dueñas; Grzegorz Sabat; Asaf Salamov; Masahiro Samejima; Jeremy Schmutz; Jason C. Slot; Franz St. John; Jan Stenlid; Hui Sun; Sheng Sun; Khajamohiddin Syed; Adrian Tsang; Ad Wiebenga; Darcy Young; Antonio Pisabarro; Daniel C. Eastwood; Francis Martin; Dan Cullen; Igor V. Grigoriev; David S. Hibbett
2012-01-01
Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains nonâlignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study)...
Bio-softening of mature coconut husk for facile coir recovery.
Suganya, D S; Pradeep, S; Jayapriya, J; Subramanian, S
2007-06-01
Bio-softening of the mature coconut husk using Basidiomyceteous fungi was attempted to recover the soft and whiter fibers. The process was faster and more efficient in degrading lignin and toxic phenolics. Phanerochaete chrysosporium, Pleurotus eryngii and Ceriporiopsis subvermispora were found to degrade lignin efficiently without any appreciable loss of cellulose, yielding good quality fiber ideal for dyeing.
Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78
Diego Martinez; Luis Larrondo; Nik Putnam; Maarten D. Sollewijn; Maarten D. Sollewijn Gelpke; Katherine Huang; Jarrod Chapman; Kevin G. Helfenbein; Preethi Ramaiya; J. Chris Detter; Frank Larimer; Pedro M. Coutinho; Bernard Henrissat; Randy Berka; Dan Cullen; Daniel Rokhsar
2004-01-01
White rot fungi efficiently degrade lignin, a complex aromatic polymer in wood that is among the most abundant natural materials on earth. These fungi use extracellular oxidative enzymes that are also able to transform related aromatic compounds found in explosive contaminants, pesticides and toxic waste. We have sequenced the 30-million base-pair genome of...
Bioligninolysis: recent updates for biotechnological solution.
Paliwal, Rashmi; Rawat, A P; Rawat, Monica; Rai, J P N
2012-08-01
Bioligninolysis involves living organisms and/or their products in degradation of lignin, which is highly resistant, plant-originated polymer having three-dimensional network of dimethoxylated (syringyl), monomethoxylated (guaiacyl), and non-methoxylated (p-hydroxyphenyl) phenylpropanoid and acetylated units. As a major repository of aromatic chemical structures on earth, lignin bears paramount significance for its removal owing to potential application of bioligninolytic systems in industrial production. Early reports illustrating the discovery and cloning of ligninolytic biocatalysts in fungi was truly a landmark in the field of enzymatic delignification. However, the enzymology for bacterial delignification is hitherto poorly understood. Moreover, the lignin-degrading bacterial genes are still unknown and need further exploration. This review deals with the current knowledge about ligninolytic enzyme families produced by fungi and bacteria, their mechanisms of action, and genetic regulation and reservations, which render them attractive candidates in biotechnological applications.
Hermosilla, Edward; Schalchli, Heidi; Mutis, Ana; Diez, María Cristina
2017-09-01
Lignin is one of the main barriers to obtaining added-value products from cellulosic fraction of lignocellulosic biomass due to its random aromatic structure and strong association with cellulose and hemicellulose. Inorganic and organic compounds have been used as enzyme inducers to increase the ligninolytic potential of white-rot fungi, without considering their effect on the selectivity of degradation. In this study, the selective lignin degradation in wheat straw by Ganoderma lobatum was optimized using a central composite design to evaluate the combined effect of Fe 2+ and Mn 2+ as inducers of ligninolytic enzymes and NO 3 - as an additional nitrogen source. Selective lignin degradation was promoted to maximize lignin degradation and minimize weight losses. The optimal conditions were 0.18 M NO 3 - , 0.73 mM Fe 2+ , and 1 mM Mn 2+ , which resulted in 50.0% lignin degradation and 18.5% weight loss after 40 days of fungal treatment. A decrease in absorbance at 1505 and 900 cm -1 in fungal-treated samples was observed in the FTIR spectra, indicating lignin and cellulose degradation in fungal-treated wheat straw, respectively. The main ligninolytic enzymes detected during lignin degradation were manganese-dependent and manganese-independent peroxidases. Additionally, confocal laser scanning microscopy revealed that lignin degradation in wheat straw by G. lobatum resulted in higher cellulose accessibility. We concluded that the addition of enzyme inducers and NO 3 - promotes selective lignin degradation in wheat straw by G. lobatum.
New insights into the origin of perylene in geological samples
NASA Astrophysics Data System (ADS)
Grice, Kliti; Lu, Hong; Atahan, Pia; Asif, Muhammad; Hallmann, Christian; Greenwood, Paul; Maslen, Ercin; Tulipani, Svenja; Williford, Kenneth; Dodson, John
2009-11-01
The origin of the polycyclic aromatic hydrocarbon (PAH) perylene in sediments and petroleum has been a matter of continued debate. Reported to occur in Phanerozoic organic matter (OM), fossil crinoids and tropical termite mounds, its mechanism of formation remains unclear. While a combustion source can be excluded, structural similarities to perylene quinone-like components present in e.g. fungi, plants, crinoids and insects, potentially suggest a product-precursor relationship. Here, we report perylene concentrations, 13C/ 12C, and D/H ratios from a Holocene sediment profile from the Qingpu trench, Yangtze Delta region, China. Perylene concentrations differ from those of pyrogenic PAHs, and rise to prominence in a stratigraphic interval that was dominated by woody vegetation as determined by palynology including fungal spores. In this zone, perylene concentrations exhibit an inverse relationship to the lignin marker guaiacol, D/H ratios between -284‰ and -317‰, similar to the methoxy groups in lignin, as well as co-variation with spores from wood-degrading fungi. 13C/ 12C of perylene differs from that of land plant wax alkanes and falls in the fractionation range expected for saprophytic fungi that utilise lignin, which is isotopically lighter than cellulose and whole wood. During progressive lignin degradation, the relative carbon isotopic ratio of the perylene decreases. We therefore hypothesise a relationship of perylene to the activity of wood-degrading fungi. To support our hypothesis, we analysed a wide range of Phanerozoic sediments and oils, and found perylene to generally be present in subordinate amounts before the evolutionary rise of vascular plants, and to be generally absent from marine-sourced oils, few exceptions being attributed perhaps to a contribution of marine and/or terrestrial-derived fungi, anoxia (especially under marine conditions) and/or contamination of core material by fungi. A series of low-molecular-weight aromatic quinones bearing the perylene-backbone were detected in Devonian and Cretaceous sediments, potentially representing precursor components to perylene.
Delayed fungal evolution did not cause the Paleozoic peak in coal production.
Nelsen, Matthew P; DiMichele, William A; Peters, Shanan E; Boyce, C Kevin
2016-03-01
Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea.
Delayed fungal evolution did not cause the Paleozoic peak in coal production
Nelsen, Matthew P.; DiMichele, William A.; Peters, Shanan E.; Boyce, C. Kevin
2016-01-01
Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea. PMID:26787881
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Fueyo, Elena; Ruiz-Duenas, Francisco J.; Ferreira, Patrica
Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We alsomore » observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.« less
Fernandez-Fueyo, Elena; Ruiz-Dueñas, Francisco J.; Ferreira, Patricia; Floudas, Dimitrios; Hibbett, David S.; Canessa, Paulo; Larrondo, Luis F.; James, Tim Y.; Seelenfreund, Daniela; Lobos, Sergio; Polanco, Rubén; Tello, Mario; Honda, Yoichi; Watanabe, Takahito; Watanabe, Takashi; Ryu, Jae San; Kubicek, Christian P.; Schmoll, Monika; Gaskell, Jill; Hammel, Kenneth E.; St. John, Franz J.; Vanden Wymelenberg, Amber; Sabat, Grzegorz; Splinter BonDurant, Sandra; Syed, Khajamohiddin; Yadav, Jagjit S.; Doddapaneni, Harshavardhan; Subramanian, Venkataramanan; Lavín, José L.; Oguiza, José A.; Perez, Gumer; Pisabarro, Antonio G.; Ramirez, Lucia; Santoyo, Francisco; Master, Emma; Coutinho, Pedro M.; Henrissat, Bernard; Lombard, Vincent; Magnuson, Jon Karl; Kües, Ursula; Hori, Chiaki; Igarashi, Kiyohiko; Samejima, Masahiro; Held, Benjamin W.; Barry, Kerrie W.; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Riley, Robert; Salamov, Asaf A.; Hoffmeister, Dirk; Schwenk, Daniel; Hadar, Yitzhak; Yarden, Oded; de Vries, Ronald P.; Wiebenga, Ad; Stenlid, Jan; Eastwood, Daniel; Grigoriev, Igor V.; Berka, Randy M.; Blanchette, Robert A.; Kersten, Phil; Martinez, Angel T.; Vicuna, Rafael; Cullen, Dan
2012-01-01
Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2+. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium. PMID:22434909
The solubilization of low-ranked coals by microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strandberg, G.W.
1987-07-09
Late in 1984, our Laboratory was funded by the Pittsburgh Energy Technology Center, US Department of Energy, to investigate the potential utility of microorganisms for the solubilization of low-ranked coals. Our approach has been multifacited, including studies of the types of microorganisms involved, appropriate conditions for their growth and coal-solubilization, the suceptibility of different coals to microbial action, the chemical and physical nature of the product, and potential bioprocess designs. A substantial number of fungal species have been shown to be able to solubilize coal. Cohen and Gabrielle reported that two lignin-degrading fungi, Polyporous (Trametes) versicolor and Poria monticola couldmore » solubilize lignite. Ward has isolated several diverse fungi from nature which are capable of degrading different lignites, and our Laboratory has isolated three coal-solubilizing fungi which were found growing on a sample of Texas lignite. The organisms we studied are shown in Table 1. The perceived significance of lignin degradation led us to examine two lignin-degrading strains of the genus Streptomyces. As discussed later, these bacteria were capable of solubilizing coal; but, in the case of at least one, the mechanism was non-enzymatic. The coal-solubilizing ability of other strains of Streptomyces was recently reported. Fakoussa and Trueper found evidence that a strain of Pseudomonas was capble of solubizing coal. It would thus appear that a diverse array of microorganisms possess the ability to solubilize coal. 16 refs.« less
Role of fungal peroxidases in biological ligninolysis
Kenneth E. Hammel; Dan Cullen
2008-01-01
The degradation of lignin by filamentous fungi is a major route for the recycling of photosynthetically fixed carbon, and the oxidative mechanisms employed have potential biotechnological applications. The lignin peroxidases (LiPs), manganese peroxidases (MnPs), and closely related enzymes of white rot basidiomycetes are likely contributors to fungal ligninolysis. Many...
[Recent advances in Sphingobium sp. SYK-6 for lignin aromatic compounds degradation--a review].
Zhang, Xiaoyan; Peng, Xue; Masai, Eiji
2014-08-04
Lignin is complex heteropolymer produced from hydroxycinnamyl alcohols through radical coupling. In nature, white-rot fungi are assumed initially to attack native lignin and release lignin-derived-low-molecular-weight compounds, and soil bacteria play an importent role for completely degradation of these compounds. Study on the soil bacteria degrading lignin-derived-low-molecular-weight compounds will give way to understand how aromatic compounds recycle in nature, and to utilize lignin compounds as the renewable materials for valuable materials production. Sphingobium sp. SYK-6 that grows on lignin biphenyl (5,5'-dehydrodivanillate) had been isolated from pulp effluent in 1987. We have researched this bacterium more than 25 years, a serious aromatic metabolic pathway has been determined, and related genes have been isolated. As the complete genome sequence of SYK-6 has been opened to the public in 2012, the entire aromatic compounds degradation mechanisms become more clear. Main contents in our review cover: (1) genome information; (2) aryl metabolism; (3) biphenyl metabolism; (4) ferulate metabolism; (5) tetrahydrofolate-dependent O-demethylation system for lignin compound degrdation; (6) protocatechuate 4,5-cleavage pathway; (7) multiple pathways for 3-O-methylgallate metabolism.
Characterization of lignocellulolytic enzymes from white-rot fungi.
Manavalan, Tamilvendan; Manavalan, Arulmani; Heese, Klaus
2015-04-01
The development of alternative energy sources by applying lignocellulose-based biofuel technology is critically important because of the depletion of fossil fuel resources, rising fossil fuel prices, security issues regarding the fossil fuel supply, and environmental issues. White-rot fungi have received much attention in recent years for their valuable enzyme systems that effectively degrade lignocellulosic biomasses. These fungi have powerful extracellular oxidative and hydrolytic enzymes that degrade lignin and cellulose biopolymers, respectively. Lignocellulosic biomasses from either agricultural or forestry wastes are abundant, low-cost feedstock alternatives in nature but require hydrolysis into simple sugars for biofuel production. This review provides a complete overview of the different lignocellulose biomasses and their chemical compositions. In addition, a complete list of the white-rot fungi-derived lignocellulolytic enzymes that have been identified and their molecular structures, mechanism of action in lignocellulose hydrolysis, and biochemical properties is summarized in detail. These enzymes include ligninolytic enzymes (laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase) and cellulolytic enzymes (endo-glucanase, cellobiohydrolase, and beta-glucosidase). The use of these fungi for low-cost lignocellulolytic enzyme production might be attractive for biofuel production.
Exploring bacterial lignin degradation.
Brown, Margaret E; Chang, Michelle C Y
2014-04-01
Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Arfi, Yonathan; Chevret, Didier; Henrissat, Bernard; Berrin, Jean-Guy; Levasseur, Anthony; Record, Eric
2013-01-01
Fungi are important for biomass degradation processes in mangrove forests. Given the presence of sea water in these ecosystems, mangrove fungi are adapted to high salinity. Here we isolate Pestalotiopsis sp. NCi6, a halotolerant and lignocellulolytic mangrove fungus of the order Xylariales. We study its lignocellulolytic enzymes and analyse the effects of salinity on its secretomes. De novo transcriptome sequencing and assembly indicate that this fungus possesses of over 400 putative lignocellulolytic enzymes, including a large fraction involved in lignin degradation. Proteomic analyses of the secretomes suggest that the presence of salt modifies lignocellulolytic enzyme composition, with an increase in the secretion of xylanases and cellulases and a decrease in the production of oxidases. As a result, cellulose and hemicellulose hydrolysis is enhanced but lignin breakdown is reduced. This study highlights the adaptation to salt of mangrove fungi and their potential for biotechnological applications.
Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezalel, L.; Hadar, Y.; Cerniglia, C.E.
White rot fungi, including Pleurotus ostreatus, have the ability to efficiently degrade lignin, a naturally occurring aromatic polymer. Previous work has found these organisms were able to degrade PAHs and in some cases to mineralize them; most of the work was done with Phanerochaete chrysosporium. P. ostreatus differs from P. chrysosporium in its lignin degradation mechanism. In this study, enzymatic activities were monitored during P. ostreatus growth in the presence of PAHs and the fungus`s ability to mineralize catechol and various PAHs was demonstrated. 29 refs., 3 figs., 1 tab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milstein, O.A.; Vared, Y.; Sharma, A.
1983-08-01
Aspergillus japonicus is an efficient degrader of phenolics and carbohydrates present in a mixture of soluble lignocarbohydrate complexes extracted from wheat straw. Trichoderma species attacked part of the carbohydrate but hardly affected the aromatic portion of this solution. Polyporus versicolor had a complex effect; polymerization of low-molecular-size phenolics accompanied the degradation of aromatic and carbohydrate polymers. The addition of xylose to the medium facilitated depolymerization of lignin by the fungi tested and prevented the polymerization of low-molecular-size fractions of lignocarbohydrate complexes by P. versicolor. P. versicolor, in contrast to A. japonicus and Trichoderma species, also excreted into the medium considerablemore » amounts of laccase, but only in the absence of endogenous or exogenous carbohydrates. Apparently, laccase is involved in polymerization rather than degradation of lignin in this organism. A number of extracellular glycanases were also secreted by these fungi. 19 references« less
Peroxyl radicals are potential agents of lignin biodegradation
Alexander N. Kapich; Kenneth A. Jensen; Kenneth E. Hammel
1999-01-01
Past work has shown that the extracellular manganese- dependent peroxidases (MnPs) of ligninolytic fungi degrade the principal non-phenolic structures of lignin when they peroxidize unsaturated fatty acids. This reaction is likely to be relevant to ligninolysis in sound wood, where enzymes cannot penetrate, only if it employs a small, diffusible lipid radical as the...
Evidence for cleavage of lignin by a brown rot basidiomycete
Daniel J. Yelle; John Ralph; Fachuang Lu; Kenneth E. Hammel
2008-01-01
Biodegradation by brown-rot fungi is quantitatively one of the most important fates of lignocellulose in nature. It has long been thought that these basidiomycetes do not degrade lignin significantly, and that their activities on this abundant aromatic biopolymer are limited to minor oxidative modifications. Here we have applied a new technique for the complete...
Mora-Gómez, Juanita; Elosegi, Arturo; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M
2016-08-01
Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Biodegradation of alkaline lignin by Bacillus ligniniphilus L1
Zhu, Daochen; Zhang, Peipei; Xie, Changxiao; ...
2017-02-21
Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability tomore » survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. In conclusion, GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.« less
Biodegradation of alkaline lignin by Bacillus ligniniphilus L1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Daochen; Zhang, Peipei; Xie, Changxiao
Background: Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent abilitymore » to survive in extreme environments. Results: To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC-MS analyze was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis were carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least 2-fold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis and assembly, etc. Conclusions: GC-MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.« less
Biodegradation of alkaline lignin by Bacillus ligniniphilus L1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Daochen; Zhang, Peipei; Xie, Changxiao
Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability tomore » survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. In conclusion, GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.« less
Moran-Salazar, Rene G; Marino-Marmolejo, Erika N; Rodriguez-Campos, Jacobo; Davila-Vazquez, Gustavo; Contreras-Ramos, Silvia M
2016-01-01
Agave tequilana Weber is used in tequila and fructans production, with agave bagasse generated as a solid waste. The main use of bagasse is to produce compost in tequila factories with a long traditional composting that lasts 6-8 months. The aim of this study was to evaluate the degradation of agave bagasse by combining a pretreatment with fungi and vermicomposting. Experiments were carried out with fractionated or whole bagasse, sterilized or not, subjecting it to a pretreatment with Bjerkandera adusta alone or combined with native fungi, or only with native bagasse fungi (non-sterilized), for 45 days. This was followed by a vermicomposting with Eisenia fetida and sewage sludge, for another 45 days. Physicochemical parameters, lignocellulose degradation, stability and maturity changes were measured. The results indicated that up to 90% of the residual sugars in bagasse were eliminated after 30 days in all treatments. The highest degradation rate in pretreatment was observed in non-sterilized, fractionated bagasse with native fungi plus B. adusta (BNFns) (71% hemicellulose, 43% cellulose and 71% lignin) at 45 days. The highest total degradation rates after vermicomposting were in fractionated bagasse pre-treated with native fungi (94% hemicellulose, 86% cellulose and 91% lignin). However, the treatment BNFns showed better maturity and stability parameters compared to that reported for traditional composts. Thus, it seems that a process involving vermicomposting and pretreatment with B. adusta could reduce the degradation time of bagasse to 3 months, compared to the traditional composting process, which requires from 6 to 8 months.
Zhao, Meihua; Zhang, Chaosheng; Zeng, Guangming; Huang, Danlian; Xu, Piao; Cheng, Min
2015-11-01
This study examines the growth, metabolism of Phanerochaete chrysosporium (P. chrysosporium) and route of lignin degradation in response to cadmium (Cd) stress in solid-state fermentation of rice straw. Less living fungi biomass was found under Cd exposure, suggesting that Cd had strong toxicity to P. chrysosporium. The maximum values of lignin peroxidase and manganese peroxidase were 0.34 and 5.21 U g(-1) at the Cd concentration of 32 mg kg(-1), respectively, lower than that in control, which indicated Cd stress would inhibit ligninolytic enzymes. The production of reactive oxygen species (ROS) including hydroxyl radicals (OH), superoxide anion radical (O2(-)) and hydrogen peroxide (H2O2) increased after Cd exposure. Higher concentration of oxalate was detected at high Cd concentrations. Cd stress also had influence on the rates of lignocelluloses degradation and the route of lignin degradation. Partial Cd could be removed by P. chrysosporium. Copyright © 2015 Elsevier Ltd. All rights reserved.
Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil
DeAngelis, Kristen M.; Allgaier, Martin; Chavarria, Yaucin; Fortney, Julian L.; Hugenholtz, Phillip; Simmons, Blake; Sublette, Kerry; Silver, Whendee L.; Hazen, Terry C.
2011-01-01
Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition. PMID:21559391
Pham, Le Thanh Mai; Kim, Su Jin; Kim, Yong Hwan
2016-01-01
Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic compound and lignin peroxidase was hypothesized when active enzyme could not be recovered after the reaction with degradation product (guaiacol) of lignin phenolic dimer. In the study of lignin peroxidase isozyme H8 from white-rot fungi Phanerochaete chrysosporium (LiPH8), W251 site was revealed to make the covalent coupling with one moiety of monolignolic radical (guaiacol radical) by LC-MS/MS analysis. Hypothetical electron-relay containing W251 residue was newly suggested based on the observation of repressed radical coupling and remarkably lower electron transfer rate for W215A mutant. Furthermore, the retardation of the suicidal radical coupling between the W251 residue and the monolignolic radical was attempted by supplementing the acidic microenvironment around the W251 residue to engineer radical-robust LiPH8. Among many mutants, mutant A242D showed exceptional catalytic performances by yielding 21.1- and 4.9-fold higher increases of k cat and k cat /K M values, respectively, in the oxidation of non-phenolic model lignin dimer. A mechanism-based suicide inhibition of LiPH8 by phenolic compounds was firstly revealed and investigated in this work. Radical-robust LiPH8 was also successfully engineered by manipulating the transient radical state of radical-susceptible electron-relay. Radical-robust LiPH8 will play an essential role in degradation of lignin, which will be consequently linked with improved production of sugars from lignocellulose biomass.
Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, Kristen M.; Allgaier, Martin; Chavarria, Yaucin
2011-04-29
Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in themore » soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.« less
Characterization of trapped lignin-degrading microbes in tropical forest soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, K.M.; Allgaier, M.; Chavarria, Y.
2011-03-01
Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in themore » soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.« less
Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, Kristen; Allgaier, Martin; Chavarria, Yaucin
2011-07-14
Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in themore » soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.« less
MacDonald, Jacqueline; Goacher, Robyn E; Abou-Zaid, Mamdouh; Master, Emma R
2016-09-01
White-rot fungi are distinguished by their ability to efficiently degrade lignin via lignin-modifying type II peroxidases, including manganese peroxidase (MnP) and lignin peroxidase (LiP). In the present study, time-of flight secondary ion mass spectrometry (ToF-SIMS) was used to evaluate lignin modification in three coniferous and three deciduous wood preparations following treatment with commercial preparations of LiP and MnP from two different white-rot fungi. Percent modification of lignin was calculated as a loss of intact methoxylated lignin over nonfunctionalized aromatic rings, which is consistent with oxidative cleavage of methoxy moieties within the lignin structure. Exposure to MnP resulted in greater modification of lignin in coniferous compared to deciduous wood (28 vs. 18 % modification of lignin); and greater modification of G-lignin compared to S-lignin within the deciduous wood samples (21 vs. 12 %). In contrast, exposure to LiP resulted in similar percent modification of lignin in all wood samples (21 vs 22 %), and of G- and S-lignin within the deciduous wood (22 vs. 23 %). These findings suggest that the selected MnP and LiP may particularly benefit delignification of coniferous and deciduous wood, respectively. Moreover, the current analysis further demonstrates the utility of ToF-SIMS for characterizing enzymatic modification of lignin in wood fibre along with potential advantages over UV and HPCL-MS detection of solubilized delignification products.
Meehnian, Harmanpreet; Jana, Asim K
2017-04-01
Lignocellulolytic enzyme activities of selective fungi Daedalea flavida MTCC 145 (DF-2), Phlebia radiata MTCC 2791 (PR), and non-selective fungus Flavodon flavus MTCC 168 (FF) were studied for pretreatment of cotton stalks. Simultaneous productions of high LiP and laccase activities by DF-2 during early phase of growth were effective for lignin degradation 27.83 ± 1.25 % (w/w of lignin) in 20-day pretreatment. Production of high MnP activity without laccase in the early growth phase of PR was ineffective and delayed lignin degradation 24.93 ± 1.53 % in 25 days due to laccase production at later phase. With no LiP activity, low activities of MnP and laccase by FF yielded poor lignin degradation 15.09 ± 0.6 % in 20 days. Xylanase was predominant cellulolytic enzyme produced by DF-2, resulting hemicellulose as main carbon and energy source with 83 % of cellulose recovery after 40 days of pretreatment. The glucose yield improved more than two fold from 20-day DF-2 pretreated cotton stalks after enzymatic saccharification.
Su, Yulong; Xian, He; Shi, Sujuan; Zhang, Chengsheng; Manik, S M Nuruzzaman; Mao, Jingjing; Zhang, Ge; Liao, Weihong; Wang, Qian; Liu, Haobao
2016-11-21
Tobacco stalk is one kind of abundant crop residues in China. The high lignification of tobacco stalk increases its reusing cost and the existing of nicotine will cause serious pollution. The biodegradation of lignocellulosic biomass has been demonstrated to be an environmental and economical approach for the utilization of plant stalk. Meanwhile, many nicotine-degrading microorganisms were found in nature. However, microorganisms which could degraded both nicotine and lignin haven't been reported. Therefore, it's imperative to find some suitable microorganisms to break down lignin and simultaneously remove nicotine in tobacco stalk. The nicotine in tobacco stalk could be degraded effectively by Trametes versicolor, Trametes hirsute and Phanerochaete chrysosporium. The nicotine content in tobacco stalk was lowered to below 500 mg/kg (a safe concentration to environment) after 10 days of fermentation with Phanerochaete chrysosporium and Trametes versicolor, and 15 days with Trametes hirsute. The degradation rate of lignin in the fermented tobacco stalk was 37.70, 51.56 and 53.75% with Trametes versicolor, Trametes hirsute and Phanerochaete chrysosporium, respectively. Meanwhile, 24.28% hemicellulose was degraded by Phanerochaete chrysosporium and 28.19% cellulose was removed by Trametes hirsute. Through the enzyme activity analysis, the main and highest ligninolytic enzymes produced by Phanerochaete chrysosporium, Trametes hirsute and Trametes versicolor were lignin peroxidase (88.62 U · L -1 ), manganese peroxidase (100.95 U · L -1 ) and laccase (745.65 U · L -1 ). Meanwhile, relatively high and stable cellulase activity was also detected during the fermentation with Phanerochaete chrysosporium, and the highest endoglucanase, exoglucanase and filter paper enzyme activities were 0.38 U · mL -1 , 0.45 U · mL -1 and 0.35U · mL -1 , respectively. Moreover, the products in the fermentation of tobacco stalk with P. chrysosporium were identified with GC-MS, besides the chemicals produced in the degradation of lignin and nicotine, some small molecular valuable chemicals and fatty acid were also detected. Our study developed a new method for the degradation and detoxification of tobacco stalk by fermentation with white rot fungi Phanerochaete chrysosporium and Trametes hirsute. The different oxidative enzymes and chemical products detected during the degradation indicated a possible pathway for the utilization of tobacco stalk.
Lignin degradation by selected fungal species.
Knežević, Aleksandar; Milovanović, Ivan; Stajić, Mirjana; Lončar, Nikola; Brčeski, Ilija; Vukojević, Jelena; Cilerdžić, Jasmina
2013-06-01
As biological decomposition of plant biomass represents a popular alternative environmental-friendly and economically justified process, screening of ligninolytic enzyme systems of various fungal species is a topical study area. The goal of the study was to obtain clear insight into the dynamics of laccase, Mn-dependent peroxidase, and Mn-independent peroxidase activity and levels of wheat straw lignin degradation in seven wood-rotting fungi. The best laccase producers were Pleurotus ostreatus and Pleurotus eryngii. Lenzites betulinus and Fomitopsis pinicola were the best Mn-dependent peroxidase producers, and P. ostreatus the weakest one. The peak of Mn-independent peroxidase was noted in Dichomytus squalens, and the minimum value in P. ostreatus. The profiles of the three enzymes, obtained by isoelectric focusing, were variable depending on the species and cultivation period. D. squalens was the best lignin degrader (34.1% of total lignin amount), and P. ostreatus and P. eryngii the weakest ones (7.1% and 14.5%, respectively). Copyright © 2013 Elsevier Ltd. All rights reserved.
Screening of a microbial consortium for selective degradation of lignin from tree trimmings.
Fang, Xiuxiu; Li, Qiumin; Lin, Yunqin; Lin, Xinlei; Dai, Yiqi; Guo, Zexiang; Pan, Dezhao
2018-04-01
To acquire microbial consortia with effectively precedent degradation of lignin, samples obtained from rotten trunks, rotten stumps and soil near it were screened and isolated after generations of subculture. The dynamic change illustrated that their community structures were affected by pH and tended to be stable after 6 days' cultivation. The desired one, named DM-1, was gained through successive cultivation for over 5 generations, whose high selectivity in lignin degradation was observed within 16 days' cultivation (SV = 2.78). Meanwhile, a remarkable reduction in the fiber crystallinity of tree trimmings (10.35%) resulted from the bio-degradation of DM-1, displayed a greater exposure of cellulose by selective removal of lignin. The diversity analysis of DM-1 was investigated by PCR amplification and 16S rDNA sequencing, indicated that mesorhizobium, cellulosimicrobium, pandoraea, achromobacter and stenotrophomones were the predominant genera. Furthermore, fungi (3 strains), bacteria (4 strains) and actinomycetes (5 strains) constituted 12 strains in total were gained by plate isolation from DM-1. Copyright © 2018 Elsevier Ltd. All rights reserved.
Andrade, Ederson; Pinheiro, Victor; Gonçalves, Alexandre; Cone, John W; Marques, Guilhermina; Silva, Valéria; Ferreira, Luis; Rodrigues, Miguel
2017-10-01
Lignin inhibitory effects within the cell wall structure constitute a serious drawback in maximizing the utilization of fibrous feedstuffs in animal feeding. Therefore treatments that promote efficient delignification of these materials must be applied. This study evaluated the potential of white-rot fungi to upgrade the nutritive value of cowpea stover for rabbit feeding. There was an increase in the crude protein content of all substrates as a result of fungi treatments, reaching a net gain of 13% for Pleurotus citrinopileatus incubation. Overall, net losses of dry and organic matter occurred during fungi treatments. Although the fiber content remained identical, higher consumption of cell wall contents was measured for P. citrinopileatus incubation (between 40 and 45%). The incubation period did not influence lignin degradation for any of the fungi treatments. Differences within the fungal degradation mechanisms indicate that P. citrinopileatus treatment was most effective, enhancing in vitro organic matter digestibility by around 30% compared with the control. Treatment of cowpea stover with P. citrinopileatus led to an efficient delignification process which resulted in higher in vitro organic matter digestibility, showing its potential in the nutritional valorization of this feedstuff. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuchi, T.
A textbook containing 22 chapters by various authors covers the structure of wood, the localization of polysaccharides and lignins in wood cell walls, metabolism and synthetic function of cambial tissue, cell organelles and their function in the biosynthesis of cell wall components, biosynthesis of plant cell wall polysaccharides, lignin, cutin, suberin and associated waxes, phenolic acids and monolignols, quinones, flavonoids, tannins, stilbenes and terpenoid wood extractives, the occurrence of extractives, the metabolism of phenolic acids, wood degradation by micro-organisms and fungi, and biodegradation of cellulose, hemicelluloses, lignin, and aromatic extractives of wood. An index is included.
Degradation of wheat straw cell wall by white rot fungi Phanerochaete chrysosporium
NASA Astrophysics Data System (ADS)
Zeng, Jijiao
The main aim of this dissertation research was to understand the natural microbial degradation process of lignocellulosic materials in order to develop a new, green and more effective pretreatment technology for bio-fuel production. The biodegradation of wheat straw by white rot fungi Phanerochaete chrysosporium was investigated. The addition of nutrients significantly improved the performance of P.chrysosporium on wheat straw degradation. The proteomic analysis indicated that this fungus produced various pepetides related to cellulose and lignin degradation while grown on the biomass. The structural analysis of lignin further showed that P.chrysosporium preferentially degraded hydroxycinnamtes in order to access cellulose. In details, the effects of carbon resource and metabolic pathway regulating compounds on manganeses peroxidase (MnP) were studied. The results indicated that MnP activity of 4.7 +/- 0.31 U mL-1 was obtained using mannose as a carbon source. The enzyme productivity further reached 7.36 +/- 0.05 U mL-1 and 8.77 +/- 0.23 U mL -1 when the mannose medium was supplemented with cyclic adenosine monophosphate (cAMP) and S-adenosylmethionine (SAM) respectively, revealing highest MnP productivity obtained by optimizing the carbon sources and supplementation with small molecules. In addition, the effects of nutrient additives for improving biological pretreatment of lignocellulosic biomass were studied. The pretreatment of wheat straw supplemented with inorganic salts (salts group) and tween 80 was examined. The extra nutrient significantly improved the ligninase expression leading to improve digestibility of lignocellulosic biomass. Among the solid state fermentation groups, salts group resulted in a substantial degradation of wheat straw within one week, along with the highest lignin loss (25 %) and ˜ 250% higher efficiency for the total sugar release through enzymatic hydrolysis. The results were correlated with pyrolysis GC-MS (Py-GC-MS), thermogravimetric (TG) /differential thermogravimetric (DTG) and X-ray diffraction (XRD). Finally, the fungal secretomes and composition, functional groups, and structural changes of the fungal spent wheat straw lignin were determined. Milled wood lignin (MWL) was extracted from biological treated and untreaed wheat straw. Detailed structural analysis through two dimentional heteronuclear multiple quantum coherence nuclear magnetic resonances (2D HMQC NMR) of the pretreated lignin (acetylated) revealed low abundances of the substructures dibenzodioxacin and cinnamyl alcohol. Further analysis of lignin by Fourier transmission infrared (FTIR) and pyrolysis gas chromatography/ mass spectrometry (Py-GC/MS) demonstrated the significant decrease of guaiacyl units. The results support previous findings on the biodegradation of wheat straw as analyzed by 13C cross polarization magic angle spinning (CPMAS). Revealing the characteristic behavior of P. chrysosporium-mediated biomass degradation, the information presented in this paper offers new insight into the understanding of biological lignin degradation of wheat straw by P. chrysosporium.
Irbe, Ilze; Andersone, Ingeborga; Andersons, Bruno; Noldt, Guna; Dizhbite, Tatiana; Kurnosova, Nina; Nuopponen, Mari; Stewart, Derek
2011-07-01
In our study, early period degradation (10 days) of Scots pine (Pinus sylvestris L.) sapwood by the brown-rot fungus Coniophora puteana (Schum.: Fr.) Karst. (BAM Ebw.15) was followed at the wood chemical composition and ultrastructure-level, and highlighted the generation of reactive oxygen species (ROS). An advanced decay period of 50 days was chosen for comparison of the degradation dynamics. Scanning UV microspectrophotometry (UMSP) analyses of lignin distribution in wood cells revealed that the linkages of lignin and polysaccharides were already disrupted in the early period of fungal attack. An increase in the lignin absorption A(280) value from 0.24 (control) to 0.44 in decayed wood was attributed to its oxidative modification which has been proposed to be generated by Fenton reaction derived ROS. The wood weight loss in the initial degradation period was 2%, whilst cellulose and lignin content decreased by 6.7% and 1%, respectively. Lignin methoxyl (-OCH3) content decreased from 15.1% (control) to 14.2% in decayed wood. Diffuse reflectance Fourier-transform infrared (DRIFT) spectroscopy corroborated the moderate loss in the hemicellulose and lignin degradation accompanying degradation. Electron paramagnetic resonance spectra and spin trapping confirmed the generation of ROS, such as hydroxyl radicals (HO∙), in the early wood degradation period. Our results showed that irreversible changes in wood structure started immediately after wood colonisation by fungal hyphae and the results generated here will assist in the understanding of the biochemical mechanisms of wood biodegradation by brown-rot fungi with the ultimate aim of developing novel wood protection methods.
Regulation of coal polymer degradation by fungi. Eighth quarterly report, [April--June 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvine, R.L.; Bumpus, J.A.
1996-07-28
This project addresses the solubilization of low-rank coal (leonardite) by lignin degrading fungi. During this reporting period efforts were focused on determining the effect of pH on coal solubilization by oxalate ion and other biologically important compounds that might function as metal chelators, on the role of laccase in coal solubilization and metabolism, on decolorization of soluble coal macromolecule by Phanerochaete chrysosporium and T. versicolor in solid agar media, and on solubilization of coal in slurry cultures and solid phase reactors.
Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production
Ortiz-Bermúdez, Patricia; Hirth, Kolby C.; Srebotnik, Ewald; Hammel, Kenneth E.
2007-01-01
Soils and decayed plant litter contain significant quantities of chlorinated aromatic polymers that have a natural but largely unknown origin. We used cupric oxide ligninolysis coupled with gas chromatography/mass spectrometry to show that Curvularia inaequalis, a widely distributed litter ascomycete, chlorinated the aromatic rings of lignin in wood that it was degrading. In aspen wood decayed for 24 weeks, two chlorolignin fragments, 5-chlorovanillin and 2-chlorosyringaldehyde, were each found at ≈10 μg/g of wood (dry weight). These levels resemble those of similar structures generally found in unpolluted environmental samples. Fractionation of the extractable proteins followed by tandem mass spectrometric analysis showed that the colonized wood contained a previously described C. inaequalis chloroperoxidase that very likely catalyzed lignin chlorination. Chlorolignin produced by this route and humus derived from it are probably significant components of the global chlorine cycle because chloroperoxidase-producing fungi are ubiquitous in decaying lignocellulose and lignin is the earth's most abundant aromatic substance. PMID:17360449
Robert Riley; Asaf A. Salamov; Daren W. Brown; Laszlo G. Nagy; Dimitrios Floudas; Benjamin W. Held; Anthony Levasseur; Vincent Lombard; Emmanuelle Morin; Robert Otillar; Erika A. Lindquist; Hui Sun; Kurt M. LaButti; Jeremy Schmutz; Dina Jabbour; Hong Luo; Scott E. Baker; Antonio G. Pisabarro; Jonathan D. Walton; Robert A. Blanchette; Bernard Henrissat; Francis Martin; Daniel Cullen; David S. Hibbett; Igor V. Grigoriev
2014-01-01
Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic...
Awasthi, Manika; Jaiswal, Nivedita; Singh, Swati; Pandey, Veda P; Dwivedi, Upendra N
2015-09-01
Laccase, widely distributed in bacteria, fungi, and plants, catalyzes the oxidation of wide range of compounds. With regards to one of the important physiological functions, plant laccases are considered to catalyze lignin biosynthesis while fungal laccases are considered for lignin degradation. The present study was undertaken to explain this dual function of laccases using in-silico molecular docking and dynamics simulation approaches. Modeling and superimposition analyses of one each representative of plant and fungal laccases, namely, Populus trichocarpa and Trametes versicolor, respectively, revealed low level of similarity in the folding of two laccases at 3D levels. Docking analyses revealed significantly higher binding efficiency for lignin model compounds, in proportion to their size, for fungal laccase as compared to that of plant laccase. Residues interacting with the model compounds at the respective enzyme active sites were found to be in conformity with their role in lignin biosynthesis and degradation. Molecular dynamics simulation analyses for the stability of docked complexes of plant and fungal laccases with lignin model compounds revealed that tetrameric lignin model compound remains attached to the active site of fungal laccase throughout the simulation period, while it protrudes outwards from the active site of plant laccase. Stability of these complexes was further analyzed on the basis of binding energy which revealed significantly higher stability of fungal laccase with tetrameric compound than that of plant. The overall data suggested a situation favorable for the degradation of lignin polymer by fungal laccase while its synthesis by plant laccase.
Screening of Biodegradable Function of Indigenous Ligno-degrading Mushroom Using Dyes
Cho, Soo-Muk; Seok, Soon-Ja; Kong, Won-Sik; Kim, Gyu-Hyun; Sung, Jae-Mo
2009-01-01
The process of biodegradation in lingo-cellulosic materials is critically relevant to biospheric carbon. The study of this natural process has largely involved laboratory investigations, focused primarily on the biodegradation and recycling of agricultural by-products, generally using basidiomycetes species. In order to collect super white rot fungi and evaluate its ability to degrade lingo-cellulosic material, 35 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye. In the laccase enzymatic analysis chemical test, 33 white rot fungi and 2 brown rot fungi were identified. The degradation ability of polycyclic aromatic hydrocarbons (PAHs) according to the utilized environmental conditions was higher in the mushrooms grown in dead trees and fallen leaves than in the mushrooms grown in humus soil and livestock manure. Using Poly-R 478 dye to assess the PAH-degradation activity of the identified strains, four strains, including Agrocybe pediades, were selected. The activities of laccase, MnP, and Lip of the four strains with PAH-degrading ability were highest in Pleurotus incarnates. 87 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye on solid media. Using Poly-R 478 dye to assess the PAHdegrading activity of the identified strains, it was determined that MKACC 51632 and 52492 strains evidenced superior activity in static and shaken liquid cultures. Subsequent screening on plates containing the polymeric dye poly R-478, the decolorization of which is correlated with lignin degradation, resulted in the selection of a strain of Coriolus versicolor, MKACC52492, for further study, primarily due to its rapid growth rate and profound ability to decolorize poly R-478 on solid media. Considering our findings using Poly-R 478 dye to evaluate the PAH-degrading activity of the identified strains, Coriolus versicolor, MKACC 52492 was selected as a favorable strain. Coriolus versicolor, which was collected from Mt. Yeogi in Suwon, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). PMID:23983508
Salame, Tomer M; Knop, Doriv; Levinson, Dana; Mabjeesh, Sameer J; Yarden, Oded; Hadar, Yitzhak
2014-01-01
Lignin biodegradation by white-rot fungi is pivotal to the earth's carbon cycle. Manganese peroxidases (MnPs), the most common extracellular ligninolytic peroxidases produced by white-rot fungi, are considered key in ligninolysis. Pleurotus ostreatus, the oyster mushroom, is a preferential lignin degrader occupying niches rich in lignocellulose such as decaying trees. Here, we provide direct, genetically based proof for the functional significance of MnP to P. ostreatus ligninolytic capacity under conditions mimicking its natural habitat. When grown on a natural lignocellulosic substrate of cotton stalks under solid-state culture conditions, gene and isoenzyme expression profiles of its short MnP and versatile peroxidase (VP)-encoding gene family revealed that mnp2 was predominately expressed. mnp2, encoding the versatile short MnP isoenzyme 2 was disrupted. Inactivation of mnp2 resulted in three interrelated phenotypes, relative to the wild-type strain: (i) reduction of 14% and 36% in lignin mineralization of stalks non-amended and amended with Mn(2+), respectively; (ii) marked reduction of the bioconverted lignocellulose sensitivity to subsequent bacterial hydrolyses; and (iii) decrease in fungal respiration rate. These results may serve as the basis to clarify the roles of the various types of fungal MnPs and VPs in their contribution to white-rot decay of wood and lignocellulose in various ecosystems. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Laccases from Aureobasidium pullulans
USDA-ARS?s Scientific Manuscript database
Laccases are polyphenol oxidases (EC 1.10.3.2) that have numerous industrial and bioremediation applications. Laccases are well known as lignin-degrading enzymes, but these enzymes can play numerous other roles in fungi. In this study, 41 strains of the fungus Aureobasidium pullulans were examined f...
Endophytic fungi: expanding the arsenal of industrial enzyme producers.
Corrêa, Rúbia Carvalho Gomes; Rhoden, Sandro Augusto; Mota, Thatiane Rodrigues; Azevedo, João Lúcio; Pamphile, João Alencar; de Souza, Cristina Giatti Marques; Polizeli, Maria de Lourdes Teixeira de Moraes; Bracht, Adelar; Peralta, Rosane Marina
2014-10-01
Endophytic fungi, mostly belonging to the Ascomycota, are found in the intercellular spaces of the aerial plant parts, particularly in leaf sheaths, sometimes even within the bark and root system without inducing any visual symptoms of their presence. These fungi appear to have a capacity to produce a wide range of enzymes and secondary metabolites exhibiting a variety of biological activities. However, they have been only barely exploited as sources of enzymes of industrial interest. This review emphasizes the suitability and possible advantages of including the endophytic fungi in the screening of new enzyme producing organisms as well as in studies aiming to optimize the production of enzymes through well-known culture processes. Apparently endophytic fungi possess the two types of extracellular enzymatic systems necessary to degrade the vegetal biomass: (1) the hydrolytic system responsible for polysaccharide degradation consisting mainly in xylanases and cellulases; and (2) the unique oxidative ligninolytic system, which degrades lignin and opens phenyl rings, comprises mainly laccases, ligninases and peroxidases. The obvious ability of endophytic fungi to degrade the complex structure of lignocellulose makes them useful in the exploration of the lignocellulosic biomass for the production of fuel ethanol and other value-added commodity chemicals. In addition to this, endophytic fungi may become new sources of industrially useful enzymes such as lipases, amylases and proteases.
A study of overproduction and enhanced secretion of enzymes. Quarterly report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dashek, W.V.
1993-09-01
Wood decay within forests, a significant renewable photosynthetic energy resource, is caused primarily by Basidiomycetous fungi, e.g., white rot fungi. These organisms possess the ability to degrade lignin, cellulose and hemicellulose, the main organic polymers of wood. In the case of the white rot fungi, e.g., Coriolus versicolor, the capacity results from the fungus` ability to elaborate extracellular cellulolytic and ligninolytic enzymes. With regard to the latter, at least one of the enzymes, polyphenol oxidase (PPO) appears within a defined growth medium. This proposal focuses on the over-production and enhanced secretion of PPO, cellulase and lignin peroxidase. There are twomore » major sections to the proposal: (1) overproduction of lignocellulolytic enzymes by genetic engineering methodologies and hyper-production and enhanced secretion of these enzymes by biochemical/electro microscopical techniques and (2) the biochemical/electron microscopical method involves substrate induction and the time-dependent addition of respiration and PPO enzymes.« less
Pöggeler, Stefanie
2011-04-01
Multicopper oxidases (MCO) catalyze the biological oxidation of various aromatic substrates and have been identified in plants, insects, bacteria, and wood rotting fungi. In nature, they are involved in biodegradation of biopolymers such as lignin and humic compounds, but have also been tested for various industrial applications. In fungi, MCOs have been shown to play important roles during their life cycles, such as in fruiting body formation, pigment formation and pathogenicity. Coprophilous fungi, which grow on the dung of herbivores, appear to encode an unexpectedly high number of enzymes capable of at least partly degrading lignin. This study compared the MCO-coding capacity of the coprophilous filamentous ascomycetes Podospora anserina and Sordaria macrospora with closely related non-coprophilous members of the order Sordariales. An increase of MCO genes in coprophilic members of the Sordariales most probably occurred by gene duplication and horizontal gene transfer events.
Pretreatment of lignocellulosic biomass using Fenton chemistry
USDA-ARS?s Scientific Manuscript database
Pretreatment is a necessary step in “biomass to biofuel conversion” due to the recalcitrant nature of lignocellulosic biomass. White-rot fungi utilize peroxidases and hydrogen peroxide (in vivo Fenton chemistry) to degrade lignin. In an attempt to mimic this process, solution phase Fenton chemistry ...
Comparison of alkaline- and fungi-assisted wet-storage of corn stover.
Cui, Zhifang; Shi, Jian; Wan, Caixia; Li, Yebo
2012-04-01
Storage of lignocellulosic biomass is critical for a year-round supply of feedstock for a biorefinery. Compared with dry storage, wet storage is a promising alternative technology, providing several advantages including reduced dry matter loss and fire risk and improved feedstock digestibility after storage. This study investigated the concurrent pretreatment and wet-storage of corn stover with the assistance of NaOH or a lignin-degrading fungus, Ceriporiopsis subvermispora, during a 90-d period. Compared with ensilage, adding NaOH or inoculation with C. subvermispora significantly enhanced the enzymatic degradability of corn stover by 2-3-fold after 90-d wet storage. Lignin and xylan removal during NaOH pretreatment and wet-storage were influenced by NaOH loading and moisture. NaOH pretreatment retarded the production of organic acids during storage and the acetate release correlated with lignin and xylan removal. Further study is needed to reduce cellulose degradation during the late stage of fungal treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ortega, G M; Martinez, E O; González, P C; Betancourt, D; Otero, M A
1993-03-01
Two strains of Pleurotus spp., grown in solid state fermentation on sugar-cane straw, degraded the dry matter by 50% after 60 days. The rate of substrate consumption and the dry weight of fruiting bodies decreased in consecutive flushings. Both strains vigorously attacked hemicellulose (80% of total degradation) and lignin (70%). Fruiting bodies were rich in protein and lipids, and had a low content of carbohydrates and ash.
USDA-ARS?s Scientific Manuscript database
Wood rot fungi can cause directional tunneling, aggregation behavior and increased wood consumption by subterranean termites. Because vanillin and guaiacol are byproducts of lignin degradation, these chemicals were tested as potential attractants to Formosan subterranean termites, Coptotermes formo...
Induction of wheat straw delignification by Trametes species
Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M.; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena
2016-01-01
Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains. PMID:27216645
Evaluation of Biological Pretreatment of Rubberwood with White Rot Fungi for Enzymatic Hydrolysis
Nazarpour, Forough; Abdullah, Dzulkefly Kuang; Abdullah, Norhafizah; Zamiri, Reza
2013-01-01
The effects of biological pretreatment on the rubberwood (Hevea brasiliensis), was evaluated after cultivation of white rot fungi Ceriporiopsis subvermispora, Trametes versicolor, and a mixed culture of C. subvermispora and T. versicolor. The analysis of chemical compositions indicated that C. subvermispora had greater selectivity for lignin degradation with the highest lignin and hemicellulose loss at 45.06% and 42.08%, respectively, and lowest cellulose loss (9.50%) after 90 days among the tested samples. X-ray analysis showed that pretreated samples had a higher crystallinity than untreated samples. The sample pretreated by C. subvermispora presented the highest crystallinity of all the samples which might be caused by the selective degradation of amorphous components. Fourier transform infrared (FT-IR) spectroscopy demonstrated that the content of lignin and hemicellulose decreased during the biological pretreatment process. A study on hydrolysis of rubberwood treated with C. subvermispora, T. versicolor, and mixed culture for 90 days resulted in an increased sugar yield of about 27.67%, 16.23%, and 14.20%, respectively, as compared with untreated rubberwood (2.88%). The results obtained demonstrate that rubberwood is a potential raw material for industrial applications and white rot fungus C. subevermispora provides an effective method for improving the enzymatic hydrolysis of rubberwood. PMID:28809260
Bioremediation of lignosulphonates by lignin-degrading basidiomycetous fungi.
Eugenio, M E; Carbajo, J M; Terrón, M C; González, A E; Villar, J C
2008-07-01
The capability of some ligninolytic fungi to degrade lignosulphonates has been studied. Three lignosulphonates concentrations, three culture media and seven different basidiomycetes in solid-cultures have been assayed to select the conditions for further experiments on submerged cultures. The best results of growth and lignosulphonate decolourization in solid-cultures were obtained with Pycnoporus sanguineus, Coriolus pubescens and Trametes sp. I-62 on Kirk's medium and 1% and 2% of lignosulphonate concentrations. In submerged cultures the lignosulphonate decolourization rate was generally higher when it was added on the 6th day, rather than when it was added from the beginning of the incubation and C. pubescens and P. sanguineus showed again the optimum results of decolourization. Extracellular laccase activity increased with lignosulphonate concentration in all assayed fungi, suggesting that lignosulphonate act as inductors of laccase activity.
Investigating Aspergillus nidulans secretome during colonisation of cork cell walls.
Martins, Isabel; Garcia, Helga; Varela, Adélia; Núñez, Oscar; Planchon, Sébastien; Galceran, Maria Teresa; Renaut, Jenny; Rebelo, Luís P N; Silva Pereira, Cristina
2014-02-26
Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATR-FTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (β-glucosidases and endo-1,5-α-l-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of β-glucosidase in cork secretome. Cork degradation by fungi remains largely overlook. Herein we aimed at understanding how A. nidulans colonise cork cell walls and how this relates to wood colonisation. To address this, the protein species consistently present in the secretome were analysed, as well as major alterations occurring in the substrate, including lignin degradation compounds being released. The obtained data demonstrate that this fungus has superficially attacked the cork cell walls apparently by using both enzymatic and Fenton-like reactions. Only a few polysaccharide degrading enzymes could be detected in the secretome which was dominated by protein species associated with autolysis. Lignin degradation was corroborated by the identification of some degradation products, but the suberin barrier in the cell wall remained virtually intact. Comparative proteomics revealed that cork and wood colonisation share a common set of enzymatic mechanisms. Copyright © 2013 Elsevier B.V. All rights reserved.
Scully, Erin D.; Hoover, Kelli; Carlson, John; Tien, Ming; Geib, Scott M.
2012-01-01
Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects or bacteria. Previous research validated that lignocellulose and hemicellulose degradation occur within the gut of the wood boring insect, Anoplophora glabripennis (Asian longhorned beetle), and that a fungal species, Fusarium solani (ATCC MYA 4552), is consistently associated with the larval stage. While the nature of this relationship is unresolved, we sought to assess this fungal isolate's ability to degrade lignocellulose and cell wall polysaccharides and to extract nutrients from woody tissue. This gut-derived fungal isolate was inoculated onto a wood-based substrate and shotgun proteomics using Multidimensional Protein Identification Technology (MudPIT) was employed to identify 400 expressed proteins. Through this approach, we detected proteins responsible for plant cell wall polysaccharide degradation, including proteins belonging to 28 glycosyl hydrolase families and several cutinases, esterases, lipases, pectate lyases, and polysaccharide deacetylases. Proteinases with broad substrate specificities and ureases were observed, indicating that this isolate has the capability to digest plant cell wall proteins and recycle nitrogenous waste under periods of nutrient limitation. Additionally, several laccases, peroxidases, and enzymes involved in extracellular hydrogen peroxide production previously implicated in lignin depolymerization were detected. In vitro biochemical assays were conducted to corroborate MudPIT results and confirmed that cellulases, glycosyl hydrolases, xylanases, laccases, and Mn- independent peroxidases were active in culture; however, lignin- and Mn- dependent peroxidase activities were not detected While little is known about the role of filamentous fungi and their associations with insects, these findings suggest that this isolate has the endogenous potential to degrade lignocellulose and extract nutrients from woody tissue. PMID:22496740
Differences in crystalline cellulose modification due to degradation by brown and white rot fungi.
Hastrup, Anne Christine Steenkjær; Howell, Caitlin; Larsen, Flemming Hofmann; Sathitsuksanoh, Noppadon; Goodell, Barry; Jellison, Jody
2012-10-01
Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
[Ligninolytic enzyme production by white rot fungi during paraquat (herbicide) degradation].
Camacho-Morales, Reyna L; Gerardo-Gerardo, José Luis; Guillén Navarro, Karina; Sánchez, José E
Paraquat is a widely used herbicide in agriculture. Its inappropriate use and wide distribution represents a serious pollution problem for soil and water. White rot fungi are capable of degrading pollutants having a similar structure to that of lignin, such as paraquat. This study evaluated the degradation effect of paraquat on the production of ligninolytic enzymes by white rot fungi isolated from the South of Mexico. Six fungal strains showed tolerance to the herbicide in solid culture. Three of the six evaluated strains showed levels of degradation of 32, 26 and 47% (Polyporus tricholoma, Cilindrobasidium laeve and Deconica citrispora, respectively) after twelve days of cultivation in the presence of the xenobiotic. An increase in laccase and manganese peroxidase (MnP) activities was detected in the strains showing the highest percentage of degradation. Experiments were done with enzyme extracts from the extracellular medium with the two strains showing more degradation potential and enzyme production. After 24hours of incubation, a degradation of 49% of the initial paraquat concentration was observed for D. citrispora. These results suggest that paraquat degradation can be attributed to the presence of extracellular enzymes from white rot fungi. In this work the first evidence of the biodegradation potential of D. citrispora and Cilindrobasidium leave is shown. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Akin, Danny E.
Grass lignocelluloses are limited in bioconversion by aromatic constituents, which include both lignins and phenolic acids esters. Histochemistry, ultraviolet absorption microspectrophotometry, and response to microorganisms and specific enzymes have been used to determine the significance of aromatics toward recalcitrance. Coniferyl lignin appears to be the most effective limitation to biodegradation, existing in xylem cells of vascular tissues; cell walls with syringyl lignin, for example, leaf sclerenchyma, are less recalcitrant. Esterified phenolic acids, i.e., ferulic and p-coumaric acids, often constitute a major chemical limitation in nonlignified cell walls to biodegradation in grasses, especially warm-season species. Methods to improve biodegradability through modification of aromatics include: plant breeding, use of lignin-degrading white-rot fungi, and addition of esterases. Plant breeding for new cultivars has been especially effective for nutritionally improved forages, for example, bermudagrasses. In laboratory studies, selective white-rot fungi that lack cellulases delignified the lignocellulosic materials and improved fermentation of residual carbohydrates. Phenolic acid esterases released p-coumaric and ferulic acids for potential coproducts, improved the available sugars for fermentation, and improved biodegradation. The separation and removal of the aromatic components for coproducts, while enhancing the availability of sugars for bioconversion, could improve the economics of bioconversion.
Sharma, Rakesh Kumar; Arora, Daljit Singh
2011-02-01
Various cereal straws are used as feed by supplementing the green forage or other feed stuffs. An experiment was designed to see the effect of different geographic locations and climatological conditions on biochemical constituents, fungal degradation and in vitro digestibility of paddy straw. Paddy straw (PS) obtained from three different geographic locations of India was subjected to solid state fermentation using four white rot fungi i.e. Phlebia brevispora, P. fascicularia, P. floridensis and P. radiata. Changes in the biochemical constituents like water soluble content, hemicellulose, cellulose, lignin, total organic matter, and in vitro digestibility of paddy straw was analyzed over a period of 60 days along with lignocellulolytic enzymes i.e. laccase, xylanase and carboxymethyl cellulase. All the fungi degraded the straw samples and enhanced the in vitro digestibility. The paddy straw, obtained from north western zone (NWZ) suffered a maximum loss (228 g/kg) of lignin by P. radiata, while a maximum enhancement of in vitro digestibility from 185 to 256 g/kg was achieved by P. brevispora, which also caused minimum loss in total organic matter (98 g/kg). In PS obtained from central eastern zone (CEZ) and north eastern zone (NEZ), a maximum amount of lignin (210 and 195 g/kg, respectively) was degraded by P. floridensis and resulted into a respective enhancement of in vitro digestibility from 172 to 246 g/kg and 188 to 264 g/kg. The study demonstrates that geographic locations not only affect the biochemical constituents of paddy straw but the fungal degradation of fibers, their in vitro digestibility and lignocellulolytic enzyme activity of the fungus may also vary.
Incorporating biopulping technology into wood yard operations
Gary M. Scott; Eric Horn; Masood Akhtar; Ross E. Swaney; Michael J. Lentz; David F. Shipley
1998-01-01
Biopulping is the treatment of wood chips and other lignocellulosic materials with lignin-degrading fungi prior to pulping. Ten years of industry-sponsored research has demonstrated the technical feasibility of the technology for mechanical pulping at a laboratory scale. Two 50-ton outdoor chip pile trials recently conducted at the USDA Forest Service, Forest Products...
Gamble, G R; Akin, D E; Makkar, H P; Becker, K
1996-01-01
Leaves of sericea lespedeza exhibit a high proportion of condensed tannin, resulting in poor forage quality. The white rot fungi Ceriporiopsis subvermispora and Cyathus sterocoreus are known to preferentially degrade lignin in a variety of plants and were evaluated for their ability to degrade condensed tannin from sericea leaves with the aim of improving digestibility. Relative levels of condensed tannin, cutin, pectin, and cellulose were monitored as a function of fungal treatment by solid-state cross-polarization and magic angle spinning 13C nuclear magnetic resonance spectroscopy. Total soluble phenolics, soluble tannins, and soluble and insoluble proanthocyanidin levels in fungus-treated and control samples were measured by established chemical techniques. Results indicate that both species of fungus preferentially degrade condensed tannin and that C. subvermispora is markedly superior to C. stercoreus in this capacity. PMID:8837414
Yu, Hongbo; Guo, Guoning; Zhang, Xiaoyu; Yan, Keliang; Xu, Chunyan
2009-11-01
Selective white-rot fungi have shown potential for lignocellulose pretreatment. In the study, a new fungal isolate, Echinodontium taxodii 2538, was used in biological pretreatment to enhance the enzymatic hydrolysis of two native woods: Chinese willow (hardwood) and China-fir (softwood). E. taxodii preferentially degraded the lignin during the pretreatment, and the pretreated woods showed significant increases in enzymatic hydrolysis ratios (4.7-fold for hardwood and 6.3-fold for softwood). To better understand effects of biological pretreatment on enzymatic hydrolysis, enzyme-substrate interactions were investigated. It was observed that E. taxodii enhanced initial adsorption of cellulase but which did not always translate to high initial hydrolysis rate. However, the rate of change in hydrolysis rate declined dramatically with decreasing irreversible adsorption of cellulase. Thus, the enhancement of enzymatic hydrolysis was attributed to the decline of irreversible adsorption which may result from partial lignin degradation and alteration in lignin structure after biological pretreatment.
Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, P.J.; Dobson, A.D.W.; Kotterman, M.J.J.
1996-12-01
Polycyclic aromatic hydrocarbons, particularly benzene homologs, are highly toxic organic pollutants. One of the three major groups of extracellular oxidative enzymes involved in the white rot fungal lignin degradative process are laccases. This study presents evidence indicating that laccase has a role in PAH oxidation by white rot fungi. 36 refs., 5 figs., 1 tab.
Presley, Gerald N.; Ndimba, Bongani K.; Schilling, Jonathan S.
2018-01-01
Sweet sorghum is a promising crop for a warming, drying African climate, and basic information is lacking on conversion pathways for its lignocellulosic residues (bagasse). Brown rot wood-decomposer fungi use carbohydrate-selective pathways that, when assessed on sorghum, a grass substrate, can yield information relevant to both plant biomass conversion and fungal biology. In testing sorghum decomposition by brown rot fungi ( Gloeophyllum trabeum , Serpula lacrymans ), we found that G. trabeum readily degraded sorghum, removing xylan prior to removing glucan. Serpula lacrymans , conversely, caused little decomposition. Ergosterol (fungal biomarker) and protein levels were similar for both fungi, butmore » S. lacrymans produced nearly 4x lower polysaccharide-degrading enzyme specific activity on sorghum than G. trabeum , perhaps a symptom of starvation. Linking this information to genome comparisons including other brown rot fungi known to have a similar issue regarding decomposing grasses (Postia placenta, Fomitopsis pinicola) suggested that a lack of CE 1 feruloyl esterases as well as low xylanase activity in S. lacrymans (3x lower than in G. trabeum ) may hinder S. lacrymans , P. placenta, and F. pinicola when degrading grass substrates. These results indicate variability in brown rot mechanisms, which may stem from a differing ability to degrade certain lignin-carbohydrate complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Presley, Gerald N.; Ndimba, Bongani K.; Schilling, Jonathan S.
Sweet sorghum is a promising crop for a warming, drying African climate, and basic information is lacking on conversion pathways for its lignocellulosic residues (bagasse). Brown rot wood-decomposer fungi use carbohydrate-selective pathways that, when assessed on sorghum, a grass substrate, can yield information relevant to both plant biomass conversion and fungal biology. In testing sorghum decomposition by brown rot fungi ( Gloeophyllum trabeum , Serpula lacrymans ), we found that G. trabeum readily degraded sorghum, removing xylan prior to removing glucan. Serpula lacrymans , conversely, caused little decomposition. Ergosterol (fungal biomarker) and protein levels were similar for both fungi, butmore » S. lacrymans produced nearly 4x lower polysaccharide-degrading enzyme specific activity on sorghum than G. trabeum , perhaps a symptom of starvation. Linking this information to genome comparisons including other brown rot fungi known to have a similar issue regarding decomposing grasses (Postia placenta, Fomitopsis pinicola) suggested that a lack of CE 1 feruloyl esterases as well as low xylanase activity in S. lacrymans (3x lower than in G. trabeum ) may hinder S. lacrymans , P. placenta, and F. pinicola when degrading grass substrates. These results indicate variability in brown rot mechanisms, which may stem from a differing ability to degrade certain lignin-carbohydrate complexes.« less
Wang, Hang; He, Zhili; Lu, Zhenmei; Zhou, Jizhong; Van Nostrand, Joy D.; Xu, Xinhua
2012-01-01
Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands. PMID:22923398
Bioprocessing of wheat and paddy straw for their nutritional up-gradation.
Sharma, Rakesh Kumar; Arora, Daljit Singh
2014-07-01
Solid-state bioprocessing of agricultural residues seems to be an emerging and effective method for the production of high quality animal feed. Seven strains of white-rot fungi were selected to degrade wheat and paddy straw (PS) under solid-state conditions. Degradation of different components, i.e., hemicellulose, cellulose and lignin was evaluated along with nutritional parameters including; in vitro digestibility, crude protein, amino acids, total phenolic contents (TPC) etc. Effect of nitrogen-rich supplements on degradation of lignocellulosics was evaluated using two best selected fungal strains (Phlebia brevispora and Phlebia floridensis). The best selected conditions were used to upscale the process up to 200 g batches of wheat and PS. Lignin was selectively degraded up to 30 % with a limited loss of 11-12 % in total organic matter. Finally, the degraded agro-residues demonstrated 50-62 % enhancement in their digestibility. Two-threefold enhancement in other nutritional quality (amino acids, TPCs and antioxidant activity) fortifies the process. Thus the method is quite helpful to design an effective solid-state fermentation system to improve the nutritive quality of agricultural residues by simultaneous production of lignocellulolytic enzyme production and antioxidants.
Premsagar Korripally; Christopher G. Hunt; Carl J. Houtman; Don C. Jones; Peter J. Kitin; Dan Cullen; Kenneth E. Hammel; A. A. Brakhage
2015-01-01
Since uncertainty remains about how white rot fungi oxidize and degrade lignin in wood, it would be useful to monitor changes in fungal gene expression during the onset of ligninolysis on a natural substrate. We grew Phanerochaete chrysosporium on solid spruce wood and included oxidant-sensing beads bearing the fluorometric dye BODIPY 581/591 in...
Laccase: microbial sources, production, purification, and potential biotechnological applications.
Shraddha; Shekher, Ravi; Sehgal, Simran; Kamthania, Mohit; Kumar, Ajay
2011-01-01
Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields.
Stempien, Elodie; Goddard, Mary-Lorène; Wilhelm, Kim; Tarnus, Céline; Bertsch, Christophe; Chong, Julie
2017-01-01
Grapevine trunk diseases: Eutypa dieback, esca and Botryosphaeria dieback, which incidence has increased recently, are associated with several symptoms finally leading to the plant death. In the absence of efficient treatments, these diseases are a major problem for the viticulture; however, the factors involved in disease progression are not still fully identified. In order to get a better understanding of Botryosphaeria dieback development in grapevine, we have investigated different factors involved in Botryosphaeriaceae fungi aggressiveness. We first evaluated the activity of the wood-degrading enzymes of different isolates of Neofusicoccum parvum and Diplodia seriata, two major fungi associated with Botryosphaeria dieback. We further examinated the ability of these fungi to metabolize major grapevine phytoalexins: resveratrol and δ-viniferin. Our results demonstrate that Botryosphaeriaceae were characterized by differential wood decay enzymatic activities and have the capacity to rapidly degrade stilbenes. N. parvum is able to degrade parietal polysaccharides, whereas D. seriata has a better capacity to degrade lignin. Growth of both fungi exhibited a low sensitivity to resveratrol, whereas δ-viniferin has a fungistatic effect, especially on N. parvum Bourgogne S-116. We further show that Botryosphaeriaceae are able to metabolize rapidly resveratrol and δ-viniferin. The best stilbene metabolizing activity was measured for D. seriata. In conclusion, the different Botryosphaeriaceae isolates are characterized by a specific aggressiveness repertory. Wood and phenolic compound decay enzymatic activities could enable Botryosphaeriaceae to bypass chemical and physical barriers of the grapevine plant. The specific signature of Botryosphaeriaceae aggressiveness factors could explain the importance of fungi complexes in synergistic activity in order to fully colonize the host.
Pereira, Jose Henrique; Heins, Richard A; Gall, Daniel L; McAndrew, Ryan P; Deng, Kai; Holland, Keefe C; Donohue, Timothy J; Noguera, Daniel R; Simmons, Blake A; Sale, Kenneth L; Ralph, John; Adams, Paul D
2016-05-06
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50-70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less
Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; ...
2016-03-03
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less
Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; McAndrew, Ryan P.; Deng, Kai; Holland, Keefe C.; Donohue, Timothy J.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Adams, Paul D.
2016-01-01
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. PMID:26940872
Secretome-based Manganese(II) Oxidation by Filamentous Ascomycete Fungi
NASA Astrophysics Data System (ADS)
Zeiner, C. A.; Purvine, S.; Zink, E.; Paša-Tolić, L.; Chaput, D.; Wu, S.; Santelli, C. M.; Hansel, C. M.
2017-12-01
Manganese (Mn) oxides are among the strongest oxidants in the environment, and Mn(II) oxidation to Mn(III/IV) (hydr)oxides includes both abiotic and microbially-mediated processes. While white-rot Basidiomycete fungi oxidize Mn(II) using laccases and Mn peroxidases in association with lignocellulose degradation, the mechanisms by which filamentous Ascomycete fungi oxidize Mn(II) and a physiological role for Mn(II) oxidation in these organisms remain poorly understood. Through a combination of chemical and in-gel assays, bulk mass spectrometry, and iTRAQ proteomics, we demonstrate enzymatic Mn(II) oxidation in the secretomes of three phylogenetically diverse Ascomycetes that were isolated from Mn-laden sediments. Candidate Mn(II)-oxidizing enzymes were species-specific and included bilirubin oxidase and tyrosinase in Stagonospora sp. SRC1lsM3a, GMC oxidoreductase in Paraconiothyrium sporulosum AP3s5-JAC2a, and FAD-binding oxidoreductases in Pyrenochaeta sp. DS3sAY3a. These findings were supported by full proteomic characterization of the secretomes, which revealed a lack of Mn, lignin, and versatile peroxidases in these Ascomycetes but a substantially higher proportion of LMCOs and GMC oxidoreductases compared to wood-rot Basidiomycetes. We also identified the potential for indirect enzymatic Mn(II) oxidation by hydroxyl radical, as the secretomes were rich in diverse lignocellulose-degrading enzymes that could participate in Fenton chemistry. A link between Mn(II) oxidation and carbon oxidation analogous to white-rot Basidiomycetes remains unknown in these Ascomycetes. Interestingly, growth rates on rich medium were unaffected by the presence of Mn(II), and the production of Mn(II)-oxidizing proteins in the secretome was constitutive and not inducible by Mn(II). Thus, no physiological benefit of Mn(II) oxidation in these Ascomycetes has yet been identified, and Mn(II) oxidation appears to be a side reaction. Future work will explore the lignin-degrading capacity of these fungi and any associated role of Mn(II) oxidation.
Bioprospecting and biotechnological applications of fungal laccase.
Upadhyay, Pooja; Shrivastava, Rahul; Agrawal, Pavan Kumar
2016-06-01
Laccase belongs to a small group of enzymes called the blue multicopper oxidases, having the potential ability of oxidation. It belongs to enzymes, which have innate properties of reactive radical production, but its utilization in many fields has been ignored because of its unavailability in the commercial field. There are diverse sources of laccase producing organisms like bacteria, fungi and plants. In fungi, laccase is present in Ascomycetes, Deuteromycetes, Basidiomycetes and is particularly abundant in many white-rot fungi that degrade lignin. Laccases can degrade both phenolic and non-phenolic compounds. They also have the ability to detoxify a range of environmental pollutants. Due to their property to detoxify a range of pollutants, they have been used for several purposes in many industries including paper, pulp, textile and petrochemical industries. Some other application of laccase includes in food processing industry, medical and health care. Recently, laccase has found applications in other fields such as in the design of biosensors and nanotechnology. The present review provides an overview of biological functions of laccase, its mechanism of action, laccase mediator system, and various biotechnological applications of laccase obtained from endophytic fungi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, Kenneth E.; Ralph, John; Hunt, Christopher G.
This work focused on new methods for the detection of oxidation in natural substrates during the deconstruction of lignocellulose by microoganisms. Oxidation was the focus because all known biological systems that degrade lignin are oxidative. The detection methods involved the used of (a) micrometer-scale beads carrying a fluorescent dye that is sensitive to oxidation, (b) 13C-labeled synthetic lignins whose breakdown products can be assessed using mass spectrometry and nuclear magnetic resonance spectroscopy, and (c) a fluorometric stain that is highly sensitive to incipient oxidation during microbial attack. The results showed (a) that one white rot fungus, Phanerochaete chrysosporium, produces diffusiblemore » oxidants on wood, and that the onset of oxidation is coincident with the marked up-regulation of genes that encode ligninolytic peroxidases and auxiliary oxidative enzymes; (b) that a more selectively ligninolytic white rot fungus, Ceriporiopsis subvermispora, produces a highly diastereoselective oxidative system for attack on lignin; (c) that a brown rot fungus, Serpula lacrymans, uses extracellular hydroquinone metabolites to drive the production of lignocellulose-oxidizing free radicals; (d) that both white rot and brown rot fungi produce highly diffusible mild oxidants that modify lignocellulose at the earliest stage of substrate deconstruction; and (e) that lignin degradation in a tropical soil is not inhibited as much as expected during periods of flooding-induced hypoxia, which indicates that unknown mechanisms for attack on lignin remain to be discovered.« less
T.R. Filley; P.G. Hatcher; W.C. Shortle
2000-01-01
This paper presents the results from an assessment of the application of a new molecular analytical procedure, 13C-TMAH thermochemolysis, to study the chemical modification of lignin by white-rot and brown-rot fungi. This technique differs from other molecular chemolysis procedures (e.g. TMAH thermochemolysis and CuO alkaline oxidation) as it...
Glucuronoyl esterases: diversity, properties and biotechnological potential. A review.
Monrad, Rune Nygaard; Eklöf, Jens; Krogh, Kristian B R M; Biely, Peter
2018-05-08
Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 (CE15) are involved in microbial degradation of lignocellulosic plant materials. GEs are capable of degrading complex polymers of lignin and hemicellulose cleaving ester bonds between glucuronic acid residues in xylan and lignin alcohols. GEs promote separation of lignin, hemicellulose and cellulose which is crucial for efficient utilization of biomass as an energy source and feedstock for further processing into products or chemicals. Genes encoding GEs are found in both fungi and bacteria, but, so far, bacterial GEs are essentially unexplored, and despite being discovered >10 years ago, only a limited number of GEs have been characterized. The first laboratory scale example of improved xylose and glucuronic acid release by the synergistic action of GE with cellulolytic enzymes was only reported recently (improved C5 sugar and glucuronic acid yields) and, until now, not much is known about their biotechnology potential. In this review, we discuss the diversity, structure and properties of microbial GEs and consider the status of their action on natural substrates and in biological systems in relation to their future industrial use.
Lignin as a facilitator, not a barrier, during saccharification by brown rot fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilling, Jonathan S.; Tschirner, Ulrike; Blanchette, Robert A
2012-11-28
This research focused on the biology of a group of wood-degrading fungi that cause brown rot in wood, with particular attention to the potential to mimic this biological approach ex situ for bioprocessing lignocellulosic biomass. Supported by the long-standing theory that these fungi use a two-step oxidative/enzymatic approach during brown rot, our team’s objectives were as follows: 1) to determine the discrete timing of lignin modifications, 2) to correlate these alterations with biocatalyst efficiency and ingress into plant cell walls, and 3) to reproduce modifications prior to saccharification for efficient bioprocessing. The core findings of our research were that 1)more » lignin modifications occur nearly coincident with enzyme secretion during brown rot and 2) there is no specificity to the benefit that a brown rot pretreatment has on the efficacy of cellulases – it is a general enhancement best predicted by chemical changes to lignin and side-chain hemicellulose sugars. In our work, this meant we could attain and predict broad improvements in saccharification using commercial cellulase cocktails, in some cases more than three-fold of that in untreated biomass. This project was completed with minimal variance from the original project management plan (PMP), resulting in fourteen presentations and posters, four peer-reviewed publications, and one additional publication now in review. The publications have been valuable to other scientists working toward similar goals and have been cited in thirteen peer-reviewed publications written by others since 2010. We are working with ADM to advance application options for industry, building on the lessons learned during this DOE award period.« less
Seppälä, Susanna; Wilken, St Elmo; Knop, Doriv; Solomon, Kevin V; O'Malley, Michelle A
2017-11-01
A wealth of fungal enzymes has been identified from nature, which continue to drive strain engineering and bioprocessing for a range of industries. However, while a number of clades have been investigated, the vast majority of the fungal kingdom remains unexplored for industrial applications. Here, we discuss selected classes of fungal enzymes that are currently in biotechnological use, and explore more basal, non-conventional fungi and their underexploited biomass-degrading mechanisms as promising agents in the transition towards a bio-based society. Of special interest are anaerobic fungi like the Neocallimastigomycota, which were recently found to harbor the largest diversity of biomass-degrading enzymes among the fungal kingdom. Enzymes sourced from these basal fungi have been used to metabolically engineer substrate utilization in yeast, and may offer new paths to lignin breakdown and tunneled biocatalysis. We also contrast classic enzymology approaches with emerging 'omics'-based tools to decipher function within novel fungal isolates and identify new promising enzymes. Recent developments in genome editing are expected to accelerate discovery and metabolic engineering within these systems, yet are still limited by a lack of high-resolution genomes, gene regulatory regions, and even appropriate culture conditions. Finally, we present new opportunities to harness the biomass-degrading potential of undercharacterized fungi via heterologous expression and engineered microbial consortia. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Lignocellulose Degradation Mechanisms Across the Tree of Life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cragg, Simon M.; Beckham, Gregg T.; Bruce, Neil C.
Organisms use diverse mechanisms involving multiple complementary enzymes, particularly glycoside hydrolases (GHs), to deconstruct lignocellulose. Lytic polysaccharide monooxygenases (LPMOs) produced by bacteria and fungi facilitate deconstruction as does the Fenton chemistry of brown-rot fungi. Lignin depolymerisation is achieved by white-rot fungi and certain bacteria, using peroxidases and laccases. Meta-omics is now revealing the complexity of prokaryotic degradative activity in lignocellulose-rich environments. Protists from termite guts and some oomycetes produce multiple lignocellulolytic enzymes. We found that the Lignocellulose-consuming animals secrete some GHs, but most harbour a diverse enzyme-secreting gut microflora in a mutualism that is particularly complex in termites. Shipworms however,more » house GH-secreting and LPMO-secreting bacteria separate from the site of digestion and the isopod Limnoria relies on endogenous enzymes alone. Moreover, the omics revolution is identifying many novel enzymes and paradigms for biomass deconstruction, but more emphasis on function is required, particularly for enzyme cocktails, in which LPMOs may play an important role.« less
Lignocellulose Degradation Mechanisms Across the Tree of Life
Cragg, Simon M.; Beckham, Gregg T.; Bruce, Neil C.; ...
2015-11-14
Organisms use diverse mechanisms involving multiple complementary enzymes, particularly glycoside hydrolases (GHs), to deconstruct lignocellulose. Lytic polysaccharide monooxygenases (LPMOs) produced by bacteria and fungi facilitate deconstruction as does the Fenton chemistry of brown-rot fungi. Lignin depolymerisation is achieved by white-rot fungi and certain bacteria, using peroxidases and laccases. Meta-omics is now revealing the complexity of prokaryotic degradative activity in lignocellulose-rich environments. Protists from termite guts and some oomycetes produce multiple lignocellulolytic enzymes. We found that the Lignocellulose-consuming animals secrete some GHs, but most harbour a diverse enzyme-secreting gut microflora in a mutualism that is particularly complex in termites. Shipworms however,more » house GH-secreting and LPMO-secreting bacteria separate from the site of digestion and the isopod Limnoria relies on endogenous enzymes alone. Moreover, the omics revolution is identifying many novel enzymes and paradigms for biomass deconstruction, but more emphasis on function is required, particularly for enzyme cocktails, in which LPMOs may play an important role.« less
Phylogeny and comparative genome analysis of a Basidiomycete fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor
2011-03-14
Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein familiesmore » that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.« less
Giardina, P; Cannio, R; Martirani, L; Marzullo, L; Palmieri, G; Sannia, G
1995-01-01
The gene (pox1) encoding a phenol oxidase from Pleurotus ostreatus, a lignin-degrading basidiomycete, was cloned and sequenced, and the corresponding pox1 cDNA was also synthesized and sequenced. The isolated gene consists of 2,592 bp, with the coding sequence being interrupted by 19 introns and flanked by an upstream region in which putative CAAT and TATA consensus sequences could be identified at positions -174 and -84, respectively. The isolation of a second cDNA (pox2 cDNA), showing 84% similarity, and of the corresponding truncated genomic clones demonstrated the existence of a multigene family coding for isoforms of laccase in P. ostreatus. PCR amplifications of specific regions on the DNA of isolated monokaryons proved that the two genes are not allelic forms. The POX1 amino acid sequence deduced was compared with those of other known laccases from different fungi. PMID:7793961
Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying
2011-09-28
The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.
Growth and laccase production kinetics of Trametes versicolor in a stirred tank reactor.
Thiruchelvam, A T; Ramsay, Juliana A
2007-03-01
White rot fungi are a promising option to treat recalcitrant organic molecules, such as lignin, polycyclic aromatic hydrocarbons, and textile dyes, because of the lignin-modifying enzymes (LMEs) they secrete. Because knowledge of the kinetic parameters is important to better design and operate bioreactors to cultivate these fungi for degradation and/or to produce LME(s), these parameters were determined using Trametes versicolor ATCC 20869 (ATCC, American Type Culture Collection) in a magnetic stir bar reactor. A complete set of kinetic data has not been previously published for this culture. Higher than previously reported growth rates with high laccase production of up to 1,385 U l(-1) occurred during growth without [Formula: see text] or glucose limitation. The maximum specific growth rate averaged 0.94 +/- 0.23 day(-1), whereas the maximum specific substrate consumption rates for glucose and ammonium were 3.37 +/- 1.16 and 0.15 +/- 0.04 day(-1), respectively. The maximum specific oxygen consumption rate was 1.63 +/- 0.36 day(-1).
Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle.
Patyshakuliyeva, Aleksandrina; Post, Harm; Zhou, Miaomiao; Jurak, Edita; Heck, Albert J R; Hildén, Kristiina S; Kabel, Mirjam A; Mäkelä, Miia R; Altelaar, Maarten A F; de Vries, Ronald P
2015-08-01
The economically important edible basidiomycete mushroom Agaricus bisporus thrives on decaying plant material in forests and grasslands of North America and Europe. It degrades forest litter and contributes to global carbon recycling, depolymerizing (hemi-)cellulose and lignin in plant biomass. Relatively little is known about how A. bisporus grows in the controlled environment in commercial production facilities and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were only highly expressed during the spawning stage day 16. In contrast, (hemi-)cellulolytic genes were highly expressed at the first flush, whereas low expression was observed at the second flush. The essential role for many highly expressed plant biomass degrading genes was supported by exo-proteome analysis. Our data also support a model of sequential lignocellulose degradation by wood-decaying fungi proposed in previous studies, concluding that lignin is degraded at the initial stage of growth in compost and is not modified after the spawning stage. The observed differences in gene expression involved in (hemi-)cellulose degradation between the first and second flushes could partially explain the reduction in the number of mushrooms during the second flush. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications
Shraddha; Shekher, Ravi; Sehgal, Simran; Kamthania, Mohit; Kumar, Ajay
2011-01-01
Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields. PMID:21755038
Wilhelm, Kim; Tarnus, Céline; Bertsch, Christophe
2017-01-01
Grapevine trunk diseases: Eutypa dieback, esca and Botryosphaeria dieback, which incidence has increased recently, are associated with several symptoms finally leading to the plant death. In the absence of efficient treatments, these diseases are a major problem for the viticulture; however, the factors involved in disease progression are not still fully identified. In order to get a better understanding of Botryosphaeria dieback development in grapevine, we have investigated different factors involved in Botryosphaeriaceae fungi aggressiveness. We first evaluated the activity of the wood-degrading enzymes of different isolates of Neofusicoccum parvum and Diplodia seriata, two major fungi associated with Botryosphaeria dieback. We further examinated the ability of these fungi to metabolize major grapevine phytoalexins: resveratrol and δ-viniferin. Our results demonstrate that Botryosphaeriaceae were characterized by differential wood decay enzymatic activities and have the capacity to rapidly degrade stilbenes. N. parvum is able to degrade parietal polysaccharides, whereas D. seriata has a better capacity to degrade lignin. Growth of both fungi exhibited a low sensitivity to resveratrol, whereas δ-viniferin has a fungistatic effect, especially on N. parvum Bourgogne S-116. We further show that Botryosphaeriaceae are able to metabolize rapidly resveratrol and δ-viniferin. The best stilbene metabolizing activity was measured for D. seriata. In conclusion, the different Botryosphaeriaceae isolates are characterized by a specific aggressiveness repertory. Wood and phenolic compound decay enzymatic activities could enable Botryosphaeriaceae to bypass chemical and physical barriers of the grapevine plant. The specific signature of Botryosphaeriaceae aggressiveness factors could explain the importance of fungi complexes in synergistic activity in order to fully colonize the host. PMID:29261692
REGULATION OF COAL POLYMER DEGRADATION BY FUNGI
DOE Office of Scientific and Technical Information (OSTI.GOV)
John A. Bumpus
1998-11-30
A variety of lignin degrading fungi mediate solubilization and subsequent biodegradation of coal macromolecules (a.k.a. coal polymer) from highly oxidized low rank coals such as leonardites. It appears that oxalate or possibly other metal chelators (i.e., certain Krebs Cycle intermediates) mediate solubilization of low rank coals while extracellular oxidases have a role in subsequent oxidation of solubilized coal macromolecule. These processes are under nutritional control. For example, in the case of P. chrysosporium, solubilization of leonardite occurred when the fungi were cultured on most but not all nutrient agars tested and subsequent biodegradation occurred only in nutrient nitrogen limited cultures.more » Lignin peroxidases mediate oxidation of coal macromolecule in a reaction that is dependent on the presence of veratryl alcohol and hydrogen peroxide. Kinetic evidence suggests that veratryl alcohol is oxidized to the veratryl alcohol cation radical which then mediates oxidation of the coal macromolecule. Results by others suggest that Mn peroxidases mediate formation of reactive Mn{sup 3+} complexes which also mediate oxidation of coal macromolecule. A biomimetic approach was used to study solubilization of a North Dakota leonardite. It was found that a concentration {approximately}75 mM sodium oxalate was optimal for solubilization of this low rank coal. This is important because this is well above the concentration of oxalate produced by fungi in liquid culture. Higher local concentrations probably occur in solid agar cultures and thus may account for the observation that greater solubilization occurs in agar media relative to liquid media. The characteristics of biomimetically solubilized leonardite were similar to those of biologically solubilized leonardite. Perhaps our most interesting observation was that in addition to oxalate, other common Lewis bases (phosphate/hydrogen phosphate/dihydrogen phosphate and bicarbonate/carbonate ions) are able to mediate substantial solubilization of leonardite at physiological pH values. Lastly, we present evidence that some fungi appear to possess coal solubilization ability in which the initial events of solubilization is not mediated by oxalate ion.« less
Mukherjee, R; Ghosh, M; Nandi, B
2004-08-01
Feeding value of water hyacinth biomass colonized by three species of white rot fungi during solid-state fermentation was investigated. All three organisms proved to be efficient degraders and enhanced dry matter digestibility. Loss of organic matter was maximum (23.6+/-0.1% dry wt) after 48 days by P. ostreatus. C. indica showed maximum cellulose degradation (18.5+/-0.1% dry wt) than other two fungi after 48 days of incubation. In all cases, an extensive removal of hemicellulose at the initial growth period and a delayed degradation of lignin were observed. Hemicellulolysis was maximum (46.3+/-0.1% dry wt) by C. indica, but delignification (14.2+/-0.2% dry wt) by P. sajor-caju after 48 days. The amount of reducing sugar in the degraded biomass decreased at early stages, but increased as degradation progressed in all three cases (maximum 1.1+/-0.05% dry wt after 48 days by C. indica). Soluble nitrogen content increased only during 16-32 days of incubation (highest 1.1+/-0.1% dry wt after 32 days by P. sajor-caju). Crude protein of the bioconverted biomass increased gradually up to 32 days but decreased thereafter (maximum 10.3+/-0.1% dry wt after 32 days by P. sajor - caju). Per cent change in in vitro dry matter digestibility of degraded substrates enhanced gradually after 8 days and reached maximum after 32 days but thereafter decreased (highest + 20.4+/-0.3% dry wt by P. sajor-caju). The results demonstrated the efficient degrading capacity of the test fungi and their potential use in conversion of water hyacinth biomass into mycoprotein-rich ruminant feed, more so by P. sajor-caju.
Ahmad, Mark; Taylor, Charles R; Pink, David; Burton, Kerry; Eastwood, Daniel; Bending, Gary D; Bugg, Timothy D H
2010-05-01
Two spectrophotometric assays have been developed to monitor breakdown of the lignin component of plant lignocellulose: a continuous fluorescent assay involving fluorescently modified lignin, and a UV-vis assay involving chemically nitrated lignin. These assays have been used to analyse lignin degradation activity in bacterial and fungal lignin degraders, and to identify additional soil bacteria that show activity for lignin degradation. Two soil bacteria known to act as aromatic degraders, Pseudomonas putida and Rhodococcus sp. RHA1, consistently showed activity in these assays, and these strains were shown in a small scale experiment to breakdown lignocellulose, producing a number of monocyclic phenolic products. Using milled wood lignin prepared from wheat straw, pine, and miscanthus, some bacterial lignin degraders were found to show specificity for lignin type. These assays could be used to identify novel lignin degraders for breakdown of plant lignocellulose.
Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling
NASA Astrophysics Data System (ADS)
Allison, S. D.; Treseder, K. K.
2005-12-01
One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in substrate utilization will also affect total carbon fluxes over longer time scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilling, Jonathan
Consolidated bioprocessing (CBP) of lignocellulose combines enzymatic sugar release (saccharification) with fermentation, but pretreatments remain separate and costly. In nature, lignocellulose-degrading brown rot fungi consolidate pretreatment and saccharification, likely using spatial gradients to partition these incompatible reactions. With the field of biocatalysis maturing, reaction partitioning is increasingly reproducible for commercial use. Therefore, my goal was to resolve the reaction partitioning mechanisms of brown rot fungi so that they can be applied to bioconversion of lignocellulosic feedstocks. Brown rot fungi consolidate oxidative pretreatments with saccharification and are a focus for biomass refining because 1) they attain >99% sugar yield without destroyingmore » lignin, 2) they use a simplified cellulase suite that lacks exoglucanase, and 3) their non-enzymatic pretreatment is facilitative and may be accelerated. Specifically, I hypothesized that during brown rot, oxidative pretreatments occur ahead of enzymatic saccharification, spatially, and the fungus partitions these reactions using gradients in pH, lignin reactivity, and plant cell wall porosity. In fact, we found three key results during these experiments for this work: 1) Brown rot fungi have an inducible cellulase system, unlike previous descriptions of a constitutive mechanism. 2) The induction of cellulases is delayed until there is repression of oxidatively-linked genes, allowing the brown rot fungi to coordinate two incompatible reactions (oxidative pretreatment with enzymatic saccharification, to release wood sugars) in the same pieces of wood. 3) This transition is mediated by the same wood sugar, cellobiose, released by the oxidative pretreatment step. Collectively, these findings have been published in excellent journal outlets and have been presented at conferences around the United States, and they offer clear targets for gene discovery en route to making biofuels and biochemicals affordable, commercially.« less
Zhao, Yunchen; Li, Jianlong; Chen, Yuru; Huang, Haixia; Yu, Zui
2009-08-01
To study the effect of exogenous oxygen, we added water solution of paraquat to 7 d cultures of Coriolus versicolor for the next 148 h. Enzyme exudation and biochemical process were investigated on the addition of paraquat. We found that compared with the control (without paraquat), the addition of 30 micromol/L paraquat stimulated the activity of manganese dependent peroxidase (MnP), lignin peroxidase (LiP), and laccases (Lac) 7, 2.5 and 1.3 times, respectively. Also, addition of paraquat enhanced activity of superoxide dismutase (SOD) and catalase (CAT) in the first 48 h. Impact of paraquat on ligninolytic enzymes was significant than that on antioxidant enzyme. Addition of paraquat enhanced phenolic compounds and formaldehyde of cultures too. And concentration of malondialdehyde was increased in the first 24 h. The results showed that addition of paraquat promoted oxidative stress, but the antioxidant systems of the fungal strain are sufficient to prevent mycelia from oxidative stress. As exogenous oxygen, paraquat might be a useful substrate in degradation of lignocellulose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Lynch, J P; O'Kiely, P; Murphy, R; Doyle, E M
2014-08-01
Maize stover (total stem and leaves) is not considered a ruminant feed of high nutritive value. Therefore, an improvement in its digestibility may increase the viability of total forage maize production systems in marginal growth regions. The objective of this study was to describe the changes in chemical composition during the storage of contrasting components of maize stover (leaf, upper stem and lower stem) treated with either of two lignin degrading white-rot fungi (WRF; Pleurotus ostreatus, Trametes versicolor). Three components of maize stover (leaf, upper stem and lower stem), harvested at a conventional maturity for silage production, were digested with either of two WRF for one of four digestion durations (1-4 months). Samples taken prior to fungal inoculation were used to benchmark the changes that occurred. The degradation of acid detergent lignin was observed in all sample types digested with P. ostreatus; however, the loss of digestible substrate in all samples inoculated with P. ostreatus was high, and therefore, P. ostreatus-digested samples had a lower dry matter digestibility than samples prior to inoculation. Similarly, T. veriscolor-digested leaf underwent a non-selective degradation of the rumen-digestible components of fibre. The changes in chemical composition of leaf, upper stem and lower stem digested with either P. ostreatus or T. veriscolor were not beneficial to the feed value of the forage, and incurred high DM losses. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.
The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol.
Soares, Ana; Jonasson, Karin; Terrazas, Enrique; Guieysse, Benoit; Mattiasson, Bo
2005-03-01
Phanerochaete chrysosporium, Pleurotus ostreatus, Trametes versicolor and Bjerkandera sp. BOL13 were tested for their ability to degrade the endocrine-disrupting compound nonylphenol at an initial concentration of 100 mg l-1. The highest removals were achieved with T. versicolor and Bjerkandera sp. BOL13, which were able to degrade 97 mg l-1 and 99 mg l-1 of nonylphenol in 25 days of incubation, respectively. Nonylphenol removal was associated with the production of laccase by T. versicolor, but the levels of laccase, manganese peroxidase and lignin peroxidase produced by Bjerkandera sp. BOL13 were very low. At 14 degrees C, T. versicolor and Bjerkandera sp. BOL13 sustained the removal of 88 mg l-1 and 79 mg l-1 of nonylphenol, respectively. No pollutant removal was recorded at 4 degrees C, although both fungi could grow at this temperature in the absence of nonylphenol. A microtoxicity assay showed that the fungi produced compounds that were toxic to Vibrio fischerii; and thus a reduction in toxicity could not be correlated with nonylphenol metabolism. T. versicolor and Bjerkandera sp. BOL13 were capable of colonizing soil artificially contaminated with 430 mg kg-1 of nonylphenol. Only 1.3+/-0.1% of nonylphenol remained in the soil after 5 weeks of incubation.
Distinct Growth and Secretome Strategies for Two Taxonomically Divergent Brown Rot Fungi.
Presley, Gerald N; Schilling, Jonathan S
2017-04-01
Brown rot fungi are wood-degrading fungi that employ both oxidative and hydrolytic mechanisms to degrade wood. Hydroxyl radicals that facilitate the oxidative component are powerful nonselective oxidants and are incompatible with hydrolytic enzymes unless they are spatially segregated in wood. Differential gene expression has been implicated in the segregation of these reactions in Postia placenta , but it is unclear if this two-step mechanism varies in other brown rot fungi with different traits and life history strategies that occupy different niches in nature. We employed proteomics to analyze a progression of wood decay on thin wafers, using brown rot fungi with significant taxonomic and niche distances: Serpula lacrymans (Boletales; "dry rot" lumber decay) and Gloeophyllum trabeum (order Gloeophyllales; slash, downed wood). Both fungi produced greater oxidoreductase diversity upon wood colonization and greater glycoside hydrolase activity later, consistent with a two-step mechanism. The two fungi invested very differently, however, in terms of growth (infrastructure) versus protein secretion (resource capture), with the ergosterol/extracted protein ratio being 7-fold higher with S. lacrymans than with G. trabeum In line with the native substrate associations of these fungi, hemicellulase-specific activities were dominated by mannanase in S. lacrymans and by xylanase in G. trabeum Consistent with previous observations, S. lacrymans did not produce glycoside hydrolase 6 (GH6) cellobiohydrolases (CBHs) in this study, despite taxonomically belonging to the order Boletales, which is distinguished among brown rot fungi by having CBH genes. This work suggests that distantly related brown rot fungi employ staggered mechanisms to degrade wood, but the underlying strategies vary among taxa. IMPORTANCE Wood-degrading fungi are important in forest nutrient cycling and offer promise in biotechnological applications. Brown rot fungi are unique among these fungi in that they use a nonenzymatic oxidative pretreatment before enzymatic carbohydrate hydrolysis, enabling selective removal of carbohydrates from lignin. This capacity has independently evolved multiple times, but it is unclear if different mechanisms underpin similar outcomes. Here, we grew fungi directionally on wood wafers and we found similar two-step mechanisms in taxonomically divergent brown rot fungi. The results, however, revealed strikingly different growth strategies, with S. lacrymans investing more in biomass production than secretion of proteins and G. trabeum showing the opposite pattern, with a high diversity of uncharacterized proteins. The "simplified" S. lacrymans secretomic system could help narrow gene targets central to oxidative brown rot pretreatments, and a comparison of its distinctions with G. trabeum and other brown rot fungi (e.g., Postia placenta ) might offer similar traction in noncatabolic genes. Copyright © 2017 American Society for Microbiology.
Alexandropoulou, Maria; Antonopoulou, Georgia; Fragkou, Efsevia; Ntaikou, Ioanna; Lyberatos, Gerasimos
2017-12-01
In this study fungal pretreatment of willow sawdust (WSD) via the white rot fungi Leiotrametes menziesii and Abortiporus biennis was studied and the effect on fractionation of lignocellulosic biomass and biochemical methane potential (BMP), was evaluated. Scanning electron microscopy (SEM) and IR spectroscopy were used to investigate the changes in the structural characteristics of the pretreated WSD. Fungal pretreatment results revealed that A. biennis is more attractive, since it resulted in higher lignin degradation and lower holocellulose uptake. Samples of the 14th and 30th d of cultivation (i.e. the middle and the end of the pretreatment experiment) with both fungi were used for BMP tests and the effect of pretreatment duration was also evaluated. BMP increase by 31 and 43% was obtained due to the cultivation of WSD with A. biennis, for 14 and 30 d, respectively. In addition, combination of biological (after 30 d of cultivation) with alkaline (NaOH 20 g/100 gTS) pretreatment was performed, in order to assess the effect of the chemical agent on biologically pretreated WSD, in terms of lignocellulosic content and BMP. Combination of alkaline with fungal pretreatment led to high lignin degradation for both fungi, while the cellulose and hemicellulose removal efficiencies were higher for combined alkaline and L. menziesii pretreatment. The maximum BMP was observed for the combined alkaline and A. biennis pretreatment and was 12.5 and 50.1% higher than the respective alkaline and fungal pretreatment alone and 115% higher than the respective BMP of raw WSD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; ...
2015-12-04
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Nakazawa, Takehito; Izuno, Ayako; Horii, Masato; Kodera, Rina; Nishimura, Hiroshi; Hirayama, Yuichiro; Tsunematsu, Yuta; Miyazaki, Yasumasa; Awano, Tatsuya; Muraguchi, Hajime; Watanabe, Kenji; Sakamoto, Masahiro; Takabe, Keiji; Watanabe, Takashi; Isagi, Yuji; Honda, Yoichi
2017-12-01
Peroxisomes are well-known organelles that are present in most eukaryotic organisms. Mutant phenotypes caused by the malfunction of peroxisomes have been shown in many fungi. However, these have never been investigated in Agaricomycetes, which include white-rot fungi that degrade wood lignin in nature almost exclusively and play an important role in the global carbon cycle. Based on the results of a forward genetics study to identify mutations causing defects in the ligninolytic activity of the white-rot Agaricomycete Pleurotus ostreatus, we report phenotypes of pex1 disruptants in P. ostreatus, which are defective in two major features of white-rot Agaricomycetes: lignin biodegradation and mushroom formation. Pex1 disruption was also shown to cause defects in the hyphal growth of P. ostreatus on certain sawdust and minimum media. We also demonstrated that pex1 is essential for fruiting initiation in the non-wood decaying Agaricomycete Coprinopsis cinerea. However, unlike P. ostreatus, significant defects in hyphal growth on the aforementioned agar medium were not observed in C. cinerea. This result, together with previous C. cinerea genetic studies, suggests that the regulation mechanisms for the utilization of carbon sources are altered during the evolution of Agaricomycetes or Agaricales. Copyright © 2017 Elsevier Inc. All rights reserved.
Biosoftening of coir fiber using selected microorganisms.
Rajan, Akhila; Senan, Resmi C; Pavithran, C; Abraham, T Emilia
2005-12-01
Coir fiber belongs to the group of hard structural fibers obtained from coconut husk. As lignin is the main constituent of coir responsible for its stiffness, microbes that selectively remove lignin without loss of appreciable amounts of cellulose are extremely attractive in biosoftening. Five isolated strains were compared with known strains of bacteria and fungi. The raw fiber treated with Pseudomonas putida and Phanerocheate chrysosporium produced better softened fiber at 30+/-2 degrees C and neutral pH. FeSO4 and humic acid were found to be the best inducers for P. chrysosporium and P. putida, respectively, while sucrose and dextrose were the best C-sources for both. Biosoftening of unretted coir fibers was more advantageous than the retted fibers. Unlike the weak chemically softened fiber, microbial treatment produced soft, whiter fibers having better tensile strength and elongation (44.6-44.8%) properties. Scanning electron microscopy photos showed the mycelia penetrating the pores of the fiber, removing the tylose plug and degrading lignin.
Lalak, Justyna; Kasprzycka, Agnieszka; Martyniak, Danuta; Tys, Jerzy
2016-01-01
The aim of this work was to analyze the impact of three different moisture contents (MC), at 45% MC, 65% MC, 75% MC, on the degradation of cellulose, hemicellulose, and lignin during fungi treatment by Flammulina velutipes of Agropyron elongatum 'BAMAR' and on biogas production. The analysis of chemical composition shown that F. velutipes had greater selectivity for lignin biodegradation with the highest hemicellulose and lignin removal at 29.1% and 35.4%, respectively, and lowest cellulose removal (20.48%) at 65% MC. F. velutipes cultivated at 65% MC increased biogas production of 398.07Ndm(3)kg(-1)VS(-1), which was 120% higher than the untreated sample. These treatment conditions resulted in 134% more methane yield compared with untreated sample. The results of this study suggested that A. elongatum is a potential biomass for biogas production in agriculture biogas plant and white-rot fungus F. velutipes provides an effective methods for improve biodegradation of A. elongatum. Copyright © 2015 Elsevier Ltd. All rights reserved.
Changes in structural and chemical components of wood delignified by fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchette, R.A.; Otjen, L.; Effland, M.J.
1985-01-01
Cerrena unicolor, Ganoderma applanatum, Ischnoderma resinosum and Poria medulla-panis were associated with birch (Betula papyrifera) wood that had been selectively delignified in the forest. Preferential lignin degradation was not uniformly distributed throughout the decayed wood. A typical white rot causing a simultaneous removal of all cell wall components was also present. In the delignified wood, 95 to 98% of the lignin was removed as well as substantial amounts of hemicelluloses. Scanning and transmission electron microscopy were used to identify the micromorphological and ultrastructural changes that occurred in the cells during degradation. In delignified areas the compound middle lamella was extensivelymore » degraded causing a defibration of cells. The secondary wall, especially the S2 layer, remained relatively unaltered. In simultaneously white-rotted wood all cell wall layers were progressively removed from the lumen toward the middle lamella causing erosion troughs or holes to form. Large voids filled with fungal mycelia resulted from a coalition of degraded areas. Birch wood decayed in laboratory soil-block tests was also intermittently delignified, selective delignification, sparsely distributed throughout the wood, and a simultaneous rot resulting in the removal of all cell wall components were evident. SEM appears to be an appropriate technique for examining selectively delignified decayed wood. 30 references.« less
Solubilization of Australian lignites by microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catcheside, D.E.A.; Mallett, K.J.; Cox, R.E.
1988-01-01
Australia has substantial lignite deposits, particularly in the Latrobe Valley in Victoria where 4.10/sup 10/ tons are accessible with available technologies. The authors have investigated the susceptibility of these coal to solubilization by microorganisms, including species additional to those already identified as active on North American lignites. The data presented here show that acid oxidized lignites from the Latrobe Valley are solubilized by each of seven species of microorganisms previously found to be active on Leonardite and oxidized North American lignites. These are the wood rot fungi: Trametes versicolor, Poria placenta and Phanerochaete chrysosporium, the lignin degrading prokaryote Streptomyces viridosporusmore » and three fungi isolated from lignite in Mississippi: Candida ML-13, Cunninghamelia YML-1 and Penicillium waksmanii.« less
Warming-Induced Changes to the Molecular Composition of Soil Organic Matter
NASA Astrophysics Data System (ADS)
Feng, X.; Simpson, M. J.; Simpson, A. J.; Wilson, K. P.; Williams, D.
2007-12-01
Soil organic matter (SOM) contains two times more carbon than the atmosphere and the potential changes to SOM quantity and quality with global warming are a major concern. It is commonly believed that global warming will accelerate the decomposition of labile SOM compounds while refractory SOM constituents will remain stable. However, experimental evidence of molecular-level changes to SOM composition with global warming is currently lacking. Here we employ SOM biomarkers and nuclear magnetic resonance (NMR) spectroscopy to study SOM composition and degradation in a soil warming experiment in southern Ontario, Canada. The soil warming experiment consisted of a control and a treatment plot in a mixed forest that had a temperature difference of about 5 degrees C for 14 months. Before soil warming the control and treatment plots had the same organic carbon (OC) content and SOM composition. Soil warming significantly increased soil OC content and the abundance of cutin-derived carbon originating from leaf tissues and decreased carbohydrates that are regarded as easily degradable. Lignin components, which are believed to be part of the stable and slowly-cycling SOM, were observed to be in an advanced stage of degradation. This observation is corroborated by increases in fungal biomass in the warmed soil because fungi are considered the primary decomposer of lignin in the soil environment. An NMR study of SOM in the warmed and control plots indicates that alkyl carbon, mainly originating from plant cuticles in the soil, increased in the warmed soil while O-alkyl carbon, primarily occurring in carbohydrates, decreased. Aromatic and phenolic carbon regions, which include the main structures found in lignin, decreased in the warmed soil. These data collectively suggest that there is a great potential for lignin degradation with soil warming, and that the refractory (aromatic) soil carbon storage may be reduced as a result of increased fungal growth in a warmer climate.
Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases
Lambertz, Camilla; Ece, Selin; Fischer, Rainer; Commandeur, Ulrich
2016-01-01
ABSTRACT Lignin is 1 of the 3 major components of lignocellulose. Its polymeric structure includes aromatic subunits that can be converted into high-value-added products, but this potential cannot yet been fully exploited because lignin is highly recalcitrant to degradation. Different approaches for the depolymerization of lignin have been tested, including pyrolysis, chemical oxidation, and hydrolysis under supercritical conditions. An additional strategy is the use of lignin-degrading enzymes, which imitates the natural degradation process. A versatile set of enzymes for lignin degradation has been identified, and research has focused on the production of recombinant enzymes in sufficient amounts to characterize their structure and reaction mechanisms. Enzymes have been analyzed individually and in combinations using artificial substrates, lignin model compounds, lignin and lignocellulose. Here we consider progress in the production of recombinant lignin-degrading peroxidases, the advantages and disadvantages of different expression hosts, and obstacles that must be overcome before such enzymes can be characterized and used for the industrial processing of lignin. PMID:27295524
Johansson, T; Nyman, P O
1993-01-01
The basidiomycete Trametes versicolor is a white-rot fungus and a potent degrader of lignin. The development of extracellular enzyme activities in the fungal culture under physiological conditions of secondary metabolism was investigated. Using the culture medium as starting material a large number of peroxidase forms were purified by the use of chromatographic techniques. Sixteen forms of lignin peroxidase and five forms of manganese(II) peroxidase were separated and the majority of these enzymes was characterized with respect to isoelectric point, molecular mass, and specific enzyme activity. The manganese(II) peroxidases showed a lower isoelectric point (pI 3.2-2.9) and a slightly higher molecular mass (44-45 kDa) than the lignin peroxidases (pI 3.7-3.1, and 41-43 kDa). Specific enzyme activities for the forms of lignin peroxidase, using veratryl alcohol as the substrate, were found to differ considerably. Certain differences in the specific enzyme activity were also observed among the forms of manganese(II) peroxidase. A multitude of peroxidase forms has previously been encountered in another white-rot fungus, Phanerochaete chrysosporium. The discovery that it also occurs in T. versicolor would suggest that this multiplicity could be a common feature among white-rot fungi and may be essential for the biodegradation of lignin.
Contreras, David; Rodríguez, Jaime; Freer, Juanita; Schwederski, Brigitte; Kaim, Wolfgang
2007-09-01
Brown rot fungi degrade wood, in initial stages, mainly through hydroxyl radicals (.OH) produced by Fenton reactions. These Fenton reactions can be promoted by dihydroxybenzenes (DHBs), which can chelate and reduce Fe(III), increasing the reactivity for different substrates. This mechanism allows the extensive degradation of carbohydrates and the oxidation of lignin during wood biodegradation by brown rot fungi. To understand the enhanced reactivity in these systems, kinetics experiments were carried out, measuring .OH formation by the spin-trapping technique of electron paramagnetic resonance spectroscopy. As models of the fungal DHBs, 1,2-dihydroxybenzene (catechol), 2,3-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid were utilized as well as 1,2-dihydroxy-3,5-benzenedisulfonate as a non-Fe(III)-reducing substance for comparison. Higher amounts and maintained concentrations of .OH were observed in the driven Fenton reactions versus the unmodified Fenton process. A linear correlation between the logarithms of complex stability constants and the .OH production was observed, suggesting participation of such complexes in the radical production.
Sánchez-Cantú, Manuel; Ortiz-Moreno, Liliana; Ramos-Cassellis, María E; Marín-Castro, Marco; De la Cerna-Hernández, C
2018-06-01
In this work, the enzymatic cocktail produced by Pleurotus djamor fungi extracted at pH of 4.8 and 5.3 was employed for castor cake solid-state treatment. Proximal, X-ray powder diffraction and scanning electron microscopy analysis of the pristine castor cake were carried out. First, Pleurotus djamor stain was inoculated in castor cake for the enzymatic production and the enzymatic activity was determined. The maximum enzymatic activity was identified at days 14 (65.9 UI/gss) and 11 (140.3 UI/gss) for the enzymatic cocktail obtained at pH 5.3 and 4.8, respectively. Then, the enzymatic cocktail obtained at the highest enzymatic activity days was employed directly over castor cake. Lignin was degraded throughout incubation time achieving a 47 and 45% decrease for the cocktail produced at pH 4.8 and 5.3, correspondingly. These results were corroborated by the SEM and XRD analysis where a higher porosity and xylan degradation were perceived throughout the enzymatic treatment.
Waste treatment of kraft effluents by white-rot fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, R.
1996-10-01
The residual lignin in unbleached kraft pulp is commonly removed to afford a fully bleached pulp through a multi-stage bleaching process consisting of chlorination and alkaline-extraction stages. The effluent from such a bleaching process is of growing environmental concern because it shows a dark brown color and contains numerous chlorinated organic substances. Moreover, this effluent is not easily recycled within a mill recovery system because of the potential corrosion problems created by its high chlorine content. White-rot fungi have even heavily modified lignin such as kraft lignin and atoms demonstrated that kraft bleaching effluent can be rot fungi, in particular,more » Trametes versicolor and this review lecture, the possibility of the application of kraft effluents will be discussed.« less
Hower, J.C.; O'Keefe, J.M.K.; Eble, C.F.; Raymond, A.; Valentim, B.; Volk, T.J.; Richardson, A.R.; Satterwhite, A.B.; Hatch, R.S.; Stucker, J.D.; Watt, M.A.
2011-01-01
The role of fungus in the formation of coal macerals, both as a primary contributor in the form of a fungus fossil/maceral funginite, and in their role in degrading wood, thus producing degraded maceral forms, has been established. Fungus, in the course of breaking down the lignin and cellulose in wood, make the wood more digestible for grazers, such as arthropods. In turn, the remnants of the digested wood and anything else eaten but not completely digested are excreted and can be preserved intact; eaten by other fauna with a repeat of the cycle; or colonized by bacteria and/or coprophilous fungi with or without subsequent preservation. Ultimately, the coprolites can be preserved as a form of macrinite. ?? 2011 Elsevier B.V.
Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China.
Yang, C-X; Wang, T; Gao, L-N; Yin, H-J; Lü, X
2017-12-01
Lignin is an aromatic heteropolymer forming a physical barrier and it is a big challenge in biomass utilization. This paper first investigated lignin-degradation bacteria from rotten wood in Qinling Mountain. Nineteen potential strains were selected and ligninolytic enzyme activities were determined over 84 h. Strains that had higher enzyme activities were selected. Further, the biodegradation of wheat straw lignin and alkali lignin was evaluated indicating that Burkholderia sp. H1 had the highest capability. It was confirmed by gel permeation chromatography and field emission scanning electron microscope that alkali lignin was depolymerized into small fragments. The degraded products were analysed using gas chromatography-mass spectrometry. The total ion chromatograph of products treated for 7 days showed the formation of aromatic compounds, an important intermediate from lignin degradation. Interestingly, they disappeared in 15 days while the aldehyde and ester compounds increased. The results suggest that the lignin-degrading bacteria are abundant in rotten wood and strain H1 has high potential to break down lignin. The diversity of lignin-degrading bacteria in Qinling Mountain is revealed. The study of Burkholderia sp. H1 expands the range of bacteria for lignin degradation and provides novel bacteria for application to lignocellulosic biomass. © 2017 The Society for Applied Microbiology.
Surendran, Arthy; Siddiqui, Yasmeen; Saud, Halimi Mohd; Ali, Nusaibah Syd; Manickam, Sivakumar
2018-05-22
Lignolytic (Lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. In our work, ten naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G.boninense. Additionally, the lignin degrading enzymes were characterised. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin degrading enzymes, when compared between the ten phenolic compounds. The inhibitory potential of the phenolic compounds toward the lignin degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin degrading enzymes were stable in a wide range of pH but were sensitive to higher to temperature. The study demonstrated the inhibitor potential of ten naturally occurring phenolic compounds toward the lignin degrading enzymes of G. boninense with different efficacies. The study has shed a light towards a new management strategy to control BSR in oil palm. It serves as replacement for the existing chemical control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ko, Jae-Jung; Shimizu, Yoshihisa; Ikeda, Kazuhiro; Kim, Seog-Ku; Park, Chul-Hwi; Matsui, Saburo
2009-02-01
This study is designed to investigate the biodegradation of high molecular weight (HMW) lignin under sulfate reducing conditions. With a continuously mesophilic operated reactor in the presence of co-substrates of cellulose, the changes in HMW lignin concentration and chemical structure were analyzed. The acid precipitable polymeric lignin (APPL) and lignin monomers, which are known as degradation by-products, were isolated and detected. The results showed that HMW lignin decreased and showed a maximum degradation capacity of 3.49 mg/l/day. APPL was confirmed as a polymeric degradation by-product and was accumulated in accordance with HMW lignin reduction. We also observed non-linear accumulation of aromatic lignin monomers such as hydrocinnamic acid. Through our experimental results, it was determined that HMW lignin, when provided with a co-substrate of cellulose, is biodegraded through production of APPL and aromatic monomers under anaerobic sulfate reducing conditions with a co-substrate of cellulose.
Kasprzycka, Agnieszka; Lalak-Kańczugowska, Justyna; Tys, Jerzy
2018-05-09
In this study fungal pretreatment of non-sterile tall wheat grass via the white rot fungi Flammulina velutipes was studied and the effect on biodegradability of lignocellulosic biomass and methane production, was evaluated. Degradation of lignin, cellulose, hemicellulose, and dry matter in non-sterile tall wheat grass during 28 days of fungal pretreatment using different inoculum ratio (0%-50%) and moisture content (MC) (45% MC, 65% MC, and 75% MC) were assessed via comparison to untreated biomass. Pretreatment with F. velutipes was most effective at 65% MC and 40% inoculum ratio, resulting in 22% lignin removal. The corresponding methane yields were 181.3 Ndm 3 ·kg VS -1 , which were 280% higher than for the untreated tall wheat grass. Copyright © 2018 Elsevier Ltd. All rights reserved.
Methoxyflavones from New Lingzhi Medicinal Mushroom, Ganoderma lingzhi (Agaricomycetes).
Shimizu, Kuniyoshi; Amen, Yhiya M; Kaifuchi, Satoru
2016-01-01
Ganoderma lingzhi is one of the most famous medicinal fungi in the world. It has been used in folk medicine, especially in East Asian countries. It is also a white-rot fungus with strong wood degradation ability, especially against lignin. Different classes of bioactive natural products have been reported in Ganoderma, including triterpenes, polysaccharides, sterols, and peptides. The triterpenes and polysaccharides are the primary bioactive compounds of Ganoderma. We report for the first time the presence of 3 methoxyflavones as minor constituents in G. linghzi. The 3 compounds were identified based on different spectroscopic techniques, including 1- and 2-dimensional nuclear magnetic resonance (1H-1H correlation spectroscopy, heteronuclear single quantum coherence, and heteronuclear multiple bond correlation) and mass spectrometry (high-resolution electrospray ionization mass spectrometry). Our report provides an approach to a possible biosynthetic pathway for biosynthetic genes in the mushrooms. Another great possibility is that these compounds may exist or be formed through degradation of the components in the woody substrate, such as lignin, and then subsequently translocate to the fruiting bodies.
Horisawa, Sakae; Ando, Hiromasa; Ariga, Osamu; Sakuma, Yoh
2015-12-01
In the present study, ethanol production from polysaccharides or wood chips was conducted in a single reactor under anaerobic conditions using the white rot fungus Schizophyllum commune NBRC 4928, which produces enzymes that degrade lignin, cellulose and hemicellulose. The ethanol yields produced from glucose and xylose were 80.5%, and 52.5%, respectively. The absolute yields of ethanol per microcrystalline cellulose (MCC), xylan and arabinogalactan were 0.26g/g-MCC, 0.0419g/g-xylan and 0.0508g/g-arabinogalactan, respectively. By comparing the actual ethanol yields from polysaccharides with monosaccharide fermentation, it was shown that the rate of saccharification was slower than that in fermentation. S. commune NBRC 4928 is concluded to be suitable for CBP because it can produce ethanol from various types of sugar. From the autoclaved cedar chip, only little ethanol was produced by S. commune NBRC 4928 alone but ethanol production was enhanced by combined use of ethanol fermenting and lignin degrading fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fungal Laccases and Their Applications in Bioremediation
Viswanath, Buddolla; Rajesh, Bandi; Janardhan, Avilala; Kumar, Arthala Praveen; Narasimha, Golla
2014-01-01
Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection. PMID:24959348
Acridine Orange Indicates Early Oxidation of Wood Cell Walls by Fungi
Carl J. Houtman; Peter Kitin; Jon C. D. Houtman; Kenneth E. Hammel; Christopher G. Hunt
2016-01-01
Colonization of wood blocks by brown and white rot fungi rapidly resulted in detectable wood oxidation, as shown by a reduced phloroglucinol response, a loss of autofluorescence, and acridine orange (AO) staining. This last approach is shown to provide a novel method for identifying wood oxidation. When lignin was mildly oxidized, the association between AO and lignin...
The Contribution of Fungal Necromass to Soil Organic Matter Storage
NASA Astrophysics Data System (ADS)
Schreiner, K. M.; Blair, N. E.; Buiser, A.; Egerton-Warburton, L.
2013-12-01
Saprotrophic fungi have the ability to degrade the three most important biopolymers: cellulose, lignin, and chitin, and therefore are key moderators of a globally important flow of carbon. However, little is known about how that carbon is transformed and/or stored in soil organic matter (SOM). Fungi are also known to produce a variety of biopolymers, such as chitin, melanin, glucan, and mucus-like exudates, and it is likely that these compounds contribute to long-term storage of SOM. In fact, recent work with ectomycorrhizal fungi has shown that a portion of the fungal necromass survives after degradation times of a few weeks to one month (e.g. Drigo et al. 2012, Clemmenson et al. 2013). Until now, the potential contribution of other abundant fungi to recalcitrant SOM has been unknown. Soil incubations have been performed with the common saprotrophic fungus, Fusarium avencum. Approximately 80% of the fungal material was found to turnover over on a time period of days, but 15% of the original biomass was left over at the end of the two-month degradation experiment in both laboratory experiments and in situ in the Dixon Prairie of the Chicago Botanic Garden. In both experiments, degradation was performed by a natural soil microbial consortium. Residual fungal material at each point in the decomposition sequence was analyzed using FTIR and thermochemolysis-GCMS with tetramethyl ammonium hydroxide. The recalcitrant fraction contained carbohydrate and amide-linked functional groups, which is consistent with the chitin or chitosan biopolymer. The breakdown of more labile organic carbon (including proteins and ester-linked groups) appears to occur on a more rapid time scale. Additionally, lipid biomarker analyses revealed a succession of microbial degraders in the degradation process. This is the first time a study of this kind has been performed using a widely distributed saprotrophic fungus, and indicates that these fungi are potentially important in long-term C-sequestration in SOM. Clemmensen, K.E., A. Bahr, O. Ovaskainen, A. Dahlberg, A. Ekblad, H. Wallander, J. Stenlid, R.D. Finlay, D.A. Wardle, and B.D. Lindahl (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339: 1615-1618. Drigo, B., I.C. Anderson, G.S.K. Kannangara, J.W.G. Cairney, and D. Johnson (2012) Rapid incorporation of carbon from ectomycorrhizal mycelial necromass into soil fungal communities. Soil Biology and Biochemistry, 49: 4-10.
Deswal, Deepa; Gupta, Rishi; Nandal, Preeti; Kuhad, Ramesh Chander
2014-01-01
The sugarcane bagasse was biologically pretreated with three white-rot fungi; Pleurotus florida, Coriolopsis caperata RCK 2011 and Ganoderma sp. rckk-02, individually under solid-state fermentation. P. florida, C. caperata RCK 2011 and Ganoderma sp. rckk-02 degraded lignin up to 7.91, 5.48 and 5.58%, respectively. The lignocellulolytic enzymes produced by these fungi were also monitored during solid state fermentation of sugarcane bagasse. The fungal fermented sugarcane bagasse when hydrolyzed with crude cellulases from brown-rot fungus, Fomitopsis sp. RCK2010, released comparatively 1.5-2.4 fold higher sugars than in case of untreated sugarcane bagasse. The study demonstrated that white-rot fungal pretreatment improved the amenability of plant material for enzymatic hydrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of biobed composition, moisture, and temperature on the degradation of pesticides.
del Pilar Castillo, Maria; Torstensson, Lennart
2007-07-11
Biobeds retain and degrade pesticides through the presence of a biobed mixture consisting of straw, peat, and soil. The effects of biobed composition, moisture content, and temperature on pesticide degradation were investigated in laboratory studies. Straw produced the main microbial activity in the biobed mixtures as strong positive correlations were observed between straw, respiration, and phenoloxidase content. Most pesticides investigated were dissipated by cometabolic processes, and their dissipation was correlated with respiration and/ or phenoloxidase content. More pesticides were more dissipated at biobed moisture levels of 60% water holding capacity (WHC) than at 30% and 90% WHC, while 20 degrees C gave higher dissipation rates than 2 and 10 degrees C. A straw:peat:soil ratio of 50:25:25% v/v is recommended in field biobeds since this produces high microbial activity and low pH, favorable for lignin-degrading fungi and phenoloxidase activity.
Liers, Christiane; Arnstadt, Tobias; Ullrich, René; Hofrichter, Martin
2011-10-01
The degradation of lignocellulose and the secretion of extracellular oxidoreductases were investigated in beech-wood (Fagus sylvatica) microcosms using 11 representative fungi of four different ecophysiological and taxonomic groups causing: (1) classic white rot of wood (e.g. Phlebia radiata), (2) 'nonspecific' wood rot (e.g. Agrocybe aegerita), (3) white rot of leaf litter (Stropharia rugosoannulata) or (4) soft rot of wood (e.g. Xylaria polymorpha). All strong white rotters produced manganese-oxidizing peroxidases as the key enzymes of ligninolysis (75-2200 mU g(-1)), whereas lignin peroxidase activity was not detectable in the wood extracts. Interestingly, activities of two recently discovered peroxidases - aromatic peroxygenase and a manganese-independent peroxidase of the DyP-type - were detected in the culture extracts of A. aegerita (up to 125 mU g(-1)) and Auricularia auricula-judae (up to 400 mU g(-1)), respectively. The activity of classic peroxidases correlated to some extent with the removal of wood components (e.g. Klason lignin) and the release of small water-soluble fragments (0.5-1.0 kDa) characterized by aromatic constituents. In contrast, laccase activity correlated with the formation of high-molecular mass fragments (30-200 kDa). The differences observed in the degradation patterns allow to distinguish the rot types caused by basidiomycetes and ascomycetes and may be suitable for following the effects of oxidative key enzymes (ligninolytic peroxidases vs. laccases, role of novel peroxidases) during wood decay. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
van Kuijk, Sandra J A; Del Río, José C; Rencoret, Jorge; Gutiérrez, Ana; Sonnenberg, Anton S M; Baars, Johan J P; Hendriks, Wouter H; Cone, John W
2016-01-01
The present work investigated the influence of lignin content and composition in the fungal treatment of lignocellulosic biomass in order to improve rumen degradability. Wheat straw and wood chips, differing in lignin composition, were treated with Lentinula edodes for 0, 2, 4, 8 and 12 wk and the changes occurring during fungal degradation were analyzed using pyrolysis-gas chromatography-mass spectrometry and detergent fiber analysis. L. edodes preferentially degraded lignin, with only limited cellulose degradation, in wheat straw and wood chips, leaving a substrate enriched in cellulose. Syringyl (S)-lignin units were preferentially degraded than guaiacyl (G)-lignin units, resulting in a decreased S/G ratio. A decreasing S/G ratio (wheat straw: r = -0.72, wood chips: r = -0.75) and selective lignin degradation (wheat straw: r = -0.69, wood chips: r = -0.88) were correlated with in vitro gas production (IVGP), a good indicator for rumen degradability. L. edodes treatment increased the IVGP of wheat straw and wood chips. Effects on IVGP were similar for wheat straw and wood chips indicating that lignin content and 3D-structure of cell walls influence in vitro rumen degradability more than lignin composition.
Marinović, Mila; Aguilar-Pontes, Maria Victoria; Zhou, Miaomiao; Miettinen, Otto; de Vries, Ronald P; Mäkelä, Miia R; Hildén, Kristiina
2018-03-01
The basidiomycete white-rot fungus Obba rivulosa, a close relative of Gelatoporia (Ceriporiopsis) subvermispora, is an efficient degrader of softwood. The dikaryotic O. rivulosa strain T241i (FBCC949) has been shown to selectively remove lignin from spruce wood prior to depolymerization of plant cell wall polysaccharides, thus possessing potential in biotechnological applications such as pretreatment of wood in pulp and paper industry. In this work, we studied the time-course of the conversion of spruce by the genome-sequenced monokaryotic O. rivulosa strain 3A-2, which is derived from the dikaryon T241i, to get insight into transcriptome level changes during prolonged solid state cultivation. During 8-week cultivation, O. rivulosa expressed a constitutive set of genes encoding putative plant cell wall degrading enzymes. High level of expression of the genes targeted towards all plant cell wall polymers was detected at 2-week time point, after which majority of the genes showed reduced expression. This implicated non-selective degradation of lignin by the O. rivulosa monokaryon and suggests high variation between mono- and dikaryotic strains of the white-rot fungi with respect to their abilities to convert plant cell wall polymers. Copyright © 2017 Elsevier Inc. All rights reserved.
Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi.
Dias, Albino A; Freitas, Gil S; Marques, Guilhermina S M; Sampaio, Ana; Fraga, Irene S; Rodrigues, Miguel A M; Evtuguin, Dmitry V; Bezerra, Rui M F
2010-08-01
Wheat straw was submitted to a pre-treatment by the basidiomycetous fungi Euc-1 and Irpex lacteus, aiming to improve the accessibility of cellulose towards enzymatic hydrolysis via previous selective bio-delignification. This allowed the increase of substrate saccharification nearly four and three times while applying the basidiomycetes Euc-1 and I. lacteus, respectively. The cellulose/lignin ratio increased from 2.7 in the untreated wheat straw to 5.9 and 4.6 after the bio-treatment by the basidiomycetes Euc-1 and I. lacteus, respectively, thus evidencing the highly selective lignin biodegradation. The enzymatic profile of both fungi upon bio-treatment of wheat straw have been assessed including laccase, manganese-dependent peroxidase, lignin peroxidase, carboxymethylcellulase, xylanase, avicelase and feruloyl esterase activities. The difference in efficiency and selectivity of delignification within the two fungi treatments was interpreted in terms of specific lignolytic enzyme profiles and moderate xylanase and cellulolytic activities. (c) 2010 Elsevier Ltd. All rights reserved.
Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert; ...
2015-02-12
Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. In this paper, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot andmore » brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Finally, our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert
Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. In this paper, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot andmore » brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Finally, our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.« less
Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert; Nagy, Laszlo G.; Koehler, Gage; Ransdell, Anthony S.; Younus, Hina; Chow, Julianna; Chiniquy, Jennifer; Lipzen, Anna; Tritt, Andrew; Sun, Hui; Haridas, Sajeet; LaButti, Kurt; Ohm, Robin A.; Kües, Ursula; Blanchette, Robert A.; Grigoriev, Igor V.; Minto, Robert E.; Hibbett, David S.
2015-01-01
Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white rot fungus Cylindrobasidium torrendii and the brown rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. Cylindrobasidium torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. Fistulina hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition towards a brown rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. PMID:25683379
Floudas, Dimitrios; Held, Benjamin W; Riley, Robert; Nagy, Laszlo G; Koehler, Gage; Ransdell, Anthony S; Younus, Hina; Chow, Julianna; Chiniquy, Jennifer; Lipzen, Anna; Tritt, Andrew; Sun, Hui; Haridas, Sajeet; LaButti, Kurt; Ohm, Robin A; Kües, Ursula; Blanchette, Robert A; Grigoriev, Igor V; Minto, Robert E; Hibbett, David S
2015-03-01
Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. Copyright © 2015 Elsevier Inc. All rights reserved.
Naranjo, Leopoldo; Urbina, Hector; De Sisto, Angela; Leon, Vladimir
2007-01-01
The increasing world demand for fuels makes it necessary to exploit the largest reserve of extra-heavy crude oil (EHCO) of the Orinoco Oil Belt from Venezuela. We propose the use of extracellular oxidative enzymes, in particular, lignin-degrading enzyme systems (LDS) of fungi, for enzymatic improvement of EHCO. Autochthonous non-white rot fungal strains able to use EHCO, and several polycyclic aromatic hydrocarbons (PAHs) as sole carbon source and energy, were isolated from EHCO-polluted soils and identified as belonging to the genera Fusarium, Penicillium , Trichoderma , Aspergillus , Neosartorya, Pseudallescheria, Cladosporium, Pestalotiopsis , Phoma and Paecillomyces. Phenotypic and biochemical assays revealed the ability of these filamentous fungi to synthesize extracellular oxidative enzymes, and suggested a relationship between the LDS and EHCO bioconversion. This work reports, for the first time, the use of o-phenylenediamine dihydrochloride (OPD) as substrate to measure extracellular ligninolytic peroxidases (ELP) in culture broths of filamentous fungi (Fusarium solani HP-1), and constitutes the first formal study of the fungal community associated with the EHCO of the Orinoco Oil Belt. PMID:18833334
Effect of oxidized leachate on degradation of lignin by sulfate-reducing bacteria.
Kim, Jong-Ho; Kim, Moonil; Bae, Wooken
2009-08-01
Municipal solid waste materials (MSWs) in landfills need a long period of stabilization because lignin compounds in MSWs and leachate are not readily biodegraded, but inhibit methanogenic metabolism. Recirculation of leachate into the landfill offers the potential advantage of increasing the rate of decomposition of organic matter. However, the degradation of lignin by leachate recirculation alone is quite difficult. Several recent studies have demonstrated that sulfate-reducing bacteria (SRB) were able to degrade lignin compounds. In this study, batch tests were conducted to investigate the impacts of SRB enrichment on lignin decomposition rates as well as the decomposition of other biodegradable organics. Further, the effects of nitrite and nitrate on lignin degradation rates were also studied. A 16S rRNA assay showed that the SRB used herein, which were obtained by enriching solid waste collected from a closed MSW landfill, were Thaurea sp. and Desulfovibrio sp. Lignin was found to be biodegraded by the SRB and the rate of lignin removal per unit of waste volatile suspended solid was 2.9 mg lignin g(-1) VSS day(- 1). It was found that the initial degradation rate increased under higher initial lignin concentrations. However, the degradation rate during days 6-19 became slower than that during the initial 9 days because lignin consisted of complexly bonded aromatic compounds that were not readily biodegradable. Adding other organics such as lactate seemed to improve the rate and amount of lignin degradation, probably due to the increase in SRB associated with consumption of the additional organics. The lignin removal percentage decreased with increases in oxidized nitrogen (nitrite or nitrate) concentrations, indicating that oxidized nitrogen could inhibit SRB activity. Conclusively, the study verified the existence of SRB in the landfill and showed that the SRB could be activated for the degradation of lignin by the recirculation of the leachate, which is consistent with other studies showing that leachate recirculation could shorten the stabilization period of the landfill.
Early diagenesis of lignin-associated phenolics in the salt marsh grass Spartina alterniflora
NASA Astrophysics Data System (ADS)
Haddad, R. I.; Newell, S. Y.; Martens, C. S.; Fallon, R. D.
1992-10-01
The predepositional stability of lignin in the salt marsh cordgrass Spartina alterniflora was examined in two different degradation studies: one was a traditional litterbag study carried out using post-senescent brown leaves in a North Carolina marsh creek, and the other was a study in which senescing, standing plants were tagged and allowed to undergo in situ degradation in a Sapelo Island, Georgia, salt marsh. Based on results from lignin oxidation product (LOP) analysis of leaves, lignin in the S. alterniflora was shown to be significantly degraded in both studies, with 13 ± 2% and 25 ± 12% of the total lignin mass loss occurring over the 496-day litterbag and 146-day tagged studies, respectively. A comparison of the results from both studies suggests that most of the calculated lignin loss (> 90%) occurs early in the degradation history of the plant, with a significant portion occurring while the plant is still standing in the salt marsh. Further detailed evaluation of this loss demonstrates that selective lignin degradation occurs in S. alterniflora, deriving from the preferential loss of labile lignin moieties. The most labile component, trans-ferulic acid, accounted for 57% and 82% of the total lignin loss in the litterbag and tagged studies, respectively, based on normalization to syringyl-phenol concentrations. Comparison of these two data sets supports the following approximate lignin stability sequence for S. alterniflora:S ≅ Ca ≅ V > P > Fa. Based on measured changes in both the lignin mass loss and the LOP acid/aldehyde ratio, as well as evidence suggesting that degradation occurred under oxic conditions, it is proposed that aromatic ring cleavage was the predominant mechanism of lignin degradation in both studies. In light of these results and those from other recent lignin degradation studies, we discuss the geochemical consequences regarding the usefulness of lignin oxidation products as quantitative tracers of vascular plant-derived organic matter being transported, deposited, and buried in aquatic environments.
Bleaching kraft pulps with white-rot fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, I.D.; Paice, M.G.; Bourbonnais, R.
1996-10-01
Certain white-rot fungi, notably Trametes versicolor, Phanerochaete sordida, and isolate IZU-154 can lower the residual lignin content and increase the brightness of kraft pulps without damaging the pulps` strength or yield. This biological delignification effect can be used in Elemental Chlorine Free and Totally Chlorine Free bleaching sequences. Physical contact between the fungal hyphae and the pulp fibers is not required, but the presence of the living fungus is necessary for continued delignification. In many but not a systems, delignification is correlated with manganese peroxidase activity. Experiments with pulps containing {sup 14}C-labelled lignin indicate that the residual lignin is solubilized,more » but not extensively mineralized, by T. versicolor. The solubilized lignin has the same molecular size as the residual lignin originally present in the pulp. Demethylation of the phenolic rings in the pulp is an early effect of incubation with the fungus.« less
Maqbool, Zahid; Hussain, Sabir; Imran, Muhammad; Mahmood, Faisal; Shahzad, Tanvir; Ahmed, Zulfiqar; Azeem, Farrukh; Muzammil, Saima
2016-09-01
Pesticides are used for controlling the development of various pests in agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistent nature and the anomalies they create. Hence removal of such pesticides from the environment is a topic of interest for the researchers nowadays. During the recent years, use of biological resources to degrade or remove pesticides has emerged as a powerful tool for their in situ degradation and remediation. Fungi are among such bioresources that have been widely characterized and applied for biodegradation and bioremediation of pesticides. This review article presents the perspectives of using fungi for biodegradation and bioremediation of pesticides in liquid and soil media. This review clearly indicates that fungal isolates are an effective bioresource to degrade different pesticides including lindane, methamidophos, endosulfan, chlorpyrifos, atrazine, cypermethrin, dieldrin, methyl parathion, heptachlor, etc. However, rate of fungal degradation of pesticides depends on soil moisture content, nutrient availability, pH, temperature, oxygen level, etc. Fungal strains were found to harbor different processes including hydroxylation, demethylation, dechlorination, dioxygenation, esterification, dehydrochlorination, oxidation, etc during the biodegradation of different pesticides having varying functional groups. Moreover, the biodegradation of different pesticides was found to be mediated by involvement of different enzymes including laccase, hydrolase, peroxidase, esterase, dehydrogenase, manganese peroxidase, lignin peroxidase, etc. The recent advances in understanding the fungal biodegradation of pesticides focusing on the processes, pathways, genes/enzymes and factors affecting the biodegradation have also been presented in this review article.
Lignin decomposition and microbial community in paddy soils: effects of alternating redox conditions
NASA Astrophysics Data System (ADS)
Cerli, Chiara; Liu, Qin; Hanke, Alexander; Kaiser, Klaus; Kalbitz, Karsten
2013-04-01
Paddy soils are characterised by interchanging cycles of anaerobic and aerobic conditions. Such fluctuations cause continuous changes in soil solution chemistry as well as in the composition and physiological responses of the microbial community. Temporary deficiency in oxygen creates conditions favourable to facultative or obligates anaerobic bacteria, while aerobic communities can thrive in the period of water absence. These alterations can strongly affect soil processes, in particular organic matter (OM) accumulation and mineralization. In submerged soils, lignin generally constitutes a major portion of the total OM because of hampered degradation under anoxic conditions. The alternating redox cycles resulting from paddy soil management might promote both degradation and preservation of lignin, affecting the overall composition and reactivity of total and dissolved OM. We sampled soils subjected to cycles of anoxic (rice growing period) and oxic (harvest and growth of other crops) conditions since 700 and 2000 years. We incubated suspended Ap material, sampled from the two paddy plus two corresponding non-paddy control soils under oxic and anoxic condition, for 3 months, interrupted by a short period of three weeks (from day 21 to day 43) with reversed redox conditions. At each sampling time (day 2, 21, 42, 63, 84), we determined lignin-derived phenols (by CuO oxidation) as well as phospholipids fatty acids contents and composition. We aimed to highlight changes in lignin decomposition as related to the potential rapid changes in microbial community composition. Since the studied paddy soils had a long history of wet rice cultivation, the microbial community should be well adapted to interchanging oxic and anoxic cycles, therefore fully expressing its activity at both conditions. In non-paddy soil changes in redox conditions caused modification of quantity and composition of the microbial community. On the contrary, in well-established paddy soils the microbial community appeared to be affected by alternating redox conditions more in quantity that in quality. Bacteria represented the largest portion of the living microorganisms, responding promptly to changes in soil redox status. However we did not detect any sign of lignin biodegradation. Relative short (3 weeks) changes in redox conditions had no effect on lignin decomposition or oxidation state. Also, lignin was not altered during oxic incubation. Since fungi represented only small portion of the microbial biomass in the studied soils, they were obviously not capable to cause much degradation, even under favourable conditions. On the contrary, changes in redox conditions strongly affected lignin extractability, regardless of the initial content and direction of change in both paddy and non-paddy soils. This was likely a result of (partial) dissolution and/or pH-induced changes of the surface properties of Fe and Mn hydrous oxides causing the release of mineral-associated lignin-derived phenols. Thus, we speculate that oxidised lignin fragments produced during the (oxic) dry period do not remain in the soils but percolate with water drainage during the flooding period.
Rahmawati, Noor; Ohashi, Yasunori; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi
2005-01-01
The white rot fungus, Ceriporiopsis subvermispora, is able to degrade lignin in wood without intensive damage to cellulose. Since lignin biodegradation by white rot fungi proceeds by radical reactions, accompanied by the production of a large amount of Fe3+-reductant phenols and reductive radical species in the presence of iron ions, molecular oxygen, and H2O2, C. subvermispora has been proposed to possess a biological system which suppresses the production of a cellulolytic active oxygen species, *OH, by the Fenton reaction. In the present paper, we demonstrate that 1-nonadecene-2,3-dicarboxylic acid (ceriporic acid B), an extracellular metabolite of C. subvermispora, strongly inhibited *OH production and the depolymerization of cellulose by the Fenton reaction in the presence of iron ions, cellulose, H2O2, and a reductant for Fe3+, hydroquinone (HQ), at the physiological pH of the fungus.
Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol.
Yuan, Zhongshun; Cheng, Shuna; Leitch, Mathew; Xu, Chunbao Charles
2010-12-01
Alkaline lignin of a very high molecular weight was successfully degraded into oligomers in a hot-compressed water-ethanol medium with NaOH as the catalyst and phenol as the capping agent at 220-300 degrees C. Under the optimal reaction conditions, i.e., 260 degrees C, 1 h, with the lignin/phenol ratio of 1:1 (w/w), almost complete degradation was achieved, producing <1% solid residue and negligible gas products. The obtained degraded lignin had a number-average molecular weight M(n) and weight-average molecular weight M(w) of 450 and 1000 g/mol respectively, significantly lower than the M(n) and M(w) of 10,000 and 60,000 g/mol of the original lignin. A higher temperature and a longer reaction time favoured phenol combination, but increased the formation of solid residue due to the condensation reactions of the degradation intermediates/products. The degraded lignin products were soluble in organic solvents (such as THF), and were characterized by HPLC/GPC, IR and NMR. A possible mechanism for lignin hydrolytic degradation was also proposed in this study. 2010 Elsevier Ltd. All rights reserved.
Molecular Phylogeny of Heme Peroxidases
NASA Astrophysics Data System (ADS)
Zámocký, Marcel; Obinger, Christian
All currently available gene sequences of heme peroxidases can be phylogenetically divided in two superfamilies and three families. In this chapter, the phylogenetics and genomic distribution of each group are presented. Within the peroxidase-cyclooxygenase superfamily, the main evolutionary direction developed peroxidatic heme proteins involved in the innate immune defense system and in biosynthesis of (iodinated) hormones. The peroxidase-catalase superfamily is widely spread mainly among bacteria, fungi, and plants, and particularly in Class I led to the evolution of bifunctional catalase-peroxidases. Its numerous fungal representatives of Class II are involved in carbon recycling via lignin degradation, whereas Class III secretory peroxidases from algae and plants are included in various forms of secondary metabolism. The family of di-heme peroxidases are predominantly bacteria-inducible enzymes; however, a few corresponding genes were also detected in archaeal genomes. Four subfamilies of dyp-type peroxidases capable of degradation of various xenobiotics are abundant mainly among bacteria and fungi. Heme-haloperoxidase genes are widely spread among sac and club fungi, but corresponding genes were recently found also among oomycetes. All described families herein represent heme peroxidases of broad diversity in structure and function. Our accumulating knowledge about the evolution of various enzymatic functions and physiological roles can be exploited in future directed evolution approaches for engineering peroxidase genes de novo for various demands.
Bacterial extracellular lignin peroxidase
Crawford, Donald L.; Ramachandra, Muralidhara
1993-01-01
A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.
Benner, Ronald; Maccubbin, A. E.; Hodson, Robert E.
1984-01-01
Specifically radiolabeled [14C-lignin]lignocelluloses and [14C-polysaccharide]lignocelluloses were prepared from a variety of marine and freshwater wetland plants including a grass, a sedge, a rush, and a hardwood. These [14C]lignocellulose preparations and synthetic [14C]lignin were incubated anaerobically with anoxic sediments collected from a salt marsh, a freshwater marsh, and a mangrove swamp. During long-term incubations lasting up to 300 days, the lignin and polysaccharide components of the lignocelluloses were slowly degraded anaerobically to 14CO2 and 14CH4. Lignocelluloses derived from herbaceous plants were degraded more rapidly than lignocellulose derived from the hardwood. After 294 days, 16.9% of the lignin component and 30.0% of the polysaccharide component of lignocellulose derived from the grass used (Spartina alterniflora) were degraded to gaseous end products. In contrast, after 246 days, only 1.5% of the lignin component and 4.1% of the polysaccharide component of lignocellulose derived from the hardwood used (Rhizophora mangle) were degraded to gaseous end products. Synthetic [14C]lignin was degraded anaerobically faster than the lignin component of the hardwood lignocellulose; after 276 days, 3.7% of the synthetic lignin was degraded to gaseous end products. Contrary to previous reports, these results demonstrate that lignin and lignified plant tissues are biodegradable in the absence of oxygen. Although lignocelluloses are recalcitrant to anaerobic biodegradation, rates of degradation measured in aquatic sediments are significant and have important implications for the biospheric cycling of carbon from these abundant biopolymers. PMID:16346554
Waldrop, M.P.; Zak, D.R.
2006-01-01
Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations (+57% upper limit) in response to increasing NO 3- in soil solution, but there was no significant change in DOC concentration. In contrast to these patterns, increasing soil solution NO3- in the SMBW soil resulted in significantly greater phenol oxidase activity (+700% upper limit) and a trend toward lower DOC production (-52% lower limit). Nitrate concentration had no effect on microbial respiration or ??-glucosidase or N-acetyl-glucosaminidase activities. Fungal abundance and basidiomycete diversity tended to be highest in the BOWO soil and lowest in the SMBW, but neither displayed a consistent response to NO 3- additions. Taken together, our results demonstrate that oxidative enzyme production by microbial communities responds directly to NO3- deposition, controlling extracellular enzyme activity and DOC flux. The regulation of oxidative enzymes by different microbial communities in response to NO3- deposition highlights the fact that the composition and function of soil microbial communities directly control ecosystem-level responses to environmental change. ?? 2006 Springer Science+Business Media, Inc.
Lignin-degrading Peroxidases from Genome of Selective Ligninolytic Fungus Ceriporiopsis subverispora
Elena Fernandez-Fueyo; Francisco J. Ruiz-Duenas; Yuta Miki; Marta Jesus Martinez; Kenneth E. Hammel; Angel T. Martinez
2012-01-01
Background: The first genome of a selective lignin degrader is available. Results: Its screening shows 26 peroxidase genes, and 5 genes were heterologously expressed and the catalytic properties investigated. Conclusion: Two new peroxidases oxidize simple and dimeric lignin models and efficiently depolymerize lignin. Significance: Although lignin peroxidase and...
Nagy, László G; Riley, Robert; Tritt, Andrew; Adam, Catherine; Daum, Chris; Floudas, Dimitrios; Sun, Hui; Yadav, Jagjit S; Pangilinan, Jasmyn; Larsson, Karl-Henrik; Matsuura, Kenji; Barry, Kerrie; Labutti, Kurt; Kuo, Rita; Ohm, Robin A; Bhattacharya, Sukanta S; Shirouzu, Takashi; Yoshinaga, Yuko; Martin, Francis M; Grigoriev, Igor V; Hibbett, David S
2016-04-01
Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2009-09-29
fluoranthene (45 mCi mmol-1), and 9-14C- phenanthrene (55 mCi mmol-1) (Sigma Chemical), as well as the lignin degradation intermediate, UL-14C- catechol...intermediate involved in lignin degradation and areas where lignin and other more refractory materials are being metabolized may have more rapid mineralization...indicating much of the lignin -derived organic matter is likely from nonwoody tissue (Figure 25). Lignin degradation in sediment has been measured
Ionic Liquid Pretreatment of Lignocellulosic Biomass for Enhanced Enzymatic Delignification.
Moniruzzaman, Muhammad; Goto, Masahiro
2018-05-10
Ionic liquids (ILs), a potentially attractive "green," recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass-the most abundant renewable biomaterial in the world-to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons. Graphical Abstract.
Fungal decomposers of leaf litter from an invaded and native mountain forest of NW Argentina.
Fernandez, Romina Daiana; Bulacio, Natalia; Álvarez, Analía; Pajot, Hipólito; Aragón, Roxana
2017-09-01
The impact of plant species invasions on the abundance, composition and activity of fungal decomposers of leaf litter is poorly understood. In this study, we isolated and compared the relative abundance of ligninocellulolytic fungi of leaf litter mixtures from a native forest and a forest invaded by Ligustrum lucidum in a lower mountain forest of Tucuman, Argentina. In addition, we evaluated the relationship between the relative abundance of ligninocellulolytic fungi and properties of the soil of both forest types. Finally, we identified lignin degrading fungi and characterized their polyphenol oxidase activities. The relative abundance of ligninocellulolytic fungi was higher in leaf litter mixtures from the native forest. The abundance of cellulolytic fungi was negatively related with soil pH while the abundance of ligninolytic fungi was positively related with soil humidity. We identified fifteen genera of ligninolytic fungi; four strains were isolated from both forest types, six strains only from the invaded forest and five strains were isolated only from the native forest. The results found in this study suggest that L. Lucidum invasion could alter the abundance and composition of fungal decomposers. Long-term studies that include an analysis of the nutritional quality of litter are needed, for a more complete overview of the influence of L. Lucidum invasion on fungal decomposers and on leaf litter decomposition.
Roles of small laccases from Streptomyces in lignin degradation.
Majumdar, Sudipta; Lukk, Tiit; Solbiati, Jose O; Bauer, Stefan; Nair, Satish K; Cronan, John E; Gerlt, John A
2014-06-24
Laccases (EC 1.10.3.2) are multicopper oxidases that can oxidize a range of substrates, including phenols, aromatic amines, and nonphenolic substrates. To investigate the involvement of the small Streptomyces laccases in lignin degradation, we generated acid-precipitable polymeric lignin obtained in the presence of wild-type Streptomyces coelicolor A3(2) (SCWT) and its laccase-less mutant (SCΔLAC) in the presence of Miscanthus x giganteus lignocellulose. The results showed that strain SCΔLAC was inefficient in degrading lignin compared to strain SCWT, thereby supporting the importance of laccase for lignin degradation by S. coelicolor A3(2). We also studied the lignin degradation activity of laccases from S. coelicolor A3(2), Streptomyces lividans TK24, Streptomyces viridosporus T7A, and Amycolatopsis sp. 75iv2 using both lignin model compounds and ethanosolv lignin. All four laccases degraded a phenolic model compound (LM-OH) but were able to oxidize a nonphenolic model compound only in the presence of redox mediators. Their activities are highest at pH 8.0 with a low krel/Kapp for LM-OH, suggesting that the enzymes’ natural substrates must be different in shape or chemical nature. Crystal structures of the laccases from S. viridosporus T7A (SVLAC) and Amycolatopsis sp. 75iv2 were determined both with and without bound substrate. This is the first report of a crystal structure for any laccase bound to a nonphenolic β-O-4 lignin model compound. An additional zinc metal binding site in SVLAC was also identified. The ability to oxidize and/or rearrange ethanosolv lignin provides further evidence of the utility of laccase activity for lignin degradation and/or modification.
NASA Astrophysics Data System (ADS)
Abhishek, Amar; Dwivedi, Ashish; Tandan, Neeraj; Kumar, Urwashi
2017-05-01
Continuous discharge of lignin containing colored wastewater from pulp paper mill into the environment has resulted in building up their high level in various aquatic systems. In this study, the chemical texture of kraft lignin in terms of pollution parameters (COD, TOC, BOD, etc.) was quite different and approximately twofold higher as compared to model lignin at same optical density (OD 3.7 at 465 nm) and lignin content (2000 mg/L). For comparative bacterial degradation and detoxification of model and kraft lignin two bacteria Citrobacter freundii and Serratia marcescens were isolated, screened and applied in axenic and mixed condition. Bacterial mixed culture was found to decolorize 87 and 70 % model and kraft lignin (2000 mg/L), respectively; whereas, axenic culture Citrobacter freundii and Serratia marcescens decolorized 64, 60 % model and 50, 55 % kraft lignin, respectively, at optimized condition (34 °C, pH 8.2, 140 rpm). In addition, the mixed bacterial culture also showed the removal of 76, 61 % TOC; 80, 67 % COD and 87, 65 % lignin from model and kraft lignin, respectively. High pollution parameters (like TOC, COD, BOD, sulphate) and toxic chemicals slow down the degradation of kraft lignin as compared to model lignin. The comparative GC-MS analysis has suggested that the interspecies collaboration, i.e., each bacterial strain in culture medium has cumulative enhancing effect on growth, and degradation of lignin rather than inhibition. Furthermore, toxicity evaluation on human keratinocyte cell line after bacterial treatment has supported the degradation and detoxification of model and kraft lignin.
Blánquez, Alba; Ball, Andrew S.; González-Pérez, José Antonio; Jiménez-Morillo, Nicasio T.; González-Vila, Francisco; Arias, M. Enriqueta
2017-01-01
The role of laccase SilA produced by Streptomyces ipomoeae CECT 3341 in lignocellulose degradation was investigated. A comparison of the properties and activities of a laccase-negative mutant strain (SilA−) with that of the wild-type was studied in terms of their ability to degrade lignin from grass lignocellulose. The yields of solubilized lignin (acid precipitable polymeric lignin, APPL) obtained from wheat straw by both strains in Solid State Fermentation (SSF) conditions demonstrated the importance of SilA laccase in lignin degradation with the wild-type showing 5-fold more APPL produced compared with the mutant strain (SilA−). Analytical pyrolysis and FT-IR (Fourier Transform Infrared Spectroscopy) confirmed that the APPL obtained from the substrate fermented by wild-type strain was dominated by lignin derived methoxyphenols whereas those from SilA− and control APPLs were composed mainly of polysaccharides. This is the first report highlighting the role of this laccase in lignin degradation. PMID:29112957
Blánquez, Alba; Ball, Andrew S; González-Pérez, José Antonio; Jiménez-Morillo, Nicasio T; González-Vila, Francisco; Arias, M Enriqueta; Hernández, Manuel
2017-01-01
The role of laccase SilA produced by Streptomyces ipomoeae CECT 3341 in lignocellulose degradation was investigated. A comparison of the properties and activities of a laccase-negative mutant strain (SilA-) with that of the wild-type was studied in terms of their ability to degrade lignin from grass lignocellulose. The yields of solubilized lignin (acid precipitable polymeric lignin, APPL) obtained from wheat straw by both strains in Solid State Fermentation (SSF) conditions demonstrated the importance of SilA laccase in lignin degradation with the wild-type showing 5-fold more APPL produced compared with the mutant strain (SilA-). Analytical pyrolysis and FT-IR (Fourier Transform Infrared Spectroscopy) confirmed that the APPL obtained from the substrate fermented by wild-type strain was dominated by lignin derived methoxyphenols whereas those from SilA- and control APPLs were composed mainly of polysaccharides. This is the first report highlighting the role of this laccase in lignin degradation.
Agaricus bisporus genome sequence: a commentary.
Kerrigan, Richard W; Challen, Michael P; Burton, Kerry S
2013-06-01
The genomes of two isolates of Agaricus bisporus have been sequenced recently. This soil-inhabiting fungus has a wide geographical distribution in nature and it is also cultivated in an industrialized indoor process ($4.7bn annual worldwide value) to produce edible mushrooms. Previously this lignocellulosic fungus has resisted precise econutritional classification, i.e. into white- or brown-rot decomposers. The generation of the genome sequence and transcriptomic analyses has revealed a new classification, 'humicolous', for species adapted to grow in humic-rich, partially decomposed leaf material. The Agaricus biporus genomes contain a collection of polysaccharide and lignin-degrading genes and more interestingly an expanded number of genes (relative to other lignocellulosic fungi) that enhance degradation of lignin derivatives, i.e. heme-thiolate peroxidases and β-etherases. A motif that is hypothesized to be a promoter element in the humicolous adaptation suite is present in a large number of genes specifically up-regulated when the mycelium is grown on humic-rich substrate. The genome sequence of A. bisporus offers a platform to explore fungal biology in carbon-rich soil environments and terrestrial cycling of carbon, nitrogen, phosphorus and potassium. Copyright © 2013 Elsevier Inc. All rights reserved.
Kameshwar, Ayyappa Kumar Sista; Qin, Wensheng
2017-10-01
Lignin, most complex and abundant biopolymer on the earth's surface, attains its stability from intricate polyphenolic units and non-phenolic bonds, making it difficult to depolymerize or separate from other units of biomass. Eccentric lignin degrading ability and availability of annotated genome make Phanerochaete chrysosporium ideal for studying lignin degrading mechanisms. Decoding and understanding the molecular mechanisms underlying the process of lignin degradation will significantly aid the progressing biofuel industries and lead to the production of commercially vital platform chemicals. In this study, we have performed a large-scale metadata analysis to understand the common gene expression patterns of P. chrysosporium during lignin degradation. Gene expression datasets were retrieved from NCBI GEO database and analyzed using GEO2R and Bioconductor packages. Commonly expressed statistically significant genes among different datasets were further considered to understand their involvement in lignin degradation and detoxification mechanisms. We have observed three sets of enzymes commonly expressed during ligninolytic conditions which were later classified into primary ligninolytic, aromatic compound-degrading and other necessary enzymes. Similarly, we have observed three sets of genes coding for detoxification and stress-responsive, phase I and phase II metabolic enzymes. Results obtained in this study indicate the coordinated action of enzymes involved in lignin depolymerization and detoxification-stress responses under ligninolytic conditions. We have developed tentative network of genes and enzymes involved in lignin degradation and detoxification mechanisms by P. chrysosporium based on the literature and results obtained in this study. However, ambiguity raised due to higher expression of several uncharacterized proteins necessitates for further proteomic studies in P. chrysosporium.
Kerr, Janice L.; Baldwin, Darren S.; Tobin, Mark J.; Puskar, Ljiljana; Kappen, Peter; Rees, Gavin N.; Silvester, Ewen
2013-01-01
Organic carbon is a critical component of aquatic systems, providing energy storage and transfer between organisms. Fungi are a major decomposer group in the aquatic carbon cycle, and are one of few groups thought to be capable of breaking down woody (lignified) tissue. In this work we have used high spatial resolution (synchrotron light source) infrared micro-spectroscopy to study the interaction between aquatic fungi and lignified leaf vein material (xylem) from River Redgum trees (E. camaldulensis) endemic to the lowland rivers of South-Eastern Australia. The work provides spatially explicit evidence that fungal colonisation of leaf litter involves the oxidative breakdown of lignin immediately adjacent to the fungal tissue and depletion of the lignin-bound cellulose. Cellulose depletion occurs over relatively short length scales (5–15 µm) and highlights the likely importance of mechanical breakdown in accessing the carbohydrate content of this resource. Low bioavailability compounds (oxidized lignin and polyphenols of plant origin) remain in colonised leaves, even after fungal activity diminishes, and suggests a possible pathway for the sequestration of carbon in wetlands. The work shows that fungi likely have a critical role in the partitioning of lignified material into a biodegradable fraction that can re-enter the aquatic carbon cycle, and a recalcitrant fraction that enters long-term storage in sediments or contribute to the formation of dissolved organic carbon in the water column. PMID:23577169
Transcriptional response of lignin-degrading enzymes to 17α-ethinyloestradiol in two white rots
Přenosilová, L; Křesinová, Z; Amemori, A Slavíková; Cajthaml, T; Svobodová, K
2013-01-01
Fungal, ligninolytic enzymes have attracted a great attention for their bioremediation capabilities. A deficient knowledge of regulation of enzyme production, however, hinders the use of ligninolytic fungi in bioremediation applications. In this work, a transcriptional analyses of laccase and manganese peroxidase (MnP) production by two white rots was combined with determination of pI of the enzymes and the evaluation of 17α-ethinyloestradiol (EE2) degradation to study regulation mechanisms used by fungi during EE2 degradation. In the cultures of Trametes versicolor the addition of EE2 caused an increase in laccase activity with a maximum of 34.2 ± 6.7 U g−1 of dry mycelia that was observed after 2 days of cultivation. It corresponded to a 4.9 times higher transcription levels of a laccase-encoding gene (lacB) that were detected in the cultures at the same time. Simultaneously, pI values of the fungal laccases were altered in response to the EE2 treatment. Like T. versicolor, Irpex lacteus was also able to remove 10 mg l−1 EE2 within 3 days of cultivation. While an increase to I. lacteus MnP activity and MnP gene transcription levels was observed at the later phase of the cultivation. It suggests another metabolic role of MnP but EE2 degradation. PMID:23170978
Plant biomass degrading ability of the coprophilic ascomycete fungus Podospora anserina.
Couturier, Marie; Tangthirasunun, Narumon; Ning, Xie; Brun, Sylvain; Gautier, Valérie; Bennati-Granier, Chloé; Silar, Philippe; Berrin, Jean-Guy
2016-01-01
The degradation of plant biomass is a major challenge towards the production of bio-based compounds and materials. As key lignocellulolytic enzyme producers, filamentous fungi represent a promising reservoir to tackle this challenge. Among them, the coprophilous ascomycete Podospora anserina has been used as a model organism to study various biological mechanisms because its genetics are well understood and controlled. In 2008, the sequencing of its genome revealed a great diversity of enzymes targeting plant carbohydrates and lignin. Since then, a large array of lignocellulose-acting enzymes has been characterized and genetic analyses have enabled the understanding of P. anserina metabolism and development on plant biomass. Overall, these research efforts shed light on P. anserina strategy to unlock recalcitrant lignocellulose deconstruction. Copyright © 2016 Elsevier Inc. All rights reserved.
Gong, Xiaoqiang; Li, Suyan; Sun, Xiangyang; Zhang, Lu; Zhang, Tao; Wei, Le
2017-04-01
Green waste was separately inoculated on day 0 and day 14 with either Trametes versicolor or Phanerochaete chrysosporium to determine their effects on composting time and compost quality. Inoculation with T. versicolor and P. chrysosporium caused more rapid and higher increases in compost temperatures, increased the duration of the thermophilic temperature stage, and reduced the maturity time. Inoculation with T. versicolor and P. chrysosporium greatly increased the quality of the final composts in terms of pH, electrical conductivity, organic matter concentration, C/N ratio, germination index, and nutrient content. Inoculation with T. versicolor and P. chrysosporium also significantly increased the degradation of lignin by 7.1% and 8.2%, respectively, and increased the degradation of cellulose by 10.6% and 13.6%, respectively.
Chen, Ming; Zeng, Guangming; Tan, Zhongyang; Jiang, Min; Li, Hui; Liu, Lifeng; Zhu, Yi; Yu, Zhen; Wei, Zhen; Liu, Yuanyuan; Xie, Gengxin
2011-01-01
Previous works have demonstrated that ligninolytic enzymes mediated effective degradation of lignin wastes. The degrading ability greatly relied on the interactions of ligninolytic enzymes with lignin. Ligninolytic enzymes mainly contain laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP). In the present study, the binding modes of lignin to Lac, LiP and MnP were systematically determined, respectively. Robustness of these modes was further verified by molecular dynamics (MD) simulations. Residues GLU460, PRO346 and SER113 in Lac, residues ARG43, ALA180 and ASP183 in LiP and residues ARG42, HIS173 and ARG177 in MnP were most crucial in binding of lignin, respectively. Interactional analyses showed hydrophobic contacts were most abundant, playing an important role in the determination of substrate specificity. This information is an important contribution to the details of enzyme-catalyzed reactions in the process of lignin biodegradation, which can be used as references for designing enzyme mutants with a better lignin-degrading activity. PMID:21980516
Chandra, Ram; Bharagava, Ram Naresh
2013-11-01
Pulp paper mill effluent has high pollution load due to presence of lignin and its derivatives as major colouring and polluting constituents. In this study, two lignin degrading bacteria IITRL1 and IITRSU7 were isolated and identified as Citrobacter freundii (FJ581026) and Citrobacter sp. (FJ581023), respectively. In degradation study by axenic and mixed culture, mixed bacterial culture was found more effective compared to axenic culture as it decolourized 85 and 62% of synthetic and kraft lignin whereas in axenic conditions, bacterium IITRL1 and IITRSU7 decolourized 61 and 64% synthetic and 49 and 54% kraft lignin, respectively. Further, the mixed bacterial culture also showed the removal of 71, 58% TOC; 78, 53% AOX; 70, 58% COD and 74, 58% lignin from synthetic and kraft lignin, respectively. The ligninolytic enzyme was characterized as manganese peroxidase by SDS-PAGE yielding a single band of 43 KDa. The HPLC analysis of degraded samples showed reduction as well as shifting of peaks compared to control indicating the degradation as well as transformation of compounds. Further, in GC-MS analysis of synthetic and kraft lignin degraded samples, hexadecanoic acid was found as recalcitrant compounds while 2,4,6-trichloro-phenol, 2,3,4,5-tetrachloro-phenol and pentachloro-phenol were detected as new metabolites.
Methylene blue as a lignin surrogate in manganese peroxidase reaction systems.
Goby, Jeffrey D; Penner, Michael H; Lajoie, Curtis A; Kelly, Christine J
2017-11-15
Manganese peroxidase (MnP) is associated with lignin degradation and is thus relevant to lignocellulosic-utilization technologies. Technological applications require reaction mixture optimization. A surrogate substrate can facilitate this if its susceptibility to degradation is easily monitored and mirrors that of lignin. The dye methylene blue (MB) was evaluated in these respects as a surrogate substrate by testing its reactivity in reaction mixtures containing relevant redox mediators (dicarboxylic acids, fatty acids). Relative rates of MB degradation were compared to available literature reports of lignin degradation under similar conditions, and suggest that MB can be a useful lignin surrogate in MnP systems. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orellana, Roberto; Chaput, Gina; Markillie, Lye Meng
The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growthmore » conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, mid-exponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orellana, Roberto; Chaput, Gina; Markillie, Lye Meng
The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growthmore » conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, midexponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future.« less
Orellana, Roberto; Chaput, Gina; Markillie, Lye Meng; Mitchell, Hugh; Gaffrey, Matt; Orr, Galya; DeAngelis, Kristen M
2017-01-01
The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growth conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, mid-exponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future.
Synergistic enzymatic and microbial lignin conversion
Zhao, Cheng; Xie, Shangxian; Pu, Yunqiao; ...
2015-10-02
We represent the utilization of lignin for fungible fuels and chemicals and it's one of the most imminent challenges in modern biorefineries. However, bioconversion of lignin is highly challenging due to its recalcitrant nature as a phenolic heteropolymer. This study addressed the challenges by revealing the chemical and biological mechanisms for synergistic lignin degradation by a bacterial and enzymatic system, which significantly improved lignin consumption, cell growth and lipid yield. The Rhodococcus opacus cell growth increased exponentially in response to the level of laccase treatment, indicating the synergy between laccase and bacterial cells in lignin degradation. Other treatments like ironmore » and hydrogen peroxide showed limited impact on cell growth. Chemical analysis of lignin under various treatments further confirmed the synergy between laccase and cells at the chemical level. 31P nuclear magnetic resonance (NMR) suggested that laccase, R. opacus cell and Fenton reaction reagents promoted the degradation of different types of lignin functional groups, elucidating the chemical basis for the synergistic effects. 31P NMR further revealed that laccase treatment had the most significant impact for degrading the abundant chemical groups. The results were further confirmed by the molecular weight analysis and lignin quantification by the Prussian blue assay. The cell–laccase fermentation led to a 17-fold increase of lipid production. Overall, the study indicated that laccase and R. opacus can synergize to degrade lignin efficiently, likely through rapid utilization of monomers generated by laccase to promote the reaction toward depolymerization. The study provided a potential path for more efficient lignin conversion and development of consolidated lignin conversion.« less
Chaput, Gina; Markillie, Lye Meng; Mitchell, Hugh; Gaffrey, Matt; Orr, Galya; DeAngelis, Kristen M.
2017-01-01
The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growth conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, mid-exponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future. PMID:29049419
Synergistic enzymatic and microbial lignin conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Cheng; Xie, Shangxian; Pu, Yunqiao
We represent the utilization of lignin for fungible fuels and chemicals and it's one of the most imminent challenges in modern biorefineries. However, bioconversion of lignin is highly challenging due to its recalcitrant nature as a phenolic heteropolymer. This study addressed the challenges by revealing the chemical and biological mechanisms for synergistic lignin degradation by a bacterial and enzymatic system, which significantly improved lignin consumption, cell growth and lipid yield. The Rhodococcus opacus cell growth increased exponentially in response to the level of laccase treatment, indicating the synergy between laccase and bacterial cells in lignin degradation. Other treatments like ironmore » and hydrogen peroxide showed limited impact on cell growth. Chemical analysis of lignin under various treatments further confirmed the synergy between laccase and cells at the chemical level. 31P nuclear magnetic resonance (NMR) suggested that laccase, R. opacus cell and Fenton reaction reagents promoted the degradation of different types of lignin functional groups, elucidating the chemical basis for the synergistic effects. 31P NMR further revealed that laccase treatment had the most significant impact for degrading the abundant chemical groups. The results were further confirmed by the molecular weight analysis and lignin quantification by the Prussian blue assay. The cell–laccase fermentation led to a 17-fold increase of lipid production. Overall, the study indicated that laccase and R. opacus can synergize to degrade lignin efficiently, likely through rapid utilization of monomers generated by laccase to promote the reaction toward depolymerization. The study provided a potential path for more efficient lignin conversion and development of consolidated lignin conversion.« less
Orellana, Roberto; Chaput, Gina; Markillie, Lye Meng; ...
2017-10-19
The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growthmore » conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, mid-exponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future.« less
NASA Astrophysics Data System (ADS)
Liu, F.; Wang, X.
2016-12-01
Lignin is widely considered as a major source of stable soil carbon, its content and degradation states are important indicators of soil carbon quality and stability. Few studies have explored the effects of plant communities on lignin characteristics in soils, and studies on lignin characteristics across soil depths resulted in contradictory findings. In this study, we investigated the lignin contents, their degradation states in the soil aggregates across three soil depths for four major plant communities in a subtropical mixed forest in central China. We found that lignin content in the litter of two deciduous species (Carpinus fargesii CF and Fagus Lucida FL) are higher than that in the two evergreen species ( Cyclobalanopsis multinervis CM and Schima parviflora SP). These differences maintained in the soil with a diminished scale. Lignin content showed a decreased trend in soil profiles of all plant communities, but no significant differences of degradation states were observed. The distribution of aggregation fractions was significantly different among plant communities, the SP community have higher percent of >2000 μm fraction (50.46%) and lower percent of <0.25 μm fraction (12.87%) than the CF community (40.05%, 21.90% respectively). The lignin content increased with decreasing aggregations size, however, no significant differences of lignin degradation states was observed among the four size aggregations. These results collectively reveal the influence of plant communities on lignin characteristics in soil, probably through litter input. Similar degradation states of lignin across soil profile and different size aggregates emphasized the importance of lignin movements association with soil water. This knowledge of lignin characteristics across soil profile can improve our understanding of soil carbon stability at different depths and how it may respond to changes in soil conditions.
Lignin degradation in wood-feeding insects.
Geib, Scott M; Filley, Timothy R; Hatcher, Patrick G; Hoover, Kelli; Carlson, John E; Jimenez-Gasco, Maria del Mar; Nakagawa-Izumi, Akiko; Sleighter, Rachel L; Tien, Ming
2008-09-02
The aromatic polymer lignin protects plants from most forms of microbial attack. Despite the fact that a significant fraction of all lignocellulose degraded passes through arthropod guts, the fate of lignin in these systems is not known. Using tetramethylammonium hydroxide thermochemolysis, we show lignin degradation by two insect species, the Asian longhorned beetle (Anoplophora glabripennis) and the Pacific dampwood termite (Zootermopsis angusticollis). In both the beetle and termite, significant levels of propyl side-chain oxidation (depolymerization) and demethylation of ring methoxyl groups is detected; for the termite, ring hydroxylation is also observed. In addition, culture-independent fungal gut community analysis of A. glabripennis identified a single species of fungus in the Fusarium solani/Nectria haematococca species complex. This is a soft-rot fungus that may be contributing to wood degradation. These results transform our understanding of lignin degradation by wood-feeding insects.
Pham, Le Thanh Mai; Kim, Yong Hwan
2014-11-01
Free-hydroxyl phenolic units can decrease or even abort the catalytic activity of lignin peroxidase H8 during oxidation of veratryl alcohol and model lignin dimers, resulting in slow and inefficient lignin degradation. In this study we applied engineered 4-O-methyltransferase from Clarkia breweri to detoxify the inhibiting free-hydroxyl phenolic groups by converting them to methylated phenolic groups. The multistep, enzyme-catalyzed process that combines 4-O-methyltransferase and lignin peroxidase H8 suggested in this work can increase the efficiency of lignin-degradation. This study also suggests approaching the field of multi-enzyme in vitro systems to improve the understanding and development of plant biomass in biorefinery operations. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Robert; Salamov, Asaf; Brown, Daren W.
Basidiomycota (basidiomycetes) make up 32percent of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white rot/brown rotmore » classification paradigm we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically-informed Principal Components Analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs, but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown rot fungi. Our results suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.« less
Riley, Robert; Salamov, Asaf A.; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitrios; Held, Benjamin W.; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika A.; Sun, Hui; LaButti, Kurt M.; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio G.; Walton, Jonathan D.; Blanchette, Robert A.; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David S.; Grigoriev, Igor V.
2014-01-01
Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay. PMID:24958869
The degradation of wheat straw lignin
NASA Astrophysics Data System (ADS)
Liang, Jiaqi
2017-03-01
Lignin is a kind of formed by polymerization of aromatic alcohol, prices are lower and sources of renewable resources. Using lignin as raw material, through the push to resolve together preparation phenolic high value-added fine chemicals alkanes and aromatic hydrocarbons, such as the high grade biofuels, can partly replace fossil fuels as raw material to the production process, biomass resources is an important part of the comprehensive utilization of effective components. In lignin push solve clustering method, catalytic hydrogenolysis can directly to the lignin into liquid fuels, low oxygen content in the use of biofuels shows great potential. In this paper, through the optimization of the reaction time, reaction temperature, catalyst type and solvent type, dosage of catalyst, etc factors, determines the alcoholysis - hydrogen solution two-step degradation of lignin, the optimal process conditions: lignin alcoholysis under 50% methanol and NaOH catalyst in the solution, the lignin in methanol solution and 50% hydrogen solution under the Pd/C catalyst. In this process, the degradation of lignin yield can reach 42%.
Chemical characterization and sorption capacity measurements of degraded newsprint from a landfill
Chen, Lixia; Nanny, Mark A.; Knappe, Detlef R. U.; Wagner, Travis B.; Ratasuk, Nopawan
2004-01-01
Newsprint samples collected from 12−16 ft (top layer (TNP)), 20−24 ft (middle layer (MNP)), and 32−36 ft (bottom layer (BNP)) below the surface of the Norman Landfill (NLF) were characterized by infrared (IR) spectroscopy, cross-polarization, magic-angle spinning 13C nuclear magnetic resonance (CP-MAS 13C NMR) spectroscopy, and tetramethylammonium hydroxide (TMAH) thermochemolysis gas chromatography/mass spectrometry (GC/MS). The extent of NLF newsprint degradation was evaluated by comparing the chemical composition of NLF newsprint to that of fresh newsprint (FNP) and newsprint degraded in the laboratory under methanogenic conditions (DNP). The O-alkyl/alkyl, cellulose/lignin, and lignin/resin acid ratios showed that BNP was the most degraded, and that all three NLF newsprint samples were more degraded than DNP. 13C NMR and TMAH thermochemolysis data demonstrated selective enrichment of lignin over cellulose, and TMAH thermochemolysis further exhibited selective enrichment of resin acids over lignin. In addition, the crystallinity of cellulose in NLF newsprint samples was significantly lower relative to that of FNP and DNP as shown by 13C NMR spectra. The yield of lignin monomers from TMAH thermochemolysis suggested that hydroxyl groups were removed from the propyl side chain of lignin during the anaerobic decomposition of newsprint in the NLF. Moreover, the vanillyl acid/aldehyde ratio, which successfully describes aerobic lignin degradation, was not a good indicator of the anaerobic degradation of lignin on the basis of the TMAH data. The toluene sorption capacity increased as the degree of newsprint degradation increased or as the O-alkyl/alkyl ratio of newsprint decreased. The results of this study further verified that the sorbent O-alkyl/alkyl ratio is useful for predicting sorption capacities of natural organic materials for hydrophobic organic contaminants.
Sana, Barindra; Chia, Kuan Hui Burton; Raghavan, Sarada S; Ramalingam, Balamurugan; Nagarajan, Niranjan; Seayad, Jayasree; Ghadessy, Farid J
2017-01-01
Lignin is a potential biorefinery feedstock for the production of value-added chemicals including vanillin. A huge amount of lignin is produced as a by-product of the paper industry, while cellulosic components of plant biomass are utilized for the production of paper pulp. In spite of vast potential, lignin remains the least exploited component of plant biomass due to its extremely complex and heterogenous structure. Several enzymes have been reported to have lignin-degrading properties and could be potentially used in lignin biorefining if their catalytic properties could be improved by enzyme engineering. The much needed improvement of lignin-degrading enzymes by high-throughput selection techniques such as directed evolution is currently limited, as robust methods for detecting the conversion of lignin to desired small molecules are not available. We identified a vanillin-inducible promoter by RNAseq analysis of Escherichia coli cells treated with a sublethal dose of vanillin and developed a genetically programmed vanillin-sensing cell by placing the 'very green fluorescent protein' gene under the control of this promoter. Fluorescence of the biosensing cell is enhanced significantly when grown in the presence of vanillin and is readily visualized by fluorescence microscopy. The use of fluorescence-activated cell sorting analysis further enhances the sensitivity, enabling dose-dependent detection of as low as 200 µM vanillin. The biosensor is highly specific to vanillin and no major response is elicited by the presence of lignin, lignin model compound, DMSO, vanillin analogues or non-specific toxic chemicals. We developed an engineered E. coli cell that can detect vanillin at a concentration as low as 200 µM. The vanillin-sensing cell did not show cross-reactivity towards lignin or major lignin degradation products including vanillin analogues. This engineered E. coli cell could potentially be used as a host cell for screening lignin-degrading enzymes that can convert lignin to vanillin.
Bioconversion of sugar cane crop residues with white-rot fungiPleurotus sp.
Ortega, G M; Martínez, E O; Betancourt, D; González, A E; Otero, M A
1992-07-01
Four mushroom strains ofPleurotus spp. were cultivated on sugar cane crop residues for 30 days at 26°C. Biochemical changes affected the substrate as a result of fungal growth, in terms of nitrogen, lignin, cellulose and hemicellulose contents. All strains showed a strong ligninolytic activity together with variable cellulolytic and xylanolytic action.Pleurotus sajor-caju attacked lignin and cellulose at the same rate, showing a degradation of 47% and 55%, respectively. A better balance was shown by theP. ostreatus-P. pulmonarius hybrid, which exhibited the poorest cellulolytic action (39%) and the highest ligninolytic activity (67%). The average composition of mushroom fruit bodies, in terms of nitrogen, carbohydrates, fats and amino acid profiles, was determined. Crude protein and total carbohydrate varied from 23% to 33% and 36% to 68% of dry matter, respectively. Fat ranged from 3.3% to 4.7% and amino acid content from 12.2% to 22.2%. Slight evidence for a nitrogen fixing capability was encountered in the substrate to fruit body balance.
Lv, Yuancai; Chen, Yuancai; Sun, Shiying; Hu, Yongyou
2014-03-01
The mutual interactions among the consortium constructed by four indigenous bacteria and five inter-kingdom fusants and the effects of nitrogen and carbon supplementations on lignin degradation and laccase activity were investigated. Analyzed by Plackett-Burman and central composite design, the microbial consortium were optimized, Bacillus sp. (B) and PE-9 and Pseudomonas putida (Pp) and PE-9 had significant interactions on lignin degradation based on a 5% level of significance. The nitrogen and carbon supplementations played an important role in lignin degradation and laccase production. The ultimate lignin degradation efficiency of 96.0% and laccase activity of 268U/L were obtained with 0.5g/L of ammonium chloride and 2g/L of sucrose. Results suggested that a stable and effective microbial consortium in alkalescent conditions was successfully achieved through the introduction of fusants, which was significant for its industrial application. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishiwatari, Ryoshi; Uzaki, Minoru
1987-02-01
A vertical profile of lignin in the upper 700 m layer of a 1400 m sediment core of Lake Biwa, an oligotrophic freshwater lake in Japan, was determined using a CuO oxidative degradation method. The results indicated that lignin is found throughout the core, demonstrating lignin to be very stable for over 0.6 million years. Moreover, the upper 250 m (approximately 0.6 million years old) segment of the sediment core was investigated to determine the apparent long term degradation rate of lignin. A downward lignin concentration decrease is observed over the upper 250 m of the core which corresponds to a calculated half life of at least approximately 40 × 10 4 years, assuming that lignin decrease is due to its in situ degradation (diagenesis).
NASA Astrophysics Data System (ADS)
Ward, N. D.; Keil, R. G.; Medeiros, P. M.; Brito, D.; Krusche, A. V.; Richey, J. E.
2012-12-01
The most abundant biochemicals on land are cellulose, hemicellulose, and lignin. Lignin, alone, composes roughly 30% of the organic carbon (OC) in the terrestrial biosphere (Boerjan et al., 2003) and a significant portion of the OC mobilized into stream and river networks worldwide. Here we present a synthesis of several studies examining (i) the mobilization dynamics/compositional changes in dissolved lignin during rapid storm events in small temperate streams (Hood Canal, WA, USA), and (ii) the respiration dynamics/biological overturning of dissolved (and particulate) lignin in the Amazon River mainstem. Rapid sampling (3 hour intervals) during short-term rainfall events has revealed that the concentration of dissolved lignin phenols (as well as DOC) in small temperate streams is strongly correlated with river discharge (Ward et al., 2012). Additionally, rapid discharge increases resulted in an increase in Ad/Al and C/V ratios and decrease in the S/V ratio of dissolved lignin phenols, indicating a mobilization of relatively degraded non-woody/gymnosperm-derived material in the dissolved phase during storms occurring after a long dry period. We hypothesize that sorption to soil surfaces imparts an additional control on lignin mobilization: degraded phenols are relatively more soluble than their non-degraded counterparts and are easily mobilized by rapid flow, whereas non-degraded phenols are slowly mobilized by base flow and continuously degraded in soils. Once lignin is mobilized into the aquatic setting it is often assumed to be refractory. However, evidence in the Amazon River mainstem suggests the contrary. We have assessed the biodegradability of dissolved (and particulate) lignin, as well as a vast suite (~120) of similar phenolic compounds with a series of incubation experiments performed on four Amazon River cruises. We estimate that on average the degradation of lignin and similar phenolic compounds supports 30-50% of bulk respiration rates in the river, implying that lignin may be a highly important organic matter fuel for CO2 outgassing from the world's inland waters. Contrary to bulk respiration rates, which poorly correlate with bulk OC concentrations, the respiration of lignin appears to be almost entirely controlled by substrate composition. Lignin (and OC) concentrations and lignin degradation rates both correlate well with the seasonal hydrograph in the Amazon (Ward et al., submitted). Based on the measurements made here, and by others (Hedges et al., 1988; Field et al., 1998; Houghton et al., 2001; Malhi et al., 2008; Bose et al., 2009) we estimate that roughly 80 Tg C of lignin is sequestered in Amazonian soils annually, roughly 40% of this lignin is respired in soils, 55% is respired within the river continuum, and less than 5% is delivered to the ocean.
Regulation of Coal Polymer Degradation by Fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
During this reporting period we have further studied the oxidation of soluble coal macromolecules by lignin peroxidase from Phanerochaete chrysosporium . Previous studies by others have suggested that a soluble fraction (coal macromolecule B-111) from a nitric acid solubilized North Dakota Lignite is depolymerized by this enzyme. Our investigations indicate that fraction B-111 is a substrate for lignin peroxidase as this material is decolorized in the presence of lignin peroxidase H8 and hydrogen peroxide. Of interest, however, is the observation that little, if any, depolymerization of this material occurs. Instead, it appears that lignin peroxidase and coal macromolecule B-111 formmore » a precipitate. These results are similar to those observed in our investigations of lignin peroxidase mediated oxidation of oxalate solubilize coal macromolecule. Previous studies in our laboratory using a spectrophotometric assay suggested that, in addition to oxalate, several other fungal metabolites are able to solubilize leonardite. We have reinvestigated this phenomenon using a more reliable gravimetric procedure for assessing solubilization. Our results confirm our earlier findings that malate, oxaloacetate and citrate are effective solubilizing agents whereas succinate, fumarate and x-ketoglutarate solubilize relatively small amounts of leonardite. Finally, we have studied the composition of the insoluble material remaining following extensive solubilization by sodium oxalate. The ratio of hydrogen to carbon is increased in the insoluble material relative to the parent leonardite. However, the ratio of oxygen to carbon is also increased in the insoluble material. Thus, the insoluble material does not appear to be more highly reduced that the parent leonardite and is not likely to be a better fuel that the parent material.« less
DeAngelis, Kristen M.; Sharma, Deepak; Varney, Rebecca; Simmons, Blake; Isern, Nancy G.; Markilllie, Lye Meng; Nicora, Carrie; Norbeck, Angela D.; Taylor, Ronald C.; Aldrich, Joshua T.; Robinson, Errol W.
2013-01-01
Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells. The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by tropical soil bacteria make these organisms useful templates for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1 was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source of the isolate was tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play an important role in decomposition. We have used transcriptomics and proteomics to examine the observed increased growth of SCF1 grown on media amended with lignin compared to unamended growth. Proteomics suggested accelerated xylose uptake and metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. This suggested the use of lignin as terminal electron acceptor. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate moderately significant decreased xylose concentrations as well as increased metabolic products acetate and formate in stationary phase in lignin-amended compared to unamended growth conditions. Our data show the advantages of a multi-omics approach toward providing insights as to how lignin may be used in nature by microorganisms coping with poor carbon availability. PMID:24065962
Deangelis, Kristen M; Sharma, Deepak; Varney, Rebecca; Simmons, Blake; Isern, Nancy G; Markilllie, Lye Meng; Nicora, Carrie; Norbeck, Angela D; Taylor, Ronald C; Aldrich, Joshua T; Robinson, Errol W
2013-01-01
Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells. The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by tropical soil bacteria make these organisms useful templates for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1 was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source of the isolate was tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play an important role in decomposition. We have used transcriptomics and proteomics to examine the observed increased growth of SCF1 grown on media amended with lignin compared to unamended growth. Proteomics suggested accelerated xylose uptake and metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. This suggested the use of lignin as terminal electron acceptor. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate moderately significant decreased xylose concentrations as well as increased metabolic products acetate and formate in stationary phase in lignin-amended compared to unamended growth conditions. Our data show the advantages of a multi-omics approach toward providing insights as to how lignin may be used in nature by microorganisms coping with poor carbon availability.
Transcriptional response of lignin-degrading enzymes to 17α-ethinyloestradiol in two white rots.
Přenosilová, L; Křesinová, Z; Amemori, A Slavíková; Cajthaml, T; Svobodová, K
2013-05-01
Fungal, ligninolytic enzymes have attracted a great attention for their bioremediation capabilities. A deficient knowledge of regulation of enzyme production, however, hinders the use of ligninolytic fungi in bioremediation applications. In this work, a transcriptional analyses of laccase and manganese peroxidase (MnP) production by two white rots was combined with determination of pI of the enzymes and the evaluation of 17α-ethinyloestradiol (EE2) degradation to study regulation mechanisms used by fungi during EE2 degradation. In the cultures of Trametes versicolor the addition of EE2 caused an increase in laccase activity with a maximum of 34.2 ± 6.7 U g⁻¹ of dry mycelia that was observed after 2 days of cultivation. It corresponded to a 4.9 times higher transcription levels of a laccase-encoding gene (lacB) that were detected in the cultures at the same time. Simultaneously, pI values of the fungal laccases were altered in response to the EE2 treatment. Like T. versicolor, Irpex lacteus was also able to remove 10 mg l⁻¹ EE2 within 3 days of cultivation. While an increase to I. lacteus MnP activity and MnP gene transcription levels was observed at the later phase of the cultivation. It suggests another metabolic role of MnP but EE2 degradation. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Yuta Miki; Rebecca Pogni; Sandra Acebes; Fatima Lucas; Elena Fernandez-Fueyo; Maria Camilla Baratto; Maria I. Fernandez; Vivian De Los Rios; Francisco J. Ruiz-duenas; Adalgisa Sinicropi; Riccardo Basosi; Kenneth E. Hammel; Victor Guallar; Angel T. Martinez
2013-01-01
LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2...
Evidence for Lignin Oxidation by the Giant Panda Fecal Microbiome
Zhou, Peng; Chang, Fei; Hong, Yuzhi; Zhang, Xuecheng; Peng, Hui; Xiao, Yazhong
2012-01-01
The digestion of lignin and lignin-related phenolic compounds from bamboo by giant pandas has puzzled scientists because of the lack of lignin-degrading genes in the genome of the bamboo-feeding animals. We constructed a 16S rRNA gene library from the microorganisms derived from the giant panda feces to identify the possibility for the presence of potential lignin-degrading bacteria. Phylogenetic analysis showed that the phylotypes of the intestinal bacteria were affiliated with the phyla Proteobacteria (53%) and Firmicutes (47%). Two phylotypes were affiliated with the known lignin-degrading bacterium Pseudomonas putida and the mangrove forest bacteria. To test the hypothesis that microbes in the giant panda gut help degrade lignin, a metagenomic library of the intestinal bacteria was constructed and screened for clones that contained genes encoding laccase, a lignin-degrading related enzyme. A multicopper oxidase gene, designated as lac51, was identified from a metagenomic clone. Sequence analysis and copper content determination indicated that Lac51 is a laccase rather than a metallo-oxidase and may work outside its original host cell because it has a TAT-type signal peptide and a transmembrane segment at its N-terminus. Lac51 oxidizes a variety of lignin-related phenolic compounds, including syringaldazine, 2,6-dimethoxyphenol, ferulic acid, veratryl alcohol, guaiacol, and sinapinic acid at conditions that simulate the physiologic environment in giant panda intestines. Furthermore, in the presence of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), syringic acid, or ferulic acid as mediators, the oxidative ability of Lac51 on lignin was promoted. The absorbance of lignin at 445 nm decreased to 36% for ABTS, 51% for syringic acid, and 51% for ferulic acid after incubation for 10 h. Our findings demonstrate that the intestinal bacteria of giant pandas may facilitate the oxidation of lignin moieties, thereby clarifying the digestion of bamboo lignin by the animal. PMID:23209704
Xiong, X Q; Liao, H D; Ma, J S; Liu, X M; Zhang, L Y; Shi, X W; Yang, X L; Lu, X N; Zhu, Y H
2014-02-01
This study focused on an endophytic bacterial strain, Pantoea sp. Sd-1, which can be used to degrade lignin and rice straw. This strain was isolated from rice seeds by an optimized surface sterilization method. Pantoea sp. Sd-1 showed exceptional ability to degrade rice straw and lignin. In rice straw or kraft lignin-containing medium supplemented with 1% glucose and 0.5% peptone, Pantoea sp. Sd-1 effectively reduced the rice straw mass weight by 54.5% after 6 days of treatment. The strain was also capable of reducing the lignin colour (52.4%) and content (69.1%) after 4 days of incubation. The findings suggested that the rice endophytic bacterium Pantoea sp. Sd-1 could be applied for the degradation of lignocellulose biomass, such as rice straw. Rice straw, an abundant agricultural by-product in China, is very difficult to degrade because of its high lignin content. Due to the immense environmental adaptability and biochemical versatility of bacteria, endophytic bacteria are useful resources for biodegradation. In this study, we screened for endophytic bacteria capable of biodegrading rice straw and lignin and obtained one strain, Pantoea sp. Sd-1, with suitable characteristics. Sd-1 could be used for degradation of rice straw and lignin, and may play an important role in biodegradation of this agricultural by-product. © 2013 The Society for Applied Microbiology.
Katahira, Rui; Sluiter, Justin B; Schell, Daniel J; Davis, Mark F
2013-04-03
The lignin content measured after dilute sulfuric acid pretreatment of corn stover indicates more lignin than could be accounted for on the basis of the untreated corn stover lignin content. This phenomenon was investigated using a combination of (13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy and lignin removal using acid chlorite bleaching. Only minimal contamination with carbohydrates and proteins was observed in the pretreated corn stover. Incorporating degradation products from sugars was also investigated using (13)C-labeled sugars. The results indicate that sugar degradation products are present in the pretreatment residue and may be intimately associated with the lignin. Studies comparing whole corn stover (CS) to extractives-free corn stover [CS(Ext)] clearly demonstrated that extractives are a key contributor to the high-lignin mass balance closure (MBC). Sugars and other low molecular weight compounds present in plant extractives polymerize and form solids during pretreatment, resulting in apparent Klason lignin measurements that are biased high.
Owen, Benjamin C; Haupert, Laura J; Jarrell, Tiffany M; Marcum, Christopher L; Parsell, Trenton H; Abu-Omar, Mahdi M; Bozell, Joseph J; Black, Stuart K; Kenttämaa, Hilkka I
2012-07-17
In the search for a replacement for fossil fuel and the valuable chemicals currently obtained from crude oil, lignocellulosic biomass has become a promising candidate as an alternative biorenewable source for crude oil. Hence, many research efforts focus on the extraction, degradation, and catalytic transformation of lignin, hemicellulose, and cellulose. Unfortunately, these processes result in the production of very complex mixtures. Further, while methods have been developed for the analysis of mixtures of oligosaccharides, this is not true for the complex mixtures generated upon degradation of lignin. For example, high-performance liquid chromatography/multiple stage tandem mass spectrometry (HPLC/MS(n)), a tool proven to be invaluable in the analysis of complex mixtures derived from many other biopolymers, such as proteins and DNA, has not been implemented for lignin degradation products. In this study, we have developed an HPLC separation method for lignin degradation products that is amenable to negative-ion-mode electrospray ionization (ESI doped with NaOH), the best method identified thus far for ionization of lignin-related model compounds without fragmentation. The separated and ionized compounds are then analyzed by MS(3) experiments to obtain detailed structural information while simultaneously performing high-resolution measurements to determine their elemental compositions in the two parts of a commercial linear quadrupole ion trap/Fourier-transform ion cyclotron resonance mass spectrometer. A lignin degradation product mixture was analyzed using this method, and molecular structures were proposed for some components. This methodology significantly improves the ability to analyze complex product mixtures that result from degraded lignin.
Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J
2017-06-01
Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.
Rytioja, Johanna; Hildén, Kristiina; Di Falco, Marcos; Zhou, Miaomiao; Aguilar-Pontes, Maria Victoria; Sietiö, Outi-Maaria; Tsang, Adrian; de Vries, Ronald P; Mäkelä, Miia R
2017-03-01
The ability to obtain carbon and energy is a major requirement to exist in any environment. For several ascomycete fungi, (post-)genomic analyses have shown that species that occupy a large variety of habitats possess a diverse enzymatic machinery, while species with a specific habitat have a more focused enzyme repertoire that is well-adapted to the prevailing substrate. White-rot basidiomycete fungi also live in a specific habitat, as they are found exclusively in wood. In this study, we evaluated how well the enzymatic machinery of the white-rot fungus Dichomitus squalens is tailored to degrade its natural wood substrate. The transcriptome and exoproteome of D. squalens were analyzed after cultivation on two natural substrates, aspen and spruce wood, and two non-woody substrates, wheat bran and cotton seed hulls. D. squalens produced ligninolytic enzymes mainly at the early time point of the wood cultures, indicating the need to degrade lignin to get access to wood polysaccharides. Surprisingly, the response of the fungus to the non-woody polysaccharides was nearly as good a match to the substrate composition as observed for the wood polysaccharides. This indicates that D. squalens has preserved its ability to efficiently degrade plant biomass types not present in its natural habitat. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; ...
2014-12-04
Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on freshcut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genesmore » involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea’s extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.« less
Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Dueñas, Francisco J.; Held, Benjamin; Canessa, Paulo; Larrondo, Luis F.; Schmoll, Monika; Druzhinina, Irina S.; Kubicek, Christian P.; Gaskell, Jill A.; Kersten, Phil; St. John, Franz; Glasner, Jeremy; Sabat, Grzegorz; Splinter BonDurant, Sandra; Syed, Khajamohiddin; Yadav, Jagjit; Mgbeahuruike, Anthony C.; Kovalchuk, Andriy; Asiegbu, Fred O.; Lackner, Gerald; Hoffmeister, Dirk; Rencoret, Jorge; Gutiérrez, Ana; Sun, Hui; Lindquist, Erika; Barry, Kerrie; Riley, Robert; Grigoriev, Igor V.; Henrissat, Bernard; Kües, Ursula; Berka, Randy M.; Martínez, Angel T.; Covert, Sarah F.; Blanchette, Robert A.; Cullen, Daniel
2014-01-01
Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes. PMID:25474575
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko
Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on freshcut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genesmore » involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea’s extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.« less
Wang, Qing-Fang; Niu, Li-Li; Jiao, Jiao; Guo, Na; Zang, Yu-Ping; Gai, Qing-Yan; Fu, Yu-Jie
2017-11-01
Combined treatment of a novel fungal endophyte Myrothecium verrucaria coupled with ultrasound assistance was conducted to enhance lignin degradation in birch sawdust. The optimum treatment conditions were confirmed as the materials to liquid ratio 1:20, temperature 30°C, time 4days and pH 7, respectively. The results showed that the combined treatment led to the lignin degradation reaching 67.95±2.14%, while the lignin degradation were 45.50±2.12% and 13.75±0.66% with separate fungal treatment and ultrasound treatment, respectively. Moreover, SEM and FTIR analysis indicated that combined treatment significantly altered surface morphology and chemical structure of birch sawdust. The combined treatment greatly increased lignin removal during short time in mild environment. Therefore, these results demonstrated that the combined treatment of fungal endophyte coupled with ultrasound assistance has the high potential for the removal lignin in lignocellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.
Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate.
Cortes-Tolalpa, Larisa; Norder, Justin; van Elsas, Jan Dirk; Falcao Salles, Joana
2018-03-01
The microbial degradation of plant-derived compounds under salinity stress remains largely underexplored. The pretreatment of lignocellulose material, which is often needed to improve the production of lignocellulose monomers, leads to high salt levels, generating a saline environment that raises technical considerations that influence subsequent downstream processes. Here, we constructed halotolerant lignocellulose degrading microbial consortia by enriching a salt marsh soil microbiome on a recalcitrant carbon and energy source, i.e., wheat straw. The consortia were obtained after six cycles of growth on fresh substrate (adaptation phase), which was followed by four cycles on pre-digested (highly-recalcitrant) substrate (stabilization phase). The data indicated that typical salt-tolerant bacteria made up a large part of the selected consortia. These were "trained" to progressively perform better on fresh substrate, but a shift was observed when highly recalcitrant substrate was used. The most dominant bacteria in the consortia were Joostella marina, Flavobacterium beibuense, Algoriphagus ratkowskyi, Pseudomonas putida, and Halomonas meridiana. Interestingly, fungi were sparsely present and negatively affected by the change in the substrate composition. Sarocladium strictum was the single fungal strain recovered at the end of the adaptation phase, whereas it was deselected by the presence of recalcitrant substrate. Consortia selected in the latter substrate presented higher cellulose and lignin degradation than consortia selected on fresh substrate, indicating a specialization in transforming the recalcitrant regions of the substrate. Moreover, our results indicate that bacteria have a prime role in the degradation of recalcitrant lignocellulose under saline conditions, as compared to fungi. The final consortia constitute an interesting source of lignocellulolytic haloenzymes that can be used to increase the efficiency of the degradation process, while decreasing the associated costs.
Diverse Bacteria with Lignin Degrading Potentials Isolated from Two Ranks of Coal
Wang, Lu; Nie, Yong; Tang, Yue-Qin; Song, Xin-Min; Cao, Kun; Sun, Li-Zhu; Wang, Zhi-Jian; Wu, Xiao-Lei
2016-01-01
Taking natural coal as a “seed bank” of bacterial strains able to degrade lignin that is with molecular structure similar to coal components, we isolated 393 and 483 bacterial strains from a meager lean coal sample from Hancheng coalbed and a brown coal sample from Bayannaoer coalbed, respectively, by using different media. Statistical analysis showed that isolates were significantly more site-specific than medium-specific. Of the 876 strains belonging to 27 genera in Actinobacteria, Firmicutes, and Proteobacteria, 612 were positive for lignin degradation function, including 218 strains belonging to 35 species in Hancheng and 394 strains belonging to 19 species in Zhongqi. Among them, the dominant lignin-degrading strains were Thauera (Hancheng), Arthrobacter (Zhongqi) and Rhizobium (both). The genes encoding the laccases- or laccase-like multicopper oxidases, key enzymes in lignin production and degradation, were detected in three genera including Massila for the first time, which was in high expression by real time PCR (qRT-PCR) detection, confirming coal as a good seed bank. PMID:27667989
Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, Sunil
2011-04-01
Operation of waste cells as landfill bioreactors with leachate recirculation is known to accelerate waste degradation and landfill gas generation. However, waste degradation rates in landfill bioreactors decrease with time, with the accumulation of difficult to degrade materials, such as lignin-rich waste. Although, potential exists to modify the leachate quality to promote further degradation of such waste, very little information is available in literature. The objective of this study was to determine the viability of augmenting leachate with enzymes to increase the rate of degradation of lignin-rich waste materials. Among the enzymes evaluated MnP enzyme showed the best performance in terms of methane yield and substrate (lignin) utilization. Methane production of 200 mL CH(4)/g VS was observed for the MnP amended reactor as compared to 5.7 mL CH(4)/g VS for the control reactor. The lignin reduction in the MnP amended reactor and control reactor was 68.4% and 6.2%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Szabo, Orsolya Erzsebet; Csiszar, Emilia; Toth, Karolina; Szakacs, George; Koczka, Bela
2015-01-01
Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-β-d-glucosidase, 1,4-β-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen. Copyright © 2014 Elsevier B.V. All rights reserved.
Yadav, Sangeeta; Chandra, Ram
2015-07-01
In order to search the degradability of kraft lignin, the potential bacterial strains Bacillus subtilis (GU193980) and Klebsiella pneumoniae (GU193981) were isolated, screened and applied in axenic and co-culture conditions. Results revealed that mixed culture showed better decolorization efficiency (80%) and reduction of pollution parameters (COD 73% and BOD 62%) than axenic culture. This indicated syntrophic growth of these two bacteria rather than any antagonistic effect. The HPLC analysis of degraded samples of kraft lignin has shown the reduction in peak area compared to control, suggesting that decrease in color intensity might be largely attributed to the degradation of lignin by isolated bacteria. Further, the GC-MS analysis showed that most of the compounds detected in control were diminished after bacterial treatment. Further, the seed germination test using Phaseolus aureus has supported the detoxification of bacterial decolorized kraft lignin for environmental safety. All these observations have revealed that the developed bacterial co-culture was capable for the effective degradation and decolorization of lignin containing rayon grade pulp mill wastewater for environmental safety. Copyright © 2015. Published by Elsevier B.V.
Mishra, Vartika; Jana, Asim K
2017-09-01
Sweet sorghum (Sorghum sp.) has high biomass yield. Hydrolysis of lignocellulosic sweet sorghum bagasse (SSB) to fermentable sugar could be useful for manufacture of biofuel or other fermentation products. Pretreatment of lignocellulosic biomass to degrade lignin before enzymatic hydrolysis is a key step. Fungal pretreatment of SSB with combined CuSO 4 -gallic acid supplements in solid-state fermentation (SSF) to achieve higher lignin degradation, selectivity value (SV), and enzymatic hydrolysis to sugar was studied. Coriolus versicolor was selected due to high activities of ligninolytic enzymes laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), polyphenol oxidase (PPO), and arylalcohol oxidase (AAO) and low activities of cellulolytic enzymes CMCase, FPase, and β-glucosidase with high lignin degradation and SV in 20 days. CuSO 4 /gallic acid increased the activities of ligninolytic enzymes resulting in enhanced lignin degradations and SVs. Cumulative/synergistic effect of combined supplements further increased the activities of laccase, LiP, MnP, PPO, and AAO by 7.6, 14.6, 2.67, 2.06, and 2.15-folds, respectively (than control), resulting in highest lignin degradation 31.1 ± 1.4% w/w (1.56-fold) and SV 2.33 (3.58-fold). Enzymatic hydrolysis of pretreated SSB yielded higher (~2.2 times) fermentable sugar. The study showed combined supplements can improve fungal pretreatment of lignocellulosic biomass. XRD, SEM, FTIR, and TGA/DTG of SSB confirmed the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, Kristen M.; Sharma, Deepak; Varney, Rebecca
2013-08-29
The anaerobic isolate Enterobacter lignolyticus SCF1 was initially cultivated based on anaerobic growth on lignin as sole carbon source. The source of the isolated bacteria was from tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, making it likely that bacteria using oxygen-independent enzymes play an important role in decomposition. We have examined differential expression of the anaerobic isolate Enterobacter lignolyticus SCF1 during growth on lignin. After 48 hours of growth, we used transcriptomics and proteomics to define the enzymes and other regulatory machinery that these organisms use to degrade lignin, as well as metabolomics tomore » measure lignin degradation and monitor the use of lignin and iron as terminal electron acceptors that facilitate more efficient use of carbon. Proteomics revealed accelerated xylose uptake and metabolism under lignin-amended growth, and lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. Our data shows the advantages of a multi-omics approach, where incomplete pathways identified by genomics were completed, and new observations made on coping with poor carbon availability. The fast growth, high efficiency and specificity of enzymes employed in bacterial anaerobic litter deconstruction makes these soils useful templates for improving biofuel production.« less
Combination of different methods to assess the fate of lignin in decomposing needle and leave litter
NASA Astrophysics Data System (ADS)
Klotzbücher, Thimo; Filley, Timothy; Kaiser, Klaus; Kalbitz, Karsten
2010-05-01
Lignin is a major component of plant litter. However, its fate during litter decay is still poorly understood. One reason is the difficult analysis. Commonly used methods utilize different methodological approaches and focus on different aspects, e.g., content of lignin and/or of lignin-derived phenols and the degree of oxidation. The comparability and feasibility of the methods has not been tested so far. Our aims were: (1) to compare different methods with respect to track lignin degradation during plant litter decay and (2) to evaluate possible advantages of combining the different results. We assessed lignin degradation in decaying litter by 13C-TMAH thermochemolysis and CuO oxidation (each combined with GC/MS) and by determination of acid-detergent lignin (ADL) combined with near infrared spectroscopy. Furthermore, water-extractable organic matter produced during litter decay was examined for indicators of lignin-derived compounds by UV absorbance at 280 nm, fluorescence spectroscopy, and 13C-TMAH GC/MS. The study included litter samples from 5 different tree species (acer, ash, beech, pine, spruce), exposed in litterbags to degradation in a spruce stand for 27 months. First results suggested stronger lignin degradation in coniferous than in deciduous litter. This was indicated by complementary results from various methods: Conifer litter showed a more pronounced decrease in ADL content and a stronger increase in oxidation degree of side chains (Ac/Al ratios of CuO oxidation and 13C-TMAH products). Furthermore water extracted organic matter from needles showed a higher aromaticity and molecule complexity. Thus properties of water extractable organic matter seemed to reflect the extents of lignin degradation in solid litter samples. Contents of lignin-derived phenols determined with the CuO method (VSC content) hardly changed during decay of needles and leaves. These results thus not matched the trends found with the ADL method. Our results suggested that water-soluble phenolic acids that are included in the CuO oxidation products, accumulated during decay of litter with less stable lignin and then contributed to VSC contents and to the pool of water- extractable organic matter. By combining results from different methods we gained a better understanding about the differences in lignin degradation between the litter species.
Sabarez, Henry; Oliver, Christine Maree; Mawson, Raymond; Dumsday, Geoff; Singh, Tanoj; Bitto, Natalie; McSweeney, Chris; Augustin, Mary Ann
2014-11-01
Lignocellulosic biomass samples (wheat chaff) were pretreated by ultrasound (US) (40kHz/0.5Wcm(-2)/10min and 400kHz/0.5Wcm(-2)/10min applied sequentially) prior to digestion by enzyme extracts obtained from fermentation of the biomass with white rot fungi (Phanerochaete chrysosporium or Trametes sp.). The accessibility of the cellulosic components in wheat chaff was increased, as demonstrated by the increased concentration of sugars produced by exposure to the ultrasound treatment prior to enzyme addition. Pretreatment with ultrasound increased the concentration of lignin degradation products (guaiacol and syringol) obtained from wheat chaff after enzyme addition. In vitro digestibility of wheat chaff was also enhanced by the ultrasonics pretreatment in combination with treatment with enzyme extracts. Degradation was enhanced with the use of a mixture of the enzyme extracts compared to that for a single enzyme extract. Copyright © 2014. Published by Elsevier B.V.
2009-12-22
occurred by oxidation process. Also, oxidation and lignin (from the wood) degradation influenced the color (light- ness) of PVC based WPC upon weathering...and lignin (from the wood) degradation influenced the color (lightness) of PVC based WPC upon weathering. 15. SUBJECT TERMS 16. SECURITY...with DEab. More importantly, previous report showed that color change in wood during weathering was due to the lignin degradation [33]. Infrared spectra
Enzymatic tranformations of lignin. Annual report 1 July 1980-30 June 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glasser, W.G.; Hall, P.L.
1981-06-01
Research is summarized on biological approaches to the utilization of lignin degradation to raw material for the manufacture of chemicals and materials. This investigation studied the possible involvement of reduced oxygen species produced by the white-rot fungus, C. versicolor, in the initial breakdown of the lignin macromolecule during its biodegradation. This fungus was shown to be capable of exporting superoxide radical. While the degree to which this organism was responsible for actual lignin degradation is not clear, there were indications that a correlation may exist between the concentration of extracellular superoxide radical in the medium and the extent of ligninmore » degradation. Two different fermentation schemes were compared and several control fermentation experiments were made. Research dealing with improvements in lignin structure analysis, liquefaction of lignin preparations by reaction with propylene oxide, and solidification of liquified kraft lignin by crosslinking with diisocyanate compounds was explored. The use of scanning electron microscopy for revealing interaction between fiber and binder is noted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Carvalho Oliveira, Fernanda; Srinivas, Keerthi; Helms, Gregory L.
The full use of biomass in future biorefineries has stimulated studies on utilization of lignin from agricultural crops, such as coffee husk, a major residue from coffee processing. This study focuses on characterizing the lignin obtained from coffee husk and its further wet oxidation products as a function of alkali loading, temperature and residence time. The lignin fraction after diluted acid and alkali pretreatments is composed primarily of p-hydroxylphenyl units (≥ 49%), with fewer guaiacyl and syringyl units. Linkages appear to be mainly β-O-4 ether linkages. Thermal degradation of pretreated lignin occurred in two stages. Carboxylic acids were the mainmore » degradation product. Due to the condensed structure of this lignin, relatively low yields of aromatic aldehydes were achieved, except from conditions with temperatures over 210 °C, 5 min residence time and 11.7wt% NaOH. Optimization of the pretreatment and oxidation parameters are important to maximizing yield of higher-value bioproducts from lignin.« less
Peredo, Karol; Escobar, Danilo; Vega-Lara, Johana; Berg, Alex; Pereira, Miguel
2016-02-01
Sawdust (SD) and cotton-lignin blends (CLB) were acetylated and the effect of lignin type and content on thermoplastic properties of the acetate produced was studied. The lignin in samples did not significantly affect the degree of acetylation. An increase in acetyl groups of 1-3% was observed in acetylated SD (ASD) unlike acetylated CLB (ACLB). Thermogravimetric analysis showed two thermal degradation zones; one at 190-200°C and the other at 330-370°C. The early degradation in ASD corresponds to galactoglucomannans while that in ACLB corresponds to the low-molecular-weight lignin. The second degradation is due to decomposition of cellulose acetate and high-molecular-weight lignin. DSC analysis showed homogeneous behaviour in ASD with only one glass transition temperature (Tg) at 170-180°C, unlike ACLB that showed two Tgs at 170-180°C. Sawdust acetylation, taking advantage of its residual lignin, showed higher reactivity and miscibility as compared to the same material produced by adding previously extracted lignin on cotton. Copyright © 2015 Elsevier B.V. All rights reserved.
Recent advances in oxidative valorization of lignin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ruoshui; Guo, Mond; Zhang, Xiao
Lignin, an aromatic macromolecule synthesized by all higher plants, is one of the most intriguing natural materials for utilization across a wide range of applications. Depolymerization and fragmentation of lignin into small chemicals constituents which can either replace current market products or be used building blocks for new material synthesis is a focus of current lignin valorization strategies. And among the variety of lignin degradation chemistries, catalytic oxidation of lignin presents an energy efficient means of lignin depolymerization and generating selective reaction products. Our review provides a summary of the recent advancements in oxidative lignin valorization couched in a discussionmore » on how these chemistries may contribute to the degradation of the lignin macromolecule through three major approaches: 1) inter-unit linkages cleavage; 2) propanyl side-chain oxidative modification; and 3) oxidation of the aromatic ring and ring cleavage reactions.« less
Recent advances in oxidative valorization of lignin
Ma, Ruoshui; Guo, Mond; Zhang, Xiao
2017-07-21
Lignin, an aromatic macromolecule synthesized by all higher plants, is one of the most intriguing natural materials for utilization across a wide range of applications. Depolymerization and fragmentation of lignin into small chemicals constituents which can either replace current market products or be used building blocks for new material synthesis is a focus of current lignin valorization strategies. And among the variety of lignin degradation chemistries, catalytic oxidation of lignin presents an energy efficient means of lignin depolymerization and generating selective reaction products. Our review provides a summary of the recent advancements in oxidative lignin valorization couched in a discussionmore » on how these chemistries may contribute to the degradation of the lignin macromolecule through three major approaches: 1) inter-unit linkages cleavage; 2) propanyl side-chain oxidative modification; and 3) oxidation of the aromatic ring and ring cleavage reactions.« less
Biodegradation of lignin by Agaricus Bisporus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vane, C.H.; Abbott, G.D.; Head, I.M.
The lignolytic activity of Agaricus bisporus will be addressed in this paper. Sound and fungally degraded lignins were characterized by Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS), Fourier Transform Infrared Spectroscopy (FnR) and elemental analysis. Fungally degraded lignins displayed increased wt%N, wt%H and wt%O content and decreased wt%C content The FTIR spectrum of decayed lignin showed an increase in the relative intensity of absorption bands assigned to carbonyl and carboxyl functional groups located on the aliphatic side chain and a decrease in absorption bands assigned to aromatic skeletal vibration modes. Semiquantitative Py-GC-MS revealed an 82% decrease in lignin derived pyrolysis products upon biodegradation.more » No significant increase in pyrolysis products with an oxygenated aliphatic side chain were detected in the fungally degraded lignin however shortening of the aliphatic side chain via cleavage at the {alpha}, {beta} and {gamma} positions was observed.« less
Investigating the degradation process of kraft lignin by β-proteobacterium, Pandoraea sp. ISTKB.
Kumar, Madan; Singh, Jyoti; Singh, Manoj Kumar; Singhal, Anjali; Thakur, Indu Shekhar
2015-10-01
The present study investigates the kraft lignin (KL) degrading potential of novel alkalotolerant Pandoraea sp. ISTKB utilizing KL as sole carbon source. The results displayed 50.2 % reduction in chemical oxygen demand (COD) and 41.1 % decolorization after bacterial treatment. The maximum lignin peroxidase (LiP) and manganese peroxidase (MnP) activity detected was 2.73 and 4.33 U ml(-1), respectively, on day 3. The maximum extracellular and intracellular laccase activities observed were 1.32 U ml(-1) on day 5 and 4.53 U ml(-1) on day 4, respectively. The decolorization and degradation was maximum on day 2. Further, it registered an increase with the production of extracellular laccase. This unusual trend of decolorization and degradation was studied using various aromatic compounds and dyes. SEM and FTIR results indicated significant change in surface morphology and functional group composition during the course of degradation. Gas chromatography and mass spectroscopy (GC-MS) analysis confirmed KL degradation by emergence of new peaks and the identification of low molecular weight aromatic intermediates in treated sample. The degradation of KL progressed through the generation of phenolic intermediates. The identified intermediates implied the degradation of hydroxyphenyl, ferulic acid, guaiacyl, syringyl, phenylcoumarane, and pinoresinol components commonly found in lignin. The degradation, decolorization, and GC-MS analysis indicated potential application of the isolate Pandoraea sp. ISTKB in treatment of lignin-containing pollutants and KL valorization.
Semarjit Shary; Alexander N. Kapich; Ellen A. Panisko; Jon K. Magnuson; Daniel Cullen; Kenneth E. Hammel
2008-01-01
Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated components. We grew...
Studies of lignin-degrading fungi and enzymatic delignification of cellulosic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroad, P.A.; Wilke, C.R.
1976-04-01
The potential of microbially delignifying cellulosic wastes as a pretreatment to cellulose hydrolysis was assessed. Delignification enhances the enzymatic conversion of cellulose to glucose. Also, where cellulosic induction solids are used in cellulase enzyme production schemes, a greater degree of cell recycle and correspondingly increased productivity of enzyme is potentially possible when delignified material is used. Experiments were undertaken to test the use of culture filtrates and whole fungus cells in delignifying cellulosic materials, such as newsprint and groundwood. Cell-free culture filtrates, and solutions obtained by mechanically lysing microbial cells and pressing the residual solids to harvest intracellular fluid, weremore » shown to be ineffective. Successful delignification was obtained only by culturing fungi directly on groundwood. Fermentation studies to determine growth rate and enzyme production optima as functions of temperature for the fungus Polyporus versicolor were completed. A composting-type process was designed and evaluated with respect to the operating costs and capital investment requirements for large-scale delignification.« less
Fate and transport of lignin in the soil-water continuum
NASA Astrophysics Data System (ADS)
Williams, J. S.; Dungait, J.; Bol, R.; Abbott, G. D.
2011-12-01
Soils have been identified as having the potential to store greater amounts of carbon (C) in soil organic matter (SOM) through appropriate land uses and management practices to increase the input of recalcitrant components of organic matter, such as lignin. Lignin is allocated to the 'slow' soil C pools with residence times between 15 - 100 yrs. Lignin is 30% of the C fixed by plants and is an important C input to soils. However, Recent research has shown that the configuration of lignin monomers within the lignin macromolecule is not random [1], that lignin degradation is monomer specific [2], and that lignin is preferentially degraded relative to the bulk SOM [3], thereby questioning the role of lignin in C sequestration. Although guaiacyl (G) and syringyl (S) lignin monomers have been identified in fresh, estuarine, and marine waters [4], the initial forms to which lignin is degraded into water-transportable products and lost from the soil C reservoir are not known. The aims of this project are to (i) identify and quantify the lignin-derived products entering the soluble phase in soils, and (ii) determine the rate of lignin degradation into water-soluble components, and their rate of transport through soil. In experiment 1 we tested the best approach to extract and analyse dissolved lignin from outflows from grassland and woodland sites. C18 solid phase extraction (SPE) or freeze-drying (FD) was used to isolate water-borne lignin monomers. Gas chromatography-mass spectrometry (GC-MS) of trimethylsilyl (TMS) derivatives or tetramethylammonium hydroxide (TMAH) thermochemolysis was used to analyse the samples. In a subsequent experiment, we allowed leaves from different vegetation types (Lolium perenne, Ranunculus repens, Fraxinus excelsior, Quercus robur), corresponding to the vegetation at our initial sites in Experiment 1, to degrade in soil lysimeters for 1.5 years to determine the rates of decomposition of different plant material and dominant form of lignin moving into the aqueous phase in each case. Our results showed that C18 silica-based SPE recovered a greater proportion of detectable dissolved lignin than FD both in terms of number of compounds identified as well as total mass of lignin. More lignin-derived compounds were identified using TMAH/GC-MS than GC-MS of TMS derivatives. The lysimeter experiment showed that Ranunculus repens and Lolium perenne decomposition was most rapid and generated the highest leachate TOC values. TMAH/GC/MS analysis identified G, S, and p-hydroxyphenyl (P) units in the vegetation leachates with side-chains ranging from one to three carbons, with varying degrees of oxidation. This research provides new insight into the complexity of lignin breakdown and movement through soils.
Yakovlev, Igor A; Hietala, Ari M; Courty, Pierre-Emmanuel; Lundell, Taina; Solheim, Halvor; Fossdal, Carl Gunnar
2013-07-01
The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare. Copyright © 2013 Elsevier Inc. All rights reserved.
Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan
2015-04-24
Aspergillus sp. plays an essential role in lignocellulosic biomass recycling and is also exploited as cell factories for the production of industrial enzymes. This study profiled the secretome of Aspergillus fumigatus when grown with cellulose, xylan and starch by high throughput quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ). Post translational modifications (PTMs) of proteins play a critical role in protein functions. However, our understanding of the PTMs in secretory proteins is limited. Here, we present the identification of PTMs such as deamidation of secreted proteins of A. fumigatus. This study quantified diverse groups of extracellular secreted enzymes and their functional classification revealed cellulases and glycoside hydrolases (32.9%), amylases (0.9%), hemicellulases (16.2%), lignin degrading enzymes (8.1%), peptidases and proteases (11.7%), chitinases, lipases and phosphatases (7.6%), and proteins with unknown function (22.5%). The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulates expression of specific cellulases and hemicellulases, and their abundance level as a function of substrate. In-depth data analysis revealed deamidation as a major PTM of key cellulose hydrolyzing enzymes like endoglucanases, cellobiohydrolases and glucosidases. Hemicellulose degrading endo-1,4-beta-xylanase, monosidases, xylosidases, lignin degrading laccase, isoamyl alcohol oxidase and oxidoreductases were also found to be deamidated. The filamentous fungi play an essential role in lignocellulosic biomass recycling and fungal strains belonging to Aspergillus were also exploited as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. In this study, extracellular proteins secreted by thermophilic A. fumigatus when grown with cellulose, xylan and starch were profiled using isobaric tags for relative and absolute quantification (iTRAQ) by adopting liquid chromatography tandem mass spectrometry. The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulate expression of specific cellulases and hemicellulases, and expression level as a function of substrate. Post translational modifications revealed deamidation of key cellulases including endoglucanases, cellobiohydrolases and glucosidases; and hemicellulases and lignin degrading enzymes. The knowledge on deamidated enzymes along with specific sites of modifications could be crucial information for further functional studies of these enzymes of A. fumigatus. Copyright © 2015 Elsevier B.V. All rights reserved.
Photo- and radiation chemical induced degradation of lignin model compounds.
Lanzalunga; Bietti, M
2000-07-01
The basic mechanistic aspects of the photo- and radiation chemistry of lignin model compounds (LMCs) are discussed with respect to important processes related to lignin degradation. Several reactions occur after direct irradiation, photosensitized or radiation chemically induced oxidation of LMCs. Direct irradiation studies on LMCs have provided supportive evidence for the involvement of hydrogen abstraction reactions from phenols, beta-cleavage of substituted alpha-aryloxyacetophenones and cleavage of ketyl radicals (formed by photoreduction of aromatic ketones or hydrogen abstraction from arylglycerol beta-aryl ethers) in the photoyellowing of lignin rich pulps. Photosensitized and radiation chemically induced generation of reactive oxygen species and their reaction with LMCs are reviewed. The side-chain reactivity of LMC radical cations, generated by radiation chemical means, is also discussed in relation with the enzymatic degradation of lignin.
Doddapaneni, Harshavardhan; Subramanian, Venkataramanan; Fu, Bolei; Cullen, Dan
2013-06-01
The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three putative glyoxal oxidase-encoding genes (GLXs)], 12 laccases sensu stricto and 109 cytochrome P450 monooxygenases. Comparative analyses of these enzymes in Ab with those of the white-rot fungus, Phanerochaete chrysosporium, the brown-rot fungus, Postia placenta, the coprophilic litter fungus, Coprinopsis cinerea and the ectomychorizal fungus, Laccaria bicolor, revealed enzyme diversity consistent with adaptation to substrates rich in humic substances and partially degraded plant material. For instance, relative to wood decay fungi, Ab cytochrome P450 genes were less numerous (109 gene models), distributed among distinctive families, and lacked extensive duplication and clustering. Viewed together with P450 transcript accumulation patterns in three tested growth conditions, these observations were consistent with the unique Ab lifestyle. Based on tandem gene arrangements, a certain degree of gene duplication seems to have occurred in this fungus in the copper radical oxidase (CRO) and the laccase gene families. In Ab, high transcript levels and regulation of the heme-thiolate peroxidases, two manganese peroxidases and the three GLX-like genes are likely in response to complex natural substrates, including lignocellulose and its derivatives, thereby suggesting an important role in lignin degradation. On the other hand, the expression patterns of the related CROs suggest a developmental role in this fungus. Based on these observations, a brief comparative genomic overview of the Ab oxidative enzyme machinery is presented. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Hitoshi; MacDonald, Jacqueline; Syed, Khajamohiddin
Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reportedmore » P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.« less
2012-01-01
Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species. PMID:22937793
Xu, Chunyan; Ma, Fuying; Zhang, Xiaoyu
2009-11-01
The white rot fungus Irpex lacteus CD2 was incubated on corn stover under solid-state fermentation conditions for different durations, from 5 days up to 120 days. Lignocellulose component loss, enzyme production and Fe3+-reducing activity were studied. The average weight loss ranged from 1.7% to 60.5% during the period of 5-120 days. In contrast to lignin, hemicellulose and cellulose were degraded during the initial time period. After 15 days, 63.0% of hemicellulose was degraded. Cellulose was degraded the most during the first 10 days, and 17.2% was degraded after 10 days. Lignin was significantly degraded and modified, with acid insoluble lignin loss being nearly 80% after 60 days. That weight loss, which was lower than the total component loss, indicated that not all of the lost lignocellulose was converted to carbon dioxide and water, which was indicated by the increase in soluble reducing sugars and acid soluble lignin. Filter paper activity, which corresponds to total cellulase activity, peaked at day 5 and remained at a high level from 40 to 60 days. High hemicellulase activity appeared after 30 days. No ligninases activity was detected during the incipient stage of lignin removal and only low lignin peroxidase activity was detected after 25 days. Apparently, neither of the enzymatic peaks coincided well with the highest amount of component loss. Fe3+-reducing activity could be detected during all the decay periods, which might play an important role in lignin biodegradation by I. lacteus CD2.
Abrão, Flávia Oliveira; Pessoa, Moisés Sena; dos Santos, Vera Lúcia; de Freitas Júnior, Luiz Fernando; Barros, Katharina de Oliveira; Hughes, Alice Ferreira da Silva; Silva, Thiago Dias; Rodriguez, Norberto Mário
2017-01-01
Fungi have the ability to degrade vegetal cell wall carbohydrates, and their presence in the digestive tract of ruminants can minimize the effects of lignified forage on ruminal fermentation. Here, we evaluated enzyme production by Aspergillus spp. isolates from the digestive tracts of cattle grazed in tropical pastures during the dry season. Filamentous fungi were isolated from rumen and feces by culture in cellulose-based medium. Ninety fungal strains were isolated and identified by rDNA sequence analysis, microculture, or both. Aspergillus terreus was the most frequently isolated species, followed by Aspergillus fumigatus. The isolates were characterized with respect to their cellulolytic, xylanolytic, and lignolytic activity through qualitative evaluation in culture medium containing a specific corresponding carbon source. Carboxymethyl cellulase (CMCase) activity was quantified by the reducing sugar method. In the avicel and xilan degradation test, the enzyme activity (EA) at 48 h was significantly higher other periods (P < 0.05). Intra- and inter-specific differences in EA were verified, and high levels of phenoloxidases, which are crucial for lignin degradation, were observed in 28.9% of the isolates. Aspergillus terreus showed significantly higher EA for avicelase (3.96 ±1.77) and xylanase (3.13 ±.091) than the other Aspergillus species at 48 h of incubation. Isolates AT13 and AF69 showed the highest CMCase specific activity (54.84 and 33.03 U mg-1 protein, respectively). Selected Aspergillus spp. isolates produced remarkable levels of enzymes involved in vegetal cell wall degradation, suggesting their potential as antimicrobial additives or probiotics in ruminant diets. PMID:28850605
Abrão, Flávia Oliveira; Duarte, Eduardo Robson; Pessoa, Moisés Sena; Santos, Vera Lúcia Dos; Freitas Júnior, Luiz Fernando de; Barros, Katharina de Oliveira; Hughes, Alice Ferreira da Silva; Silva, Thiago Dias; Rodriguez, Norberto Mário
2017-01-01
Fungi have the ability to degrade vegetal cell wall carbohydrates, and their presence in the digestive tract of ruminants can minimize the effects of lignified forage on ruminal fermentation. Here, we evaluated enzyme production by Aspergillus spp. isolates from the digestive tracts of cattle grazed in tropical pastures during the dry season. Filamentous fungi were isolated from rumen and feces by culture in cellulose-based medium. Ninety fungal strains were isolated and identified by rDNA sequence analysis, microculture, or both. Aspergillus terreus was the most frequently isolated species, followed by Aspergillus fumigatus. The isolates were characterized with respect to their cellulolytic, xylanolytic, and lignolytic activity through qualitative evaluation in culture medium containing a specific corresponding carbon source. Carboxymethyl cellulase (CMCase) activity was quantified by the reducing sugar method. In the avicel and xilan degradation test, the enzyme activity (EA) at 48 h was significantly higher other periods (P < 0.05). Intra- and inter-specific differences in EA were verified, and high levels of phenoloxidases, which are crucial for lignin degradation, were observed in 28.9% of the isolates. Aspergillus terreus showed significantly higher EA for avicelase (3.96 ±1.77) and xylanase (3.13 ±.091) than the other Aspergillus species at 48 h of incubation. Isolates AT13 and AF69 showed the highest CMCase specific activity (54.84 and 33.03 U mg-1 protein, respectively). Selected Aspergillus spp. isolates produced remarkable levels of enzymes involved in vegetal cell wall degradation, suggesting their potential as antimicrobial additives or probiotics in ruminant diets.
Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.
Yang, Sheng; Yuan, Tong-Qi; Li, Ming-Fei; Sun, Run-Cang
2015-01-01
Corncob lignin was treated with pressurized hot water in a cylindrical autoclave in current investigation. With the aim of investigating the effect of reaction temperature and retention time on the distribution of degradation products, the products were divided into five fractions including gas, volatile organic compounds, water-soluble oil, heavy oil, and solid residue. It was found that hydrothermal degradation of corncob lignin in pressurized hot water produced a large amount of phenolic compounds with lower molecular weight than the raw lignin. Some phenolic and benzene derivatives monomers such as vanillin, 2-methoxy-phenol, 2-ethyl-phenol, p-xylene, and 1, 3-dimethyl-benzene were also identified in the degradation products. The products were further analyzed by GC-MS, GPC, 2D-HSQC, and (31)P-NMR to investigate their suitability for partial incorporation into phenol formaldehyde adhesive as a substitution of phenol. The results indicated that the reaction temperature had more effect on the products distribution than the retention time. The optimal condition for heavy oil production appeared at 290 °C with retention time 0 min. The compounds of heavy oil had more active sites than the raw lignin, suggesting that the heavy oil obtained from hydrothermal degradation of lignin is a promising material for phenol formaldehyde adhesive synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.
Moraes, Eduardo C; Alvarez, Thabata M; Persinoti, Gabriela F; Tomazetto, Geizecler; Brenelli, Livia B; Paixão, Douglas A A; Ematsu, Gabriela C; Aricetti, Juliana A; Caldana, Camila; Dixon, Neil; Bugg, Timothy D H; Squina, Fabio M
2018-01-01
Lignin is a heterogeneous polymer representing a renewable source of aromatic and phenolic bio-derived products for the chemical industry. However, the inherent structural complexity and recalcitrance of lignin makes its conversion into valuable chemicals a challenge. Natural microbial communities produce biocatalysts derived from a large number of microorganisms, including those considered unculturable, which operate synergistically to perform a variety of bioconversion processes. Thus, metagenomic approaches are a powerful tool to reveal novel optimized metabolic pathways for lignin conversion and valorization. The lignin-degrading consortium (LigMet) was obtained from a sugarcane plantation soil sample. The LigMet taxonomical analyses (based on 16S rRNA) indicated prevalence of Proteobacteria , Actinobacteria and Firmicutes members, including the Alcaligenaceae and Micrococcaceae families, which were enriched in the LigMet compared to sugarcane soil. Analysis of global DNA sequencing revealed around 240,000 gene models, and 65 draft bacterial genomes were predicted. Along with depicting several peroxidases, dye-decolorizing peroxidases, laccases, carbohydrate esterases, and lignocellulosic auxiliary (redox) activities, the major pathways related to aromatic degradation were identified, including benzoate (or methylbenzoate) degradation to catechol (or methylcatechol), catechol ortho-cleavage, catechol meta-cleavage, and phthalate degradation. A novel Paenarthrobacter strain harboring eight gene clusters related to aromatic degradation was isolated from LigMet and was able to grow on lignin as major carbon source. Furthermore, a recombinant pathway for vanillin production was designed based on novel gene sequences coding for a feruloyl-CoA synthetase and an enoyl-CoA hydratase/aldolase retrieved from the metagenomic data set. The enrichment protocol described in the present study was successful for a microbial consortium establishment towards the lignin and aromatic metabolism, providing pathways and enzyme sets for synthetic biology engineering approaches. This work represents a pioneering study on lignin conversion and valorization strategies based on metagenomics, revealing several novel lignin conversion enzymes, aromatic-degrading bacterial genomes, and a novel bacterial strain of potential biotechnological interest. The validation of a biosynthetic route for vanillin synthesis confirmed the applicability of the targeted metagenome discovery approach for lignin valorization strategies.
Granja-Travez, Rommel Santiago; Wilkinson, Rachael C; Persinoti, Gabriela Felix; Squina, Fabio M; Fülöp, Vilmos; Bugg, Timothy D H
2018-05-01
The identification of enzymes responsible for oxidation of lignin in lignin-degrading bacteria is of interest for biotechnological valorization of lignin to renewable chemical products. The genome sequences of two lignin-degrading bacteria, Ochrobactrum sp., and Paenibacillus sp., contain no B-type DyP peroxidases implicated in lignin degradation in other bacteria, but contain putative multicopper oxidase genes. Multi-copper oxidase CueO from Ochrobactrum sp. was expressed and reconstituted as a recombinant laccase-like enzyme, and kinetically characterized. Ochrobactrum CueO shows activity for oxidation of β-aryl ether and biphenyl lignin dimer model compounds, generating oxidized dimeric products, and shows activity for oxidation of Ca-lignosulfonate, generating vanillic acid as a low molecular weight product. The crystal structure of Ochrobactrum CueO (OcCueO) has been determined at 1.1 Å resolution (PDB: 6EVG), showing a four-coordinate mononuclear type I copper center with ligands His495, His434 and Cys490 with Met500 as an axial ligand, similar to that of Escherichia coli CueO and bacterial azurin proteins, whereas fungal laccase enzymes contain a three-coordinate type I copper metal center. A trinuclear type 2/3 copper cluster was modeled into the active site, showing similar structure to E. coli CueO and fungal laccases, and three solvent channels leading to the active site. Site-directed mutagenesis was carried out on amino acid residues found in the solvent channels, indicating the importance for residues Asp102, Gly103, Arg221, Arg223, and Asp462 for catalytic activity. The work identifies a new bacterial multicopper enzyme with activity for lignin oxidation, and implicates a role for bacterial laccase-like multicopper oxidases in some lignin-degrading bacteria. Structural data are available in the PDB under the accession number 6EVG. © 2018 Federation of European Biochemical Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Z. F.; Wan, C. X.; Shi, J.
Corn stover fractions (leaves, cobs, and stalks) were studied for enzymatic digestibility after pretreatment with a white rot fungus, Ceriporiopsis subvermispora. Among the three fractions, leaves had the least recalcitrance to fungal pretreatment and the lignin degradation reached 45% after 30 days of pretreatment. The lignin degradation of stalks and cobs was similar but was significantly lower than that of leaves (p < 0.05). For all fractions, xylan and glucan degradation followed a pattern similar to lignin degradation, with leaves having a significantly higher percentage of degradation (p < 0.05). Hydrolytic enzyme activity also revealed that the fungus was moremore » active in the degradation of carbohydrates in leaves. As a result of fungal pretreatment, the highest sugar yield, however, was obtained with corn cobs.« less
de Carvalho Oliveira, Fernanda; Srinivas, Keerthi; Helms, Gregory L; Isern, Nancy G; Cort, John R; Gonçalves, Adilson Roberto; Ahring, Birgitte Kiær
2018-06-01
The full use of biomass in future biorefineries has stimulated studies on utilization of lignin from agricultural crops, such as coffee husk, a major residue from coffee processing. This study focuses on characterizing the lignin obtained from coffee husk and its further wet oxidation products as a function of alkali loading, temperature and residence time. The lignin fraction after diluted acid and alkali pretreatments is composed primarily of p-hydroxylphenyl units (≥49%), with fewer guaiacyl and syringyl units. Linkages appear to be mainly β-O-4 ether linkages. Thermal degradation of pretreated lignin during wet oxidation occurred in two stages. Carboxylic acids were the main degradation product. Due to the condensed structure of this lignin, relatively low yields of aromatic aldehydes were achieved, except with temperatures over 210 °C, 5 min residence time and 11.7 wt% NaOH. Optimization of the pretreatment and oxidation parameters are important to maximizing yield of high-value bioproducts from lignin. Copyright © 2018. Published by Elsevier Ltd.
A multi-analytical study of degradation of lignin in archaeological waterlogged wood.
Colombini, Maria P; Lucejko, Jeannette J; Modugno, Francesca; Orlandi, Marco; Tolppa, Eeva-Liisa; Zoia, Luca
2009-11-15
Historical or archaeological wooden objects are generally better conserved in wet environments than in other contexts. Nevertheless, anaerobic erosion bacteria can slowly degrade waterlogged wood, causing a loss of cellulose and hemicellulose and leading to the formation of water-filled cavities. During this process, lignin can also be altered. The result is a porous and fragile structure, poor in polysaccharides and mainly composed of residual lignin, which can easily collapse during drying and needs specific consolidation treatments. For this reason, the chemical characterization of archaeological lignin is of primary importance in the diagnosis and conservation of waterlogged wood artifacts. Current knowledge of the lignin degradation processes in historical and archaeological wood is extremely inadequate. In this study lignin extracted from archaeological waterlogged wood was examined using both Py-GC/MS, NMR spectroscopy and GPC analysis. The samples were collected from the Site of the Ancient Ships of San Rossore (Pisa, Italy), where since 1998 31 shipwrecks, dating from 2nd century BC to 5th century AD, have been discovered. The results, integrated by GPC analysis, highlight the depolymerization of lignin with cleavage of ether bonds, leading to an higher amount of free phenol units in the lignin from archaeological waterlogged wood, compared to sound lignin from reference wood of the same species.
Amber Vanden Wymelenberg; Grzegorz Sabat; Michael Mozuch; Philip J. Kersten; Dan Cullen; Robert A. Blanchette
2006-01-01
The white rot basidiomycete Phanerochaete chrysosporium produces an array of nonspecific extracellular enzymes thought to be involved in lignin degradation, including lignin peroxidases, manganese peroxidases, and the H2O2-generating copper radical oxidase, glyoxal oxidase (GLX). Preliminary analysis of the P. chrysosporium draft genome had identified six sequences...
Isolation of Thermophilic Lignin Degrading Bacteria from Oil-Palm Empty Fruit Bunch (EFB) Compost
NASA Astrophysics Data System (ADS)
Lai, C. M. T.; Chua, H. B.; Danquah, M. K.; Saptoro, A.
2017-06-01
Empty Fruit Bunch (EFB) is a potential and sustainable feedstock for bioethanol production due to its high cellulosic content and availability in Malaysia. Due to high lignin content of EFB and the lack of effective delignification process, commercial bioethanol production from EFB is presently not viable. Enzymatic delignification has been identified as one of the key steps in utilising EFB as a feedstock for bioethanol conversion. To date, limited work has been reported on the isolation of lignin degrading bacteria. Hence, there is a growing interest to search for new lignin degrading bacteria with greater tolerance to temperature and high level of ligninolytic enzymes for more effective lignin degradation. This study aimed to isolate and screen thermophilic ligninolytic microorganisms from EFB compost. Ten isolates were successfully isolated from EFB compost. Although they are not capable of decolorizing Methylene Blue (MB) dye under agar plate assay method, they are able to utilize lignin mimicked compound - guaiacol as a sole carbon on the agar plate assay. This infers that there is no correlation of ligninolytic enzymes with dye decolourization for all the isolates that have been isolated. However, they are able to produce ligninolytic enzymes (Lignin peroxidase, Manganese peroxidase, Laccase) in Minimal Salt Medium with Kraft Lignin (MSM-KL) with Lignin Peroxidase (LiP) as the predominant enzyme followed by Manganese Peroxidase (MnP) and Laccase (Lac). Among all the tested isolates, CLMT 29 has the highest LiP production up to 8.7673 U/mL following 24 h of growth.
Zhang, Libo; Zheng, Wenxiu; Wang, Ziming; Ma, Yubo; Jiang, Ling; Wang, Tianfu
2018-08-01
The aim of this work was to study the degradation of lignin in raw wood via pretreatment with heteropoly acids as substitutes for traditional H 2 SO 4 in γ-valerolactone/water. By optimizing catalyst concentration, reaction time and temperature, the optimal lignin degradation conditions are obtained (130 °C, 3 h and 20 mM silicotungstic acid). SEM and FTIR measurements demonstrated the efficient lignin degradation ability of HPAs in the GVL/H 2 O solvent, with negligible damage to cellulose within the raw wood. Furthermore, an elaborated enzymatic hydrolysis study of the thus obtained cellulosic feedstock revealed its suitability for enzymatic digestion, with great potential as starting material for the production of fermentable sugar from biomass in future biorefinery applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi
2015-09-24
Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions.
Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi
2015-01-01
Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions. PMID:26399549
Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production.
Benassi, Vivian Machado; de Lucas, Rosymar Coutinho; Jorge, João Atílio; Polizeli, Maria de Lourdes Teixeira de Moraes
2014-01-01
Plant cell wall is mainly composed by cellulose, hemicellulose and lignin. The heterogeneous structure and composition of the hemicellulose are key impediments to its depolymerization and subsequent use in fermentation processes. Thus, this study aimed to perform a screening of thermophilic and thermotolerant filamentous fungi collected from different regions of the São Paulo state, and analyze the production of β-xylosidase and arabinanase at different temperatures. These enzymes are important to cell wall degradation and synthesis of end products as xylose and arabinose, respectively, which are significant sugars to fermentation and ethanol production. A total of 12 fungal species were analyzed and 9 of them grew at 45 °C, suggesting a thermophilic or thermotolerant character. Additionally Aspergillus thermomutatus anamorph of Neosartorya and A. parasiticus grew at 50 °C. Aspergillus niger and Aspergillus thermomutatus were the filamentous fungi with the most expressive production of β-xylosidase and arabinanase, respectively. In general for most of the tested microorganisms, β-xylosidase and arabinanase activities from mycelial extract (intracellular form) were higher in cultures grown at high temperatures (35-40 °C), while the correspondent extracellular activities were favorably secreted from cultures at 30 °C. This study contributes to catalogue isolated fungi of the state of São Paulo, and these findings could be promising sources for thermophilic and thermotolerant microorganisms, which are industrially important due to their enzymes.
Daniel J. Yelle; Dongsheng Wei; John Ralph; Kenneth E. Hammel
2011-01-01
Lignocellulose biodegradation, an essential step in terrestrial carbon cycling, generally involves removal of the recalcitrant lignin barrier that otherwise prevents infiltration by microbial polysaccharide hydrolases. However, fungi that cause brown rot of wood, a major route for biomass recycling in coniferous forests, utilize wood polysaccharides efficiently while...
Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production
Patricia Ortiz-Bermudez; Kolby C. Hirth; Ewald Srebotnik; Kenneth E. Hammel
2007-01-01
Soils and decayed plant litter contain significant quantities of chlorinated aromatic polymers that have a natural but largely unknown origin. We used cupric oxide ligninolysis coupled with gas chromatography/mass spectrometry to show that Curvularia inaequalis, a widely distributed litter ascomycete, chlorinated the aromatic rings of lignin in wood that it was...
A Molecular Budget for a Peatland Based Upon 13C Solid-State Nuclear Magnetic Resonance
NASA Astrophysics Data System (ADS)
Moody, Catherine S.; Worrall, Fred; Clay, Gareth D.; Burt, Tim P.; Apperley, David C.; Rose, Rob
2018-02-01
Peatlands can accumulate organic matter into long-term carbon (C) storage within the soil profile. This study used solid-state 13C nuclear magnetic resonance (13C-NMR) to investigate the transit of organic C through a peatland ecosystem to understand the molecular budget that accompanies the long-term accumulation of C. Samples of biomass, litter, peat soil profile, particulate organic matter, and dissolved organic matter (DOM) were taken from the Moor House National Nature Reserve, a peat-covered catchment in northern England where both the dry matter and C budget for the ecosystem were known. The results showed that: The interpretation of the 13C-NMR spectra shows that polysaccharides are preferentially removed through the ecosystem, while lignin components are preferentially retained and come to dominate the organic matter accumulated at depth in the profile. The DOM is derived from the oxidation of both biomass and the degradation of lignin, while the particulate organic matter is derived from erosion of the peat profile. The DOM is differentiated by its proportion of oxidized functional groups and not by its aromatic content. The changes in functionality leading to DOM production suggest side chain oxidation resulting in C-C cleavage/depolymerisation of lignin, a common reaction within white rot fungi. The 13C-NMR budget shows that O-alkyl functional groups are disproportionately lost between primary production and accumulation in the deep peat, while C-alkyl functional groups are disproportionately preserved. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 93% polysaccharide-derived carbon and 7% lignin-derived carbon.
Organic fuels for respiration in tropical river systems
NASA Astrophysics Data System (ADS)
Ward, N.; Keil, R. G.; Richey, J. E.; Krusche, A. V.; Medeiros, P. M.
2011-12-01
Watershed-derived organic matter is thought to provide anywhere from 30-90% of the organic matter in rivers (e.g. Hernes et al 2008; Spencer et al 2010). The most abundant biochemicals on land are cellulose, hemicelluloses, and lignin. Combined, they represent as much as 80% of the biomass in a typical forest and as much as 60% of the biomass in a typical field (natural or crop)(Bose et al 2009; Bridgeman et al., 2007; Hu and Zu 2006; Martens et al 2004). They are often assumed to be refractory and hard to degrade, but this assumption is at odds with virtually all observations: soils and marine sediments are not accumulating vast amounts of these compounds (Hedges and Oades, 1997), and degradation experiments suggest that cellulose, hemicelluloses and lignin are reactive and likely to be important fuels for respiration (Benner, 1991; Haddad et al, 1992; Dittmar et al, 2001; Otto and Simpson, 2006). During several trips to the lower Amazon River, incubation experiments were performed in which the biological degradation of lignin phenols was observed in order to assess the contribution of microbial respiration of terrestrially-derived macromolecules to gross respiration and CO2 gas evasion rates. Both particulate and dissolved lignin concentrations decreased by ~40% after being incubated in the dark for 5-7 days, indicating a turnover time of the entire lignin pool of 12-18 days. These results shift the paradigm that lignocellulose derived OM is highly recalcitrant, and indicate that microbial respiration of lignocellulose may play a larger role in total respiration rates/CO2 outgassing than previously thought. A simple mass balance calculation was done to test whether microbial degradation alone could explain the lignin data observed in the field. First, a theoretical particulate lignin concentration for Macapa was calculated based on the observed data at Obidos. The measured rate of particulate lignin degradation was multiplied by the transit time of water from Obidos to Macapa and subtracted from the observed concentration at Obidos. The calculated theoretical concentration at Macapa was only 1.1% less than the observed in situ concentration. A theoretical dissolved concentration was then calculated by adding the lignin lost from the particulate phase and subtracting the loss of dissolved lignin from the observed dissolved lignin concentration at Obidos. Again, the theoretical concentration was only 6.1% less than the observed concentration in Macapa. This calculation does not include other processes such as sorption or tributary inputs, but indicates that microbial degradation is likely a large controlling factor on lignin concentrations across the river continuum.
UV-Ilmenite based photo-catalysis in lignin based black liquor
NASA Astrophysics Data System (ADS)
Amriani, F.; Abimanyu, H.; Natsir, M.; Sutrizal, L.; Nursin, A.
2018-03-01
Ilmenite can be found abundantly in iron sand from sea shore along Wolowo beach in Button district, Southeast Sulawesi, Indonesia. The ability of ilmenite in degrading lignin in black liquor has been investigated. The results of lignin degradation process in black liquor are supposed to be the potential resources for fungicide such as coniferyl, sinapyl, and p-coumaryl alcohol. The process was conducted in 10 watt ultraviolet (UV) light chamber with two parameters applying include exposure time and ilmenite composition. Two scheme of process are used by differentiating the feed, raw black liquor (scheme 1) and the liquor after adding of 1% sodium hydroxide into lignin-based sludge (scheme 2). Decolourization and lignin degradation analysis after the process were conducted by using UV-Vis spectrophotometer and LCMS, respectively. The results showed that the treatment from the scheme 1 was better than the scheme 2. Both lignin degradation and decolourization can effectively result in more than 31% by using 0.3 g ilmenite for 10 minutes UV exposure. The interim analysis by liquid chromatography-mass spectrophotometer (LCMS) exhibits the suspected target in range 309.4 to 311.39 g/mol as p-coumaryl alcohol while two other targets did not found in chromatogram. Thus, this research requires further evaluation and development to maximise the degradation result so the final goal can be achieved successfully.
Acridine Orange Indicates Early Oxidation of Wood Cell Walls by Fungi.
Houtman, Carl J; Kitin, Peter; Houtman, Jon C D; Hammel, Kenneth E; Hunt, Christopher G
2016-01-01
Colonization of wood blocks by brown and white rot fungi rapidly resulted in detectable wood oxidation, as shown by a reduced phloroglucinol response, a loss of autofluorescence, and acridine orange (AO) staining. This last approach is shown to provide a novel method for identifying wood oxidation. When lignin was mildly oxidized, the association between AO and lignin was reduced such that stained wood sections emitted less green light during fluorescence microscopy. This change was detectable after less than a week, an interval that past work has shown to be too short for significant delignification of wood. Although fungal hyphae were observed in only a few wood lumina, oxidation was widespread, appearing relatively uniform over regions several hundred micrometers from the hyphae. This observation suggests that both classes of fungi release low molecular weight mild oxidants during the first few days of colonization.
Acridine Orange Indicates Early Oxidation of Wood Cell Walls by Fungi
Houtman, Carl J.; Kitin, Peter; Houtman, Jon C. D.; Hammel, Kenneth E.; Hunt, Christopher G.
2016-01-01
Colonization of wood blocks by brown and white rot fungi rapidly resulted in detectable wood oxidation, as shown by a reduced phloroglucinol response, a loss of autofluorescence, and acridine orange (AO) staining. This last approach is shown to provide a novel method for identifying wood oxidation. When lignin was mildly oxidized, the association between AO and lignin was reduced such that stained wood sections emitted less green light during fluorescence microscopy. This change was detectable after less than a week, an interval that past work has shown to be too short for significant delignification of wood. Although fungal hyphae were observed in only a few wood lumina, oxidation was widespread, appearing relatively uniform over regions several hundred micrometers from the hyphae. This observation suggests that both classes of fungi release low molecular weight mild oxidants during the first few days of colonization. PMID:27454126
Acridine Orange Indicates Early Oxidation of Wood Cell Walls by Fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houtman, Carl J.; Kitin, Peter; Houtman, Jon C. D.
Colonization of wood blocks by brown and white rot fungi rapidly resulted in detectable wood oxidation, as shown by a reduced phloroglucinol response, a loss of autofluorescence, and acridine orange (AO) staining. This last approach is shown to provide a novel method for identifying wood oxidation. When lignin was mildly oxidized, the association between AO and lignin was reduced such that stained wood sections emitted less green light during fluorescence microscopy. This change was detectable after less than a week, an interval that past work has shown to be too short for significant delignification of wood. Although fungal hyphae weremore » observed in only a few wood lumina, oxidation was widespread, appearing relatively uniform over regions several hundred micrometers from the hyphae. As a result, this observation suggests that both classes of fungi release low molecular weight mild oxidants during the first few days of colonization.« less
Acridine Orange Indicates Early Oxidation of Wood Cell Walls by Fungi
Houtman, Carl J.; Kitin, Peter; Houtman, Jon C. D.; ...
2016-07-25
Colonization of wood blocks by brown and white rot fungi rapidly resulted in detectable wood oxidation, as shown by a reduced phloroglucinol response, a loss of autofluorescence, and acridine orange (AO) staining. This last approach is shown to provide a novel method for identifying wood oxidation. When lignin was mildly oxidized, the association between AO and lignin was reduced such that stained wood sections emitted less green light during fluorescence microscopy. This change was detectable after less than a week, an interval that past work has shown to be too short for significant delignification of wood. Although fungal hyphae weremore » observed in only a few wood lumina, oxidation was widespread, appearing relatively uniform over regions several hundred micrometers from the hyphae. As a result, this observation suggests that both classes of fungi release low molecular weight mild oxidants during the first few days of colonization.« less
Bi, Ran; Lawoko, Martin; Henriksson, Gunnar
2016-08-01
The fungus Phoma herbarum isolated from soil showed growth on highly pure lignin extracted from spruce wood and on synthetic lignin (DHP). The lignin remaining after cultivation was shown to have a lower molecular weight. The reduction in the numbers of ether linkages of the extracted lignins was also observed by derivatization followed by reductive cleavage (DFRC) in combination with (31)P NMR studies. The fungal strain showed an ability to degrade synthetic lignin by extracellular catalysts. GC-MS was applied to study the evolution of low molar mass adducts, e.g., monolignols and it was shown that a reduced coniferyl alcohol product was produced from DHP in a cell-free environment. The work has demonstrated the ability of soil microbes to grow on lignin as sole carbon source. The potential impact is in the production of low molar mass renewable phenols for material application.
Xu, Xiangqun; Xu, Zhiqi; Shi, Song; Lin, Mengmeng
2017-10-01
This study examined the white rot fungus I. obliquus on the degradation of three types of straw biomass and the production of extracellular lignocellulolytic enzymes under submerged fermentation. The fungus process resulted in a highest lignin loss of 72%, 39%, and 47% in wheat straw, rice straw, and corn stover within 12days, respectively. In merely two days, the fungus selectively degraded wheat straw lignin by 37%, with only limited cellulose degradation (13%). Fourier transform infrared spectroscopy revealed that the fungus most effectively degraded the wheat straw lignin and rice straw crystalline cellulose. Scanning electronic microscopy showed the most pronounced structural changes in wheat straw. High activities of manganese peroxidase (159.0U/mL) and lignin peroxidase (123.4U/mL) were observed in wheat straw culture on Day 2 and 4, respectively. Rice straw was the best substrate to induce the production of cellulase and xylanase. Copyright © 2017 Elsevier Ltd. All rights reserved.
Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José
2004-09-01
Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.
Fragoeiro, Silvia; Magan, Naresh
2005-03-01
In this study we examined the extracellular enzymatic activity of two white rot fungi (Phanerochaete chrysosporium and Trametes versicolor) in a soil extract broth in relation to differential degradation of a mixture of different concentrations (0-30 p.p.m.) of simazine, dieldrin and trifluralin under different osmotic stress (-0.7 and -2.8 MPa) and quantified enzyme production, relevant to P and N release (phosphomonoesterase, protease), carbon cycling (beta-glucosidase, cellulase) and laccase activity, involved in lignin degradation. Our results suggest that T. versicolor and P. chrysosporium have the ability to degrade different groups of pesticides, supported by the capacity for expression of a range of extracellular enzymes at both -0.7 and -2.8 MPa water potential. Phanerochaete chrysosporium was able to degrade this mixture of pesticides independently of laccase activity. In soil extract, T. versicolor was able to produce the same range of enzymes as P. chrysoporium plus laccase, even in the presence of 30 p.p.m. of the pesticide mixture. Complete degradation of dieldrin and trifluralin was observed, while about 80% of the simazine was degraded regardless of osmotic stress treatment in a nutritionally poor soil extract broth. The capacity of tolerance and degradation of high concentrations of mixtures of pesticides and production of a range of enzymes, even under osmotic stress, suggest potential bioremediation applications.
Biochar effects on soil-resident ligninolytic fungi: in vitro growth response and its pH dependence
NASA Astrophysics Data System (ADS)
Taskin, Eren; Loffredo, Elisabetta
2016-04-01
Ligninolytic fungi play an essential role on soil fertility because of their decomposing activity that allows nutrients inside biomasses to be released back into the soil. Their enzymes are able to degrade lignin which is otherwise recalcitrant to microbial and chemical degradation. Biochar (BC) has been recently proposed as a soil amendment that may contribute to climate change mitigation via carbon sequestration in soil. Pyrolysis conditions, feedstock and several other factors affect BC characteristics which in turn may influence BC impact on soil microorganisms and terrestrial ecosystems. However, limited information is available in the literature about BC's impact on ligninolytic fungi. The objective of this in vitro study was to assess the impact of BC and pH change caused by BC addition on three soil-resident ligninolytic fungi, Pleurotus ostreatus, Trametes versicolor and Bjerkandera adusta. The BC sample used in this study was obtained from 100% red spruce pellets pyrolysed at a temperature of 550 °C, and it was added to PDA medium directly as solid BC at the doses of 2 g L-1 (BC-LD) and 10 g L-1 (BC-HD). pH values were determined and the experiments were conducted either adjusting the pH of the controls either without pH adjustment. The fungi were inoculated separately in Petri dishes filled with the various media and the radial mycelial growth was measured at several sampling times. Results obtained showed a fungal growth response clearly dependent on the species and the BC dose. BC-LD stimulated the growth of P. ostreatus and T. versicolor, whereas it inhibited that of B. adusta. BC-HD stimulated the growth of P. ostreatus and inhibited that of T. versicolor and B. adusta. Similar responses were obtained with or without pH adjustment for P. ostreatus and T. versicolor, whereas a pH dependency was found for B. adusta. The effects of these and other pertinent treatments on fungal enzymes of the fungi are currently under investigation.
Occurrence of lignin degradation genotypes and phenotypes among prokaryotes.
Tian, Jiang-Hao; Pourcher, Anne-Marie; Bouchez, Théodore; Gelhaye, Eric; Peu, Pascal
2014-12-01
A number of prokaryotes actively contribute to lignin degradation in nature and their activity could be of interest for many applications including the production of biogas/biofuel from lignocellulosic biomass and biopulping. This review compares the reliability and efficiency of the culture-dependent screening methods currently used for the isolation of ligninolytic prokaryotes. Isolated prokaryotes exhibiting lignin-degrading potential are presented according to their phylogenetic groups. With the development of bioinformatics, culture-independent techniques are emerging that allow larger-scale data mining for ligninolytic prokaryotic functions but today, these techniques still have some limits. In this work, two phylogenetic affiliations of isolated prokaryotes exhibiting ligninolytic potential and laccase-encoding prokaryotes were determined on the basis of 16S rDNA sequences, providing a comparative view of results obtained by the two types of screening techniques. The combination of laboratory culture and bioinformatics approaches is a promising way to explore lignin-degrading prokaryotes.
Azo Dye Biodecolorization Enhanced by Echinodontium taxodii Cultured with Lignin
Meng, Jing; Yu, Hongbo; Zhang, Xiaoyu
2014-01-01
Lignocellulose facilitates the fungal oxidization of recalcitrant organic pollutants through the extracellular ligninolytic enzymes induced by lignin in wood or other plant tissues. However, available information on this phenomenon is insufficient. Free radical chain reactions during lignin metabolism are important in xenobiotic removal. Thus, the effect of lignin on azo dye decolorization in vivo by Echinodontium taxodii was evaluated. In the presence of lignin, optimum decolorization percentages for Remazol Brilliant Violet 5R, Direct Red 5B, Direct Black 38, and Direct Black 22 were 91.75% (control, 65.96%), 76.89% (control, 43.78%), 43.44% (control, 17.02%), and 44.75% (control, 12.16%), respectively, in the submerged cultures. Laccase was the most important enzyme during biodecolorization. Aside from the stimulating of laccase activity, lignin might be degraded by E. taxodii, and then these degraded low-molecular-weight metabolites could act as redox mediators promoting decolorization of azo dyes. The relationship between laccase and lignin degradation was investigated through decolorization tests in vitro with purified enzyme and dozens of aromatics, which can be derivatives of lignin and can function as laccase mediators or inducers. Dyes were decolorized at triple or even higher rates in certain laccase–aromatic systems at chemical concentrations as low as 10 µM. PMID:25285777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunecky, Roman; Donohoe, Bryon S.; Yarbrough, John M.
The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly crystalline cellulosic substrates. We have demonstrated that the CelA cellulase from Caldicellulosiruptor bescii degrades highly crystalline cellulose as well as low crystallinity substrates making it the only known cellulase to function well on highly crystalline cellulose. Unlike the secretomes of cellulolytic fungi, which typically comprise multiple, single catalytic domain enzymes for biomass degradation, some bacterial systemsmore » employ an alternative strategy that utilizes multi-catalytic domain cellulases. Additionally, CelA is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Furthermore we have determined that the factors negatively affecting digestion of lignocellulosic materials by C. bescii enzyme cocktails containing CelA appear to be significantly different from the performance barriers affecting fungal cellulases. Furthermore, we explore the activity and degradation mechanism of CelA on a variety of pretreated substrates to better understand how the different bulk components of biomass, such as xylan and lignin, impact its performance.« less
Brunecky, Roman; Donohoe, Bryon S.; Yarbrough, John M.; ...
2017-08-29
The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly crystalline cellulosic substrates. We have demonstrated that the CelA cellulase from Caldicellulosiruptor bescii degrades highly crystalline cellulose as well as low crystallinity substrates making it the only known cellulase to function well on highly crystalline cellulose. Unlike the secretomes of cellulolytic fungi, which typically comprise multiple, single catalytic domain enzymes for biomass degradation, some bacterial systemsmore » employ an alternative strategy that utilizes multi-catalytic domain cellulases. Additionally, CelA is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Furthermore we have determined that the factors negatively affecting digestion of lignocellulosic materials by C. bescii enzyme cocktails containing CelA appear to be significantly different from the performance barriers affecting fungal cellulases. Furthermore, we explore the activity and degradation mechanism of CelA on a variety of pretreated substrates to better understand how the different bulk components of biomass, such as xylan and lignin, impact its performance.« less
2010-01-01
Background Recent discoveries highlighting the metabolic malleability of plant lignification indicate that lignin can be engineered to dramatically alter its composition and properties. Current plant biotechnology efforts are primarily aimed at manipulating the biosynthesis of normal monolignols, but in the future apoplastic targeting of phenolics from other metabolic pathways may provide new approaches for designing lignins that are less inhibitory toward the enzymatic hydrolysis of structural polysaccharides, both with and without biomass pretreatment. To identify promising new avenues for lignin bioengineering, we artificially lignified cell walls from maize cell suspensions with various combinations of normal monolignols (coniferyl and sinapyl alcohols) plus a variety of phenolic monolignol substitutes. Cell walls were then incubated in vitro with anaerobic rumen microflora to assess the potential impact of lignin modifications on the enzymatic degradability of fibrous crops used for ruminant livestock or biofuel production. Results In the absence of anatomical constraints to digestion, lignification with normal monolignols hindered both the rate and extent of cell wall hydrolysis by rumen microflora. Inclusion of methyl caffeate, caffeoylquinic acid, or feruloylquinic acid with monolignols considerably depressed lignin formation and strikingly improved the degradability of cell walls. In contrast, dihydroconiferyl alcohol, guaiacyl glycerol, epicatechin, epigallocatechin, and epigallocatechin gallate readily formed copolymer-lignins with normal monolignols; cell wall degradability was moderately enhanced by greater hydroxylation or 1,2,3-triol functionality. Mono- or diferuloyl esters with various aliphatic or polyol groups readily copolymerized with monolignols, but in some cases they accelerated inactivation of wall-bound peroxidase and reduced lignification; cell wall degradability was influenced by lignin content and the degree of ester group hydroxylation. Conclusion Overall, monolignol substitutes improved the inherent degradability of non-pretreated cell walls by restricting lignification or possibly by reducing lignin hydrophobicity or cross-linking to structural polysaccharides. Furthermore some monolignol substitutes, chiefly readily cleaved bi-phenolic conjugates like epigallocatechin gallate or diferuloyl polyol esters, are expected to greatly boost the enzymatic degradability of cell walls following chemical pretreatment. In ongoing work, we are characterizing the enzymatic saccharification of intact and chemically pretreated cell walls lignified by these and other monolignol substitutes to identify promising genetic engineering targets for improving plant fiber utilization. PMID:20565789
Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut.
Pasti, M B; Pometto, A L; Nuti, M P; Crawford, D L
1990-01-01
The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of [14C]lignin- and [14C]cellulose-labeled phloem of Abies concolor to 14CO2 and 14C-labeled water-soluble products, (ii) determining lignocellulose, lignin, and carbohydrate losses resulting from growth on a lignocellulose substrate prepared from corn stalks (Zea mays), and (iii) quantifying production of a water-soluble lignin degradation intermediate (acid-precipitable polymeric lignin). The actinomycetes were all Streptomyces strains and could be placed into three groups, including a group of five strains that appear superior to S. viridosporus T7A in lignocellulose-degrading ability, three strains of approximately equal ability, and three strains of lesser ability. Strain A2 was clearly the superior and most effective lignocellulose decomposer of those tested. Of the assays used, total lignocellulose weight loss was most useful in determining overall bioconversion ability but not in identifying the best lignin-solubilizing strains. A screening procedure based on 14CO2 evolution from [14C-lignin]lignocellulose combined with measurement of acid-precipitable polymeric lignin yield was the most effective in identifying lignin-solubilizing strains. For the termite gut strains, the pH of the medium showed no increase after 3 weeks of growth on lignocellulose. This is markedly different from the pattern observed with S. viridosporus T7A, which raises the medium pH considerably. Production of extracellular peroxidases by the 11 strains and S. viridosporus T7A was followed for 5 days in liquid cultures.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167628
A photochemical strategy for lignin degradation at room temperature.
Nguyen, John D; Matsuura, Bryan S; Stephenson, Corey R J
2014-01-29
The development of a room-temperature lignin degradation strategy consisting of a chemoselective benzylic oxidation with a recyclable oxidant ([4-AcNH-TEMPO]BF4) and a catalytic reductive C-O bond cleavage utilizing the photocatalyst [Ir(ppy)2(dtbbpy)]PF6 is described. This system was tested on relevant lignin model substrates containing β-O-4 linkages to generate fragmentation products in good to excellent yields.
Ahuja, Dheeraj; Kaushik, Anupama; Chauhan, Ghanshyam S
2017-04-01
In this work lignin was extracted from waste jute bags using soda cooking method and effect of varying alkali concentration and pH on yield, purity, structure and thermal degradation of lignin were studied. The Lignin yield, chemical composition and purity were assessed using TAPPI method and UV-vis spectroscopy. Yield and purity of lignin ranged from 27 to 58% and 50-94%, respectively for all the samples and was maximum for 8% alkali concentration and at pH 2 giving higher thermal stability. Chemical structure, thermal stability and elementary analysis of lignin were studied using FTIR, H NMR, thermo gravimetric analysis (TGA) and Elemental analyzer. FTIR and H NMR results showed that core structure of lignin starts breaking beyond 10% alkali concentration. S/G ratio shows the dominance of Syringyl unit over guaiacyl unit. Copyright © 2017 Elsevier B.V. All rights reserved.
[Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].
Li, Hong-ya; Li, Shu-na; Wang, Shu-xiang; Wang, Quan; Xue, Yin-yin; Zhu, Bao-cheng
2015-05-01
Microbial degradation of lignocellulose is one of the key problems that need to be solved urgently in the process of utilizing biomass resource. Bacillus amyloliquefaciens MN-8 is our previously isolated bacterium capable of degrading lignin. To determine the capability of strain MN-8 to degrade lignocellulose of corn straw, B. amyloliquefaciens MN-8 was inoculated and fermented with solid-state corn straw powder-MSM culture medium. The changes in the enzyme activity and degradation products of lignocellulose were monitored in the process of fermentation using the FTIR and GC/MS. The results showed that B. amyloliquefaciens MN-8 could produce lignin peroxidase, manganese peroxidase, cellulase and hemicellulase enzymes. The activities of all these enzymes reached the peak after being incubated for 10-16 days, and the highest enzyme activities were 55.0, 16.7, 45.4 and 60.5 U · g(-1), respectively. After 24 d of incubation, the degradation percentages of lignin, cellulose and hemicellulose were up to 42.9%, 40.6% and 27.1%, respectively. The spectroscopic data by FTIR indicated that the intensities of characteristic absorption peaks of lignin, cellulose and hemicellulose of the corn straw were decreased, indicating that the lignocellulose was degraded partly after being fermented by B. amyloliquefaciens MN-8. GC/MS analysis also demonstrated that strain MN-8 could degrade lignocellulose efficiently. It could depolymerize lignin into some monomeric compounds with retention of phenylpropane structure unit, such as amphetamine, benzene acetone and benzene propanoic acids, by the rupture of β-O-4 bond connected between lignin monomer, and it further oxidized some monomer compounds into Cα carbonyl compounds, such as 2-amino-1-benzeneacetone and 4-hydroxy-3,5-dimethoxy-acetophenone. The GC/MS analysis of the degradation products of cellulose and hemicellulose showed that there were not only monosaccharide compounds, such as glucose, mannose and galactose, but also some glycolysis products including formic acid, acetic acid, propionic acid, 1,1-ethanediol and 3-hydroxy butyric acid. Our results demonstrated that B. amyloliquefaciens MN-8 is capable of degrading lignocelluse of the corn straw effectively and the degradation capacity depends on the lignocellulase activity.
Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh
2017-06-01
Sweet sorghum bagasse (SSB) from food processing and agricultural industry has attracted the attention for uses in production of biofuel, enzymes and other products. The alteration in lignocellulolytic enzymes by use of supplements in fungal pretreatment of SSB to achieve higher lignin degradation, selectivity value and enzymatic hydrolysis to fermentable sugar was studied. Fungal strain Coriolus versicolor was selected for pretreatment due to high ligninolytic and low cellulolytic enzyme production resulting in high lignin degradation and selectivity value. SSB was pretreated with supplements of veratryl alcohol, syringic acid, catechol, gallic acid, vanillin, guaiacol, CuSO 4 and MnSO 4 . The best results were obtained with CuSO 4 , gallic acid and syringic acid supplements. CuSO 4 increased the activities of laccase (4.9-fold) and polyphenol oxidase (1.9-fold); gallic acid increased laccase (3.5-fold) and manganese peroxidase (2.5-fold); and syringic acid increased laccase (5.6-fold), lignin peroxidase (13-fold) and arylalcohol oxidase (2.8-fold) resulting in enhanced lignin degradations and selectivity values than the control. Reduced cellulolytic enzyme activities resulted in high cellulose recovery. Enzymatic hydrolysis of pretreated SSB yielded higher sugar due to degradation of lignin and reduced the crystallinity of cellulose. The study showed that supplements could be used to improve the pretreatment process. The results were confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric/differential thermogravimetric analysis of SSB.
Hermann, Katia L; Costa, Alessandra; Helm, Cristiane V; De Lima, Edson A; Tavares, Lorena B B
2013-09-01
The production of ethanol from lignocellulosic biomass is referred as a second generation biofuel, whose processing is one of the most promising technologies under development. There are few available studies on the use of enzymes produced by fungi as active for the biodegradation of lignocellulosic biomass. However, the manganese peroxidase (MnP) enzyme presents high potential to degrade lignin and the basidiomycetes are the major producers of this oxidase. Thus, this study aimed at evaluating the ability of fungi Lentinula edodes and Lentinula boryana to produce this enzyme when cultivated in submerged fermentation system (SS) and also in solid-state fermentation system (SSF) containing Eucalyptus benthamii sawdust with or without corn cob meal. In the SS the greatest MnP expression occurred on the 25th day, being of 70 UI.L-1 for L. boryana and of 20 UI.L-1 for L. edodes. In the SSF, the best results were obtained on the 10th day for L. edodes, while for L. boryana it happened between the 20th and the 25th days, despite both species presented values close to 110 UI.L-1. Therefore, the results indicated that the studied fungi express the enzyme of interest and that its production is enhanced when cultivated in solid system.
Evaluation of lignin-based black liquor decolorization by Trametes versicolor U 80
NASA Astrophysics Data System (ADS)
Amriani, Feni; Sari, Ajeng Arum; R. Irni Fitria, A.; Abimanyu, Haznan; Tachibana, Sanro
2017-01-01
Bioethanol second generation (G-2) production process generated black liquor that need to treat before the disposal to prevent environmental pollution. Usually, coagulation technology using polyaluminium chloride was employed to precipitate dissolved lignin and intended to decolorize black liquor. However, this single work is not effective to treat black liquor, so that it requires another work to treat remain brownish liquor. Isolated fungal strain from Japan Trametes versicolor U 80 and Phanerochaete chrysosporium are white rot fungi that are known in ligninolytic enzymes secretion to biodegrade soluble lignin. Decolorization of black and brownish liquor is an indicator of fungi works since lignin is known as the colour agent in liquor colouration. This work evaluated black and brownish liquor decolorization using both fungi that correspond to fungal growth. Liquor toxicity was observed based on mycelial dry weight after 30 days incubation as the presumption of the connection of fungal growth and decolorization. The biosorption from the dead cell was also evaluated for fungal adsorption capability in black and brownish decolorization. As the result, T. versicolor U 80 was able to decolorize brownish liquor 51.5% after 21 days incubation and 68.6% black liquor at 15 days incubation. MnP and Laccase enzymes activity in 15 and 21 days are correlated to those decolorized results. The dead cell was also able to decolorize 67.3% brownish liquor and 25.1% black liquor after 15 days incubation as biosorption mechanism. This research described fungal potential in decolorization as the simple black liquor treatment technology and gave valuable information related to environmental friendly decolorization process.
Abundance and reactivity of dibenzodioxocins in softwood lignin.
Argyropoulos, Dimitris S; Jurasek, Lubo; Kristofová, Lívia; Xia, Zhicheng; Sun, Yujun; Palus, Ernest
2002-02-13
To define the abundance and comprehend the reactivity of dibenzodioxocins in lignin, model compound studies, specific degradation experiments on milled wood lignin, and molecular modeling calculations have been performed. Quantitative (31)P NMR measurements of the increase of biphenolic hydroxyl groups formed after a series of alkaline degradations in the presence of hydrosulfide anions (kraft conditions) showed the presence of 3.7 dibenzodioxocin rings/100 C9 units in milled wood lignin. The DFRC degradation protocol (Derivatization Followed by Reductive Cleavage) was chosen as an independent means to estimate their abundance. Initial experiments with a dibenzodioxocin model compound, trans-6,7-dihydro-7-(4-hydroxy-3-methoxyphenyl)-4,9-dimethoxy-2,11-dipropyldibenzo[e,g][1,4]dioxocin-6-ylmethanol, showed that it is not cleaved under DFRC conditions, but rather it isomerizes into a cyclic oxepine structure. Steric effects precluded this isomerization from occurring when DFRC was applied to milled wood lignin. Instead, monoacetylated biphenolic moieties were released and quantified by (31)P NMR, at 4.3 dibenzodioxocin rings/100 C9 units. The dibenzodioxocin content in residual lignins isolated from kraft pulps delignified to various degrees showed that during pulp delignification, the initial rate of dibenzodioxocin removal was considerably greater than the cleavage rate of arylglycerol-beta-aryl ether bonds. The activation energy for the degradation of dibenzodioxocins under kraft conditions in milled wood lignin was 96 +/- 9 kJ/mol, similar to that of arylglycerol-beta-aryl ether bond cleavage.
Sharma, Rahul; Prakash, Om; Sonawane, Mahesh S; Nimonkar, Yogesh; Golellu, Priyanka B; Sharma, Rohit
2016-01-01
Soda lake is hyper alkaline and saline habitat located in closed craters with high evaporation rate. In current study fungal diversity from water and sediment samples of a soda lake (Lonar lake) located in Buldhana district of Maharashtra, India was investigated using extensive culturomics approach and mimicking the natural conditions of Lonar lake in culture media. A total of 104 diverse isolates of extremophilic fungi were recovered from this study and phylogenetically characterized by internal transcribed spacer (ITS) region sequencing. In addition, due to important role of phenol oxidase, and peroxidase in degradation of toxic phenol, lignin, etc., all isolated pure cultures were also screened for extracellular phenol oxidase and peroxidase production potential. Diversity analysis indicated that different groups of extremophilic fungi are present in the water and sediment samples of Lonar lake. A total of 38 species of fungi belonging to 18-different genera were recovered. Out of 104 isolates 32 showed ≤97% sequences similarity, which were morphologically different and could be potential novel isolates of extremophilic fungi. However, out of 104 isolates only 14 showed the extracellular phenol oxidase production potentials at alkaline pH. Curvularia sp. strain MEF018 showed highest phenol oxidase production at alkaline condition and had low sequence similarity with previously characterized species (96% with Curvularia pseudorobusta ). Taxonomic characterization (morphological and physiological) and multi locus sequence analysis (MLSA) using combined alignment of ITS-LSU- gpd of strain MEF018 showed that it is a novel species of the genus Curvularia and hence proposed as Curvularia lonarensis sp. nov.
Sharma, Rahul; Prakash, Om; Sonawane, Mahesh S.; Nimonkar, Yogesh; Golellu, Priyanka B.; Sharma, Rohit
2016-01-01
Soda lake is hyper alkaline and saline habitat located in closed craters with high evaporation rate. In current study fungal diversity from water and sediment samples of a soda lake (Lonar lake) located in Buldhana district of Maharashtra, India was investigated using extensive culturomics approach and mimicking the natural conditions of Lonar lake in culture media. A total of 104 diverse isolates of extremophilic fungi were recovered from this study and phylogenetically characterized by internal transcribed spacer (ITS) region sequencing. In addition, due to important role of phenol oxidase, and peroxidase in degradation of toxic phenol, lignin, etc., all isolated pure cultures were also screened for extracellular phenol oxidase and peroxidase production potential. Diversity analysis indicated that different groups of extremophilic fungi are present in the water and sediment samples of Lonar lake. A total of 38 species of fungi belonging to 18-different genera were recovered. Out of 104 isolates 32 showed ≤97% sequences similarity, which were morphologically different and could be potential novel isolates of extremophilic fungi. However, out of 104 isolates only 14 showed the extracellular phenol oxidase production potentials at alkaline pH. Curvularia sp. strain MEF018 showed highest phenol oxidase production at alkaline condition and had low sequence similarity with previously characterized species (96% with Curvularia pseudorobusta). Taxonomic characterization (morphological and physiological) and multi locus sequence analysis (MLSA) using combined alignment of ITS-LSU-gpd of strain MEF018 showed that it is a novel species of the genus Curvularia and hence proposed as Curvularia lonarensis sp. nov. PMID:27920761
Isolation of bacterial strains able to metabolize lignin and lignin-related compounds.
Tian, J-H; Pourcher, A-M; Peu, P
2016-07-01
In this study, we identified five strains isolated from soil and sediments able to degrade kraft lignin, aromatic dyes and lignin derivatives. Using 16S rRNA gene sequencing, the isolates were identified as Serratia sp. JHT01, Serratia liquefacien PT01, Pseudomonas chlororaphis PT02, Stenotrophomonas maltophilia PT03 and Mesorhizobium sp. PT04. All the isolates showed significant growth on lignin with no water-extractable compounds. Synthetic aromatic dyes were used to assess the presence of oxidative enzymes. All the isolates were able to use the thiazine dye Methylene blue and the anthraquinone dye Remazol Brilliant Blue R as the sole carbon source. Guaiacol, veratryl alcohol and biphenyl were also mineralized by all the strains isolated. These results suggest they could be used for the treatment of aromatic pollutants and for the degradation of the lignocellulosic biomass. The valorization of waste lignin and lignocellulosic biomass by biocatalysis opens up new possibilities for the production of value-added substituted aromatics, biofuel and for the treatment of aromatic pollutants. Bacteria with ligninolytic potential could be a source of novel enzymes for controlled lignin depolymerization. In this work, five soil bacteria were isolated and studied. Every isolate showed significant growth on lignin and was able to degrade several lignin monomers and ligninolytic indicator dyes. They could thus be a source of novel ligninolytic enzymes as well as candidates for a bacterial consortium for the delignification of lignocellulosic biomass. © 2016 The Society for Applied Microbiology.
The plant cell wall--decomposing machinery underlies the functional diversity of forest fungi
Daniel C. Eastwood; Dimitrios Floudas; Manfred Binder; Andrzej Majcherczyk; Patrick Schneider; Andrea Aerts; Fred O. Asiegbu; Scott E. Baker; Kerrie Barry; Mika Bendiksby; Melanie Blumentritt; Pedro M. Coutinho; Dan Cullen; Ronald P. de Vries; Allen Gathman; Barry Goodell; Bernard Henrissat; Katarina Ihrmark; Havard Kauserud; Annegret Kohler; Kurt LaButti; Alla Lapidus; Jose L. Lavin; Yong-Hwan Lee; Erika Lindquist; Walt Lilly; Susan Lucas; Emmanuelle Morin; Claude Murat; Jose A. Oguiza; Jongsun Park; Antonio G. Pisabarro; Robert Riley; Anna Rosling; Asaf Salamov; Olaf Schmidt; Jeremy Schmutz; Inger Skrede; Jan Stenlid; Ad Wiebenga; Xinfeng Xie; Ursula Kues; David S. Hibbett; Dirk Hoffmeister; Nils Hogberg; Francis Martin; Igor V. Grigoriev; Sarah C. Watkinson
2011-01-01
Brown rot decay removes cellulose and hemicelluloses from wood, residual lignin contributing up to 30% of forest soil carbon, and is derived from an ancestral white rot saprotrophy where both lignin and cellulose are decomposed. Comparative and functional genomics of the âdry rotâ fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution...
Palamuru, Shannu; Dellas, Nikki; Pearce, Stephen L.; Warden, Andrew C.; Oakeshott, John G.
2015-01-01
Lignin is a complex aromatic polymer found in plant cell walls that makes up 15 to 40% of plant biomass. The degradation of lignin substructures by bacteria is of emerging interest because it could provide renewable alternative feedstocks and intermediates for chemical manufacturing industries. We have isolated a bacterium, strain SG61-1L, that rapidly degrades all of the stereoisomers of one lignin substructure, guaiacylglycerol-β-guaiacyl ether (GGE), which contains a key β-O-4 linkage found in most intermonomer linkages in lignin. In an effort to understand the rapid degradation of GGE by this bacterium, we heterologously expressed and kinetically characterized a suite of dehydrogenase candidates for the first known step of GGE degradation. We identified a clade of active GGE dehydrogenases and also several other dehydrogenases outside this clade that were all able to oxidize GGE. Several candidates exhibited stereoselectivity toward the GGE stereoisomers, while others had higher levels of catalytic performance than previously described GGE dehydrogenases for all four stereoisomers, indicating a variety of potential applications for these enzymes in the manufacture of lignin-derived commodities. PMID:26386069
Degradation of carbohydrates and lignins in buried woods
Hedges, J.I.; Cowie, G.L.; Ertel, J.R.; James, Barbour R.; Hatcher, P.G.
1985-01-01
Spruce, alder, and oak woods deposited in coastal sediments were characterized versus their modern counterparts by quantification of individual neutral sugars and lignin-derived phenols as well as by scanning electron microscopy, 13C NMR, and elemental analysis. The buried spruce wood from a 2500 yr old deposit was unaltered whereas an alder wood from the same horizon and an oak wood from an open ocean sediment were profoundly degraded. Individual sugar and lignin phenol analyses indicate that at least 90 and 98 wt% of the initial total polysaccharides in the buried alder and oak woods, respectively, have been degraded along with 15-25 wt% of the lignin. At least 75% of the degraded biopolymer has been physically lost from these samples. This evidence is supported by the SEM, 13C NMR and elemental analyses, all of which indicate selective loss of the carbohydrate moiety. The following order of stability was observed for the major biochemical constituents of both buried hardwoods: vanillyl and p-hydroxyl lignin structural units > syringyl lignin structural units > pectin > ??-cellulose > hemicellulose. This sequence can be explained by selective preservation of the compound middle lamella regions of the wood cell walls. The magnitude and selectivity of the indicated diagenetic reactions are sufficient to cause major changes in the chemical compositions of wood-rich sedimentary organic mixtures and to provide a potentially large in situ nutrient source. ?? 1985.
Two decades of warming increases diversity of a potentially lignolytic bacterial community
Pold, Grace; Melillo, Jerry M.; DeAngelis, Kristen M.
2015-01-01
As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112
Cui, Songkui; Wada, Syogo; Tobimatsu, Yuki; Takeda, Yuri; Saucet, Simon B; Takano, Toshiyuki; Umezawa, Toshiaki; Shirasu, Ken; Yoshida, Satoko
2018-04-01
Parasitic plants in the family Orobanchaceae are destructive weeds of agriculture worldwide. The haustorium, an essential parasitic organ used by these plants to penetrate host tissues, is induced by host-derived phenolic compounds called haustorium-inducing factors (HIFs). The origin of HIFs remains unknown, although the structures of lignin monomers resemble that of HIFs. Lignin is a natural phenylpropanoid polymer, commonly found in secondary cell walls of vascular plants. We therefore investigated the possibility that HIFs are derived from host lignin. Various lignin-related phenolics, quinones and lignin polymers, together with nonhost and host plants that have different lignin compositions, were tested for their haustorium-inducing activity in two Orobanchaceae species, a facultative parasite, Phtheirospermum japonicum, and an obligate parasite, Striga hermonthica. Lignin-related compounds induced haustoria in P. japonicum and S. hermonthica with different specificities. High concentrations of lignin polymers induced haustorium formation. Treatment with laccase, a lignin degradation enzyme, promoted haustorium formation at low concentrations. The distinct lignin compositions of the host and nonhost plants affected haustorium induction, correlating with the response of the different parasitic plants to specific types of lignin-related compounds. Our study provides valuable insights into the important roles of lignin biosynthesis and degradation in the production of HIFs. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Krueger, Martin C.; Hofmann, Ulrike; Moeder, Monika; Schlosser, Dietmar
2015-01-01
Synthetic polymers often pose environmental hazards due to low biodegradation rates and resulting accumulation. In this study, a selection of wood-rotting fungi representing different lignocellulose decay types was screened for oxidative biodegradation of the polymer polystyrene sulfonate (PSS). Brown-rot basidiomycetes showed PSS depolymerisation of up to 50 % reduction in number-average molecular mass (Mn) within 20 days. In-depth investigations with the most efficient depolymeriser, a Gloeophyllum trabeum strain, pointed at extracellular hydroquinone-driven Fenton chemistry responsible for depolymerisation. Detection of hydroxyl radicals present in the culture supernatants showed good compliance with depolymerisation over the time course of PSS degradation. 2,5-Dimethoxy-1,4-hydroquinone (2,5-DMHQ), which was detected in supernatants of active cultures via liquid chromatography and mass spectrometry, was demonstrated to drive the Fenton processes in G. trabeum cultures. Up to 80% reduction in Mn of PSS where observed when fungal cultures were additionally supplemented with 2,5-dimethoxy benzoquinone, the oxidized from of 2,5-DMHQ. Furthermore, 2,5-DMHQ could initiate the Fenton's reagent-mediated PSS depolymerisation in cell-free systems. In contrast, white-rot fungi were unable to cause substantial depolymerising effects despite the expression of lignin-modifying exo-enzymes. Detailed investigations with laccase from Trametes versicolor revealed that only in presence of certain redox mediators limited PSS depolymerisation occurred. Our results indicate that brown-rot fungi might be suitable organisms for the biodegradation of recalcitrant synthetic polymeric pollutants. PMID:26147966
Daniel, G; Volc, J; Kubatova, E
1994-07-01
The production of the H(2)O(2)-generating enzyme pyranose oxidase (POD) (EC 1.1.3.10) (synonym, glucose 2-oxidase), two ligninolytic peroxidases, and laccase in wood decayed by three white rot fungi was investigated by correlated biochemical, immunological, and transmission electron microscopic techniques. Enzyme activities were assayed in extracts from decayed birch wood blocks obtained by a novel extraction procedure. With the coupled peroxidase-chromogen (3-dimethylaminobenzoic acid plus 3-methyl-2-benzothiazolinone hydrazone hydrochloride) spectrophotometric assay, the highest POD activities were detected in wood blocks degraded for 4 months and were for Phanerochaete chrysosporium (149 mU g [dry weight] of decayed wood), Trametes versicolor (45 mU g), and Oudemansiella mucida (1.2 mU g), corresponding to wood dry weight losses of 74, 58, and 13%, respectively. Mn-dependent peroxidase activities in the same extracts were comparable to those of POD, while lignin peroxidase activity was below the detection limit for all fungi with the veratryl alcohol assay. Laccase activity was high with T. versicolor (422 mU g after 4 months), in trace levels with O. mucida, and undetectable in P. chrysosporium extracts. Evidence for C-2 specificity of POD was shown by thin-layer chromatography detection of 2-keto-d-glucose as the reaction product. By transmission electron microscopy-immunocytochemistry, POD was found to be preferentially localized in the hyphal periplasmic space of P. chrysosporium and O. mucida and associated with membranous materials in hyphae growing within the cell lumina or cell walls of partially and highly degraded birch fibers. An extracellular distribution of POD associated with slime coating wood cell walls was also noted. The periplasmic distribution in hyphae and extracellular location of POD are consistent with the reported ultrastructural distribution of H(2)O(2)-dependent Mn-dependent peroxidases. This fact and the dominant presence of POD and Mn-dependent peroxidase in extracts from degraded wood suggest a cooperative role of the two enzymes during white rot decay by the test fungi.
Bilal, Muhammad; Asgher, Muhammad; Parra-Saldivar, Roberto; Hu, Hongbo; Wang, Wei; Zhang, Xuehong; Iqbal, Hafiz M N
2017-01-15
In the twenty-first century, chemical and associated industries quest a transition prototype from traditional chemical-based concepts to a greener, sustainable and environmentally-friendlier catalytic alternative, both at the laboratory and industrial scale. In this context, bio-based catalysis offers numerous benefits along with potential biotechnological and environmental applications. The bio-based catalytic processes are energy efficient than conventional methodologies under moderate processing, generating no and negligible secondary waste pollution. Thanks to key scientific advances, now, solid-phase biocatalysts can be economically tailored on a large scale. Nevertheless, it is mandatory to recover and reprocess the enzyme for their commercial feasibility, and immobilization engineering can efficiently accomplish this challenge. The first part of the present review work briefly outlines the immobilization of lignin-modifying enzymes (LMEs) including lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase of white-rot fungi (WRF). Whereas, in the second part, a particular emphasis has been given on the recent achievements of carrier-immobilized LMEs for the degradation, decolorization, or detoxification of industrial dyes and dye-based industrial wastewater effluents. Copyright © 2016 Elsevier B.V. All rights reserved.
Dier, Tobias K F; Fleckenstein, Marco; Militz, Holger; Volmer, Dietrich A
2017-05-01
Chemical degradation is an efficient method to obtain bio-oils and other compounds from lignin. Lignin bio-oils are potential substitutes for the phenol component of phenol formaldehyde (PF) resins. Here, we developed an analytical method based on high resolution mass spectrometry that provided structural information for the synthesized lignin-derived resins and supported the prediction of their properties. Different model resins based on typical lignin degradation products were analyzed by electrospray ionization in negative ionization mode. Utilizing enhanced mass defect filter techniques provided detailed structural information of the lignin-based model resins and readily complemented the analytical data from differential scanning calorimetry and thermogravimetric analysis. Relative reactivity and chemical diversity of the phenol substitutes were significant determinants of the outcome of the PF resin synthesis and thus controlled the areas of application of the resulting polymers. Graphical abstract ᅟ.
[Advance of heterologous expression study of eukaryote-origin laccases].
Ning, Na; Tan, Huijun; Sun, Xinxin; Ni, Jinfeng
2017-04-25
Laccases are enzymes belonging to the group of multi-copper oxidases. These enzymes are widely distributed in insects, plants, fungi and bacteria. In general, laccases can oxidize an exceptionally high number of substrates, so they have broad applications in textile, pulp, food and the degradation of lignin. However, low yield, low activity and thermo-instability of laccase in nature limit the application of laccase. High efficient heterologous expression of the protein is an effective way for solving this problem. Here, we summarize the research advances of heterologous expression of eukaryote-origin laccases. We focus on the overexpression of eukaryote-origin laccases using different expression system and the method for improving the production yield and enzyme activity in yeast cells. Information provided in this review would be helpful for researchers in the field.
Pretreatment of lignocellulosic biomass using Fenton chemistry.
Kato, Dawn M; Elía, Noelia; Flythe, Michael; Lynn, Bert C
2014-06-01
In an attempt to mimic white-rot fungi lignin degradation via in vivo Fenton chemistry, solution phase Fenton chemistry (10 g biomass, 176 mmol hydrogen peroxide and 1.25 mmol Fe(2+) in 200 mL of water) was applied to four different biomass feedstocks. An enzymatic saccharification of Fenton pretreated biomass showed an average 212% increase relative to untreated control across all four feedstocks (P<0.05, statistically significant). A microbial fermentation of the same Fenton pretreated biomass showed a threefold increase in gas production upon a sequential co-culture with Clostridium thermocellum and Clostridium beijerinckii. These results demonstrate the use of solution phase Fenton chemistry as a viable pretreatment method to make cellulose more bioavailable for microbial biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Djajadi, Demi T; Jensen, Mads M; Oliveira, Marlene; Jensen, Anders; Thygesen, Lisbeth G; Pinelo, Manuel; Glasius, Marianne; Jørgensen, Henning; Meyer, Anne S
2018-01-01
Lignin is known to hinder efficient enzymatic conversion of lignocellulose in biorefining processes. In particular, nonproductive adsorption of cellulases onto lignin is considered a key mechanism to explain how lignin retards enzymatic cellulose conversion in extended reactions. Lignin-rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover ( Zea mays subsp. mays L.), Miscanthus × giganteus stalks (MS) and wheat straw ( Triticum aestivum L.) (WS) samples that each had been hydrothermally pretreated at three severity factors (log R 0 ) of 3.65, 3.83 and 3.97. The LRRs had different residual carbohydrate levels-the highest in MS; the lowest in WS. The residual carbohydrate was not traceable at the surface of the LRRs particles by ATR-FTIR analysis. The chemical properties of the lignin in the LRRs varied across the three types of biomass, but monolignols composition was not affected by the severity factor. When pure cellulose was added to a mixture of LRRs and a commercial cellulolytic enzyme preparation, the rate and extent of glucose release were unaffected by the presence of LRRs regardless of biomass type and severity factor, despite adsorption of the enzymes to the LRRs. Since the surface of the LRRs particles were covered by lignin, the data suggest that the retardation of enzymatic cellulose degradation during extended reaction on lignocellulosic substrates is due to physical blockage of the access of enzymes to the cellulose caused by the gradual accumulation of lignin at the surface of the biomass particles rather than by nonproductive enzyme adsorption. The study suggests that lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier blocking the access of enzymes to cellulose rather than by inducing retardation through nonproductive adsorption of enzymes.
Ma, Jiangshan; Zhang, Keke; Huang, Mei; Hector, Stanton B; Liu, Bin; Tong, Chunyi; Liu, Qian; Zeng, Jiarui; Gao, Yan; Xu, Ting; Liu, Ying; Liu, Xuanming; Zhu, Yonghua
2016-01-01
Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe 2+ + H 2 O 2 + H + → Fe 3+ + OH· + H 2 O), similar to that of white-rot and brown-rot fungi. The aim of this work is to investigate the existence of this Fenton-based oxidation mechanism in the rice straw degradation process of P. ananatis Sd-1. After 3 days incubation of unpretreated rice straw with P. ananatis Sd-1, the percentage in weight reduction of rice straw as well as its cellulose, hemicellulose, and lignin components reached 46.7, 43.1, 42.9, and 37.9 %, respectively. The addition of different hydroxyl radical scavengers resulted in a significant decline ( P < 0.001) in rice straw degradation. Pyrolysis gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy analysis revealed the consistency of chemical changes of rice straw components that exists between P. ananatis Sd-1 and Fenton reagent treatment. In addition to the increased total iron ion concentration throughout the rice straw decomposition process, the Fe 3+ -reducing capacity of P. ananatis Sd-1 was induced by rice straw and predominantly contributed by aromatic compounds metabolites. The transcript levels of the glucose-methanol-choline oxidoreductase gene related to hydrogen peroxide production were significantly up-regulated (at least P < 0.01) in rice straw cultures. Higher activities of GMC oxidoreductase and less hydrogen peroxide concentration in rice straw cultures relative to glucose cultures may be responsible for increasing rice straw degradation, which includes Fenton-like reactions. Our results confirmed the Fenton chemistry-assisted degradation model in P. ananatis Sd-1. We are among the first to show that a Fenton-based oxidation mechanism exists in a bacteria degradation system, which provides a new perspective for how natural plant biomass is decomposed by bacteria. This degradative system may offer an alternative approach to the fungi system for lignocellulosic biofuels production.
Mnich, Ewelina; Vanholme, Ruben; Oyarce, Paula; ...
2016-10-24
Here, lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility. The bacterium Sphingomonas paucimobilis produces lignin-degrading enzymes including LigD, LigF and LigG involved in cleaving the most abundant lignin interunit linkage, the β-aryl ether bond. In this study, we expressed the LigD, LigF and LigG ( LigDFG) genes in Arabidopsis thaliana to introduce postlignification modifications into the lignin structure. The three enzymes were targeted to the secretory pathway. Phenolicmore » metabolite profiling and 2D HSQC NMR of the transgenic lines showed an increase in oxidized guaiacyl and syringyl units without concomitant increase in oxidized β-aryl ether units, showing lignin bond cleavage. Saccharification yield increased significantly in transgenic lines expressing LigDFG, showing the applicability of our approach. Additional new information on substrate specificity of the LigDFG enzymes is also provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mnich, Ewelina; Vanholme, Ruben; Oyarce, Paula
Here, lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility. The bacterium Sphingomonas paucimobilis produces lignin-degrading enzymes including LigD, LigF and LigG involved in cleaving the most abundant lignin interunit linkage, the β-aryl ether bond. In this study, we expressed the LigD, LigF and LigG ( LigDFG) genes in Arabidopsis thaliana to introduce postlignification modifications into the lignin structure. The three enzymes were targeted to the secretory pathway. Phenolicmore » metabolite profiling and 2D HSQC NMR of the transgenic lines showed an increase in oxidized guaiacyl and syringyl units without concomitant increase in oxidized β-aryl ether units, showing lignin bond cleavage. Saccharification yield increased significantly in transgenic lines expressing LigDFG, showing the applicability of our approach. Additional new information on substrate specificity of the LigDFG enzymes is also provided.« less
Consequences of plant phenolic compounds for productivity and health of ruminants.
Waghorn, Garry C; McNabb, Warren C
2003-05-01
Plant phenolic compounds are diverse in structure but are characterised by hydroxylated aromatic rings (e.g. flavan-3-ols). They are categorised as secondary metabolites, and their function in plants is often poorly understood. Many plant phenolic compounds are polymerised into larger molecules such as the proanthocyanidins (PA; condensed tannins) and lignins. Only the lignins, PA, oestrogenic compounds and hydrolysable tannins will be considered here. Lignins slow the physical and microbial degradation of ingested feed, because of resilient covalent bonding with hemicellulose and cellulose, rather than any direct effects on the rumen per se. The PA are prevalent in browse and are expressed in the foliage of some legumes (e.g. Lotus spp.), but rarely in grasses. They reduce the nutritive value of poor-quality diets, but can also have substantial benefits for ruminant productivity and health when improved temperate forages are fed. Beneficial effects are dependent on the chemical and physical structure, and concentration of the PA in the diet, but they have been shown to improve live-weight gain, milk yield and protein concentration, and ovulation rate. They prevent bloat in cattle, reduce gastrointestinal nematode numbers, flystrike and CH4 production. Some phenolic compounds (e.g. coumestans) cause temporary infertility, whilst those produced by Fusarium fungi found in pasture, silage or stored grains can cause permanent infertility. The HT may be toxic because products of their metabolism can cause liver damage and other metabolic disorders.
Lignin phenols used to infer organic matter sources to Sepetiba Bay - RJ, Brasil
NASA Astrophysics Data System (ADS)
Rezende, C. E.; Pfeiffer, W. C.; Martinelli, L. A.; Tsamakis, E.; Hedges, J. I.; Keil, R. G.
2010-04-01
Lignin phenols were measured in the sediments of Sepitiba Bay, Rio de Janeiro, Brazil and in bedload sediments and suspended sediments of the four major fluvial inputs to the bay; São Francisco and Guandu Channels and the Guarda and Cação Rivers. Fluvial suspended lignin yields (Σ8 3.5-14.6 mgC 10 g dw -1) vary little between the wet and dry seasons and are poorly correlated with fluvial chlorophyll concentrations (0.8-50.2 μgC L -1). Despite current land use practices that favor grassland agriculture or industrial uses, fluvial lignin compositions are dominated by a degraded leaf-sourced material. The exception is the Guarda River, which has a slight influence from grasses. The Lignin Phenol Vegetation Index, coupled with acid/aldehyde and 3.5 Db/V ratios, indicate that degraded leaf-derived phenols are also the primary preserved lignin component in the bay. The presence of fringe Typha sp. and Spartina sp. grass beds surrounding portions of the Bay are not reflected in the lignin signature. Instead, lignin entering the bay appears to reflect the erosion of soils containing a degraded signature from the former Atlantic rain forest that once dominated the watershed, instead of containing a significant signature derived from current agricultural uses. A three-component mixing model using the LPVI, atomic N:C ratios, and stable carbon isotopes (which range between -26.8 and -21.8‰) supports the hypothesis that fluvial inputs to the bay are dominated by planktonic matter (78% of the input), with lignin dominated by leaf (14% of the input) over grass (6%). Sediments are composed of a roughly 50-50 mixture of autochthonous material and terrigenous material, with lignin being primarily sourced from leaf.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amer, G.I.; Drew, S.W.
1981-01-01
During a 9 day fermentation of lignin by C. versicolor, the concentration of superoxide radical in the extracellular medium of the submerged culture rose and fell, reaching a maximum after 2 and 6 days of incubation, and a minimum at 3 and 8 days. The results indicate that the extracellular superoxide radical is involved in lignin degradation, but there was no evidence that it is an initial attacking agent. (Refs. 9).
The feasibility of large-scale fungal bioaugmentation was evaluated by assessing the ability of the lignin-degrading fungus Phanerochaete sordida to decrease the soil concentrations of pentachlorophenol (PCP) and 13 priority pollutant polynuclear aromatic (PNA) creosote component...
Persinoti, Gabriela F; Paixão, Douglas A A; Bugg, Timothy D H; Squina, Fabio M
2018-05-03
We report here the draft genome sequence of Lysinibacillus sphaericus strain A1, a potential lignin-degrading bacterium isolated from municipal solid waste (MSW) soil and capable of enhancing gas release from lignocellulose-containing soil. Copyright © 2018 Persinoti et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haitao; Xie, Yimin; Zheng, Xing
With this study, to understand the structural changes of lignin after soda-AQ and kraft pretreatment, milled straw lignin, black liquor lignin and residual lignin extracted from wheat straw were characterized by FT-IR, UV, GPC and NMR. The results showed that the main lignin linkages were β-aryl ether substructures (β-O-4'), followed by phenylcoumaran (β-5') and resinol (β-β') substructures, while minor content of spirodienone (β-1'), dibenzodioxocin (5-5') and α,β-diaryl ether linkages were detected as well. After pretreatment, most lignin inter-units and lignin-carbohydrate complex (LCC) linkages were degraded and dissolved in black liquor, with minor amount left in residual pretreated biomass. In addition,more » through quantitative 13C and 2D-HSQC NMR spectral analysis, lignin and LCC were found to be more degraded after kraft pretreatment than soda-AQ pretreatment. Furthermore, the subsequent enzymatic hydrolysis results showed that more cellulose in wheat straw was converted to glucose after kraft pretreatment, indicating that LCC linkages were important in the enzymatic hydrolysis process.« less
Yang, Haitao; Xie, Yimin; Zheng, Xing; ...
2016-02-18
With this study, to understand the structural changes of lignin after soda-AQ and kraft pretreatment, milled straw lignin, black liquor lignin and residual lignin extracted from wheat straw were characterized by FT-IR, UV, GPC and NMR. The results showed that the main lignin linkages were β-aryl ether substructures (β-O-4'), followed by phenylcoumaran (β-5') and resinol (β-β') substructures, while minor content of spirodienone (β-1'), dibenzodioxocin (5-5') and α,β-diaryl ether linkages were detected as well. After pretreatment, most lignin inter-units and lignin-carbohydrate complex (LCC) linkages were degraded and dissolved in black liquor, with minor amount left in residual pretreated biomass. In addition,more » through quantitative 13C and 2D-HSQC NMR spectral analysis, lignin and LCC were found to be more degraded after kraft pretreatment than soda-AQ pretreatment. Furthermore, the subsequent enzymatic hydrolysis results showed that more cellulose in wheat straw was converted to glucose after kraft pretreatment, indicating that LCC linkages were important in the enzymatic hydrolysis process.« less
Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose.
Zhang, Wenping; Liu, Wenbin; Hou, Rong; Zhang, Liang; Schmitz-Esser, Stephan; Sun, Huaibo; Xie, Junjin; Zhang, Yunfei; Wang, Chengdong; Li, Lifeng; Yue, Bisong; Huang, He; Wang, Hairui; Shen, Fujun; Zhang, Zhihe
2018-05-01
The giant panda feeds almost exclusively on bamboo, a diet highly enriched in lignin and cellulose, but is characterized by a digestive tract similar to carnivores. It is still large unknown if and how the giant panda gut microbiota contributes to lignin and cellulose degradation. Here we show the giant pandas' gut microbiota does not significantly contribute to cellulose and lignin degradation. We found that no operational taxonomic unit had a nearest neighbor identified as a cellulolytic species or strain with a significant higher abundance in juvenile than cubs, a very low abundance of putative lignin and cellulose genes existed in part of analyzing samples but a significant higher abundance of genes involved in starch and hemicellulose degradation in juveniles than cubs. Moreover, a significant lower abundance of putative cellulolytic genes and a significant higher abundance of putative α-amylase and hemicellulase gene families were present in giant pandas than in omnivores or herbivores.
Complete genome sequence of “Enterobacter lignolyticus” SCF1
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, Kristen M.; D'Haeseleer, Patrik; Chivian, Dylan
2011-09-23
In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated 'Ente-robacter lignolyticus' SCF1 on minimal media with alkali lignin as the sole source of carbon. This organism was isolated anaerobically from tropical forest soils collected from the Short Cloud Forest site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in redox potential and are net methane producers. Because of its ability to grow on lignin anae-robically, we sequenced the genome. The genome of 'E. lignolyticus' SCF1 is 4.81 Mbpmore » with no detected plasmids, and includes a relatively small arsenal of lignocellulolytic carbohy-drate active enzymes. Lignin degradation was observed in culture, and the genome revealed two putative laccases, a putative peroxidase, and a complete 4-hydroxyphenylacetate degra-dation pathway encoded in a single gene cluster.« less
Enhancement of Environmental Hazard Degradation in the Presence of Lignin: a Proteomics Study
Sun, Su; Xie, Shangxian; Cheng, Yanbing; ...
2017-09-12
Proteomics studies of fungal systems have progressed dramatically based on the availability of more fungal genome sequences in recent years. Different proteomics strategies have been applied toward characterization of fungal proteome and revealed important gene functions and proteome dynamics. Presented here is the application of shot-gun proteomic technology to study the bio-remediation of environmental hazards by white-rot fungus. Lignin, a naturally abundant component of the plant biomass, is discovered to promote the degradation of Azo dye by white-rot fungus Irpex lacteus CD2 in the lignin/dye/fungus system. Shotgun proteomics technique was used to understand degradation mechanism at the protein level formore » the lignin/dye/fungus system. Our proteomics study can identify about two thousand proteins (one third of the predicted white-rot fungal proteome) in a single experiment, as one of the most powerful proteomics platforms to study the fungal system to date. The study shows a significant enrichment of oxidoreduction functional category under the dye/lignin combined treatment. An in vitro validation is performed and supports our hypothesis that the synergy of Fenton reaction and manganese peroxidase might play an important role in DR5B dye degradation. The results could guide the development of effective bioremediation strategies and efficient lignocellulosic biomass conversion.« less
Enhancement of Environmental Hazard Degradation in the Presence of Lignin: a Proteomics Study.
Sun, Su; Xie, Shangxian; Cheng, Yanbing; Yu, Hongbo; Zhao, Honglu; Li, Muzi; Li, Xiaotong; Zhang, Xiaoyu; Yuan, Joshua S; Dai, Susie Y
2017-09-12
Proteomics studies of fungal systems have progressed dramatically based on the availability of more fungal genome sequences in recent years. Different proteomics strategies have been applied toward characterization of fungal proteome and revealed important gene functions and proteome dynamics. Presented here is the application of shot-gun proteomic technology to study the bio-remediation of environmental hazards by white-rot fungus. Lignin, a naturally abundant component of the plant biomass, is discovered to promote the degradation of Azo dye by white-rot fungus Irpex lacteus CD2 in the lignin/dye/fungus system. Shotgun proteomics technique was used to understand degradation mechanism at the protein level for the lignin/dye/fungus system. Our proteomics study can identify about two thousand proteins (one third of the predicted white-rot fungal proteome) in a single experiment, as one of the most powerful proteomics platforms to study the fungal system to date. The study shows a significant enrichment of oxidoreduction functional category under the dye/lignin combined treatment. An in vitro validation is performed and supports our hypothesis that the synergy of Fenton reaction and manganese peroxidase might play an important role in DR5B dye degradation. The results could guide the development of effective bioremediation strategies and efficient lignocellulosic biomass conversion.
NASA Astrophysics Data System (ADS)
Wang, Huan; Qiu, Xueqing; Liu, Weifeng; Yang, Dongjie
2017-12-01
In this work, a novel lignin-based carbon/ZnO (LC/ZnO) hybrid composite with excellent photocatalytic performance was prepared through a convenient and environment friendly method using alkali lignin (AL) as carbon source. The morphological, microstructure and optical properties of the as-prepared LC/ZnO hybrid composite was characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), Raman and UV-vis. The resulting LC/ZnO hybrid is composed of highly dispersed ZnO nanoparticles embedded on a lignin-based carbon nanosheet, showing excellent photogenerated electrons and holes separation and migration efficiency. The photocatalytic activity of LC/ZnO was much higher than the pure ZnO. The LC/ZnO hybrid composite showed different photocatalytic mechanism for degradation of negative methyl orange (MO) and positive Rhodamine B (RhB). It showed that h+ was the main photocatalytic active group during the degradation of MO, ·O2- and ·OH were the photocatalytic active groups during degradation of RhB. This reported photocatalyst with selective degradation of positive and negative organic dyes may have a great application prospect for photoelectric conversion and catalytic materials. Results of this work were of practical importance for high-valued utilization of lignin for carbon materials.
Enhancement of Environmental Hazard Degradation in the Presence of Lignin: a Proteomics Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Su; Xie, Shangxian; Cheng, Yanbing
Proteomics studies of fungal systems have progressed dramatically based on the availability of more fungal genome sequences in recent years. Different proteomics strategies have been applied toward characterization of fungal proteome and revealed important gene functions and proteome dynamics. Presented here is the application of shot-gun proteomic technology to study the bio-remediation of environmental hazards by white-rot fungus. Lignin, a naturally abundant component of the plant biomass, is discovered to promote the degradation of Azo dye by white-rot fungus Irpex lacteus CD2 in the lignin/dye/fungus system. Shotgun proteomics technique was used to understand degradation mechanism at the protein level formore » the lignin/dye/fungus system. Our proteomics study can identify about two thousand proteins (one third of the predicted white-rot fungal proteome) in a single experiment, as one of the most powerful proteomics platforms to study the fungal system to date. The study shows a significant enrichment of oxidoreduction functional category under the dye/lignin combined treatment. An in vitro validation is performed and supports our hypothesis that the synergy of Fenton reaction and manganese peroxidase might play an important role in DR5B dye degradation. The results could guide the development of effective bioremediation strategies and efficient lignocellulosic biomass conversion.« less
Wang, Jinxing; Liang, Jidong; Gao, Sha
2018-05-10
Many bacterial strains have been demonstrated to biodegrade lignin for contaminant removal or resource regeneration. The goal of this study was to investigate the biodegradation amount and associated pathways of three lignin monomers, vanillic, p-coumaric, and syringic acid by strain Sphingobacterium sp. HY-H. Vanillic, p-coumaric, and syringic acid degradation with strain HY-H was estimated as 88.71, 76.67, and 72.78%, respectively, after 96 h. Correspondingly, the same three monomers were associated with a COD removal efficiency of 87.30, 55.17, and 67.23%, and a TOC removal efficiency of 82.14, 61.03, and 43.86%. The results of GC-MS, HPLC, FTIR, and enzyme activities show that guaiacol and o-dihydroxybenzene are key intermediate metabolites of the vanillic acid and syringic acid degradation. p-Hydroxybenzoic acid is an important intermediate metabolite for p-coumaric and syringic acid degradation. LiP and MnP play an important role in the degradation of lignin monomers and their intermediate metabolites. One possible pathway is that strain HY-H degrades lignin monomers into guaiacol (through decarboxylic and demethoxy reaction) or p-hydroxybenzoic acid (through side-chain oxidation); then guaiacol demethylates to o-dihydroxybenzene. The p-hydroxybenzoic acid and o-dihydroxybenzene are futher through ring cleavage reaction to form small molecule acids (butyric, valproic, oxalic acid, and propionic acid) and alcohols (ethanol and ethanediol), then these acids and alcohols are finally decomposed into CO 2 and H 2 O through the tricarboxylic acid cycle. If properly optimized and controlled, the strain HY-H may play a role in breaking down lignin-related compounds for biofuel and chemical production.
Elena Fernández-Fueyo; Francisco J Ruiz-Dueñas; María Jesús Martinez; Antonio Romero; Kenneth E Hammel; Francisco Javier Medrano; Angel T. Martínez
2014-01-01
Background: The genome of Pleurotus ostreatus, an important edible mushroom and a model ligninolytic organism of interest in lignocellulose biorefineries due to its ability to delignify agricultural wastes, was sequenced with the purpose of identifying and characterizing the enzymes responsible for lignin degradation. ...
Lignin Degradation and Modification by the Soil-Inhabiting Fungus Fusarium proliferatum
Regalado, V.; Rodriguez, A.; Perestelo, F.; Carnicero, A.; De La Fuente, G.; Falcon, M. A.
1997-01-01
A soil-inhabiting Fusarium proliferatum strain was capable of transforming or degrading nonlabeled and (sup14)C-labeled industrial, natural, and synthetic lignin. The mineralization rate per day (expressed as the percentage of added radioactivity recovered as to (sup14)CO(inf2)) was maximal during primary metabolism. PMID:16535700
Enzymology and molecular biology of lignin degradation
D. Cullen; P.J. Kersten
2004-01-01
This review provides an overview of the physiology and genetics of lignin degradation by white rot basidiomycetes. Emphasis is on recent advances and the reader is referred to earlier comprehensive reviews for historical perspective and background (Kirk and Farrell 1987; Gold and Alic 1993; Higuchi 1993; Cullen and Kersten 1996; Cullen 1997). Recent completion of a...
Li, Huifang; Lei, Zhongfang; Liu, Chunguang; Zhang, Zhenya; Lu, Baowang
2015-01-01
New photocatalysts, Ag-AgCl/ZnO nanorods, were successfully synthesized in this study by using microwave assisted chemical precipitation and deposition-precipitation-photoreduction methods. The optimal preparation condition was determined as pH 9 in distilled water and 40min for UV light photoreduction of Ag (i.e. Ag40-AgCl/ZnO) by degradation of methyl orange. This work investigated the feasibility of using Ag40-AgCl/ZnO to degrade lignin under natural solar light and then subsequent methane production with influencing factors like solution pH, dosage of catalyst and initial lignin concentration being considered. OH radicals were found to play the most important role in the photocatalytic process, and the new prepared catalyst possessed stable photocatalytic activity after 7 cycles' utilization. During the subsequent biogasification, the degraded lignin obtained from 120min photocatalysis yielded 184ml methane and 325ml biogas for per gram of removed total organic carbon, increased by 10.9% and 23.1%, respectively compared to the control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh
2017-07-01
The objective of this work was to study the increase in multiple lignolytic enzyme productions through the use of supplements in combination in pretreatment of sweet sorghum bagasse (SSB) by Coriolus versicolor such that enzymes act synergistically to maximize the lignin degradation and selectivity. Enzyme activities were enhanced by metallic salts and phenolic compound supplements in SSF. Supplement of syringic acid increased the activities of LiP, AAO and laccase; gallic acid increased MnP; CuSO 4 increased laccase and PPO to improve the lignin degradations and selectivity individually, higher than control. Combination of supplements optimized by RSM increased the production of laccase, LiP, MnP, PPO and AAO by 17.2, 45.5, 3.5, 2.4 and 3.6 folds respectively for synergistic action leading to highest lignin degradation (2.3 folds) and selectivity (7.1 folds). Enzymatic hydrolysis of pretreated SSB yielded ∼2.43 times fermentable sugar. This technique could be widely applied for pretreatment and enzyme productions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ruiz‐Dueñas, Francisco J.; Martínez, Ángel T.
2009-01-01
Summary Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts. PMID:21261911
Rashid, Goran M M; Taylor, Charles R; Liu, Yangqingxue; Zhang, Xiaoyang; Rea, Dean; Fülöp, Vilmos; Bugg, Timothy D H
2015-10-16
The valorization of aromatic heteropolymer lignin is an important unsolved problem in the development of a biomass-based biorefinery, for which novel high-activity biocatalysts are needed. Sequencing of the genomic DNA of lignin-degrading bacterial strain Sphingobacterium sp. T2 revealed no matches to known lignin-degrading genes. Proteomic matches for two manganese superoxide dismutase proteins were found in partially purified extracellular fractions. Recombinant MnSOD1 and MnSOD2 were both found to show high activity for oxidation of Organosolv and Kraft lignin, and lignin model compounds, generating multiple oxidation products. Structure determination revealed that the products result from aryl-Cα and Cα-Cβ bond oxidative cleavage and O-demethylation. The crystal structure of MnSOD1 was determined to 1.35 Å resolution, revealing a typical MnSOD homodimer harboring a five-coordinate trigonal bipyramidal Mn(II) center ligated by three His, one Asp, and a water/hydroxide in each active site. We propose that the lignin oxidation reactivity of these enzymes is due to the production of a hydroxyl radical, a highly reactive oxidant. This is the first demonstration that MnSOD is a microbial lignin-oxidizing enzyme.
Al-Obaidi, Jameel R; Saidi, Noor Baity; Usuldin, Siti Rokhiyah Ahmad; Hussin, Siti Nahdatul Isnaini Said; Yusoff, Noornabeela Md; Idris, Abu Seman
2016-04-01
Ganoderma species are a group of fungi that have the ability to degrade lignin polymers and cause severe diseases such as stem and root rot and can infect economically important plants and perennial crops such as oil palm, especially in tropical countries such as Malaysia. Unfortunately, very little is known about the complex interplay between oil palm and Ganoderma in the pathogenesis of the diseases. Proteomic technologies are simple yet powerful tools in comparing protein profile and have been widely used to study plant-fungus interaction. A critical step to perform a good proteome research is to establish a method that gives the best quality and a wide coverage of total proteins. Despite the availability of various protein extraction protocols from pathogenic fungi in the literature, no single extraction method was found suitable for all types of pathogenic fungi. To develop an optimized protein extraction protocol for 2-DE gel analysis of Ganoderma spp., three previously reported protein extraction protocols were compared: trichloroacetic acid, sucrose and phenol/ammonium acetate in methanol. The third method was found to give the most reproducible gels and highest protein concentration. Using the later method, a total of 10 protein spots (5 from each species) were successfully identified. Hence, the results from this study propose phenol/ammonium acetate in methanol as the most effective protein extraction method for 2-DE proteomic studies of Ganoderma spp.
Unravelling lignin formation and structure. Final report, April 1, 1988--March 31, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, N.G.
1991-12-31
During this study, we established that the Fagaceae exclusively accumulate Z-monolignois/glucosides, and not the E-isomers. Evidence for the presence of a novel E{yields}Z isomerse has been obtained. Our pioneering work in lignin biosynthesis and structure in situ has also progressed smoothly. We established the bonding environments of a woody angiosperm, Leucanea leucocephala, as well as wheat (T. aestivum) and tobacco (N. tabacum). A cell culture system from Pinus taeda was developed which seems ideal for investigating the early stages of lignification. These cultures excrete peroxidase isozymes, considered to be specifically involved in lignin deposition. We also studied the effect ofmore » the putative lignin-degrading enzyme, lignin peroxidase, on monolignols and dehydropolymerisates therefrom. In all cases, polymerization was observed, and not degradation; these polymers are identical to that obtained with horseradish peroxidases/H{sub 2}O{sub 2}. It seems inconceivable that these enzymes can be considered as being primarily responsible for lignin biodegradation.« less
Zhang, Yu; Xie, Jianping; Liu, Miaomiao; Tian, Zhe; He, Zhili; van Nostrand, Joy D; Ren, Liren; Zhou, Jizhong; Yang, Min
2013-10-15
It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P < 0.05), showing that the fungal functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the stability and performance of the systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi
Zeiner, Carolyn A.; Purvine, Samuel O.; Zink, Erika M.; Paša-Tolić, Ljiljana; Chaput, Dominique L.; Haridas, Sajeet; Wu, Si; LaButti, Kurt; Grigoriev, Igor V.; Henrissat, Bernard; Santelli, Cara M.; Hansel, Colleen M.
2016-01-01
Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of four recently isolated, cosmopolitan, Mn(II)-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a). We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment. PMID:27434633
Biodegradation of pesticides using fungi species found in the aquatic environment.
Oliveira, B R; Penetra, A; Cardoso, V V; Benoliel, M J; Barreto Crespo, M T; Samson, R A; Pereira, V J
2015-08-01
Relatively limited attention has been given to the presence of fungi in the aquatic environment compared to their occurrence in other matrices. Taking advantage and recognizing the biodegradable capabilities of fungi is important, since these organisms may produce many potent enzymes capable of degrading toxic pollutants. Therefore, the aim of this study was to evaluate the potential ability of some species of filamentous fungi that occur in the aquatic environment to degrade pesticides in untreated surface water. Several laboratory-scale experiments were performed using the natural microbial population present in the aquatic environment as well as spiked fungi isolates that were found to occur in different water matrices, to test the ability of fungi to degrade several pesticides of current concern (atrazine, diuron, isoproturon and chlorfenvinphos). The results obtained in this study showed that, when spiked in sterile natural water, fungi were able to degrade chlorfenvinphos to levels below detection and unable to degrade atrazine, diuron and isoproturon. Penicillium citrinum, Aspergillus fumigatus, Aspergillus terreus and Trichoderma harzianum were found to be able to resist and degrade chlorfenvinphos. These fungi are therefore expected to play an important role in the degradation of this and other pollutants present in the aquatic environment.
Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer
Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G.H.; Felby, Claus
2015-01-01
Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263
2016-05-01
In order to detect the effects of simulated nitrogen deposition on litter decomposition and degradation of lignin and cellulose, a one-year field experiment of simulated nitrogen deposition has been conducted using litter bag method from November 2013 to November 2014 in an evergreen broad-leaved forest, Rainy Area of West China. Four levels of nitrogen deposition were set, i.e., control (0 g N·m -2 ·a -1 ), low (5 g N·m -2 ·a -1 ), medium (15 g N·m -2 ·a -1 ) and high (30 g N·m -2 ·a -1 ) nitrogen deposition. The results indicated that foliar litter decomposed faster in summer, obviously faster than in the other seasons. N deposition significantly inhibited the decomposition of foliar litter in this evergreen broad-leaved forest. As N deposition increased, the inhibition effect was enhanced. The time of 95% mass loss (T 95% ) of foliar litter due to simulated N deposition was increased by 0.53-1.88 years compared with T 95% of control (4.81 years). N deposition significantly inhibited the degradation of lignin and cellulose. The mass remaining after one year of decomposition of lignin and cellulose in the medium and high nitrogen deposition treatments were significantly higher than that in the control. There was a significant positive linear relationship among mass remaining rate and lignin and cellulose remaining rates. The inhibiting effects of inorga-nic N on degradation of lignin and cellulose explained the inhibitory effect of N on foliar litter decomposition.
Kitajima, Sakihito; Kamei, Kaeko; Nishitani, Maiko; Sato, Hiroyuki
2010-01-01
Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.
Erden, Emre; Ucar, M. Cigdem; Gezer, Tekin; Pazarlioglu, Nurdan Kasikara
2009-01-01
This study presents new and alternative fungal strains for the production of ligninolytic enzymes which have great potential to use in industrial and biotechnological processes. Thirty autochthonous fungal strains were harvested from Bornova-Izmir in Turkiye. In the fresh fruitbody extracts laccase, manganese peroxidase and lignin peroxidase activities, which are the principal enzymes responsible for ligninocellulose degradation by Basidiomycetes, were screened. Spores of some of the basidiomycetes species such as Cortinarius sp., Trametes versicolor, Pleurotus ostreatus, Abortiporus biennis, Lyophyllum subglobisporium, Ramaria stricta, Ganoderma carnosum, Lactarius delicious ve Lepista nuda were isolated and investigated optimum cultivation conditions in submerged fermentation for high yields of ligninolytic enzyme production. In addition, isolated fungal strains were monitored on agar plates whether having the capability of decolorization of a textile dye Remazol Marine Blue. PMID:24031371
Circadian Control Sheds Light on Fungal Bioluminescence
Oliveira, Anderson G.; Stevani, Cassius V.; Waldenmaier, Hans E.; Viviani, Vadim; Emerson, Jillian M.; Loros, Jennifer J.; Dunlap, Jay C.
2015-01-01
Summary Bioluminescence, the creation and emission of light by organisms, affords insight into the lives of organisms doing it. Luminous living things are widespread and access diverse mechanisms to generate and control luminescence [1-5]. Among the least studied bioluminescent organisms are phylogenetically rare fungi – only 71 species, all within the ~9000 fungi of the temperate and tropical Agaricales Order - are reported from among ~100,000 described fungal species [6,7]. All require oxygen [8] and energy (NADH or NADPH) for bioluminescence, and are reported to emit green light (λmax 530 nm) continuously, implying a metabolic function for bioluminescence, perhaps as a by-product of oxidative metabolism in lignin degradation. Here, however, we report that bioluminescence from the mycelium of Neonothopanus gardneri is controlled by a temperature compensated circadian clock, the result of cycles in content/activity of the luciferase, reductase, and the luciferin that comprise the luminescent system. Because regulation implies an adaptive function for bioluminescence, a controversial question for more than two millenia [8-15], we examined interactions between luminescent fungi and insects [16]. Prosthetic acrylic resin “mushrooms”, internally illuminated by a green LED emitting light similar to the bioluminescence, attract staphilinid rove beetles (coleopterans) as well as hemipterans (true bugs), dipterans (flies), and hymenopterans (wasps and ants) at numbers far greater than dark control traps. Thus, circadian control may optimize energy use for when bioluminescence is most visible, attracting insects that can in turn help in spore dispersal, thereby benefitting fungi growing under the forest canopy where wind flow is greatly reduced. PMID:25802150
Method for regulation of plant lignin composition
Chapple, Clint
1999-01-01
A method is disclosed for the regulation of lignin composition in plant tissue. Plants are transformed with a gene encoding an active F5H gene. The expression of the F5H gene results in increased levels of syringyl monomer providing a lignin composition more easily degraded with chemicals and enzymes.
High-performance of Agaricus blazei fungus for the biological pretreatment of elephant grass.
Dal Picolli, Thais; Regalin Aver, Kaliane; Claudete Fontana, Roselei; Camassola, Marli
2018-01-01
Biological pre-treatment seems to be promising being an eco-friendly process, with no inhibitor generated during the process. The potential for elephant grass pre-treatment with white degradation fungi Pleurotus ostreatus, Agaricus blazei, Lentinula edodes, Pleurotus citrinopileatus, and Pleurotus djamor, in isolated or mixed cultures of these strains, was evaluated. The highest activities of enzymes involved in the degradation of lignocellulosic biomass (laccases, endoglucanases, xylanases, and β-glucosidases) were observed for A. blazei, L. edodes and the combination of P. ostreatus and A. blazei. In the enzymatic hydrolysis, there was greater release of reducing sugars in the pre-treated elephant grass samples by A. blazei during 10 days (338.91 ± 7.39 mg g -1 of biomass). For this sample, higher lignin reductions, 24.81 and 57.45%, after 15 and 35 days of incubation, respectively, were also verified. These data indicate the potential of macromycetes such as A. blazei to perform biological pre-treatments. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:42-50, 2018. © 2017 American Institute of Chemical Engineers.
Ruiz-Dueñas, Francisco J; Martínez, Angel T
2009-03-01
Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non-phenolic phenylpropanoid units form a complex three-dimensional network linked by a variety of ether and carbon-carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one-electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide-generating oxidases. These peroxidases poses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non-phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl-free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure-function information currently available is being used to build tailor-made peroxidases and other oxidoreductases as industrial biocatalysts. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
Sainsbury, Paul D; Mineyeva, Yelena; Mycroft, Zoe; Bugg, Timothy D H
2015-06-01
Bacterial lignin degradation could be used to generate aromatic chemicals from the renewable resource lignin, provided that the breakdown pathways can be manipulated. In this study, selective inhibitors of enzymatic steps in bacterial degradation pathways were developed and tested for their effects upon lignin degradation. Screening of a collection of hydroxamic acid metallo-oxygenase inhibitors against two catechol dioxygenase enzymes, protocatechuate 3,4-dioxygenase (3,4-PCD) and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB), resulted in the identification of selective inhibitors D13 for 3,4-PCD (IC50 15μM) and D3 for MhpB (IC50 110μM). Application of D13 to Rhodococcus jostii RHA1 in minimal media containing ferulic acid led to the appearance of metabolic precursor protocatechuic acid at low concentration. Application of 1mM disulfiram, an inhibitor of mammalian aldehyde dehydrogenase, to R. jostii RHA1, gave rise to 4-carboxymuconolactone on the β-ketoadipate pathway, whereas in Pseudomonas fluorescens Pf-5 disulfiram treatment gave rise to a metabolite found to be glycine betaine aldehyde. Copyright © 2015 Elsevier Inc. All rights reserved.
Mnich, Ewelina; Vanholme, Ruben; Oyarce, Paula; Liu, Sarah; Lu, Fachuang; Goeminne, Geert; Jørgensen, Bodil; Motawie, Mohammed S; Boerjan, Wout; Ralph, John; Ulvskov, Peter; Møller, Birger L; Bjarnholt, Nanna; Harholt, Jesper
2017-05-01
Lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility. The bacterium Sphingomonas paucimobilis produces lignin-degrading enzymes including LigD, LigF and LigG involved in cleaving the most abundant lignin interunit linkage, the β-aryl ether bond. In this study, we expressed the LigD, LigF and LigG (LigDFG) genes in Arabidopsis thaliana to introduce postlignification modifications into the lignin structure. The three enzymes were targeted to the secretory pathway. Phenolic metabolite profiling and 2D HSQC NMR of the transgenic lines showed an increase in oxidized guaiacyl and syringyl units without concomitant increase in oxidized β-aryl ether units, showing lignin bond cleavage. Saccharification yield increased significantly in transgenic lines expressing LigDFG, showing the applicability of our approach. Additional new information on substrate specificity of the LigDFG enzymes is also provided. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Barratt, S R; Ennos, A R; Greenhalgh, M; Robson, G D; Handley, P S
2003-01-01
To investigate the relationship between soil water holding capacity (WHC) and biodegradation of polyester polyurethane (PU) and to quantify and identify the predominant degrading micro-organisms in the biofilms on plastic buried in soil. High numbers of both fungi and bacteria were recovered from biofilms on soil-buried dumb-bell-shaped pieces of polyester PU after 44 days at 15-100% WHC. The tensile strength of the polyester PU was reduced by up to 60% over 20-80% soil WHC, but no reduction occurred at 15, 90 or 100% soil WHC. A PU agar clearance assay indicated that fungi, but not bacteria were, the major degrading organisms in the biofilms on polyester PU and 10-30% of all the isolated fungi were able to degrade polyester PU in this assay. A 5.8S rDNA sequencing identified 13 strains of fungi representing the three major colony morphology types responsible for PU degradation. Sequence homology matches identified these strains as Nectria gliocladioides (five strains), Penicillium ochrochloron (one strain) and Geomyces pannorum (seven strains). Geomyces pannorum was the predominant organism in the biofilms comprising 22-100% of the viable polyester PU degrading fungi. Polyester PU degradation was optimum under a wide range of soil WHC and the predominant degrading organisms were fungi. By identifying the predominant degrading fungi in soil and studying the optimum WHC conditions for degradation of PU it allows us to better understand how plastics are broken down in the environment such as in landfill sites.
Production of lignin based insoluble polymers (anionic hydrogels) by C. versicolor.
Brzonova, Ivana; Kozliak, Evguenii I; Andrianova, Anastasia A; LaVallie, Audrey; Kubátová, Alena; Ji, Yun
2017-12-13
Unlike previous lignin biodegradation studies, white rot fungi were used to produce functional biopolymers from Kraft lignin. Lignin-based polymers (hydrogel precursors) partially soluble in both aqueous and organic solvents were produced employing a relatively fast (6 days) enzymation of Kraft lignin with basidiomycetes, primarily Coriolus versicolor, pre-grown on kenaf/lignin agar followed by either vacuum evaporation or acid precipitation. After drying followed by a treatment with alkaline water, this intermediate polymer became a pH-sensitive anionic hydrogel insoluble in either aqueous or organic solvents. The yield of this polymer increased from 20 to 72 wt% with the addition of 2% dimethylsulfoxide to distilled water used as a medium. The mechanical stability and buffering capacity of this hydrogel can be adjusted by washing the intermediate polymer/hydrogel precursor prior to drying with solvents of different polarity (water, methanol or ethanol). Any of these polymers featured a significant thermal resilience assessed as a high thermostable "coked" fraction in thermal carbon analysis, apparently resulting from significant covalent cross-linking that occurs during the treatment of their intermediate precursors.
2011-01-01
Background Termites are highly effective at degrading lignocelluloses, and thus can be used as a model for studying plant cell-wall degradation in biological systems. However, the process of lignin deconstruction and/or degradation in termites is still not well understood. Methods We investigated the associated structural modification caused by termites in the lignin biomolecular assembly in softwood tissues crucial for cell-wall degradation. We conducted comparative studies on the termite-digested (i.e. termite feces) and native (control) softwood tissues with the aid of advanced analytical techniques: 13C crosspolarization magic angle spinning and nuclear magnetic resonance (CP-MAS-NMR) spectroscopy, flash pyrolysis with gas chromatography mass spectrometry (Py-GC/MS), and Py-GC-MS in the presence of tetramethylammonium hydroxide (Py-TMAH)-GC/MS. Results The 13C CP/MAS NMR spectroscopic analysis revealed an increased level of guaiacyl-derived (G unit) polymeric framework in the termite-digested softwood (feces), while providing specific evidence of cellulose degradation. The Py-GC/MS data were in agreement with the 13C CP/MAS NMR spectroscopic studies, thus indicating dehydroxylation and modification of selective intermonomer side-chain linkages in the lignin in the termite feces. Moreover, Py-TMAH-GC/MS analysis showed significant differences in the product distribution between control and termite feces. This strongly suggests that the structural modification in lignin could be associated with the formation of additional condensed interunit linkages. Conclusion Collectively, these data further establish: 1) that the major β-O-4' (β-aryl ether) was conserved, albeit with substructure degeneracy, and 2) that the nature of the resulting polymer in termite feces retained most of its original aromatic moieties (G unit-derived). Overall, these results provide insight into lignin-unlocking mechanisms for understanding plant cell-wall deconstruction, which could be useful in development of new enzymatic pretreatment processes mimicking the termite system for biochemical conversion of lignocellulosic biomass to fuels and chemicals. PMID:21672247
2014-01-01
Background The genome of Pleurotus ostreatus, an important edible mushroom and a model ligninolytic organism of interest in lignocellulose biorefineries due to its ability to delignify agricultural wastes, was sequenced with the purpose of identifying and characterizing the enzymes responsible for lignin degradation. Results Heterologous expression of the class II peroxidase genes, followed by kinetic studies, enabled their functional classification. The resulting inventory revealed the absence of lignin peroxidases (LiPs) and the presence of three versatile peroxidases (VPs) and six manganese peroxidases (MnPs), the crystal structures of two of them (VP1 and MnP4) were solved at 1.0 to 1.1 Å showing significant structural differences. Gene expansion supports the importance of both peroxidase types in the white-rot lifestyle of this fungus. Using a lignin model dimer and synthetic lignin, we showed that VP is able to degrade lignin. Moreover, the dual Mn-mediated and Mn-independent activity of P. ostreatus MnPs justifies their inclusion in a new peroxidase subfamily. The availability of the whole POD repertoire enabled investigation, at a biochemical level, of the existence of duplicated genes. Differences between isoenzymes are not limited to their kinetic constants. Surprising differences in their activity T50 and residual activity at both acidic and alkaline pH were observed. Directed mutagenesis and spectroscopic/structural information were combined to explain the catalytic and stability properties of the most interesting isoenzymes, and their evolutionary history was analyzed in the context of over 200 basidiomycete peroxidase sequences. Conclusions The analysis of the P. ostreatus genome shows a lignin-degrading system where the role generally played by LiP has been assumed by VP. Moreover, it enabled the first characterization of the complete set of peroxidase isoenzymes in a basidiomycete, revealing strong differences in stability properties and providing enzymes of biotechnological interest. PMID:24387130
Zhu, Junjun; Shi, Linli; Zhang, Lingling; Xu, Yong; Yong, Qiang; Ouyang, Jia; Yu, Shiyuan
2016-10-01
The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products' mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.
Mohan, Karishma
2017-01-01
ABSTRACT Pseudomonas putida CSV86 degrades lignin-derived metabolic intermediates, viz., veratryl alcohol, ferulic acid, vanillin, and vanillic acid, as the sole sources of carbon and energy. Strain CSV86 also degraded lignin sulfonate. Cell respiration, enzyme activity, biotransformation, and high-pressure liquid chromatography (HPLC) analyses suggest that veratryl alcohol and ferulic acid are metabolized to vanillic acid by two distinct carbon source-dependent inducible pathways. Vanillic acid was further metabolized to protocatechuic acid and entered the central carbon pathway via the β-ketoadipate route after ortho ring cleavage. Genes encoding putative enzymes involved in the degradation were found to be present at fer, ver, and van loci. The transcriptional analysis suggests a carbon source-dependent cotranscription of these loci, substantiating the metabolic studies. Biochemical and quantitative real-time (qRT)-PCR studies revealed the presence of two distinct O-demethylases, viz., VerAB and VanAB, involved in the oxidative demethylation of veratric acid and vanillic acid, respectively. This report describes the various steps involved in metabolizing lignin-derived aromatic compounds at the biochemical level and identifies the genes involved in degrading veratric acid and the arrangement of phenylpropanoid metabolic genes as three distinct inducible transcription units/operons. This study provides insight into the bacterial degradation of lignin-derived aromatics and the potential of P. putida CSV86 as a suitable candidate for producing valuable products. IMPORTANCE Pseudomonas putida CSV86 metabolizes lignin and its metabolic intermediates as a carbon source. Strain CSV86 displays a unique property of preferential utilization of aromatics, including for phenylpropanoids over glucose. This report unravels veratryl alcohol metabolism and genes encoding veratric acid O-demethylase, hitherto unknown in pseudomonads, thereby providing new insight into the metabolic pathway and gene pool for lignin degradation in bacteria. The biochemical and genetic characterization of phenylpropanoid metabolism makes it a prospective system for its application in producing valuable products, such as vanillin and vanillic acid, from lignocellulose. This study supports the immense potential of P. putida CSV86 as a suitable candidate for bioremediation and biorefinery. PMID:28188206
Fungi of virgin and cultivated soil of Salhiah Desert, Egypt.
el-Gindy, A A; Saad, R R
1990-01-01
27 species and 13 genera of fungi were identified from virgin and cultivated soil of Salhiah. The most abundant species of phosphate solubilizing fungi were Aspergillus nidulans, A. niger, A flavus, Penicillium lilacinum, P. frequentans and Fusarium moniliforme. On cellulose agar the most prevalent species were Chaetomium bostrychodes, C. olivaceum, Humicola fuscoatra, Aspergillus flavus, A. nidulans, A. niger, A. ochraceus, Fusarium solani and F. oxysporum. On xylan agar Aspergillus fumigatus, A. ochraceus, A. niger, A. versicolor and Penicillium frequentans were the most frequent species. On lignin agar only two species were isolated. These are Aspergillus niger and Humicola fuscoatra.
Final Report: Investigation of Catalytic Pathways for Lignin Breakdown into Monomers and Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluckstein, Jeffrey A; Hu, Michael Z.; Kidder, Michelle
2010-12-01
Lignin is a biopolymer that comprises up to 35% of woody biomass by dry weight. It is currently underutilized compared to cellulose and hemicellulose, the other two primary components of woody biomass. Lignin has an irregular structure of methoxylated aromatic groups linked by a suite of ether and alkyl bonds which makes it difficult to degrade selectively. However, the aromatic components of lignin also make it promising as a base material for the production of aromatic fuel additives and cyclic chemical feed stocks such as styrene, benzene, and cyclohexanol. Our laboratory research focused on three methods to selectively cleave andmore » deoxygenate purified lignin under mild conditions: acidolysis, hydrogenation and electrocatalysis. (1) Acidolysis was undertaken in CH2Cl2 at room temperature. (2) Hydrogenation was carried out by dissolving lignin and a rhodium catalyst in 1:1 water:methoxyethanol under a 1 atm H2 environment. (3) Electrocatalysis of lignin involved reacting electrically generated hydrogen atoms at a catalytic palladium cathode with lignin dissolved in a solution of aqueous methanol. In all of the experiments, the lignin degradation products were identified and quantified by gas chromatography mass spectroscopy and flame ionization detection. Yields were low, but this may have reflected the difficulty in recovering the various fractions after conversion. The homogeneous hydrogenation of lignin showed fragmentation into monomers, while the electrocatalytic hydrogenation showed production of polyaromatic hydrocarbons and substituted benzenes. In addition to the experiments, promising pathways for the conversion of lignin were assessed. Three conversion methods were compared based on their material and energy inputs and proposed improvements using better catalyst and process technology. A variety of areas were noted as needing further experimental and theoretical effort to increase the feasibility of lignin conversion to fuels.« less
The use of white-rot fungi as active biofilters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun-Luellemann, A.; Johannes, C.; Majcherczyk, A.
1995-12-31
White-rot fungi, growing on lignocellulosic substrates, have been successfully used as active organisms in biofilters. Filters using these fungi have a very high biological active surface area, allowing for high degrees of retention, a comparatively low pressure drop, and a high physical stability. The unspecific action of the extracellular enzymes of the white-rot fungi allows for the degradation of a wide variety of substances by the same organism. Degradation of several compounds in the gas phase by the white-rot fungi Trametes versicolor, Pleurotus ostreatus, Bjerkandera adusta, and Phanerochaete chrysosporium was tested. Among the aromatic solvents, styrene was the compound thatmore » was most readily degraded, followed by ethylbenzene, xylenes, and toluene. Tetrahydrofuran and dichloromethane were also degraded, whereas dioxane could not be attacked by fungi under the conditions used. Acrylonitrile and aniline were degraded very well, whereas pyridine was resistant to degradation. The process for removing styrene is now in the scaling-up stage.« less
Designer lignins: harnessing the plasticity of lignification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mottiar, Yaseen; Vanholme, Ruben; Boerjan, Wout
Lignin is a complex polyphenolic constituent of plant secondary cell walls. Inspired largely by the recalcitrance of lignin to biomass processing, plant engineering efforts have routinely sought to alter lignin quantity, composition, and structure by exploiting the inherent plasticity of lignin biosynthesis. More recently, researchers are attempting to strategically design plants for increased degradability by incorporating monomers that lead to a lower degree of polymerisation, reduced hydrophobicity, fewer bonds to other cell wall constituents, or novel chemically labile linkages in the polymer backbone. In addition, the incorporation of value-added structures could help valorise lignin. Designer lignins may satisfy the biologicalmore » requirement for lignification in plants while improving the overall efficiency of biomass utilisation.« less
Designer lignins: harnessing the plasticity of lignification
Mottiar, Yaseen; Vanholme, Ruben; Boerjan, Wout; ...
2016-01-15
Lignin is a complex polyphenolic constituent of plant secondary cell walls. Inspired largely by the recalcitrance of lignin to biomass processing, plant engineering efforts have routinely sought to alter lignin quantity, composition, and structure by exploiting the inherent plasticity of lignin biosynthesis. More recently, researchers are attempting to strategically design plants for increased degradability by incorporating monomers that lead to a lower degree of polymerisation, reduced hydrophobicity, fewer bonds to other cell wall constituents, or novel chemically labile linkages in the polymer backbone. In addition, the incorporation of value-added structures could help valorise lignin. Designer lignins may satisfy the biologicalmore » requirement for lignification in plants while improving the overall efficiency of biomass utilisation.« less
Duan, J; Huo, X; Du, W J; Liang, J D; Wang, D Q; Yang, S C
2016-01-01
An anaerobic kraft lignin (KL)-degrading bacterial strain was isolated from sludge of a pulp and paper mill. It was characterized as Acetoanaerobium sp. WJDL-Y2 by 16S rRNA gene sequencing. The maximum KL degradation capability of strain Y2 was determined to be 24·9% on a COD basis under an optimal condition with temperature of 31·5°C, initial pH of 6·8 and KL to nitrogen (as NH4 Cl) ratio of 6·5 by mass. Growth kinetic studies showed that the KL tolerance of strain Y2 was relatively high (Ki = 8120·45 mg l(-1) ). Analysing KL degradation products by GC-MS revealed the formation of low-molecular-weight aromatic compounds (LMWACs), including benzene-propanoic acid, syringic acid and ferulic acid. This indicates that strain Y2 can oxidize lignin structure's p-hydroxyphenyl (H) units, guaiacyl (G) units and syringyl (S). In addition, the inoculated sample also contained low-molecular acid compounds, such as hexanoic acid, adipic acid and 2-hydroxybutyric acid, further validating strain Y2's ability to degrade KL. Kraft lignin containing effluents discharged from pulp and paper industries causes serious environmental pollution in developing countries. Due to the immense environmental adaptability and biochemical versatility, bacterial ligninolytic potential deserve to be studied for application in effluent treatment of pulp and paper industry. In this study, an anaerobic lignin-degrading bacterium, Acetoanaerobium sp. WJDL-Y2 (accession no. KF176997),was isolated from the sludge of a pulp and paper mill. Strain Y2 can play an important role in treating pulp and paper wastewater, as well as breaking down materials for biofuel and chemical production. © 2015 The Society for Applied Microbiology.
Wood degradation under UV irradiation: A lignin characterization.
Cogulet, Antoine; Blanchet, Pierre; Landry, Véronic
2016-05-01
The photodegradation of white spruce by artificial ageing was studied by several techniques: colourimetry, FTIR-ATR and FT-Raman spectroscopy. Samples were exposed at a xenon lamp for 2000h. Two distinct colour changes were found by colourimetric analysis, yellowing and silvering. These colour modifications indicate the formation of chromophoric structures which supports previous FTIR-ATR experiments. The degradation of lignin to generate the first chromophoric group for yellowing and then the appearance of surface layer cellulose. New carbonyl compounds conjugated with double bond at 1615cm(-1) are probably the second chromophoric group. The crystallinity index was also calculated and showed an increase of cellulose crystallinity by prior degradation of amorphous cellulose. The FT-Raman analysis confirms the wood sensitivity to photodegradation but the most remarkable results is the increase of fluorescence as a function of time. In softwood lignin, the compound able to produce fluorescence is a free rotating 5-5' linkage of one biphenyl structure. At native state these linkages are not free rotating, this phenomenon means the release of 5-5' linkage of lignin structure by cleavage of both α carbon linkages (Norrish type I reaction). These data confirm also the photosensitivity of α and β carbon in lignin and the resistance of 5-5' linkages. Copyright © 2016 Elsevier B.V. All rights reserved.
Woo, Hannah L.; O’Dell, Kaela B.; Utturkar, Sagar; McBride, Kathryn R.; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, T. B. K.; Ngan, Chew Yee; Daum, Chris; Shapiro, Nicole; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Woyke, Tanja; Brown, Steven D.
2016-01-01
Thalassospira sp. strain KO164 was isolated from eastern Mediterranean seawater and sediment laboratory microcosms enriched on insoluble organosolv lignin under oxic conditions. The near-complete genome sequence presented here will facilitate analyses into this deep-ocean bacterium’s ability to degrade recalcitrant organics such as lignin. PMID:27881538
Woo, Hannah L.; O’Dell, Kaela B.; Utturkar, Sagar; ...
2016-11-23
We isolated Thalassospirasp. strain KO164 from eastern Mediterranean seawater and sediment laboratory microcosms enriched on insoluble organosolv lignin under oxic conditions. Furthermore, an analysis of the deep-ocean bacterium’s ability to degrade recalcitrant organics such as lignin near-complete genome sequence, will be presented here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Hannah L.; O’Dell, Kaela B.; Utturkar, Sagar
We isolated Thalassospirasp. strain KO164 from eastern Mediterranean seawater and sediment laboratory microcosms enriched on insoluble organosolv lignin under oxic conditions. Furthermore, an analysis of the deep-ocean bacterium’s ability to degrade recalcitrant organics such as lignin near-complete genome sequence, will be presented here.
Composition of the organic components in polyxometalate (POM) liquors from kraft pulp bleaching
Biljana Bujanovic; Kolby C. Hirth; Sally A. Ralph; Richard S. Reiner; Rajai H. Atalla
2007-01-01
Promising results from the selective oxidative delignification of kraft pulp with polyoxometalates (POMs) prompted interest in elucidating the lignin oxidation mechanism. The degradation of lignin model compounds and residual lignin in kraft pulps, upon treatment with POMs was studied and differences in the reaction mechanisms between guaiacyl (G-) and syringyl (S-)...
A novel lignin degradation bacterial consortium for efficient pulping.
Wang, Yanxia; Liu, Quan; Yan, Lei; Gao, Yamei; Wang, Yanjie; Wang, Weidong
2013-07-01
A lignin degradation bacterial consortium named LDC was screened from the sludge of a reeds pond by a restricted subculture. It could break down 60.9% lignin in reeds at 30°C under conditions of static culture within 15 days. In order to analyze the diversity of LDC, plate isolation, 16S rDNA clone library and ARDRA (Amplified Ribosomal DNA Restriction Analysis) were performed. Six bacterial strains were isolated from LDC and eighteen DNA phylotypes were identified from 230 bacterial analyzed clones. They were classified into Clostridiales(9.1%), Geovibrio thiophilus (5.1%), Desulfomicrobium (10.9%), Pseudomonas sp. (25.2%), Azoarcus sp. (5.1%), Thauera (5.1%), Paenibacillus sp. (5.1%), Cohnella sp. (2.2%), Acinetobacter sp. (3.1%), Microbacterium (7.8%), and uncultured bacterium (21.3%). In addition, physical characteristics of paper hand-sheets between biological pretreatment and chemical pretreatment were compared. The results showed that LDC had the capability of lignin degradation and was efficient for pulping, which would provide a new choice for biopulping. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hu, Zhen-Hu; Liu, Shao-Yang; Yue, Zheng-Bo; Yan, Li-Feng; Yang, Ming-Tao; Yu, Han-Qing
2008-01-01
Anaerobic degradation of lignin in waste straw by ruminal microbes was directly observed using atomic force microscope (AFM). A series of high-resolution AFM images of the straw surface in the biodegradation show that the wax flakelets and lignin granules covering the straw surface were removed by the rumen microorganisms. Such degradation resulted in an exposure of cellulose fibers located inside the straw. The appearance of holes and microfibers in fermentation reveals that tunneling might be one of the ways for rumen microorganisms to attack the straw. Increases in the atomic ratio of oxygen to carbon (O/C) and the ratio C2/C3 in C1s spectra of X-ray photoelectron spectroscopy confirm that more cellulose was exposed on the surface after the anaerobic fermentation of straw. Gas chromatography/mass spectrometry analytical results demonstrate the decomposition of lignin by rumen microorganisms. Fourier transform infrared spectroscopy spectra and the measurement of degradation efficiency of the main straw components further verify these microscaled observations.
2012-01-01
In this study manganese peroxidase (MnP) enzymes from selected white-rot fungi were isolated and compared for potential future recombinant production. White-rot fungi were cultivated in small-scale in liquid media and a simplified process was established for the purification of extracellular enzymes. Five lignin degrading organisms were selected (Bjerkandera sp., Phanerochaete (P.) chrysosporium, Physisporinus (P.) rivulosus, Phlebia (P.) radiata and Phlebia sp. Nf b19) and studied for MnP production in small-scale. Extracellular MnP activity was followed and cultivations were harvested at proximity of the peak activity. The production of MnPs varied in different organisms but was clearly regulated by inducing liquid media components (Mn2+, veratryl alcohol and malonate). In total 8 different MnP isoforms were purified. Results of this study reinforce the conception that MnPs from distinct organisms differ substantially in their properties. Production of the extracellular enzyme in general did not reach a substantial level. This further suggests that these native producers are not suitable for industrial scale production of the enzyme. The highest specific activities were observed with MnPs from P. chrysosporium (200 U mg-1), Phlebia sp. Nf b19 (55 U mg-1) and P. rivulosus (89 U mg-1) and these MnPs are considered as the most potential candidates for further studies. The molecular weight of the purified MnPs was estimated to be between 45–50 kDa. PMID:23190610
Fungal biodegradation of anthracene-polluted cork: A comparative study.
Jové, Patrícia; Olivella, Maria À; Camarero, Susana; Caixach, Josep; Planas, Carles; Cano, Laura; De Las Heras, Francesc X
2016-01-01
The efficiency of cork waste in adsorbing aqueous polycyclic aromatic hydrocarbons (PAHs) has been previously reported. Biodegradation of contaminated cork using filamentous fungi could be a good alternative for detoxifying cork to facilitate its final processing. For this purpose, the degradation efficiency of anthracene by three ligninolytic white-rot fungi (Phanerochaete chrysosporium, Irpex lacteus and Pleurotus ostreatus) and three non-ligninolytic fungi which are found in the cork itself (Aspergillus niger, Penicillium simplicissimum and Mucor racemosus) are compared. Anthracene degradation by all fungi was examined in solid-phase cultures after 0, 16, 30 and 61 days. The degradation products of anthracene by P. simplicissimum and I. lacteus were also identified by GC-MS and a metabolic pathway was proposed for P. simplicissimum. Results show that all the fungi tested degraded anthracene. After 61 days of incubation, approximately 86%, 40%, and 38% of the initial concentration of anthracene (i.e., 100 µM) was degraded by P. simplicissimum, P. chrysosporium and I. lacteus, respectively. The rest of the fungi degraded anthracene to a lesser extent (<30%). As a final remark, the results obtained in this study indicate that P. simplicissimum, a non-ligninolytic fungi characteristic of cork itself, could be used as an efficient degrader of PAH-contaminated cork.
Connecting tropical river DOM and POM to the landscape with lignin
NASA Astrophysics Data System (ADS)
Hernes, Peter J.; Dyda, Rachael Y.; McDowell, William H.
2017-12-01
Tropical rivers account for two thirds of global fluxes of terrigenous organic matter to the oceans, yet because of their remote locations relative to most industrialized countries, they are poorly studied compared to temperate and even Arctic rivers. Further, most tropical river research has focused on large rivers like the Amazon or Congo, yet more than half of organic matter fluxes from tropical rivers comes from much smaller rivers. This study focuses on two such rivers in the Luquillo Experimental Forest of Puerto Rico, namely the Rio Mameyes and Rio Icacos, and uses time-series measurements of lignin biomarkers to put them in context with much bigger tropical rivers in the literature. Although lignin concentrations and carbon-normalized yields offer some distinction between mountainous vs. floodplain tropical river reaches, compositional differences appear to offer greater potential, including S:V vs. C:V plots that may capture the poorly-studied influence of palm trees, and (Ad:Al)s vs. (Ad:Al)v plots that may reflect differences in underlying mineralogy and degradation in soils. Even though dissolved and particulate lignin ultimately come from the same vegetation sources, comparison of dissolved and particulate lignin parameters within the two Puerto Rican rivers indicate that the pathways by which they end up in the same parcel of river water are largely decoupled. Across several particulate lignin studies in tropical rivers, mineral composition and concentration appears to exert a strong control on particulate lignin compositions and concentrations. Finally, the time-series nature of this study allows for new ways of analyzing dissolved lignin endmember compositions and degradation within the catchment. Plots of dissolved lignin parameters vs. lignin concentration reveal both the composition of "fresh" DOM that is likely mobilized from organic-rich soil surface layers along with the extent and trajectory of degradation of that signature that is possible within the lower mineral layers of the soil. Establishing connectivity between river chemistry and catchment sources and processes in this manner is the only way to realize the full potential of river chemistry as a diagnostic tool for changing sources and processes within the catchment.
NASA Astrophysics Data System (ADS)
Ertel, John R.; Hedges, John I.
1984-10-01
Vanillyl, syringyl and cinnamyl phenols occur as CuO oxidation products of humic, fulvic and base-insoluble residual fractions from soils, peat and nearshore marine sediments. However, none of these lignin-derived phenols were released by CuO oxidation of deepsea sediment or its base-extractable organic fractions. Lignin analysis indicated that peat and coastal marine sediments contained significantly higher levels of recognizable vascular plant carbon (20-50%) than soils and offshore marine sediments (0-10%). Although accounting for less than 20% of the total sedimentary (bulk) lignin, lignin components of humic acid fractions compositionally and quantitatively resembled the corresponding bulk samples and baseinsoluble residues. Recognizable lignin, presumably present as intact phenylpropanoid units, accounted for up to 5% of the carbon in peat and coastal humic acids but less than 1% in soil humic acids. Fulvic acid fractions uniformly yielded less lignin-derived phenols in mixtures that were depleted in syringyl and cinnamyl phenols relative to the corresponding humic acid fractions. Within the vanillyl and syringyl families the relative distribution of acidic and aldehydic phenols is a sensitive measure of the degree of oxidative alteration of the lignin component The high acid/aldehyde ratios and the low phenol yields of soils and their humic fractions compared to peat and coastal sediments indicate extensive degradation of the lignin source material. Likewise, the progressively higher acid/aldehyde ratios and lower phenol yields along the sequence: plant tissues (plant debris)-humic acids-fulvic acids suggest that this pattern represents the diagenetic sequence for the aerobic degradation of lignin biopolymers.
Zhang, Yan; Zhang, Dan Ju; Li, Xun; Liu, Hua; Zhang, Ming Jin; Yang, Wan Qin; Zhang, Jian
2016-04-22
The objective of the study was to evaluate the dynamics of recalcitrant components during foliar litter decomposition under edge effects of forest gap in Pinus massoniana plantations in the low hilly land, Sichuan basin. A field litterbag experiment was conducted in seven forest gaps with different sizes (100, 225, 400, 625, 900, 1225, 1600 m 2 ) which were generated by thinning P. massoniana plantations. The degradation rate of four recalcitrant components, i.e., condensed tannins, total phenol, lignin and cellulose in foliar litter of two native species (Cinnamomum camphora and Toona ciliata) at the gap edge and under the closed canopy were measured. The results showed that the degradation rate of recalcitrant components in T. ciliata litter except for cellulose at the gap edge were significantly higher than that under the closed canopy. For C. camphora litter, only the degradation of lignin at the gap edge was higher than that under the closed canopy. After one-year decomposition, four recalcitrant components in two types of foliar litter exhibited an increment of degradation rate, and the degradation rate of condensed tannin was the fastest, followed by total phenol and cellulose, but the lignin degradation rate was the slowest. With the increase of gap size, except for cellulose, the degradation rate ofthe other three recalcitrant components of the T. ciliata at the edge of medium sized gaps (400 and 625 m 2 ) were significantly higher than at the edge of other gaps. However, lignin in the C. camphora litter at the 625 m 2 gap edge showed the greatest degradation rate. Both temperature and litter initial content were significantly correlated with litter recalcitrant component degradation. Our results suggested that medium sized gaps (400-625 m 2 ) had a more significant edge effect on the degradation of litter recalcitrant components in the two native species in P. massoniana plantations, however, the effect also depended on species.
Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation.
Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei
2015-10-28
A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10(-3) s(-1). The La(3+), Sm(3+), Eu(3+) and Er(3+) doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.
Synthesis of rare earth doped TiO 2 nanorods as photocatalysts for lignin degradation
Song, Liang; Zhao, Xueyuan; Cao, Lixin; ...
2015-09-10
In this paper, a two-step process is developed to synthesize rare earth doped titania nanorods (RE–TiO 2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE–TiO 2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO 2 NRs or the commercial P25 TiO 2 photocatalyst. Using methyl orange (MO) as a probing molecule,more » we demonstrate that Eu–TiO 2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10 -3 s -1. The La 3+, Sm 3+, Eu 3+ and Er 3+ doped TiO 2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO 2. Finally, we further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.« less
Rashid, Goran M M; Duran-Pena, Maria Jesus; Rahmanpour, Rahman; Sapsford, Devin; Bugg, Timothy D H
2017-04-10
The aim of the study was to isolate bacterial lignin-degrading bacteria from municipal solid waste soil, and to investigate whether they could be used to delignify lignocellulose-containing soil, and enhance methane release. A set of 20 bacterial lignin degraders, including 11 new isolates from municipal solid waste soil, were tested for delignification and phenol release in soil containing 1% pine lignocellulose. A group of 7 strains were then tested for enhancement of gas release from soil containing 1% lignocellulose in small-scale column tests. Using an aerobic pre-treatment, aerobic strains such as Pseudomonas putida showed enhanced gas release from the treated sample, but four bacterial isolates showed 5-10 fold enhancement in gas release in an in situ experiment under microanaerobic conditions: Agrobacterium sp., Lysinibacillus sphaericus, Comamonas testosteroni, and Enterobacter sp.. The results show that facultative anaerobic bacterial lignin degraders found in landfill soil can be used for in situ delignification and enhanced gas release in soil containing lignocellulose. The study demonstrates the feasibility of using an in situ bacterial treatment to enhance gas release and resource recovery from landfill soil containing lignocellulosic waste. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Chen, Ying; Fan, Huan; Meng, Fanrui
2017-03-01
The capacity of Pleurotus ostreatus to degrade lignin was investigated in the fermentation of cornstalk. Cornstalk was incubated with P. ostreatus for 30 days, and acid-soluble and acid-insoluble lignins were assessed. The microscopic structure of cornstalk samples was studied by scanning electron microscopy (SEM), and spectroscopic characteristics were measured by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and solid state nuclear magnetic resonance ( 13 C NMR) spectroscopy. During fermentation of cornstalk, the proportion of acid-soluble lignin did not vary significantly (P > 0.05), but that of acid-insoluble lignin decreased gradually from 17.8% on day 0 to 7.6% on day 30 (P < 0.01). SEM revealed that the surface of cornstalk was gradually damaged with cavities increasing in number and size, forming a quasi-network structure. Crystallinity decreased from 35.0 on day 0 to 15.2 on day 30. FTIR and cross-polarization magic angle spinning (CPMAS) 13 C NMR spectra showed that the intensity of the peaks corresponding to lignin, cellulose and hemicellulose also decreased gradually over 30 days. Cornstalk can be effectively degraded by P. ostreatus within 30 days. Pleurotus ostreatus decreases cornstalk lignin content, potentially improving its suitability for animal feed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Comparison of the pyrolysis behavior of lignins from different tree species.
Wang, Shurong; Wang, Kaige; Liu, Qian; Gu, Yueling; Luo, Zhongyang; Cen, Kefa; Fransson, Torsten
2009-01-01
Despite the increasing importance of biomass pyrolysis, little is known about the pyrolysis behavior of lignin--one of the main components of biomass--due to its structural complexity and the difficulty in its isolation. In the present study, we extracted lignins from Manchurian ash (Fraxinus mandschurica) and Mongolian Scots pine (Pinus sylvestris var. mongolica) using the Bjorkman procedure, which has little effect on the structure of lignin. Fourier transform infrared (FTIR) spectrometry was used to characterize the microstructure of the Bjorkman lignins, i.e., milled wood lignins (MWLs), from the different tree species. The pyrolysis characteristics of MWLs were investigated using a thermogravimetric analyzer, and the release of the main volatile and gaseous products of pyrolysis were detected by FTIR spectroscopy. During the pyrolysis process, MWLs underwent thermo-degradation over a wide temperature range. Manchurian ash MWL showed a much higher thermal degradation rate than Mongolian Scots pine MWL in the temperature range from 290-430 degrees C. High residue yields were achieved at 37 wt.% for Mongolian Scots pine MWL and 26 wt.% for Manchurian ash MWL. In order to further investigate the mechanisms of lignin pyrolysis, we also analyzed the FTIR profiles for the main pyrolysis products (CO(2), CO, methane, methanol, phenols and formaldehyde) and investigated the variation in pyrolysis products between the different MWLs.
Naranjo-Briceño, Leopoldo; Pernía, Beatriz; Guerra, Mayamaru; Demey, Jhonny R; De Sisto, Ángela; Inojosa, Ysvic; González, Meralys; Fusella, Emidio; Freites, Miguel; Yegres, Francisco
2013-01-01
Large amount of drilling waste associated with the expansion of the Orinoco Oil Belt (OOB), the biggest proven reserve of extra-heavy crude oil (EHCO) worldwide, is usually impregnated with EHCO and highly salinized water-based drilling fluids. Oxidative exoenzymes (OE) of the lignin-degrading enzyme system (LDS) of fungi catalyse the oxidation of a wide range of toxic pollutants. However, very little evidences on fungal degradation or biotransformation of EHCO have been reported, which contain high amounts of asphaltenes and its biodegradation rate is very limited. The aims of this work were to study the ability of Pestalotiopsis palmarum BM-04 to synthesize OE, its potential to biotransform EHCO and to survive in extreme environmental conditions. Enzymatic studies of the LDS showed the ability of this fungus to overproduce high amounts of laccase (LACp) in presence of wheat bran or lignin peroxidase (LIPp) with EHCO as sole carbon and energy source (1300 U mgP−1 in both cases). FT-IR spectroscopy with Attenuated Total Reflectance (ATR) analysis showed the enzymatic oxidation of carbon and sulfur atoms in both maltenes and asphaltenes fractions of biotreated EHCO catalysed by cell-free laccase-enriched OE using wheat bran as inducer. UV-visible spectrophotometry analysis revealed the oxidation of the petroporphyrins in the asphaltenes fraction of biotreated EHCO. Tolerance assays showed the ability of this fungus to grow up to 50 000 p.p.m. of EHCO and 2000 mM of NaCl. These results suggest that P. palmarum BM-04 is a hopeful alternative to be used in remediation processes in extreme environmental conditions of salinity and EHCO contamination, such as the drilling waste from the OOB. PMID:23815379
Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeiner, Carolyn A.; Purvine, Samuel O.; Zink, Erika M.
2016-07-19
Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of fourmore » recently isolated, cosmopolitan, Mn(II)-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a). We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment.« less
Woo, Hannah L; O'Dell, Kaela B; Utturkar, Sagar; McBride, Kathryn R; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Daum, Chris; Shapiro, Nicole; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Woyke, Tanja; Brown, Steven D; Hazen, Terry C
2016-11-23
Thalassospira sp. strain KO164 was isolated from eastern Mediterranean seawater and sediment laboratory microcosms enriched on insoluble organosolv lignin under oxic conditions. The near-complete genome sequence presented here will facilitate analyses into this deep-ocean bacterium's ability to degrade recalcitrant organics such as lignin. Copyright © 2016 Woo et al.
Wang, Jindong; Li, Wenzhi; Wang, Huizhen; Ma, Qiaozhi; Li, Song; Chang, Hou-Min; Jameel, Hasan
2017-11-01
In this study, a novel catalyst, S 2 O 8 2- -KNO 3 /TiO 2 , which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S 2 O 8 2- -KNO 3 /TiO 2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiroz, R.A.
1987-01-01
A series of experiments were conducted to investigate the structural composition of forage lignins, structural changes of lignins in the gastrointestinal tract, alkali delignification kinetics and the use of core lignin components as an internal marker. Three species were selected to represent different forage types; alfalfa (Medicago sativa L.), a temperate perennial legume, tall fescue (Festuca arundinacea Schreb.), a temperate perennial grass and coastal bermudagrass (Cynodon dactylon L. Pers.), a tropical perennial grass. Alkaline lignins soluble in 1,4-dioxane, from forage and feces, were isolated and characterized using /sup 13/C nuclear magnetic resonance spectroscopy and nitrobenzene oxidation.
Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh
2017-05-15
Sweet sorghum bagasse (SSB) generated in large quantities could be hydrolyzed to sugar and then fermented to green fuels. The hydrolysis of SSB polysaccharides interlocked in recalcitrant lignin network is the major problem. Pretreatment of SSB in SSF by using Coriolus versicolor with CuSO 4 -syringic acid supplements for effects on production of ligninocellulolytic enzymes, lignin degradation and selectivity values (SV) were studied. C. versicolor was selected based on high ligninolytic and low cellulolytic abilily. Individually, CuSO 4 increased the activities of laccase (4.9 folds) and PPO (1.9 folds); syringic acid increased LiP (13 folds), AAO (2.8 folds) and laccase (5.6 folds) resulting in increased lignin degradation and SVs. Combined syringic acid (4.4 μmol g -1 SSB) and CuSO 4 (4.4 μmol g -1 SSB) increased the activities of laccase, LiP, MnP, PPO and AAO by 11.2, 17.6, 2.8, 2.4 and 2.3 folds respectively due to synergistic effect, resulting in maximum lignin degradation 35.9 ± 1.3% (w w -1 ) (1.86 fold) and highest SV 3.07 (4.7 fold). Enzymatic hydrolysis of pretreated SSB yielded higher (∼2.2 times) fermentable sugar. Pretreated SSB was characterized by XRD, SEM, FTIR and TGA/DTG analysis to confirm results. It is possible to improve fungal pretreatment of agricultural waste by combination of supplements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degradation of Coal by the Fungi Polyporus versicolor and Poria monticola
Cohen, Martin S.; Gabriele, Peter D.
1982-01-01
We report that two species of basidiomycete fungi (Polyporus versicolor and Poria monticola) grow in minimal liquid or solid medium when supplemented with crushed lignite coal. The fungi also grow directly on crushed lignite coal. The growth of both fungi was observed qualitatively as the production and extension of hyphae. No fungal growth occurred in minimal agar medium without coal. The fungi degraded solid lignite coal to a black liquid product which never appeared in cultures unless fungi and coal were present together. Apparently, lignite coal can serve as the principal substrate for the growth of the fungi. Infrared analyses of the liquid products of lignite degradation showed both similarities to and differences from the original lignite. Images PMID:16346060
Jiao, Xiaoyu; Li, Guoqing; Wang, Yan; Nie, Fan; Cheng, Xi; Abdullah, Muhammad; Lin, Yi; Cai, Yongping
2018-04-11
Fungal laccases play important roles in the degradation of lignocellulose. Although some PoLac s have been reported in several studies, still no comprehensive bioinformatics study of the LAC family in Pleurotus ostreatus has been reported. In this study, we identified 12 laccase genes in the whole genome sequence of P. ostreatus and their physical characteristics, gene distribution, phylogenic relationships, gene structure, conserved motifs, and cis-elements were also analyzed. The expression patterns of 12 PoLac genes at different developmental stages and under different culture substrates were also analyzed. The results revealed that PoLac2 and PoLac12 may be involved in the degradation of lignin and the formation of the fruiting body, respectively. Subsequently, we overexpressed PoLac2 in P. ostreatus by the Agrobacterium tumefaciens -mediated transformation (ATMT) method. The transformants' laccase activity increased in varying degrees, and the gene expression level of PoLac2 in transformants was 2-8 times higher than that of the wild-type strain. Furthermore, the lignin degradation rate by transgenic fungus over 30 days was 2.36-6.3% higher than that of wild-type. Our data show that overexpression of PoLac2 significantly enhanced the lignin degradation of cotton-straw. To our knowledge, this study is the first report to demonstrate the functions of PoLac2 in P. ostreatus .
Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi
2013-01-01
Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family. Conclusions Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity. PMID:23617724
Root carbon decomposition and microbial biomass response at different soil depths
NASA Astrophysics Data System (ADS)
Rumpel, C.
2012-12-01
The relationship between root litter addition and soil organic matter (SOM) formation in top- versus subsoils is unknown. The aim of this study was to investigate root litter decomposition and stabilisation in relation to microbial parameters in different soil depths. Our conceptual approach included incubation of 13C-labelled wheat roots at 30, 60 and 90 cm soil depth for 36 months under field conditions. Quantitative root carbon contribution to SOM was assessed, changes of bulk root chemistry studied by solid-state 13C NMR spectroscopy and lignin content and composition was assessed after CuO oxidation. Compound-specific isotope analysis allowed to assess the role of root lignin for soil C storage in the different soil depths. Microbial biomass and community structure was determined after DNA extraction. After three years of incubation, O-alkyl C most likely assigned to polysaccharides decreased in all soil depth compared to the initial root material. The degree of root litter decomposition assessed by the alkyl/O-alkyl ratio decreased with increasing soil depth, while aryl/O-alkyl ratio was highest at 60 cm depth. Root-derived lignin showed depth specific concentrations (30 < 90 < 60 cm). Its composition was soil depth independent suggesting that microbial communities in all three soil depths had similar degradation abilities. Microbial biomass C and fungi contribution increased after root litter addition. Their community structure changed after root litter addition and showed horizon specific dynamics. Our study shows that root litter addition can contribute to C storage in subsoils but did not influence C storage in topsoil. We conclude that specific conditions of single soil horizons have to be taken into account if root C dynamics are to be fully understood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varman, Arul M.; He, Lian; Follenfant, Rhiannon
Lignin is a major resources for the production of next generation renewable aromatics. Sphingobium sp. SYK-6 is a bacterium that has been well-studied for the breakdown of lignin-derived compounds. There has been a lot of interest in SYK-6 lignolytic activity and many recent works have focused on understanding the unique catabolic pathway it possesses for the degradation of lignin derived monomers and oligomers. Furthermore, there has been no prior effort in understanding the central fluxome based on lignin derived substrates into value-added chemicals.
A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua
Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less
A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus
Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua; ...
2017-06-29
Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less
Varman, Arul M.; He, Lian; Follenfant, Rhiannon; ...
2016-09-15
Lignin is a major resources for the production of next generation renewable aromatics. Sphingobium sp. SYK-6 is a bacterium that has been well-studied for the breakdown of lignin-derived compounds. There has been a lot of interest in SYK-6 lignolytic activity and many recent works have focused on understanding the unique catabolic pathway it possesses for the degradation of lignin derived monomers and oligomers. Furthermore, there has been no prior effort in understanding the central fluxome based on lignin derived substrates into value-added chemicals.
Inglis, G D; Kawchuk, L M
2002-01-01
Fourteen fungi (primarily representing mycoparasitic and biocontrol fungi) were tested for their ability to grow on and degrade cell walls (CWs) of an oomycete (Pythium ultimum), ascomycete (Fusarium equisetii), and basidiomycete (Rhizoctonia solani), and their hydrolytic enzymes were characterized. Protein was detected in the cultural medium of eleven of the test isolates, and these fungi significantly degraded CWs over the 14-day duration of the experiment. In general, a greater level of CW degradation occurred for F. equisetii and P. ultimum than for R. solani. Fungi that degraded F. equisetii CWs were Coniothyrium minitans, Gliocladium roseum, Myrothecium verrucaria, Talaromyces flavus, and Trichoderma harzianum. Taxa degrading P ultimum CWs included Chaetomium globosum, Coniothyrium minitans, M. verrucaria, Seimatosporium sp., Talaromyces flavus, Trichoderma hamatum, Trichoderma harzianum, and Trichoderma viride. Production of extracellular protein was highly correlated with CW degradation. Considerable variation in the molecular weights of CW-degrading enzymes were detected among the test fungi and the CW substrates in zymogram electrophoresis. Multivariate analysis between CW degradation and hydrolysis of barley beta-glucan (beta1,3- and beta1,4-glucanases), laminarin (beta1,3- and beta1,6-glucanases), carboxymethyl cellulose (endo-beta1,4-glucanases), colloidal chitin (chitinases), and chitosan (chitosanases) was conducted. For F. equisetii CWs, the regression model accounted for 80% of the variability, and carboxymethyl cellulases acting together with beta-glucanases contributed an R2 of 0.52, whereas chitinases and beta-glucanases alone contributed an R2 of 0.11 and 0.12, respectively. Only 61% of the variability observed in the degradation of P. ultimum CWs was explained by the enzyme classes tested, and primarily beta-glucanases (R2 of 0.53) and carboxymethyl cellulases (R2 of 0.08) alone contributed to CW break down. Too few of the test fungi degraded R. solani CWs to perform multivariate analysis effectively. This study identified several fungi that degraded ascomyceteous and oomyceteous, and to a lesser extent, basidiomycetous CWs. An array of enzymes were implicated in CW degradation.
Modeling Lignin Polymerization. I. Simulation Model of Dehydrogenation Polymers1[OA
van Parijs, Frederik R.D.; Morreel, Kris; Ralph, John; Boerjan, Wout; Merks, Roeland M.H.
2010-01-01
Lignin is a heteropolymer that is thought to form in the cell wall by combinatorial radical coupling of monolignols. Here, we present a simulation model of in vitro lignin polymerization, based on the combinatorial coupling theory, which allows us to predict the reaction conditions controlling the primary structure of lignin polymers. Our model predicts two controlling factors for the β-O-4 content of syringyl-guaiacyl lignins: the supply rate of monolignols and the relative amount of supplied sinapyl alcohol monomers. We have analyzed the in silico degradability of the resulting lignin polymers by cutting the resulting lignin polymers at β-O-4 bonds. These are cleaved in analytical methods used to study lignin composition, namely thioacidolysis and derivatization followed by reductive cleavage, under pulping conditions, and in some lignocellulosic biomass pretreatments. PMID:20472753
Lignin depolymerization by fungal secretomes and a microbial sink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvachúa, Davinia; Katahira, Rui; Cleveland, Nicholas S.
In Nature, powerful oxidative enzymes secreted by white rot fungi and some bacteria catalyze lignin depolymerization and some microbes are able to catabolize the resulting aromatic compounds as carbon and energy sources. Taken together, these two processes offer a potential route for microbial valorization of lignin. However, many challenges remain in realizing this concept, including that oxidative enzymes responsible for lignin depolymerization also catalyze polymerization of low molecular weight (LMW) lignin. Here, multiple basidiomycete secretomes were screened for ligninolytic enzyme activities in the presence of a residual lignin solid stream from a corn stover biorefinery, dubbed DMR-EH (Deacetylation, Mechanical Refining,more » and Enzymatic Hydrolysis) lignin. Two selected fungal secretomes, with high levels of laccases and peroxidases, were utilized for DMR-EH lignin depolymerization assays. The secretome from Pleurotus eryngii, which exhibited the highest laccase activity, reduced the lignin average molecular weight by 63% and 75% at pH 7 compared to the Mw of the control treated at the same conditions and the initial DMR-EH lignin, respectively, and was applied in further depolymerization assays as a function of time. As repolymerization was observed after 3 days of incubation, an aromatic-catabolic microbe (Pseudomonas putida KT2440) was incubated with the fungal secretome and DMR-EH lignin. These experiments demonstrated that the presence of the bacterium enhances lignin depolymerization, likely due to bacterial catabolism of LMW lignin, which may partially prevent repolymerization. In addition, proteomics was also applied to the P. eryngii secretome to identify the enzymes present in the fungal cocktail utilized for the depolymerization assays, which highlighted a significant number of glucose/ methanol/choline (GMC) oxidoreductases and laccases. Overall, this study demonstrates that ligninolytic enzymes can be used to partially depolymerize a solid, high lignin content biorefinery stream and that the presence of an aromatic-catabolic bacterium as a “microbial sink” improves the extent of enzymatic lignin depolymerization.« less
Lignin depolymerization by fungal secretomes and a microbial sink
Salvachua, Davinia; Katahira, Rui; Cleveland, Nicholas S.; ...
2016-08-25
In Nature, powerful oxidative enzymes secreted by white rot fungi and some bacteria catalyze lignin depolymerization and some microbes are able to catabolize the resulting aromatic compounds as carbon and energy sources. Taken together, these two processes offer a potential route for microbial valorization of lignin. However, many challenges remain in realizing this concept, including that oxidative enzymes responsible for lignin depolymerization also catalyze polymerization of low molecular weight (LMW) lignin. Here, multiple basidiomycete secretomes were screened for ligninolytic enzyme activities in the presence of a residual lignin solid stream from a corn stover biorefinery, dubbed DMR-EH (Deacetylation, Mechanical Refining,more » and Enzymatic Hydrolysis) lignin. Two selected fungal secretomes, with high levels of laccases and peroxidases, were utilized for DMR-EH lignin depolymerization assays. The secretome from Pleurotus eryngii, which exhibited the highest laccase activity, reduced the lignin average molecular weight (M w) by 63% and 75% at pH 7 compared to the M w of the control treated at the same conditions and the initial DMR-EH lignin, respectively, and was applied in further depolymerization assays as a function of time. As repolymerization was observed after 3 days of incubation, an aromatic-catabolic microbe ( Pseudomonas putida KT2440) was incubated with the fungal secretome and DMR-EH lignin. These experiments demonstrated that the presence of the bacterium enhances lignin depolymerization, likely due to bacterial catabolism of LMW lignin, which may partially prevent repolymerization. In addition, proteomics was also applied to the P. eryngii secretome to identify the enzymes present in the fungal cocktail utilized for the depolymerization assays, which highlighted a significant number of glucose/methanol/choline (GMC) oxidoreductases and laccases. Altogether, this study demonstrates that ligninolytic enzymes can be used to partially depolymerize a solid, high lignin content biorefinery stream and that the presence of an aromatic-catabolic bacterium as a 'microbial sink' improves the extent of enzymatic lignin depolymerization.« less
Lignin depolymerization by fungal secretomes and a microbial sink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvachua, Davinia; Katahira, Rui; Cleveland, Nicholas S.
In Nature, powerful oxidative enzymes secreted by white rot fungi and some bacteria catalyze lignin depolymerization and some microbes are able to catabolize the resulting aromatic compounds as carbon and energy sources. Taken together, these two processes offer a potential route for microbial valorization of lignin. However, many challenges remain in realizing this concept, including that oxidative enzymes responsible for lignin depolymerization also catalyze polymerization of low molecular weight (LMW) lignin. Here, multiple basidiomycete secretomes were screened for ligninolytic enzyme activities in the presence of a residual lignin solid stream from a corn stover biorefinery, dubbed DMR-EH (Deacetylation, Mechanical Refining,more » and Enzymatic Hydrolysis) lignin. Two selected fungal secretomes, with high levels of laccases and peroxidases, were utilized for DMR-EH lignin depolymerization assays. The secretome from Pleurotus eryngii, which exhibited the highest laccase activity, reduced the lignin average molecular weight (M w) by 63% and 75% at pH 7 compared to the M w of the control treated at the same conditions and the initial DMR-EH lignin, respectively, and was applied in further depolymerization assays as a function of time. As repolymerization was observed after 3 days of incubation, an aromatic-catabolic microbe ( Pseudomonas putida KT2440) was incubated with the fungal secretome and DMR-EH lignin. These experiments demonstrated that the presence of the bacterium enhances lignin depolymerization, likely due to bacterial catabolism of LMW lignin, which may partially prevent repolymerization. In addition, proteomics was also applied to the P. eryngii secretome to identify the enzymes present in the fungal cocktail utilized for the depolymerization assays, which highlighted a significant number of glucose/methanol/choline (GMC) oxidoreductases and laccases. Altogether, this study demonstrates that ligninolytic enzymes can be used to partially depolymerize a solid, high lignin content biorefinery stream and that the presence of an aromatic-catabolic bacterium as a 'microbial sink' improves the extent of enzymatic lignin depolymerization.« less
Chemicals and ruminant feed from lignocelluloses by the steaming-extraction process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puls, J.; Ayla, C.; Dietrichs, H.H.
1983-01-01
Steaming is applicable to lignocelluloses with lower lignin content such as hardwoods and most agricultural residues. The cellulose of steamed fiber materials becomes accessible for enzymatic degradation in spite of the presence of lignin. The hemicelluloses become water soluble. The lignin can be extracted with alkaline or organic solvents. Without further treatment, the steamed material can be used as highly digestible ruminant feed. Steam treatment, however, is most effective after separation of the hemicelluloses. Depending on the starting material, 10-25% hemicelluloses with xylose contents up to 80% can be recovered by aqueous extraction of the fiber material. The xylans andmore » xylan fragments can be used as substrates for chemical, biochemical, or microbial processes. The residual fiber material consists only of cellulose and lignin in highly accessible form for rumen bacteria and fungal cellulases. They are digested by ruminants up to 70-80% and degraded by cellulases without further treatment to 50-60%. In a second extraction step, the lignin can be removed from the fiber material. After controlled steaming at 190/sup 0/C with an optimum yield of hemicellulose, two-thirds of the original lignin present in the starting material can be extracted with dilute alkali. A relatively mild steaming with additional alkaline extraction of lignin is recommended when total utilization of the components including the hemicelluloses is desired. The extracted lignin can be used as a chemical feedstock. 16 references, 6 figures, 3 tables.« less
Cong, Bailin; Wang, Nengfei; Liu, Shenghao; Liu, Feng; Yin, Xiaofei; Shen, Jihong
2017-05-30
With the growing demand for fossil fuels and the severe energy crisis, lignocellulose is widely regarded as a promising cost-effective renewable resource for ethanol production, and the use of lignocellulose residues as raw material is remarkable. Polar organisms have important value in scientific research and development for their novelty, uniqueness and diversity. In this study, a fungus Aspergillus sydowii MS-19, with the potential for lignocellulose degradation was screened out and isolated from an Antarctic region. The growth profile of Aspergillus sydowii MS-19 was measured, revealing that Aspergillus sydowii MS-19 could utilize lignin as a sole carbon source. Its ability to synthesize low-temperature lignin peroxidase (Lip) and manganese peroxidase (Mnp) enzymes was verified, and the properties of these enzymes were also investigated. High-throughput sequencing was employed to identify and characterize the transcriptome of Aspergillus sydowii MS-19. Carbohydrate-Active Enzymes (CAZyme)-annotated genes in Aspergillus sydowii MS-19 were compared with those in the brown-rot fungus representative species, Postia placenta and Penicillium decumbens. There were 701CAZymes annotated in Aspergillus sydowii MS-19, including 17 cellulases and 19 feruloyl esterases related to lignocellulose-degradation. Remarkably, one sequence annotated as laccase was obtained, which can degrade lignin. Three peroxidase sequences sharing a similar structure with typical lignin peroxidase and manganese peroxidase were also found and annotated as haem-binding peroxidase, glutathione peroxidase and catalase-peroxidase. In this study, the fungus Aspergillus sydowii MS-19 was isolated and shown to synthesize low-temperature lignin-degrading enzymes: lignin peroxidase (Lip) and manganese peroxidase (Mnp). These findings provide useful information to improve our understanding of low-temperature lignocellulosic enzyme production by polar microorganisms and to facilitate research and applications of the novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source.
Dier, Tobias K F; Egele, Kerstin; Fossog, Verlaine; Hempelmann, Rolf; Volmer, Dietrich A
2016-01-19
High resolution mass spectrometry was utilized to study the highly complex product mixtures resulting from electrochemical breakdown of lignin. As most of the chemical structures of the degradation products were unknown, enhanced mass defect filtering techniques were implemented to simplify the characterization of the mixtures. It was shown that the implemented ionization techniques had a major impact on the range of detectable breakdown products, with atmospheric pressure photoionization in negative ionization mode providing the widest coverage in our experiments. Different modified Kendrick mass plots were used as a basis for mass defect filtering, where Kendrick mass defect and the mass defect of the lignin-specific guaiacol (C7H7O2) monomeric unit were utilized, readily allowing class assignments independent of the oligomeric state of the product. The enhanced mass defect filtering strategy therefore provided rapid characterization of the sample composition. In addition, the structural similarities between the compounds within a degradation sequence were determined by comparison to a tentatively identified product of this compound series. In general, our analyses revealed that primarily breakdown products with low oxygen content were formed under electrochemical conditions using protic ionic liquids as solvent for lignin.
Microbial mats: an ecological niche for fungi
Cantrell, Sharon A.; Duval-Pérez, Lisabeth
2013-01-01
Fungi were documented in tropical hypersaline microbial mats and their role in the degradation of complex carbohydrates (exopolymeric substance – EPS) was explored. Fungal diversity is higher during the wet season with Acremonium, Aspergillus, Cladosporium, and Penicillium among the more common genera. Diversity is also higher in the oxic layer and in young and transient mats. Enrichments with xanthan (a model EPS) show that without antibiotics (full community) degradation is faster than enrichments with antibacterial (fungal community) and antifungal (bacterial community) agents, suggesting that degradation is performed by a consortium of organisms (bacteria and fungi). The combined evidence from all experiments indicates that bacteria carried out approximately two-third of the xanthan degradation. The pattern of degradation is similar between seasons and layers but degradation is faster in enrichments from the wet season. The research suggests that fungi thrive in these hypersaline consortia and may participate in the carbon cycle through the degradation of complex carbohydrates. PMID:23577004
ReaxFF Study of the Oxidation of Softwood Lignin in View of Carbon Fiber Production
Beste, Ariana
2014-10-06
We investigate the oxidative, thermal conversion of softwood lignin by performing molecular dynamics simulations based on a reactive force field (ReaxFF). The lignin samples are constructed from coniferyl alcohol units, which are connected through linkages that are randomly selected from a natural distribution of linkages in softwood. The goal of this work is to simulate the oxidative stabilization step during carbon fiber production from lignin precursor. We find that at simulation conditions where stabilization reactions occur, the lignin fragments have already undergone extensive degradation. The 5-5 linkage shows the highest reactivity towards cyclization and dehydrogenation.
Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil)
NASA Astrophysics Data System (ADS)
Dittmar, Thorsten; Lara, Rubén José
2001-05-01
- Molecular lignin analyses have become a powerful quantitative approach for estimating flux and fate of vascular plant organic matter in coastal and marine environments. The use of a specific molecular biomarker requires detailed knowledge of its decomposition rates relative to the associated organic matter and its structural diagenetic changes. To gain insight into the poorly known processes of anaerobic lignin diagenesis, molecular analyses were performed in the sulfate-reducing sediment of a north Brazilian mangrove. Organic matter in samples representing different diagenetic stages (i.e., fresh litter, a sediment core, and percolating water) was characterized by alkaline CuO oxidation for lignin composition, element (C, N), and stable carbon isotope analyses. On the basis of these results and on a balance model, long-term in situ decomposition rates of lignin in sulfate-reducing sediments were estimated for the first time. The half-life ( T1/2) of lignin derived from mangrove leaf litter (mainly Rhizophora mangle) was ˜150 yr in the upper 1.5 m of the sediment. Associated organic carbon from leaf tissue was depleted to ˜75% within weeks, followed by a slow mineralization in the sediment ( T1/2 ≈ 300 yr). Unlike the known pathways of lignin diagenesis, even highly degraded lignin did not show any alterations of the propyl or methoxyl side chains, as evident from stable acid to aldehyde ratios and the proportion of methoxylated phenols (vanillyl and syringyl phenols). Aromatic ring cleavage is probably the principal mechanism for lignin decay in the studied environment. Cinnamyl phenols were highly abundant in mangrove leaves and were rapidly depleted during early diagenesis. Thus, the cinnamyl to vanillyl ratio could be used as a tracer for early diagenesis even under the sulfate-reducing conditions. Syringyl phenols were removed from dissolved organic matter in interstitial water, probably by sorption onto the sediment. Suspended organic matter in a mangrove creek showed a different lignin signature than its source, namely sedimentary organic matter or mangrove litter, with clear evidence for propyl side chain oxidation. This was probably attributable to erosion of aerated thin sediment surface layers during mangrove inundation. Although particulate and dissolved organic matter in the mangrove creek have a common source, their compositional patterns were different, because of different pathways of release, degradation, and transport to the creek.
Temperature Responses of Soil Organic Matter Components With Varying Recalcitrance
NASA Astrophysics Data System (ADS)
Simpson, M. J.; Feng, X.
2007-12-01
The response of soil organic matter (SOM) to global warming remains unclear partly due to the chemical heterogeneity of SOM composition. In this study, the decomposition of SOM from two grassland soils was investigated in a one-year laboratory incubation at six different temperatures. SOM was separated into solvent- extractable compounds, suberin- and cutin-derived compounds, and lignin monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components had distinct chemical structures and recalcitrance, and their decomposition was fitted by a two-pool exponential decay model. The stability of SOM components was assessed using geochemical parameters and kinetic parameters derived from model fitting. Lignin monomers exhibited much lower decay rates than solvent-extractable compounds and a relatively low percentage of lignin monomers partitioned into the labile SOM pool, which confirmed the generally accepted recalcitrance of lignin compounds. Suberin- and cutin-derived compounds had a poor fitting for the exponential decay model, and their recalcitrance was shown by the geochemical degradation parameter which stabilized during the incubation. The aliphatic components of suberin degraded faster than cutin-derived compounds, suggesting that cutin-derived compounds in the soil may be at a higher stage of degradation than suberin- derived compounds. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of the recalcitrant lignin monomers had much higher Q10 values than soil respiration or the solvent-extractable compounds decomposition. Our study shows that the decomposition of recalcitrant SOM is highly sensitive to temperature, more so than bulk soil mineralization. This observation suggests a potential acceleration in the degradation of the recalcitrant SOM pool with global warming.
The use of organic markers in the differentiation of organic inputs to aquatic systems
NASA Astrophysics Data System (ADS)
Reeves, A. D.
1995-04-01
In previous projects the estuarine distributions of a variety of molecular organic markers have been described and discussed in relation to sources, transport mechanisms and fates of anthropogenic and biogenic inputs to estuaries. Molecular markers have been used successfully to establish terrestrial inputs to marine water and to trace pollutants in water-ways. One of the components selected for study was lignin. Lignin compounds are phenolic polymers that occur as major constituents of the cell walls of vascular plants. Their source, natural abundance, wide distribution and resistance to microbial degradation render them good terrestrial markers and, via their phenolic aldehyde oxidation products, afford characterisation of their source material. In previous work, ratios of various lignin components suggest that permanently suspended material contains a significant proportion of degraded angiosperm tissues whereas, in resuspended material, a component of gymnosperm material is indicated. Comparison of the lignin concentrations in the suspended material with those in underlying sediment reveals that the permanently suspended material is preferentially enriched in lignin. This is due, at least in part, to the relative buoyancy of lignin-containing prticles which causes them to float in near-surface water. This paper considers whether such methodology can be usefully applied to the determination of terrestrial inputs to lentic environments.
Oliveira, Sabrina Feliciano; da Luz, José Maria Rodrigues; Kasuya, Maria Catarina Megumi; Ladeira, Luiz Orlando; Correa Junior, Ary
2018-05-01
The majority of the textile dyes are harmful to the environment and potentially carcinogenic. Among strategies for their exclusion, the treatment of dye contaminated wastewater with fungal extract, containing lignin peroxidase (LiP), may be useful. Two fungi isolates, Pleurotus ostreatus (PLO9) and Ganoderma lucidum (GRM117), produced the enzymatic extract by fermentation in the lignocellulosic residue, Jatropha curcas seed cake. The extracts from PLO9 and GRM117 were immobilized on carbon nanotubes and showed an increase of 18 and 27-fold of LiP specific activity compared to the free enzyme. Also, LiP from both fungi extracts showed higher Vmax and lower Km values. Only the immobilized extracts could be efficiently reused in the dye decolourization, contrary, the carbon nanotubes became saturated and they should be discarded over time. This device may offer a final biocatalyst with higher catalytic efficiency and capability to be reused in the dye decolourization process.
Synthesis of Enantiomerically Pure Lignin Dimer Models for Catalytic Selectivity Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Njiojob, Costyl N.; Rhinehart, Jennifer L.; Bozell, Joseph J.
2015-02-06
A series of highly enantioselective transformations, such as the Sharpless asymmetric epoxidation and Jacobsen hydrolytic kinetic resolution, were utilized to achieve the complete stereoselective synthesis of β-O-4 lignin dimer models containing the S, G, and H subunits with excellent ee (>99%) and moderate to high yields. This unprecedented synthetic method can be exploited for enzymatic, microbial, and chemical investigations into lignin’s degradation and depolymerization as related to its stereochemical constitution. Preliminary degradation studies using enantiopure Co(salen) catalysts are also reported.
Blackwood, C.B.; Waldrop, M.P.; Zak, D.R.; Sinsabaugh, R. L.
2007-01-01
The fungal community of the forest floor was examined as the cause of previously reported increases in soil organic matter due to experimental N deposition in ecosystems producing predominantly high-lignin litter, and the opposite response in ecosystems producing low-lignin litter. The mechanism proposed to explain this phenomenon was that white-rot basidiomycetes are more important in the degradation of high-lignin litter than of low-lignin litter, and that their activity is suppressed by N deposition. We found that forest floor mass in the low-lignin sugar-maple dominated system decreased in October due to experimental N deposition, whereas forest floor mass of high-lignin oak-dominated ecosystems was unaffected by N deposition. Increased relative abundance of basidiomycetes in high-lignin forest floor was confirmed by denaturing gradient gel electrophoresis (DGGE) and sequencing. Abundance of basidiomycete laccase genes, encoding an enzyme used by white-rot basidiomycetes in the degradation of lignin, was 5-10 times greater in high-lignin forest floor than in low-lignin forest floor. While the differences between the fungal communities in different ecosystems were consistent with the proposed mechanism, no significant effects of N deposition were detected on DGGE profiles, laccase gene abundance, laccase length heterogeneity profiles, or phenol oxidase activity. Our observations indicate that the previously detected accumulation of soil organic matter in the high-lignin system may be driven by effects of N deposition on organisms in the mineral soil, rather than on organisms residing in the forest floor. However, studies of in situ gene expression and temporal and spatial variability within forest floor communities will be necessary to further relate the ecosystem dynamics of organic carbon to microbial communities and atmospheric N deposition. ?? 2007 The Authors; Journal compilation ?? 2007 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Edmunds, Charles Warren
Increasing concerns over greenhouse gas emissions and the finite supply of fossil fuels lead to the goal of utilizing lignocellulosic feedstocks for biofuels, platform chemicals, and biocomposites. Lignin is responsible for the recalcitrance of lignocellulosic biomass and is a major barrier to its deconstruction. Great progress has been made in mapping and modifying the lignin biosynthetic pathway. However, the link between the genetic modification, resulting chemical and physical properties of the wood, and how these properties influence the thermomechanical and recalcitrance to biological and chemical degradation needs further investigation. In this dissertation, the study of modified Populus trichocarpa and Pinus taeda were utilized to accomplish this goal. Thermo-mechanical properties of genetically modified P. trichocarpa with altered lignin content and/or lignin structure were measured with a series of tools including; dynamic mechanical analysis, nuclear magnetic resonance, and wet chemistry techniques. Results demonstrated lignin content and lignin structure likely influence the glass transition temperature (Tg), and that decreased lignin content and the corresponding higher proportion of cell wall carbohydrates may contribute to increased molecular mobility in the wood polymer structure. The effect of lignin biosynthetic pathway modification on biological degradation of these transgenic wood specimens was of interest. However, experimental methods for fungal treatment on small young greenhouse-grown wood specimens are not well established. Therefore, a project was undertaken to develop a method for fungal inoculation and incubation for these unique specimens. Several parameters were tested, and a fungal treatment method was identified with sufficient weight loss after decay and significant reduction in variation of weight loss between replicates compared to previous experiments by direct inoculation of wood with liquid malt extract fungal culture. Utilizing the fungal treatment method which was developed, fungal pretreatment as a potential low-input and environmentally-friendly alternative to conventional pretreatment methods was tested using the white-rot fungus, Ceriporiopsis subvermispora, on wildtype and transgenic P. trichocarpa. In addition to fungal treatment, hot water and dilute acid treatments followed by enzymatic hydrolysis was tested. Results showed no clear relationship between the initial lignin content or syringyl/guaiacyl lignin monomer ratio and weight loss due to fungal treatment. P-hydroxyphenyl lignin monomer degradation of up to 60% during the fungal treatment were observed in cinnamate 3-hydroxylase down-regulated genetic lines. It was demonstrated that fungal treatment in wildtype and several transgenic lines resulted in substantial improvements in sugar yields, up to 2.4-fold increase in glucose yield and 6.7-fold increase in xylose yield after enzymatic hydrolysis. However, some genetic lines showed little benefit from fungal pretreatment, and in general hot water and dilute acid pretreatments showed similar or increased glucose yield compared to fungal treatment. The goal of the last project was to characterize P. taeda which was genetically modified for S lignin production or decreased lignin content. In addition, the amenability to pretreatment and enzymatic hydrolysis were analyzed using hot water and dilute acid pretreatments followed by enzymatic hydrolysis. In the transgenic lines modified for production of syringyl lignin, Maule staining demonstrated the intermittent deposition of syringyl lignin in the secondary xylem, while thioacidolysis showed 13% concentration of S lignin, and solid state NMR demonstrated the occurrence of beta-O-4 linkages in S lignin units. In transgenic lines modified for reduced lignin content, lignin reduction up to 33% was observed, and pretreatment and enzymatic hydrolysis demonstrated increased cellulose conversion in lowlignin samples. These results highlight the potential of softwood to be a viable bioenergy/biochemical feedstock and opens up exciting new avenue of research.
Goodell, Barry; Zhu, Yuan; Kim, Seong; Kafle, Kabindra; Eastwood, Daniel; Daniel, Geoffrey; Jellison, Jody; Yoshida, Makoto; Groom, Leslie; Pingali, Sai Venkatesh; O'Neill, Hugh
2017-01-01
Wood decayed by brown rot fungi and wood treated with the chelator-mediated Fenton (CMF) reaction, either alone or together with a cellulose enzyme cocktail, was analyzed by small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Results showed that the CMF mechanism mimicked brown rot fungal attack for both holocellulose and lignin components of the wood. Crystalline cellulose and lignin were both depolymerized by the CMF reaction. Porosity of the softwood cell wall did not increase during CMF treatment, enzymes secreted by the fungi did not penetrate the decayed wood. The enzymes in the cellulose cocktail also did not appear to alter the effects of the CMF-treated wood relative to enhancing cell wall deconstruction. This suggests a rethinking of current brown rot decay models and supports a model where monomeric sugars and oligosaccharides diffuse from the softwood cell walls during non-enzymatic action. In this regard, the CMF mechanism should not be thought of as a "pretreatment" used to permit enzymatic penetration into softwood cell walls, but instead it enhances polysaccharide components diffusing to fungal enzymes located in wood cell lumen environments during decay. SANS and other data are consistent with a model for repolymerization and aggregation of at least some portion of the lignin within the cell wall, and this is supported by AFM and TEM data. The data suggest that new approaches for conversion of wood substrates to platform chemicals in biorefineries could be achieved using the CMF mechanism with >75% solubilization of lignocellulose, but that a more selective suite of enzymes and other downstream treatments may be required to work when using CMF deconstruction technology. Strategies to enhance polysaccharide release from lignocellulose substrates for enhanced enzymatic action and fermentation of the released fraction would also aid in the efficient recovery of the more uniform modified lignin fraction that the CMF reaction generates to enhance biorefinery profitability.
Tricin-lignins: occurrence and quantitation of tricin in relation to phylogeny
Lan, Wu; Rencoret, Jorge; Lu, Fachuang; ...
2016-08-24
We report tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as an authentic monomer in grass lignification that likely functions as a nucleation site. It is linked onto lignin as an aryl alkyl ether by radical coupling with monolignols or their acylated analogs. However, the level of tricin that incorporates into lignin remains unclear. Herein, three lignin characterization methods: acidolysis; thioacidolysis; and derivatization followed by reductive cleavage; were applied to quantitatively assess the amount of lignin-integrated tricin. Their efficiencies at cleaving the tricin-(4'–O–β)-ether bonds and the degradation of tricin under the corresponding reaction conditions were evaluated. A hexadeuterated tricin analog wasmore » synthesized as an internal standard for accurate quantitation purposes. Thioacidolysis proved to be the most efficient method, liberating more than 91% of the tricin with little degradation. A survey of different seed-plant species for the occurrence and content of tricin showed that it is widely distributed in the lignin from species in the family Poaceae (order Poales). Tricin occurs at low levels in some commelinid monocotyledon families outside the Poaceae, such as the Arecaceae (the palms, order Arecales) and Bromeliaceae (Poales), and the non-commelinid monocotyledon family Orchidaceae (Orchidales). One eudicotyledon was found to have tricin (Medicago sativa, Fabaceae). The content of lignin-integrated tricin is much higher than the extractable tricin level in all cases. Finally, lignins, including waste lignin streams from biomass processing, could therefore provide a large and alternative source of this valuable flavone, reducing the costs, and encouraging studies into its application beyond its current roles.« less
Tricin-lignins: occurrence and quantitation of tricin in relation to phylogeny
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Wu; Rencoret, Jorge; Lu, Fachuang
We report tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as an authentic monomer in grass lignification that likely functions as a nucleation site. It is linked onto lignin as an aryl alkyl ether by radical coupling with monolignols or their acylated analogs. However, the level of tricin that incorporates into lignin remains unclear. Herein, three lignin characterization methods: acidolysis; thioacidolysis; and derivatization followed by reductive cleavage; were applied to quantitatively assess the amount of lignin-integrated tricin. Their efficiencies at cleaving the tricin-(4'–O–β)-ether bonds and the degradation of tricin under the corresponding reaction conditions were evaluated. A hexadeuterated tricin analog wasmore » synthesized as an internal standard for accurate quantitation purposes. Thioacidolysis proved to be the most efficient method, liberating more than 91% of the tricin with little degradation. A survey of different seed-plant species for the occurrence and content of tricin showed that it is widely distributed in the lignin from species in the family Poaceae (order Poales). Tricin occurs at low levels in some commelinid monocotyledon families outside the Poaceae, such as the Arecaceae (the palms, order Arecales) and Bromeliaceae (Poales), and the non-commelinid monocotyledon family Orchidaceae (Orchidales). One eudicotyledon was found to have tricin (Medicago sativa, Fabaceae). The content of lignin-integrated tricin is much higher than the extractable tricin level in all cases. Finally, lignins, including waste lignin streams from biomass processing, could therefore provide a large and alternative source of this valuable flavone, reducing the costs, and encouraging studies into its application beyond its current roles.« less
Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil.
Cosgrove, L; McGeechan, P L; Handley, P S; Robson, G D
2010-02-01
This work investigated biostimulation and bioaugmentation as strategies for removing polyurethane (PU) waste in soil. Soil microcosms were biostimulated with the PU dispersion agent "Impranil" and/or yeast extract or were bioaugmented with PU-degrading fungi, and the degradation of subsequently buried PU was determined. Fungal communities in the soil and colonizing buried PU were enumerated on solid media and were analyzed using denaturing gradient gel electrophoresis (DGGE). Biostimulation with yeast extract alone or in conjunction with Impranil increased PU degradation 62% compared to the degradation in untreated control soil and was associated with a 45% increase in putative PU degraders colonizing PU. Specific fungi were enriched in soil following biostimulation; however, few of these fungi colonized the surface of buried PU. Fungi used for soil bioaugmentation were cultivated on the surface of sterile wheat to form a mycelium-rich inoculum. Wheat, when added alone to soil, increased PU degradation by 28%, suggesting that wheat biomass had a biostimulating effect. Addition of wheat colonized with Nectria haematococca, Penicillium viridicatum, Penicillium ochrochloron, or an unidentified Mucormycotina sp. increased PU degradation a further 30 to 70%, suggesting that biostimulation and bioaugmentation were operating in concert to enhance PU degradation. Interestingly, few of the inoculated fungi could be detected by DGGE in the soil or on the surface of the PU 4 weeks after inoculation. Bioaugmentation did, however, increase the numbers of indigenous PU-degrading fungi and caused an inoculum-dependent change in the composition of the native fungal populations, which may explain the increased degradation observed. These results demonstrate that both biostimulation and bioaugmentation may be viable tools for the remediation of environments contaminated with polyurethane waste.
Investigation on the structural effect of lignin during the hydrogenolysis process.
Shu, Riyang; Long, Jinxing; Xu, Ying; Ma, Longlong; Zhang, Qi; Wang, Tiejun; Wang, Chenguang; Yuan, Zhengqiu; Wu, Qingyun
2016-01-01
Structure has a significant effect on the lignin degradation, so the investigation of structural effect on the lignin depolymerization is important and imperative. In this study, hydrogenolysis of three typical lignins with different structures, dealkaline lignin, sodium lignosulfonate and organosolv lignin, was intensively compared over the synergistic catalyst of CrCl3 and Pd/C. The effects of reaction temperature, time, hydrogen pressure and catalyst dosage on the catalytic performance of lignin species were investigated. The structure evolution of lignins during the hydrogenolysis process was also compared. The results showed that organosolv lignin was more sensitive for hydrogenolysis than others due to its high unsaturation degree and low molecular weight. Further analysis indicated that the hydrogenolysis, hydrodeoxygenation and repolymerization reactions took place and competed intensely. Wherein, the depolymerization products with unsaturated carbonyl groups were prone to repolymerize. And the methylation was helpful to stabilize the depolymerization products and suppress the further repolymerization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advanced biorefinery in lower termite-effect of combined pretreatment during the chewing process
2012-01-01
Background Currently the major barrier in biomass utilization is the lack of an effective pretreatment of plant cell wall so that the carbohydrates can subsequently be hydrolyzed into sugars for fermentation into fuel or chemical molecules. Termites are highly effective in degrading lignocellulosics and thus can be used as model biological systems for studying plant cell wall degradation. Results We discovered a combination of specific structural and compositional modification of the lignin framework and partial degradation of carbohydrates that occurs in softwood with physical chewing by the termite, Coptotermes formosanus, which are critical for efficient cell wall digestion. Comparative studies on the termite-chewed and native (control) softwood tissues at the same size were conducted with the aid of advanced analytical techniques such as pyrolysis gas chromatography mass spectrometry, attenuated total reflectance Fourier transform infrared spectroscopy and thermogravimetry. The results strongly suggest a significant increase in the softwood cellulose enzymatic digestibility after termite chewing, accompanied with utilization of holocellulosic counterparts and an increase in the hydrolysable capacity of lignin collectively. In other words, the termite mechanical chewing process combines with specific biological pretreatment on the lignin counterpart in the plant cell wall, resulting in increased enzymatic cellulose digestibility in vitro. The specific lignin unlocking mechanism at this chewing stage comprises mainly of the cleavage of specific bonds from the lignin network and the modification and redistribution of functional groups in the resulting chewed plant tissue, which better expose the carbohydrate within the plant cell wall. Moreover, cleavage of the bond between the holocellulosic network and lignin molecule during the chewing process results in much better exposure of the biomass carbohydrate. Conclusion Collectively, these data indicate the participation of lignin-related enzyme(s) or polypeptide(s) and/or esterase(s), along with involvement of cellulases and hemicellulases in the chewing process of C. formosanus, resulting in an efficient pretreatment of biomass through a combination of mechanical and enzymatic processes. This pretreatment could be mimicked for industrial biomass conversion. PMID:22390274
Arnold, A. Elizabeth
2016-01-01
Background Fungal endophytes inhabit symptomless, living tissues of all major plant lineages to form one of earth’s most prevalent groups of symbionts. Many reproduce from senesced and/or decomposing leaves and can produce extracellular leaf-degrading enzymes, blurring the line between symbiotrophy and saprotrophy. To better understand the endophyte–saprotroph continuum we compared fungal communities and functional traits of focal strains isolated from living leaves to those isolated from leaves after senescence and decomposition, with a focus on foliage of woody plants in five biogeographic provinces ranging from tundra to subtropical scrub forest. Methods We cultured fungi from the interior of surface-sterilized leaves that were living at the time of sampling (i.e., endophytes), leaves that were dead and were retained in plant canopies (dead leaf fungi, DLF), and fallen leaves (leaf litter fungi, LLF) from 3–4 species of woody plants in each of five sites in North America. Our sampling encompassed 18 plant species representing two families of Pinophyta and five families of Angiospermae. Diversity and composition of fungal communities within and among leaf life stages, hosts, and sites were compared using ITS-partial LSU rDNA data. We evaluated substrate use and enzyme activity by a subset of fungi isolated only from living tissues vs. fungi isolated only from non-living leaves. Results Across the diverse biomes and plant taxa surveyed here, culturable fungi from living leaves were isolated less frequently and were less diverse than those isolated from non-living leaves. Fungal communities in living leaves also differed detectably in composition from communities in dead leaves and leaf litter within focal sites and host taxa, regardless of differential weighting of rare and abundant fungi. All focal isolates grew on cellulose, lignin, and pectin as sole carbon sources, but none displayed ligninolytic or pectinolytic activity in vitro. Cellulolytic activity differed among fungal classes. Within Dothideomycetes, activity differed significantly between fungi from living vs. non-living leaves, but such differences were not observed in Sordariomycetes. Discussion Although some fungi with endophytic life stages clearly persist for periods of time in leaves after senescence and incorporation into leaf litter, our sampling across diverse biomes and host lineages detected consistent differences between fungal assemblages in living vs. non-living leaves, reflecting incursion by fungi from the leaf exterior after leaf death and as leaves begin to decompose. However, fungi found only in living leaves do not differ consistently in cellulolytic activity from those fungi detected thus far only in dead leaves. Future analyses should consider Basidiomycota in addition to the Ascomycota fungi evaluated here, and should explore more dimensions of functional traits and persistence to further define the endophytism-to-saprotrophy continuum. PMID:27994976
U'Ren, Jana M; Arnold, A Elizabeth
2016-01-01
Fungal endophytes inhabit symptomless, living tissues of all major plant lineages to form one of earth's most prevalent groups of symbionts. Many reproduce from senesced and/or decomposing leaves and can produce extracellular leaf-degrading enzymes, blurring the line between symbiotrophy and saprotrophy. To better understand the endophyte-saprotroph continuum we compared fungal communities and functional traits of focal strains isolated from living leaves to those isolated from leaves after senescence and decomposition, with a focus on foliage of woody plants in five biogeographic provinces ranging from tundra to subtropical scrub forest. We cultured fungi from the interior of surface-sterilized leaves that were living at the time of sampling (i.e., endophytes), leaves that were dead and were retained in plant canopies (dead leaf fungi, DLF), and fallen leaves (leaf litter fungi, LLF) from 3-4 species of woody plants in each of five sites in North America. Our sampling encompassed 18 plant species representing two families of Pinophyta and five families of Angiospermae. Diversity and composition of fungal communities within and among leaf life stages, hosts, and sites were compared using ITS-partial LSU rDNA data. We evaluated substrate use and enzyme activity by a subset of fungi isolated only from living tissues vs. fungi isolated only from non-living leaves. Across the diverse biomes and plant taxa surveyed here, culturable fungi from living leaves were isolated less frequently and were less diverse than those isolated from non-living leaves. Fungal communities in living leaves also differed detectably in composition from communities in dead leaves and leaf litter within focal sites and host taxa, regardless of differential weighting of rare and abundant fungi. All focal isolates grew on cellulose, lignin, and pectin as sole carbon sources, but none displayed ligninolytic or pectinolytic activity in vitro . Cellulolytic activity differed among fungal classes. Within Dothideomycetes, activity differed significantly between fungi from living vs. non-living leaves, but such differences were not observed in Sordariomycetes. Although some fungi with endophytic life stages clearly persist for periods of time in leaves after senescence and incorporation into leaf litter, our sampling across diverse biomes and host lineages detected consistent differences between fungal assemblages in living vs. non-living leaves, reflecting incursion by fungi from the leaf exterior after leaf death and as leaves begin to decompose. However, fungi found only in living leaves do not differ consistently in cellulolytic activity from those fungi detected thus far only in dead leaves. Future analyses should consider Basidiomycota in addition to the Ascomycota fungi evaluated here, and should explore more dimensions of functional traits and persistence to further define the endophytism-to-saprotrophy continuum.
Decomposition of lignin and cellobiose in relation to the enzymatic hydrolysis of cellulose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, Y.; Carroad, P.A.; Riaz, M.
1977-02-01
Studies are reported on the use of fungal ..beta..-glucosidase in conjunction with Trichoderma viride cellulase and the search for an effective enzyme system for lignin degradation. ..beta..-glucosidase is of potential benefit in cellulose hydrolysis by catalyzing the hydrolysis of cellobiose to glucose thereby reducing product inhibition and producing a higher glucose yield. Removal of lignin from cellulosic material makes the cellulose more accessible to hydrolyzing enzymes. Hydrolysis studies on Solka Floc and newsprint were conducted with T. viride filtrates containing various proportions of B. theobromae filtrates. Significant improvement in hydrolysis rate particularly in glucose content was obtained by thus enrichingmore » the ..beta..-glucosidase content of the cellulase. In the search for a lignin degrading enzyme, major emphasis was given to the fungus Polyporous versicolor. Significant o-diphenol oxidoreductase (catecholase) activity was found in the culture filtrates. Preliminary observations of a surface culture of the fungus in a composting mode suggest that delignification may be obtained in this manner. Work is continuing on this.« less
Bates, A.L.; Hatcher, P.G.
1989-01-01
A series of samples taken from the cross section of a 3-m-diameter fossilized gymnospermous log (Araucariaceae) in the Yallourn Seam of the Australian brown coals was examined by solid state 13C nuclear magnetic resonance to delineate chemical changes related to the combined processes of peatification and coalification. The results show that cellulosic materials were degraded and lost on the periphery of the log, however, the degree of such degradation in the central core is substantially less. The lignin is uniformly altered by coalification reactions to a macromolecular substance displaying decreased aryl ether linkages but significantly greater amounts of carbon linkages compared to modern lignin. Changes in the methoxyl carbon contents of lignin in cross section reveal demethylation reactions, but these do not appear to be related to degree of carbon linking. Both the degredation of cellulosic materials and demethylation of lignin appear to be early diagenetic processes occurring during peatification independently of the coalification reactions. ?? 1989.
Highly Promiscuous Oxidases Discovered in the Bovine Rumen Microbiome.
Ufarté, Lisa; Potocki-Veronese, Gabrielle; Cecchini, Davide; Tauzin, Alexandra S; Rizzo, Angeline; Morgavi, Diego P; Cathala, Bernard; Moreau, Céline; Cleret, Megane; Robe, Patrick; Klopp, Christophe; Laville, Elisabeth
2018-01-01
The bovine rumen hosts a diverse microbiota, which is highly specialized in the degradation of lignocellulose. Ruminal bacteria, in particular, are well equipped to deconstruct plant cell wall polysaccharides. Nevertheless, their potential role in the breakdown of the lignin network has never been investigated. In this study, we used functional metagenomics to identify bacterial redox enzymes acting on polyaromatic compounds. A new methodology was developed to explore the potential of uncultured microbes to degrade lignin derivatives, namely kraft lignin and lignosulfonate. From a fosmid library covering 0.7 Gb of metagenomic DNA, three hit clones were identified, producing enzymes able to oxidize a wide variety of polyaromatic compounds without the need for the addition of copper, manganese, or mediators. These promiscuous redox enzymes could thus be of potential interest both in plant biomass refining and dye remediation. The enzymes were derived from uncultured Clostridia, and belong to complex gene clusters involving proteins of different functional types, including hemicellulases, which likely work in synergy to produce substrate degradation.
Ninomiya, Kazuaki; Takamatsu, Hiromi; Onishi, Ayaka; Takahashi, Kenji; Shimizu, Nobuaki
2013-07-01
The present study demonstrated that the combined use of the sonocatalytic reaction (using ultrasound and titanium dioxide) and the Fenton reaction exhibited synergistically enhanced hydroxyl (OH) radical generation. Dihydroxybenzoic acid (DHBA) concentration as index of OH radical generation was 13 and 115 μM at 10 min in the sonocatalytic reaction and Fenton reaction, respectively. On the other hand, the DHBA concentration was 378 μM at 10 min in the sonocatalytic-Fenton reaction. The sonocatalytic-Fenton reaction was used for degradation of lignin. The lignin degradation ratio was 1.8%, 49.9%, and 60.0% at 180 min in the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively. Moreover, the sonocatalytic-Fenton reaction was applied to pretreatment of lignocellulosic biomass to enhance subsequent enzymatic saccharification. The cellulose saccharification ratio was 11%, 14%, 16% and 25% at 360 min of pretreatment by control reaction, the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Biologically produced acid precipitable polymeric lignin
Crawford, Don L.; Pometto, III, Anthony L.
1984-01-01
A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Diego; Challacombe, Jean; Morgenstern, Ingo
2009-02-04
Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in media containing cellulose as sole carbon source, transcripts corresponding tomore » many hemicellulases and to a single putative β-1-4 endoglucanase were expressed at high levels relative to glucose grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also upregulated under cellulolytic culture conditions were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. In particular, comparisons between P. placenta and the closely related white-rot fungus, Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which efficient depolymerization of lignin was lost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Diego; Challacombe, Jean F; Misra, Monica
2008-01-01
Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding tomore » many hemicellulases and to a single putative {beta}-1-4 endoglucanase were expressed at high levels relative to glucose grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC{center_dot}MSIMS). Also upregulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H202. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H202 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons to the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.« less
Martinez, Diego; Challacombe, Jean; Morgenstern, Ingo; Hibbett, David; Schmoll, Monika; Kubicek, Christian P.; Ferreira, Patricia; Ruiz-Duenas, Francisco J.; Martinez, Angel T.; Kersten, Phil; Hammel, Kenneth E.; Vanden Wymelenberg, Amber; Gaskell, Jill; Lindquist, Erika; Sabat, Grzegorz; Splinter BonDurant, Sandra; Larrondo, Luis F.; Canessa, Paulo; Vicuna, Rafael; Yadav, Jagjit; Doddapaneni, Harshavardhan; Subramanian, Venkataramanan; Pisabarro, Antonio G.; Lavín, José L.; Oguiza, José A.; Master, Emma; Henrissat, Bernard; Coutinho, Pedro M.; Harris, Paul; Magnuson, Jon Karl; Baker, Scott E.; Bruno, Kenneth; Kenealy, William; Hoegger, Patrik J.; Kües, Ursula; Ramaiya, Preethi; Lucas, Susan; Salamov, Asaf; Shapiro, Harris; Tu, Hank; Chee, Christine L.; Misra, Monica; Xie, Gary; Teter, Sarah; Yaver, Debbie; James, Tim; Mokrejs, Martin; Pospisek, Martin; Grigoriev, Igor V.; Brettin, Thomas; Rokhsar, Dan; Berka, Randy; Cullen, Dan
2009-01-01
Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative β-1–4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost. PMID:19193860
The impact of alterations in lignin deposition on cellulose organization of the plant cell wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiliang; Kim, Jeong Im; Cusumano, Joanne C.
Background: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content weremore » grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. Results: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples with high levels of G-or S-lignin. Conclusions: These studies demonstrate that changes in lignin biosynthesis lead to significant disruption in the orientation and order of cellulose fibrils in all tissues of the stem. These dramatic phenotypic changes, in mutants with lignin rich in aldehyde or H-units, correlate with the impact the mutations have on the enzymatic degradation of the plant cell wall.« less
Advanced Chemical Design for Efficient Lignin Bioconversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Shangxian; Sun, Qining; Pu, Yunqiao
Here, lignin depolymerization mainly involves redox reactions relying on the effective electron transfer. Even though electron mediators were previously used for delignification of paper pulp, no study has established a bioprocess to fragment and solubilize the lignin with an effective laccase–mediator system, in particular, for subsequent microbial bioconversion. Efficient lignin depolymerization was achieved by screening proper electron mediators with laccase to attain a nearly 6-fold increase of kraft lignin solubility compared to the control kraft lignin without laccase treatment. Chemical analysis suggested the release of a low molecular weight fraction of kraft lignin into the solution phase. Moreover, NMR analysismore » revealed that an efficient enzyme–mediator system can promote the lignin degradation. More importantly, the fundamental mechanisms guided the development of an efficient lignin bioconversion process, where solubilized lignin from laccase–HBT treatment served as a superior substrate for bioconversion by Rhodococcus opacus PD630. The cell growth was increased by 10 6 fold, and the lipid titer reached 1.02 g/L. Overall, the study has manifested that an efficient enzyme–mediator–microbial system can be exploited to establish a bioprocess to solubilize lignin, cleave lignin linkages, modify the structure, and produce substrates amenable to bioconversion.« less
Advanced Chemical Design for Efficient Lignin Bioconversion
Xie, Shangxian; Sun, Qining; Pu, Yunqiao; ...
2017-01-30
Here, lignin depolymerization mainly involves redox reactions relying on the effective electron transfer. Even though electron mediators were previously used for delignification of paper pulp, no study has established a bioprocess to fragment and solubilize the lignin with an effective laccase–mediator system, in particular, for subsequent microbial bioconversion. Efficient lignin depolymerization was achieved by screening proper electron mediators with laccase to attain a nearly 6-fold increase of kraft lignin solubility compared to the control kraft lignin without laccase treatment. Chemical analysis suggested the release of a low molecular weight fraction of kraft lignin into the solution phase. Moreover, NMR analysismore » revealed that an efficient enzyme–mediator system can promote the lignin degradation. More importantly, the fundamental mechanisms guided the development of an efficient lignin bioconversion process, where solubilized lignin from laccase–HBT treatment served as a superior substrate for bioconversion by Rhodococcus opacus PD630. The cell growth was increased by 10 6 fold, and the lipid titer reached 1.02 g/L. Overall, the study has manifested that an efficient enzyme–mediator–microbial system can be exploited to establish a bioprocess to solubilize lignin, cleave lignin linkages, modify the structure, and produce substrates amenable to bioconversion.« less
Fornalé, Silvia; Capellades, Montserrat; Encina, Antonio; Wang, Kan; Irar, Sami; Lapierre, Catherine; Ruel, Katia; Joseleau, Jean-Paul; Berenguer, Jordi; Puigdomènech, Pere; Rigau, Joan; Caparrós-Ruiz, David
2012-07-01
Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize. Transgenic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alterations in cell wall composition. Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content. In addition, these cell walls accumulate higher levels of cellulose and arabinoxylans. In contrast, cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides. In vitro degradability assays showed that, although to a different extent, the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants. CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass. Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type, making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.
Microbial utilization of lignin: available biotechnologies for its degradation and valorization.
Palazzolo, Martín A; Kurina-Sanz, Marcela
2016-10-01
Lignocellulosic biomasses, either from non-edible plants or from agricultural residues, stock biomacromolecules that can be processed to produce both energy and bioproducts. Therefore, they become major candidates to replace petroleum as the main source of energy. However, to shift the fossil-based economy to a bio-based one, it is imperative to develop robust biotechnologies to efficiently convert lignocellulosic streams in power and platform chemicals. Although most of the biomass processing facilities use celluloses and hemicelluloses to produce bioethanol and paper, there is no consolidated bioprocess to produce valuable compounds out of lignin at industrial scale available currently. Usually, lignin is burned to provide heat or it remains as a by-product in different streams, thus arising environmental concerns. In this way, the biorefinery concept is not extended to completion. Due to Nature offers an arsenal of biotechnological tools through microorganisms to accomplish lignin valorization or degradation, an increasing number of projects dealing with these tasks have been described recently. In this review, outstanding reports over the last 6 years are described, comprising the microbial utilization of lignin to produce a variety of valuable compounds as well as to diminish its ecological impact. Furthermore, perspectives on these topics are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohm, Robin A.; Tegelaar, Martin; Henrissat, Bernard
2013-03-01
White and brown rot fungi are among the most important wood decayers in nature. Although more than 50 genomes of Basidiomycete white and brown rots have been sequenced by the Joint Genome Institute, there is still a lot to learn about how these fungi degrade the tough polymers present in wood. In particular, very little is known about how these fungi regulate the expression of genes involved in lignocellulose degradation. Here, we used transcriptomics, proteomics, and promoter analysis in an effort to gain insight into the process of lignocellulose degradation.
Interactions of a lignin-rich fraction from brewer's spent grain with gut microbiota in vitro.
Niemi, Piritta; Aura, Anna-Marja; Maukonen, Johanna; Smeds, Annika I; Mattila, Ismo; Niemelä, Klaus; Tamminen, Tarja; Faulds, Craig B; Buchert, Johanna; Poutanen, Kaisa
2013-07-10
Lignin is a constituent of plant cell walls and thus is classified as part of dietary fiber. However, little is known about the role of lignin in gastrointestinal fermentation. In this work, a lignin-rich fraction was prepared from brewer's spent grain and subjected to an in vitro colon model to study its potential bioconversions and interactions with fecal microbiota. No suppression of microbial conversion by the fraction was observed in the colon model, as measured as short-chain fatty acid production. Furthermore, no inhibition on the growth was observed when the fraction was incubated with strains of lactobacilli and bifidobacteria. In fact, the lignin-rich fraction enabled bifidobacteria to survive longer than with glucose. Several transiently appearing phenolic compounds, very likely originating from lignin, were observed during the fermentation. This would indicate that the gut microbiota was able to partially degrade lignin and metabolize the released compounds.
Lignin Peroxidase from Streptomyces viridosporus T7A: Enzyme Concentration Using Ultrafiltration
NASA Astrophysics Data System (ADS)
Gottschalk, Leda M. F.; Bon, Elba P. S.; Nobrega, Ronaldo
It is well known that lignin degradation is a key step in the natural process of biomass decay whereby oxidative enzymes such as laccases and high redox potential ligninolytic peroxidases and oxidases play a central role. More recently, the importance of these enzymes has increased because of their prospective industrial use for the degradation of the biomass lignin to increase the accessibility of the cellulose and hemicellulose moieties to be used as renewable material for the production of fuels and chemicals. These biocatalysts also present potential application on environmental biocatalysis for the degradation of xenobiotics and recalcitrant pollutants. However, the cost for these enzymes production, separation, and concentration must be low to permit its industrial use. This work studied the concentration of lignin peroxidase (LiP), produced by Streptomyces viridosporus T7A, by ultrafiltration, in a laboratory-stirred cell, loaded with polysulfone (PS) or cellulose acetate (CA) membranes with molecular weight cutoffs (MWCO) of 10, 20, and 50 KDa. Experiments were carried out at 25 °C and pH 7.0 in accordance to the enzyme stability profile. The best process conditions and enzyme yield were obtained using a PS membrane with 10 KDa MWCO, whereby it was observed a tenfold LiP activity increase, reaching 1,000 U/L and 90% enzyme activity upholding.
Chen, W; Supanwong, K; Ohmiya, K; Shimizu, S; Kawakami, H
1985-01-01
Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes. PMID:3841472
The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood
Spiker, E. C.; Hatcher, P.G.
1987-01-01
Studies of modern and ancient buried wood show that there is a linear correlation between carbohydrate content and the stable carbon isotope composition as carbohydrates are preferentially degraded during early diagenesis. As the carbohydrate content decreases, the ??13C value of the degraded wood decreases 1 to 2 per mil, approaching the value of the residual lignin. These results indicate that carbohydrate degradation products are lost and not incorporated into the aromatic structure as lignin is selectively preserved during early diagenesis of wood. These results also indicate that attempts to quantify terrestrial inputs to modern sedimentary organic matter based on ??13C values should consider the possibility of a 1 to 2 per mil decrease in the ??13C value of degraded wood. ?? 1987.
Extracellular lignase: a key to enhanced cellulose utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hira, A.; Barnett, S.M.; Shieh, C.H.
1978-01-01
An alternate approach to the conventional chemical processing of lignin, a potential renewable resource, is enzymic conversion. Biodegradation of wood, a lignin-cellulose complex, is accomplished naturally by various enzymes of microbial origin. Extracellular lignases have been isolated from pure cultures of Polyporus versicolor, Phanerochaete chrysosporium, and Pleurotus ostreatus. The isolated enzyme systems from these organisms have shown substrate specificity for guaiacol and hydroquinone and yielded a positive syringaldazine test. A commercial lignin was degraded by the enzyme system.
Structural changes of corn stover lignin during acid pretreatment.
Moxley, Geoffrey; Gaspar, Armindo Ribeiro; Higgins, Don; Xu, Hui
2012-09-01
In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70 % at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by ³¹P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180 °C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.
Cancel, A M; Orth, A B; Tien, M
1993-01-01
Phanerochaete chrysosporium is a white rot fungus which secretes a family of lignin-degrading enzymes under nutrient limitation. In this work, we investigated the roles of veratryl alcohol and lignin in the ligninolytic system of P. chrysosporium BKM-F-1767 cultures grown under nitrogen-limited conditions. Cultures supplemented with 0.4 to 2 mM veratryl alcohol showed increased lignin peroxidase activity. Addition of veratryl alcohol had no effect on Mn-dependent peroxidase activity and inhibited glyoxal oxidase activity. Azure-casein analysis of acidic proteases in the extracellular fluid showed that protease activity decreased during the early stages of secondary metabolism while lignin peroxidase activity was at its peak, suggesting that proteolysis was not involved in the regulation of lignin peroxidase activity during early secondary metabolism. In cultures supplemented with lignin or veratryl alcohol, no induction of mRNA coding for lignin peroxidase H2 or H8 was observed. Veratryl alcohol protected lignin peroxidase isozymes H2 and H8 from inactivation by H2O2. We conclude that veratryl alcohol acts as a stabilizer of lignin peroxidase activity and not as an inducer of lignin peroxidase synthesis. Images PMID:8215363
Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk
NASA Astrophysics Data System (ADS)
Banchorndhevakul, Siriwattana
2002-08-01
Cellulose degradation of 20% urea treated and 20% urea-10 kGy gamma treated Thai rice straw and corn stalk showed that combination effect of urea and gamma radiation gave a higher % decrease in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, and lignin and cutin in comparison with urea effect only for both room temperature storage and room temperature +258 K storage. The results also indicated that cellulose degradation proceeded with time, even at 258 K. A drastic drop to less than half of the original contents in NDF, ADF, and ADL could not be obtained in this study.
A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity
Luis F. Larrondo; Loreto Salas; Francisco Melo; Rafael Vicuna; Daniel Cullen
2003-01-01
Lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium involves various extracellular oxidative enzymes, including lignin peroxidase, manganese peroxidase, and a peroxide-generating enzyme, glyoxal oxidase. Recent studies have suggested that laccases also may be produced by this fungus, but these conclusions have been controversial. We identified...
Ďurkovič, Jaroslav; Kačík, František; Olčák, Dušan; Kučerová, Veronika; Krajňáková, Jana
2014-01-01
Background and Aims Changes occurring in the macromolecular traits of cell wall components in elm wood following attack by Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), are poorly understood. The purpose of this study was to compare host responses and the metabolic profiles of wood components for two Dutch elm (Ulmus) hybrids, ‘Groeneveld’ (a susceptible clone) and ‘Dodoens’ (a tolerant clone), that have contrasting survival strategies upon infection with the current prevalent strain of DED. Methods Ten-year-old plants of the hybrid elms were inoculated with O. novo-ulmi ssp. americana × novo-ulmi. Measurements were made of the content of main cell wall components and extractives, lignin monomer composition, macromolecular traits of cellulose and neutral saccharide composition. Key Results Upon infection, medium molecular weight macromolecules of cellulose were degraded in both the susceptible and tolerant elm hybrids, resulting in the occurrence of secondary cell wall ruptures and cracks in the vessels, but rarely in the fibres. The 13C nuclear magnetic resonance spectra revealed that loss of crystalline and non-crystalline cellulose regions occurred in parallel. The rate of cellulose degradation was influenced by the syringyl:guaiacyl ratio in lignin. Both hybrids commonly responded to the medium molecular weight cellulose degradation with the biosynthesis of high molecular weight macromolecules of cellulose, resulting in a significant increase in values for the degree of polymerization and polydispersity. Other responses of the hybrids included an increase in lignin content, a decrease in relative proportions of d-glucose, and an increase in proportions of d-xylose. Differential responses between the hybrids were found in the syringyl:guaiacyl ratio in lignin. Conclusions In susceptible ‘Groeneveld’ plants, syringyl-rich lignin provided a far greater degree of protection from cellulose degradation than in ‘Dodoens’, but only guaiacyl-rich lignin in ‘Dodoens’ plants was involved in successful defence against the fungus. This finding was confirmed by the associations of vanillin and vanillic acid with the DED-tolerant ‘Dodoens’ plants in a multivariate analysis of wood traits. PMID:24854167
Durkovič, Jaroslav; Kačík, František; Olčák, Dušan; Kučerová, Veronika; Krajňáková, Jana
2014-07-01
Changes occurring in the macromolecular traits of cell wall components in elm wood following attack by Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), are poorly understood. The purpose of this study was to compare host responses and the metabolic profiles of wood components for two Dutch elm (Ulmus) hybrids, 'Groeneveld' (a susceptible clone) and 'Dodoens' (a tolerant clone), that have contrasting survival strategies upon infection with the current prevalent strain of DED. Ten-year-old plants of the hybrid elms were inoculated with O. novo-ulmi ssp. americana × novo-ulmi. Measurements were made of the content of main cell wall components and extractives, lignin monomer composition, macromolecular traits of cellulose and neutral saccharide composition. Upon infection, medium molecular weight macromolecules of cellulose were degraded in both the susceptible and tolerant elm hybrids, resulting in the occurrence of secondary cell wall ruptures and cracks in the vessels, but rarely in the fibres. The (13)C nuclear magnetic resonance spectra revealed that loss of crystalline and non-crystalline cellulose regions occurred in parallel. The rate of cellulose degradation was influenced by the syringyl:guaiacyl ratio in lignin. Both hybrids commonly responded to the medium molecular weight cellulose degradation with the biosynthesis of high molecular weight macromolecules of cellulose, resulting in a significant increase in values for the degree of polymerization and polydispersity. Other responses of the hybrids included an increase in lignin content, a decrease in relative proportions of d-glucose, and an increase in proportions of d-xylose. Differential responses between the hybrids were found in the syringyl:guaiacyl ratio in lignin. In susceptible 'Groeneveld' plants, syringyl-rich lignin provided a far greater degree of protection from cellulose degradation than in 'Dodoens', but only guaiacyl-rich lignin in 'Dodoens' plants was involved in successful defence against the fungus. This finding was confirmed by the associations of vanillin and vanillic acid with the DED-tolerant 'Dodoens' plants in a multivariate analysis of wood traits. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gou, Changlong; Wang, Yuqiong; Zhang, Xiqing; Lou, Yujie; Gao, Yunhang
2017-11-01
The objective was to determine the effects of psychrotrophic-thermophilic complex microbial agent (PTCMA) comprised of a psychrotrophic bacterium consortium (PBC) and a thermophilic cellulolytic fungi consortium (TCFC), on composting in a cold climate. Mixtures of dairy manure and rice straw were inoculated with PTCMA, PBC, TCFC and sterile water (control) and composted at an initial ambient temperatures of -2 to 5°C. In compost piles inoculated with PBC or PTCMA, temperatures reached the thermophilic phase (>55°C) faster (8-11d) than piles inoculated with TCFC or control. Furthermore, compost inoculated with TCFC or PTCMA had greater decreases in total organic carbon and carbon-to-nitrogen ratios, as well as significant increases in total nitrogen, degradation of cellulose and lignin and germination index than PBC inoculation or Control compost. Consequently, inoculation with both (i.e. PTCMA) accelerated the onset and promoted maturity of composting under cold-climate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brethauer, Simone; Robert Lawrence, Shahab; Michael Hans-Peter, Studer
2017-08-01
The aim of the present study was to investigate the combination of steam pretreatment and biological treatment with lignin degrading fungal strains in order to enable efficient bioprocessing of beech wood to ethanol. In a sequential process of steam and fungal pretreatment followed by enzymatic hydrolysis, Irpex lacteus almost doubled the glucose yield for mildly pretreated beech wood, but could not improve yields for more severely pretreated substrates. However, when simultaneous saccharification and fermentation is combined with in situ I. lacteus treatment, which is enabled by the application of a membrane aerated biofilm reactor, ethanol yields of optimally steam pretreated beech could be improved from 65 to 80%. Generally, in situ fungal treatment during bioprocessing of lignocellulose is an interesting method to harness the versatile abilities of white rot fungi. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts.
Fathallh Eida, Mohamed; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji
2013-01-01
Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting.
Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors
Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.
2010-01-01
Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.
Discovery of 12-mer peptides that bind to wood lignin
Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi
2016-01-01
Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin. PMID:26903196
Sonoda, T; Ona, T; Yokoi, H; Ishida, Y; Ohtani, H; Tsuge, S
2001-11-15
Detailed quantitative analysis of lignin monomer composition comprising p-coumaryl, coniferyl, and sinapyl alcohol and p-coumaraldehyde, coniferaldehyde, and sinapaldehyde in plant has not been studied from every point mainly because of artifact formation during the lignin isolation procedure, partial loss of the lignin components inherent in the chemical degradative methods, and difficulty in the explanation of the complex spectra generally observed for the lignin components. Here we propose a new method to quantify lignin monomer composition in detail by pyrolysis-gas chromatography (Py-GC) using acetylated lignin samples. The lignin acetylation procedure would contribute to prevent secondary formation of cinnamaldehydes from the corresponding alcohol forms during pyrolysis, which are otherwise unavoidable in conventional Py-GC process to some extent. On the basis of the characteristic peaks on the pyrograms of the acetylated sample, lignin monomer compositions in various dehydrogenative polymers (DHP) as lignin model compounds were determined, taking even minor components such as cinnamaldehydes into consideration. The observed compositions by Py-GC were in good agreement with the supplied lignin monomer contents on DHP synthesis. The new Py-GC method combined with sample preacetylation allowed us an accurate quantitative analysis of detailed lignin monomer composition using a microgram order of extractive-free plant samples.
Salony; Mishra, S; Bisaria, V S
2006-08-01
Many fungi (particularly the white rot) are well suited for treatment of a broad range of textile dye effluents due to the versatility of the lignin-degrading enzymes produced by them. We have investigated decolourization of a number of recalcitrant reactive azo and acid dyes using the culture filtrate and purified laccase from the fungus Cyathus bulleri. For this, the enzyme was purified from the culture filtrate to a high specific activity of 4,022 IU mg(-1) protein, produced under optimized carbon, nitrogen and C/N ratio with induction by 2,6-dimethylaniline. The protein was characterized as a monomer of 58+/-5.0 kDa with carbohydrate content of 16% and was found to contain all three Cu(II) centres. The three internal peptide sequences showed sequence identity (80-92%) with laccases of a number of white rot fungi. Substrate specificity indicated highest catalytic efficiency (k(cat)/K(M)) on guaiacol followed by 2,2'-azino-bis(3-ethylthiazoline-6-sulfonic acid) (ABTS). Decolourization of a number of reactive azo and acid dyes was seen with the culture filtrate of the fungus containing predominantly laccase. In spite of no observable effect of purified laccase on other dyes, the ability to decolourize these was achieved in the presence of the redox mediator ABTS, with 50% decolourization in 0.5-5.4 days.
Screening and production of ligninolytic enzyme by a marine-derived fungal Pestalotiopsis sp. J63.
Chen, Hui-Ying; Xue, Dong-Sheng; Feng, Xiao-Yu; Yao, Shan-Jing
2011-12-01
Marine-derived fungi are prone to produce structurally unique secondary metabolites, a considerable number of which display the promising biological properties and/or industrial applications. Among those, ligninolytic enzymes have attracted great interest in recent years. In this work, about 20 strains were isolated from sea mud samples collected in the East China Sea and then screened for their capacity to produce lignin-degrading enzymes. The results showed that a strain, named J63, had a great potential to secrete a considerable amount of laccase. Using molecular method, it was identified as an endophytic fungus, Pestalotiopsis sp. which was rarely reported as ligninolytic enzyme producer in the literature. The production of laccase by Pestalotiopsis sp. J63 was investigated under submerged fermentation (SF) and solid state fermentation (SSF) with various lignocellulosic by-products as substrates. The SSF of rice straw powder accumulated the highest level of laccase activity (10,700 IU/g substrate), whereas the SF of untreated sugarcane bagasse provided the maximum amount of laccase activity (2,000 IU/ml). The value was far higher than those reported by other reports. In addition, it produced 0.11 U/ml cellulase when alkaline-pretreated sugarcane bagasse was used as growth substrate under SF. Meanwhile, the growth of fungi and laccase production under different salinity conditions were also studied. It appeared to be a moderately halo-tolerant organism.
Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process.
Chen, Yuehui; Chai, Liyuan; Tang, Chongjian; Yang, Zhihui; Zheng, Yu; Shi, Yan; Zhang, Huan
2012-11-01
This study focused on the biodegradation of kraft lignin (KL) by Novosphingobium sp. B-7 using KL as sole carbon source. Results revealed that Novosphingobium sp. B-7 reduced the chemical oxygen demand (COD) by 34.7% in KL mineral salt medium after 7days of incubation. Additionally, the maximum activities of manganese peroxidase (MnP) of 3229.8Ul(-1) and laccase (Lac) of 1275Ul(-1) were observed at 4th and 5th day, respectively. GC-MS analysis indicated that after incubated with Novosphingobium sp. B-7, low molecular weight alcohols and lignin-related monomer compounds such as ethanediol, p-hydroxy benzoic acid and vanillic acid were formed in the system, which strongly confirmed the degradation of KL by Novosphingobium sp. B-7. Copyright © 2012 Elsevier Ltd. All rights reserved.
Radiolysis of lignin: Prospective mechanism of high-temperature decomposition
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.
2017-12-01
The range of the radiation-thermal processes resulting in conversion of lignin into monomeric phenols is considered. Statistically the most probable places of macromolecule ionization are aromatic units. Release of phenolic products from a lignin macromolecule is the multistage process beginning via fragmentation of primary cation-radicals. Reactions of electrons and small radicals with macromolecules, also as degradation of cation-radicals, result in formation of phenoxyl radicals. Macroradicals possess lower heat stability in comparison with macromolecules. Thermal decomposition of macroradicals leads to release of monohydric and dihydric phenols. The probability of benzenediols formation increases in the presence of alkanes. As noted, partial transformation of lignin into charcoal is inevitable.
2012-01-01
The capacity of white-rot fungi to degrade wood lignin may be highly applicable to the development of novel bioreactor systems, but the mechanisms underlying this function are not yet fully understood. Lignin peroxidase (LiP) and manganese peroxidase (MnP), which are thought to be very important for the ligninolytic property, demonstrated increased activity in Phanerochaete chrysosporium RP-78 (FGSC #9002, ATCC MYA-4764™) cultures following exposure to 5 mM cyclic adenosine 3', 5'-monophosphate (cAMP) and 500 μM 3'-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that transcription of most LiP and MnP isozyme genes was statistically significantly upregulated in the presence of the cAMP and IBMX compared to the untreated condition. However, 100 μM calmodulin (CaM) inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), which had insignificant effects on fungal growth and intracellular cAMP concentration, not only offset the increased activity and transcription induced by the drugs, but also decreased them to below basal levels. Like the isozyme genes, transcription of the CaM gene (cam) was also upregulated by cAMP and IBMX. These results suggest that cAMP signaling functions to increase the transcription of LiP and MnP through the induction of cam transcription. PMID:22273182
NASA Astrophysics Data System (ADS)
Knicker, Heike; de la Rosa, José Maria; López Martín, María; Clemente Barragan, Reyes; Liebner, Falk
2013-04-01
As an important plant nutrient, N that has been removed from the soil by plant growth is replaced mainly by the use of synthetic fertilizers. Although this practice has dramatically increased food production, the unintended costs to the environment and human health due to surplus and inefficient application have also been substantial. Major losses of N to the environment can be minimized if "sustainable" agricultural practices are combined with reasonable fertilization. The latter can be achieved by applying slow N-release fertilizers. Here, the N is incorporated into an organic matrix, which after its amendment to soils, slowly decompose, allowing the liberation of the nutrient. Deriving from organic waste, such an amendment helps to efficiently recycle resources and increases the C sequestration potential of soils. However, in order to turn this approach into a successful strategy, the material has to be bioavailable but still sufficiently recalcitrant to ensure slow and controlled N-release. In the present study, we tested potential slow N-release fertilizers recycled from organic waste for their biochemical stability in soils. They comprised N-rich charred grass residues and N-lignin derived from waste of the pulp and paper industry and enriched in N by ammonoxidation. The substrates were mixed with soil of an Histic Humaquept and subsequently subjected to microbial degradation at 28°C in a Respicond IV Apparatus for 10 weeks. Additionally, soil material without organic amendment and soils mixed with lignin or charcoal both with and without KNO3 were included into the experiment. During the degradation experiment the CO2 production was determined on an hourly base. The degradation rate constants and the mean residence times were calculated using a double exponential decay model (pools with fast and slow turnover). Alterations of the chemical composition of the organic matter during degradation were studied by solid-state 13C NMR spectroscopy. First results indicated that without N addition, lignin only slightly altered the degradation rate of the slow turning soil organic matter pool (mean residence time of the slow pool: 10 years). Additional fertilization with KNO3, increased the respective mean residence time, possibly because the presence of easily available N decreased the activity of the lignolytic enzymes. A comparable behavior was observed for the experiment with the barbeque charcoal. However, application of N-lignin resulted in faster degradation, possibly because the restricted N-availability augmented the decomposition of the lignin backbone. The N-rich charred grass residues/soil mixture, on the other hand, showed mean residence times being in the range observed for the soil without amendment and fertilization, indicating comparable degradation rates of soil organic matter and grass char. The present results confirm the close relationship between N availability and C degradation of soil organic matter. Producing slow N-release fertilizers, one has to bear in mind that not only the C/N ratio but also the quality of the organic carbon and nitrogen determines the degradation rate of the substrate and thus the availability of the applied N.
NASA Astrophysics Data System (ADS)
Zou, L.; Yu, W.; Gao, H.; Sun, M.
2017-12-01
The highest input of suspended particles from the Yellow River, accumulated and formed one of the largest intertidal mudflats, the Yellow River Delta in the world. The higher nutrients originated from ambient drainage areas supported a higher primary productivity, as well as a higher secondary productivity in the estuarine and intertidal mudflats of Yellow River Delta (YRD). However, the preservation and accumulation of organic carbon were quite low in the intertidal sediments, indicated by the standing stock of organic carbon. Molecular of lignin and long chain lipid were applied to explore the degradation and preservation of organic carbon in the southern intertidal mudflats of YRD, especially the behavior of terrestrial organic molecular. Lignin Σ8 ranged at 0.13-0.54 mg/10 g dw (0.23 mg/10 gdw at avg.) in the surface sediments of estuarine and intertidal mudflats, which were about 50 % higher than those in the river sediments. LVPI suggested that, lignin was primarily originated from woody tissues of angiosperms in riverine sediments, and then was dominated by herbaceous tissues of angiosperms in the estuarine and intertidal mudflats. (Ad/Al)V and P/(S+V) indicated that, demethylation/ demethoxyhaleniaside contributed more than oxidation in lignin degradation in the estuarine and intertidal mudflats, while oxidation contributed more in the riverine sediments. Long chain fatty acids accounted for <10 % of total fatty acids in both the estuarine and riverine sediments. The input of long chain fatty acids from terrestrial higher plants varied seasonally, and followed in the turn of autumn, winter, summer and spring from river to estuary. The comparable percentages of free and bound long chain fatty acids suggested that, organic carbon from terrestrial higher plants degraded rapidly from river to estuary, and kept at a middle stage of mineralization.
Thermal behavior of extracted and delignified pine wood flour
Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark; Yongming Fan; Rebecca E. Ibach
2014-01-01
To investigate the effect of extractives and lignin on the thermal stability of wood flour (WF), thermogravimetric analysis was used to determine thermal degradation behavior of extracted and delignified mixed pine WF. The contribution of lignin to thermal stability was greater than that of extractives. Removing extractives resulted in improved thermal stability by...
USDA-ARS?s Scientific Manuscript database
A molecular marker compound, derived from lignin by the thioacidolysis degradative method, for structures produced when ferulic acid is incorporated into lignification in angiosperms (poplar, Arabidopsis, tobacco) has been structurally identified as 1,2,2-trithioethyl ethylguaiacol [1-(4-hydroxy-3-m...
Diversity of lignicolous basidiomycetes in coarse woody debris
K. K. Nakasone
1993-01-01
Basidiomycetes are the most conspicuous fungi on wood and are the main decomposers. Lignicolous basidiomycetes include white-rotters that remove both lignin and cellulose, and brown-rotters that remove only the cellulose and hemicellulose. The South is a region of diverse lignicolous basidiomycetes because it is the northern limit for many tropical and subtropical...
Chronic nitrogen deposition influences the chemical dynamics ...
Atmospheric nitrogen deposition induces a forest carbon sink across broad parts of the Northern Hemisphere; this carbon sink may partly result from slower litter decomposition. Although microbial responses to experimental nitrogen deposition have been well-studied, evidence linking these microbial responses to changes in the degradation of specific compounds in decaying litter is sparse. We used wet chemistry and Fourier transform infrared spectroscopy (FTIR) methodologies to study the effects of chronic simulated nitrogen deposition on leaf litter and fine root chemistry during a three-year decomposition experiment at four northern hardwood forests in the north-central USA. Leaf litter and fine roots were highly different in initial chemistry such as concentrations of acid-insoluble fraction (AIF, or Klason lignin) and condensed tannins (CTs). These initial differences persisted over the course of decomposition. Results from gravimetrically-defined AIF and lignin/carbohydrate reference IR peak ratios both provide evidence that lignin in fine roots was selectively preserved under simulated nitrogen deposition. Lignin/carbohydrate peak ratios were strongly correlated with AIF, suggesting that AIF is a good predictor of lignin. Because AIF is abundant in fine roots, slower AIF degradation was the major driver of the slower fine root decomposition under nitrogen enrichment, explaining 73.9 % of the additional root mass retention. Nitrogen enrichment also slowed the
Koutrotsios, Georgios; Mountzouris, Konstantinos C; Chatzipavlidis, Iordanis; Zervakis, Georgios I
2014-10-15
Nine agro-industrial and forestry by-products were subjected to solid-state fermentation by Agrocybe cylindracea and Pleurotus ostreatus, and the process and end-products were comparatively evaluated. Grape marc waste plus cotton gin trash was the best performing medium for both fungi, while substrate composition had a marked effect on most cultivation parameters. Biological efficiency was positively correlated with nitrogen, lignin and ash, and negatively with hemicelluloses and carbohydrate content of substrates. Spent substrates demonstrated high reductions in hemicelluloses and cellulose in contrast to lignin; fibre fractions were correlated with nitrogen, fat and ash content of initial materials, while residual mycelial biomass was affected by mushroom productivity. Mushroom proximate analysis revealed significant variations of constituents depending on the substrate. Crude protein and fat were correlated with substrates nitrogen for both species. Alternative cultivation substrates of high potential are proposed, while spent material could be exploited as animal feed due to its upgraded properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yadav, J S; Reddy, C A
1993-01-01
Degradation of the BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes) group of organopollutants by the white-rot fungus Phanerochaete chrysosporium was studied. Our results show that the organism efficiently degrades all the BTEX components when these compounds are added either individually or as a composite mixture. Degradation was favored under nonligninolytic culture conditions in malt extract medium, in which extracellular lignin peroxidases (LIPs) and manganese-dependent peroxidases (MNPs) are not produced. The noninvolvement of LIPs and MNPs in BTEX degradation was also evident from in vitro studies using concentrated extracellular fluid containing LIPs and MNPs and from a comparison of the extents of BTEX degradation by the wild type and the per mutant, which lacks LIPs and MNPs. A substantially greater extent of degradation of all the BTEX compounds was observed in static than in shaken liquid cultures. Furthermore, the level of degradation was relatively higher at 25 than at 37 degrees C, but pH variations between 4.5 and 7.0 had little effect on the extent of degradation. Studies with uniformly ring-labeled [14C]benzene and [14C]toluene showed substantial mineralization of these compounds to 14CO2. PMID:8481002
Grabber, John H; Hatfield, Ronald D; Lu, Fachuang; Ralph, John
2008-09-01
Incorporating ester interunit linkages into lignin could facilitate fiber delignification and utilization. In model studies with maize cell walls, we examined how partial substitution of coniferyl alcohol (a normal monolignol) with coniferyl ferulate (an ester conjugate from lignan biosynthesis) alters the formation and alkaline extractability of lignin and the enzymatic hydrolysis of structural polysaccharides. Coniferyl ferulate moderately reduced lignification and cell-wall ferulate copolymerization with monolignols. Incorporation of coniferyl ferulate increased lignin extractability by up to 2-fold in aqueous NaOH, providing an avenue for producing fiber with less noncellulosic and lignin contamination or of delignifying at lower temperatures. Cell walls lignified with coniferyl ferulate were more readily hydrolyzed with fibrolytic enzymes, both with and without alkaline pretreatment. Based on our results, bioengineering of plants to incorporate coniferyl ferulate into lignin should enhance lignocellulosic biomass saccharification and particularly pulping for paper production.
Lignin oxidation and pulp delignification by laccase and mediators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourbonnais, R.; Paice, M.G.; Reid, I.D.
1996-10-01
The phenol oxidizing enzyme laccase is produced abundantly by the lignin-degrading fungus Trametes versicolor. We found previously that laccase can oxidize veratryl alcohol and other non-phenolic lignin model compounds when a mediator such as 2,2{prime}-azinobis(3-ethylbenzthiazoline-5-sulphonate) (ABTS) was present. The laccase/mediator couple was also shown to be effective for delignification of kraft pulps. Two different isozymes of laccase produced by this fungus were purified and their reactivities towards lignins and kraft pulps were studied. The mediator ABTS was shown to be essential for pulp delignification and to reverse the polymerization of kraft lignin by either laccase. Pulp delignification with laccase andmore » ABTS was also optimized. resulting in up to 55% lignin removal from kraft pulp following sequential enzyme treatments and alkaline extractions. Several variables were surveyed including enzyme and mediator dosage, oxygen pressure, temperature, reaction time, and pH.« less
Gibson, Andrew; Malek, Lada; Dekker, Robert F H; Ross, Brian
2015-05-01
Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) was used to quantify methanol and other volatile compounds in the headspace of one bacterial and 12 fungal lignin-degrading microbial cultures. Cultures were grown in 250 mL Erlenmeyer flasks capped with aluminum foil containing 40 mL of nutrient media using Kraft lignin (0.3% w/v) as the sole carbon source. Analysis was done using SIFT-MS with H3O(+) and NO(+) precursors. Product ions were identified with multiple ion mode (MIM). Full scan (FS) mode was used to identify other compounds of interest. Absidia cylindrospora, Ischnoderma resinosum and Pholiota aurivella increased headspace methanol concentration by 136 ppb, 1196 ppb and 278 ppb, respectively, while Flammulina velutipes and Laetiporus sulphureus decreased concentration below ambient levels. F. velutipes and L. sulphureus were found to produce products of methanol oxidation (formaldehyde and formic acid) and were likely metabolizing methanol. Some additional unidentified compounds generated by the fungal cultures are intriguing and will require further study. SIFT-MS can be used to quantify methanol and other volatile compounds in the headspace of microbial cultures and has the potential to be a rapid, sensitive, non-invasive tool useful in elucidating the mechanisms of lignin degradative pathways. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Dong-Dong; de Billerbeck, Gustavo M; Zhang, Jin-Jing; Rosenzweig, Frank; Francois, Jean-Marie
2018-01-01
Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14 , encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5' sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr 73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded by two members of this family exhibit aliphatic and aryl-aldehyde reductase activity, and further that such activity can be recovered from pseudogenized AAD genes via ancestral-state reconstruction. The phylogeny of yeast AAD genes suggests that these proteins may have played an important ancestral role in detoxifying aromatic aldehydes in ligninolytic fungi. However, in yeast adapted to niches rich in sugars, AAD genes become subject to mutational erosion. Our findings shed new light on the selective pressures and molecular mechanisms by which genes undergo pseudogenization. Copyright © 2017 Yang et al.
de Billerbeck, Gustavo M.; Zhang, Jin-jing; Rosenzweig, Frank
2017-01-01
ABSTRACT Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14, encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5′ sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded by two members of this family exhibit aliphatic and aryl-aldehyde reductase activity, and further that such activity can be recovered from pseudogenized AAD genes via ancestral-state reconstruction. The phylogeny of yeast AAD genes suggests that these proteins may have played an important ancestral role in detoxifying aromatic aldehydes in ligninolytic fungi. However, in yeast adapted to niches rich in sugars, AAD genes become subject to mutational erosion. Our findings shed new light on the selective pressures and molecular mechanisms by which genes undergo pseudogenization. PMID:29079624
Cho, Dae Won; Latham, John A; Park, Hea Jung; Yoon, Ung Chan; Langan, Paul; Dunaway-Mariano, Debra; Mariano, Patrick S
2011-04-15
New types of tetrameric lignin model compounds, which contain the common β-O-4 and β-1 structural subunits found in natural lignins, have been prepared and carbon-carbon bond fragmentation reactions of their cation radicals, formed by photochemical (9,10-dicyanoanthracene) and enzymatic (lignin peroxidase) SET-promoted methods, have been explored. The results show that cation radical intermediates generated from the tetrameric model compounds undergo highly regioselective C-C bond cleavage in their β-1 subunits. The outcomes of these processes suggest that, independent of positive charge and odd-electron distributions, cation radicals of lignins formed by SET to excited states of sensitizers or heme-iron centers in enzymes degrade selectively through bond cleavage reactions in β-1 vs β-O-4 moieties. In addition, the findings made in the enzymatic studies demonstrate that the sterically large tetrameric lignin model compounds undergo lignin peroxidase-catalyzed cleavage via a mechanism involving preliminary formation of an enzyme-substrate complex.
Fate of Residual Lignin during Delignification of Kraft Pulp by Trametes versicolor
Reid, Ian D.
1998-01-01
The fungus Trametes versicolor can delignify and brighten kraft pulps. To better understand the mechanism of this biological bleaching and the by-products formed, I traced the transformation of pulp lignin during treatment with the fungus. Hardwood and softwood kraft pulps containing 14C-labelled residual lignin were prepared by laboratory pulping of lignin-labelled aspen and spruce wood and then incubated with T. versicolor. After initially polymerizing the lignin, the fungus depolymerized it to alkali-extractable forms and then to soluble forms. Most of the labelled carbon accumulated in the water-soluble pool. The extractable and soluble products were oligomeric; single-ring aromatic products were not detected. The mineralization of the lignin carbon to CO2 varied between experiments, up to 22% in the most vigorous cultures. The activities of the known enzymes laccase and manganese peroxidase did not account for all of the lignin degradation that took place in the T. versicolor cultures. This fungus may produce additional enzymes that could be useful in enzyme bleaching systems. PMID:9603823
Biotechnological procedures to select white rot fungi for the degradation of PAHs.
Lee, Hwanhwi; Jang, Yeongseon; Choi, Yong-Seok; Kim, Min-Ji; Lee, Jaejung; Lee, Hanbyul; Hong, Joo-Hyun; Lee, Young Min; Kim, Gyu-Hyeok; Kim, Jae-Jin
2014-02-01
White rot fungi are essential in forest ecology and are deeply involved in wood decomposition and the biodegradation of various xenobiotics. The fungal ligninolytic enzymes involved in these processes have recently become the focus of much attention for their possible biotechnological applications. Successful bioremediation requires the selection of species with desirable characteristics. In this study, 150 taxonomically and physiologically diverse white rot fungi, including 55 species, were investigated for their performance in a variety of biotechnological procedures, such as dye decolorization, gallic acid reaction, ligninolytic enzymes, and tolerance to four PAHs, phenanthrene, anthracene, fluoranthene, and pyrene. Among these fungi, six isolates showed the highest (>90%) tolerance to both individual PAH and mixed PAHs. And six isolates oxidized gallic acid with dark brown color and they rapidly decolorized RBBR within ten days. These fungi revealed various profiles when evaluated for their biotechnological performance to compare the capability of degradation of PAHs between two groups selected. As the results demonstrated the six best species selected from gallic acid more greatly degraded four PAHs than the other isolates selected via tolerance test. It provided that gallic acid reaction test can be performed to rank the fungi by their ability to degrade the PAHs. Most of all, Peniophora incarnata KUC8836 and Phlebia brevispora KUC9033 significantly degraded the four PAHs and can be considered prime candidates for the degradation of xenobiotic compounds in environmental settings. Copyright © 2013 Elsevier B.V. All rights reserved.
Phytate Degradation by Fungi and Bacteria that Inhabit Sawdust and Coffee Residue Composts
Eida, Mohamed Fathallh; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji
2013-01-01
Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting. PMID:23100024
Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil
Morawe, Mareen; Hoeke, Henrike; Wissenbach, Dirk K.; Lentendu, Guillaume; Wubet, Tesfaye; Kröber, Eileen; Kolb, Steffen
2017-01-01
Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented) and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented) to (i) identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany), (ii) assess their substrate range in the soil environment, and (iii) evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose), and a lignin-derived aromatic compound (vanillic acid). An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria) that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to exclude or prove methylotrophy of these fungi. PMID:28790984
Naranjo-Briceño, Leopoldo; Pernía, Beatriz; Guerra, Mayamaru; Demey, Jhonny R; De Sisto, Angela; Inojosa, Ysvic; González, Meralys; Fusella, Emidio; Freites, Miguel; Yegres, Francisco
2013-11-01
Large amount of drilling waste associated with the expansion of the Orinoco Oil Belt (OOB), the biggest proven reserve of extra-heavy crude oil (EHCO) worldwide, is usually impregnated with EHCO and highly salinized water-based drilling fluids. Oxidative exoenzymes (OE) of the lignin-degrading enzyme system (LDS) of fungi catalyse the oxidation of a wide range of toxic pollutants. However, very little evidences on fungal degradation or biotransformation of EHCO have been reported, which contain high amounts of asphaltenes and its biodegradation rate is very limited. The aims of this work were to study the ability of Pestalotiopsis palmarum BM-04 to synthesize OE, its potential to biotransform EHCO and to survive in extreme environmental conditions. Enzymatic studies of the LDS showed the ability of this fungus to overproduce high amounts of laccase (LACp) in presence of wheat bran or lignin peroxidase (LIPp) with EHCO as sole carbon and energy source (1300 U mgP(-1) in both cases). FT-IR spectroscopy with Attenuated Total Reflectance (ATR) analysis showed the enzymatic oxidation of carbon and sulfur atoms in both maltenes and asphaltenes fractions of biotreated EHCO catalysed by cell-free laccase-enriched OE using wheat bran as inducer. UV-visible spectrophotometry analysis revealed the oxidation of the petroporphyrins in the asphaltenes fraction of biotreated EHCO. Tolerance assays showed the ability of this fungus to grow up to 50,000 p.p.m. of EHCO and 2000 mM of NaCl. These results suggest that P. palmarum BM-04 is a hopeful alternative to be used in remediation processes in extreme environmental conditions of salinity and EHCO contamination, such as the drilling waste from the OOB. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Mester, T; Swarts, H J; Romero i Sole, S; de Bont, J A; Field, J A
1997-01-01
Aryl metabolites are known to have an important role in the ligninolytic system of white rot fungi. The addition of known precursors and aromatic acids representing lignin degradation products stimulated the production of aryl metabolites (veratryl alcohol, veratraldehyde, p-anisaldehyde, and 3-chloro-p-anisaldehyde) in the white rot fungus Bjerkandera sp. strain BOS55. The presence of manganese (Mn) is known to inhibit the biosynthesis of veratryl alcohol (T. Mester, E. de Jong, and J.A. Field, Appl. Environ. Microbiol. 61:1881-1887, 1995). A new finding of this study was that the production of the other aryl metabolites, p-anisaldehyde and 3-chloro-p-anisaldehyde, was also inhibited by Mn. We attempted to bypass the Mn-inhibited step in the biosynthesis of aryl metabolites by the addition of known and suspected precursors. Most of these compounds were not able to bypass the inhibiting effect of Mn. Only the fully methylated precursors (veratrate, p-anisate, and 3-chloro-p-anisate) provided similar concentrations of aryl metabolites in the presence and absence of Mn, indicating that Mn does not influence the reduction of the benzylic acid group. The addition of deuterated benzoate and 4-hydroxybenzoate resulted in the formation of deuterated aryl metabolites, indicating that these aromatic acids entered into the biosynthetic pathway and were common intermediates to all aryl metabolites. Only deuterated chlorinated anisyl metabolites were produced when the cultures were supplemented with deuterated 3-chloro-4-hydroxybenzoate. This observation combined with the fact that 3-chloro-4-hydroxybenzoate is a natural product of Bjerkandera spp. (H. J. Swarts, F. J. M. Verhagen, J. A. Field, and J. B. P. A. Wijnberg, Phytochemistry 42:1699-1701, 1996) suggest that it is a possible intermediate in chlorinated anisyl metabolite biosynthesis. PMID:9143129
Hatcher, P.G.; Wilson, M.A.; Vassallo, A.M.; Lerch, H. E.
1989-01-01
Many Tertiary coals contain abundant fossilized remains of angiosperms, which commonly dominated the ancient peat-swamp environments; modern analogs of such swamps can be found in tropical and subtropical regions of the world. Comparisons of angiospermous wood from Australian brown coal with similar wood buried in modern peat swamps of Indonesia have provided some new insights into coalification reactions. These comparisons were made by using solid-state 13C nuclear magnetic resonance (NMR) techniques and pyrolsis-gas chromatography-mass spectrometry (py-gc-ms). These two modern techniques are especially suited for detailed structural evaluation of the complex macromolecules in coal. The earliest transformation (peatification) of organic matter in angiospermous wood is the degradation and removal of cellulosic components and the concomitant selective preservation of lignin-derived components. The angiospermous lignin that becomes enriched in wood as a result of cellulose degradation also is modified by coalification reactions; this modification, however, does not involve degradation and removal of the lignin. Rather, the early coalification process transforms the lignin phenols (guiacyl and syringyl) to eventually yield the aromatic structures typically found in brown coal. One such transformation, which is determined from NMR data, involves the cleavage of aryl-ether bonds that link guaiacyl and syringyl units in lignin, and this transformation leads to the formation of free lignin phenols. Another transformation, which is also determined from the NMR data, involves the loss of methoxyl groups, probably via demethylation, to produce catechol-like structures. Coincident with ether-cleavage and demethylation, the aromatic rings derived from lignin phenols become more carbon-substituted and cross linked, as determined by dipolar-dephasing NMR studies. This cross linking is probably responsible for preventing the lignin phenols, which are freed from the lignin macromolecule by ether cleavage, from being removed from the coal by dissolution. Pyrolysis data suggest that the syringyl units are altered more readily than are guaiacyl units, and this difference in resistance leads to an enrichment of the guaiacyl units in fossil angiospermous woods. Many of the coalification reactions noted above occur to some degree in all angiospermous fossil wood examined; however, some significant differences are observed in the degree of coalification of the fossil wood samples from the same burial depth in the brown coal. These differences indicate that the depth and duration of burial are probably not entirely responsible for the variations in degree of coalification. Different rates of degradation in peat may have contributed to the variations in the apparent degree of coalification; some woods may have been altered more rapidly at the peat stage than others. Although preliminary, this systematic study of botanically related wood in peat and coal results in a more detailed differentiation of coalification reactions than have previous investigations. The combined use of solid-state 13C NMR and py-gc-ms has facilitated this detailed insight into the coalification of angiospermous wood. ?? 1989.
NASA Astrophysics Data System (ADS)
Muryanto, Muryanto; Hanifah, Ummu; Amriani, Feni; Ibadurrahman, Ahmad Faiz; Sari, Ajeng Arum
2017-11-01
High amounts of black liquor are generated from bioethanol production by using oil palm empty fruit bunches. The black liquor is waste from alkaline pretreatment, it contains high amount of an alkaline solution (NaOH). The black liquor wastewater was highly contaminated with organic materials, and quite toxic for aquatic ecosystems if discharged directly into waters. This study aimed to determine ability of Fenton process combined with coagulation to treat black liquor. The addition 5% of polyaluminium chloride (PAC) could decolorized black liquor, degraded lignin, and produced sludge 70.64%, 68.28%, and 2.76 gram, respectively. Decolorization of black liquor was in line with degradation of black liquor because lignin is the main compound in black liquor. SEM images after addition of PAC of 5% indicated fragmentation of structure. Fenton reagent consist of 0.7 M FeSO4+ 3M H2O2 has able to decolorize black liquor, degrade lignin, and produce sludge 51.67% and 25.44%, and 0.44 gram, respectively. It was concluded that black liquor wastewater from bioethanol can be treated by using Fenton process combined with coagulation. However, these methods still need improvement to obtain the higher degradation rate, and coagulation sludge needs further consideration.
Biological Degradation of Chinese Fir with Trametes Versicolor (L.) Lloyd
Chen, Meiling; Wang, Chuangui; Fei, Benhua; Ma, Xinxin; Zhang, Bo; Zhang, Shuangyan; Huang, Anmin
2017-01-01
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) has been an important afforestation species in northeast China. It has obvious defects of buckling and cracking easily, which are caused by its chemical components. Trametes versicolor (L.) Lloyd, a white-rot fungus, can decompose the cellulose, hemicellulose, and lignin in the wood. White-rot fungus was used to biologically degrade Chinese fir wood. The effects of different degradation time on the Chinese fir wood’s mechanical properties, micromorphology, chemical components, and crystallinity were studied. The results showed that the heartwood of Chinese fir was more durable than the sapwood and the durability class of Chinese fir was III. Trametes versicolor (L.) Lloyd had a greater influence on the mechanical properties (especially with respect to the modulus of elasticity (MOE)) for the sapwood. Trametes versicolor (L.) Lloyd degraded Chinese fir and colonized the lumen of various wood cell types in Chinese fir, penetrated cell walls via pits, caused erosion troughs and bore holes, and removed all cell layers. The ability of white-rot fungus to change the chemical composition mass fraction for Chinese fir was: hemicellulose > lignin > cellulose. The durability of the chemical compositions was: lignin > cellulose > hemicellulose. The crystallinity of the cellulose decreased and the mean size of the ordered (crystalline) domains increased after being treated by white-rot fungus. PMID:28773191
NASA Astrophysics Data System (ADS)
Feng, Xiaojuan; Feakins, Sarah J.; Liu, Zongguang; Ponton, Camilo; Wang, Renée. Z.; Karkabi, Elias; Galy, Valier; Berelson, William M.; Nottingham, Andrew T.; Meir, Patrick; West, A. Joshua
2016-05-01
While lignin geochemistry has been extensively investigated in the Amazon River, little is known about lignin distribution and dynamics within deep, stratified river channels or its transformations within soils prior to delivery to rivers. We characterized lignin phenols in soils, river particulate organic matter (POM), and dissolved organic matter (DOM) across a 4 km elevation gradient in the Madre de Dios River system, Peru, as well as in marine sediments to investigate the source-to-sink evolution of lignin. In soils, we found more oxidized lignin in organic horizons relative to mineral horizons. The oxidized lignin signature was maintained during transfer into rivers, and lignin was a relatively constant fraction of bulk organic carbon in soils and riverine POM. Lignin in DOM became increasingly oxidized downstream, indicating active transformation of dissolved lignin during transport, especially in the dry season. In contrast, POM accumulated undegraded lignin downstream during the wet season, suggesting that terrestrial input exceeded in-river degradation. We discovered high concentrations of relatively undegraded lignin in POM at depth in the lower Madre de Dios River in both seasons, revealing a woody undercurrent for its transfer within these deep rivers. Our study of lignin evolution in the soil-river-ocean continuum highlights important seasonal and depth variations of river carbon components and their connection to soil carbon pools, providing new insights into fluvial carbon dynamics associated with the transfer of lignin biomarkers from source to sink.
Accelerating the degradation of green plant waste with chemical decomposition agents.
Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu
2011-10-01
Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that NaOH, alkaline residue and sodium lignosulphonate can reduce the relative crystallinity of lignocellulose in F. microcarpa var. pusillifolia by 2.64%, 13.24%, 12.44%, respectively. The C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) comes from the vibration of the sugar anomeric carbon. Because lignin is a phenolic, not carbohydrate polymer, the relative absorption intensity of this peak should be stronger at lower lignin contents. Compared to CK, the peak intensities increased in treatments T1, T5 and T9, indicating reduced lignin contents and increased sugar contents after CDA treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases.
Ulčnik, A; Kralj Cigić, I; Pohleven, F
2013-12-01
The ability of two white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and one brown-rot fungus (Gloeophyllum trabeum) to degrade two organochlorine insecticides, lindane and endosulfan, in liquid cultures was studied and dead fungal biomass was examined for adsorption of both insecticides from liquid medium. Lindane and endosulfan were also treated with fungal laccase and bacterial protein CotA, which has laccase activities. The amount of degraded lindane and endosulfan increased with their exposure period in the liquid cultures of both examined white-rot fungi. Endosulfan was transformed to endosulfan sulphate by T. versicolor and P. ostreatus. A small amount of endosulfan ether was also detected and its origin was examined. Degradation of lindane and endosulfan by a brown rot G. trabeum did not occur. Mycelial biomasses of all examined fungi have been found to adsorb lindane and endosulfan and adsorption onto fungal biomass should therefore be considered as a possible mechanism of pollutant removal when fungal degradation potentials are studied. Bacterial protein CotA performed more efficient degradation of lindane and endosulfan than fungal laccase and has shown potential for bioremediation of organic pollutants.
Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage.
Sanz, Miriam; Cadahía, Estrella; Esteruelas, Enrique; Muñoz, Angel Ma; Fernández de Simón, Brígida; Hernández, Teresa; Estrella, Isabel
2010-09-08
The phenolic and tannic composition of heartwood extracts from Castanea sativa Mill., before and after toasting in cooperage, were studied using HPLC-DAD and HPLC-DAD/ESI-MS, and some low molecular weight phenolic compounds and hydrolyzable tannins were found. The low molecular weight phenolic compounds were lignin constituents as the acids gallic, protocatechuic, vanillic, syringic, ferulic, and ellagic, the aldehydes protocatechuic, vanillic, syringic, coniferylic, and sinapic, and the coumarin scopoletin. Their patterns were somewhat different those of oak because oak does not contain compounds such protocatechuic acid and aldehyde and is composed of much lower amounts of gallic acid than chestnut. Vescalagin and castalagin were the main ellagitannins, and acutissimin was tentatively identified for the first time in this wood. Moreover, some gallotannins were tentatively identified, including different isomers of di, tri, tetra, and pentagalloyl glucopyranose, and di and trigalloyl-hexahydroxydiphenoyl glucopyranose, comprising 20 different compounds, as well as some ellagic derivatives such as ellagic acid deoxyhexose, ellagic acid dimer dehydrated, and valoneic acid dilactone. These ellagic derivatives as well as some galloyl and hexahydroxydiphenoyl derivatives were tentatively identified for the first time in this wood. The profile of tannins was therefore different from that of oak wood because oak only contains tannins of the ellagitannins type. Seasoned and toasted chestnut wood showed a very different balance between lignin derivatives and tannins because toasting resulted in the degradation of tannins and the formation of low molecular weight phenolic compounds from lignin degradation. Moreover, the different toasting levels provoked different balances between tannins and lignin constituents because the intensity of lignin and tannin degradation was in relation to the intensity of toasting.
Popova, Evgeniya; Chernov, Aleksandr; Maryandyshev, Pavel; Brillard, Alain; Kehrli, Damaris; Trouvé, Gwenaëlle; Lyubov, Viktor; Brilhac, Jean-François
2016-10-01
The thermal degradation of wood biofuels (spruce, pine), of coals from different fields of the Russian Federation and of hydrolysis lignin is investigated using a thermogravimetric analyzer under different heating conditions and under non-oxidative or oxidative atmospheres. The samples are indeed submitted to a linear temperature ramp of 10K/min or to a temperature ramp of 200K/min up to a residence temperature between 250 and 450°C where they are maintained during 4h (isothermal conditions). The values of the kinetic parameters are determined for these different samples in both thermal conditions, either using the differential isoconversional method or by means of an Extended Independent Parallel Reaction (EIPR) model. The values of the kinetic parameters obtained with this EIPR model for spruce trunk are also compared with that of its main constituents (hemicellulose, cellulose and lignin). Copyright © 2016 Elsevier Ltd. All rights reserved.