Science.gov

Sample records for lignite air-steam gasification

  1. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    SciTech Connect

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu.

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  2. Gasification of Gulf Coast Lignites

    SciTech Connect

    Smoller, R.K.

    1983-11-01

    Gulf Coast lignites are examined as a feedstock for a gasification facility making substitute natural gas (SNG). Advantages and disadvantages are explored in the areas of project development factors, gasification technology and physical and chemical characteristics of the lignite. The Texas Gasification Project currently under study at Phillips Coal is used to exemplify these factors. It has been found that the use of Gulf Coast lignite has several natural developmental advantages over fuels from other parts of the U.S. A project is relatively close to markets for all of its products including SNG, carbon dioxide and all by-products. The Gulf Coast has adequate supplies of basic commodities such as water. Most potential gasification plant locations have a good local infrastructure in existence. Labor can be drawn from one or more metropolitan areas within commuting distance. State regulatory agencies interact with energy development projects of all sizes on a regular basis providing a solid working knowledge of energy policies and accepted project development guidelines. Finally, a positive business climate exists at both the state and local levels providing support and encouragement to go forward with projects. The physical and chemical characteristics of the lignite are shown to have a major effect on the operability of the gasification process. Lignite properties examined include moisture content, friability, and ash content.

  3. Dairy Biomass-Wyoming Coal Blends Fixed Gasification Using Air-Steam for Partial Oxidation

    DOE PAGES

    Gordillo, Gerardo; Annamalai, Kalyan

    2012-01-01

    Concenmore » trated animal feeding operations such as dairies produce a large amount of manure, termed as dairy biomass (DB), which could serve as renewable feedstock for thermal gasification. DB is a low-quality fuel compared to fossil fuels, and hence the product gases have lower heat content; however, the quality of gases can be improved by blending with coals. This paper deals with air-steam fixed-bed counterflow gasification of dairy biomass-Wyoming coal blend (DBWC). The effects of equivalence ratio ( 1.6 < Φ < 6.4 ) and steam-to-fuel ratio ( 0.4 < S : F < 0.8 ) on peak temperatures, gas composition, gross heating value of the products, and energy recovery are presented. According to experimental results, increasing Φ and ( S : F ) ratios decreases the peak temperature and increases the H 2 and CO 2 production, while CO production decreases. On the other hand, the concentrations of CH 4 and C 2 H 6 were lower compared to those of other gases and almost not affected by Φ.« less

  4. Yugoslavia looks to lignite gasification in the future

    SciTech Connect

    Not Available

    1987-03-01

    Lignite in Yugoslavia is used to produce electricity, city gas for use by steel works and other industrial plants, and dried coal. The Fleissner process is used to obtain dry lump lignite, but it does have thermal and technological shortcomings. The Lurgi process using a mixture of oxygen and steam is used to produce grid gas and ammonia. It is a costly process which research is attempting to improve. Research is also being carried out on semi-coke and briquette production, fluidized bed combustion, and more efficient gasification processes for lignite.

  5. Preventing ash agglomeration during gasification of high-sodium lignite

    SciTech Connect

    Robert S. Dahlin; Johnny R. Dorminey; WanWang Peng; Roxann F. Leonard; Pannalal Vimalchand

    2009-01-15

    Various additives were evaluated to assess their ability to prevent ash agglomeration during the gasification of high-sodium lignite. Additives that showed promise in simple muffle furnace tests included meta-kaolin, vermiculite, two types of silica fume, and one type of bauxite. Additives that were tested and rejected included dolomite, calcite, sand flour, kaolinite, fine kaolin, and calcined bauxite. Based on the muffle furnace test results, the meta-kaolin was selected for a follow-on demonstration in a pilot-scale coal gasifier. Pilot-scale testing showed that the addition of coarse (minus 14-mesh, 920-{mu}m mean size) meta-kaolin at a feed rate roughly equivalent to the ash content of the lignite (10 wt %) successfully prevented agglomeration and deposition problems during gasification of high-sodium lignite at a maximum operating temperature of 927{sup o}C (1700{sup o}F). 13 refs., 24 figs., 1 tab.

  6. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.

    PubMed

    Fu, Qirang; Huang, Yaji; Niu, Miaomiao; Yang, Gaoqiang; Shao, Zhiwei

    2014-10-01

    Thermo-chemical gasification of sawdust refuse-derived fuel was performed on a bench-scale fluidised bed gasifier with enriched air and steam as fluidising and oxidising agents. Dolomite as a natural mineral catalyst was used as bed material to reform tars and hydrocarbons. A series of experiments were carried out under typical operating conditions for gasification, as reported in the article. A modified equilibrium model, based on equilibrium constants, was developed to predict the gasification process. The sensitivity analysis of operating parameters, such as the fluidisation velocity, oxygen percentage of the enriched air and steam to biomass ratios on the produced gas composition, lower heating value, carbon conversion and cold gas efficiency was investigated. The results showed that the predicted syngas composition was in better agreement with the experimental data compared with the original equilibrium model. The higher fluidisation velocity enhanced gas-solid mixing, heat and mass transfers, and carbon fines elutriation, simultaneously. With the increase of oxygen percentage from 21% to 45%, the lower heating value of syngas increased from 5.52 MJ m(-3) to 7.75 MJ m(-3) and cold gas efficiency from 49.09% to 61.39%. The introduction of steam improved gas quality, but a higher steam to biomass ratio could decrease carbon conversion and gasification efficiency owing to a low steam temperature. The optimal value of steam to biomass ratio in this work was 1.0.

  7. The iron mineral changes occurring in lignite coal during gasification

    NASA Astrophysics Data System (ADS)

    Waanders, F. B.

    2013-04-01

    Representative lignite and gasified material samples were retrieved form a cooled down gasifier. The samples were taken at various heights in the gasifier that operated on lignite, under stable conditions. The proximate analyses, ash composition and temperature in the gasifier were determined according to standard procedures. The main minerals found in the present investigation were bassanite, illite, quartz, kaolinite, calcite and the only iron bearing mineral was found to be pyrite. The trend in the estimated particle surface temperature profile shows an increase in the drying, pyrolysis, gasification and combustion zones from about 300 °C to just over 900 °C. About 1/3 down the gasifier, an average particle temperature of about 400 °C and particle surface temperature of about 600 °C was measured where pyrite conversion started. About 2/3 down the gasifier, where an average temperature of about 700 °C and particle surface temperature of about 900 °C was measured, all the pyrite was converted and in the bottom part of the gasifier, oxidation of the iron started to play a role and hematite and an iron containing glass formed at an average temperature of > 800 °C and surface temperature of 900 °C.

  8. Gasification of lignite and wood in the Lurgi circulating fluidized-bed gasifier: Final report

    SciTech Connect

    Mehrling, P.; Vierrath, H.

    1989-06-01

    North Dakota lignite and wood chip residue (primarily Douglas fir from the US Pacific Northwest) has been gasified in Lurgi's 2 MW (thermal) CFB pilot plant at Frankfurt/M., W-Germany. Tests were carried out at various temperatures with air or oxygen as gasification agent for the production of fuel gas and synthesis gas, respectively. Further parameters varied included feedstock moisture, air preheat, in-situ desulfurization, etc. The tests showed that North Dakota lignite and wood chips represent suitable feedstocks for CFB gasification. Furthermore, data for the design of large scale commercial plants were obtained. 2 refs., 20 figs., 23 tabs.

  9. Magnetohydrodynamic generator of electrical energy using gasification products of lignite coal

    NASA Astrophysics Data System (ADS)

    Derevianko, V. A.; Slavin, V. S.; Sokolov, V. S.

    1980-10-01

    An investigation is presented of an MHD generator of electrical energy fueled by gasification products of lignite coals using the T-layer effect which eliminates caustic additives. A quasi-one-dimensional theory of linear MHD processes is constructed on the basis of MHD equations; a design of an industrial generator is discussed.

  10. MHD generator of electrical energy working on the gasification products of lignites

    NASA Astrophysics Data System (ADS)

    Derevianko, V. A.; Slavin, V. S.; Sokolov, V. S.

    1981-03-01

    An investigation is presented of an MHD generator of electrical energy fueled by gasification products of lignite coals using the T-layer effect which eliminates caustic additives. A quasi-one-dimensional theory of linear MHD processes is constructed on the basis of MHD equations; a design of an industrial generator is discussed.

  11. Co-gasification of solid waste and lignite - a case study for Western Macedonia.

    PubMed

    Koukouzas, N; Katsiadakis, A; Karlopoulos, E; Kakaras, E

    2008-01-01

    Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct

  12. Supercritical Water as Nanomedium for Gasification of Lignite-Water Suspension

    NASA Astrophysics Data System (ADS)

    Korzh, Raisa; Bortyshevskyi, Valerii

    2016-05-01

    The gasification of an aqueous suspension of lignite from Alexandria coalfield (Ukraine) under the supercritical pressure was studied. The initial rates of the formation of hydrogen, carbon dioxide and methane were evaluated. The mutually stimulating interaction of the components of "brown coal-water-mineral matter" system was shown due to the influence of nanoscaled water medium on the formation of dipole-inductive, dispersive and ionic associates. In the temperature range of 300-450 °C, the oxygen source for gaseous products of the lignite supercritical gasification is mainly ion-associative nanoclustered water. The source of hydrogen at the subcritical temperature is the organic part of brown coal. For the supercritical water, the source of H is the nanoscale medium with ion associates. The last ones were responsible for the further transformation of coal.

  13. Supercritical Water as Nanomedium for Gasification of Lignite-Water Suspension.

    PubMed

    Korzh, Raisa; Bortyshevskyi, Valerii

    2016-12-01

    The gasification of an aqueous suspension of lignite from Alexandria coalfield (Ukraine) under the supercritical pressure was studied. The initial rates of the formation of hydrogen, carbon dioxide and methane were evaluated. The mutually stimulating interaction of the components of "brown coal-water-mineral matter" system was shown due to the influence of nanoscaled water medium on the formation of dipole-inductive, dispersive and ionic associates. In the temperature range of 300-450 °C, the oxygen source for gaseous products of the lignite supercritical gasification is mainly ion-associative nanoclustered water. The source of hydrogen at the subcritical temperature is the organic part of brown coal. For the supercritical water, the source of H is the nanoscale medium with ion associates. The last ones were responsible for the further transformation of coal.

  14. Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends

    SciTech Connect

    Agrawal, Pradeep K.

    2016-12-20

    The overall objective of the current project was to investigate the high pressure gasification characteristics of a feed containing both coal and biomass. The two feed types differ in their ash contents and ash composition, particularly the alkali content. Gasification of a combined feed of coal and biomass has the potential for considerable synergies that might lead to a dramatic improvement in process economics and flexibility. The proposed study aimed to develop a detailed understanding of the chemistry, kinetics, and transport effects during high pressure gasification of coal-biomass blend feed. Specifically, we studied to develop: (a) an understanding of the catalytic effect of alkali and other inorganic species present in the biomass and coal, (b) an understanding of processing conditions under which synergistic effects of the blending of coal and biomass might be observed. This included the role of particle size, residence time, and proximity of the two feed types, (c) kinetics of high pressure gasification of individual feeds as well as the blends, and (d) development of mathematical models that incorporate kinetics and transport models to enable prediction of gasification rate at a given set of operating conditions, and (e) protocols to extend the results to other feed resources. The goal was to provide a fundamental understanding of the gasification process and guide in optimizing the configurations and design of the next generation of gasifiers. The approach undertaken was centered on two basic premises: (1) the gasification for small particles without internal mass transfer limitations can be treated as the sum of two processes in series (pyrolysis and char gasification) , and (2) the reactivity of the char generated during pyrolysis not only depends on the pressure and temperature but is also affected by the heating rates. Thus low heating rates (10-50 °C/min) typical of PTGA fail to produce char that would typically be formed at high heating rates

  15. Development of Kinetics and Mathematical Models for High-Pressure Gasification of Lignite-Switchgrass Blends: Cooperative Research and Development Final Report, CRADA Number CRD-11-447

    SciTech Connect

    Iisa, Kristiina

    2016-04-06

    NREL will work with Participant as a subtier partner under DE-FOA-0000240 titled "Co-Production of Power, Fuels, and Chemicals via Coal/Biomass Mixtures." The goal of the project is to determine the gasification characteristics of switchgrass and lignite mixtures and develop kinetic models. NREL will utilize a pressurized thermogravimetric analyzer to measure the reactivity of chars generated in a pressurized entrained-flow reactor at Participant's facilities and to determine the evolution of gaseous species during pyrolysis of switchgrass-lignite mixtures. Mass spectrometry and Fourier-transform infrared analysis will be used to identify and quantify the gaseous species. The results of the project will aid in defining key reactive properties of mixed coal biomass fuels.

  16. Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant

    NASA Astrophysics Data System (ADS)

    Amirabedin, Ehsan; Pooyanfar, Mirparham; Rahim, Murad A.; Topal, Hüseyin

    2014-12-01

    Trigeneration or Combined Cooling, Heat and Power (CCHP) which is based upon combined heat and power (CHP) systems coupled to an absorption chiller can be recognized as one of the best technologies recovering biomass effectively to heat, cooling and power. Co-gasification of the lignite and biomass can provide the possibility for safe and effective disposal of different waste types as well as for sustainable and environmentally-friendly production of energy. In this article, a trigeneration system based on an IC engine and gasifier reactor has been simulated and realized using Thermoflex simulation software. Performance results suggest that utilization of sustainably-grown biomass in a Tri-Generation Power Plant (TGPP) can be a possibility for providing cooling, heat and power demands with local renewable sources and reducing the environmental impacts of the energy conversion systems.

  17. Investigation of plasma-aided bituminous coal gasification

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2009-04-15

    This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

  18. Plasma gasification of coal in different oxidants

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2008-12-15

    Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

  19. Design and economics of a lignite-to-SNG (substitute natural gas) facility using Lurgi gasifiers for lignite gasification with KRW gasifiers for gasification of coal fines. Topical report (Final), April 1985-January 1986

    SciTech Connect

    Smelser, S.C.

    1986-01-01

    A first-pass design and cost estimate was prepared for a plant to convert lignite to substitute natural gas (SNG) using Lurgi dry-bottom gasifiers to gasify the coal and the KRW fluid-bed gasifiers to gasify the coal fines. The overall plant thermal efficiency is between that of the Lurgi and KRW base case designs. The study-case design is of commercial interest compared to a Lurgi plant when the Lurgi plant coal fines cannot be sold. The study case is more capital-intensive because it requires more-expensive boilers and more of different types of process units than either base case. There is no advantage over a KRW plant design that provides a 30% lower cost of gas.

  20. Pelletizing lignite

    DOEpatents

    Goksel, Mehmet A.

    1983-11-01

    Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

  1. Design and economics of a lignite-to-SNG (substitute natural gas) facility using Lurgi gasifiers for lignite gasification and the Texaco Partial Oxidation Process to gasify Lurgi by-product liquids. Final topical report, April 1985-November 1985

    SciTech Connect

    Smith, J.T.; Smelser, S.C.

    1985-01-01

    A design and cost estimate was prepared for a 250 billion Btu/day lignite-to-SNG plant that uses Lurgi dry-bottom gasifiers to gasify lignite and the Texaco Partial Oxidation (POX) process to gasify the various hydrocarbon liquids produced by the Lurgi process. Also presented are plant performance and economic comparisons between this plant design and a Base Case design prepared previously in which the Lurgi by-product liquids are burned in boilers and superheaters for steam production. The cost-of-gas for the Study Case is approximately 1.5% higher than the cost-of-gas for the Base Case. It is slightly more economical to burn Lurgi liquids than to gasify them in an auxiliary unit, primarily because if liquids are gasified, additional coal-fired boilers are required for generation of process steam and these are substantially more expensive than boilers fired with liquid fuel.

  2. Great Plains Coal Gasification Project: Quarterly technical progress report, April-June 1988 (Fourth fiscal quarter, 1987-1988)

    SciTech Connect

    Not Available

    1988-07-29

    This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

  3. Use of North Dakota lignite in advanced power systems

    SciTech Connect

    Willson, W.G.; Hurley, J.P.; Sharp, L.

    1992-12-01

    In order to develop critical data for Department of Energy (DOE) and private industry for advanced high-efficiency power systems using North Dakota lignite in pressurized gasification and combustion systems, tests were performed in bench-scale equipment at the Energy and Environmental Research Center (EERC). The primary objectives were to (1) determine the conversion levels for Center ND lignite under pressurized fluid-bed gasification conditions with sorbent addition as a function of temperature, (2) determine the sulfur capture using limestone or dolomite under gasification conditions giving 90% or higher carbon conversion, (3) evaluate char/coal conversion and sulfur capture in a pressurized fluid-bed combustor, (4) assess the potential for bed agglomeration under the preferred operating conditions for both systems.

  4. The shell coal gasification process

    SciTech Connect

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  5. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger; Nenad Sarunac

    2010-03-31

    Pulverized coal power plants which fire lignites and other low-rank high-moisture coals generally operate with reduced efficiencies and increased stack emissions due to the impacts of high fuel moisture on stack heat loss and pulverizer and fan power. A process that uses plant waste heat sources to evaporate a portion of the fuel moisture from the lignite feedstock in a moving bed fluidized bed dryer (FBD) was developed in the U.S. by a team led by Great River Energy (GRE). The demonstration was conducted with Department of Energy (DOE) funding under DOE Award Number DE-FC26-04NT41763. The objectives of GRE's Lignite Fuel Enhancement project were to demonstrate reduction in lignite moisture content by using heat rejected from the power plant, apply technology at full scale at Coal Creek Station (CCS), and commercialize it. The Coal Creek Project has involved several stages, beginning with lignite drying tests in a laboratory-scale FBD at the Energy Research Center (ERC) and development of theoretical models for predicting dryer performance. Using results from these early stage research efforts, GRE built a 2 ton/hour pilot-scale dryer, and a 75 ton/hour prototype drying system at Coal Creek Station. Operated over a range of drying conditions, the results from the pilot-scale and prototype-scale dryers confirmed the performance of the basic dryer design concept and provided the knowledge base needed to scale the process up to commercial size. Phase 2 of the GRE's Lignite Fuel Enhancement project included design, construction and integration of a full-scale commercial coal drying system (four FBDs per unit) with Coal Creek Units 1 and 2 heat sources and coal handling system. Two series of controlled tests were conducted at Coal Creek Unit 1 with wet and dried lignite to determine effect of dried lignite on unit performance and emissions. Wet lignite was fired during the first, wet baseline, test series conducted in September 2009. The second test series was performed

  6. Lignite Research Project.

    ERIC Educational Resources Information Center

    Robinson, Fred

    Since it became known in l979 that the Arkansas Power and Light Company was going to build a large electricity generating plant near Hampton and that there would be a lignite mining operation established there to support the power plant, the Warren public schools have been preparing to meet the impact on the schools. Because it was assumed that…

  7. Kinetic models comparison for steam gasification of coal/biomass blend chars.

    PubMed

    Xu, Chaofen; Hu, Song; Xiang, Jun; Yang, Haiping; Sun, Lushi; Su, Sheng; Wang, Baowen; Chen, Qindong; He, Limo

    2014-11-01

    The non-isothermal thermogravimetric method (TGA) was applied to different chars produced from lignite (LN), sawdust (SD) and their blends at the different mass ratios in order to investigate their thermal reactivity under steam atmosphere. Through TGA analysis, it was determined that the most prominent interaction between sawdust and lignite occurred at the mass ratio of sawdust/lignite as 1:4, but with further dose of more sawdust into its blends with lignite, the positive interaction deteriorated due to the agglomeration and deactivation of the alkali mineral involved in sawdust at high steam gasification temperature. Through systematic comparison, it could be observed that the random pore model was the most suitable among the three gas-solid reaction models adopted in this research. Finally, rational kinetic parameters were reached from these gas-solid reaction models, which provided a basis for design and operation of the realistic system of co-gasification of lignite and sawdust in this research.

  8. A preliminary report on a zone containing thick lignite beds, Denver Basin, Colorado

    USGS Publications Warehouse

    Soister, Paul E.

    1973-01-01

    hand pressure. Quality of the lignite is lowered by the non-coal partings and, locally at least, by some small blebs and balls of clay in the lignite itself, especially at the base. Available analyses indicate that the following general figures, on an as-received basis, may be applied to relatively clean lignite from this zone: 6,000-7,000 Btu, 20-35 percent moisture, 8-18 percent ash, and 0.3-0.5 percent sulfur. Rank of the lignite is lignite A as calculated by the formulas of the American Society for Testing and . Materials (ASTM), although some parts, especially of deeper beds, may be as high as subbituminous C coal in rank. Best utilization of the lignite probably would be by gasification, liquefaction, or similar methods, because of the numerous non-coal partings and low quality. The thickest known lignite bed is estimated to contain at least 1.25 billion short tons of lignite. Two methods of roughly estimating the order of magnitude of lignite resources, in beds at least 4 feet thick and within 1,000 feet of the surface in this zone, indicate resources are on the order of 20 billion tons.

  9. Great Plains Gasification Project status report

    SciTech Connect

    Pollock, D.C.

    1985-08-01

    The Great Plains Gasification Project is the first commercial synthetic fuels project based on coal conversion in the US. The goal is to convert North Dakota lignite into pipeline quality synthetic natural gas (SNG). The project consists of an open pit coal mine, a gasification plant, and an SNG pipeline in Mercer County, North Dakota. The project took 12 years from its conception to the production in 1984 of SNG for users. The author describes the plant's basic processes, the start-up activities and schedule, and some of the more interesting start-up problems.

  10. First U. S. coal gasification facility in commercial operation

    SciTech Connect

    Not Available

    1984-11-01

    This paper describes the first commercial scale coal gasification plant in America, located in Mercer County, North Dakota. Seven of the fourteen gasifier vessels have been operating, producing the medium-Btu raw gas steam necessary for further processing into pipeline quality gas. Coal gasification technology is by means of the Lurgi process. The complex, estimated at about $2.1 billion, is diagrammed. Plant input and output is also shown. There are 125 million recoverable tons of lignite with sufficient reserves for expansion as input for gasification. The complex is composed of numerous processing units and a block flow diagram of the complex is given.

  11. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor.

    PubMed

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang

    2014-12-01

    A vacuum fixed bed reactor was applied to pyrolyze lignite, biomass (rice husk) and their blend with high temperature (900 °C) and low heating rate (10 °C/min). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2 h) for their interactions. Remarkable synergetic effects were observed. Addition of biomass obviously influenced the tar and char yields, gas volume yield, gas composition, char structure and tar composition during co-pyrolysis. It was highly possible that char gasification, gaseous phase interactions, and secondary tar cracking were facilitated when lignite and biomass were co-pyrolyzed.

  12. Stratigraphic framework and distribution of lignite on Crowleys Ridge, Arkansas

    USGS Publications Warehouse

    Meissner, Charles R.

    1983-01-01

    of these lignite beds are correlated over distances as much as 30 miles. Other lignite beds thin to a few inches thick and disappear within short distances. Four areas are delineated on Crowleys Ridge that contain one or more lignite beds each 2.5 feet or more thick. Strippable lignite is limited to 300 feet in this area, therefore, all holes were drilled to 300 feet or less. Chemical analyses of eight lignite samples from Crowleys Ridge are on record with the U.S. Geological Survey's National Coal Resources Data System. Two of the samples are from the Wilcox Group, and six are from the Claiborne Group, but the lignite beds from which the samples were taken are unidentified. However, the analyses are believed to be representative of the lignite within the lignite-bearing sequence. The two Wilcox samples had moisture values of 36.3 and 40.1 percent; ash, 30.5 and 20.5 percent (U.S. Bureau of Mines); sulfur content, 0.3 and 1.0 percent; and Btu values, 3,910 and 4,590 on an as received basis. The six Claiborne samples had moisture values ranging from 34.7 to 43.7 percent; ash from 11.9-28.2 percent (USBM); sulfur content, 0.3-3 percent; and Btu values, 3,400 to 5,160. U.S. Geological Survey average ash content for the eight samples was 36.22 percent, and the major oxides are SiO2 (60.75 percent), Al2O3 (15.23 percent), CaO (6.96 percent), Fe2O3 (6.65 percent), and SO3 (5.64 percent). No anomalous values were recorded for the trace element content. Lignite is not currently mined on Crowleys Ridge. It has potential for use as a fuel for direct firing of boilers to generate electricity. It also has potential for gasification to produce pipeline gas, and for liquefaction to produce fuel oil. More drilling and analyses are needed to better define the quantity and quality of lignite beds within the four significant areas with resource potential and to determine the extent of lignite beds 2.5 ft or more thick that occur in several isolated areas.

  13. Chemometric Study of the Ex Situ Underground Coal Gasification Wastewater Experimental Data.

    PubMed

    Smoliński, Adam; Stańczyk, Krzysztof; Kapusta, Krzysztof; Howaniec, Natalia

    2012-11-01

    The main goal of the study was the analysis of the parameters of wastewater generated during the ex situ underground coal gasification (UCG) experiments on lignite from Belchatow, and hard coal from Ziemowit and Bobrek coal mines, simulated in the ex situ reactor. The UCG wastewater may pose a potential threat to the groundwater since it contains high concentrations of inorganic (i.e., ammonia nitrogen, nitrites, chlorides, free and bound cyanides, sulfates and trace elements: As, B, Cr, Zn, Al, Cd, Co, Mn, Cu, Mo, Ni, Pb, Hg, Se, Ti, Fe) and organic (i.e., phenolics, benzene and their alkyl derivatives, and polycyclic aromatic hydrocarbons) contaminants. The principal component analysis and hierarchical clustering analysis enabled to effectively explore the similarities and dissimilarities between the samples generated in lignite and hard coal oxygen gasification process in terms of the amounts and concentrations of particular components. The total amount of wastewater produced in lignite gasification process was higher than the amount generated in hard coal gasification experiments. The lignite gasification wastewater was also characterized by the highest contents of acenaphthene, phenanthrene, anthracene, fluoranthene, and pyrene, whereas hard coal gasification wastewater was characterized by relatively higher concentrations of nitrites, As, Cr, Cu, benzene, toluene, xylene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene.

  14. Power Systems Development Facility Gasification Test Campaign TC21

    SciTech Connect

    Southern Company Services

    2007-01-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of gasification operation with lignite coal following the 2006 gasifier configuration modifications. This demonstration took place during test campaign TC21, occurring from November 7, 2006, through January 26, 2007. The test campaign began with low sodium lignite fuel, and after 304 hours of operation, the fuel was changed to high sodium lignite, for 34 additional hours of operation. Both fuels were from the North Dakota Freedom mine. Stable operation with low sodium lignite was maintained for extended periods, although operation with high sodium lignite was problematic due to agglomeration formation in the gasifier restricting solids circulation.

  15. Power Systems Development Facility Gasification Test Campaign TC16

    SciTech Connect

    Southern Company Services

    2004-08-24

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

  16. Using in-situ hot air/steam stripping (HASS) of hydrocarbons in soils

    SciTech Connect

    La Mori, P.N.

    1994-12-31

    The remediation of soils containing volatile (VOC) and semi-volatile (SVC) hydrocarbons is most desirably accomplished in-situ, i.e., without removal of the contaminated soils from the ground. This approach mitigates the environmental problem, i.e., does not transport it to another location, and when properly applied, does not impact on the local environment during remediation NOVATERRA has demonstrated commercially an in-situ, hot air/steam stripping (HASS) technology to remove VOC and SVC from soils both in the vadose and saturated zones. The technology consists of a drill tower which injects and mixes steam and hot air continuously into the soil below ground and a method to immediately capture all vapors escaping to the surface and remove the vaporized VOC/SVC using condensation and carbon beds. The air can be recompressed and recycled. The condensed liquid containing hydrocarbons is purified by distillation. The recovered hydrocarbons can be destroyed or recycled. The technology has successfully removed various chlorinated aliphatics and aromatics, glycol ethers, phthalates, polyaromatic compounds, ketones, petroleum hydrocarbons and many other compound types from sand to clay soils to risk based standards; e.g. 1 increased cancer risk in 1,000,000 using currently acceptable risk assessment standards.

  17. Update on the Great Plains Coal Gasification Project

    SciTech Connect

    Imler, D.L.

    1985-12-01

    The Great Plains Gasification Plant is the US's first commercial synthetic fuels project based on coal conversion. The ANG Coal Gasification Company is the administer of the Great Plains Coal Gasification Project for the United States Department of Energy. The Project is designed to convert 14 M TPD of North Dakota of lignite into 137.5 MM SCFD of pipeline quality synthetic natural gas (SNG). Located in Mercer County, North Dakota, the gasification plant, and an SNG pipeline. Some 12 years passed from the time the project was conceived unit it became a reality by producing SNG into the Northern Border pipeline in 1984 for use by millions of residential, commercial, and industrial consumers. In this paper, the basic processes utilized in the plant are presented. This is followed by a discussion of the start-up activities and schedule. Finally, some of the more interesting start-up problems are described.

  18. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger

    2005-10-03

    The Design Team continues to conference this quarter albeit not as often. Primary focus this quarter is the continued procurement of material, receiving, and construction/installation. Phase 1 extension recommendation, and subsequent new project estimate. Forms 424 and 4600 were submitted to Ms. Zysk. The NETL technology team subsequently agreed that the increase is justified and made their recommendation to DOE HQ. All major mechanical equipment was delivered this quarter. Three hot water in-bed coils are all that remains for delivery. Two of the five are installed above the dryer air distribution bed. The dryer, baghouse, bucket elevator, control room, exhaust fan, process ductwork, and piping have all been installed. The mezzanine level over the inlet ductwork for access to the dryer was installed. Instrumentation was delivered and locations were identified. Cable is being pulled and connections made from the Control Room to the Motor Control Center. ''Emergency Stop'' equipment logic conditions were discussed and finalized. The functional description was competed and reviewed with Honeywell Controls. Piping & Instrument diagrams are completed. Some electrical schematics have been delivered for equipment south of Q-line. Dry & Wet coal conveyors are not completed. The exhaust chimney was installed. An Open House and ribbon cutting took place on August 9th. GRE project manager gave a presentation of the technology. Joe Strakey, NETL, also spoke. The Open House was attended by Governor Hoevon and Senator Conrad who also spoke about Clean Coal and helped kick-off Blue Flint ethanol and a potential Liquefaction plant. The deign team met the following day to discuss test plan and progress update. Headwaters Energy Incorporated also attended the Open House. A meeting was conducted with them to begin planning for the marketing and finalize our memorandum of understanding. Headwaters still plans to contact all US lignite plants and all bituminous plants who have

  19. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char.

    PubMed

    Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian

    2014-12-01

    Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification.

  20. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger

    2006-04-03

    This 7th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2006. It also summarizes the subsequent purchasing activity, dryer/process construction, and testing. The Design Team began conferencing again as construction completed and the testing program began. Primary focus this quarter was construction/installation completion. Phase 1 extension recommendation, and subsequent new project estimate, Forms 424 and 4600 were accepted by DOE headquarters. DOE will complete the application and amended contract. All major mechanical equipment was run, checked out, and tested this quarter. All water, air, and coal flow loops were run and tested. The system was run on January 30th, shut down to adjust equipment timing in the control system on the 31st, and run to 75 ton//hour on February 1st. It ran for seven to eight hours per day until March 20th when ''pairs'' testing ( 24 hour running) began. ''Pairs'' involves comparative testing of unit performance with seven ''wet'' pulverizers versus six ''wet'' and one ''dry''. During the interim, more operators were brought up to speed on system operation and control was shifted to the main Unit No.2 Control Room. The system is run now from the Unit control board operator and an equipment operator checks the system during regular rounds or when an alarm needs verification. The flawless start-up is unprecedented in the industry and credit should be made to the diligence and tenacity of Coal Creek maintenance/checkout staff. Great River Energy and Headwaters did not meet to discuss the Commercialization Plan this quarter. The next meeting is pending data from the drying system. Discussions with Basin Electric, Otter Tail, and Dairyland continue and confidentiality secured as we promote dryers in their stations. Lighting and fire protection were completed in January. Invoices No.12 through No.20 are completed and forwarded following preliminary

  1. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    SciTech Connect

    Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.; Kinoshita, M.

    1994-08-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

  2. Gasification Plant Cost and Performance Optimization

    SciTech Connect

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power

  3. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  4. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  5. Power Systems Development Facility Gasification Test Campaign TC22

    SciTech Connect

    Southern Company Services

    2008-11-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  6. Production of lignite from underground deposits

    SciTech Connect

    Fenstermaker, R.W.

    1982-05-11

    Lignite is removed from a seam or stratum containing the same in an underground formation by forming within the seam or stratum with aid of a production fluid, which can contain a dispersant or surfactant, a suspension of the lignite in said fluid whereupon the fluid is removed to the surface and the lignite recovered therefrom. The fluid thus recovered is re-used. The production fluid can be heated and/or pulsated and is injected and passed through the formation under conditions to promote the formation of the desired lignite suspension.

  7. Combustion Characteristics of Lignite Char in a Laboratory-scale Pressurized Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Suzuki, Yoshizo

    In a dual fluidized bed gasifier, the residual char after steam gasification is burnt in riser. The objectives of this work are to clarify the effect of parameters (temperature, pressure, and particle size of lignite char) of char combustion using a laboratory-scale pressurized fluidized bed combustor (PFBC). As a result, the burnout time of lignite char can be improved with increasing operating pressure, and temperature. In addition, the decrease in the particle size of char enhanced the effect on burnout time. The initial combustion rate of the char can be increased with increasing operating pressure. The effect was decreased with increasing operating temperature. However, the effect of operating pressure was slightly changed in small particle size, such as 0.5-1.0 mm. It takes about 20 sec to burn 50% of char in the operating pressure of 0.5 MPa and the particle size of 0.5-1.0 mm.

  8. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar

    PubMed Central

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487

  9. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar.

    PubMed

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm(3) at a gasification temperature of 1500 K and equivalence ratio of 0.15.

  10. JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

    SciTech Connect

    Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

    2009-03-27

    The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were

  11. Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-12-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

  12. Distribution of nitrogen species during vitrinite pyrolysis and gasification

    SciTech Connect

    Lin, J.Y.; Li, W.Y.; Chang, L.P.; Feng, J.; Zhao, W.; Xie, K.C.

    2006-08-15

    The formation of HCN and NH3 during pyrolysis in Ar and gasification in CO{sub 2} and steam/Ar was investigated. Vitrinites were separated and purified from different rank coal from lignite to anthracite. Pyrolysis and gasification were carried out in the drop-tube/fixed-bed reactor at temperatures of 600-900{sup o}C. Results showed that with increase of reaction temperature the yield of HCN increased significantly during pyrolysis and gasification. Decrease of coal rank also increased the yield of HCN. Vitrinite from lower rank of coal with high volatile content released more HCN. The yield of NH3 was the highest at 800 {sup o}C during pyrolysis and gasification. And the yield of NH3 from gasification in steam/Ar was far higher than that from gasification in CO{sub 2}, where the hydrogen radicals play a key role. Nitrogen retained in char was also investigated. The yield of char-N decreased with an increase of pyrolysis temperature. Vitrinite from lower rank coal had lower yield of char-N than that from the high rank coal.

  13. Multiple-use marketing of lignite

    SciTech Connect

    Knudson, C.L.

    1993-09-01

    Marketing of lignite faces difficulties due to moisture and sulfur contents, as well as the sodium content, of the ash. The purpose of this study is to determine the economic viability of multiple-use marketing of lignite as a method to increase the use of North Dakota lignite by recapturing lost niche markets. Multiple-use marketing means using lignite and sulfur-capturing additives to clean agricultural wastewater followed by either direct steam and power generation or briquetting to produce a higher-Btu compliance fuel. Cooperative ownership of the resulting business by a coal company and an agriculture processing company helps ensure that lignite remains the coal of choice, especially when the ``good`` attributes of lignites are maximized, while the agricultural company obtains cleaner wastewater and a long-term supply of coal at a set price. The economic viabilities of the following scenarios were investigated: (1) Agriprocessing wastewater treatment using lignite and an additive followed by (2) the production of compliance fuel for resale or on-site cogeneration of steam and electricity. Laboratory tests were performed utilizing potato-processing plant wastewater with lignite and lime sludge.

  14. Solubilization of Australian lignites by microorganisms

    SciTech Connect

    Catcheside, D.E.A.; Mallett, K.J.; Cox, R.E.

    1988-01-01

    Australia has substantial lignite deposits, particularly in the Latrobe Valley in Victoria where 4.10/sup 10/ tons are accessible with available technologies. The authors have investigated the susceptibility of these coal to solubilization by microorganisms, including species additional to those already identified as active on North American lignites. The data presented here show that acid oxidized lignites from the Latrobe Valley are solubilized by each of seven species of microorganisms previously found to be active on Leonardite and oxidized North American lignites. These are the wood rot fungi: Trametes versicolor, Poria placenta and Phanerochaete chrysosporium, the lignin degrading prokaryote Streptomyces viridosporus and three fungi isolated from lignite in Mississippi: Candida ML-13, Cunninghamelia YML-1 and Penicillium waksmanii.

  15. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  16. Lignite pellets and methods of agglomerating or pelletizing

    DOEpatents

    Baker, Albert F.; Blaustein, Eric W.; Deurbrouck, Albert W.; Garvin, John P.; McKeever, Robert E.

    1981-01-01

    The specification discloses lignite pellets which are relatively hard, dust resistant, of generally uniform size and free from spontaneous ignition and general degradation. Also disclosed are methods for making such pellets which involve crushing as mined lignite, mixing said lignite with a binder such as asphalt, forming the lignite binder mixture into pellets, and drying the pellets.

  17. Coal gasification developments in Europe -- A perspective

    SciTech Connect

    Burnard, G.K.; Sharman, P.W.; Alphandary, M.

    1994-12-31

    This survey paper will review the development status of coal gasification in Europe and give a broad perspective of the future uptake of the technology. Three main families of gasifier design are currently being developed or demonstrated world-wide, namely fixed bed (also known as moving bed), fluidized bed and entrained flow. Gasifiers belonging to each of these families have been or are being developed in European countries. Of the three families, entrained flow gasifiers are at the most advanced stage of development, with two demonstration projects currently underway: these projects are based on designs developed by Shell and Krupp Koppers. Fixed bed systems have been developed to operate under either slagging or non-slagging conditions, ie, the British Gas-Lurgi and Tampella U-Gas systems, respectively. Fluid bed systems of various designs have also been developed, eg, the Rheinbraun HTW, British Coal and Ahlstrom systems. Gasification cycles can be based on either total or partial gasification, and the above designs represent both these options. In addition, a wide variety of fuel sources can be used in gasifiers, including bituminous coal, lignite, biomass, petroleum coke, etc or, indeed, any combination of these. The major demonstration projects in Europe are at Buggenum in the Netherlands, where a 250 MWe entrained flow gasifier based on Shell technology first gasified coal in December 1993. A further 335 MWe entrained flow gasifier, located at Puertollano in Spain, based on Krupp Koppers Prenflo technology, is at an advanced stage of construction.

  18. Inorganic constituents in American lignites

    SciTech Connect

    Morgan, M. E.; Jenkins, R. G.; Walker, P. L.

    1980-04-01

    Both the discrete mineral phases and the ion-exchangeable inorganic components of lignites from Texas, North Dakota, and Montana have been studied. The ion-exchangeable cations and the carboxyl groups with which they are associated were characterized by ion exchange methods utilizing ammonium acetate and barium acetate, respectively. Na, K, Mg, Ca, Sr, and Ba were found to be present in all three coals. It was found that Ca and Mg were the most abundant cations and that 40 to 60% of the carboxyl groups in the raw coals were exchanged with cations. Also, significant variations in the relative and absolute concentrations of all the cations were observed. The discrete mineral phases in these lignites were studied by semiquantitative x-ray diffraction and infrared spectroscopy. The importance of the cations in this analysis was shown when the mineralogical analyses of the low temperature ash of the coals with the cations removed and the raw coals were compared. Results show that up to 50% of the low temperature ash of these raw coals can be attributed to the existence of metal cations and that fixation of sulfur, carbon, and oxygen to form sulfates and carbonates is the major reason for this contribution.

  19. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  20. Gasification: redefining clean energy

    SciTech Connect

    2008-05-15

    This booklet gives a comprehensive overview of how gasification is redefining clean energy, now and in the future. It informs the general public about gasification in a straight-forward, non-technical manner.

  1. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  2. 2010 Worldwide Gasification Database

    DOE Data Explorer

    The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

  3. Considerations on coal gasification

    NASA Technical Reports Server (NTRS)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  4. Gasification at Navy Bases.

    DTIC Science & Technology

    1978-07-01

    Battalion Center at Port Hueneme, CA. The title of the contract was ’ Coal Gasification Feasibility Study.’ Coal gasification is recognized as a way...operated. A conceptual design study comparing coal gasification with central direct coal-fired boilers at five bases was performed.

  5. Synthetic fuel production using Texas lignite and a very high temperature reactor for process heat

    SciTech Connect

    Ross, M.A.; Klein, D.E.

    1982-03-01

    Two approaches for synthetic fuel production from coal are studied using Texas lignite as the feedstock. First, the gasification and liquefaction of coal are accomplished using Lurgi gasifiers and Fischer-Tropsch synthesis. A 50 000 barrel/day facility, consuming 13.7 million tonne/yr (15.1 million ton/yr) of lignite, is considered. Second, a nuclear-assisted coal conversion approach is studied using a very high temperature gas-cooled reactor with a modified Lurgi gasifier and Fischer-Tropsch synthesis. The nuclear-assisted approach resulted in a 35% reduction in coal consumption. In addition, process steam consumption was reduced by one-half and the oxygen plants were eliminated in the nuclear assisted process. Both approaches resulted in a synthetic oil price higher than the March 1980 imported price of $29.65 per barrel: $36.15 for the lignite-only process and $35.16 for the nuclear-assisted process. No tax advantage was assumed for either process and the utility financing method was used for both economic calculations.

  6. Swelling of lignites in organic solvents

    SciTech Connect

    R.G. Makitra; D.V. Bryk

    2008-10-15

    Data on the swelling of Turkish lignites can be summarized using linear multiparameter equations that take into account various properties of solvents. Factors responsible for the amounts of absorbed solvents are the basicity and cohesion energy density of the solvents.

  7. A review of lignite resources of Arkansas

    USGS Publications Warehouse

    Willett, Jason C.; Hackley, Paul C.; Warwick, Peter; S.J. Law,; Nichols, Douglas J.

    2011-01-01

    This review of the lignite resources of Arkansas is a part of the U.S. Geological Survey’s (USGS) National Coal Resource Assessment (NCRA) of the Gulf Coastal Plain Coal Province, which also includes coal-bearing areas in the states of Texas, Louisiana, Alabama, Mississippi, Tennessee, and Kentucky (see Ruppert et al., 2002; Dennen, 2009; and other chapters of this publication). Lignite mining is not planned in Arkansas in the immediate future, and the lignite resources of the state were not assessed in detail as part of the NCRA. This chapter includes reviews of the geology of the lignite-bearing units, historical mining, previous investigations of lignite resources, and coal quality. Palynological data for lignite samples collected in Arkansas as part of this work are presented in Table 1.The lignite-bearing stratigraphic units of Arkansas are part of the Mississippi Embayment of the Gulf Coastal Plain, a trough of Cretaceous through Quaternary sedimentary strata that plunge gently southward along an axis that generally is coincident with the course of the Mississippi River (Figure 1) (Cushing et al., 1964). The sedimentary strata of the Gulf Coastal Plain of Arkansas are, in general, flat-lying or gently dipping southeastward to eastward toward the embayment axis. Coal and lignite occur in Cretaceous through Tertiary strata of Arkansas and previously have been investigated in two principal regions within the State where units of these ages crop out: south-central Arkansas (West Gulf Coastal Plain) and Crowley’s Ridge in the northeastern part of the State (Figure 2).

  8. New projects for CCGTs with coal gasification (Review)

    NASA Astrophysics Data System (ADS)

    Olkhovskii, G. G.

    2016-10-01

    Perspectives of using coal in combined-cycle gas turbine units (CCGTs), which are significantly more efficient than steam power plants, have been associated with preliminary coal gasification for a long time. Due to gasification, purification, and burning the resulting synthesis gas at an increased pressure, there is a possibility to intensify the processes occurring in them and reduce the size and mass of equipment. Physical heat evolving from gasification can be used without problems in the steam circuit of a CCGT. The downside of these opportunities is that the unit becomes more complex and expensive, and its competitiveness is affected, which was not achieved for CCGT power plants with coal gasification built in the 1990s. In recent years, based on the experience with these CCGTs, several powerful CCGTs of the next generation, which used higher-output and cost-effective gas-turbine plants (GTPs) and more advanced systems of gasification and purification of synthesis gas, were either built or designed. In a number of cases, the system of gasification includes devices of CO vapor reforming and removal of the emitted CO2 at a high pressure prior to fuel combustion. Gasifiers with air injection instead of oxygen injection, which is common in coal chemistry, also find application. In this case, the specific cost of the power station considerably decreases (by 15% and more). In units with air injection, up to 40% air required for separation is drawn from the intermediate stage of the cycle compressor. The range of gasified coals has broadened. In order to gasify lignites in one of the projects, a transfer reactor was used. The specific cost of a CCGT with coal gasification rose in comparison with the period when such units started being designed, from 3000 up to 5500 dollars/kW.

  9. Radiological investigation of lignite ash. The case of the West Macedonia Lignite Center (Greece)

    SciTech Connect

    Tsikritzis, L.I.; Fotakis, M.; Tzimkas, N.; Tsikritzi, R.; Trikoilidou, E.; Kolovos, N.

    2009-07-01

    This article investigates the natural radioactivity of 26 ash samples, laboratory produced from lignite samples collected in the West Macedonia Lignite Center in Northern Greece. The activity concentrations of {sup 40}K, {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 228}Ra, and 232Th were measured by spectroscopy and found four to five times higher than those in the original lignite samples. The radionuclides transfer factors depend on the characteristics of the combustion process and were found higher for {sup 232}Th, {sup 228}Ra, and 40K, because of their closer affinity with the inorganic fraction of the lignite. Compared with other results found in the published literature, the studied ash has relatively high content in radioactivity, but the resulting radiation dose from the radionuclide emissions in the West Macedonia Lignite Center do not contribute significantly to the total effective dose.

  10. Low-cost metal adsorbents from lignite

    SciTech Connect

    Knudson, C.L.; Lafferty, C.J.; Deibel, C.C.

    1996-12-31

    Current technologies to remove heavy metals from acidic waters tend to use lime and/or caustic soda to create a highly basic solution which causes the metals to precipitate as a metal hydroxide rich sludge which must then be disposed of as a waste. The proposed process would treat streams containing low levels of metal contaminants in a simple lignite bed to remove cationic heavy metal ions. For more acidic streams, the acidity of the water could first be moderately reduced with landfill sludge (Ca-sludge) followed by lignite treatment to remove and immobilize metals. This type of processing would need a conventional mixing settling tank configuration. Tests have been performed which indicate minus 14 mesh lignite has the highest capacity to remove metal ions from solution. One wt% of lignite reduced the zinc content of a lab solution from 95 ppm to 7 ppm (5 wt% reduced it to 0.5 ppm). The combination of 1 wt% lignite and 0.1 wt% Ca-sludge reduced the zinc content of a mine water sample from 36 to 10 ppm (0.5 wt% of Ca-sludge gave 2 ppm of Zinc) while increasing the solution pH from 3.84 to 7.20. These results indicate that optimum treatment rates would be between 1--2 wt% of lignite and 0.1 to 0.5 wt% of Ca-sludge. A lignite to Ca-sludge ratio of about 10 to 1 should be a sulfur emission compliant combustion fuel.

  11. Selective oil agglomeration of lignite

    SciTech Connect

    Halime Abakay Temel; Volkan Bozkurt; Arun Kumar Majumder

    2009-01-15

    In this study, desulfurization and deashing of Adiyaman-Glbai lignite by the agglomeration method were studied. For this purpose, three groups of agglomeration experiments were made. The effects of solid concentration, bridging liquid type and dosage, pH, and screen size on the agglomeration after desliming were investigated in the first group of experiments. The effects of lake water and sea water (the Mediterranean Sea water, the Aegean Sea water, and the Black Sea water) on the agglomeration were investigated in the second group of experiments. The effects of different salts (NaCl, MgCl{sub 2}, and FeCl{sub 3}) on the agglomeration were investigated in the third group of experiments. Agglomeration results showed that the usage of sea waters and soda lake water in the agglomeration medium had a positive effect on the reduction of total sulfur content of agglomerates. In addition, the usage of NaCl, MgCl{sub 2}, and FeCl{sub 3} in the agglomeration medium had a positive effect on the ash content reduction of the agglomerates. 27 refs., 10 figs., 6 tabs.

  12. Combustion testing of San Miguel lignite

    SciTech Connect

    Jones, M.L.; Goblirsch, G.M.

    1982-01-01

    Results from pilot plant testing of the San Miguel lignite are: (1) The ash fouling furnace is an empirical tool which provides good information on relative fouling potential of various fuels. In the case of San Miguel lignite tests suggest a severe fouling problem is conventional boiler designs are employed. (2) No effect in either deposition rate or deposit strength was seen when MgO and CaCO/sub 3/ were used at additives. For these tests a single addition rate was utilizing two different injection points in the system. (3) No bed agglomeration was noted under the varied run conditions used in testing of this lignite fuel. (4) The atmospheric fluidized-bed combustor (AFBC) NO/sub x/ level emitted in the flue gas were always less than the NSPS limit of 0.6 lbs NO/sub 2//10/sup 6/ Btu. (5) Utilization of inherent alkali was less than that observed for North Dakota lignites. It was possible to meet NSPS standards of 90 percent sulfur capture using limestone addition. (6) Pulverized-coal combustion of San Miguel lignite resulted in a larger portion of <1 ..mu..m size particulates than has been noted in similar tests with the Arapahoe subbituminous coal and the Ledbetter Texas lignite. (7) The composition of particulates from P-C combustion of San Miguel lignite has a more varied composition than has been seen in testing with other types of coal. Use of lower grade fuels such as the lignite from the San Miguel mine is inevitable if we are to meet the expanding needs for energy in the United States today. To make use of these different fuels extensive testing on laboratory and pilot scales will be beneficial in avoiding major problems due to the different characteristics these materials possess. The present successful operation of a full scale boiler using the San Miguel lignite is a good example of the value pilot scale studies can have on the road to successful operation.

  13. Gasification. 2nd. ed.

    SciTech Connect

    Christopher Higman; Maarten van der Burgt

    2008-02-15

    This book covers gasification as a comprehensive topic, covering its many uses, from refining, to natural gas, to coal. It provides an overview of commercial processes and covers applications relevant to today's demands. The new edition is expanded and provides more detail on the integration issues for current generation, state-of-the-art Integrated Gasification Combined Cycles (IGCC); CO{sub 2} capture in the IGCC context addressing the issues of pre-investment and retrofitting as well as defining what the term 'CO{sub 2} capture ready' might mean in practice; issues of plant reliability, availability and maintainability (RAM) including as evaluation of feedback from existing plants; implementation of fuel cell technology in IGCC concepts. Contents are: Introduction; The Thermodynamics of Gasification; The Kinetics of Gasification and Reactor Theory; Feedstocks and Feedstock Characteristics; Gasification Processes; Practical Issues; Applications; Auxiliary Technologies; Economics, environmental, and Safety Issues; Gasification and the Future. 5 apps.

  14. Gasification of Woody Biomass.

    PubMed

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges.

  15. Method to enhance the microbial liquefaction of lignite coals

    SciTech Connect

    Strandberg, G.W.; Lewis, S.N.

    1986-01-01

    There is considerable interest in the potential use of microorganisms to liquefy low-ranked coals. Although a variety of fungal species are able to form liquid products from several types of lignite coals, only one naturally occurring lignite yet tested (a North Dakota lignite) has shown consistent susceptibility to rapid and extensive liquefaction. We have described a relatively simple method to enhance the susceptibility of more recalcitrant lignites and subbituminous coals to fungal liquefaction. 7 refs., 5 tabs.

  16. Soviet underground coal gasification on the rocks

    SciTech Connect

    Not Available

    1980-10-13

    According to the University of California Lawrence Livermore Laboratory, the U.S.S.R. has abandoned large-scale development plans for coal-gasification projects, due to the low heating value of the gas produced at test burns at Angren, and to the cost, estimated at 132% of the standard Lurgi value, in contrast to the cost of approx. 65% of the standard Lurgi value in U.S. experimental burns. The U.S.S.R. coal-gasification effort has been in development since 1950, with a peak production of approx. 2 billion cu m/yr in 1966. The poor test burn results might have been caused by: drilling the boreholes too close to each other, which would increase drilling costs; the loss of a large amount of heat through a porous overburden; the lack of good underground diagnostics before and during a burn; and a lack of a good laboratory support program. The gas heating value was too low to warrant transportation far from the burn site, but most suitable burn sites are in remote areas. In the U.S.S.R., natural gas and open-pit lignite mining appear to be cheaper sources of energy.

  17. Solar coal gasification

    NASA Astrophysics Data System (ADS)

    Gregg, D. W.; Aiman, W. R.; Otsuki, H. H.; Thorsness, C. B.

    1980-01-01

    A preliminary evaluation of the technical and economic feasibility of solar coal gasification has been performed. The analysis indicates that the medium-Btu product gas from a solar coal-gasification plant would not only be less expensive than that from a Lurgi coal-gasification plant but also would need considerably less coal to produce the same amount of gas. A number of possible designs for solar coal-gasification reactors are presented. These designs allow solar energy to be chemically stored while at the same time coal is converted to a clean-burning medium-Btu gas.

  18. Gasification-based biomass

    SciTech Connect

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  19. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  20. NAFTA opportunities: Bituminous coal and lignite mining

    SciTech Connect

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) secures and improves market access in Mexico and Canada for the United States bituminous coal and lignite mining sector. Canada is one of the United States' largest export markets for bituminous coal and lignite, with exports of $486.7 million in 1992. Conversely, the Mexican market is one of the smallest export markets for U.S. producers with exports of $1.8 million in 1992. Together, however, Canada and Mexico represent approximately 15 percent of total U.S. coal exports. The report presents a sectoral analysis.

  1. Production of Jet Fuels from Coal Derived Liquids. Volume 7. GPGP Jet Fuels Production Program. Evaluation of Technical Uncertainties for Producing Jet Fuels from Liquid By-Products of the Great Plains Gasification Plant

    DTIC Science & Technology

    1989-01-01

    AFWAL-TR-87-2042 VOLUME VII PRODUCTION OF JET FUELS FROM COAL DERIVED LIQUIDS I VOLUME VII -- GPGP JET FUELS PRODUCTION PROGRAM -- EVALUATION OF o...from Coal Derived Liquids, Vol VII - GPGP Jet Fuels Production Program - Evaluation of Technical Uncertainties for Producing Jet Fuels from Liquid By...potential of jet fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant ( GPGP

  2. Gasification: A Cornerstone Technology

    SciTech Connect

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  3. Gasification: A Cornerstone Technology

    ScienceCinema

    Gary Stiegel

    2016-07-12

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  4. Thermogravimetric investigation of hydrochar-lignite co-combustion.

    PubMed

    Liu, Zhengang; Quek, Augustine; Kent Hoekman, S; Srinivasan, M P; Balasubramanian, R

    2012-11-01

    Co-combustion of hydrochar with lignite was investigated by means of thermogravimetric analysis. Hydrochars were produced from coconut fibers and eucalyptus leaves under hydrothermal conditions at 250°C. The hydrochar was added in varying amounts to lignite for combustion. The results indicated that hydrothermal treatment decreased the volatile matter content and increased the fixed carbon content of the biomaterials. The elevated energy density and decreased ash content of the hydrochar improved its combustion behavior when co-fired with lignite for energy production. The hydrochars derived from coconut fiber and eucalyptus leaves had similar chemical compositions and showed similar influences on lignite combustion. Hydrochar addition increased the burnout and shortened the combustion range of the hydrochar-lignite blends. High combustion efficiency was observed due to the synergistic interactions between hydrochar and lignite during the co-combustion process. A kinetic study showed that the combustion process of hydrochar-lignite blends followed first-order reaction rates.

  5. Study of early appearance of skin lesions in coal gasification workers.

    PubMed

    Begraca, M; Ukmata, H; Morris, S C; Canhasi, B; Haxhiu, M A

    1991-09-01

    A retrospective cohort morbidity study was conducted among workers employed at the Kosovo coal gasification plant and a reference population of open-pit lignite miners. The aim was to determine the rate of early skin cancer and pre-cancerous skin lesions. In 15 years of commercial operation of the coal gasification plant, seven workers were diagnosed with benign skin tumors, six with pre-cancerous skin diseases, but none with skin cancer. The lesions were significantly fewer than were reported earlier over a shorter time period and in a smaller population at a coal hydrogenation plant. Compared to the reference population who received medical care in the same clinic, gasification workers had a lower skin cancer rate, but a higher rate of benign skin tumors and potentially pre-cancerous skin diseases.

  6. A novel approach to highly dispersing catalytic materials in coal for gasification

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1990-01-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, subbituminous, and bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the co-adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. 8 refs., 6 figs.

  7. Statistical tests for prediction of lignite quality

    SciTech Connect

    C.J. Kolovos

    2007-06-15

    Domestic lignite from large, bucket wheel excavators based open pit mines is the main fuel for electricity generation in Greece. Lignite from one or more mines may arrive at any power plant stockyard. The mixture obtained constitutes the lignite fuel fed to the power plant. The fuel is sampled in regular time intervals. These samples are considered as results of observations of values of spatial random variables. The aim was to form and statistically test many small sample populations. Statistical tests on the values of the humidity content, the ash-water free content, and the lower heating value of the lignite fuel indicated that the sample values form a normal population. The Kolmogorov-Smirnov test was applied for testing goodness-of-fit of sample distribution for a three year period and different power plants of the Kozani-Ptolemais area, western Macedonia, Greece. The normal distribution hypothesis can be widely accepted for forecasting the distribution of values of the basic quality characteristics even for a small number of samples.

  8. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    SciTech Connect

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L.

    1997-11-01

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K {+-} 14K. A unique feature of the HTCF is the {open_quotes}diaphragmless{close_quotes} acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel`dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs.

  9. Power Systems Development Facility Gasification Test Campaign TC25

    SciTech Connect

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  10. Testing of novel catalytic coal-gasification concepts. Task 1. Ultrasound-promoted catalysis. Final report, September 1986-September 1989

    SciTech Connect

    Mensinger, M.C.; Lau, F.S.; Wangerow, J.R.; Punwani, D.V.

    1990-07-01

    Tests were conducted to determine the effects of operating conditions, catalysts, and reactor configurations on ultrasound-promoted coal gasification. The operating conditions tested with lignite-water or lignite-water-salt slurries included temperatures and pressures in the range of 75 to 650 F, and 50 to 1200 psig, respectively. In tests conducted with nonaqueous slurries, the temperatures and pressures tested ranged from 650 to 720 F and 100 to 200 psig. Catalysts tested were KOH, LiOH, K2CO3, hydrogenation, SNOCAT, laterite, CRG-A, and ruthenium. The frequency of the ultrasonic horn was 20 kHz. Overall, at the conditions and with the catalysts and slurry media tested, ultrasound was not effective in sustaining coal gasification reactions. The most favorable results were obtained with a lignite-water slurry irradiated with high intensity ultrasound with KOH catalyst at 550 F and 1050 psig. After 1 hour of sonication, the carbon conversion to gas was about 5%. Analyses of the slurries from tests conducted with and without ultrasound showed that ultrasound significantly increased the types and quantities of components that were solubilized. As expected, ultrasound significantly reduced the particle size of lignite being irradiated.

  11. Gasification Technologie: Opportunities & Challenges

    SciTech Connect

    Breault, R.

    2012-01-01

    This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

  12. High Pressure Biomass Gasification

    SciTech Connect

    Agrawal, Pradeep K

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  13. Comparative studies of Eocene silicified peat and lignite: transition between peat and lignite

    SciTech Connect

    Ting, F.T.C.

    1985-01-01

    Silicified Eocene peats with excellent preserved cellular structures were found in lignite beds in western North Dakota and were comparatively studied. The well preserved plant tissues resemble that of modern Taxodium peat. The most striking difference between silicified peat and lignite is the disappearance of cell cavities when peat is transformed to lignite, a phenomenon caused primarily by compaction rather than cell wall swelling through humification or gelification. The differences between textinite and ulminite can be traced back to the differences between early wood and late wood of the secondary xylem. What appear to be cutinites in lignite are compressed cortex tissues of young plants. Silicified leaf and cortex tissues contain more visible fluorinite exhibiting brilliant fluorescence. Clustering phloem fibers or stone cells give rise to a material resembling resinite but are more akin to huminite A and/or suberinite. They converge to vitrinite when vitrinite reflectance exceeds 0.6%. Alternating banded phloem fibers and phloem parenchyma give rise to alternating layers of huminite A and huminite B. True micrinite does occur in lignite but in limited quantities.

  14. (Bioprocessing of lignite coals using reductive microorganisms)

    SciTech Connect

    Crawford, D.L.

    1990-01-01

    The objectives of this report are to: (1) characterize selected aerobic bacterial strains for their abilities to depolymerize lignite coal polymers, and isolate and identify the extracellular enzymes responsible for depolymerization of the coal; (2) characterize selected strictly anaerobic bacteria, that were previously shown to reductively transform coal substructure model compounds, for the ability to similarly transform polymeric coal; and (3) isolate more strains of anaerobic bacteria by enrichment using additional coal substructure model compounds and coal as substrates.

  15. Method for increased mine recovery and upgrading of lignite

    SciTech Connect

    Jones, E.E.; Pearce, T.A.; Laird, D.C. III; Everitt, J.H.

    1986-10-28

    A process is described for upgrading lignite ores to remove a substantial proportion of the non-combustible ash content associated with the lignite which comprises: (1) sizing by crushing to a maximum top size of less than about 6 inches in two directions (axis's) (2) separating the clay and/or rock (gangue) which are discarded and lignite from each other in a float-sink gravity separator, (3) directing the float containing the lignite and some small particles of clay to a screen deck to size the float into at least three portions, (4) washing the first two screen proportions to free them of clays, (5) collecting the third portion consisting of fines and water as an underflow from the deck, (6) treating the underflow in a hydrocyclone to recover a substantial quantity of the lignite associated with some clays as the overflow and an aqueous stream containing the remainder of the clays and some lignite as the underflow and discarding. (7) treating overflow to effectuate a size separation of the lignite substantially free of clays as underflow and the clays with some fine lignites as the overflow. (8) seive bend dewatering and washing and drying the underflow and combining the resultant product with the +28 mesh lignite product, (9) flocculating (clarifier-thickener) the refuse from the seive bend and the overflow from (7) to about 35% solids, (10) further concentrating the refuse, as by filtration, to a discardable solid.

  16. Reconnaissance for uranium-bearing lignite in the Ekalaka Lignite Field, Carter County, Montana

    USGS Publications Warehouse

    Gill, James R.

    1954-01-01

    Uranium-bearing lignite beds 1.5 to 8 feet thick occur in the Fort Union formation of the southern part of the Ekalaka Hills, Carter County, Mont. Data from surface outcrops indicate that an area of about 1,400 acres is underlain by 16,500,000 tons of uranium-bearing lignite containing 700 tons of uranium. The uranium content of the lignite beds ranges from 0.001 to 0.034 percent. Ironstone concretions in the massive coarse-grained sandstones in the upper part of the Fort Union formation contain 0.005 percent uranium in the northern and eastern parts of the area. These sandstones are good potential host rocks for uranium mineralization and are lithologically similar to the massive coarse-grained uranium-bearing sandstones of the Wasatch formation in the Pumpkin Buttes area of the Powder River Basin.

  17. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect

    Crawford, D.L.

    1990-01-01

    Depolymerization of lignite is being investigated. Research objectives include: isolate and characterize microbial strains that carry out chemical transformations of lignite coal that would cause its depolymerization, reduction, and/or liquefaction; characterize desirable reactions by growing selected of the microbial isolates on coal model compounds, and determine if the reactions occur when the microbial strains are growing on coal; and characterize several newly isolated coal-depolymerizing bacteria to determine their mechanisms of coal depolymerization, and utilize the depolymerized coal as a substrate for the isolation of additional strictly anaerobic bacteria that reductively transform the depolymerized coal. Since the last report we have made a significant breakthrough in our characterizations of the coal depolymerization mechanism. Not only have we characterized several additional bacterial strains that are superior to P. cepacia DLC-07 in their coal depolymerization abilities, but we have confirmed that depolymerization is catalyzed by a highly active extracellular enzymatic activity in several Pseudomonas and Flavobacterium strains. Our breakthrough discovery of a coal-depolymerizing enzyme system opens the way for elucidating the mechanism by which bacteria attack the macromolecular structure of lignite coals. 8 figs., 1 tab.

  18. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.

    PubMed

    Narobe, M; Golob, J; Klinar, D; Francetič, V; Likozar, B

    2014-06-01

    Thermo-gravimetric analysis (TGA) of volatilization reaction kinetics for 50 wt.% mixtures of plastics (PE) and biomass (wood pellets) as well as for 100 wt.% plastics was conducted to predict decomposition times at 850°C and 900°C using iso-conversional model method. For mixtures, agreement with residence time of dual fluidized bed (DFB) reactor, treated as continuous stirred-tank reactor (CSTR), was obtained at large conversions. Mono-gasification of plastics and its co-gasification with biomass were performed in DFB pilot plant, using olivine as heterogeneous catalyst and heat transfer agent. It was found that co-gasification led to successful thermochemical conversion of plastics as opposed to mono-gasification. Unknown flow rates were determined applying nonlinear regression to energy and mass balances acknowledging combustion fuel, air, steam, feedstock, but also exiting char, tar, steam and other components in DFB gasification unit. Water-gas shift equilibrium and methanol synthesis requirements were incorporated into gasification model, based on measurements.

  19. A novel approach to highly dispersing catalytic materials in coal for gasification

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1989-01-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. A zeta meter, a tube furnace, and other equipment required for the investigation have been acquired and installed. Preliminary work shows that the lignite (Psoc 1482) is negatively charged between pH 1.8 and pH 11.0 and has an isoelectric point of pH 1.8.

  20. A novel approach to highly dispersing catalytic materials in coal for gasification

    SciTech Connect

    Abotsi, M.K.; Bota, K.B.

    1990-01-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. Zeta potential studies show that the surfaces of the lignite are negatively charged between about pH2 to 11, the negative charge density increasing with increase in pH. Highly alkaline media promoted calcium adsorption due to high negative charge on the coal, while calcium uptake was inhibited in strongly acidic solutions.

  1. Integrated coal gasification combined cycle

    NASA Astrophysics Data System (ADS)

    Richards, P. C.; Wijffels, J.-B.; Zuideveld, P. L.

    Features of the integrated coal gasification combined cycle power plants are described against the backdrop of the development and first commercial application of the shell coal gasification process. Focus is on the efficiency and excellent environmental performance of the integrated coal gasification combined power plants. Current IGCC projects are given together with an outline of some of the options for integrating coal gasification with combined cycles and also other applications of synthesis gas.

  2. Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report

    SciTech Connect

    Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

    1982-09-01

    The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than the higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.

  3. Depositional environments of some Tertiary lignites from Alabama

    SciTech Connect

    Gutzler, R.Q.

    1985-01-01

    Petrographic, chemical, stratigraphic, and palynologic methods were used to reconstruct the depositional environments of some Paleocene-Eocene lignites from the Nanafalia Formation (Wilcox Group) and Naheola Formation (Midway Group) of Alabama. Stratigraphic evidence suggests that the thin lignite seams of the Naheola Formation were formed in deltaic settings; whereas,the thicker Nanafalia lignites were formed in stream channels and sinkholes developed on an eroded limestone surface. Lignites from both areas have high sulfur contents; however, the Naheola lignites have high levels of both organic and pyritic sulfur and the Nanafalia lignites have high levels or organic sulfur only. This suggests that iron was less available to the limestone-associated Nanafalia peat swamps than to the deltaic Naheola swamps. The Naheola lignites are composed primarily of banded lithotypes dominated by the huminite macerals gelinite, ulminite, and humodetrinite. Palynologic evidence suggests that the swamp flora that formed these coals contained Corylus, ferns, and palms with ferns being most common in the Naheola swamps and palms being most common in the Nanafalia. In general, differences in petrographic, chemical, and palynologic composition between the Naheola and Nanafalia lignites can readily be explained by differences in the original depositional conditions under which these deposits were formed.

  4. Municipal solid waste gasification: Perspectives

    SciTech Connect

    Bain, R.; Overend, R.P.; Chornet, E.; Craig, K.R.

    1996-12-31

    The paper consists of the transparencies that were used during the presentation. Flowcharts are presented for processing options for municipal solid wastes and refuse derived fuels, and for the gasification of refuse derived fuels. Summaries are presented on gasification and gas conditioning goals, the history of MSW gasification, clean gas requirements for engines, and recent history of several gasification processes (Lurgi CFB, TPS CFB, Thermoselect pilot plant, and Proler pilot plant). Challenges are listed and a flowchart for a typical gasification/gas conditioning process is given.

  5. Cretaceous and Eocene lignite deposits, Jackson Purchase, Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Rich, F.J.; Williams, D.A.; Bland, A.E.; Fiene, F.L.

    1990-01-01

    Lignites occur in the Cretaceous McNairy Formation and the Eocene Claiborne Formation in the Jackson Purchase region of western Kentucky. The lone Cretaceous lignite sample has over 18 percent inertodetrinite and 32 percent humodetrinite which, along with the abundant mineral matter, suggests a possible allochthonous origin for the deposit. The Claiborne Formation lignites have higher humic maceral contents than the Cretaceous lignites. Palynology suggests that there was considerable variation in the plant communities responsible for the Claiborne deposits. Differences in the preservation of the various plants is also seen in the variations between the humic types, particularly in the ulminite and humodetrinite contents. Potter and Dilcher (1980) suggested that the Claiborne lignites in the Jackson Purchase and west Tennessee developed in the abandoned oxbows of Eocene rivers. Significant short-distance changes in the peat thickness, flora, and other depositional elements should be expected in such an environment and could easily account for the observed variations in composition. ?? 1990.

  6. Characterization of microbes which polymerize and depolymerize lignite coals

    SciTech Connect

    Polman, J.K.; Breckenridge, C.R.; Quigley, D.R.

    1991-12-01

    Several bacteria were tested for their ability to modify the macromolecular structure of different coals. When grown in the presence of Mississippi Wilcox lignite, North Dakota Beulah Zap lignite, and North Dakota lenoardite, strain Con5-1L produces polymerization products that are derived from coal. This bacterium was characterized extensively with respect to physiology and morphology and may be a member of the genus Arthrobacter. Strain UPLCPS2-B, which was identified as Pseudomonas chlororaphis, may be capable of limited depolymerization of Mississippi Wilcox lignite and leonardite, but not Beulah Zap lignite. Fermentative strain Con5-5C, which may extensively depolymerize Mississippi Wilcox lignite, was characterized according to morphology and physiology. Other strains tested had little or no effect on coal macromolecular structure. These included Escherichia coli, Arthrobacter paraffineus, and strain BED1. 21 refs., 2 figs.

  7. Characterization of microbes which polymerize and depolymerize lignite coals

    SciTech Connect

    Polman, J.K.; Breckenridge, C.R.; Quigley, D.R.

    1991-01-01

    Several bacteria were tested for their ability to modify the macromolecular structure of different coals. When grown in the presence of Mississippi Wilcox lignite, North Dakota Beulah Zap lignite, and North Dakota lenoardite, strain Con5-1L produces polymerization products that are derived from coal. This bacterium was characterized extensively with respect to physiology and morphology and may be a member of the genus Arthrobacter. Strain UPLCPS2-B, which was identified as Pseudomonas chlororaphis, may be capable of limited depolymerization of Mississippi Wilcox lignite and leonardite, but not Beulah Zap lignite. Fermentative strain Con5-5C, which may extensively depolymerize Mississippi Wilcox lignite, was characterized according to morphology and physiology. Other strains tested had little or no effect on coal macromolecular structure. These included Escherichia coli, Arthrobacter paraffineus, and strain BED1. 21 refs., 2 figs.

  8. Gasification reactivity and kinetics of typical Chinese anthracite chars with steam and CO{sub 2}

    SciTech Connect

    Linxian Zhang; Jiejie Huang; Yitian Fang; Yang Wang

    2006-05-15

    The gasification reactivities of six typical Chinese anthracite chars with steam and CO{sub 2} at 0.02-0.1 MPa and 920-1050{sup o}C were investigated by using thermogravimetric analysis (TGA). The reactivities of anthracite chars during steam gasification were found to have a good correlation to the coal volatile matter contents. The higher the coal volatile matter content, the higher the reactivity. The difference in reactivities of anthracite chars during CO{sub 2} gasification seems to be more dependent on the catalytic effect of inherent minerals in anthracite. The results show that the greater the alkali index, the higher the reactivity. The reactivities of demineralized anthracite chars vary very little compared with those the undemineralized chars at higher temperatures, whereas the reactivities of demineralized chars from Jincheng and Rujigou are lower than those of undemineralized ones and the reactivities of demineralized chars from Yangquan, Hunan, Guangdong, and Longyan are higher than those of undemineralized chars at lower temperatures. The homogeneous model and shrinking core model were examined as ways to interpret the experimental data. The experimental results could be well-described by the shrinking core model for anthracite chars during steam and CO{sub 2} gasification. Comparison of the reactivities for anthracite chars during steam and CO{sub 2} gasification shows that the reactivities of anthracite chars during steam gasification are far higher than those during CO{sub 2} gasification. The reactivities of the former are about 10 times higher than those of the latter, and this ratio is far greater than that of the lignite and bituminous coal. The mechanism leading to this difference is discussed. 33 refs., 15 figs., 8 tabs.

  9. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  10. Production of Jet Fuels from Coal Derived Liquids. Volume 3. Jet Fuels Potential of Liquid By-Products from the Great Plains Gasification Project

    DTIC Science & Technology

    1988-05-01

    Gasification Plant ( GPGP ) near Beulah, North Dakota, gasifies 14,000 tons of lignite coal per day to produce about 145 MMscf/ day of synthetic natural gas. In...contracts, which expire in 1989, the GPGP may cover its operating costs by producing SNG alone; however, diversification of the product slate by...possibility is of considerable interest to the Department of Energy, the proprietor of GPGP since the 1985 withdrawal of private industry from the project

  11. Gasification of black liquor

    DOEpatents

    Kohl, Arthur L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  12. Gasification of black liquor

    DOEpatents

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  13. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect

    Crawford, D.L.

    1989-01-01

    A major goal of this project is to isolate unique microbial strains that catalyze a variety of biochemical transformations of low molecular weight coal substructure model compounds and then to determine if these strains will carry out similar reactions with coal. We have several enrichments underway using suitable model compounds such as pyrogallol (2,3-dihydroxyphenol) and gallic acid (3,4,5-trihydroxybenzoic acid) to isolate organisms that reductively dehydroxylate phenolic hydroxyl groups. We are also using various naphthoquinone and antrhaquinone dyes as substrates in isolation procedures. The most promising results so far are with hydroxynaphthoquinone. The purple non-sulfur bacteria belonging to the genus Rhodobacter are also of interest to us because some of them degrade numerous aromatic compounds by way of reductive pathways. In addition, Rhodobacter species are not sensitive to air. Thus far, enrichment cultures with benzoate have yielded two isolates. Lowering the carboxyl content of lignite coal has been suggested as one means of improving its fuel value. We have isolated a bacterium from soil, tentatively identified as a Bacillus species, that nonoxidatively decarboxylates vanillic acid to guaicol. This bacterium also decarboxylated p-hydroxycinnimates to p-hydroxystyrenes. We are now attempting to get measurable decarboxylation of base-solubilized Vermont lignite coal using this organism. 1 tab.

  14. Future of lignite resources: a life cycle analysis.

    PubMed

    Wang, Qingsong; Liu, Wei; Yuan, Xueliang; Zheng, Xiaoning; Zuo, Jian

    2016-12-01

    Lignite is a low-quality energy source which accounts for 13 % of China's coal reserves. It is imperative to improve the quality of lignite for large-scale utilization. To further explore and analyze the influence of various key processes on the environment and economic costs, a lignite drying and compression technology is evaluated using an integrated approach of life cycle assessment and life cycle costs. Results showed that lignite mining, direct air emissions, and electricity consumption have most significant impacts on the environment. An integrated evaluation of life cycle assessment and life cycle costs showed that the most significant contributor to the environmental impacts and economic costs was the lignite mining process. The impact of transportation and wastewater treatment process on the environment and economic costs was small enough to be ignored. Critical factors were identified for reducing the environmental and economic impacts of lignite drying and compression technology. These findings provide useful inputs for both industrial practice and policy making for exploitation, processing, and utilization of lignite resources.

  15. Nitrogen incorporation into lignite humic acids during microbial degradation

    SciTech Connect

    Dong, L.H.; Yuan, H.L.

    2009-07-01

    Previous study showed that nitrogen content in lignite humic acids (HA) increased significantly during lignite biodegradation. In this paper we evaluated the factors responsible for the increased level of N in HA and the formation of new nitrogen compound following microbial degradation. When the ammonium sulfate concentration in lignite medium was 0.5%, the N-content in HA was higher than that in the crude lignite humic acid (cHA); when the ammonium sulfate concentration was epsilon 0.5%, both the biodegraded humic acid (bHA) N-content and the content of bHA in lignite increased significantly, but at 2.0% no increase was observed. This indicated that HA incorporated N existing in the lignite medium, and more HA can incorporate more N with the increase of bHA amount in lignite during microbial degradation. CP/MAS {sup 15}N NMR analysis showed that the N incorporated into HA during biotransformation was in the form of free or ionized NH{sub 2}-groups in amino acids and sugars, as well as NH{sub 4}{sup +}. We propose nitrogen can be incorporated into HA biotically and abiotically. The high N content bHA has a potential application in agriculture since N is essential for plant growth.

  16. Drying grain using a hydrothermally treated liquid lignite fuel

    SciTech Connect

    Bukurov, Z.; Cvijanovic, P.; Bukurov, M.; Ljubicic, B.R.

    1995-12-01

    A shortage of domestic oil and natural gas resources in Yugoslavia, particularly for agricultural and industrial purposes, has motivated the authors to explore the possibility of using liquid lignite as an alternate fuel for drying grain. This paper presents a technical and economic assessment of the possibility of retrofitting grain-drying plants currently fueled by oil or natural gas to liquid lignite fuel. All estimates are based on lignite taken from the Kovin deposit. Proposed technology includes underwater mining techniques, aqueous ash removal, hydrothermal processing, solids concentration, pipeline transport up to 120 km, and liquid lignite direct combustion. For the characterization of Kovin lignite, standard ASTM procedures were used: proximate, ultimate, ash, heating value, and Theological analyses were performed. Results from an extensive economic analysis indicate a delivered cost of US$20/ton for the liquid lignite. For the 70 of the grain-drying plants in the province of Vojvodina, this would mean a total yearly saving of about US $2,500,000. The advantages of this concept are obvious: easy to transport and store, nonflammable, nonexplosive, nontoxic, 30%-40% cheaper than imported oil and gas, domestic fuel is at hand. The authors believe that liquid lignite, rather than an alternative, is becoming more and more an imperative.

  17. Emissions estimation for lignite-fired power plants in Turkey

    SciTech Connect

    Nurten Vardar; Zehra Yumurtaci

    2010-01-15

    The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.

  18. Briquettability of lignite and woody wastes composite fuel

    SciTech Connect

    Beker, U.G.

    2000-03-01

    Woody wastes have favorable burning characteristics compared to lignite, as well as low ash content and reduced smoke emission. The aim of this study was to blend lignite with woody wastes to obtain a solid fuel that retains the advantageous characteristics of woody materials. Blends with lignite were made up with 7, 9, 12, 15, and 20% of waste and then briquetted under pressures of 400, 550, 700, and 800 MPa. Sunflower shell, sawdust, and paper mill wastes were used in different amounts with molasses as binder. Studies were carried out on a laboratory scale to determine optimum parameters for briquetting, such as moisture content of lignite and pressure. Briquetting of lignite without waste materials produces products of low strength. The strongest briquettes were obtained with waste contents of 12--20% and lignite moisture contents of 10--12% at briquetting pressures of 550, 700, and 800 MPa. Briquettes with adequate mechanical strength are obtained from lignite-waste blends with the addition of 8% molasses.

  19. Appraising lignite quality parameters by linguistic fuzzy identification

    SciTech Connect

    Tutmez, B.

    2007-03-15

    Lignite quality parameters have had central importance for power plants. This article addresses a comparative study on fuzzy and regression modeling for estimating the calorific value of lignite, which is one of the quality parameters from the other parameters: moisture, ash, volatile matter, and sulphur content. For the estimations, data driven models were designed based on linguistic fuzzy modeling structures. In addition, estimations of the fuzzy models were compared with linear regression estimations. The great majority of performance evaluations showed that the fuzzy estimations are very satisfactory in estimating calorific value of lignite.

  20. Use of fuzzy logic in lignite inventory estimation

    SciTech Connect

    Tutmez, B.; Dag, A.

    2007-07-01

    Seam thickness is one of the most important parameters for reserve estimation of a lignite deposit. This paper addresses a case study on fuzzy estimation of lignite seam thickness from spatial coordinates. From the relationships between input (Cartesian coordinates) and output (thickness) parameters, fuzzy clustering and a fuzzy rule-based inference system were designed. Data-driven fuzzy model parameters were derived from numerical values directly. In addition, estimations of the fuzzy model were compared with kriging estimations. It was concluded that the performance ofthe fuzzy model was more satisfactory. The results indicated that the fuzzy modeling approach is very reliable for the estimation of lignite reserves.

  1. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2008-03-31

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher

  2. Alternative strategies for the development of Texas lignite

    SciTech Connect

    Hoskins, E.R.; Russell, J.E.

    1983-03-01

    Currently, the strip mining rate is about 35 million tons per year in Texas and essentially zero in the other Gulf Coast states. Estimates of future mining rates are as high as 310 million tons per year by the year 2000 with 240 being in Texas. In this paper, the authors examine the life cycle of the surface mineable lignite based on the most recent estimates of surface mine recoverable resources with two scenarios. The first indicates that a 310 million tpy rate could be sustained for only 15 years while the second scenario suggests that the 310 million tpy could be sustained for 25 to 30 years. If lignite resources are required beyond those that are surface mineable, the deep basin lignite will be developed. Five strategies for developing deep basin lignite are discussed.

  3. Biomass Gasification Combined Cycle

    SciTech Connect

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  4. Catalytic gasification fundamentals

    SciTech Connect

    Heinemann, H.; Somorjai, G.A.

    1992-01-01

    Last year it was found that Maya coke gasification could be greatly accelerated if the colting took place in the presence of small amounts (below 1%) of caustic. When the Maya coke thus prepared was impregnated with 1% of CaO-KO[sub x] catalyst, the rate of gasification was doubled. During the past year, this phenomenon has been further investigated and the work has been extended to two other and very different cokes. As shown in Figure 2, a Statfjord Bottoms coke prepared in the presence of 1% NaOH and then impregnated with CaO[sub x]-KO[sub x] catalyst gasified very much faster than the same material coked in the absence of NaOH. The same phenomenon is exhibited in Figure 3 for a Torrance Hondo coke, although in this case the difference between the cokes prepared in the presence and absence of NaOH is somewhat smaller. It is concluded that the preparation method of the coke is of major importance for the rate of gasification and that the phenomenon that presence of alkali during coking is helpful is a generic one.

  5. Catalytic gasification fundamentals

    SciTech Connect

    Heinemann, H.; Somorjai, G.A.

    1992-11-01

    Last year it was found that Maya coke gasification could be greatly accelerated if the coking took place in the presence of small amounts (below 1%) of caustic. When the Maya coke thus prepared was impregnated with 1% of CaO-KO{sub x} catalyst, the rate of gasification was doubled. During the past year, this phenomenon has been further investigated and the work has been extended to two other and very different cokes. As shown in Figure 2, a Statfjord Bottoms coke prepared in the presence of 1% NaOH and then impregnated with CaO{sub x}-KO{sub x} catalyst gasified very much faster than the same material coked in the absence of NaOH. The same phenomenon is exhibited in Figure 3 for a Torrance Hondo coke, although in this case the difference between the cokes prepared in the presence and absence of NaOH is somewhat smaller. It is concluded that the preparation method of the coke is of major importance for the rate of gasification and that the phenomenon that presence of alkali during coking is helpful is a generic one.

  6. Catalytic gasification of biomass

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  7. Effect of mechanical dispersion of lignite on its thermal decomposition

    SciTech Connect

    Yusupov, T.S.; Shumskaya, L.G.; Burdukov, A.P.

    2007-09-15

    It is studied how the high-rate mechanical grinding affects thermal decomposition of lignite extracted from the Kansk-Achinsk Coal Basin. It has been shown that dispersion of lignite in the high energy intensive vibration-centrifugal and planetary mills causes formation of structures exhibiting lower thermal stability. That results in the shift of primary decomposition phenomena into the low-temperature region and, thus, in the higher reactivity of coals.

  8. An overview of lithotype associations of Miocene lignite seams exploited in Poland

    NASA Astrophysics Data System (ADS)

    Widera, Marek

    2016-09-01

    Currently, three stratigraphically distinct lignite seams of Early to Middle Miocene age are exploited in Poland, namely the third Ścinawa lignite seam (ŚLS-3), the second Lusatian lignite seam (LLS-2) and the first Mid-Polish lignite seam (MPLS-1). All of these are composed of numerous macroscopically distinguishable layers defined as lignite lithotypes. In the present paper, the lithotypes of Polish lignites are grouped into seven major lithotype associations that originated in various types of mire. Therefore, an approximate reconstruction of mire type can be based on lignite lithotypes. Within the Polish lignite seams examined, the commonest in order of importance are: xylodetritic (XDL), detroxylitic (DXL), detritic (DL) and xylitic (XL) lithotype associations, mostly with a massive (m) or horizontal (h) structure. They are particularly dominant in lignite opencasts belonging to the Konin and Adamów mines. However, in the lowermost seams at the Turów and Bełchatów mines, a substantial part of the seams comprises the bitumen-rich (BL) lithotype association. These seams also lignite lithotypes that in large quantities have a gelified (g) and/or nodular (n) structure. In contrast, lignites from the Sieniawa mine are characterised by an admixture of the best-developed lithotype associations of both fusitic (FL) and weathered (WL) lignites. Moreover, the vast majority of these lignites have a folded (fo) and/or faulted (fa) structure, because they were completely deformed by glaciotectonics.

  9. Catalysis in biomass gasification

    SciTech Connect

    Baker, E.G.; Mudge, L.K.

    1984-06-01

    The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

  10. PNNL Coal Gasification Research

    SciTech Connect

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  11. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  12. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    SciTech Connect

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated disinfection by-products (DBPs). Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. The Energy & Environmental Research Center has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During previous studies, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon product. As much as a 130% increase in the humic acid sorption capacity of a PAC produced from a high-sodium-content lignite was observed. During this study, activated carbons were prepared from three coals representing high-sodium, low-sodium--low-calcium, and high-calcium compositions in two steps, an initial char formation followed by mild activation with steam to avoid excessive burnout. This set of carbons was characterized with respect to physical and chemical properties. The BET (Brunauer-Emmett-Teller) nitrogen adsorption isotherms gave relatively low surface areas (ranging from 245 to 370 m{sup 2}/g). The lowest-BET area was obtained for the high-sodium carbon, which can be attributed to enlargement of micropores as a result of sodium-catalyzed gasification reaction of the carbon structure. This hypothesis is consistent with the scanning electron microscopy microprobe analyses, which show that in both the coal and the activated carbon from this coal, the sodium is distributed over both the carbon structure and the mineral particles. Thus it is initially associated with carboxylate groups on the coal and then as sodium oxide or

  13. The washability of lignites for clay removal

    SciTech Connect

    Oteyaka, B.; Yamik, A.; Ucar, A.; Sahbaz, O.; Demir, U.

    2008-07-01

    In the washability research of the Seyitomer Lignites (Kutahya-Turkey), with lower calorific value (1,863 kcal/kg) and high ash content (51.91%), by heavy medium separation, it was found out that middling clay in the coal had an effect to change the medium density. To prevent this problem, a trommel sieve with 18 and 5 mm aperture diameter was designed, and the clay in the coal was tried to be removed using it before the coal was released to heavy medium. Following that, the obtained coal in -100 + 18 mm and -18 + 5 mm fractions was subjected to sink and float test having 1.4 gcm{sup -3} and 1.7 gcm{sup -3} medium densities (-5 mm fraction will be evaluated in a separate work). Depending on the raw coal, with the floating of -100 + 18 mm and -18 + 5 mm size fraction in 1.4 gcm{sup -3} medium density, clean coal with 60.10% combustible matter recovery, 19.12% ash, and 3,150 kcal/kg was obtained. Also floating of the samples sinking in 1.4 gcm{sup -3} in the medium density (1.7 gcm{sup -3}), middling with 18.70% combustible matter recovery, 41.93% ash, 2,150 kcal/kg, and tailing having 78.31% ash were obtained.

  14. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2001-07-10

    sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. The PGM consists of a pressurized circulating fluidized bed (PCFB) reactor together with a recycle cyclone and a particulate removing barrier filter. Coal, air, steam, and possibly sand are fed to the bottom of the PCFB reactor and establish a relatively dense bed of coal/char in the bottom section. As these constituents react, a hot syngas is produced which conveys the solids residue vertically up through the reactor and into the recycle cyclone. Solids elutriated from the dense bed and contained in the syngas are collected in the cyclone and drain via a dipleg back to the dense bed at the bottom of the PCFB reactor. This recycle loop of hot solids acts as a thermal flywheel and promotes efficient solid-gas chemical reaction.

  15. Study on Combustion Characteristics of Lignite in a CFB Boiler

    NASA Astrophysics Data System (ADS)

    Leng, J.; Zou, T. S.; Wu, J. X.; Jiang, C.; Gao, J. L.; Wu, J.; Su, D.; Song, D. Y.

    The shortage of coal promotes the lignite utility in power plant because of the rapid economy development recently. However, lignite is high in moisture content as well as volatile content and low in calorific value. It is very difficult to burn in traditional pulverized coal fired boiler. Circulating fluidized bed (CFB) boiler is an alternative with low pollutant emission. Some CFB boilers are built and put into commercial operation in Northeast China and East Inner Mongolia where lignite is abundant. The operation experiences of these boilers are introduced in this paper. The effect of coal particle size on bottom ash ratio, combustion efficiency, thermal efficiency, pollution emission, and ash deposits in convective heating surface were investigated. It was found that for the lignite fired CFB boiler, the largest coal particle size should be 20 to 40mm to maintain bed material balance. But the bottom ash only shares less than 10% of the total ash. Due to high volatile content in the lignite, the combustion efficiency could achieve more than 99%. Meanwhile, NOx emission was relative low and satisfied national environment protection requirement. It is suggested that flue gas velocity in convective heating surface should be ranged in a certain scope to prevent ash deposit and erosion.

  16. Co-liquefaction Behaviour of Elbistan Lignite and Olive Bagasse

    NASA Astrophysics Data System (ADS)

    Karta, Mesut; Depci, Tolga; Karaca, Huseyin; Onal, Mehmet; Coskun, M. Ali

    2016-10-01

    In the present study, co-liquefaction potential of Elbistan lignite and Balikesir olive bagasse were investigated by direct coal liquefaction process. The olive bagasse is a cheap and abundant biomass, so it is used to decrease the cost of oil production from the lignite. The effect of blending ratio of the lignite and the olive bagasse on liquefaction conversion and oil yield were investigated. Characterization studies of the starting materials were done using XRD, FTIR, DTA/TG and elemental analysis. Elemental compositions of liquefaction products were also determined and the composition of the obtained oil was identified by GC/MS. DTA and TGA results indicated the synergistic effect of the lignite and the olive bagasse and maximum oil conversion (36 %) was obtained from 1:3 blending ratio of lignite: olive bagasse. The results showed that the obtained oil was paraffinic-low waxy oil with 22.5 MJ/kg of calorific value and 95 g/cm3 density.

  17. Coal gasification cogeneration process

    SciTech Connect

    Marten, J.H.

    1990-10-16

    This patent describes a process for the coproduction of a combustible first gas stream usable as an energy source, a sulfur-dioxide-containing second gas stream usable as a source for oxidant in the gasification of coal and a sulfur-dioxide-containing third gas stream usable as a feedstock for the production of sulfuric acid. It comprises: reacting coal in a coal gasification zone in the presence of an oxidant under partial coal-gasifying conditions to produce carbonaceous char and a crude gas stream; separating sulfur-containing compounds from the crude gas stream in a sulfur recovery zone to produce a combustible first gas stream and elemental sulfur; reacting the carbonaceous char and gypsum in a reaction zone in proportions such that the non-gypsum portion of the carbonaceous char and gypsum mixture contains sufficient reducing potential to reduce sulfur in the gypsum to gaseous compounds of sulfur in a +4 or lower oxidation state under reducing conditions to produce first a sulfur-dioxide-containing second gas stream which contains weaker SO{sub 2} produced in an early stage of the reaction zone and removed from the reaction zone, and then a sulfur-dioxide-containing third gas stream which contains concentrated SO{sub 2} recovered from a later stage of the reaction zone.

  18. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  19. Recent developments in coal gasification

    SciTech Connect

    Schad, M.K.; Hafke, C.F.

    1983-05-01

    This paper reports on how Lurgi, as one of the major engineering companies with extensive experience in coal gasification, has expanded the application of the fixed-bed gasifier. Improvements have been made to the type and size of coal which can be gasified and the quality of gas produced. Lurgi's development efforts are continuous, and are directed not only to search for new process methods but also to reduce the investment, operating and maintenance costs. It is manifested in the achievement of higher specific gasification rates and the layer size of the gasifiers, both of which reduce the complexity of a gasification plant and improve its supervision and controllability.

  20. Coal gasification and occupational health.

    PubMed

    Young, R J; McKay, W J; Evans, J M

    1978-12-01

    Identification and prevention of health effects due to occupational exposures in coal gasification processes requires a basic knowledge of the technological process by which gasification proceeds. This paper presents an overview of the technology and a rational approach to health hazard identification based upon the concept of the unit operation specific micro environment. A final section is devoted to summarizing current research efforts being carried out under the aegis of the National Institute for Occupational Safety and Health.

  1. Coal gasification vessel

    DOEpatents

    Loo, Billy W.

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  2. Materials of Gasification

    SciTech Connect

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  3. Self-diffusion of lignite/water under different temperatures and pressure: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liu, Xinjian; Jin, Yu; Huang, Congliang; He, Jingfeng; Rao, Zhonghao; Zhao, Yuemin

    2016-01-01

    Temperature and pressure have direct and remarkable implications for drying and dewatering effect of low rank coals such as lignite. To understand the microenergy change mechanism of lignite, the molecular dynamics simulation method was performed to study the self-diffusion of lignite/water under different temperatures and pressure. The results showed that high temperature and high pressure can promote the diffusion of lignite/water system, which facilitates the drying and dewatering of lignite. The volume and density of lignite/water system will increase and decrease with temperature increasing, respectively. Though the pressure within simulation range can make lignite density increase, the increasing pressure showed a weak impact on variation of density.

  4. Technology Assessment Report: Aqueous Sludge Gasification Technologies

    EPA Science Inventory

    The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...

  5. A novel approach to highly dispersing catalytic materials in coal for gasification. First quarterly report, October 1, 1989--December 31, 1989

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1989-12-31

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. A zeta meter, a tube furnace, and other equipment required for the investigation have been acquired and installed. Preliminary work shows that the lignite (Psoc 1482) is negatively charged between pH 1.8 and pH 11.0 and has an isoelectric point of pH 1.8.

  6. A novel approach to highly dispersing catalytic materials in coal for gasification. Second quarterly report, January 1, 1990--March 31, 1990

    SciTech Connect

    Abotsi, M.K.; Bota, K.B.

    1990-12-31

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. Zeta potential studies show that the surfaces of the lignite are negatively charged between about pH2 to 11, the negative charge density increasing with increase in pH. Highly alkaline media promoted calcium adsorption due to high negative charge on the coal, while calcium uptake was inhibited in strongly acidic solutions.

  7. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    SciTech Connect

    Kuznetsov, B.N.; Schchipko, M.L.

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  8. Sulfate Reduction at a Lignite Seam: Microbial Abundance and Activity.

    PubMed

    Detmers, J.; Schulte, U.; Strauss, H.; Kuever, J.

    2001-10-01

    In a combined isotope geochemical and microbiological investigation, a setting of multiple aquifers was characterized. Biologically mediated redox processes were observed in the aquifers situated in marine sands of Tertiary age and overlying Quaternary gravel deposits. Intercalated lignite seams define the aquitards, which separate the aquifers. Bacterial oxidation of organic matter is evident from dissolved inorganic carbon characterized by average carbon isotope values between ?18.4 per thousand and ?15.7 per thousand (PDB). Strongly positive sulfur isotope values of up to +50 per thousand (CTD) for residual sulfate indicate sulfate reduction under closed system conditions with respect to sulfate availability. Both, hydrochemical and isotope data are thus consistent with the recent activity of sulfate-reducing bacteria (SRB). Microbiological investigations revealed the presence of an anaerobic food chain in the aquifers. Most-probable-number (MPN) determinations for SRB and fermenting microorganisms reached highest values at the interface between aquifer and lignite seam (1.5 x 103 cells/g sediment dry mass). Five strains of SRB were isolated from highest MPN dilutions. Spore-forming bacteria appeared to dominate the SRB population. Sulfate reduction rates were determined by the 35S-radiotracer method. A detailed assessment indicates an increase in the reduction rate in proximity to the lignite seam, with a maximum turnover of 8.4 mM sulfate/a, suggesting that lignite-drived compounds represent the substrate for sulfate reduction.

  9. Environmental benefits of underground coal gasification.

    PubMed

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward.

  10. Synthetic-fuel production using Texas lignite and a very-high-temperature gas-cooled reactor for process heat and electrical power generation

    SciTech Connect

    Ross, M.A.; Klein, D.E.

    1981-05-01

    This report presents two alternatives to increased reliance on foreign energy sources; each method utilizes the abundant domestic resources of coal, uranium, and thorium. Two approaches are studied in this report. First, the gasification and liquefaction of coal are accomplished with Lurgi gasifiers and Fischer-Tropsch synthesis. A 50,000 barrel per day facility, consuming 15 million tons of lignite coal per year, is used. Second, a nuclear-assisted coal conversion approach is studied using a very high temperature gas-cooled reactor with a modified Lurgi gasifier and Fischer-Tropsch synthesis. This is a preliminary report presenting background data and a means of comparison for the two approaches considered.

  11. Study on product distributions and char morphology during rapid co-pyrolysis of platanus wood and lignite in a drop tube fixed-bed reactor.

    PubMed

    Meng, Haiyu; Wang, Shuzhong; Chen, Lin; Wu, Zhiqiang; Zhao, Jun

    2016-06-01

    The rapid co-pyrolytic behavior of platanus wood and Pingzhuang lignite was explored in a drop tube fixed-bed reactor under nitrogen atmosphere. Synergistic effects were evaluated using the deviations between experimental and predicted values of product yields and gas components. Surface morphology of residual chars were also investigated applying the scanning electron microscopy technique (SEM). This study found that the experimental values of gas volume yields were greater than the predicted, and the maximum gas volume yield exhibited with 50% biomass blending ratio at 1000°C. Positive or negative synergistic effects happened in gas components at different blending ratios and temperatures. The SEM results indicated that the differences of char surface morphology were evident. The fractal dimensions of residual chars increased with increasing biomass blending ratio, which may improve their gasification or combustion reactivity. The change in product yields and gas components was attributed to the secondary reactions and tar cracking.

  12. Biothermal gasification of biomass

    SciTech Connect

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  13. Beluga Coal Gasification - ISER

    SciTech Connect

    Steve Colt

    2008-12-31

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  14. Hybrid coal gasification

    SciTech Connect

    Moore, K.

    2007-01-15

    Retrofitting gas, oil and coal-fired boilers can reduce operating costs and meet EPA's Clean Air Interstate Rules (CAIR) when firing most Eastern and Midwest bituminous coals. The trademarked Clean Combustion System (CCS) concept, conceived at Rockwell International, evolved from a confluence of advanced combustion modelling know-how, experience in coal gasification and wet-bottom boiler operation and design. The CCS is a high temperature air-feed entrained flow gasifier that replaces a boiler's existing burners. It fires pulverized coal with some limestone added to provide calcium to capture sulfur and provide a clean hot fuel-rich gas to the boiler furnace. Subsequent over-fire air (OFA) staging completes the combustion. A 'sulfur bearing glass' waste product results from the coal ash and the calcium sulfide. The CCS process prevents formation of NOx from fuel-bound nitrogen. The initial commercialisation of CCS is the update and retrofit an industrial stoker design boiler. Steps for the retrofit are described in the article. 2 figs., 1 photo.

  15. A continuous two stage solar coal gasification system

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.; Manasse, F. K.; Venkataramanan, V.

    The characteristics of a two-stage fluidized-bed hybrid coal gasification system to produce syngas from coal, lignite, and peat are described. Devolatilization heat of 823 K is supplied by recirculating gas heated by a solar receiver/coal heater. A second-stage gasifier maintained at 1227 K serves to crack remaining tar and light oil to yield a product free from tar and other condensables, and sulfur can be removed by hot clean-up processes. CO is minimized because the coal is not burned with oxygen, and the product gas contains 50% H2. Bench scale reactors consist of a stage I unit 0.1 m in diam which is fed coal 200 microns in size. A stage II reactor has an inner diam of 0.36 m and serves to gasify the char from stage I. A solar power source of 10 kWt is required for the bench model, and will be obtained from a central receiver with quartz or heat pipe configurations for heat transfer.

  16. Mild coal gasification: Product separation

    SciTech Connect

    Wallman, P.H.; Singleton, M.F.

    1992-08-04

    Our general objective is to further the development of efficient continuous mild coal gasification processes. The research this year has been focused on product separation problems and particularly the problem of separating entrained ultra-fine particles from the chemically reactive environment of the product gas stream. Specifically, the objective of the present work has been to study candidate barrier filters for application to mild coal gasification processes. Our approach has been to select the most promising existing designs, to develop a design of our own and to test the designs in our bench-scale gasification apparatus. As a first step towards selection of the most promising barrier filter we have determined coking rates on several candidate filter media.

  17. Cost-effective sulfur control strategies for the Great Plains gasification project

    SciTech Connect

    Doctor, R.D.; Wilzbach, K.E. . Energy and Environmental Systems Div.)

    1989-09-01

    The Great Plains gasification plant in Beulah, North Dakota, uses 14 Lurgi gasifiers to produce 152x10/sup 6/ scf/d (4.1x10/sup 6/ Nm/sup 3//d) of pipeline-quality gas from lignite. Since start-up in mid-1984, the plant has provided a serious challenge to the reliable operation of the Stretford sulfur recovery system. To address this challenge, over forty options for mitigating sulfur emissions were evaluated on an economic and technical basis, beginning at the emissions source (the stack) and working back through the plant. Although this study was directed toward providing a timely solution to the sulfur dioxide emissions problem, the status and opportunities for a number of emerging technologies were brought into focus. This evaluation is detailed here by the authors.

  18. Aerosol emissions near a coal gasification plant in the Kosovo region, Yugoslavia

    NASA Astrophysics Data System (ADS)

    Boueres, Luis Carlos S.; Patterson, Ronald K.

    1981-03-01

    Ambient aerosol samples from the region of Kosovo, Yugoslavia, were collected and analyzed for their elemental composition in order to determine the effect on ambient air quality of Lurgi coal gasification carried out there using low BTU lignite. Low-volume aerosol samples were used to collect air particulate matter during May of 1979. These samplers were deployed at five sites near the Kosovo industrial complex which is comprised of coal gasifier, a coal-fired power plant and a fertilizer plant which uses the waste products from the gasifier and power plant. A total of 126 impactor sets and 10 week-long "streaker" filters were analyzed by PIXE at FSU for 16-18 elements providing a data base of approximately 16 000 elemental concentrations. Preliminary results are reported here with emphasis on the following elements: Si, S, Ca, Fe, Zn and Pb.

  19. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

    2008-05-15

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  20. Underground Coal Gasification Program

    SciTech Connect

    Thorsness, C. B.; Britten, J. A.

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large, almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.

  1. Characterization of airborne particles at a high-btu coal-gasification pilot plant.

    PubMed

    Davidson, C I; Santhanam, S; Stetter, J R; Flotard, R D; Gebert, E

    1982-12-01

    Airborne particles in fugitive emissions have been measured at a slagging fixed-bed coal-gasification pilot plant using lignite. Sampling was conducted during shutdown operations and opening of the gasifier following an aborted startup. Aerosol collected with a Sierra high-volume impactor was subjected to analysis by gas chromatography, mass spectrometry, and scanning electron microscopy; aerosol collected with an Andersen low-volume impactor was subjected to flameless atomic absorption analysis. The data show that the bulk of the trace organic material is associated with small particles: these data are similar to data on ambient air reported in the literature. Particle morphologies resemble those of fly ash from coal combustion, including smooth spheres, vesicular spheres, and crystalline material. Trace element size distributions are bimodal and resemble data for ambient air. Pb-containing particles are generally submicron, while particles containing Al, Fe, and other crustal species are mostly of supermicron size. Aluminum-based aerosol enrichment factors calculated from the lignite composition show that the composition of the aerosol resembles that of the coal, with the exception of modest enrichments of Mg, Na, As, and Pb in the submicron size range. Aerosol enrichment factors based on the earth's crustal composition are somewhat greater than those based on coal composition for several elements, suggesting potential errors in using crustal enrichment data to investigate chemical fractionation during aerosol formation.

  2. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael L. Swanson

    2005-08-30

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was

  3. Beneficiation of Turkish lignites by thermal treatment and magnetic separation

    SciTech Connect

    Onal, G.; Renda, D.; Mustafaev, I.; Dogan, Z.

    1999-07-01

    In this paper, the improvement of Turkish lignites by semi-coking and REMS magnetic separation, in two stages, is discussed. The oxidation and decomposition of pyrite through the thermal treatment result in the formation of iron oxide and pyrrhotite on the surface. In addition to pyrite, part of the organic sulfur is also removed. After thermal treatment of lignites at temperatures ranging from 370 to 650 C, the application of REMS magnetic separator produces a product higher in calorific value and lower in sulfur content. The product can be utilized after briquetting. The volatile gases can also be used after sulfur removal. This process appears to be feasible as a clean coal manufacture from the point of energy efficiency. A short economic analysis is also presented.

  4. BIMOMASS GASIFICATION PILOT PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  5. Alkylation of lignites and peat in low-temperature plasma

    SciTech Connect

    L.I. Shchukin; S.I. Zherebtsov; M.V. Kornievich; O.A. Skutina

    2007-02-15

    The alkylation of lignites and peat was carried out at 50-270{sup o}C in different plasmas. The degree of conversion determined as the yield of the alcohol-benzene extract increases on passing from methane to alcohol plasma. The dependence of the extract yield on the plasma temperature, treatment time, and sample grinding degree was studied. 5 refs., 4 figs., 2 tabs.

  6. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    SciTech Connect

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  7. Advanced coal-gasification technical analyses. Appendix 3: technical/economic evaluations. Final report, December 1982-September 1985

    SciTech Connect

    Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

    1986-01-01

    This document contains the final report on four tasks performed by KRSI as part of the Advanced Coal Gasification Technical Analysis contract with GRI. It provides extensive, consistent technical and economic information regarding application of (1) Lurgi gasification, (2) Westinghouse (now KRW) gasification, and (3) Direct Methanation (with Lurgi gasifiers) processes to produce SNG from North Dakota lignite. The results of Lurgi and Westinghouse studies were used to develop a plant size vs. cost-of-SNG relationship. The report on each task consists of a block flow diagram, component material balance, process flow sheets showing operating conditions and principal equipment in each major process area, a narrative process description, utility balances, plant efficiency calculations, documentation of design and cost-estimation basis and an economic analysis performed in accordance with the GRI Guidelines. Economic analysis consisted of capital-cost breakdown according to plant areas, variable operating and maintenance costs, and calculation of levelized, constant-dollar cost-of-gas with and without process development allowances (PDA). The sensitivities of the gas cost to major variables are presented in graphical form. For the plant size vs. cost-of-SNG task, similar information is provided at eight different plant capacities based on both Lurgi or Westinghouse gasifiers.

  8. Biological removal of organic constituents in quench water from a slagging, fixed-bed coal-gasification pilot plant

    SciTech Connect

    Stamoudis, V C; Luthy, R G

    1980-02-01

    This study is part of an effort to assess the efficiency of activated-sludge treatment for removal of organic constituents from high-Btu coal-gasification pilot-plant quench waters. A sample of raw-gas quench water was obtained from the Grand Forks Energy and Technology Center's pilot plant, which employs the slagging, fixed-bed gasification process. The quench water generated in the processing of Indian Head lignite was pretreated to reduce ammonia and alkalinity, and then diluted and subjected to long-term biological treatment, followed by detailed characterization and analysis of organic constituents. The pretreated (influent) and treated (effluent) samples were extracted using a methylene chloride, pH-fractionation method to obtain acid, base, and neutral fractions, which were analyzed by capillary-column gas chromatography/mass spectrometry (GC/MS). Over 99% of the total extractable and chromatographable organic material in the influent acid fraction was composed of phenol and alkylated phenols. Biological treatment removed these compounds almost completely. Major components of the influent base fraction were alkylated pyridines, anilines, aminopyrroles, imidazoles and/or pyrazoles, diazines, and quinolines. Removal efficiency of these compounds ranged between 90 and 100%. The influent neutral fraction was composed mainly of cycloalkanes, cycloalkenes, naphthalene, indole, acetophenone, and benzonitrile. Alkylated benzenes were generally absent. Removal efficiencies of these compounds were generally very good, except for certain alkylated cycloalkanes and cycloalkenes. Results are compared with those of a similar study on HYGAS coal-gasification quench water.

  9. Heterogeneous kinetics of coal gasification. Quarterly technical progress report, 1 April 1983-30 June 1983

    SciTech Connect

    Calo, J.M.; Ganapathi, R.

    1983-01-01

    In the current quarterly technical progress report we present data and results on transient kinetic studies of the steam-char reaction system for activated coconut and lignite chars. These experiments were conducted in a fashion similar to the previous char-CO/sub 2/ studies, under approximately the same experimental conditions. The two principal product species, H/sub 2/ and CO, were monitored using the automatic mass programming system developed especially for this project. In order to perform the steam-char experiments, the original apparatus was modified by the addition of a steam generation/condensate removal system. The steam-char reaction system, being somewhat more complex than the CO/sub 2/-char reaction system, was modeled with a six-parameter, elementary kinetic scheme. The ''effective'' active site concentrations determined from the steam gasification data were of the same order of magnitude, and behaved in a similar fashion, to those obtained for the CO/sub 2/ gasification studies. The implications of this result are briefly discussed. 21 refs., 23 figs., 2 tabs.

  10. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1988-02-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. DE-AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1-Test Plan; Task 2-Optimization of Mild Gasification Process; Task 3-Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4-Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  11. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1987-11-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  12. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Derting, T.M.

    1988-07-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  13. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Williams, S.W.

    1989-01-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  14. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  15. The stabilization of a clay suspension with sulfonated humates of earth and compact lignites

    SciTech Connect

    Girina, L.V.; Sharanova, I.E.

    1995-12-31

    Lignite humates are used as chemical reagents for regulating the properties of dispersed systems, in particular for stabilizing clay and coal-water suspensions. We have performed a comparative analysis of the cation stability of modified humates obtained from earth and compact lignite and of the efficiency of stabilization of highly mineralized clay suspensions. 18 refs., 2 figs., 2 tabs.

  16. Water-resources appraisal of the Camp Swift lignite area, central Texas

    USGS Publications Warehouse

    Gaylord, J.L.; Slade, R.M.; Ruiz, L.M.; Welborn, C.T.; Baker, E.T.

    1985-01-01

    Alithologic examination of 255 feet of cored section that represents the overburden and the included lignite showed cyclic layering of fine sand, silt, clay, and lignite. Chemical analyses of the core were performed to determine the contents of major inorganic and trace constituents. These analyses indicate that the content of pyritic sulfur generally is small but variable.

  17. Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive

    SciTech Connect

    Buchsbaum, L.

    2009-08-15

    North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

  18. EMERY BIOMASS GASIFICATION POWER SYSTEM

    SciTech Connect

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  19. Coal gasification players, projects, prospects

    SciTech Connect

    Blankinship, S.

    2006-07-15

    Integrated gasification combined cycle (IGCC) technology has been running refineries and chemical plants for decades. Power applications have dotted the globe. Two major IGCC demonstration plants operating in the United States since the mid-1900s have helped set the stage for prime time, which is now approaching. Two major reference plant designs are in the wings and at least two major US utilities are poised to build their own IGCC power plants. 2 figs.

  20. Trace metal transformations in gasification

    SciTech Connect

    Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.

    1995-08-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  1. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters

    SciTech Connect

    Drosos, M.; Jerzykiewicz, M.; Deligiannakis, Y.

    2009-04-15

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. {sup 13}C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation < 3 (equiv kg{sup -1}) while lignite HAs showed a higher charge variation > 3.5 (equiv kg{sup -1}).

  2. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  3. Fuel Flexibility in Gasification

    SciTech Connect

    McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.; Rockey, John M.; Beer, Stephen K.; Lui, Alain P.; Batton, William A.

    2001-11-06

    coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the

  4. Reduction of quinquevalent vanadium solutions by wood and lignite

    USGS Publications Warehouse

    Pommer, A.M.

    1957-01-01

    To determine whether reduced vanadium ores could have been deposited by reduction from supergene quinquevalent vanadium solutions, the reducing capacity of fresh wood, wood degraded by long burial, and lignite was determined experimentally at temperatures of 120?? and 150?? in closed containers. A precipitate obtained by reduction of quinquevalent vanadium solutions with wood gave an X-ray pattern identical with a recently discovered low-valent vanadium mineral. The evidence indicated that deposition of reduced vanadium minerals by this mechanism is possible. ?? 1957.

  5. Respirable dust from lignite coal in the Victorian power industry

    SciTech Connect

    Lazarus, R.

    1983-01-01

    The results from a 12-month program of static sampling for respirable dust in various work sites of the Victorian power industry are presented. Lignite coal is the major source of dust in this industry. The data appear to be nearly lognormal in distribution and are similar in magnitude to levels reported from North American surface mines and surface work sites. Average 8-hour, time-weighted-average dust concentrations of 0.3 mg/m/sup 3/ (SD = 0.3) were found in open areas. In enclosed coal handling areas, average concentrations of 0.7 mg/m/sup 3/ (SD = 0.6) were found.

  6. Respirable dust from lignite coal in the Victorian power industry

    SciTech Connect

    Lazarus, R.

    1983-04-01

    The results of a 12-month programme of static sampling for respirable dust at various work sites of the Victorian power industry are presented. Lignite is the major source of dust. The data appear to be nearly lognormal in distribution and are similar in magnitude to levels reported from North American surface mines and surface work sites. Average 8-hour, time-weighted-average dust concentrations of 0.3 mg/m/sup 3/ were found in open areas. In enclosed coal-handling areas, average concentrations of 0.7 mg/m/sup 3/ were found.

  7. Updraft gasification of salmon processing waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...

  8. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  9. Improved catalysts for carbon and coal gasification

    DOEpatents

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  10. Gasification technologies 2005. Conference papers and presentations

    SciTech Connect

    2005-07-01

    A total of 43 papers and two keynote addresses were presented at the conference in eight sessions entitled Four perspectives on gasification industry trends and new developments; Federal gasification incentives: opportunities and challenges; Carbon sequestration ready: What does it mean and who can do it?; Experience with gasifying low rank coals (panel discussion); What are current gasification-based offerings in the energy marketplace?; Coal to liquids and chemicals: prospects and challenges; Gasification market drivers panel; and Gasification technologies advancements continue. The CD-ROM contains 43 presentations plus on keynote address, all in slide/overview form as pdfs. In addition, the text of four presentations is included. These have been abstracted separately for the Coal Abstracts database.

  11. Radiation intensity of lignite-fired oxy-fuel flames

    SciTech Connect

    Andersson, Klas; Johansson, Robert; Hjaertstam, Stefan; Johnsson, Filip; Leckner, Bo

    2008-10-15

    The radiative heat transfer in oxy-fuel flames is compared to corresponding conditions in air-fuel flames during combustion of lignite in the Chalmers 100 kW oxy-fuel test facility. In the oxy-fuel cases the flue-gas recycle rate was varied, so that, in principle, the same stoichiometry was kept in all cases, whereas the oxygen fraction in the recycled flue-gas mixture ranged from 25 to 29 vol.%. Radial profiles of gas concentration, temperature and total radiation intensity were measured in the furnace. The temperature, and thereby the total radiation intensity of the oxy-fuel flames, increases with decreasing flue-gas recycle rate. The ratio of gas and total radiation intensities increases under oxy-fuel conditions compared to air-firing. However, when radiation overlap between gas and particles is considered the ratios for air-firing and oxy-fuel conditions become more similar, since the gas-particle overlap is increased in the CO{sub 2}-rich atmosphere. A large fraction of the radiation in these lignite flames is emitted by particles whose radiation was not significantly influenced by oxy-fuel operation. Therefore, an increment of gas radiation due to higher CO{sub 2} concentration is not evident because of the background of particle radiation, and, the total radiation intensities are similar during oxy-fuel and air-fuel operation as long as the temperature distributions are similar. (author)

  12. NO emission during oxy-fuel combustion of lignite

    SciTech Connect

    Andersson, K.; Normann, F.; Johnsson, F.; Leckner, B.

    2008-03-15

    This work presents experimental results and modeling of the combustion chemistry of the oxy-fuel (O{sub 2}/CO{sub 2} recycle) combustion process with a focus on the difference in NO formation between oxy-fired and air-fired conditions. Measurements were carried out in a 100 kW test unit, designed for oxy-fuel combustion with flue gas recycling. Gas concentration and temperature profiles in the furnace were measured during combustion of lignite. The tests comprise a reference test in air and three oxy-fuel cases with different oxygen fractions in the recycled feed gas. With the burner settings used, lignite oxy-combustion with a global oxygen fraction of 25 vol % in the feed gas results in flame temperatures close to those of air-firing. Similar to previous work, the NO emission (mg/MJ) during oxy-fuel operation is reduced to less than 30% of that of air-firing. Modeling shows that this reduction is caused by increased destruction of formed and recycled NO. The reverse Zeldovich mechanism was investigated by detailed modeling and was shown to significantly reduce NO at high temperature, given that the nitrogen content is low (low air leakage) and that the residence time is sufficient.

  13. Petrographic composition of lignite from the Szczerców deposit, Polish Lowlands

    NASA Astrophysics Data System (ADS)

    Pawelec, Sandra; Bielowicz, Barbara

    2016-12-01

    Macroscopic and microscopic composition of lignite from the Szczerców deposit belonging to the Bełchatów Lignite Mine (Polish Lowlands) has been examined. The macroscopic composition was determined according to the newest lithological classification of humic coal. On this basis, it has been shown that the main lithotypes occurring in the Szczerców deposit are the detritic and xylodetritic lignites. The petrographic composition of the investigated lignite was determined microscopically for 11 samples. The examined lignite is predominantly composed of macerals from the huminite group. It is in the range from 75.2 to 86%, including atrinite (23.1-40.7%, averaging 28.9%) and densinite (18.2-41.4 %, averaging 24.9%). It also demonstrated that the statistical variability of the macerals content from the huminite group in the studied lignite is very weak in all samples. In addition, the random reflectance of ulminite was measured traditionally. The results, ranging from 0.247 to 0.282%, with the maximum permissible standard deviation < 0.07, were achieved for all analysed lignite samples.

  14. Appraisal of Hydrologic Information Needed in Anticipation of Lignite Mining in Lauderdale County, Tennessee

    USGS Publications Warehouse

    Parks, William Scott

    1981-01-01

    Lignite in western Tennessee occurs as lenses or beds at various stratigraphic horizons in the Coastal Plain sediments of Late Cretaceous and Tertiary age. The occurrence of this lignite has been known for many decades, but not until the energy crisis was it considered an important energy resource. In recent years, several energy companies have conducted extensive exploration programs in western Tennessee, and tremendous reserves of lignite have been found. From available information, Lauderdale County was selected as one of the counties where strip-mining of lignite will most likely occur. Lignite in this county occurs in the Jackson and Cockfield Formations, undivided, of Tertiary age. The hydrology of the county is known only from regional studies and the collection of some site-specific data. Therefore, in anticipation of the future mining of lignite, a plan is needed for obtaining hydrologic and geologic information to adequately define the hydrologic system before mining begins and to monitor the effects of strip-mining once it is begun. For this planning effort, available hydrologic, geologic, land use, and associated data were located and compiled; a summary description of the surface and shallow subsurface hydrologic system was prepared: the need for additional baseline hydrologic information was outlined; and plans to monitor the effects of strip-mining were proposed. This planning approach, although limited to a county area, has transferability to other Coastal Plain areas under consideration for strip-mining of lignite.

  15. Two stage coal gasification plant

    SciTech Connect

    Shoebotham, N.M.

    1984-06-26

    This invention relates to a two stage coal gasification plant which comprises a gasifier 1 and a predistillation retort 2. The gasifier has a plurality of gas extraction outlets 4 located in the periphery thereof which feed into a manifold 5 from where a percentage of the gas from the gasifier is extracted. Gas from the predistillation retort is extracted through an outlet near the top of the retort. An agitator 8 is provided for agitation of the coal in the agglomeration zone. The agitator is preferably automatically controlled by means of a temperature sensing device 10 located on an arm thereof.

  16. Petrological, geochemical and isotopic characteristics of lignite and calcified lignite from mining area Pesje, Velenje Basin, Slovenia

    NASA Astrophysics Data System (ADS)

    Vrabec, Mirijam; Markič, Miloš; Vrabec, Marko; Jaćimović, Radojko; Kanduč, Tjaša

    2014-05-01

    Lignite (organic rich) and calcified lignite (inorganic rich) samples from excavation field -50c mining area Pesje, Velenje Basin, Slovenia were investigated. During geological and structural mapping lignite and calcified lignite samples were systematically taken for determination of their petrological, geochemical and isotopic characteristics. Lignite is composed of fine detritical gelified matrix. At least five different types of calcified lignite were recognized forming laminations, calcifications after wood, petrified wood and complete replacements of lignite with carbonate. All measured parameters so far indicate geochemical processes during sedimentation of the Velenej Basin. After macroscopic description samples were split to organic and inorganic component (Ward, 1984) and powdered in an agate mortar for geochemical and isotopic analyses. Major and trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Sb, Se, Th, U, Zn) in these samples were determined by instrumental neutron activation analysis (INAA) using k-0 standardization method (Jaćimović et al, 2002). The isotopic composition of carbon and nitrogen was determined using a Europa 20-20 continuous flow IRMS ANCA-SL preparation module. A 1 mg amount of a sample was weighed in a tin capsule for carbon and 10 mg for nitrogen analysis. Samples for carbon analyses were pretreated with 1 M HCl to remove carbonates. Carbonate samples from carbonate-rich strata and calcified xylite were first roasted at 450 deg C (Krantz et al., 1987). Three miligrams of carbonate sample was transformed into CO2 by reaction with anhydrous H3PO4 at 55 deg C under vacuum (McCrea, 1950) and measured with GV 2003 isotope ratio mass spectrometer. Measured isotopic composition of oxygen as VPDB values was recalculated to the VSMOW reference standard to enable the comparison with data from other coal basins. SEM/EDXS of carbonate rich sediments was performed with JEOL JSM 5800 electron microanalyzer scanning electron microscope

  17. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    SciTech Connect

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  18. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    1980-08-04

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

  19. Geochemistry and mineralogy of Greek lignites from the Ioannina Basin

    SciTech Connect

    Gentzis, T.; Goodarzi, F.; Foscolos, A.E.

    1997-02-01

    Mineralogical and elemental composition of 26 lignites/lignitic shales and their ashes from the Ioannina Basin were examined using X-ray diffraction, X-ray fluorescence, and instrumental neutron activation analysis. Mineralogy consists of quartz, 2:1 interstratified layer silicates, kaolinite, and gypsum. Illite, calcite, amphiboles, feldspars, and pyrite are the minor minerals in the samples. The major oxides SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, TiO{sub 2}, and K{sub 2}O show an enrichment in the upper lignite-bearing interval within the succession, CaO shows the exact reverse trend, and Na{sub 2}O and MgO do not show any trends. Arsenic in the samples ranges from 2 to 46 ppm, Br from 10 to 25 ppm, Cl from 61 to 278 ppm, and Se from 2 to 14 ppm. Vertically, As content decreases from the shallower interval II to the deeper interval I. Within interval II, Cr and Br show a decrease from top to bottom. The concentration of Br and Cl is higher in the samples of low mineral matter, while the opposite is true for As. Laterally, there is an increase in Br and Cl from the northern to the central part of the basin, an increase of As in an eastern direction, and a decrease of Se in the same direction. Epigenetic processes related to high water table and subsurface water flow from the nearby phosphorite deposits are probably responsible for the high concentration of U, Mo, Sb, and possibly, V. The enrichment of Se is due to leaching from gypsum and/or anhydrite beds in the area. The rare earth elements follow variations in the low-temperature ash, but more specifically, the light REEs tend to mimic variations in Th and Al{sub 2}O{sub 3} concentration, and the heavy REEs follow the TiO{sub 2} variation.

  20. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  1. Kansas refinery starts up coke gasification unit

    SciTech Connect

    Rhodes, A.K.

    1996-08-05

    Texaco Refining and Marketing Inc. has started up a gasification unit at its El Dorado, Kan., refinery. The unit gasifies delayed coke and other refinery waste products. This is the first refinery to install a coke-fueled gasification unit for power generation. Start-up of the $80-million gasification-based power plant was completed in mid-June. The gasifier produces syngas which, along with natural gas, fuels a combustion turbine. The turbine produces virtually 100% of the refinery`s electricity needs and enough heat to generate 40% of its steam requirements.

  2. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the

  3. Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect.

    PubMed

    Kapusta, Krzysztof; Stańczyk, Krzysztof

    2015-02-01

    The effect of coal rank on the composition and toxicity of water effluents resulting from two underground coal gasification experiments with distinct coal samples (lignite and hard coal) was investigated. A broad range of organic and inorganic parameters was determined in the sampled condensates. The physicochemical tests were supplemented by toxicity bioassays based on the luminescent bacteria Vibrio fischeri as the test organism. The principal component analysis and Pearson correlation analysis were adopted to assist in the interpretation of the raw experimental data, and the multiple regression statistical method was subsequently employed to enable predictions of the toxicity based on the values of the selected parameters. Significant differences in the qualitative and quantitative description of the contamination profiles were identified for both types of coal under study. Independent of the coal rank, the most characteristic organic components of the studied condensates were phenols, naphthalene and benzene. In the inorganic array, ammonia, sulphates and selected heavy metals and metalloids were identified as the dominant constituents. Except for benzene with its alkyl homologues (BTEX), selected polycyclic aromatic hydrocarbons (PAHs), zinc and selenium, the values of the remaining parameters were considerably greater for the hard coal condensates. The studies revealed that all of the tested UCG condensates were extremely toxic to V. fischeri; however, the average toxicity level for the hard coal condensates was approximately 56% higher than that obtained for the lignite. The statistical analysis provided results supporting that the toxicity of the condensates was most positively correlated with the concentrations of free ammonia, phenols and certain heavy metals.

  4. Experimental Study of Hydrogasification of Lignite and Subbituminous Coal Chars

    PubMed Central

    Gil, Stanisław

    2015-01-01

    The experimental facility for pressure hydrogasification research was adapted to the pressure of 10 MPa and temperature of 1300 K, which ensured repeatability of results and hydrogen heating to the process temperature. A hydrogasification reaction of chars produced from two rank coals was investigated at temperatures up to 1173 K, pressures up to 8 MPa, and the gas flow rates of 0.5–5 dmn3/min. Reactivity of the “Szczerców” lignite char was found to be slightly higher than that of the subbituminous “Janina” coal char produced under the same conditions. A high value of the char reactivity was observed to a certain carbon conversion degree, above which a sharp drop took place. It was shown that, to achieve proper carbon conversion, the hydrogasification reaction must proceed at a temperature above 1200 K. PMID:26065028

  5. Discrimination of unique biological communities in the Mississippi lignite belt

    NASA Technical Reports Server (NTRS)

    Miller, W. F. (Principal Investigator); Cutler, J. D.

    1981-01-01

    Small scale hardcopy LANDSAT prints were manually interpreted and color infrared aerial photography was obtained in an effort to identify and map large contiguous areas of old growth hardwood stands within Mississippi's lignite belt which do not exhibit signs of recent disturbance by agriculture, grazing, timber harvesting, fire, or any natural catastrophe, and which may, therefore, contain unique or historical ecological habitat types. An information system using land cover classes derived from digital LANDSAT data and containing information on geology, hydrology, soils, and cultural activities was developed. Using computer-assisted land cover classifications, all hardwood remnants in the study area which are subject to possible disturbance from surface mining were determined. Twelve rare plants were also identified by botanists.

  6. Nonisothermal Thermogravimetric Analysis of Thai Lignite with High CaO Content

    PubMed Central

    Pintana, Pakamon

    2013-01-01

    Thermal behaviors and combustion kinetics of Thai lignite with different SO3-free CaO contents were investigated. Nonisothermal thermogravimetric method was carried out under oxygen environment at heating rates of 10, 30, and 50°C min−1 from ambient up to 1300°C. Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods were adopted to estimate the apparent activation energy (E) for the thermal decomposition of these coals. Different thermal degradation behaviors were observed in lignites with low (14%) and high (42%) CaO content. Activation energy of the lignite combustion was found to vary with the conversion fraction. In comparison with the KAS method, higher E values were obtained by the FWO method for all conversions considered. High CaO lignite was observed to have higher activation energy than the low CaO coal. PMID:24250259

  7. Reclamation planning and operation at the Mae Moh Lignite Mine, Thailand

    SciTech Connect

    Miller, S.D.; Teparat, C.

    1990-12-31

    The Mae Moh Mine is a large open cut lignite mine situated in Northern Thailand. The mine produces lignite for coal fired power stations located adjacent to the mine. Current mine production is approximately 9 Mtpa providing lignite to eight power stations with a total output of 1,125 MW. The power development plan for Mae Moh provides for 19 power stations by the year 1999 which will require lignite production to be increased to 30.5 Mtpa and overburden will be mined at a rate approaching 300 Mtpa. Environmental management and reclamation planning at Mae Moh are major issues due to water quality impact and land use conflicts. This paper presents the key elements of the reclamation master plan and works strategy for progressive reclamation and water pollution control.

  8. Evaluation of Drying Rates of Lignite Particles in Superheated Steam Using Single-Particle Model

    NASA Astrophysics Data System (ADS)

    Kiriyama, Tsuyoshi; Sasaki, Hideaki; Hashimoto, Akira; Kaneko, Shozo; Maeda, Masafumi

    2016-12-01

    Drying rates of lignite particle groups in superheated steam are evaluated using a single-particle model developed for Australian lignite. Size distributions of the particles are assumed to obey the Rosin-Rammler equation with the maximum particle diameters defined as 100, 50, and 6 mm. The results show the drying rate of a lignite group depends strongly on the maximum particle size, and removal of large particles prior to drying is shown to be effective to reduce the drying time. The calculation model is available for simulations of drying behaviors of lignite in various dryers when an appropriate heat transfer coefficient is given. This study simulates the drying of particles smaller than 6 mm using a heat transfer coefficient in a fluidized bed dryer reported elsewhere. The required drying time estimated from the calculation is comparable to the processing time reported in an actual fluidized bed dryer, supporting the validity of the calculation model.

  9. Petrography and geochemistry of the San Miguel lignite, Jackson Group (Eocene), South Texas

    USGS Publications Warehouse

    Warwick, P.D.; Crowley, S.S.; Ruppert, L.F.; Pontolillo, J.

    1996-01-01

    The San Miguel lignite deposit (late Eocene, lower Jackson Group) of south Texas consists of four or more thin (generally < 1 m thick) lignite benches that are separated by claystone and mudstone partings. The partings are composed of altered volcanic air-fall ash that has been reworked by tidal or channel processes associated with a back-barrier depositional environment. The purpose of this study is to examine the relationship between the ash yield and the petrographic and geochemical characteristics of the San Miguel lignite as mined. Particular attention is given to 12 of the environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as possible hazardous air pollutants (HAPs) by the United States Clean Air Act Amendments of 1990. A total of 29 rock and lignite samples were collected and characterized by geochemical and petrographic methods. The major conclusions of the study are as follows: (1) The distribution of Mn is inversely related to the ash yield of the lignite samples. This indicates an organic affinity, or an association with finely disseminated minerals in the lignite that contain this element. (2) On a whole-coal basis, the concentration of the HAPs' element Pb is positively related to ash yield in lignite samples. This indicates an inorganic affinity for Pb. (3) Average whole-coal concentrations of As, Be, Sb, and U in the San Miguel samples are greater than published averages for these elements in other U.S. lignites. (4) The upper and lower lignite benches of the San Miguel deposit are both ash- and algal-rich, indicating that these intervals were probably deposited in wetter conditions than those in which the middle intervals formed. (5) The dominance of the eugelinite maceral subgroup over the huminite subgroup indicates that the San Miguel lignites were subjected to peat-forming conditions (either biogenic or chemical) that enabled degradation of wood cellular material into matrix

  10. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens.

    PubMed

    Sun, Jianlei; Bai, Mei; Shen, Jianlin; Griffith, David W T; Denmead, Owen T; Hill, Julian; Lam, Shu Kee; Mosier, Arvin R; Chen, Deli

    2016-09-15

    Beef cattle feedlots are a major source of ammonia (NH3) emissions from livestock industries. We investigated the effects of lignite surface applications on NH3 and nitrous oxide (N2O) emissions from beef cattle feedlot pens. Two rates of lignite, 3 and 6kgm(-2), were tested in the treatment pen. No lignite was applied in the control pen. Twenty-four Black Angus steers were fed identical commercial rations in each pen. We measured NH3 and N2O concentrations continuously from 4th Sep to 13th Nov 2014 using Quantum Cascade Laser (QCL) NH3 analysers and a closed-path Fourier Transform Infrared Spectroscopy analyser (CP-FTIR) in conjunction with the integrated horizontal flux method to calculate NH3 and N2O fluxes. During the feeding period, 16 and 26% of the excreted nitrogen (N) (240gNhead(-1)day(-1)) was lost via NH3 volatilization from the control pen, while lignite application decreased NH3 volatilization to 12 and 18% of the excreted N, for Phase 1 and Phase 2, respectively. Compared to the control pen, lignite application decreased NH3 emissions by approximately 30%. Nitrous oxide emissions from the cattle pens were small, 0.10 and 0.14gN2O-Nhead(-1)day(-1) (<0.1% of excreted N) for the control pen, for Phase 1 and Phase 2, respectively. Lignite application increased direct N2O emissions by 40 and 57%, to 0.14 and 0.22gN2O-Nhead(-1)day(-1), for Phase 1 and Phase 2, respectively. The increase in N2O emissions resulting from lignite application was counteracted by the lower indirect N2O emission due to decreased NH3 volatilization. Using 1% as a default emission factor of deposited NH3 for indirect N2O emissions, the application of lignite decreased total N2O emissions.

  11. Preliminary geologic investigation of the West Glendive lignite deposits, Dawson County, Montana

    USGS Publications Warehouse

    Banet, Arthur C.

    1979-01-01

    Four major lignite beds, all in the Fort Union Formation (Paleocene), occur in the West Glendive area, Dawson County, Montana. The Newton Ranch and Poverty Flats beds are in the Lebo Member and the Peuse and Kolberg Ranch beds are in the Tongue River Member. Correlation of the lignite beds across the area shows that the Peuse bed is the thickest and most extensive. Field mapping and drill-hole data indicate that folding and faulting are more common than previously reported.

  12. Catalysts for carbon and coal gasification

    DOEpatents

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  13. Coal gasification for electric power generation.

    PubMed

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized.

  14. Updraft Fixed Bed Gasification Aspen Plus Model

    SciTech Connect

    2007-09-27

    The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability of the process model.

  15. Comparison of Copper Sorption on Lignite and on Soils of Different Types and Their Humic Acids

    SciTech Connect

    Pekar, M.; Klucakova, M.

    2008-10-15

    We compared the sorption of copper on South Moravian lignite with that on several soils from Slovakia, using batch adsorption at a laboratory temperature of 25{sup o}C followed by a two-step desorption procedure. The results confirmed that lignite has a copper-sorption capacity and copper-binding strength that is comparable to or better than that of the Slovakian soils that we investigated. We compared these results with previously obtained data for sorption on humic acids (HA) isolated from lignite and soils. Although soil constituents other than HA, such as fulvic acids and mineral particles, also control metal sorption, HA bind copper at higher capacity and with greater strength than do the whole matrices of the soils we tested, and lignite showed a greater binding strength for copper than any of these soils. Our results thus far indicate that natural lignite mined in the Czech Republic, or lignite-derived HA, are potential agents for in situ soil remediation.

  16. Changes in floral composition with depositional environment in Texas Eocene Manning Formation lignites

    SciTech Connect

    Gennett, J.A.; Raymond, A.L.

    1986-09-01

    The floral composition of palynomorph assemblages of Jacksonian Texas lignites is closely linked to depositional systems. Localities on the eastern Gulf coastal plain are included in the late Eocene Fayette delta system, and lignite formation is considered to have occurred in lower deltaic environments. Samples are commonly dominated by grains of Caprifoliipites/Salixpollenites, Momites, or Nyssa, indicating dicotyledonous tree-dominated swamps. Some samples contain abundant Cicatricosspories spores, suggesting marshy, fern-dominated areas. The San Miguel lignite deposit in McMullen County is located on the eastern margin of the south Texas strand-plain/barrier-bar system. Caprifoliipites/Salixpollenites pollen is rare in the San Miguel, and most of the levels are dominated by small tricolporates such as cupuliferoipollenites and Sapotaceae. Nyssa is locally important. The lignite is considered to have been deposited in a nondeltaic freshwater swamp behind a barrier island. The Miguel Alleman deposit, across the Mexican border in Tamaulipas, is thought to have developed in a lagoonal-estuarine environment. Dinoflagellates such as Wetzeliella are common at some levels, indicating marine conditions. As with San Miguel, small tricolporates and Momipites are common. These assemblages contrast with Sabinian floras. Wilcox Group east Texas lignites were formed in fluvial environments. Betulaceous pollen is common in these coals. Sabinian south Texas lignites formed in marine environments yield dinoflagellates and Chenopodium-type pollen. Chenopods are common in present-day Gulf Coast salt marshes but seem to have been absent from Jackson-age seacoasts.

  17. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.

    PubMed

    Hasani, F; Shala, F; Xhixha, G; Xhixha, M K; Hodolli, G; Kadiri, S; Bylyku, E; Cfarku, F

    2014-12-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of (40)K, (226)Ra and (232)Th in lignite are found to be 36 ± 8 Bq kg(-1), 9 ± 1 Bq kg(-1) and 9 ± 3 Bq kg(-1), respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry.

  18. Use of mobile equipment in open pit lignite mines Profen and Zwenkau

    SciTech Connect

    Evans, B.J.; Zengerle, M.W.

    1997-12-31

    MIBRAG is a lignite mining company located in former East Germany south of Leipzig which was privatized into the ownership of an Anglo-American Consortium in 1994. Bucketwheel and bucketchain excavators tied to conveyor belts have been the primary equipment used for overburden and lignite removal. In order to improve recovery and lignite quality, mobile equipment has been introduced to supplement large excavators. The primary uses to date have been the removal of a hard sandstone layer in overburden, the recovery of coal in a depression of a lower seam and the removal of interburden. The introduction of this equipment has presented challenges such as developing ways to transfer lignite from trucks to conveyor, the need for increased road construction and maintenance, the need for mobile service equipment, purchase of support equipment, managing increased traffic and modifying safety training. Mobile equipment has also provided advantages such as greater flexibility, increased responsiveness to changing conditions, increased opportunities for updating equipment, increased lignite recovery, improved lignite quality control and increased overall equipment availability.

  19. Sewage sludge gasification: First studies

    SciTech Connect

    Garcia-Bacaicoa, P.; Bilbao, R.; Uson, C.

    1995-11-01

    Wastewater treatment installations produce a large quantity of sewage sludge, the disposal and treatment of which causes several problems because of its volume, its toxic organic constituents and the heavy metals that it contains. Certain methods of treatment and disposal do exist, but they are not entirely satisfactory. Moreover, it is important to develop a technology for the adequate treatment of sewage sludge in order to reduce the environmental problem and the costs of treatment. It can be assumed that gasification is a suitable technology because it reduces the waste volume, destroys the toxic organic compounds and fixes the heavy metals in the resultant solid. In order to gain knowledge of the processes occurring in the gasifier, the results obtained in experiments on the thermal decomposition of sewage sludge at different heating rates are shown.

  20. Dakota Gasification Company - ammonia scrubber

    SciTech Connect

    Wallach, D.L.

    1995-12-31

    Amain stack BACT assessment for sulfur dioxide emissions conducted in 1990 for the Dakota Gasification Company`s (DGC) Great Plains Synfuels Plant identified wet limestone flue gas desulfurization system as BACT. During the development of the design specification for the wet limestone FGD, GE Environmental Systems Inc. and DGC jointly demonstrated a new ammonia-based process for flue gas desulfurization on a large pilot plant located at the Great Plains Synfuels Plant. The production of saleable ammonium sulfate, rather than a waste product, was of interest to DGC as it fit into the plant`s on-going by-product recovery efforts. With the success of the pilot plant, DGC and GEESI entered into an agreement to build the first commercial scale Ammonium Sulfate Forced Oxidation FGD system. Construction of this system is well in progress with an anticipated start-up date of August, 1996.

  1. A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: application of lignite

    PubMed Central

    Chen, Deli; Sun, Jianlei; Bai, Mei; Dassanayake, Kithsiri B.; Denmead, Owen T.; Hill, Julian

    2015-01-01

    In open beef feedlot systems, more than 50% of dietary nitrogen (N) is lost as ammonia (NH3). Here we report an effective and economically-viable method to mitigate NH3 emissions by the application of lignite. We constructed two cattle pens (20 × 20 m) to determine the effectiveness of lignite in reducing NH3 emissions. Twenty-four steers were fed identical commercial rations in each pen. The treatment pen surface was dressed with 4.5 kg m−2 lignite dry mass while no lignite was applied in the control pen. We measured volatilised NH3 concentrations using Ecotech EC9842 NH3 analysers in conjunction with a mass balance method to calculate NH3 fluxes. Application of lignite decreased NH3 loss from the pen by approximately 66%. The cumulative NH3 losses were 6.26 and 2.13 kg N head−1 in the control and lignite treatment, respectively. In addition to the environmental benefits of reduced NH3 losses, the value of retained N nutrient in the lignite treated manure is more than $37 AUD head−1 yr−1, based on the current fertiliser cost and estimated cost of lignite application. We show that lignite application is a cost-effective method to reduce NH3 loss from cattle feedlots. PMID:26584639

  2. A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: application of lignite.

    PubMed

    Chen, Deli; Sun, Jianlei; Bai, Mei; Dassanayake, Kithsiri B; Denmead, Owen T; Hill, Julian

    2015-11-20

    In open beef feedlot systems, more than 50% of dietary nitrogen (N) is lost as ammonia (NH3). Here we report an effective and economically-viable method to mitigate NH3 emissions by the application of lignite. We constructed two cattle pens (20 × 20 m) to determine the effectiveness of lignite in reducing NH3 emissions. Twenty-four steers were fed identical commercial rations in each pen. The treatment pen surface was dressed with 4.5 kg m(-2) lignite dry mass while no lignite was applied in the control pen. We measured volatilised NH3 concentrations using Ecotech EC9842 NH3 analysers in conjunction with a mass balance method to calculate NH3 fluxes. Application of lignite decreased NH3 loss from the pen by approximately 66%. The cumulative NH3 losses were 6.26 and 2.13 kg N head(-1) in the control and lignite treatment, respectively. In addition to the environmental benefits of reduced NH3 losses, the value of retained N nutrient in the lignite treated manure is more than $37 AUD head(-1) yr(-1), based on the current fertiliser cost and estimated cost of lignite application. We show that lignite application is a cost-effective method to reduce NH3 loss from cattle feedlots.

  3. A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: application of lignite

    NASA Astrophysics Data System (ADS)

    Chen, Deli; Sun, Jianlei; Bai, Mei; Dassanayake, Kithsiri B.; Denmead, Owen T.; Hill, Julian

    2015-11-01

    In open beef feedlot systems, more than 50% of dietary nitrogen (N) is lost as ammonia (NH3). Here we report an effective and economically-viable method to mitigate NH3 emissions by the application of lignite. We constructed two cattle pens (20 × 20 m) to determine the effectiveness of lignite in reducing NH3 emissions. Twenty-four steers were fed identical commercial rations in each pen. The treatment pen surface was dressed with 4.5 kg m-2 lignite dry mass while no lignite was applied in the control pen. We measured volatilised NH3 concentrations using Ecotech EC9842 NH3 analysers in conjunction with a mass balance method to calculate NH3 fluxes. Application of lignite decreased NH3 loss from the pen by approximately 66%. The cumulative NH3 losses were 6.26 and 2.13 kg N head-1 in the control and lignite treatment, respectively. In addition to the environmental benefits of reduced NH3 losses, the value of retained N nutrient in the lignite treated manure is more than $37 AUD head-1 yr-1, based on the current fertiliser cost and estimated cost of lignite application. We show that lignite application is a cost-effective method to reduce NH3 loss from cattle feedlots.

  4. The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea.

    PubMed

    Paramashivam, Dharini; Clough, Tim J; Carlton, Anna; Gough, Kelsi; Dickinson, Nicholas; Horswell, Jacqui; Sherlock, Robert R; Clucas, Lynne; Robinson, Brett H

    2016-02-01

    Lignite has been proposed as a soil amendment that reduces nitrate (NO3(-)) leaching from soil. Our objective was to determine the effect of lignite on nitrogen (N) fluxes from soil amended with biosolids or urea. The effect of lignite on plant yield and elemental composition was also determined. Batch sorption and column leaching experiments were followed by a lysimeter trial where a low fertility soil was amended with biosolids (400 kg N/ha equivalent) and urea (200 kg N/ha equivalent). Treatments were replicated three times, with and without lignite addition (20 t/ha equivalent). Lignite did not reduce NO3(-) leaching from soils amended with either biosolids or urea. While lignite decreased NO3(-) leaching from an unamended soil, the magnitude of this effect was not significant in an agricultural context. Furthermore, lignite increased cumulative N2O production from soils receiving urea by 90%. Lignite lessened the beneficial growth effects of adding biosolids or urea to soil. Further work could investigate whether coating urea granules with lignite may produce meaningful environmental benefits.

  5. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    SciTech Connect

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  6. Solid fuel gasification in the global energy sector (a review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2015-07-01

    In the review of the Conference on Gasification of Solid Fuels, which was held on October 2013 by the United States, the commercial use of the most advanced coal gasification systems in the chemical and power industry is considered. Data on the projects of integrated solid fuel gasification combined-cycle plants, either being developed or exploited in the United States, as well as the nature and results performed in specialized organizations to improve the existing gasification equipment and systems, are presented.

  7. Balancing the process of hydrating gasification of brown coal

    NASA Astrophysics Data System (ADS)

    Tsatsaronis, G.; Schuster, P.; Roertgen, H.

    1980-03-01

    A method is presented for the hydrating gasification of brown coal to synthetic natural gas by employing heat from a nuclear reactor. Attention is given to the layout and flow scheme of the gasification plant as well as to graphs of gasification percentages versus gasification temperatures and pressure. The irreversibilities of various plant components are determined by using detailed exergy balance sheets, and the thermal and exergy efficiencies of the entire plant are noted.

  8. Conventional pulverized coal and fluidized bed combustion testing of San Miguel lignite

    SciTech Connect

    Jones, M.L.; Goblirsch, G.M.

    1982-01-01

    The information generated at GFETC can be summarized in the following way: (1) The ash fouling furnace is an empirical tool which provides good information on relative fouling potential of various fuels. In the case of San Miguel lignite, tests suggest a severe fouling problem if conventional boiler designs are employed. (2) No effect in either deposition rate or deposit strength was seen when MgO and CaCO/sub 3/ were used as additives. For these tests a single addition rate was utilized at two different injection points in the system. (3) Deposits from the combustion of San Miguel lignite are very different from those observed when burning a Northern Great Plains lignite, primarily because of the building of deposits from the refractory wall. (4) No bed agglomeration was noted under the varied run conditions used in AFBC testing of this lignite fuel. (5) The AFBC NO/sub chi/ level emitted in the flue gas were always less than the NSPS limit of 0.6 lbs NO/sub 2//10/sup 6/ Btu. (6) Utilization of inherent alkali was less than that observed for North Dakota lignites. It was possible to meet NSPS standards of 90% sulfur capture using limestone addition. Use of lower grade fuels such as the lignite from the San Miguel mine is inevitable if we are to meet the expanding needs for energy in the United States today. To make use of these different fuels extensive testing on laboratory and pilot scales will be beneficial in avoiding major problems due to the different characteristics these materials possess. The present successful operation of a full scale boiler using the San Miguel lignite is a good example of the value pilot scale studies can have on the road to successful operation.

  9. Hydrothermal Gasification for Waste to Energy

    NASA Astrophysics Data System (ADS)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  10. Solar coal gasification - Plant design and economics

    NASA Astrophysics Data System (ADS)

    Aiman, W. R.; Thorsness, C. B.; Gregg, D. W.

    A plant design and economic analysis is presented for solar coal gasification (SCG). Coal pyrolysis and char gasification to form the gasified product are reviewed, noting that the endothermic gasification reactions occur only at temperatures exceeding 1000 K, an energy input of 101-136 kJ/mol of char reformed. Use of solar heat offers the possibility of replacing fuels needed to perform the gasification and the oxygen necessary in order to produce a nitrogen-free product. Reactions, energetics, and byproducts from the gasification of subbituminous coal are modeled for a process analysis code used for the SCG plant. Gas generation is designed to occur in a unit exposed to the solar flux focus from a heliostat field. The SCG gas would have an H2 content of 88%, compared to the 55% offered by the Lurgi process. Initial capital costs for the SCG plant are projected to be 4 times those with the Lurgi process, with equality being achieved when coal costs $4/gJ.

  11. Chicken-Bio Nuggets Gasification process

    SciTech Connect

    Sheth, A.C.

    1996-12-31

    With the cost of landfill disposal skyrocketing and land availability becoming scarce, better options are required for managing our nation`s biomass waste. In response to this need, the University of Tennessee Space Institute (UTSI) is evaluating an innovative idea (described as Chicken-Bio Nuggets Gasification process) to gasify waste products from the poultry industry and industrial wood/biomass-based residues in {open_quotes}as-is{close_quotes} or aggregate form. The presence of potassium salts in the poultry waste as well as in the biomass can act as a catalyst in reducing the severity of the thermal gasification. As a result, the mixture of these waste products can be gasified at a much lower temperature (1,300-1,400{degrees}F versus 1,800-2,000{degrees}F for conventional thermal gasification). Also, these potassium salts act as a catalyst by accelerating the gasification reaction and enhancing the mediation reaction. Hence, the product gas from this UTSI concept can be richer in methane and probably can be used as a source of fuel (to replace propane in hard reach remote places) or as a chemical feed stock. Exxon Research and Engineering Company has tested a similar catalytic gasification concept in a fluid-bed gasifier using coal in a one ton/day pilot plant in Baytown, Texas. If found technically and economically feasible, this concept can be later on extended to include other kinds of waste products such as cow manure and wastes from swine, etc.

  12. Biomass gasification: yesterday, today, and tomorrow

    SciTech Connect

    Reed, T.B.

    1980-03-01

    The solid fuels, biomass and coal, can be converted by gasification into clean gaseous fuels that are easier to distribute and required for many technical processes. The simplest method of conversion is air gasification, producing a low-energy gas well suited for direct-heat or engine applications but unsuitable for pipeline use. Oxygen gasification produces a medium-energy gas composed primarily of CO and H/sub 2/, which can be used industrial pipelines for operation of turbines for power and heat cogeneration or for chemical synthesis of methanol or ammonia. Steam or hydrogen gasification are also possible but external heat and energy sources are required. Slow pyrolysis produces a medium-energy gas, charcoal, and oil. Gases resulting from fast pyrolysis contain a high concentration of olefins (primarily ethylene), which are quite useful for synthesis of fuels or chemicals. This paper presents some of the most pertinent material from the three-volume SERI report, A Survey of Biomass Gasification.

  13. Apparatus for fixed bed coal gasification

    DOEpatents

    Sadowski, Richard S.

    1992-01-01

    An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  14. Workability and strength of lignite bottom ash geopolymer mortar.

    PubMed

    Sathonsaowaphak, Apha; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2009-08-30

    In this paper, the waste lignite bottom ash from power station was used as a source material for making geopolymer. Sodium silicate and sodium hydroxide (NaOH) were used as liquid for the mixture and heat curing was used to activate the geopolymerization. The fineness of bottom ash, the liquid alkaline/ash ratio, the sodium silicate/NaOH ratio and the NaOH concentration were studied. The effects of the additions of water, NaOH and napthalene-based superplasticizer on the workability and strength of the geopolymer mortar were also studied. Relatively high strength geopolymer mortars of 24.0-58.0 MPa were obtained with the use of ground bottom ash with 3% retained on sieve no. 325 and mean particle size of 15.7 microm, using liquid alkaline/ash ratios of 0.429-0.709, the sodium silicate/NaOH ratios of 0.67-1.5 and 7.5-12.5M NaOH. The incorporation of water improved the workability of geopolymer mortar more effectively than the use of napthalene-based superplasticizer with similar slight reduction in strengths. The addition of NaOH solution slightly improves the workability of the mix while maintaining the strength of the geopolymer mortars.

  15. Coal gasification using solar energy

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.

    1983-01-01

    An economic evaluation of conventional and solar thermal coal gasification processes is presented, together with laboratory bench scale tests of a solar carbonization unit. The solar design consists of a heliostat field, a central tower receiver, a gasifier, and a recirculation loop. The synthetic gas is produced in the gasifier, with part of the gas upgraded to CH4 and another redirected through the receiver with steam to form CO and H2. Carbonaceous fuels are burned whenever sunlight is not available. Comparisons are made for costs of Lurgi, Bi-gas, Hygas, CO2 Acceptor, and Peat Gas processes and hybrid units for each. Solar thermal systems are projected to become economical with 350 MWt output and production of 1,420,000 cu m of gas per day. The laboratory bench scale unit was tested with Montana rosebud coal to derive a heat balance assessment and analyse the product gas. Successful heat transfer through a carrier gas was demonstrated, with most of the energy being stored in the product gas.

  16. Plasma Treatments and Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  17. [Dust exposure levels and pneumoconiosis prevalence in a lignite coal miners].

    PubMed

    Cimrin, Arif H; Demiral, Yücel; Ergör, Alp; Uz Başaran, Seminur; Kömüs, Nuray; Ozbirsel, Cemal

    2005-01-01

    The effects of working conditions on health in lignite mines in Turkey have not been studied comprehensively. The aim of this study was to determine the prevalence of coal miner pneumoconiosis among lignite miners and to evaluate the effects of working conditions. The study was carried out between 2001 and 2003. All workers in the lignite mine and maintenance workers were consisted in the study. A face to face questionnaire was used to obtain demographics and work life variables. Posterior-anterior chest radiograms were evaluated by an A reader chest physician, according to ILO 1980 standard guidelines. Profusion of densities related with pneumoconiosis as 1/0 and above regarded as the "suspected pneumoconiosis". Parenchyma degeneration and/or massive opacities have been accepted as complicated silicosis. Dust concentrations in the work environment obtained from the periodical examinations. Two thousand four hundred and sixty-four X-ray were evaluated and 333 (13.5%) pneumoconiosis compatible changes were found. Among the pneumoconiosis cases, 25 (7.5%) were assigned as complicated silicosis. There was significant and positive association between worked years and pneumoconiosis prevalence (p= 0.019). Our findings indicated that pneumoconiosis prevalence among lignite miners in Turkey comparable to the USA prevalence prior to implementation of effective dust control programmes. It has been suggested that dust exposure in the work environment were high enough to developed pneumoconiosis in lignite mines. Dust control systems and measures should be re-evaluated.

  18. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping

    NASA Astrophysics Data System (ADS)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.

  19. Characterization of airborne trace metal and trace organic species from coal gasification.

    PubMed

    Osborn, J F; Santhanam, S; Davidson, C I; Flotard, R D; Stetter, J R

    1984-12-01

    Fugitive emissions from a slagging fixed-bed coal-gasification pilot plant were analyzed by flameless atomic absorption spectrophotometry, gas chromatography, and mass spectrometry for trace metal and trace organic species. Analysis of the size distributions of airborne particulate matter inside the plant showed an abundance of large metal-containing particles; outdoor distributions in the vicinity of the plant resembled the indoor distributions, suggesting the importance of the gasifier in influencing ambient air quality. This conclusion was further supported by identification of similar organic compounds inside and outside the plant. Trace element enrichment factors based on the earth's crustal composition were greater than those based on the composition of the lignite used in the gasifier, showing the importance of characterizing the proper source material when inverstigating chemical fraction during aerosol formation. Enrichments in the present study were much greater than those found in previous sampling during aborted start-up and cleaning procedures, where normal operating temperatures had not yet been reached. Both studies showed evidence of enrichment factors which decreased with increasing particle size. Although much of the airborne mass was associated with large particles having low respirability, the high concentrations of some metals indoors suggests that further assessment of potential occupational exposures is warranted.

  20. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

  1. Characterizing and modeling combustion of mild-gasification chars in pressurized fluidized beds

    SciTech Connect

    Daw, C.S.

    1993-03-01

    Performance estimates for the UCC2, IGTP1, and IGTP2 chars were made for a typical utility PFBC boiler having nominal characteristics similar to those of the American Electric Power 75 MW(e) Tidd PFBC demonstration facility. Table 2 summarizes the assumed boiler operating conditions input to the PFBC simulation code. Input fuel parameters for the chars and reference fuels were determined from their standard ASTM analyses (Table 1) and the results of the bench-scale characterization tests at B&W`s Alliance Research Center. The required characterization information for the reference fuels was available from the B&W data base, and the combustion reactivity information for the mild-gasification chars was generated in the pressurized bench-scale reactor as described earlier. Note that the combustion reactivity parameters for Beulah lignite are those previously measured at low-pressure conditions. It was necessary to use the previous values as the new parameters could not be accurately measured in the pressurized bench-scale facility. Based on very limited measurements of particle size attrition in paste-type feed systems, it was assumed that all of the fuels (including the chars) would have a very small (essentially negligible) degree of attrition in the feed system. Char devolatilization parameters were assumed to be equal to those of anthracite because of the very low levels of volatiles present in UCC2, IGTP1, and IGTP2. Major fuel input parameters and higher heating values are summarized in Table 3.

  2. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.; Smith, E. )

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes the stream assessment. 6 refs., 3 figs., 3 tabs.

  3. Characterizing and modeling combustion of mild-gasification chars in pressurized fluidized beds

    SciTech Connect

    Daw, C.S.

    1993-01-01

    Performance estimates for the UCC2, IGTP1, and IGTP2 chars were made for a typical utility PFBC boiler having nominal characteristics similar to those of the American Electric Power 75 MW(e) Tidd PFBC demonstration facility. Table 2 summarizes the assumed boiler operating conditions input to the PFBC simulation code. Input fuel parameters for the chars and reference fuels were determined from their standard ASTM analyses (Table 1) and the results of the bench-scale characterization tests at B W's Alliance Research Center. The required characterization information for the reference fuels was available from the B W data base, and the combustion reactivity information for the mild-gasification chars was generated in the pressurized bench-scale reactor as described earlier. Note that the combustion reactivity parameters for Beulah lignite are those previously measured at low-pressure conditions. It was necessary to use the previous values as the new parameters could not be accurately measured in the pressurized bench-scale facility. Based on very limited measurements of particle size attrition in paste-type feed systems, it was assumed that all of the fuels (including the chars) would have a very small (essentially negligible) degree of attrition in the feed system. Char devolatilization parameters were assumed to be equal to those of anthracite because of the very low levels of volatiles present in UCC2, IGTP1, and IGTP2. Major fuel input parameters and higher heating values are summarized in Table 3.

  4. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

  5. Process for fixed bed coal gasification

    DOEpatents

    Sadowski, Richard S.

    1992-01-01

    The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  6. ADVANCED GASIFICATION BY-PRODUCT UTILIZATION

    SciTech Connect

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; M. Mercedes Maroto-Valer; Zhe Lu; Harold Schobert

    2005-04-01

    The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2003 to August 31, 2004. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  7. Biomass Gasification Technology Assessment: Consolidated Report

    SciTech Connect

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  8. Barium carbonate catalysis of carbon gasification

    SciTech Connect

    Ersolmaz, C.; Falconer, J.L.

    1985-01-01

    The interaction of barium carbonate with carbon black was studied to understand catalyzed CO/sub 2/ gasification of carbon. Temperature-programmed reaction with isotopic labeling of the carbonate and the carbon showed that carbon dramatically accelerated with rate of BaCO/sub 3/ decomposition to form BaO and CO/sub 2/, which rapidly gasified carbon to form CO. Pure BaCO/sub 3/ was observed to exchange carbon dioxide with the gas-phase, and the exchange rate was significantly increased by carbon at higher temperatures, due to formation of a carbon-carbonate complex. The interaction of BaCO/sub 3/ and C to form a complex occurred well below gasification temperatures, and BaCO/sub 3/ did not decompose until after gasification began and the gas phase CO/sub 2/ concentration was low.

  9. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  10. 78 FR 63463 - Intent To Prepare a Regional Environmental Impact Statement for Surface Coal and Lignite Mining...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Surface Coal and Lignite Mining in the State of Texas AGENCY: Department of the Army, U.S. Army Corps of... associated with a decision to develop and assess data and information with waters of the United States and... lignite mining activities may eventually require authorization from the USACE under Section 404 of...

  11. Numerical simulation of waste tyres gasification.

    PubMed

    Janajreh, Isam; Raza, Syed Shabbar

    2015-05-01

    Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000 °C-1600 °C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350 °C-550 °C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20 kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable.

  12. Updraft gasification of salmon processing waste.

    PubMed

    Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

    2009-10-01

    The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable.

  13. Production of Hydrogen from Underground Coal Gasification

    DOEpatents

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  14. Continuous Removal of Coal-Gasification Residue

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Suitor, J.; Dubis, D.

    1986-01-01

    Continuous-flow hopper processes solid residue from coal gasification, converting it from ashes, cinders, and clinkers to particles size of sand granules. Unit does not require repeated depressurization of lockhopper to admit and release materials. Therefore consumes less energy. Because unit has no airlock valves opened and closed repeatedly on hot, abrasive particles, subjected to lesser wear. Coal-gasification residue flows slowly through pressure-letdown device. Material enters and leaves continuously. Cleanout door on each pressure-letdown chamber allows access for maintenance and emergencies.

  15. Design features of first of its kind AFBC high pressure boiler for Kutch lignite fuel in Gujarat, India

    SciTech Connect

    Mokashi, A.; Diwakar, K.W.

    1998-07-01

    Gujarat Heavy Chemicals Ltd. (GHCL) of Gujarat State in India is one of the largest manufacturers of Soda Ash with modern technology from Akzo of the Netherlands. GHCL with earlier experience in firing lignite on a travagrate boiler and with a converted fluidized bed boiler has very clearly identified the problem area for review, and with that rich experience awarded a contract to Thermax Babcock and Wilcox Ltd. (TBW), Pune, India. Accordingly, a boiler has been designed to suit Kutch Lignite and coal with AFBC technology. This paper discusses the complete design of the boiler, effects of Kutch Lignite, its composition, thermal efficiency on coal as well as lignite, various performance parameters and guarantees, sizing arrangements of pressure parts, feeding arrangement and specially designed fluidizing bed combustor, various instrumentation and control loops. This paper discusses all the above features of this high-pressure boiler which can be an ideal boiler for the Kutch lignite fuel.

  16. Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions

    USGS Publications Warehouse

    Behar, F.; Lewan, M.D.; Lorant, F.; Vandenbroucke, M.

    2003-01-01

    The objectives of the study are to compare product compositions and yields generated from lignite artificially matured by open nonhydrous pyrolysis, closed nonhydrous pyrolysis, and hydrous pyrolysis. The pyrolysis products were fractionated into CO2, H2O, CH4, C2-C5, C8-C14, C14+ saturates, C14+ aromatics and NSOs (resins+asphaltenes). All three methods generated high and similar quantities of water during pyrolysis that ranged between 14.6 and 15.2 wt.% of the original lignite. As a result of this high water content generated by the lignite, the experiments with no added water are referred to as nonhydrous rather than anhydrous. Rock-Eval pyrolysis and elemental analyses were conducted on the recovered lignite after solvent extraction to determine their residual hydrocarbon generation potential and to plot their position in a van Krevelen diagram, respectively. Residual lignite from the closed nonhydrous and hydrous experiments showed relationships between vitrinite reflectance (%Ro) values and atomic H/C ratios that occurred within the fields observed for natural maturation of coal. Although no significant differences in the atomic H/C ratios were observed between closed nonhydrous and hydrous pyrolysis, the vitrinite reflectance values were on the average 0.2% Ro lower in the residual lignite from the nonhydrous experiments. The remaining hydrocarbon generation potential as determined by Rock-Eval pyrolysis of the residual lignite showed that the nonhydrous residuals had on the average 16 mg more hydrocarbon potential per gram of original lignite than the hydrous residuals. This suggests there is a better release of the pyrolysis products from the lignite network in the hydrous experiments once generation occurs. For gas generation, at maximum yields, open nonhydrous pyrolysis generates the most hydrocarbon gas (21.0 mg/g original lignite), which is 20% more than closed nonhydrous pyrolysis and 29% more than hydrous pyrolysis. Closed nonhydrous pyrolysis

  17. Characterization of the components of lithologic layers of North Dakota lignites

    SciTech Connect

    Schobert, H.H.; Karner, F.R.; Kleesattel, D.R.; Olson, E.S.

    1985-01-01

    Lignites of the northern Great Plains (USA) exhibit distinct lithologic layering. Current geochemical research is directed to characterization of the separable components of the lithologic layers - the lithotypes fusain, vitrain and attritus, and their constituent macerals. The lithotype compositions plotted on a ternary bond equivalence diagram (Battaerd and Evans, 1979) show a relationship between the medium dark, medium light, and dark lithotypes of Victorian brown coal (data from Johns and others, 1984) and attritus and fusain in the lignite. These five lithotypes seem to be related, in the order listed, by increasing loss of cellulose, lignin or both. Furthermore, a linear correlation (r = .85) exists between the percent carbon bond equivalence and aromaticity of the five lithotypes. Work currently in progress seeks to extend the understanding of the geochemical relationships among brown coal and lignite lithotypes. 15 refs., 1 fig., 1 tab.

  18. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.

    PubMed

    Toptas, Asli; Yildirim, Yeliz; Duman, Gozde; Yanik, Jale

    2015-02-01

    In this study, the combustion behavior of different kinds of torrefied biomass (lignocellulosic and animal wastes) and their blends with lignite was investigated via non-isothermal thermogravimetric method under air atmosphere. For comparison, combustion characteristics of raw biomasses were also determined. Torrefaction process improved the reactivity of char combustion step of biomasses. Characteristic combustion parameters for blends showed non-additivity behavior. It was found that the mixture of torrefied biomasses and lignite at a ratio of 1:1 had a lower ignition and burnout temperature than the coal-only sample. Although no interactions were observed between the lignite and torrefied biomass at initial step of combustion, a certain degree of interaction between the components occurred at char combustion step. Kinetic parameters of combustion were calculated by using the Coats Redfern model. Overall, this study showed that poultry litters can be used as a substitute fuel in coal/biomass co-firing systems by blending with lignocellulosic biomass.

  19. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    PubMed

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage.

  20. Sorption of metal ions on lignite and the derived humic substances.

    PubMed

    Havelcová, Martina; Mizera, Jirí; Sýkorová, Ivana; Pekar, Miloslav

    2009-01-15

    The study presents results of sorption of metal ions (Pb2+, Zn2+, Cu2+, and Cd2+) onto lignite mined in South Moravia, Czech Republic, and solid humic substances (humin and humic acid) derived from it. The efficiency of these sorbents has been studied as a function of contact time, solution pH, and metal concentration. The sorption efficiencies were higher for humin and lower for humic acid samples than for the original lignite. With its high sorption capacities of several mmol/g, particularly for Pb2+ and Cd2+, the South Moravian lignite can provide a cheap source material for preparation of sorbents utilizable in removal of toxic metals from wastewaters.

  1. Determination of optimal environmental policy for reclamation of land unearthed in lignite mines - Strategy and tactics

    NASA Astrophysics Data System (ADS)

    Batzias, Dimitris F.; Pollalis, Yannis A.

    2012-12-01

    In this paper, optimal environmental policy for reclamation of land unearthed in lignite mines is defined as a strategic target. The tactics concerning the achievement of this target, includes estimation of optimal time lag between each lignite site (which is a segment of the whole lignite field) complete exploitation and its reclamation. Subsidizing of reclamation has been determined as a function of this time lag and relevant implementation is presented for parameter values valid for the Greek economy. We proved that the methodology we have developed gives reasonable quantitative results within the norms imposed by legislation. Moreover, the interconnection between strategy and tactics becomes evident, since the former causes the latter by deduction and the latter revises the former by induction in the time course of land reclamation.

  2. Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

  3. Possible linkages between lignite aquifers, pathogenic microbes, and renal pelvic cancer in northwestern Louisiana, USA

    USGS Publications Warehouse

    Bunnell, J.E.; Tatu, C.A.; Bushon, R.N.; Stoeckel, D.M.; Brady, A.M.G.; Beck, M.; Lerch, H.E.; McGee, B.; Hanson, B.C.; Shi, R.; Orem, W.H.

    2006-01-01

    In May and September, 2002, 14 private residential drinking water wells, one dewatering well at a lignite mine, eight surface water sites, and lignite from an active coal mine were sampled in five Parishes of northwestern Louisiana, USA. Using a geographic information system (GIS), wells were selected that were likely to draw water that had been in contact with lignite; control wells were located in areas devoid of lignite deposits. Well water samples were analyzed for pH, conductivity, organic compounds, and nutrient and anion concentrations. All samples were further tested for presence of fungi (cultures maintained for up to 28 days and colonies counted and identified microscopically) and for metal and trace element concentration by inductively-coupled plasma mass spectrometry and atomic emission spectrometry. Surface water samples were tested for dissolved oxygen and presence of pathogenic leptospiral bacteria. The Spearman correlation method was used to assess the association between the endpoints for these field/laboratory analyses and incidence of cancer of the renal pelvis (RPC) based on data obtained from the Louisiana Tumor Registry for the five Parishes included in the study. Significant associations were revealed between the cancer rate and the presence in drinking water of organic compounds, the fungi Zygomycetes, the nutrients PO4 and NH3, and 13 chemical elements. Presence of human pathogenic leptospires was detected in four out of eight (50%) of the surface water sites sampled. The present study of a stable rural population examined possible linkages between aquifers containing chemically reactive lignite deposits, hydrologic conditions favorable to the leaching and transport of toxic organic compounds from the lignite into the groundwater, possible microbial contamination, and RPC risk. ?? Springer Science+Business Media B.V. 2006.

  4. Beluga coal gasification feasibility study

    SciTech Connect

    Robert Chaney; Lawrence Van Bibber

    2006-07-15

    The objective of the study was to determine the economic feasibility of developing and siting a coal-based integrated gasification combined-cycle (IGCC) plant in the Cook Inlet region of Alaska for the co-production of electric power and marketable by-products. The by-products, which may include synthesis gas, Fischer-Tropsch (F-T) liquids, fertilizers such as ammonia and urea, alcohols, hydrogen, nitrogen and carbon dioxide, would be manufactured for local use or for sale in domestic and foreign markets. This report for Phase 1 summarizes the investigation of an IGCC system for a specific industrial setting on the Cook Inlet, the Agrium U.S. Inc. ('Agrium') fertilizer plant in Nikiski, Alaska. Faced with an increase in natural gas price and a decrease in supply, the Agrium is investigating alternatives to gas as feed stock for their plant. This study considered all aspects of the installation and infrastructure, including: coal supply and cost, coal transport costs, delivery routes, feedstock production for fertilizer manufacture, plant steam and power, carbon dioxide (CO{sub 2}) uses, markets for possible additional products, and environmental permit requirements. The Cook Inlet-specific Phase 1 results, reported here, provided insight and information that led to the conclusion that the second study should be for an F-T plant sited at the Usibelli Coal Mine near Healy, Alaska. This Phase 1 case study is for a very specific IGCC system tailored to fit the chemical and energy needs of the fertilizer manufacturing plant. It demonstrates the flexibility of IGCC for a variety of fuel feedstocks depending on plant location and fuel availability, as well as the available variety of gas separation, gas cleanup, and power and steam generation technologies to fit specific site needs. 18 figs., 37 tabs., 6 apps.

  5. CAVSIM. Underground Coal Gasification Program

    SciTech Connect

    Britten, J.A., Thorsness, C.B. )

    1989-03-03

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large, almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.

  6. Comparative economics truck haulage vs. conveying for lignite mines

    SciTech Connect

    Williamson, K.L.

    1983-11-01

    The traditional method of material transportation in open pit mines has been truck haulage. Principally, this is because trucks offer a high degree of flexibility which permits the operator to modify and redirect the mining plan in order to change production goals as variable factors dictate. In recent years, the trend in open pit mining has been to minimize truck haulage and substitute belt conveyor systems. Initially the crusher was placed at the pit perimeter, with the natural evolution to ''in-pit'' crushing, and finally, the relative recent development of portable in-pit crushers. Reduction of the ROM (run-off mine) material at the working face combined with belt conveyor haulage has long been recognized as an economically desirable method for transporting material from the mine to a location where it may be further processed. This method of mining and moving material was pioneered in Europe, and in particular, in the brown-coal fields of Germany. This was due to the fact that European countries are generally more dependent on imported oil, and truck haulage is extremely sensitive to escalating oil prices. In addition, in-pit crushing and conveying requires a significant capital expenditure. In the case of the open cast lignite mines of Germany, long term contracts were available to reduce the economic risk that this large capital expenditure would impose on the mining operation. This general world-wide trend to minimize truck haulage and maximize conveyor transport has slowly been implemented in the United States, and is now being fully recognized as a viable cost cutting measure. The reluctance to substitute conveyors for truck haulage may be attributed to the following factors: Natural resistance to change. The misconception that conveyors do not provide sufficient flexibility. Reluctance to apply ''state of the art'' technology when conservative, conventional methods are available.

  7. Comparative radiocarbon dating of lignite, pottery, and charcoal samples from Babeldaob Island, Republic of Palau

    SciTech Connect

    Anderson, A.; Chappell, J.; Clark, G.; Phear, S.

    2005-07-01

    It is difficult to construct archaeological chronologies for Babeldaob, the main island of Palau (western Micronesia), because the saprolitic clays of the dominant terraced-hill sites and associated ceramic sherds often contain old carbon that originated in lignites. This has implications, as well, for chronologies of sedimentary sequences. Comparative analysis of the dating problem using lignite, pottery, and charcoal samples indicates that, in fact, there are both old and young sources of potential contamination. It is concluded that radiocarbon samples from Babeldaob need to be tested for appropriate carbon content rather than relying solely upon material identification.

  8. Subtractive-FTIR spectroscopy to characterize organic matter in lignite samples from different depths.

    PubMed

    Gezici, Orhan; Demir, Ibrahim; Demircan, Aydin; Unlü, Nuri; Karaarslan, Muhsin

    2012-10-01

    Organic matter present in lignite samples collected from different depths (i.e. top, mid and bottom) of lignite source, Ilgın, Konya province, was examined by using subtractive-FTIR-ATR spectroscopy. FTIR spectra were recorded on (i) original samples, (ii) the samples dried at 105 °C and (iii) the samples acid-treated and dried. After a combustion process performed for each sample at 650 °C for 15 min, the spectra of samples were recorded and subtracted from the spectra of untreated samples. Hence, a software-based subtraction made it possible to acquire a representative spectra related with organic matter. As the contribution of the bands related with inorganic constituents in lignite samples were eliminated after spectrum-subtraction procedure, difference-spectra led analyzing the spectra related with organic matter in lignite samples, reasonably. Furthermore, the bands related with acidic functional groups, aromatic and aliphatic structures were analyzed on the basis of difference-spectra, easily. From the difference-spectra it was shown that an acid-treatment process under mild conditions caused shift in some specific bands related with carbonyl groups of carboxyls so that the band at around 1710 cm(-1) arisen, while the intensity of the band at around 1420 cm(-1) was diminished. Through the acid-treatment process, acidic groups in lignite samples from different depths were thought to be turned into similar forms by protonation and/or stripping of metal ions originally bonded. Difference-spectra acquired for acid-treated samples made it possible to evaluate the form of carboxylic acid groups present in the studied samples under specific environmental conditions. Hence, a facile and environmentally-friendly methodology was used to analyze organic matter in lignite by using FTIR spectra, and valuable information was acquired about the aliphatic, aromatic and acidic character of the studied lignite samples collected from different depths. The proposed

  9. Subtractive-FTIR spectroscopy to characterize organic matter in lignite samples from different depths

    NASA Astrophysics Data System (ADS)

    Gezici, Orhan; Demir, Ibrahim; Demircan, Aydin; Ünlü, Nuri; Karaarslan, Muhsin

    2012-10-01

    Organic matter present in lignite samples collected from different depths (i.e. top, mid and bottom) of lignite source, Ilgın, Konya province, was examined by using subtractive-FTIR-ATR spectroscopy. FTIR spectra were recorded on (i) original samples, (ii) the samples dried at 105 °C and (iii) the samples acid-treated and dried. After a combustion process performed for each sample at 650 °C for 15 min, the spectra of samples were recorded and subtracted from the spectra of untreated samples. Hence, a software-based subtraction made it possible to acquire a representative spectra related with organic matter. As the contribution of the bands related with inorganic constituents in lignite samples were eliminated after spectrum-subtraction procedure, difference-spectra led analyzing the spectra related with organic matter in lignite samples, reasonably. Furthermore, the bands related with acidic functional groups, aromatic and aliphatic structures were analyzed on the basis of difference-spectra, easily. From the difference-spectra it was shown that an acid-treatment process under mild conditions caused shift in some specific bands related with carbonyl groups of carboxyls so that the band at around 1710 cm-1 arisen, while the intensity of the band at around 1420 cm-1 was diminished. Through the acid-treatment process, acidic groups in lignite samples from different depths were thought to be turned into similar forms by protonation and/or stripping of metal ions originally bonded. Difference-spectra acquired for acid-treated samples made it possible to evaluate the form of carboxylic acid groups present in the studied samples under specific environmental conditions. Hence, a facile and environmentally-friendly methodology was used to analyze organic matter in lignite by using FTIR spectra, and valuable information was acquired about the aliphatic, aromatic and acidic character of the studied lignite samples collected from different depths. The proposed methodology

  10. DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.

    EPA Science Inventory

    The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...

  11. Innovative gasification technology for future power generation

    SciTech Connect

    Mahajan, K.; Shadle, L.J.; Sadowski, R.S.

    1995-07-01

    Ever tightening environmental regulations have changed the way utility and non-utility electric generation providers currently view their fuels choices. While coal is still, by far, the major fuel utilized in power production, the general trend over the past 20 years has been to switch to low-sulfur coal and/or make costly modifications to existing coal-fired facilities to reach environmental compliance. Unfortunately, this approach has led to fragmented solutions to balance our energy and environmental needs. To date, few integrated gasification combined-cycle (IGCC) suppliers have been able to compete with the cost of other more conventional technologies or fuels. One need only look at the complexity of many IGCC approaches to understand that unless a view toward IEC is adopted, the widespread application of such otherwise potentially attractive technologies will be unlikely in our lifetime. Jacobs-Sirrine Engineers and Riley Stoker Corporation are working in partnership with the Department of Energy`s Morgantown Energy Technology Center to help demonstrate an innovative coal gasification technology called {open_quotes}PyGas{trademark},{close_quotes} for {open_quotes}pyrolysis-gasification{close_quotes}. This hybrid variation of fluidized-bed and fixed-bed gasification technologies is being developed with the goal to efficiently produce clean gas at costs competitive with more conventional systems by incorporating many of the principles of IEC within the confines of a single-gasifier vessel. Our project is currently in the detailed design stage of a 4 ton-per-hour gasification facility to be built at the Fort Martin Station of Allegheny Power Services. By locating the test facility at an existing coal-fired plant, much of the facility infrastructure can be utilized saving significant costs. Successful demonstration of this technology at this new facility is a prerequisite to its commercialization.

  12. Hydrogen production via the KBW gasification process

    SciTech Connect

    Michaels, H.J.; Cannon, J.F.; Probert, P.B.

    1982-03-01

    In October, 1981, Koppers Company, Inc. and the Babcock and Wilcox Company (an operating unit of McDermott, Inc.) formed a joint venture, KBW Gasification Systems, Inc. to serve the expanding synthetic fuels market. KBW is offering commercially an atmospheric pressure, oxygen blown, slagging type entrained flow gasification system. The KBW coal gasification system was designed to offer the synthetic fuels industry an efficient, reliable and advanced system that uses proven modern technology. It can gasify any rank of coal. This includes both Eastern and Western U.S. Coals. Caking properties of the coal do not affect the gasification process. The KBW gasifier can handle wide variations in ash quantity, ash fusion temperature, and sulfur content. It can gasify 100 percent of the mine output. It has major environmental advantages. Tar, phenols, and heavy hydrocarbons are not produced in the KBW gasifier because of the high gasification temperature. It does not produce methane. This eliminates the need for costly and energy intensive steam reforming. It is based on design data, knowledge, and experience possessed by Koppers and Babcock and Wilcox in the areas of coal preparation and handling, mass transfer, heat transfer equipment fabrication, and plant construction. The KBW gasifier has a larger internal volume than existing entrained flow gasifiers. This results in high throughput rates. Both the KBW gasifier and heat recovery boiler use components that have been proven through years of fabrication and service. Membrane walls constructed of vertical, water cooled tubes (which have been widely used in boilers) are used in the KBW gasifier and heat recovery boiler. This feature enables the gasifier to produce high pressure saturated steam that is subsequently superheated in the heat recovery boiler. The water cooled tubes can withstand much higher heat fluxes than jacket type cooling systems while assuring nucleate boiling.

  13. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... of Availability Hydrogen Energy California's Integrated Gasification Combined Cycle Project... availability of the Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary... the Hydrogen Energy California's (HECA) Integrated Gasification Combined Cycle Project, which would...

  14. An experimental verification of numerical model on superheated steam drying of Belchatow lignite

    NASA Astrophysics Data System (ADS)

    Zakrzewski, M.; Sciazko, A.; Komatsu, Y.; Akiyama, T.; Hashimoto, A.; Kaneko, S.; Kimijima, S.; Szmyd, J. S.; Kobayashi, Y.

    2016-09-01

    Due to low production costs, lignite is an important component of energy mixes of countries in its possession. However, high moisture content undermines its applicability as fuel for power generation. Drying in superheated steam is a prospective method of upgrading quality of lignite. The study aimed to validate the drying model of lignite from Belchatow mine in Poland. The experimental investigation on superheated steam drying of lignite was previously conducted. Spheres of 10 mm in diameter were exposed to the drying medium at the temperature range of 110-170oC. The drying behaviour was described in the form of moisture content, drying rate and temperature profile curves against time. With the application of basic coal properties (e.g. density, water percentage, specific heat) as well as the mechanisms of heat and mass transfer in subsequent stages of the process, the numerical model of drying was constructed. It was tentatively verified with reference to experimental results both in terms of drying parameters and temperature. The model illustrated drying behaviour in the entire range of conditions. Nevertheless, further development of numerical model is desirable regarding accuracy of the process parameters.

  15. Hydrologic and geochemical data for the Big Brown lignite mine area, Freestone County, Texas

    USGS Publications Warehouse

    Dorsey, Michael E.

    1985-01-01

    Lignite mining in east and east-central Texas is increasing in response to increased energy needs throughout the State. Associated with the increase in mining activities is a greater need to know the effects of mining activities on the water quantity and quality of near-surface aquifers. The near-surface lignite beds mined at the Big Brown Lignite Mine are from the Calvert Bluff Formation of the Wilcox Group of Eocene age, which is a minor aquifer generally having water suitable for all uses, in eastern Freestone County, Texas. One of the potential hydro!ogic effects of surface-coal mining is a change in the quality of ground water associated with replacement of aquifer materials by mine spoils. The purpose of this report is to compile and categorize geologic, mineralogic, geochemical, and hydrologic data for the Big Brown Lignite Mine and surrounding area in east-central Texas. Included are results of pasteextract analyses, constituent concentrations in water from batch-mixing experiments, sulfur analyses, and minerals or mineral groups detected by X-ray diffraction in 12 spoil material samples collected from 3 locations at the mine site. Also, common-constituent and trace-constituent concentrations in water from eight selected wells, located updip and downdip from the mine, are presented. Dissolved-solids concentrations in water from batch-mixing experiments vary from 12 to 908 milligrams per liter. Water from selected wells contain dissolved-solids concentrations ranging from 75 to 510 milligrams per liter.

  16. Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor

    SciTech Connect

    Zuhal Gogebakan; Nevin Selcuk

    2008-05-15

    In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnut shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.

  17. The association of major, minor and trace inorganic elements with lignites. I. Experimental approach and study of a North Dakota lignite

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.; Given, Peter H.

    1986-09-01

    Lignites resemble peats, the precursors of coals, in containing many carboxylic acid and other functional groups. Consequently much of the relatively small amount of inorganic matter in lignites is present as cations in carboxylates and in chelated coordination complexes, and not only as distinct mineral phases. Consequently the distribution of inorganic matter in lignites will be influenced by the structure of the organic matter, as well as by microbial processes in peats and the geochemical processes involving erosion of rocks and transport of mineral grains and cations in solution. The objective of this study was to seek information on the distribution of major, minor and trace elements in different forms of combination, and in particular to document organic/inorganic interactions in coal formation. Study of the first of five lignites is reported here. The coal (from the Hagel seam in North Dakota) was separated into five fractions by float/ sink methods, and the fractions were further separated into an ammonium acetate extract, an HCl extract and an insoluble residue. Analysis of the fractions (by atomic absorption, plasma arc emission, emission spectroscopy and neutron activation) was found to give much information on how elements were combined in the coals. Results of the fractionation indicate that Ca, Mg, Na, K, Sr, Ba and Mn were present largely or partly in ion-exchangeable form; appreciable amounts of K (illite), Ba (sulfate, carbonate) and Mn were also present in mineral phases. Some Al appeared to be present in organic association. Ti often occurs in sediments by substitution in clays, but we infer that substantial amounts are present here in both acidsoluble and acid-insoluble organic chelates. The considerable enrichment of a number of elements in the fractions of lowest specific gravity suggests that Be, Sc, Cr, Y, Yb, V, Ni, Cu and Zn are associated primarily or partly with the organic matter. The extent to which these elements are associated with

  18. Catalytic Wet Gasification of Municipal and Animal Wastes

    SciTech Connect

    Ro, Kyoung S.; Cantrell, Keri; Elliott, Douglas C.; Hunt, Patrick G.

    2007-02-21

    Applicability of wet gasification technology for various animal and municipal wastes was examined. Wet gasification of swine manure and raw sewage sludge generated high number of net energies. Furthermore, the moisture content of these wastes is ideal for current wet gasification technology. Significant quantities of water must be added to dry feedstock wastes such as poultry litter, feedlot manures and MSW to make the feedstock pumpable. Because of their high ash contents, MSW and unpaved feedlot manure would not generate positive energy return from wet gasification. The costs of a conceptual wet gasification manure management system for a model swine farm were significantly higher than that of the anaerobic lagoon system. However, many environmental advantages of the wet gasification system were identified, which might reduce the costs significantly. Due to high sulfur content of the wastes, pretreatment to prevent the poisoning of catalysts is critically needed.

  19. Biomass thermochemical gasification: Experimental studies and modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  20. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, M.W.

    1987-03-23

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  1. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, Marvin W.

    1988-01-01

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  2. Proceedings of the fifth advanced coal gasification symposium

    SciTech Connect

    Flowers, A.; Alpert, S.; Beck, B.; Chen, C.; Dalrymple, D.; Gummel, P.; Henley, J.; Hileman, E.; Holmgren, J.; Lau, F.

    1987-01-01

    The Fifth Advanced Coal Gasification Symposium, held in Taiyuan, Shanxi, China in September 1987, was sponsored by the Shanxi Provincial Government, Shanxi Science and Technology Association, Shanxi Energy Research Association, and the Taiyuan Coal Gasification Corporation. Opening and closing speeches, summaries of the technical sessions, and lists of delegates are included. Thirteen papers presented by the international delegation of specialists discuss current coal gasification processes and research and development activities. Papers have been indexed separately.

  3. Subtask 4.4 - North Dakota Lignite Fuel Upgrading

    SciTech Connect

    Michael Swanson

    2009-03-15

    This project will add the capability for the Energy & Environmental Research Center (EERC) to conduct Fischer-Tropsch (FT) catalyst testing at a scale consistent with the benchscale continuous fluid-bed reactor. This capability will enable various vendors to test their FT catalysts on actual coal-derived syngas. The project goals were to also develop some EERC expertise with issues associated with FT liquid production. A study by Dr. Calvin Bartholmew at Brigham Young University (BYU) is further apparent that it is possible to build a single reactor (rather than multiple reactors of different sizes) consisting of three 1-inch-diameter, 10 foot-long tubes to accommodate the anticipated range of catalytic activities and process conditions. However, this single reactor should ideally be designed to operate over a significant range of recycle ratio (e.g., 1-10), temperature (25-400 C), pressure (10-25 bar), flow rate (1-6 scfm), and cooling duty (0.2-1.5 kW). It should have the flexibility of flowing gas to one, two, or three tubes. Based on the recommended design specifications provided by BYU while staying within the approved budget, the EERC decided to build a two fixed-bed reactor system with the capability to add a third reactor at a later time. This system was constructed to be modular and sized such that it can fit into the area around the EERC continuous fluid-bed reactor or also be located in explosion-rated areas such as the gasification tower next to the EERC pilot-scale transport reactor or in the National Center for Hydrogen Technology building high-bay area.

  4. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  5. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  6. Coal to electricity - Integrated gasification combined cycle

    NASA Astrophysics Data System (ADS)

    Corman, J. C.

    1982-04-01

    An advanced energy conversion system - the integrated gasification combined cycle (IGCC) - has been identified as an efficient and economical means of converting coal to electricity for utility application. Several demonstration projects on a near-commercial scale are approaching the construction stage. A coal conversion facility has been constructed to simulate the operational features of an IGCC. This process evaluation facility (PEF-scale) performs a dual function: (1) acquiring and processing data on the performance of the individual components - coal gasifier, gas clean up, and turbine simulator - that comprise the IGCC concept and (2) simulating the total system in an operational control mode that permits evaluation of system response to imposed load variations characteristic of utility operation. The results to date indicate that an efficient, economical IGCC can be designed so that the gasification/gas clean up plant and the power generation system operate compatibly to meet utility requirements in an environmentally acceptable manner.

  7. Investigations on catalyzed steam gasification of biomass

    NASA Astrophysics Data System (ADS)

    Mudge, L. K.; Weber, S. L.; Mitchell, D. H.; Sealock, L. J., Jr.; Robertus, R. J.

    1981-01-01

    The technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass are evaluated. Results of research conducted from December 1977 to October 1980 are presented. Laboratory studies were conducted to develop operating conditions and catalyst systems for generating methane-rich gas, synthesis gases, hydrogen, and carbon monoxide; these studies also developed techniques for catalyst recovery, regeneration, and recycling. A process development unit was designed and constructed to evaluate laboratory systems at conditions approximating commercial operations. The economic analyses evaluated the feasibility of adapting the wood-to-methane and wood-to-methanol processes to full-scale commercial operations. Plants were designed in the economic analyses to produce fuel-grade methanol from wood and substitute natural gas from wood via catalytic gasification with steam.

  8. Thermodynamic analysis of coal gasification processes

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Weil, S. A.; Babu, S. P.

    1980-09-01

    Thermodynamic analysis for evaluating and improving coal gasification process efficiency requires estimation of enthalpy, entropy, and availability transformations in various process steps. A compilation of procedures and data relevant to coal gasification processes is presented for calculating the above thermodynamic properties. Enthalpy and availability transformations are estimated for significant process steps in the HYGAS process for producing substitute natural gas from coal. The thermal efficiencies based on the first law of thermodynamics are compared with the availability efficiencies based on the second law. Work intensive process steps, such as gas compression and separation, are shown to have extremely low thermal efficiencies and fairly high availability efficiencies. Heat intensive process steps, such as steam generation, have high thermal efficiencies but generally poor availability efficiencies.

  9. Catalytic gasification: Isotopic labeling and transient reaction

    SciTech Connect

    Saber, J.M.; Falconer, J.L.; Brown, L.F.

    1985-01-01

    Temperature-programmed reaction was used with labeled isotopes (/sup 13/C and /sup 18/O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO/sub 2//90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 K and 950 K, and in the presence of gaseous carbon dioxide, the complexes promoted carbon and oxygen exchange between the gas-phase CO/sub 2/ and the surface. Oxygen exchanged between the surface complexes; but carbon did not exchange between the carbonate and the carbon black. As the temperature rose, the complexes decomposed to produce carbon dioxide, and catalytic gasification then began. Elemental potassium formed, and the active catalyst appears to alternate between potassium metal and a potassium-oxygen-carbon complex.

  10. Technology of Gasification of Liquefied Natural Gas

    NASA Astrophysics Data System (ADS)

    Tonkonog, V. G.; Bayanov, I. M.; Tonkonog, M. I.; Mubarakshin, B. R.

    2016-07-01

    A flow diagram of gasification of a cryogenic liquid, which is based on the utilization of the liquid's internal energy to obtain a vapor phase, has been presented. The limiting steam fractions of the two-phase flow in a gasifier have been evaluated as applied to the problems of gasification of methane. Consideration has been given to the conditions of phase separation in the field of mass forces. A numerical scheme of solution of a system of gasdynamic equations for the two-phase flow in a cylindrical coordinate system in a three-dimensional formulation has been implemented. The results of numerical modeling of the conditions of precipitation of particles with a diameter of 2 to 10 μm from a swirling dispersed flow have been presented; the role of the particle size in the dynamics of the process of phase separation has been established.

  11. Apparatus and method for solar coal gasification

    DOEpatents

    Gregg, David W.

    1980-01-01

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  12. Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

  13. Advanced gasification projects. [Support research needs; contains list of advanced gasification projects supported by US DOE

    SciTech Connect

    Not Available

    1982-02-01

    An analysis of the needs for coal gasification reveals the following principal categories of information gaps that can be filled by programs already in progress or those readily initiated. The gaps are technology base needs required for successful application of both currently available and advanced gasification processes. The need areas are classified as follows: Reactor design/performance, gas cleaning/cooling separation, acid-gas removal/gas shift/gas conversion, wastewater treatment, and general data base on both state-of-the-art and advanced technologies. During the future operating and optimization phases of most of the coal gasification projects, when additional troubles will surface, the technical support program described herein will have provided the additional data base needed to correct deficiencies and/or to advance the state-of-the-art. The report describes US DOE supported projects in this area: brief description, title, contractor, objective, accomplishments, current work and possible application.

  14. Commercial scale gasification test with Kentucky coal

    SciTech Connect

    Roeger, A.; Jones, J.E.

    1984-03-01

    The paper describes in some detail the coal testing programme carried out by Tri-State Synfuels. One of the major elements in the programme was a commercial-scale gasification test with Kentucky 9 coal in a Lurgi dry-bottom gasifier. This was carried out at the Sasol One plant in Sasolburg, S. Africa, in 1981. Other parts of the programme included coal selection, characterisation, stockpile weatherability, corrosion testing, by-product characterisation and waste water treatability.

  15. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  16. GASIFICATION BASED BIOMASS CO-FIRING

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter

  17. Gasification combined cycle R&A assessment

    NASA Astrophysics Data System (ADS)

    Witt, J. H.; Neely, M. C.

    This paper describes the development and application of a methodology for assessing the reliability and availability of coal gasification combined cycle (GCC) power plant designs. The methodology was developed for and applied to a design of an 1100-megawatt baseload GCC power plant. The specific objectives of the analysis were to obtain baseline reliability and availability values for the GCC plant design and to develop criticality rankings of the plant's components based on their impact on the system's reliability and availability measures

  18. Process for gasification of carbonaceous material

    SciTech Connect

    Lancet, M.S.; Gorin, E.

    1984-04-03

    A process of tar destruction in gasification of carbonaceous material comprises providing a mixture of finely divided calcium compound of a particle size smaller than 65 mesh and finely divided carbonaceous material of a particle size smaller than 65 mesh, the calcium compound to carbonaceous material ratio being from about 0.5 to 1.0 and contacting the mixture with CO/sub 2/ and tar exothermally whereby the tar is destroyed.

  19. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  20. Environmental effects of in situ coal gasification

    SciTech Connect

    Humenick, M.J.; Edgar, T.F.; Charbeneau, R.J.

    1983-01-01

    An assessment of avialable engineering, geological and operating data on underground coal gasification indicates that this process can cause significant air and water pollution and land subsidence. Of the possible impacts, groundwater pollution is the most serious. Modeling studies and large-scale field tests are needed to determine the long-term fate of pollutants and the degree of restoration required before UCG can become a commercial process.

  1. Gasification Product Improvement Facility (GPIF). Final report

    SciTech Connect

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

  2. Assessment of Advanced Coal Gasification Processes

    NASA Technical Reports Server (NTRS)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  3. Coal Integrated Gasification Fuel Cell System Study

    SciTech Connect

    Gregory Wotzak; Chellappa Balan; Faress Rahman; Nguyen Minh

    2003-08-01

    The pre-baseline configuration for an Integrated Gasification Fuel Cell (IGFC) system has been developed. This case uses current gasification, clean-up, gas turbine, and bottoming cycle technologies together with projected large planar Solid Oxide Fuel Cell (SOFC) technology. This pre-baseline case will be used as a basis for identifying the critical factors impacting system performance and the major technical challenges in implementing such systems. Top-level system requirements were used as the criteria to evaluate and down select alternative sub-systems. The top choice subsystems were subsequently integrated to form the pre-baseline case. The down-selected pre-baseline case includes a British Gas Lurgi (BGL) gasification and cleanup sub-system integrated with a GE Power Systems 6FA+e gas turbine and the Hybrid Power Generation Systems planar Solid Oxide Fuel Cell (SOFC) sub-system. The overall efficiency of this system is estimated to be 43.0%. The system efficiency of the pre-baseline system provides a benchmark level for further optimization efforts in this program.

  4. Co-liquefaction of the Elbistan Lignite and Poplar Sawdust. Part I: The Effect of the Liquefaction Parameters

    SciTech Connect

    Karaca, H.; Acar, M.; Yilmaz, M.; Keklik, I.

    2009-07-01

    In this study, the liquefaction of Elbistan lignite and poplar sawdust, and the co-liquefaction of the Elbistan lignite and the poplar sawdust in an inert atmosphere and in non-catalytic conditions have been examined. Also, the effects of solvent/coal ratio and stirring speed on the total conversion derived as the result of the liquefaction process was attempted to be determined. Based on the results, although the effects of the solvent/coal ratio and the stirring speed on total conversion are similar for both the Elbistan lignite and the poplar sawdust, it was also noted that, under similar conditions, the conversion for the poplar sawdust was higher, as compared to the conversion of the Elbistan lignite. As the result of the liquefaction of Elbistan lignite and poplar sawdust under inert atmospheric conditions, the total conversion was increased partially, depending on both solvent/coal ratio and the speed of stirring. However, it was also noted that the total conversion did not change to a significant extent in high solvent/coal ratios and in stirring speed. As the result of the co-liquefaction of the Elbistan lignite and poplar sawdust under inert atmospheric conditions, total conversion was increased, based on the solvent/coal ratio. However, as in the case of the liquefaction of Elbistan lignite and poplar sawdust, it was noted that the high solvent/coal ratios (i.e., solvent/coal ratios of higher than 2/1) did not have a significant effect on the total conversion that was derived as the result of the co-liquefaction of the Elbistan lignite and poplar sawdust.

  5. Experimental and analytical evaluation of the drying kinetics of Belchatow lignite in relation to the size of particles

    NASA Astrophysics Data System (ADS)

    Komatsu, Y.; Sciazko, A.; Zakrzewski, M.; Fukuda, K.; Tanaka, K.; Hashimoto, A.; Kaneko, S.; Kimijima, S.; Szmyd, JS; Kobayashi, Y.

    2016-09-01

    Water removal is a key technology for enhancing efficient utilization of lignite in power generation. An inherent characteristic of lignite, attributed to the large amount of water kept within the fuel, is the factor decreasing the thermal efficiency of lignite-fired power plants. This paper presents the research results on investigating the drying kinetics of Belchatow lignite excavated in the Central Poland in prior to developing a water removal system. Lignite drying test was conducted in superheated steam atmosphere at the temperature range of 110-170 °C. Spherically shaped samples, of which the diameter is 2.5 mm, was used. The experimental results were then analysed with previously conducted measurements of 5, 10, 30 mm samples to investigate the influence of particle size. The presented analysis shows the agreement of the evaluated drying rate at the CDRP to the experimental data. The obtained experimental results were used to predict the drying behaviour of the group of particles. The proposed investigation clarifies the size dependence of the drying characteristics of the multisize group of lignite particles.

  6. Evaluation of an on-line ash analysis system for low-grade and inhomogeneous Greek lignite

    SciTech Connect

    Konstantinos V. Kavouridis; Francis F. Pavloudakis

    2007-08-15

    The possibility of using commercial on-line analysis systems for monitoring the ash content of low-grade lignites was investigated by carrying out numerous bench- and pilot-scale trials in the mines of Public Power Corporation SA, Greece. Pilot-scale trials were based on a dual-energy {gamma}-ray transmission analyzer, which was installed on the conveyor belt that transports lignite from the pit to the bunker of Kardia mine, Ptolemais. According to the obtained results, the accuracy of the on-line measurements was not adequate and did not allow lignite quality monitoring in real time. The deterioration of the on-line measurements' accuracy, compared to previous applications in other mining sites, was related to the intense variation of the lignite ash content and ash composition, which distorted the calibration of the analyzer. The latter is based on certain assumptions regarding the average atomic number of the organic and mineral matter contained in the lignite. Further experimental work is needed to investigate solutions for successful implementation of this method to low-grade lignites that exhibit large variation in ash content and composition. 17 refs., 15 figs., 7 tabs.

  7. Feasibility of Biomass Biodrying for Gasification Process

    NASA Astrophysics Data System (ADS)

    Hamidian, Arash

    An important challenge of biomass gasification is the limitation of feedstock quality especially the moisture content, which plays a significant role on the performance of gasification process. Gasification requires low moisture levels (20% and less) and several reports have emphasized on the moisture as a typical problem while gasifying biomass. Moisture affects overall reaction rates in the gasifiers as a result of temperature drop and ultimately increases tar content, decreases gas yield, changes the composition of produced gas and affects the efficiency. Therefore, it is mandatory to pre-treat the biomass before gasification and reduce the moisture content to the suitable and economic level. The well-known solutions are either natural drying (not practical for commercial plants) or conventional drying technologies (have high operating costs). Biodrying is an alternative process, which uses both convective air and heat of biological reactions as a source of energy, to reduce the moisture. In the biodrying reactor heat is generated from exothermic decomposition of organic fraction of biomass and that is why the process is called "self-heating process". Employing such technology for drying biomass at pre-treatment units of gasification process returns several economic and environmental advantages to mills. In Europe, municipal waste treatment (MSW) plants use the biodrying at commercial scale to degrade a part of the biodegradable fraction of waste to generate heat and reduce the moisture content for high quality SRF (Solid Recovered Fuel) production. In Italy, wine industry is seeking to develop biodrying for energy recovery of grape wastes after fermentation and distillation, which returns economic benefits to the industry. In Canada, the development of biodrying technology for pulp and paper industry was started at Ecole polytechnique de Montreal as an option for sludge management solution. Therefore, batch biodrying reactor was successfully developed in 2004

  8. BIOMASS REACTIVITY IN GASIFICATION BY THE HYNOL PROCESS

    EPA Science Inventory

    A thermobalance reactor was used to evaluate the reactivity of poplar wood in gasification under the operating conditions specific for the Hynol process where biomass is gasified at 30 atm and 800E C with a hydrogen-rich gas recycled from methane synthesis. The gasification invol...

  9. Report to Congress on Contracting Approaches to Coal Gasification

    DTIC Science & Technology

    2007-07-01

    of specific contracting approaches to coal gasification technology projects and submit a report on the findings by March 1, 2007. The report requests...if any, that may prevent the Department from effectively implementing coal gasification technology projects and recommendations for new authorities necessary to enable the effective implementation of such projects."

  10. Characteristics of rice husk gasification in an entrained flow reactor.

    PubMed

    Zhao, Yijun; Sun, Shaozeng; Tian, Hongming; Qian, Juan; Su, Fengming; Ling, Feng

    2009-12-01

    Experiments were performed in an entrained flow reactor to better understand the characteristics of biomass gasification. Rice husk was used in this study. Effects of the gasification temperature (700, 800, 900 and 1000 degrees C) and the equivalence ratio in the range of 0.22-0.34 on the biomass gasification and the axial gas distribution in the reactor were studied. The results showed that reactions of CnHm were less important in the gasification process except cracking reactions which occurred at higher temperature. In the oxidization zone, reactions between char and oxygen had a more prevailing role. The optimal gasification temperature of the rice husk could be above 900 degrees C, and the optimal value of ER was 0.25. The gasification process was finished in 1.42 s when the gasification temperature was above 800 degrees C. A first order kinetic model was developed for describing rice husk air gasification characteristics and the relevant kinetic parameters were determined.

  11. Coal gasification. Quarterly report, July-September 1979

    SciTech Connect

    1980-07-01

    The status of 18 coal gasification pilot plants or supporting projects supported by US DOE is reviewed under the following headings: company involved, location, contract number, funding, gasification process, history, process description, flowsheet and progress in the July-September 1979 quarter. (LTN)

  12. Methods for sequestering carbon dioxide into alcohols via gasification fermentation

    DOEpatents

    Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean

    2013-11-26

    The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.

  13. Advanced coal-gasification technical analyses. Appendix 2: coal fines disposal. Final report, December 1982-September 1985

    SciTech Connect

    Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

    1986-01-01

    This report is a compilation of several studies conducted by KRSI under the Advanced Coal Gasification Technical Analyses contract with GRI. It addresses the issue of disposal and/or utilization of the coal fines that cannot be used as feedstock for fixed-bed (i.e. Lurgi) gasifiers. Specific items addressed are: (1) Technical, legal and economic aspects of fines burial, (2) Estimation of the premium for fines-free coal delivered to an SNG plant and resulting reduction in SNG production costs, (3) Comparison of the relative advantages and limitations of Winkler and GKT gasifiers to consuming fines, (4) Review of coal-size consist curves in the GRI Guidelines to assess the fines content of ROM coals, (5) a first-pass design and cost estimate using GKT gasifiers in tandem with Lurgi gasifiers in an North Dakota lignite-to-SNG plant to consume full range of coal-size consist, (6) Evaluation of the General Electric technology for extrusion of coal fines and testing of the extrudates in a fixed-bed gasifier, and (7) Investigation of equipment and variables involved in briquetting of coal fines, such that fines could be fed to the gasifiers along with the lump coal.

  14. Moessbauer analysis of Lewisville, Texas, archaeological site lignite and hearth samples. Environmental geology notes

    SciTech Connect

    Shiley, R.H.; Hughes, R.E.; Cahill, R.A.; Konopka, K.L.; Hinckley, C.C.

    1985-01-01

    The Lewisville site, located in Denton County on the Trinity River north of Dallas, Texas, was thought to provide evidence of the earliest human activity in the western hemisphere. Radiocarbon dates of 37,000 to 38,000 B.P. determined for the site in the late 1950s conflicted with the presence of a Clovis point, which would fix the age of the site between 11,000 and 11,500 B.P. It was hypothesized (Johnson, 1982) that Clovis people were burning lignite from nearby outcrops: lignite in hearth residues would give older than actual ages by radiocarbon dating. X-ray diffraction and instrumental neutron-activation analysis proved inconclusive; however, Moessbauer spectroscopy indicated that hematite, a pyrite combustion product, was present in the ash. From this evidence the authors conclude that there is some support for the hypothesis.

  15. Long term results from the first US low NOx conversion of a tangential lignite fired unit

    SciTech Connect

    McCarthy, K.; Woldehanna, S.; Grusha, J.; Heinz, G.

    1999-07-01

    Lignite fueled tangential furnaces, when compared to those burning bituminous coal, have unique design and operating requirements which obligate careful assessment for successful low NOx retrofit. Recently, a Foster Wheeler Energy Corporation Tangential Low NOx (TLN) system was installed at Cooperative Power/United Power Association (CP/UPA) lignite fired Coal Creek Unit No. 2. The system has not only achieved the plant's annual NOx emission compliance requirements, but has also substantially improved furnace operating conditions. After nearly one year of operation, the systems performance has continued to support these results. A second unit is scheduled for retrofit in the Spring of 1999. These results are an important milestone for tangential low NOx technology and serve as a forerunner for future low NOx conversions involving low rank coals.

  16. Estimation of spatial variability of lignite mine dumping ground soil properties using CPTu results

    NASA Astrophysics Data System (ADS)

    Bagińska, Irena; Kawa, Marek; Janecki, Wojciech

    2016-03-01

    The paper deals with application of CPTu test results for the probabilistic modeling of dumping grounds. The statistical measures use results from 42 CPT test points located in the lignite mine dumping ground from the region of Central Europe. Both the tip resistance qc as well as local friction fs are tested. Based on the mean values and standard deviations of measured quantities the specific zones in the dumping site profile are distinguished. For three main zones standard deviations of linearly de-trended functions, distributions of normalized de-trended values for qc and fs are examined. Also the vertical scales of fluctuation for both measured quantities are estimated. The obtained result shows that lignite mine dumping site can be successfully described with the Random Field Theory. Additional use of fs values introduces supplementary statistical information.

  17. Effect of various experimental parameters on the swelling and supercritical extraction properties of lignite

    SciTech Connect

    Hacimehmetoglu, S.; Sinag, A.; Tekes, A.T.; Misirlioglu, Z.; Canel, M.

    2007-07-01

    The original lignite sample, the samples swollen in dimethylsulfoxide (DMSO), dimethylformamide (DMF), pyridine, tetrahydrofuran (THF), acetone, ethylenediamine (EDA), N-methyl-2-pyrrolidone (NMP), tetrabutylammonium hydroxide (TBAH), the samples impregnated by ZnCl{sub 2} as catalyst and the samples both swollen in the solvents and impregnated by ZnCl{sub 2} were subjected to the supercritical toluene extraction and the effects of temperature, pressure, pre-swelling procedure, hydrogen donor solvent (tetralin), and catalyst on the extract yields were investigated.

  18. Combustion characteristics of blends of lignite and bituminous coal with different binder materials

    SciTech Connect

    Haykiri-Acma, H.; Ersoy-Mericboyu, A.; Kuecuekbayrak, S.

    2000-05-01

    In this study, the combustion characteristics of blends of a Turkish lignite and a Siberian bituminous coal with and without binder materials were investigated. Sunflower shell, sawdust, and molasses were used as binder materials. The combustion curves of the coal and binder material samples and of the blends were obtained using differential thermal analysis (DTA). The differences observed in the DTA curves of the samples are discussed in detail.

  19. Single, binary, and multicomponent sorption of iron and manganese on lignite.

    PubMed

    Mohan, Dinesh; Chander, Subhash

    2006-07-01

    Acid mine drainage (AMD) has long been a significant environmental problem resulting from the microbial oxidation of iron pyrite in the presence of water and air, affording an acidic solution that contains toxic metal ions. The main objective of this study was to remove metal ions [Fe(II), Fe(III), Mn(II), Zn(II)] from AMD using lignite, a low-cost adsorbent. The lignite sorbent was utilized for the sorption of ferrous, ferric, manganese, zinc, and calcium ions in aqueous solutions. Studies were performed at different pH to find optimum pH. Equilibrium isotherms were determined to assess the maximum adsorption capacity of lignite for different metal ions. Sorption capacities were compared in single, binary, ternary, and multicomponent systems. The sorption data are correlated with Freundlich and Langmuir isotherms in each system. Both Freundlich and Langmuir isotherms fit the data reasonably well in terms of regression coefficients. Sorption studies were also performed at different temperatures to obtain the thermodynamic parameters of the process. The maximum lignite adsorption capacities at 25 degrees C were 34.22, 25.84, and 11.90 mg/g for Fe(II), Mn(II), and Fe(III), respectively. Adsorption of Fe(2+) (24.70 mg/g at 10 degrees C and 46.46 mg/g at 40 degrees C) increased with increased temperature, while Mn(2+) adsorption (28.11 mg/g at 10 degrees C and 7.70 mg/g at 40 degrees C) decreased with increased temperature.

  20. Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching.

    PubMed

    Tsang, Daniel C W; Olds, William E; Weber, Paul A; Yip, Alex C K

    2013-11-01

    Utilising locally available industrial by-products for in situ metal stabilisation presents a low-cost remediation approach for contaminated soil. This study explored the potential use of inorganic (acid mine drainage (AMD) sludge and zero-valent iron) and carbonaceous materials (green waste compost, manure compost, and lignite) for minimising the environmental risks of As and Cu at a timber treatment site. After 9-month soil incubation, significant sequestration of As and Cu in soil solution was accomplished by AMD sludge, on which adsorption and co-precipitation could take place. The efficacy of AMD sludge was comparable to that of zero-valent iron. There was marginal benefit of adding carbonaceous materials. However, in a moderately aggressive environment (Toxicity Characteristic Leaching Procedure), AMD sludge only suppressed the leachability of As but not Cu. Therefore, the provision of compost and lignite augmented the simultaneous reduction of Cu leachability, probably via surface complexation with oxygen-containing functional groups. Under continuous acid leaching in column experiments, combined application of AMD sludge with compost proved more effective than AMD sludge with lignite. This was possibly attributed to the larger amount of dissolved organic matter with aromatic moieties from lignite, which may enhance Cu and As mobility. Nevertheless, care should be taken to mitigate ecological impact associated with short-term substantial Ca release and continuous release of Al at a moderate level under acid leaching. This study also articulated the engineering implications and provided recommendations for field deployment, material processing, and assessment framework to ensure an environmentally sound application of reactive materials.

  1. Kinetics and mechanisms of hydroliquefaction and hydrogasification of lignite. [Cellulose, wood, manure, municipal waste, coal of various ranks, fuel oil and natural gas

    SciTech Connect

    Weiss, A.H.; Kranich, W.L.; Geureuz, K.

    1981-01-01

    A high pressure, continuous, stirred-tank reactor system has been constructed for the study of the catalytic liquefaction of North Dakota lignite slurried in anthracene oil. The conversion of lignite using a cobalt-molybdenum on alumina catalyst and the distribution of products as preasphaltenes, asphaltenes, oils and gases has been studied at the following conditions: temperature, 375 to 440/sup 0/C; pressure, 1000 to 1600 psig; agitator speed, 800 to 1500 rpm; catalyst concentration, 0 to 10% (based on lignite); initial lignite concentration, 5 to 30%; and space time, 16 to 52 minutes. At reactor pressures above 1500 psig and agitator speeds above 1000 rpm, reaction rate was essentially independent of pressure. At catalyst concentrations above 1% (based on lignite), the conversion of lignite was essentially independent of catalyst concentration. Experiments were conducted above these limits to find the effect on lignite conversion rate, of initial lignite concentration, and space time, or degree of conversion. The results at constant temperature were correlated by an equation which is given in the report. The relationship between the rate constant, K, and temperature, and between the maximum conversion and temperature was established. The effect of reaction conditions on the distribution of products was studied. In the presence of catalyst, the oil yield was increased, even under conditions where the catalyst did not affect overall lignite conversion. Under the most favorable conditions the oil yield was a little better than that obtained by Cronauer in the uncatalyzed hydroliquefaction of subbituminous coal at similar temperature and pressure.

  2. Limitations and plausibility of the Pliocene lignite hypothesis in explaining the etiology of Balkan endemic nephropathy

    PubMed Central

    Maharaj, S V M

    2014-01-01

    Background: Balkan endemic nephropathy (BEN) is a chronic, tubulointerstitial renal disease often accompanied by urothelial cancer that has a lethality of nearly 100%. Introduction: One of the many factors that have been proposed to play an etiological role in BEN is exposure to organic compounds from Pliocene lignite coal deposits via the drinking water in endemic areas. Objectives: The objective of this study was to systematically evaluate the role of the tenets of the Pliocene lignite hypothesis in the etiology of BEN in order to provide an improved understanding of the hypothesis for colleagues and patients alike. Methods: A comprehensive compilation of the possible limitations of the hypothesis, with each limitation addressed in turn is presented. Results: The Pliocene lignite hypothesis can best account for, is consistent with, or has the potential to explain the evidence associated with the myriad of factors related to BEN. Conclusions: Residents of endemic areas are exposed to complex mixtures containing hundreds of organic compounds at varying doses and their potentially more toxic (including nephrotoxic) and/or carcinogenic metabolites; however, a multifactorial etiology of BEN appears most likely. PMID:24075451

  3. A geochemical study of macerals from a Miocene lignite and an Eocene bituminous coal, Indonesia

    USGS Publications Warehouse

    Stankiewicz, B.A.; Kruge, M.A.; Mastalerz, Maria

    1996-01-01

    Optical and chemical studies of maceral concentrates from a Miocene lignite and an Eocene high-volatile bituminous C coal from southeastern Kalimantan, Indonesia were undertaken using pyro-Lysis, optical, electron microprobe and FTIR techniques Pyrolysis products of vitrinite from bituminous coal were dominated by straight-chain aliphatics and phenols. The huminite of the Miocene lignite produced mostly phenolic compounds upon pyrolysis. Differences in the pyrolysis products between the huminite and vitrinite samples reflect both maturation related and paleobotanical differences. An undefined aliphatic source and/or bacterial biomass were the likely contributors of n-alkyl moieties to the vitrinite. The resinite fraction in the lignite yielded dammar-derived pyrolysis products, as well as aliphatics and phenols as the products of admixed huminite and other liptinites. The optically defined resinite-rich fraction of the bituminous coal from Kalimantan produced abundant n-aliphatic moieties upon pyrolysis, but only two major resin markers (cadalene and 1,6-dimethylnaphthalene). This phenomenon is likely due to the fact that Eocene resins were not dammar-related. Data from the electron microprobe and Fourier transform infrared spectrometry strongly support the results obtained by Py GC MS and microscopy.

  4. Advanced power assessment for Czech lignite. Task 3.6, Volume 1

    SciTech Connect

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is a challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.

  5. Pyrolysis kinetics of blends of Yeni Celtek lignite and sugar beet pulp

    SciTech Connect

    Devrim, Y.G.

    2008-07-01

    Pyrolysis kinetics of the Yeni Celtek lignite/sugar beet pulp blends prepared at different ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100) were investigated by thermogravimetric analysis in the present study. All the experiments were carried out in nitrogen atmosphere under non-isothermal conditions with a heating rate range of 30 K/min in the pyrolysis temperature interval of 298-1,173 K. The Arrhenius model is applied to determine the kinetic parameters from TG/DTG curves. Apparent activation energies of the lignite and sugar beet pulp were calculated as 51.55 kJ/mol and 97.27 kJ/mol, respectively. Activation energies of the blends were also calculated and were found to vary between 54.87 and 74.83 kJ/mol. Effects of blending ratio of lignite to sugar beet pulp on kinetic parameters were investigated and the results were discussed.

  6. Geohydrologic reconnaissance of the Avoca lignite deposit area near Williston, northwestern North Dakota

    USGS Publications Warehouse

    Horak, W.F.; Crosby, O.A.

    1985-01-01

    The Avoca deposit in the Sentinel Butte member of Fort Union Formation consists of four potentially strippable lignite beds. Average bed thicknesses, in descending order, are 5, 5, 9, and 8 feet. In the area between Stony Creek and Crazy Man Coulee, the lignite beds are unsaturated, and between Stony Creek and Little Muddy River, only the two lowest beds are saturated. Aquifers in sandstone beds in the Fox Hills Sandstone and the Hell Creek Formation probably would yield as much as 50 gallons per minute of sodium bicarbonate type water. However, the aquifers are from 1,100 to 1,800 feet below land surface. Individual sand beds in the Tongue River and Sentinel Butte Members of the Fort Union Formation are the shallowest aquifers below the minable lignite beds. Properly constructed wells completed in these sand beds could yield as much as 40 gallons per minute. The water generally is a sodium bicarbonate type with dissolved-solids concentrations ranging from about 500 to 4,200 milligrams per liter. (USGS)

  7. Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early Eocene), Gujarat, western India

    NASA Astrophysics Data System (ADS)

    Rao, M. R.; Sahni, Ashok; Rana, R. S.; Verma, Poonam

    2013-04-01

    Early Eocene sedimentary successions of south Asia, are marked by the development of extensive fossil-bearing, lignite-rich sediments prior to the collision of India with Asia and provide data on contemporary equatorial faunal and vegetational assemblages. One such productive locality in western India is the Vastan Lignite Mine representing approximately a 54-52 Ma sequence dated by the presence of benthic zone marker species, Nummulites burdigalensis burdigalensis. The present study on Vastan Lignite Mine succession is based on the spore-pollen and dinoflagellate cyst assemblages and documents contemporary vegetational changes. 86 genera and 105 species belonging to algal remains (including dinoflagellate cysts), fungal remains, pteridophytic spores and angiospermous pollen grains have been recorded. On the basis of first appearance, acme and decline of palynotaxa, three cenozones have been recognized and broadly reflect changing palaeodepositional environments. These are in ascending stratigraphic order (i) Proxapertites Spp. Cenozone, (ii) Operculodinium centrocarpum Cenozone and (iii) Spinizonocolpites Spp. Cenozone. The basal sequence is lagoonal, palm-dominated and overlain by more open marine conditions with dinoflagellate cysts and at the top, mangrove elements are dominant. The succession has also provided a unique record of fish, lizards, snakes, and mammals.

  8. Co-firing of olive residue with lignite in bubbling FBC

    SciTech Connect

    Gogebakan, Z.; Gogebakan, Y.; Selcuk, N.

    2008-07-01

    The effect of biomass share on gaseous pollutant emissions from fluidized bed co-firing of various biomass fuels with high calorific value coals have extensively been investigated to date. However, effect of co-firing of olive residues with low calorific value lignites having high ash and sulfur contents has not been studied in bubbling fluidized bed combustors. In this study, experimental results of various runs pertaining to gaseous emissions (O{sub 2}, CO{sub 2}, CO, SO{sub 2}, NO, N{sub 2}O) from METU 0.3 MWt Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) test rig co-firing olive residue with indigenous lignite at different biomass shares are presented. The results reveal that co-firing increases combustion efficiency irrespective of the biomass share and that increase in biomass share reduces N{sub 2}O and SO{sub 2} emissions considerably while increasing CO emission. O{sub 2}, CO{sub 2} and NO emissions are not found sensitive to increase in biomass share. Olive residues are co-fired with high ash and sulfur containing lignite without any operational problems.

  9. Investigation of lignite and firewood co-combustion in a furnace for tobacco curing application

    SciTech Connect

    Nakorn Tippayawong; Chutchawan Tantakitti; Satis Thavornun

    2006-07-01

    Co-combustion of lignite and firewood was investigated for an application in tobacco curing industry in Northern Thailand. Extensive experiments have been carried out in a newly developed furnace suitable for small curing unit, in place of locally made furnace. The aim of this investigation is to evaluate the performance of the combustion chamber in the required thermal output range for tobacco curing and to examine the influence of fuel feed rate, fuel mixture ratio and air staging on the combustion and emission characteristics of the furnace during steady state operation. Their effects are characterized in terms of the observed variations of temperature distributions, emissions of CO, SO{sub 2}, CO{sub 2}, O{sub 2} and combustion efficiency. Co-firing of firewood and lignite has been found to exhibit acceptable temperature distribution, high combustion efficiency and low emissions over a wide thermal output span. Stable operation at low (50 kW) and high (150 kW) thermal output was achieved with average CO and SO{sub 2} content in flue gas typically below 1400 and 100 ppm, respectively. Under the conditions considered, it was showed that the fuel feed rate had greater influence on combustion and emissions than firewood and lignite mixture ratio and air staging.

  10. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  11. Advanced Gasification By-Product Utilization

    SciTech Connect

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Harold Schobert

    2006-02-01

    With the recent passing of new legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2004 to August 31, 2005. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  12. Integrated bioenergy conversion concepts for small scale gasification power systems

    NASA Astrophysics Data System (ADS)

    Aldas, Rizaldo Elauria

    Thermal and biological gasification are promising technologies for addressing the emerging concerns in biomass-based renewable energy, environmental protection and waste management. However, technical barriers such as feedstock quality limitations, tars, and high NOx emissions from biogas fueled engines impact their full utilization and make them suffer at the small scale from the need to purify the raw gas for most downstream processes, including power generation other than direct boiler use. The two separate gasification technologies may be integrated to better address the issues of power generation and waste management and to complement some of each technologies' limitations. This research project investigated the technical feasibility of an integrated thermal and biological gasification concept for parameters critical to appropriately matching an anaerobic digester with a biomass gasifier. Specific studies investigated the thermal gasification characteristics of selected feedstocks in four fixed-bed gasification experiments: (1) updraft gasification of rice hull, (2) indirect-heated gasification of rice hull, (3) updraft gasification of Athel wood, and (4) downdraft gasification of Athel and Eucalyptus woods. The effects of tars and other components of producer gas on anaerobic digestion at mesophilic temperature of 36°C and the biodegradation potentials and soil carbon mineralization of gasification tars during short-term aerobic incubation at 27.5°C were also examined. Experiments brought out the ranges in performance and quality and quantity of gasification products under different operating conditions and showed that within the conditions considered in the study, these gasification products did not adversely impact the overall digester performance. Short-term aerobic incubation demonstrated variable impacts on carbon mineralization depending on tar and soil conditions. Although tars exhibited low biodegradation indices, degradation may be improved if the

  13. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    SciTech Connect

    Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

    2008-06-30

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and

  14. Supercritical gasification for the treatment of o-cresol wastewater.

    PubMed

    Wei, Chao-hai; Hu, Cheng-sheng; Wu, Chao-fei; Yan, Bo

    2006-01-01

    The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650 degrees C and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650 degrees C and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.

  15. Launch Vehicle with Combustible Polyethylene Case Gasification Chamber Design Basis

    NASA Astrophysics Data System (ADS)

    Yemets, V.

    A single-stage launch vehicle equipped with a combustible tank shell of polyethylene and a moving propulsion plant is proposed. The propulsion plant is composed of a chamber for the gasification of the shell, a compressor of pyrolysed polyethylene and a magnetic powder obturator. It is shown that the “dental” structure of the gasification chamber is necessary to achieve the necessary contact area with the polyethylene shell. This conclusion is drawn from consideration of the thermo- physical properties of polyethylene, calculating quasisteady temperature field in the gasification chamber, estimating gasification rate of polyethylene, launch vehicle shortening rate and area of gasification. Experimental determination of the gasification rate is described. The gasification chamber specific mass as well as the propulsion plant weight-to-thrust ratio are estimated under some assumptions concerning the obturator and compressor. Combustible launch vehicles are compared with conventional launch vehicles taking into consideration their payload mass ratios. Combustible launchers are preferable as small launchers for micro and nano satellites. Reusable versions of such launchers seem suitable if polyethylene tank shells filled with metal or metal hydride fine dusts are used.

  16. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration.

  17. Gasification characteristics of MSW and an ANN prediction model.

    PubMed

    Xiao, Gang; Ni, Ming-jiang; Chi, Yong; Jin, Bao-sheng; Xiao, Rui; Zhong, Zhao-ping; Huang, Ya-ji

    2009-01-01

    Gasification characteristics make up the important parts of municipal solid waste (MSW) gasification and melting technology. These characteristics are closely related to the composition of MSW, which alters with climates and seasons. It is important to find a practical way to predict gasification characteristics. In this paper, five typical kinds of organic components (wood, paper, kitchen garbage, plastic, and textile) and three representative types of simulated MSW are gasified in a fluidized-bed at 400-800 degrees C with the equivalence ratio (ER) in the range of 0.2-0.6. The lower heating value (LHV) of gas, gasification products, and gas yield are reported. The results indicate that gasification characteristics are different from sample to sample. Based on the experimental data, an artificial neural networks (ANN) model is developed to predict gasification characteristics. The training and validating relative errors are within +/-15% and +/-20%, respectively, and predicting relative errors of an industrial sample are below +/-25%. This indicates that it is acceptable to predict gasification characteristics via ANN model.

  18. Solar gasification of biomass: design and characterization of a molten salt gasification reactor

    NASA Astrophysics Data System (ADS)

    Hathaway, Brandon Jay

    The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus

  19. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  20. High temperature steam gasification of solid wastes: Characteristics and kinetics

    NASA Astrophysics Data System (ADS)

    Gomaa, Islam Ahmed

    Greater use of renewable energy sources is of pinnacle importance especially with the limited reserves of fossil fuels. It is expected that future energy use will have increased utilization of different energy sources, including biomass, municipal solid wastes, industrial wastes, agricultural wastes and other low grade fuels. Gasification is a good practical solution to solve the growing problem of landfills, with simultaneous energy extraction and nonleachable minimum residue. Gasification also provides good solution to the problem of plastics and rubber in to useful fuel. The characteristics and kinetics of syngas evolution from the gasification of different samples is examined here. The characteristics of syngas based on its quality, distribution of chemical species, carbon conversion efficiency, thermal efficiency and hydrogen concentration has been examined. Modeling the kinetics of syngas evolution from the process is also examined. Models are compared with the experimental results. Experimental results on the gasification and pyrolysis of several solid wastes, such as, biomass, plastics and mixture of char based and plastic fuels have been provided. Differences and similarities in the behavior of char based fuel and a plastic sample has been discussed. Global reaction mechanisms of char based fuel as well polystyrene gasification are presented based on the characteristic of syngas evolution. The mixture of polyethylene and woodchips gasification provided superior results in terms of syngas yield, hydrogen yield, total hydrocarbons yield, energy yield and apparent thermal efficiency from polyethylene-woodchips blends as compared to expected weighed average yields from gasification of the individual components. A possible interaction mechanism has been established to explain the synergetic effect of co-gasification of woodchips and polyethylene. Kinetics of char gasification is presented with special consideration of sample temperature, catalytic effect of ash

  1. Economics of synfuel and gasification systems

    SciTech Connect

    Hahn, O.J.

    1981-01-01

    The performance characteristics of several gasification systems are discussed. Cost estimates of various synthetic fuels are presented. The lowest cost synthetic fuel is significantly above the current natural gas price of about $2.75/MMBtu and about equivalent to present oil prices at the plant gate. Gas prices for the Welman-Galusha gasifier would have to be increased significantly if the plant ran on two shifts only or if the gasifiers were not fully loaded. For industrial application the lowest cost fuel is probably the direct use of low sulfur coal with some post combustion pollution control. This is followed by the atmospheric fluidized bed combustor. Coal/oil mixtures and solvent refined coal liquids (SRC I or SRC II) are the next options. High Btu gas from a large coal gasification plant will be more competitive for industrial use. Large industrial uses in the range of 1000 tons of coal a day may find reduced costs with an entrained coal conversion unit such as a Texaco or the Saarberg-Otto Gasifiers. However, before 1985 when the gas price decontrol has been felt, it is unlikely that low Btu gas, medium Btu gas and methanol will be an economical choice for industrial users.

  2. Site clean up of coal gasification residues

    SciTech Connect

    Wilson, J.W.; Ding, Y.

    1995-12-31

    The coal gasification plant residues tested in this research consists of various particle sizes of rock, gravel, tar-sand agglomerates, fine sand and soil. Most of the soils particles were tar free. One of the fractions examined contained over 3000 ppM polyaromatic hydrocarbons (PAHs). The residues were subjected to high pressure water jet washing, float and sink tests, and soil washing. Subsequent PAH analyses found less than 1 ppM PAHs in the water jet washing water. Soils washed with pure water lowered PAH concentrations to 276 ppM; the use of surfactants decreased PAHs to 47, 200, and 240 ppM for different test conditions. In the 47 ppM test, the surfactant temperature had been increased to 80 C, suggesting that surfactant washing efficiency can be greatly improved by increasing the solution temperature. The coal tar particles were not extracted by the surfactants used. Coke and tar-sand agglomerates collected from the float and sink gravimetric separation were tested for heating value. The tar exhibited a very high heating value, while the coke had a heating value close to that of bituminous coal. These processes are believed to have the potential to clean up coal gasification plant residues at a fairly low cost, pending pilot-scale testing and a feasibility study.

  3. Investigations on catalyzed steam gasification of biomass

    SciTech Connect

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    The purpose of the study is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from December 1977 to October 1980. The study was comprised of laboratory studies, process development, and economic analyses. The laboratory studies were conducted to develop operating conditions and catalyst systems for generating methane-rich gas, synthesis gases, hydrogen, and carbon monoxide; these studies also developed techniques for catalyst recovery, regeneration, and recycling. A process development unit (PDU) was designed and constructed to evaluate laboratory systems at conditions approximating commercial operations. The economic analyses, performed by Davy McKee, Inc. for PNL, evaluated the feasibility of adapting the wood-to-methane and wood-to-methanol processes to full-scale commercial operations. Plants were designed in the economic analyses to produce fuel-grade methanol from wood and substitute natural gas (SNG) from wood via catalytic gasification with steam.

  4. Combustion, pyrolysis, gasification, and liquefaction of biomas

    NASA Astrophysics Data System (ADS)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  5. ENCOAL mild coal gasification project. Annual report

    SciTech Connect

    Not Available

    1993-10-01

    This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

  6. Combustion, pyrolysis, gasification, and liquefaction of biomass

    SciTech Connect

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  7. The role of high-Btu coal gasification technology

    NASA Astrophysics Data System (ADS)

    German, M. I.

    An analysis is given of the role and economic potential of Lurgi-technology gasification of coal to the year 2000, in relation to other gas-supply options, the further development of gasifier designs, and probable environmental impact. It is predicted that coal gasification may reach 10% of total gas supplies by the year 2000, with Eastern U.S. coal use reaching commercially significant use in the 1990's. It is concluded that coal gasification is the cleanest way of using coal, with minimal physical, chemical, biological and socioeconomic impacts.

  8. Method for in situ gasification of a subterranean coal bed

    DOEpatents

    Shuck, Lowell Z.

    1977-05-31

    The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.

  9. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the

  10. Removal of BTEX, MTBE and TAME from aqueous solutions by adsorption onto raw and thermally treated lignite.

    PubMed

    Aivalioti, Maria; Pothoulaki, Despina; Papoulias, Panagiotis; Gidarakos, Evangelos

    2012-03-15

    The removal of BTEX (benzene, toluene, ethyl-benzene and m-,p-,o-xylenes), MTBE (methyl tertiary butyl ether) and TAME (tertiary amyl methyl ether) from aqueous solutions by raw (L(raw)) and thermally treated lignite at 250 C, 550 °C and 750 °C (L250, L550 and L750, respectively) was studied, through batch experiments. Selected physical characteristics of both raw and treated lignite such as surface area and pore volume distribution were determined. Competitive adsorption effects were also explored. It was proved that the examined lignite samples were quite effective in removing BTEX, MTBE and TAME from aqueous solutions, with sample treated at 750 °C being the most effective. Among the contaminants, BTEX appeared to have the strongest affinity, based on mass uptake by lignite samples. BTEX presence was found to significantly prevent MTBE and TAME adsorption on lignite (up to ∼55%). In all cases, equilibrium was achieved within 3h. The kinetics data proved a closer fit to the pseudo second order model, while the isotherm experimental data were a better fit to the Freundlich model, producing in some cases values of the isotherm constant 1/n less than one, indicating favorable adsorption. Respective batch experiments using commercial activated carbon (AC) were also conducted for comparison.

  11. Organic facies characteristics of the Miocene Soma Formation (Lower Lignite Succession-KM2), Soma Coal Basin, western Turkey

    NASA Astrophysics Data System (ADS)

    Hokerek, Selin; Ozcelik, Orhan

    2015-04-01

    The Soma coal basin is one of the largest economic lignite-bearing alluvial basins of western Turkey. The Miocene succession (Soma Formation) of the coalfield contains two lignite seams successions; Lower Lignite, Middle Lignite .The Lower Lignite (KM2) is a seam 15 m thick and found in contact between siliciclastic and carbonate deposits (marlstones). Detailed data from thick Miocene sediments (Soma Formation) made it possible to construct an organic facies framework using different zonations. Organic matter is composed predominantly of woody material. Kerogen in the deposits is type III, as indicated by organic petrographic observations and Rock-Eval data. Total organic carbon (TOC) values are generally between 28.45 and 72.66 %, but reach 73.38 % in the formation. Tmax values vary between 403 and 429 °C, confirming maturation trends indicated by vitrinite reflectance data (between 0.35-0.48 Ro %). Organic facies type C and CD were identified in the investigated units. Organic facies C and CD are related to clayey coal and coal lithofacies. These facies are characterized by average values of HI around 126 mg HC/g TOC (equivalent to type III kerogen), TOC around 56.61 %, and an average of S2 of 72.4 mg HC/g of rock. The organic matter is partly oxidized/oxidized and reworked. Keywords: Western Turkey; Soma Formation; organic facies; organic geochemistry

  12. Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

  13. Fixed-bed gasification research using US coals. Volume 11. Gasification of Minnesota peat. [Peat pellets and peat sods

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a coooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eleventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of peat pellets and peat sods during 3 different test periods. 2 refs., 20 figs., 13 tabs.

  14. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  15. Demonstration of Black Liquor Gasification at Big Island

    SciTech Connect

    Robert DeCarrera

    2007-04-14

    This Final Technical Report provides an account of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific LLC's Big Island, VA facility. This report covers the period from May 5, 2000 through November 30, 2006.

  16. Carbon dioxide sorption capacities of coal gasification residues.

    PubMed

    Kempka, Thomas; Fernández-Steeger, Tomás; Li, Dong-Yong; Schulten, Marc; Schlüter, Ralph; Krooss, Bernhard M

    2011-02-15

    Underground coal gasification is currently being considered as an economically and environmentally sustainable option for development and utilization of coal deposits not mineable by conventional methods. This emerging technology in combination with carbon capture and sorptive CO2 storage on the residual coke as well as free-gas CO2 storage in the cavities generated in the coal seams after gasification could provide a relevant contribution to the development of Clean Coal Technologies. Three hard coals of different rank from German mining districts were gasified in a laboratory-scale reactor (200 g of coal at 800 °C subjected to 10 L/min air for 200 min). High-pressure CO2 excess sorption isotherms determined before and after gasification revealed an increase of sorption capacity by up to 42%. Thus, physical sorption represents a feasible option for CO2 storage in underground gasification cavities.

  17. Coal gasification: New challenge for the Beaumont rotary feeder

    NASA Technical Reports Server (NTRS)

    Stelian, J.

    1977-01-01

    The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

  18. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  19. Exploration of the gasification of Spirulina algae in supercritical water.

    PubMed

    Miller, Andrew; Hendry, Doug; Wilkinson, Nikolas; Venkitasamy, Chandrasekar; Jacoby, William

    2012-09-01

    This study presents non-catalytic gasification of Spirulina algae in supercritical water using a plug flow reactor and a mechanism for feeding solid carbon streams into high pressure (>25 MPa) environments. A 2(III)(3-1) factorial experimental design explored the effect of concentration, temperature, and residence time on gasification reactions. A positive displacement pump fed algae slurries into the reactor at a temperature range of 550-600°C, and residence times between 4 and 9s. The results indicate that algae gasify efficiently in supercritical water, highlighting the potential for a high throughput process. Additional experiments determined Arrhenius parameters of Spirulina algae. This study also presents a model of the gasification reaction using the estimated activation energy (108 kJ/mol) and other Arrhenius parameters at plug flow conditions. The maximum rate of gasification under the conditions studied of 53 g/Ls is much higher than previously reported.

  20. Catalytic gasification of wet biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong

    1995-12-01

    A pressurized catalytic gasification process, operated at 600{degrees}C, 34.5 MPa, efficiently produces a hydrogen rich synthesis gas from high-moisture content biomass. Glucose was selected as a model compound for catalytic biomass gasification. A proprietary heterogeneous catalyst X was extremely effective for the gasification of both the model compound and whole biomass feeds. The effect of temperature, pressure, reactant concentration on the gasification of glucose with catalyst X were investigated. Complete conversion of glucose (22% by weight in water) to gas was obtained at a weight hourly space velocity of 22.2 (g/h)/g in supercritical water at 600{degrees}C, 34.5 MPa. Complete conversion of whole biomass feeds including water hyacinth, depithed bagasse liquid extract, sewage sludge, and paper sludge was also achieved at the same temperature and pressure. The propriety catalyst X is inexpensive and extremely effective.

  1. Steam gasification of wood in the presence of catalysts

    NASA Astrophysics Data System (ADS)

    Mudge, L. K.; Mitchell, D. H.; Baker, E. G.; Robertus, R. J.; Brown, M. D.

    1982-09-01

    Catalytic steam gasification of wood, including sawdust, chipped forest slash, and mill shavings, is investigated. Results of laboratory, process development unit (PDR), and feasibility studies illustrate attractive processes for conversion of wood to methanol and a substitute natural gas (SNG). Recent laboratory studies developed a long-lived alloy catalyst for generation of a methanol synthesis gas by steam gasification of wood. Modification of the PDU for operation at 10 atm (150 psia) is complete and initial tests are completed. The modified PDU will be operated at elevated pressures to confirm yields and design parameters used in process feasibility studies. A computer program for evaluating the effect of yield changes on process economics was completed. The base case was the study on economics of methanol-from-wood using catalytic gasification. It was found that methanol-from-wood by catalytic gasification was competitive with the process for methanol production from natural gas.

  2. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Unknown

    1999-04-01

    The project, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'', is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (GT). The aims of the project are to: identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal; evaluate various impregnation or catalyst addition methods to improve catalyst dispersion; evaluate effects of major process variables (e.g., temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts in a bench-scale fixed bed reactor; and conduct thorough analysis and modeling of the gasification process to provide a better understanding of the fundamental mechanisms and kinetics of the process. The eutectic catalysts increased gasification rate significantly. The methods of catalyst preparation and addition had significant effect on the catalytic activity and coal gasification. The incipient wetness method gave more uniform catalyst distribution than that of physical mixing for the soluble catalysts resulting in higher gasification rates for the incipient wetness samples. The catalytic activity increased by varying degrees with catalyst loading. The above results are especially important since the eutectic catalysts (with low melting points) yield significant gasification rates even at low temperatures. Among the ternary eutectic catalysts studied, the system 39% Li{sub 2}CO{sub 3}-38.5% Na{sub 2}CO{sub 3}-22.5% Rb{sub 2}CO{sub 3} showed the best activity and will be used for further bench scale fixed-bed gasification reactor in the next period. Based on the Clark Atlanta University studies in the previous reporting period, the project team selected the 43.5% Li{sub 2}CO{sub 3}-31.5% Na{sub 2}CO{sub 3}-25% K{sub 2}CO{sub 3} ternary eutectic and the 29% Na{sub 2}CO{sub 3}-71% K{sub 2}CO{sub 3} binary eutectic for the fixed-bed studies

  3. Second stage gasifier in staged gasification and integrated process

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  4. Analysis of the combustion reaction of carbon and lignite char with ignition and extinction phenomena: Shrinking sphere model

    SciTech Connect

    Gupta, P.; Sadhukhan, A.K.; Saha, R.K.

    2007-06-15

    Single-particle combustion of carbon and lignite char is analyzed in the present work using a generalized shrinking sphere model. Finite volume method (FVM), which was earlier employed by the authors in solving such moving boundary problems involving single particle analysis of general fluid-solid noncatalytic reactions, has been used in this work to solve the transient mass and energy balance equations. The computed results are compared with published experimental data of fluidized-bed combustion of lignite char. The effects of various parameters like bulk temperature, initial particle temperature, initial particle radius, etc. are examined on the dynamics of combustion of carbon and lignite char. The phenomena of ignition and extinction are also investigated. The importance of nonequimolar diffusion in the combustion reaction has also been analyzed.

  5. Mathematical model of the pyrolysis and gasification of coal

    SciTech Connect

    Kalinenko, R.A.; Levitskii, A.A.; Mirokhin, Yu.A.; Polak, L.S.

    1987-12-01

    A kinetic model of the pyrolysis and gasification of coal at moderate (1100-1300 K) and high (2000-3000 K) temperatures, which includes reactions resulting in the release of volatile substances and their further conversions and takes into account the processes of heat and mass transfer, has been developed. A calculation of the composition of the gasification products of brown coals on the basis of the model has displayed good agreement with experimental data.

  6. Rehabilitation of a lignite mine-disturbed area in the Indian Desert

    USGS Publications Warehouse

    Sharma, K.D.; Kumar, P.; Gough, L.P.; SanFilipo, J.R.

    2004-01-01

    Extensive lignite mining in the Indian (Thar) Desert commenced within the past decade. Accompanying extraction of this valuable resource there have been visible, important environmental impacts. The resultant land degradation has prompted concern from both public and regulatory bodies. This research assesses the success of rehabilitation plans implemented to revegetate a lignite mine-disturbed area, near the village of Giral in western Rajasthan State. Rehabilitation success was achieved within the environmental constraints of this northwest Indian hot-desert ecosystem using a combination of: (1) backfilling (abandoned pits) with minespoil and of covering the backfilled-surfaces with fresh topsoil to a thickness of about 0??30 m; (2) use of micro-catchment rainwater harvesting (MCWH) technique; (3) soil profile modification approaches; (4) plant establishment methodologies; and (5) the selection of appropriate germplasm material (trees, shrubs and grasses). Preliminary results indicate that the resulting vegetative cover will be capable of self-perpetuation under natural conditions while at the same time meeting the land-use requirements of the local people. The minespoil is alkaline in nature and has high electrical conductance. The average content of organic carbon, N, P and K is lower than in the regional topsoil. However, the concentration of Ca, Mg, Na and total S in the minespoil is much higher than in the topsoil. Further, the spoil material has no biological activity. Enhanced plant growth was achieved in MCWH plots, compared to control plots, where minespoil moisture storage was improved by 18-43 per cent. The rehabilitation protocol used at the site appears to have been successful because, in addition to the planted species, desirable native invasive species have become established. This study developed methods for the rehabilitation of lignite mine-disturbed areas and has also resulted in an understanding of rehabilitation processes in arid regions with

  7. Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district

    NASA Astrophysics Data System (ADS)

    Hüttl, Reinhard F.; Weber, Edwin

    2001-08-01

    The restoration of surface mining landscapes requires the (re)creation of ecosystems. In Lusatia (eastern Germany), large-scale open-cast lignite mining operations generated spoil dumps widely consisting of acidified, phytotoxic substrates. Amelioration and rehabilitation measures have been developed and applied to these substrates since the 1950s. However, it is still not clear whether these approaches are sustainable. This paper reports on collaborative research work into the ecological potential of forest ecosystem development on typical minesites in the Lusatian lignite district. At first sight, pine stands on minesites along a chronosequence comprising about 35 years did not show differences when compared with stands on non-mined sites of the general region. Furthermore, with some modification, conceptual models for flora and fauna succession in forest stands on non-mined sites seem to be applicable, at least for the early stages of forest ecosystem development. For example, soil organism abundance and activity at minesites had already reached levels typical of non-mined sites after about 20-30 years. In contrast, mine soils are very different from non-mined soils of the test region. Chemically, mine soil development is dominated by processes originating from pyrite oxidation. Geogenic, i.e. lignitic, soil organic carbon was shown to substitute for some functions of pedogenic soil organic matter. Rooting was hampered but not completely impeded in strongly acidified soil compartments. Roots and mycorrhizae are apparently able to make use of the characteristic heterogeneity of young mine soils. Considering these recent results and the knowledge accumulated during more than 30 years of research on minesite rehabilitation internationally, it can be stated that minesite restoration might be used as an ideal case study for forest ecosystem development starting at "point zero" on " terra nova".

  8. Catalytic coal gasification: an emerging technology.

    PubMed

    Hirsch, R L; Gallagher, J E; Lessard, R R; Wesslhoft, R D

    1982-01-08

    Catalytic coal gasification is being developed as a more efficient and less costly approach to producing methane from coal. With a potassium catalyst all the reactions can take place at one temperature, so that endothermic and exothermic reactions can be integrated in a single reactor. A key aspect of the concept involves continuous recycling of product carbon monoxide and hydrogen to the gasifier following separation of methane. Development of the process has advanced steadily since the basic concept was proposed in 1971. A 23-day demonstration run was recently completed in a process development unit with a coal feed rate of 1 ton per day. The next major step in the program will be to design and construct a large pilot plant to bring the technology to commercial readiness in the late 1980's.

  9. Coal Integrated Gasification Fuel Cell System Study

    SciTech Connect

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  10. Biomass Gasification Research Facility Final Report

    SciTech Connect

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature

  11. Biomass gasification: A demonstration in Brazil

    SciTech Connect

    Elliott, P.

    1994-09-01

    Biomass Integrated Gasification-Gas Turbine (BIG-GT) cycles offer considerable opportunities for improved efficiency in biomass power systems. As a result of international collaboration, a full-scale plant in Brazil will be the first commercial scale demonstration plant to utilise this system. The project, if successful, will lead to the commercial development of highly efficient, relatively easily installed biomass energy plants. The global implications could be significant, with biomass possibly contributing to power supplies in a scale similar to nuclear and hydro by the mid 21st century. It could provide a basis for rural development and employment in developing countries, and utilization of excess crop land in the industrial world.

  12. Plasma chemical gasification of sewage sludge.

    PubMed

    Balgaranova, Janetta

    2003-02-01

    The possibility for plasma gasification of sewage sludge is investigated. Water steam is used as the plasma generating gas and as a chemical reagent. The experiments are carried out at a sludge to water steam ratio of 1 to 1.5 by weight, and at a plasma torch temperature of up to 2600 degrees C. The calculated average temperature in the reactor after mixing with the sludge particles is up to 1700 degrees C. Proximate and ultimate analyses of the sludge are given. The resulting gases are analysed by gas chromatography. High calorific gas containing mainly carbon monoxide (48% volume) and hydrogen (46% volume), as well as glass-like slag, is obtained. No water-soluble substances are detected within it. The amount of carbon dioxide produced is under 4% mass. No hydrocarbons are observed within the gas. The investigated process is environmentally safe, compact and shows a high rate of conversion.

  13. Method for control of subsurface coal gasification

    DOEpatents

    Komar, Charles A.

    1976-12-14

    The burn front in an in situ underground coal gasification operation is controlled by utilizing at least two parallel groups of vertical bore holes disposed in the coalbed at spaced-apart locations in planes orthogonal to the plane of maximum permeability in the coalbed. The combustion of the coal is initiated in the coalbed adjacent to one group of the bore holes to establish a combustion zone extending across the group while the pressure of the combustion supporting gas mixture and/or the combustion products is regulated at each well head by valving to control the burn rate and maintain a uniform propagation of the burn front between the spaced-apart hole groups to gasify virtually all the coal lying therebetween.

  14. Heat exchanger for coal gasification process

    DOEpatents

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  15. Advanced Gasification By-Product Utilization

    SciTech Connect

    Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

    2006-08-31

    With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The objectives of this

  16. Gasification of cyanobacterial in supercritical water.

    PubMed

    Zhang, Huiwen; Zhu, Wei; Xu, Zhirong; Gong, Miao

    2014-01-01

    Cyanobacterial collected from eutrophic freshwater lakes constituted intractable waste with a rich algae biomass content. Supercritical water gasification (SCWG) was proposed to treat the cyanobacterial and to produce hydrogen for energy. The H 2 yield reached 2.92 mol/kg at reaction conditions of 500 °C, 30 min and 22 MPa; this yield accounted for 26% of the total gaseous products. Abundant ammonia and dissolved reactive phosphorous were concentrated in the liquid product, which could be recovered and used as a liquid fertilizer. Solid residue, which accounted only for about 1% of the wet weight, was mainly composed of coke and ash. The efficiency of H 2 production was better than that from other biomass, because of the abundant organic matter in cyanobacterial. Thus, cyanobacterial are an ideal biomass feedstock for H 2 production from SCWG.

  17. Subtask 4.2 - Coal Gasification Short Course

    SciTech Connect

    Kevin Galbreath

    2009-06-30

    Major utilities, independent power producers, and petroleum and chemical companies are intent on developing a fleet of gasification plants primarily because of high natural gas prices and the implementation of state carbon standards, with federal standards looming. Currently, many projects are being proposed to utilize gasification technologies to produce a synthesis gas or fuel gas stream for the production of hydrogen, liquid fuels, chemicals, and electricity. Financing these projects is challenging because of the complexity, diverse nature of gasification technologies, and the risk associated with certain applications of the technology. The Energy & Environmental Research Center has developed a gasification short course that is designed to provide technical personnel with a broad understanding of gasification technologies and issues, thus mitigating the real or perceived risk associated with the technology. Based on a review of research literature, tutorial presentations, and Web sites on gasification, a short course presentation was prepared. The presentation, consisting of about 500 PowerPoint slides, provides at least 7 hours of instruction tailored to an audience's interests and needs. The initial short course is scheduled to be presented September 9 and 10, 2009, in Grand Forks, North Dakota.

  18. Solar coal gasification reactor with pyrolysis gas recycle

    DOEpatents

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  19. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R.; Lisauskas, R.A.; Dixit, V.J.; Morgan, M.E.; Johnson, S.A.; Boni, A.A.

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  20. Diagnostic measurements on the great machines conditions of lignite surface mines

    SciTech Connect

    Helebrant, F.; Jurman, J.; Fries, J.

    2005-07-01

    An analysis of the diagnosis of loading and service dependability of a rail-mounted excavator used in surface lignite mining is described. Wheel power vibrations in electric motor bearings and electric motor input bearings to the gearbox were measured in situ, in horizontal, vertical, and axial directions. The data were analyzed using a mathematical relationship. The results are presented in a loading diagram that shows the deterioration and the acceptable lower bound of machine conditions over time. Work is continuing. 5 refs., 1 fig.

  1. Computational Chemistry Approach to Interpret the Crystal Violet Adsorption on Golbasi Lignite Activated Carbon

    NASA Astrophysics Data System (ADS)

    Depci, Tolga; Sarikaya, Musa; Prisbrey, Keith A.; Yucel, Aysegul

    2016-10-01

    In this paper, adsorption mechanism of Crystal Violet (CV) dye from the aqueous solution on the activated carbon prepared from Golbasi lignite was explained and interpreted by a computational chemistry approach and experimental studies. Molecular dynamic simulations and Ab initio frontier orbital analysis indicated relatively high energy and electron transfer processes during adsorption, and molecular dynamics simulations showed CV dye molecules moving around on the activated carbon surface after adsorption, facilitating penetration into cracks and pores. The experimental results supported to molecular dynamic simulation and showed that the monolayer coverage occurred on the activated carbon surface and each CV dye ion had equal sorption activation energy.

  2. Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

  3. Toxicity studies of mild gasification products

    SciTech Connect

    Ong, T.M.; Whong, W.Z.; Ma, J.; Zhong, B.Z.; Bryant, D.

    1992-01-01

    The objectives of this project are: (1) to perform mutagenicity studies with the Ames Salmonella/microsomal assay system on coal liquids produced by mild gasification from different coals and/or processing conditions, (2) to determine whether coal liquids which are mutagenic to bacteria are also genotoxic to mammalian cells, (3) to establish correlations between mutagenicity, aromaticity, and boiling point range of coal liquids, and (4) to identify the chemical classes which are likely to be responsible for the mutagenic activity of gasification products. Four of the seven samples tested so far failed to demonstrate any mutagenic activity under any conditions tested. Those samples were SHELL[number sign]830331, MG-122IBP-420[degree]F, MG-122 420--720[degree]F, and MG-122 720[degree]F+. Table 1 summarizes the results from all samples tested in DMSO and Tween 80. When solvated in DMSO, MG-119 and MG-120 composite materials displayed slight, but ultimately insignificant, genotoxic activity on TA98 and TA1OO in the presence of S9. When Tween 80 was used as the solvent, MG-119 and MG-120 displayed slight, but significant, geno-toxic activity on TA98 with S9 (Figure 4). CTC[number sign]11 in DMSO displayed significant genotoxic activity on both TA98 and TA1OO with and without S9. The activity was higher on TA98 than TA100, and higher with S9 than without, primarily indicating the presence of indirect-acting frameshift mutagen. The results of the testing on CTC[number sign]11 were similar for both solvents, DMSO and Tween 80 (Table 2).

  4. Toxicity studies of mild gasification products

    SciTech Connect

    Ong, T.M.; Whong, W.Z.; Ma, J.; Zhong, B.Z.; Bryant, D.

    1992-11-01

    The objectives of this project are: (1) to perform mutagenicity studies with the Ames Salmonella/microsomal assay system on coal liquids produced by mild gasification from different coals and/or processing conditions, (2) to determine whether coal liquids which are mutagenic to bacteria are also genotoxic to mammalian cells, (3) to establish correlations between mutagenicity, aromaticity, and boiling point range of coal liquids, and (4) to identify the chemical classes which are likely to be responsible for the mutagenic activity of gasification products. Four of the seven samples tested so far failed to demonstrate any mutagenic activity under any conditions tested. Those samples were SHELL{number_sign}830331, MG-122IBP-420{degree}F, MG-122 420--720{degree}F, and MG-122 720{degree}F+. Table 1 summarizes the results from all samples tested in DMSO and Tween 80. When solvated in DMSO, MG-119 and MG-120 composite materials displayed slight, but ultimately insignificant, genotoxic activity on TA98 and TA1OO in the presence of S9. When Tween 80 was used as the solvent, MG-119 and MG-120 displayed slight, but significant, geno-toxic activity on TA98 with S9 (Figure 4). CTC{number_sign}11 in DMSO displayed significant genotoxic activity on both TA98 and TA1OO with and without S9. The activity was higher on TA98 than TA100, and higher with S9 than without, primarily indicating the presence of indirect-acting frameshift mutagen. The results of the testing on CTC{number_sign}11 were similar for both solvents, DMSO and Tween 80 (Table 2).

  5. Integrated gasification fuel cell (IGFC) demonstration test

    SciTech Connect

    Steinfeld, G.; Ghezel-Ayagh, H.; Sanderson, R.; Abens, S.

    2000-07-01

    As concern about the environment generates interest in ultra-clean energy plants, fuel cell power plants can respond to the challenge. Fuel cells convert hydrocarbon fuels to electricity at efficiencies exceeding conventional heat engine technologies while generating extremely low emissions. Emissions of SOx and NOx are expected to be well below current and anticipated future standards. Nitrogen oxides, a product of combustion, will be extremely low in this power plant because power is produced electrochemically rather than by combustion. Due to its higher efficiencies, a fuel cell power plant also produces less carbon dioxide. Fuel cells in combination with coal gasification, are an efficient and environmentally acceptable means to utilize the abundant coal reserves both in the US and around the world. To demonstrate this technology, FuelCell Energy, Inc. (FCE), is planning to build and test a 2-MW Fuel Cell Power Plant for operation on coal derived gas. This power plant is based on Direct Fuel Cell (DFC{trademark}) technology and will be part of a Clean Coal V IGCC project supported by the US DOE. A British Gas Lurgi (BGL) slagging fixed-bed gasification system with cold gas clean up is planned as part of a 400 MW IGCC power plant to provide a fuel gas slip stream to the fuel cell. The IGFC power plant will be built by Kentucky Pioneer Energy, A subsidiary of Global Energy, in Clark County, KY. This demonstration will result in the world's largest fuel cell power plant operating on coal derived gas. The objective of this test is to demonstrate fuel cell operation on coal derived gas at a commercial scale and to verify the efficiency and environmental benefits.

  6. Gasification Studies Task 4 Topical Report

    SciTech Connect

    Whitty, Kevin; Fletcher, Thomas; Pugmire, Ronald; Smith, Philip; Sutherland, James; Thornock, Jeremy; Boshayeshi, Babak; Hunsacker, Isaac; Lewis, Aaron; Waind, Travis; Kelly, Kerry

    2014-02-01

    A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical processes (Subtask 4.4) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation. Highlights of this work include: • Verification and validation activities performed with the Arches coal gasification simulation tool on experimental data from the CANMET gasifier (Subtask 4.1). • The simulation of multiphase reacting flows with coal particles including detailed gas-phase chemistry calculations using an extension of the one-dimensional turbulence model’s capability (Subtask 4.2). • The demonstration and implementation of the Reverse Monte Carlo ray tracing (RMCRT) radiation algorithm in the ARCHES code (Subtask 4.3). • Determination of steam and CO{sub 2} gasification kinetics of bituminous coal chars at high temperature and elevated pressure under entrained-flow conditions (Subtask 4.4). In addition, attempts were made to gain insight into the chemical structure differences between young and mature coal soot, but both NMR and TEM characterization efforts were hampered by the highly reacted nature of the soot. • The development, operation, and demonstration of in-situ gas phase measurements from the University of Utah’s pilot-scale entrained-flow coal gasifier (EFG) (Subtask 4.6). This subtask aimed at acquiring predictable, consistent performance and characterizing the

  7. Behavior study of trace elements in pulverized lignite, bottom ash, and fly ash of Amyntaio power station, Greece.

    PubMed

    Megalovasilis, Pavlos; Papastergios, Georgios; Filippidis, Anestis

    2013-07-01

    The Kozani-Ptolemais-Amyntaio basin constitutes the principal coal field of Greece. Approximately 50% of the total power production of Greece is generated by five power stations operating in the area. Lignite samples, together with the corresponding fly ash and bottom ash were collected, over a period of 3 months, from the power plant of Amyntaio and analyzed for their content in 16 trace elements. The results indicate that Y, Nb, U, Rb, Zr, Ni, Pb, Ba, Zn, Sr, Cu, and Th demonstrate an organic affinity during the combustion of lignite, while V has an inorganic affinity. Three elements (Co, Cr, and Sc) show an intermediate affinity.

  8. Impact of proposed lignite mining in west Tennessee. Open file report 23 Jan 80-30 Sep 81

    SciTech Connect

    Stearns, R.G.; Wilson, J.M.; Reesman, A.L.

    1981-10-01

    Extensive thick lignite apparently lies within 250 feet of the land surface in Dyer, Lake, Lauderdale, Obion, and Tipton Counties, Tenn. Information on geology, land use, soils, ground water, and instability is compiled along with a bibliography. A test and monitoring site was investigated at Fort Pillow Prison in Lauderdale County. Analyses were made of lignite, overburden, associated water, and leachate. The main potential environmental problems are quality of surface water and possibly shallow ground water. Low transmissibility of shallow aquifers will minimize lowering water levels of wells.

  9. Carbonate and lignite cycles in the Ptolemais Basin: Orbital control and suborbital variability (Late Neogene, northern Greece)

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Tougiannidis, N.; Ricken, W.; Rolf, C.; Kleineder, M.; Bertram, N.; Antoniadis, P.

    2009-04-01

    We recently commenced a project to investigate deep drillings as well as outcrops in the Ptolemais Basin, northern Greece, for paleoenvironmental and paleoclimate change. Specific attention is paid to mining sites Achlada, Vevi, Vegora, Amynteon, North Field, South Field, and Lava. The sediment archive comprises Upper Miocene to Quaternary continental lake deposits (up to 800 m thick) with an extended Lower Pliocene section. The Upper Miocene sections are composed of diatomaceous mud and gray marls. Pliocene lake sediments commence with the Kyrio member (lignite/grey marl), followed by the Theodoxus member (beige marl/lignite), and the Notio member (marl with intercalated sand /lignite). The limnic deposits show striking rhythmic bedding of (mostly) carbonates and lignites, reflecting orbital-induced humidity and temperature changes in this small NW-SE elongated continental basin. First, we retrieved chronometric information by determining magnetic polarity changes on three sites as independent stratigraphic ground-truth in combination with palynological evidence and published data. Then we conducted a number of high-resolution (1 - 6 cm increment), non-destructive measurements to obtain paleoclimate proxies: photospectrometry (colors L, a, b), magnetic susceptibility, and natural gamma. Accordingly, we achieved a multi-proxy insight into paleoclimate and paleoenvironmental evolution at unprecedented temporal resolution (up to a few decades!) over long time series and at a number of key sites. Using the newly-developed ESALab software, we conducted spectral and evolutionary spectral analysis to evaluate the cyclo-stratigraphic development. As for orbital variability, spectral power is concentrated on precession, hemi-precession, and eccentricity, with only minor impact of orbital tilt. We used this information to increase the temporal resolution of our age models by tuning as many precession (insolation) maxima as possible to carbonate minima (lignite maxima

  10. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  11. 75 FR 17397 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA--Notice of... proposed by HECA would demonstrate Integrated Gasification Combined Cycle (IGCC) technology with carbon... emissions of sulfur dioxide, nitrogen oxides, mercury, and particulates compared to conventional...

  12. Effects on groundwater of an ash disposal operation at an east Texas lignite mine

    SciTech Connect

    Wheeler, K.A.; Mills, S.; Rouse, J.V.

    1994-09-01

    A study was undertaken to evaluate the effects on groundwater of a proposed in-pit ash disposal operation at an east Texas lignite mine. An estimated 8 million tons of fly ash were to be deposited in a mined-out part of an active lignite mine during a five-year period. A constructed bottom liner was not planned for the operation because of the low permeability of spoils material in which the fly ash would be encapsulated and the abundance of low-permeability native sediments surrounding the mined-out area. The disposal site, according to state regulations, would be classified as a class II nonhazardous landfill. An intensive investigation was initiated to characterize the geologic, geotechnical, hydrogeologic, and geochemical features within and surrounding the identified disposal area. The data were used in a three-dimensional numerical flow and transport Computer model (SWIFT) to simulate the movement of fly-ash leachate from the landfill. The computer simulations indicate that the plume of leachate will travel 200 to less than 500 ft from the perimeter of the disposal area in 100 yr. Movement will not begin until after resaturation of the spoils material, which will likely take several decades to occur. A buffer zone of mine spoils without ash will surround the disposal area. The study was reviewed by technical staffs at state agencies, and regulatory approval for the proposed landfill operations was obtained. Fly ash is currently being disposed of at the permitted class II nonhazardous landfill.

  13. Effects on groundwater of an ash-disposal operation at an East Texas lignite mine

    SciTech Connect

    Wheeler, K.A.; Mills, S.; Rouse, J.V.

    1994-12-31

    A study was undertaken to evaluate the effects on groundwater of a proposed in-pit ash disposal operation at an East Texas lignite mine. An estimated 8 million tons of fly ash was to be deposited in a mined-out part of an active lignite mine during a 5-year period. A constructed bottom liner was not planned for the operation because of the low permeability of spoil materials in which the fly ash would be encapsulated and the abundance of low-permeability native sediments surrounding the mined-out area. The disposal site, according to state regulations, would be classified as a class II nonhazardous landfill. An intensive investigation was initiated to characterize the geologic, geotechnical, hydrogeologic, and geochemical features within and surrounding the identified disposal area. The data were used in a three-dimensional numerical flow and transport computer model (SWIFT) to simulate the movement of fly-ash leachate from the landfill. The computer simulations indicate that the plume of leachate will travel 200 to less than 500 ft from the perimeter of the disposal area in 100 yr. Movement will not begin until after resaturation of the spoil materials, which will likely take several decades to occur. A buffer zone of mine spoils without ash will surround the disposal area. The study was reviewed by technical staffs at state agencies, and regulatory approval for the proposed landfill operations was obtained. Fly ash is currently being disposed of at the permitted class II nonhazardous landfill.

  14. The physico-chemical properties and biostimulative activities of humic substances regenerated from lignite.

    PubMed

    David, Jan; Smejkalová, Daniela; Hudecová, Sárka; Zmeškal, Oldřich; von Wandruszka, Ray; Gregor, Tomáš; Kučerík, Jiří

    2014-01-01

    The positive effect of humic acids on the growth of plant roots is well known, however, the mechanisms and role of their physical structure in these processes have not been fully explained yet. In this work, South-Moravian lignite was oxidized by means of nitric acid and hydrogen peroxide to produce a set of regenerated humic acids. The elemental composition, solid state stability and solution characteristics were determined and correlated in vitro with their biological activity. A modified hydroponic method was applied to determine the effects of their potassium salts on Zea mays seedlings roots with respect to the plant weight, root length, root division, and starch and protein content. The relations between the determined parameters were evaluated through Principal Component Analysis and Pearson's correlation coefficients. The results indicated that the most important factor determining the biological activity of South-Moravian lignite potassium humates is related to the nature of self-assemblies, while the chemical composition had no direct connection with the root growth of Zea mays seedlings. It was demonstrated a controlled processing that provided humic substances with different chemical and physicochemical properties and variable biological activity.

  15. Structural degradation of Thar lignite using MW1 fungal isolate: optimization studies

    USGS Publications Warehouse

    Haider, Rizwan; Ghauri, Muhammad A.; Jones, Elizabeth J.; Orem, William H.; SanFilipo, John R.

    2015-01-01

    Biological degradation of low-rank coals, particularly degradation mediated by fungi, can play an important role in helping us to utilize neglected lignite resources for both fuel and non-fuel applications. Fungal degradation of low-rank coals has already been investigated for the extraction of soil-conditioning agents and the substrates, which could be subjected to subsequent processing for the generation of alternative fuel options, like methane. However, to achieve an efficient degradation process, the fungal isolates must originate from an appropriate coal environment and the degradation process must be optimized. With this in mind, a representative sample from the Thar coalfield (the largest lignite resource of Pakistan) was treated with a fungal strain, MW1, which was previously isolated from a drilled core coal sample. The treatment caused the liberation of organic fractions from the structural matrix of coal. Fungal degradation was optimized, and it showed significant release of organics, with 0.1% glucose concentration and 1% coal loading ratio after an incubation time of 7 days. Analytical investigations revealed the release of complex organic moieties, pertaining to polyaromatic hydrocarbons, and it also helped in predicting structural units present within structure of coal. Such isolates, with enhanced degradation capabilities, can definitely help in exploiting the chemical-feedstock-status of coal.

  16. Factors affecting the oil agglomeration of Sivas-Divrigi Ulucayir lignite

    SciTech Connect

    Unal, I.; Gorgun Ersan, M.

    2007-07-01

    In the coal industry, the coal particles need to be decreased to a very fine size because of the need of removing inorganic materials from coal. Oil agglomeration is a kind of coal cleaning technique that is used for separation of organic and inorganic parts of fine sized coal. In this study, the oil agglomeration of Sivas-Divrigi (S-D) Ulucayir lignite was carried out by using kerosene, diesel oil, fuel oil, poppy oil, and sunflower oil. The amount of bridging oil was varied from 5% to 25% of the amount of lignite. The effect of oil amount, oil type, solid content, agitation rate and time, pH on agglomeration performance was investigated. Maximum recovery value of 98.18% was observed by using poppy oil. In order to investigate the effect of pH on agglomeration NaOH and HCl is added to the slurry in various amounts. It is decided that the best agglomeration condition is obtained at low pH values. The effect of nonionic surface active agent (Igepal-CA 630) on agglomeration is investigated by adding to the slurry and it is observed that the grade is increased with the amount of surface active agent.

  17. Characterization of microorganisms isolated from lignite excavated from the Záhorie coal mine (southwestern Slovakia).

    PubMed

    Pokorný, Richard; Olejníková, Petra; Balog, Miroslav; Zifcák, Peter; Hölker, Udo; Janssen, Martina; Bend, Jutta; Höfer, Milan; Holiencin, Rudolf; Hudecová, Daniela; Varecka, L'udovít

    2005-11-01

    Microorganisms were isolated from lignite freshly excavated in the Záhorie coal mine (southwestern Slovakia) under conditions excluding contamination with either soil or air-borne microorganisms. The isolates represented both Prokarya and Eukarya (fungi). All were able to grow on standard media, although some microorganisms were unstable and became extinct during storage of coal samples. Bacteria belonged to the genera Bacillus, Staphylococcus, and Rhodococcus, according to both morphological criteria and ITS sequences. Several bacterial isolates were resistant to antibiotics. The presence of anaerobic bacteria was also documented, although they have not yet been identified. Fungal isolates were typified by using their ITS sequences. They belonged to the genera Trichoderma (Hypocrea), Penicillium, Epicoccum, Metarhizium (Cordyceps), and Cladosporium. Several fungi produced compounds with antibiotic action against standard bacterial strains. The evidence for the presence of microorganisms in native lignite was obtained by means of fluorescence microscopy, scanning electron microscopy, and electron microprobe analysis. Results demonstrated that microorganisms were able to survive in the low-rank coal over a long time period.

  18. Petrographical, palynological, and sedimentological aspects regarding the genesis of Palaeogene lignites near Alexandroupolis, Thrace, Greece

    SciTech Connect

    Antoniadis, P.; Kaouras, G.; Khanaqa, P.; Riegel, W.; Gentzis, T.

    2006-01-21

    Several minor lignite deposits of Palaeogene (Eocene to Oligocene) age occur in the vicinity of Alexandroupolis, Thrace, northern Greece. A few, rather thin seams were mined in the past by small private operations for local use. Coal samples have been collected from old mine dumps and outcrops around abandoned mine posts to be studied by means of maceral analysis at high magnification. The groundwater and vegetation index are calculated from the maceral composition and used to draw conclusions concerning the environment of deposition. In addition, block samples of coal cut perpendicular to bedding were studied at intermediate magnification and underfluorescence, thus revealing some interesting bedding features as well as well-preserved plant organisms. The coals are characteristically finely laminated and highly gelified. Palynological preparations have thus far yielded only poorly preserved palynomorph assemblages, rather low in diversity and dominated by fern spores. This fern dominance is rather unusual: however, it is compatible with the occurrence of fertile fern fronds observed in petrographic coal sections. Accompanying clastic sediments exhibit cyclic fining-upward sequences at a scale averaging about 1 m in vertical extent. Grain sizes range from small gravel to clay and silt. In some cases, siltstones in the roof of coal seams include abundant plant fragments showing parallel venation. The evidence presented from various sources suggests a rather unstable fluvial environment and a generally high water table on the flood plain for the formation of these lignites.

  19. Land movement monitoring at the Mavropigi lignite mine using spaceborne D-InSAR

    NASA Astrophysics Data System (ADS)

    Papadaki, Eirini; Tripolitsiotis, Achilleas; Steiakakis, Chrysanthos; Agioutantis, Zacharias; Mertikas, Stelios; Partsinevelos, Panagiotis; Schilizzi, Pavlos

    2013-08-01

    This paper examines the capability of remote sensing radar interferometry to monitor land movements, as it varies with time, in areas close to open pit lignite mines. The study area is the "Mavropigi" lignite mine in Ptolemais, Northern Greece; whose continuous operation is of vital importance to the electric power supply of Greece. The mine is presently 100-120m deep while horizontal and vertical movements have been measured in the vicinity of the pit. Within the mine, ground geodetic monitoring has revealed an average rate of movement amounting to 10-20mm/day at the southeast slopes. In this work, differential interferometry (DInSAR), using 19 Synthetic Aperture Radar (SAR) images of ALOS satellite, has been applied to monitor progression of land movement caused my mining within the greater area of "Mavropigi" region. The results of this work show that DInSAR can be used effectively to capture ground movement information, well before signs of movements can be observed visually in the form of imminent fissures and tension cracks. The advantage of remote sensing interferometry is that it can be applied even in inaccessible areas where monitoring with ground equipment is either impossible or of high-cost (large areas).

  20. Comparative palynology of clastics and lignites from the Manning Formation, Jackson Group, Upper Eocene, Grimes County, TX

    SciTech Connect

    Gennett, J.A.

    1996-09-01

    The 3500 lignite seam at the Gibbons Creek Mine in Grimes County, TX was sampled for pollen and spores at 10 cm intervals. The majority of samples are dominated (to 60%) by Momipites from the Juglandaceae (walnut family), as is typical of Jackson Group sediments. Other palynomorph taxa vary systematically, with a peak of pollen of the freshwater tree Nyssa (blackgum) and associated Rboipites angustus (to 17%) occurring at the base. Higher in the seam, increase (to 55%) of Cupuliferoipollenites (a chestnut-like grain) and Cyrillaceae-pollenites? ventosus (to 7%) percentages may indicate a higher salinity environment. A Chrysophyllum (satin leaf) peak (to 25%) near the top of the seam suggests relatively shallow fresh-water conditions. Core samples from an interval above the lignites represent a transgressive-regressive cycle in inner shelf clastics. These samples were taken at 40 cm or greater intervals and reveal the regional pollen flora. Although minor changes occur, palynomorph spectra are for the most part homogenous. The dominant grain is again Momipites coryloides, but in general percentages are lower (to 35%). Cupuliferoipollenites (to 17%), Chrysophyllum (to 5%), and Rhoipites angustus (to 3%) are not less important, but do not peak as they do in the lignite spectra. Palm leaf megafossils; in one sample suggest a clastic wetland; in this sample palm pollen (mostly Arecipites, representing the modern saw palmetto) reaches 73%. Another sample contains high (26%) percentages of the fern spore Lygodiumsporites adriennis. High percentages of these two taxa do not occur in the lignite samples.

  1. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    PubMed

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species.

  2. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  3. Results of core drilling for uranium-bearing lignites in the Bar H area, Slim Buttes, Harding County, South Dakota

    USGS Publications Warehouse

    Zeller, Howard D.

    1953-01-01

    Core drilling in the Car H area, Slim Buttes, Harding County, South Dakota, under a contract with the B. H. Mott Drilling Co., Huntington, West Virginia, was resumed June 12, 1952 after a 6-month recess during the winter and was completed July 18, 1952. The drilling was undertaken to obtain information on the distribution and extent of the uranium-bearing lignite beds along the southeast edge of the Bar H area. Eight holes totalling 885 feet were drilled and 52 feet of lignite core submitted for study and analysis. The report includes detailed lithographic descriptions of the lignite cores, Bureau of Mines coal analyses, and the results of 100 chemical analyses for uranium. The drilling showed that the thicker, more persistent lignite beds exposed in the northern part of the Bar H area were removed by erosion prior to the deposition of the overlaying White River formation in the south-eastern part of the area. The beds penetrated by drilling were not of sufficient thickness or uranium content to add to the previously known reserves.

  4. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    NASA Astrophysics Data System (ADS)

    Ilse, Jürgen

    2010-05-01

    Coal is the energy source with the largest geological availability worldwide. Of all non-renewable energies coal and lignite accounting for 55 % of the reserves and some 76 % of the resources represent the largest potential. Reserves are those geological quantities of a mineral which can currently be mined under technically and economically viable conditions. Resources are those quantities which are either proven but currently not economically recoverable or quantities which can still be expected or explored on the basis of geological findings. The global availability of energy source does not only depend on geological and economic factors. The technical availability, e.g. mining and preparation capacities, the sufficient availability of land and sea-borne transportation as well as transloading capacities and also a political availability are required likewise. The latter may be disturbed by domestic-policy disputes like strikes or unrest or by foreign-policy disputes like embargos, trade conflicts or even tensions and wars in the producing regions. In the energy-economic discussion the reach of fossil primary energies plays a central role with the most important questions being: when will which energy source be exhausted, which impact will future developments have on the energy price, what does the situation of the other energies look like and which alternatives are there? The reach of coal can only be estimated because of the large deposits on the one hand and the uncertain future coal use and demand on the other. The stronger growth of population and the economic catching-up process in the developing and threshold countries will result in a shift of the production and demand centres in the global economy. However, also in case of further increases the geological potential will be sufficient to reliably cover the global coal demand for the next 100 years. The conventional mining of seams at great depths or of thin seams reaches its technical and economic limits

  5. Assessment of selexolVAcid gas removal powers for use with Lurgi gasification

    SciTech Connect

    Apte, A.J.; Fein, H.L.

    1981-01-01

    Selexol acid gas removal as used with entrained-bed gasification is less expensive than the Rectisol process configuration generally used with Lurgi gasification. The objective of this study was to determine whether cost savings could be derived from using the Selexol process with Lurgi gasification or whether the Lurgi gas composition required use of a Rectisol clean-up unit. 5 refs.

  6. Origin and significance of high nickel and chromium concentrations in pliocene lignite of the Kosovo Basin, Serbia

    USGS Publications Warehouse

    Ruppert, L.; Finkelman, R.; Boti, E.; Milosavljevic, M.; Tewalt, S.; Simon, N.; Dulong, F.

    1996-01-01

    Trace element data from 59 Pliocene lignite cores from the lignite field in the Kosovo Basin, southern Serbia, show localized enrichment of Ni and Cr (33-304 ppm and 8-176 ppm, respectively, whole-coal basis). Concentrations of both elements decrease from the western and southern boundaries of the lignite field. Low-temperature ash and polished coal pellets of selected bench and whole-coal samples were analyzed by X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray analyses. These analyses show that most of the Ni and Cr are incorporated in detrital and, to a lesser degree, in authigenic minerals. The Ni- and Cr-bearing detrital minerals include oxides, chromites, serpentine-group minerals and rare mixed-layer clays. Possible authigenic minerals include Ni-Fe sulfates and sulfides. Analyses of three lignite samples by a supercritical fluid extraction technique indicate that some (1-11%) of the Ni is organically bound. Ni- and Cr-bearing oxides, mixed-layer clays, chromites and serpentine-group minerals were also identified in weathered and fresh samples of laterite developed on serpentinized Paleozoic peridotite at the nearby Glavica and C??ikatovo Ni mines. These mines are located along the western and northwestern rim, respectively, of the Kosovo Basin, where Ni contents are highest. The detrital Ni- and Cr-bearing minerals identified in lignite samples from the western part of the Kosovo Basin may have been transported into the paleoswamp by rivers that drained the two Paleocene laterites. Some Ni may have been transported directly into the paleoswamp in solution or, alternatively, Ni may have been leached from detrital minerals by acidic peat water and adsorbed onto organic matter and included into authigenic mineral phases. No minable source of Ni and Cr is known in the southern part of the lignite field; however, the mineral and chemical data from the lignite and associated rocks suggest that such a source area may exist.

  7. LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD

    SciTech Connect

    Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

    2004-03-01

    The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young

  8. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    1998-10-01

    This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures,'' covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3%KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a

  9. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    1999-10-01

    This is the progress report for the DOE grant DE-FG26-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'' for the period April 1999 to October 1999. The project is being conducted jointly by Clark Atlanta University, the University of Tennessee Space Institute and Georgia Institute of Technology. The overall objectives of the project are to identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature and system pressure) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct thorough analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. During this reporting period, free swelling index measurements of the coal, fixed-bed gasification experiments, kinetic modeling of the catalyzed gasification, and X-ray diffraction analysis of catalyst and gasified char samples were undertaken. The gasification experiments were carried out using two different eutectic salt mixtures of Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} (LNK) system and Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} (NK) system. The gasification process followed a Langmuir-Hinshelwood type model. At 10 wt% of catalyst loading, the activation energy of the ternary catalyst system (LNK) was about half (98kJ/mol) the activation energy of the single catalyst system (K{sub 2}CO{sub 3}), which is about 170 kJ/ mole. The binary catalyst system (NK) showed activation energy of about 201 kJ/mol, which is slightly higher, compared to the K{sub 2}CO{sub 3} catalyst system. The ternary catalyst system was a much better eutectic catalyst system compared to the binary or single catalyst system. In general, a eutectic with a melting point

  10. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    2000-04-01

    This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'', covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3% KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a

  11. Gasification of agricultural residues (biomass): Influence of inorganic constituents

    SciTech Connect

    DeGroot, W.F.; Kannan, M.P.; Richards, G.N. ); Theander, O. )

    1990-01-01

    Four different biomass samples are included in this study, viz., sphagnum peat, wheat straw, sugar beet pulp, and potato pulp. They were chosen to represent a wide range of plant origin and inorganic content. This paper represents a preliminary investigation of an approach based on pyrolysis of biomass to produce volatile products and chars, followed by gasification of the chars. The particular interest lies in the investigation of the influence of the indigenous metal ions on the rate of gasification. Carbon dioxide has been used for the gasification, and the biomass was analyzed for nine metals, uronic acids (which are implicated in the binding of inorganic counterions), protein, and Klason lignin. The highest individual metal ion content was 13,964 ppm of potassium in potato pulp, and the gasification rates, under constant conditions, covered up to a 20-fold range, with char from potato pulp being the most readily gasified and char from peat the most resistant. The correlation of gasification rates with content of the major metal ions (alkali metals and alkaline earths) was poor. However, a high level of correlation was observed when wheat straw was omitted. It is speculated that the latter biomass may be anomalous with respect to the other three because of its high silica content.

  12. Imaging the Underground Coal Gasification Zone with Microgravity Surveys

    NASA Astrophysics Data System (ADS)

    Kotyrba, Andrzej; Kortas, Łukasz; Stańczyk, Krzysztof

    2015-06-01

    The paper describes results of microgravity measurements made on the surface over an underground geo reactor where experimental coal gasification was performed in a shallow seam of coal. The aim of the research was to determine whether, and to what extent, the microgravity method can be used to detect and image a coal gasification zone, especially caverns where the coal was burnt out. In theory, the effects of coal gasification process create caverns and cracks, e.g., zones of altered bulk density. Before the measurements, theoretical density models of completely and partially gasified coal were analysed. Results of the calculations of gravity field response showed that in both cases on the surface over the gasification zone there should be local gravimetric anomalies. Over the geo reactor, two series of gravimetric measurements prior to and after gasification were conducted. Comparison of the results of two measurement series revealed the presence of gravimetric anomalies that could be related to the cavern formation process. Data from these measurements were used to verify theoretical models. After the experiment, a small cavern was detected at the depth of the coal seam by the test borehole drilled in one of the anomalous areas.

  13. Investigation of polycyclic aromatic hydrocarbons from coal gasification.

    PubMed

    Zhou, Hong-cang; Jin, Bao-sheng; Zhong, Zhao-ping; Huang, Ya-ji; Xiao, Rui; Li, Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  14. Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier

    PubMed Central

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

  15. Hydrogen recovery from the thermal plasma gasification of solid waste.

    PubMed

    Byun, Youngchul; Cho, Moohyun; Chung, Jae Woo; Namkung, Won; Lee, Hyeon Don; Jang, Sung Duk; Kim, Young-Suk; Lee, Jin-Ho; Lee, Carg-Ro; Hwang, Soon-Mo

    2011-06-15

    Thermal plasma gasification has been demonstrated as one of the most effective and environmentally friendly methods for solid waste treatment and energy utilization in many of studies. Therefore, the thermal plasma process of solid waste gasification (paper mill waste, 1.2 ton/day) was applied for the recovery of high purity H(2) (>99.99%). Gases emitted from a gasification furnace equipped with a nontransferred thermal plasma torch were purified using a bag-filter and wet scrubber. Thereafter, the gases, which contained syngas (CO+H(2)), were introduced into a H(2) recovery system, consisting largely of a water gas shift (WGS) unit for the conversion of CO to H(2) and a pressure swing adsorption (PSA) unit for the separation and purification of H(2). It was successfully demonstrated that the thermal plasma process of solid waste gasification, combined with the WGS and PSA, produced high purity H(2) (20 N m(3)/h (400 H(2)-Nm(3)/PMW-ton), up to 99.99%) using a plasma torch with 1.6 MWh/PMW-ton of electricity. The results presented here suggest that the thermal plasma process of solid waste gasification for the production of high purity H(2) may provide a new approach as a future energy infrastructure based on H(2).

  16. Survey of biomass gasification. Volume III. Current technology and research

    SciTech Connect

    1980-04-01

    This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

  17. Integrated gasification combined cycle overview of FETC--S program

    SciTech Connect

    Stiegel, G.J.; Maxwell, R.C.

    1999-07-01

    Changing market conditions, brought about by utility deregulation and increased environmental regulations, have encouraged the Department of Energy/Federal Energy Technology Center (DOE/FETC) to restructure its Integrated Gasification Combined Cycle (IGCC) program. The program emphasis, which had focused on baseload electricity production from coal, is now expanded to more broadly address the production of a suite of energy and chemical products. The near-term market barrier for baseload power applications for conventional IGCC systems combines with increasing opportunities to process a range of low- and negative-value opportunity feedstocks. The new program is developing a broader range of technology options that will increase the versatility and the technology base for commercialization of gasification-based technologies. This new strategy supports gasification in niche markets where, due to its ability to coproduce a wide variety of commodity and premium products to meet market requirements, it is an attractive alternative. By obtaining operating experience in industrial coproduction applications today, gasification system modules can be refined and improved leading to commercial guarantees and acceptance of gasification technology as a cost-effective technology for baseload power generation and coproduction as these markets begin to open.

  18. Release of fuel-bound nitrogen during biomass gasification

    SciTech Connect

    Zhou, J.; Masutani, S.M.; Ishimura, D.M.; Turn, S.Q.; Kinoshita, C.M.

    2000-03-01

    Gasification of four biomass feedstocks (leucaena, sawdust, bagasse, and banagrass) with significantly different fuel-bound nitrogen (FBN) content was investigated to determine the effects of operational parameters and nitrogen content of biomass on the partitioning of FBN among nitrogenous gas species. Experiments were performed using a bench-scale, indirectly heated, fluidized-bed gasifier. Data were obtained over a range of temperatures and equivalence ratios representative of commercial biomass gasification processes. An assay of all major nitrogenous components in the gasification products was performed for the first time, providing a clear accounting of the evolution of FBN. Important findings of this research include the following: (1) NH{sub 3} and N{sub 2} are the dominant species evolved from fuel nitrogen during biomass gasification; >90% of FBN in feedstock is converted to NH{sub 3} and N{sub 2}; (2) relative levels of NH{sub 3} and N{sub 2} are determined by thermochemical reactions in the gasifier; these reactions are affected strongly by temperature; (3) N{sub 2} appears to be primarily produced through the conversion of NH{sub 3} in the gas phase; (4) the structural formula and content of fuel nitrogen in biomass feedstock significantly affect the formation and evolution of nitrogen species during biomass gasification.

  19. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-07-01

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic.

  20. Countercurrent fixed-bed gasification of biomass at laboratory scale

    SciTech Connect

    Di Blasi, C.; Signorelli, G.; Portoricco, G.

    1999-07-01

    A laboratory-scale countercurrent fixed-bed gasification plant has been designed and constructed to produce data for process modeling and to compare the gasification characteristics of several biomasses (beechwood, nutshells, olive husks, and grape residues). The composition of producer gas and spatial temperature profiles have been measured for biomass gasification at different air flow rates. The gas-heating value always attains a maximum as a function of this operating variable, associated with a decrease of the air-to-fuel ratio. Optical gasification conditions of wood and agricultural residues give rise to comparable gas-heating values, comprised in the range 5--5.5 MJ/Nm{sup 3} with 28--30% CO, 5--7% CO{sub 2}, 6--8% H{sub 2}, 1--2% CH{sub 4}, and small amounts of C{sub 2}- hydrocarbons (apart from nitrogen). However, gasification of agricultural residues is more difficult because of bed transport, partial ash sintering, nonuniform flow distribution, and the presence of a muddy phase in the effluents, so that proper pretreatments are needed for largescale applications.

  1. Tar Management and Recycling in Biomass Gasification and Syngas Purification

    NASA Astrophysics Data System (ADS)

    McCaffrey, Zach

    Removal of tars is critical to the design and operation of biomass gasification systems as most syngas utilization processing equipment (e.g. internal combustion engines, gas turbines, fuel cells, and liquid fuel synthesis reactors) have a low tolerance for tar. Capturing and disposal of tar is expensive due to equipment costs, high hazardous waste disposal costs where direct uses cannot be found, and system energy losses incurred. Water scrubbing is an existing technique commonly used in gasification plants to remove contaminants and tar; however using water as the absorbent is non-ideal as tar compounds have low or no water solubility. Hydrophobic solvents can improve scrubber performance and this study evaluated tar solubility in selected solvents using slip-streams of untreated syngas from a laboratory fluidized bed reactor operated on almond composite feedstock using both air and steam gasification. Tar solubility was compared with Hansen's solubility theory to examine the extent to which the tar removal can be predicted. As collection of tar without utilization leads to a hazardous waste problem, the study investigated the effects of recycling tars back into the gasifier for destruction. Prior to experiments conducted on tar capture and recycle, characterizations of the air and steam gasification of the almond composite mix were made. This work aims to provide a better understanding of tar collection and solvent selection for wet scrubbers, and to provide information for designing improved tar management systems for biomass gasification.

  2. Characterization of cellulosic wastes and gasification products from chicken farms.

    PubMed

    Joseph, Paul; Tretsiakova-McNally, Svetlana; McKenna, Siobhan

    2012-04-01

    The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.

  3. Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.

    PubMed

    Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.

  4. Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants.

    PubMed

    Karangelos, D J; Petropoulos, N P; Anagnostakis, M J; Hinis, E P; Simopoulos, S E

    2004-01-01

    Coal- and lignite-fired power plants produce significant amounts of ashes, which are quite often being used as additives in cement and other building materials. In many cases, coal and lignite present high concentrations of naturally occurring radionuclides, such as 238U, 226Ra, 210Pb, 232Th and 40K. During the combustion process, the produced ashes are enriched in the above radionuclides. The different enrichment of the various radionuclides within a radioactive series, such as that of 238U, results in the disturbance of radioactive secular equilibrium. An extensive research project for the determination of the natural radioactivity of lignite and ashes from Greek lignite-fired power plants is in progress in the Nuclear Engineering Department of the National Technical University of Athens (NED-NTUA) since 1983. This paper presents detailed results for the natural radioactivity, the secular radioactive equilibrium disturbance and the radon exhalation rate of the fly-ash collected at the different stages along the emission control system of a lignite-fired power plant as well as of the bottom-ash. From the results obtained so far, it may be concluded that 226Ra radioactivity of fly-ash in some cases exceeds 1 kBq kg(-1), which is much higher than the mean 226Ra radioactivity of surface soils in Greece (25 Bq kg(-1)). Furthermore, the radioactivity of 210Pb in fly-ash may reach 4 kBq kg(-1). These results are interpreted in relation to the physical properties of the investigated nuclides, the temperature in the flue-gas pathway, as well as the fly-ash grain size distribution. It is concluded that towards the coldest parts of the emission control system of the power plant, the radioactivity of some natural nuclides is gradually enhanced, secular radioactive equilibrium is significantly disturbed and the radon exhalation rate tends to increase.

  5. Preparation and combustion of Yugoslavian lignite-water fuel, Task 7.35. Topical report, July 1991--December 1993

    SciTech Connect

    Anderson, C.M.; DeWall, R.A.; Ljubicic, B.R.; Musich, M.A.; Richter, J.J.

    1994-03-01

    Yugoslavia`s interest in lignite-water fuel (LWF) stems from its involvement in an unusual power project at Kovin in northern Serbia. In the early 1980s, Electric Power of Serbia (EPS) proposed constructing a 600-MW power plant that would be fueled by lignite found in deposits along and under the Danube River. Trial underwater mining at Kovin proved that the dredging operation is feasible. The dredging method produces a coal slurry containing 85% to 90% water. Plans included draining the water from the coal, drying it, and then burning it in the pulverized coal plant. In looking for alternative ways to utilize the ``wet coal`` in a more efficient and economical way, a consortium of Yugoslavian companies agreed to assess the conversion of dredged lignite into a LWF using hot-water-drying (HWD) technology. HWD is a high-temperature, nonevaporative drying technique carried out under high pressure in water that permanently alters the structure of low-rank coals. Changes effected by the drying process include irreversible removal of moisture, micropore sealing by tar, and enhancement of heating value by removal of oxygen, thus, enhancement of the slurry ability of the coal with water. Physical cleaning results indicated a 51 wt % reduction in ash content with a 76 wt % yield for the lignite. In addition, physical cleaning produced a cleaned slurry that had a higher attainable solids loading than a raw uncleaned coal slurry. Combustion studies were then performed on the raw and physically cleaned samples with the resulting indicating that both samples were very reactive, making them excellent candidates for HWD. Bench-scale results showed that HWD increased energy densities of the two raw lignite samples by approximately 63% and 81%. An order-of-magnitude cost estimate was conducted to evaluate the HWD and pipeline transport of Kovin LWF to domestic and export European markets. Results are described.

  6. Investigating the Integration of a Solid Oxide Fuel Cell and a Gas Turbine System with Coal Gasification Technologies

    DTIC Science & Technology

    2001-09-01

    conceptually integrate the hybrid power system with existing and imminent coal gasification technologies. The gasification technologies include the Kellogg...Brown Root (KBR) Transport Reactor and entrained coal gasification . Parametric studies will be performed wherein pertinent fuel cell stack process...dependent variables of interest. Coal gasification data and a proven SOFC model will be used to test the theoretical integration. Feasibility and

  7. Advanced Hydrogen Transport Membrane for Coal Gasification

    SciTech Connect

    Schwartz, Joseph; Porter, Jason; Patki, Neil; Kelley, Madison; Stanislowski, Josh; Tolbert, Scott; Way, J. Douglas; Makuch, David

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  8. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect

    Sheldon Kramer

    2003-09-01

    This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for

  9. Preparation of gasification feedstock from leafy biomass.

    PubMed

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw.

  10. LLNL Capabilities in Underground Coal Gasification

    SciTech Connect

    Friedmann, S J; Burton, E; Upadhye, R

    2006-06-07

    Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

  11. Use of humic acids derived from peat and lignite as phenanthrene sorbents

    NASA Astrophysics Data System (ADS)

    Sofikitis, Elias; Giannouli, Andriana; Kalaitzidis, Stavros; Christanis, Kimon; Karapanagioti, Hrissi K.; Papanicolaou, Cassiani

    2015-04-01

    A broad range of materials is being applied for environmental remediation of water, among them sorbents such as humic acids. Being natural substances, the extraction and purification of humic acids might be cheaper than the production of synthetic sorbents. Having higher absorbing capacity than most of the sorbents used to date, humic acids have a competitive advantage against commonly used sorbents such as active charcoals and biochar. Humic acids are "complex colloidal super-mixtures" that are characterized by their functional groups. Therefore, composition and molecular formula can vary depending on the properties of the parent material. The aim of this project was (a) to study the sorption capacity of humic acids derived from peat and lignite samples picked up from deposits spread throughout Greece and (b) to compare the results with these of the parent materials. This comparison provides an insight to which matrix samples are suitable for further chemical treatment for the isolation of humic acids to be used as sorbents. The selected model pollutant was phenanthrene, which is a PAH that consists of three fused benzene rings. Humic acids were extracted according to the methodology proposed by the IHSS, slightly modified, in order to fit better to the properties of organic sediments. Sorption experiments were conducted by mixing 0.004 g of the sorbent (peat or lignite or humic acid) with aqueous solutions of phenanthrene at different concentrations of 30, 50, 100, 300, and 500 μg/L. The results show that phenanthrene sorption is higher for the humic acid than for the original lignite and peat samples. The original samples display higher sorption at the lower phenanthere solutions (30 μg/L; Kd ranges from 15,000 to 47,000 L/kg) than at the higher one (500 μg/L; Kd ranges from 4,100 to 13,000 L/Kg) suggesting non-linear sorption. The humic acids display mainly linear isotherms with Kd ranges from 6,600 to 120,000 L/kg. Concerning the suitability of the studied

  12. An ecosystem approach to evaluate restoration measures in the lignite mining district of Lusatia/Germany

    NASA Astrophysics Data System (ADS)

    Schaaf, Wolfgang

    2015-04-01

    Lignite mining in Lusatia has a history of over 100 years. Open-cast mining directly affected an area of 1000 km2. Since 20 years we established an ecosystem oriented approach to evaluate the development and site characteristics of post-mining areas mainly restored for agricultural and silvicultural land use. Water and element budgets of afforested sites were studied under different geochemical settings in a chronosequence approach (Schaaf 2001), as well as the effect of soil amendments like sewage sludge or compost in restoration (Schaaf & Hüttl 2006). Since 10 years we also study the development of natural site regeneration in the constructed catchment Chicken Creek at the watershed scale (Schaaf et al. 2011, 2013). One of the striking characteristics of post-mining sites is a very large small-scale soil heterogeneity that has to be taken into account with respect to soil forming processes and element cycling. Results from these studies in combination with smaller-scale process studies enable to evaluate the long-term effect of restoration measures and adapted land use options. In addition, it is crucial to compare these results with data from undisturbed, i.e. non-mined sites. Schaaf, W., 2001: What can element budgets of false-time series tell us about ecosystem development on post-lignite mining sites? Ecological Engineering 17, 241-252. Schaaf, W. and Hüttl, R. F., 2006: Direct and indirect effects of soil pollution by lignite mining. Water, Air and Soil Pollution - Focus 6, 253-264. Schaaf, W., Bens, O., Fischer, A., Gerke, H.H., Gerwin, W., Grünewald, U., Holländer, H.M., Kögel-Knabner, I., Mutz, M., Schloter, M., Schulin, R., Veste, M., Winter, S. & Hüttl, R.F., 2011: Patterns and processes of initial terrestrial-ecosystem development. Journal of Plant Nutrition and Soil Science, 174, 229-239. Schaaf, W., Elmer, M., Fischer, A., Gerwin, W., Nenov, R., Pretsch, H. and Zaplate, M.K., 2013: Feedbacks between vegetation, surface structures and hydrology

  13. A summary report on combustion and gasification processes

    SciTech Connect

    Rath, L.K.; Lee, G.T.

    1996-08-01

    Six poster papers regarding combustion and gasification were reviewed. These six papers address various different technology subjects: (1) underground coal gasification modeling, (2) wood gasification kinetics, (3) heat transfer surface pretreatment by iron implantation, (4) coal water slurry stabilization technology, (5) coal log pipeline technology, and (6) nuclear reactor decontamination. Summaries and comments of the following papers are presented: Characterization of Flow and Chemical Processes in an Underground Gasifier at Great Depth; Model for Reaction Kinetics in Pyrolysis of Wood; Development of a Stainless Steel Heat Transfer Surface with Low Scaling Tendency; Storage and Transportation of Coal Water Mixtures; Coal Log Pipeline: Development Status of the First Commercial System; and Decontamination of Nuclear Systems at the Grand Gulf Nuclear Station.

  14. Development program to support industrial coal gasification. Quarterly report 1

    SciTech Connect

    1982-01-15

    The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

  15. Granular bed filtration of high temperature biomass gasification gas.

    PubMed

    Stanghelle, Daniel; Slungaard, Torbjørn; Sønju, Otto K

    2007-06-18

    High temperature cleaning of producer gas from biomass gasification has been investigated with a granular filter. Field tests were performed for several hours on a single filter element at about 550 degrees C. The results show cake filtration on the granular material and indicate good filtration of the biomass gasification producer gas. The relatively low pressure drop over the filter during filtration is comparable to those of bag filters. The granular filter can operate with high filtration velocities compared to bag filters and maintain high efficiency and a low residual pressure. This work is a part of the BioSOFC-up project that has a goal of utilizing the producer gas from the gasification plant in a solid oxide fuel cell (SOFC). The BioSOFC-up project will continue to the end of 2007.

  16. Wabash River coal gasification repowering project -- first year operation experience

    SciTech Connect

    Troxclair, E.J.; Stultz, J.

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  17. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae.

    PubMed

    Sanchez-Silva, L; López-González, D; Garcia-Minguillan, A M; Valverde, J L

    2013-02-01

    Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae (NG microalgae) were investigated by thermogravimetric analysis (TGA). NG microalgae pyrolysis and combustion could be divided into three main stages: dehydration, proteins and polysaccharides degradation and char decomposition. The effects of the initial sample mass, particle size and gas flow on the pyrolysis and combustion processes were studied. In addition, gasification operation conditions such as temperature, initial sample mass, particle size, sweep gas flow and steam concentration, were experimentally evaluated. The evolved gases were analyzed online using mass spectroscopy (MS). In pyrolysis and combustion processes, most of the gas products were generated at the second degradation step. N-compounds evolution was associated with the degradation of proteins. Furthermore, SO(2) release from combustion could be related to sulphated polysaccharides decomposition. The main products detected during gasification were CO(2), CO, H(2), indicating that oxidation reactions, water gas and water gas shift reactions, were predominant.

  18. Gasification Reaction Characteristics of Ferro-Coke at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Jian-liang; Gao, Bing

    2017-01-01

    In this paper, the effects of temperature and atmosphere on the gasification reaction of ferro-coke were investigated in consideration of the actual blast furnace conditions. Besides, the microstructure of the cokes was observed by scanning electron microscope (SEM). It is found that the weight loss of ferro-coke during the gasification reaction is significantly enhanced in the case of increasing either the reaction temperature or the CO2 concentration. Furthermore, compared with the normal type of metallurgical coke, ferro-coke exhibits a higher weight loss when they are gasified at the same temperature or under the same atmosphere. As to the microstructure, inside the reacted ferro-coke are a large amount of pores. Contrary to the normal coke, the proportions of the large-size pores and the through holes are greatly increased after gasification, giving rise to thinner pore walls and hence a degradation in coke strength after reaction (CSR).

  19. Coal gasification systems engineering and analysis. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

  20. Characterization of cellulosic wastes and gasification products from chicken farms

    SciTech Connect

    Joseph, Paul; Tretsiakova-McNally, Svetlana; McKenna, Siobhan

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.

  1. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    SciTech Connect

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  2. Catalytic steam gasification of bagasse for the production of methanol

    SciTech Connect

    Baker, E.G.; Brown, M.D.

    1983-12-01

    Pacific Northwest Laboratory (PNL) tested the catalytic gasification of bagasse for the production of methanol synthesis gas. The process uses steam, indirect heat, and a catalyst to produce synthesis gas in one step in fluidized bed gasifier. Both laboratory and process development scale (nominal 1 ton/day) gasifiers were used to test two different catalyst systems: (1) supported nickel catalysts and (2) alkali carbonates doped on the bagasse. This paper presents the results of laboratory and process development unit gasification tests and includes an economic evaluation of the process. 20 references, 6 figures, 9 tables.

  3. The thermochemical analysis of the effectiveness of various gasification technologies

    NASA Astrophysics Data System (ADS)

    Ivanov, P. P.; Kovbasyuk, V. I.; Medvedev, Yu. V.

    2013-05-01

    The authors studied the process of gasification of solid fuels and wastes by means of modified model accounting the absence of equilibrium in the Boudouard reaction. A comparison was made between auto- and allothermal gasification, and it was demonstrated that the former method is more advantageous with respect to (as an indicator) thermochemical efficiency. The feasibility of producing highly calorific synthesis gas using an oxygen blast is discussed. A thermodynamic model of the facility for producing such synthesis gas has been developed that involves the gas turbine used for driving an oxygen plant of the adsorption type.

  4. Plasma gasification of carbonaceous wastes: thermodynamic analysis and experiment

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Mosse, A. L.; Ustimenko, A. B.

    2016-07-01

    Thermodynamic calculations of the plasma gasification process of carbonaceous wastes in air and steam ambient were carried out. A maximum yield of synthesis gas in such processes is predicted to be achieved at a temperature of 1600 K. On a specially developed plasma facility, plasma gasification experiments were performed for carbonaceous wastes. From the organic mass of carbonaceous waste and from its mineral mass, respectively, a high-calorific syngas and a neutral slag consisting predominantly of ferric carbide, calcium monosilicate, silica and iron, were obtained. A comparison between the experiment and the calculations has shown a good consistency between the data.

  5. Flow Simulation and Optimization of Plasma Reactors for Coal Gasification

    NASA Astrophysics Data System (ADS)

    Ji, Chunjun; Zhang, Yingzi; Ma, Tengcai

    2003-10-01

    This paper reports a 3-d numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.

  6. Kinetic studies of the liquid-phase adsorption of a reactive dye onto activated lignite

    SciTech Connect

    Petrolekas, P.D.; Maggenakis, G.

    2007-02-14

    The kinetics of batch adsorption of a commercial reactive dye onto activated lignite has been investigated at temperatures of 26, 40, and 55{sup o}C, using aqueous solutions with initial dye concentrations in the range of 15-60 mg/L. An empirical single parameter relationship of the adsorbent loading versus the square root of contact time was proposed, which was determined to provide a very good description of the batch adsorption transients up to equilibrium. The data were also examined by means of the Elovich equation. The effect of the temperature and the initial dye concentration on the adsorption kinetics was analyzed, and the results were discussed by considering that intraparticle diffusion is the dominant mechanism.

  7. Biofunctional Characteristics of Lignite Fly Ash Modified by Humates: A New Soil Conditioner

    PubMed Central

    Chassapis, Konstantinos; Roulia, Maria; Vrettou, Evangelia; Fili, Despina; Zervaki, Monica

    2010-01-01

    Fly ash superficially modified with humic substances from the Megalopolis lignitic power plant was prepared and evaluated for agricultural uses. UV-vis spectrophotometry and IR spectroscopy revealed that fly ash shows high sorption efficiency towards humic substances. Adsorption proceeds stepwise via strong Coulombic and hydrophophic forces of attraction between guest and host materials. Langmuir, Freundlich, BET, Harkins-Jura, and Dubinin-Radushkevich isotherm models were employed to evaluate the ongoing adsorption and shed light to the physicochemical properties of the sorbent-adsorbate system. Humic substances desorption and microbial cultivation experiments were also carried out to examine the regeneration of the humates under washing and explore the possibility of this material acclimatizing in real soil conditions, both useful for biofunctional agricultural applications. PMID:20592758

  8. Evaluating nephrotoxicity of high-molecular-weight organic compounds in drinking water from lignite aquifers

    USGS Publications Warehouse

    Bunnell, J.E.; Tatu, C.A.; Lerch, H.E.; Orem, W.H.; Pavlovic, N.

    2007-01-01

    High-molecular-weight organic compounds such as humic acids and/or fulvic acids that are naturally mobilized from lignite beds into untreated drinking-water supplies were suggested as one possible cause of Balkan endemic nephropathy (BEN) and cancer of the renal pelvis. A lab investigation was undertaken in order to assess the nephrotoxic potential of such organic compounds using an in vitro tissue culture model. Because of the infeasibility of exposing kidney tissue to low concentrations of organics for years in the lab, tangential flow ultrafiltration was employed to hyperconcentrate samples suitable for discerning effects in the short time frames necessitated by tissue culture systems. Effects on HK-2 kidney cells were measured using two different cell proliferation assays (MTT and alamarBlue). Results demonstrated that exposure of kidney tissue to high-molecular-weight organics produced excess cell death or proliferation depending on concentration and duration of exposure. Copyright ?? Taylor & Francis Group, LLC.

  9. Fluorescent carbon nano dots from lignite: unveiling the impeccable evidence for quantum confinement.

    PubMed

    Kumar Thiyagarajan, Senthil; Raghupathy, Suresh; Palanivel, Dharmalingam; Raji, Kaviyarasan; Ramamurthy, Perumal

    2016-04-28

    Synthesizing nano carbon from its bulk precursors is of recent research interest. In this report, luminescent carbon nanoparticles (CNPs) with tunable particle size and surface functionality are fabricated from lignite using ethylenediamine as the reactive solvent and surface passivating agent via different experimental methods. From the steady-state and time-resolved photophysical studies of these differently sized CNPs, it is unveiled that the energy of the excitons generated after photoexcitation is quantum confined, and it influences the observed photophysical behaviour significantly only when the particle size is less than 10 nm. A larger size of the CNPs and less surface functionalization lead to aggregation, and quenching of the fluorescence. But by dispersing smaller size CNPs in sodium sulfate matrix exhibits fluorescence in the solid state with an absolute fluorescence quantum yield of ∼34%. The prospective application of this hybrid material in sensing and removal of moisture in the atmosphere is illustrated.

  10. Thermal effects of a basaltic intrusion on the Soma lignite bed in West Turkey

    SciTech Connect

    Karayigit, A.I.

    1998-01-01

    A mineable lignite bed (k1) in the Soma Formation from the southern part of the Soma basin is of middle Miocene age and was deposited in a lacustrine environment. Its thickness reaches up to 24 m, and it is extensively mined by open-pit methods. The Soma Formation was invaded by an olivine basaltic intrusion during the Pliocene-Pleistocene. The intrusion has resulted in a local contact metamorphic influence at the top level of the k1. The coal bed, on the basis of proximate analyses and random reflectance measurement (%Ro, random) of huminite/vitrinite of coals or groundmass of cokes, can be divided into normal coal, transition zone, and natural coke, differing in their degree of coal metamorphism. Closer to the contact point with the intrusion, moisture and volatile matter contents rapidly decrease, while calorific value and the %Ro, random values increase.

  11. Analysis of renewable energy sources and electric vehicle penetration into energy systems predominantly based on lignite

    NASA Astrophysics Data System (ADS)

    Dedinec, A.; Jovanovski, B.; Gajduk, A.; Markovska, N.; Kocarev, L.

    2016-05-01

    We consider an integration of renewable energy into transport and electricity sectors through vehicle to grid (V2G) technologies for an energy system that is predominantly based on lignite. The national energy system of Macedonia is modeled using EnergyPLAN which integrates energy for electricity, transport and heat, and includes hourly fluctuations in human needs and the environment. We show that electric-vehicles can provide the necessary storage enabling a fully renewable energy profile for Macedonia that can match the country's growing demand for energy. Furthermore, a large penetration of electric vehicles leads to a dramatic reduction of 47% of small particles and other air pollutants generated by car traffic in 2050.

  12. Identification of organic matter from peat, leonardite and lignite fertilisers using humification parameters and electrofocusing.

    PubMed

    Cavani, L; Ciavatta, C; Gessa, C

    2003-01-01

    The organic matter extracted from peats (P), leonardites (Le) and lignites (Li) was characterised by humification parameters and electrofocusing (EF). The degree of humification and the humification index might be used to distinguish P from Le and Li, but not Le from Li because they showed overlapped values, while the humification rate could be used only for the identification of Le and EF profiles of P, Le and Li fertilisers revealed different band patterns: P samples did not show bands in the region with isoelectric point, pI > 4.4; Le samples showed very intense bands in the region with pI > 4.4; Li samples showed a very different band pattern with poorly resolved bands in the region with pI > 3.8. P, Le and Li samples can be distinguished by combining humification parameters and EF.

  13. Elements in the hair of non-mining workers of a lignite open mine in Neyveli.

    PubMed

    Sukumar, Athimoolam; Subramanian, Ramachandran

    2003-04-01

    Trace elements are analyzed in the human scalp hair to assess the extent of body burden of pollution. The levels of seven elements (Cd, Cr, Cu, Mn, Ni, Pb and Zn) were determined in the hair of fishermen from Pondicherry, students and businessmen from Madras and non-mining workers from Neyveli lignite open mine. When compared between them, significantly high concentrations of Cd in the non-mining workers from Neyveli and Pb in both the students and businessmen from Madras were observed, thereby indicating environmental source of Cd and Pb pollution. The low Zn level was observed in the fishermen indicating their low nutritional source. In addition to the different residential areas, age, diet, smoking habit and family income of subjects are other factors influencing the concentrations of elements in the hair.

  14. Uncertainty estimation by Bayesian approach in thermochemical conversion of walnut hull and lignite coal blends.

    PubMed

    Buyukada, Musa

    2017-05-01

    The main purpose of the present study was to incorporate the uncertainties in the thermal behavior of walnut hull (WH), lignite coal, and their various blends using Bayesian approach. First of all, thermal behavior of related materials were investigated under different temperatures, blend ratios, and heating rates. Results of ultimate and proximate analyses showed the main steps of oxidation mechanism of (co-)combustion process. Thermal degradation started with the (hemi-)cellulosic compounds and finished with lignin. Finally, a partial sensitivity analysis based on Bayesian approach (Markov Chain Monte Carlo simulations) were applied to data driven regression model (the best fit). The main purpose of uncertainty analysis was to point out the importance of operating conditions (explanatory variables). The other important aspect of the present work was the first performance evaluation study on various uncertainty estimation techniques in (co-)combustion literature.

  15. Results of reconnaissance for uraniferous coal, lignite, and carbonaceous shale in western Montana

    USGS Publications Warehouse

    Hail, William James; Gill, James R.

    1953-01-01

    A reconnaissance search for uraniferous lignite and carbonaceous shale was made in western Montana and adjacent parts of Idaho during the summer of 1951. Particular emphasis in the examination was placed on coal and carbonaceous shale associated with volcanic rocks, as volcanic rocks in many areas appear to have released uranium to circulating ground water from which it was ,concentrated in carbonaceous material. Twenty-two areas in Montana and one area in Idaho were examined. The coal in five of these areas is of Cretaceous age. The coal and carbonaceous shale in the remaining 18 areas occur in Tertiary 'fake-bed' deposits of Oligocene and younger age. Both the Cretaceous and Tertiary coal and carbonaceous shale are associated with contemporaneous or younger volcanic rocks and pyrociastic sequences.

  16. Mineralogy of selected lignitic coal overburdens of the Wilcox Group in east Texas

    SciTech Connect

    Arora, H.S.; Dixon, J.B.; Hossner, L.R.; Senkayi, A.L.

    1984-04-01

    Lignite overburden core samples obtained in the premining stage were size-fractionated and analyzed by x-ray diffraction and chemical methods to determine their mineralogical composition. Although we found a broad similarity in crystalline mineral assemblage in these fluvial sediments from east Texas, we also observed wide variations in the distribution of smectite, kaolinite, mica, vermiculite, and chlorite, with sample location and depth. Electron microscopic investigations indicated that localized concentrations of siderite were probably authigenic in origin. The physicochemical properties and mineralogical composition data obtained in these investigations suggest that segregation of existing low-fertility surface soils for top-dressing may be unnecessary provided that pyrite-rich spoil material and clayey substrata are not deposited in the upper soil zone. 15 references, 6 figures, 3 tables.

  17. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars.

    PubMed

    Huo, Wei; Zhou, Zhijie; Chen, Xueli; Dai, Zhenghua; Yu, Guangsuo

    2014-05-01

    Gasification reactivities of six different carbonaceous material chars with CO2 were determined by a Thermogravimetric Analyzer (TGA). Gasification reactivities of biomass chars are higher than those of coke and coal chars. In addition, physical structures and chemical components of these chars were systematically tested. It is found that the crystalline structure is an important factor to evaluate gasification reactivities of different chars and the crystalline structures of biomass chars are less order than those of coke and coal chars. Moreover, initial gasification rates of these chars were measured at high temperatures and with relatively large particle sizes. The method of calculating the effectiveness factor η was used to quantify the effect of pore diffusion on gasification. The results show that differences in pore diffusion effects among gasification with various chars are prominent and can be attributed to different intrinsic gasification reactivities and physical characteristics of different chars.

  18. Fixed-bed gasification research using US coals. Volume 16. Gasification of 2-inch Minnesota peat sods

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-10-01

    A single, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scubber used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the sixteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific test report describes the gasification of two-inch Minnesota peat sods, which began on June 24, 1985 and was completed on June 27, 1985. 4 refs., 18 figs., 14 tabs.

  19. Fixed-bed gasification research using US coals. Volume 12. Gasification of Absaloka/Robinson subbituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial particpants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the twelfth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. this specific reports describes the gasification of Absaloka/Robinson subbituminous coal. This volume covers the test period June 18, 1984 to June 30, 1984. 4 refs., 20 figs., 18 tabs.

  20. Development of an advanced continuous mild gasification process for the production of coproducts. Task 4, Mild gasification tests

    SciTech Connect

    Merriam, N.W.; Cha, C.Y.; Kang, T.W.; Vaillancourt, M.B.

    1990-12-01

    Western Research Institute (WRI) teamed with the AMAX Research and Development Center and Riley Stoker Corporation on Development of an Advanced, Continuous Mild-Gasification Process for the Production of Coproducts under contract DE-AC21-87MC24268 with the Morgantown Energy Technology of the US Department of Energy. The strategy for this project is to produce electrode binder pitch and diesel fuel blending stock by mild gasification of Wyodak coal. The char is upgraded to produce anode-grade carbon, carbon black, and activated carbon. This report describes results of mild-gasification tests conducted by WRI. Char upgrading tests conducted by AMAX will be described in a separate report.

  1. Gasification of bio-oil: Effects of equivalence ratio and gasifying agents on product distribution and gasification efficiency.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wen, Jia-Long; Sun, Run-Cang

    2016-07-01

    Bio-oil derived from fast pyrolysis of rice husk was gasified for producing gas. The effectiveness of equivalence ratio and gasifying agents on the gas composition, ratio of H2/CO, tar amount, low heating value, degree of oxidation and cold gas efficiency of the gas were comprehensively investigated. Under different equivalence ratios and gasifying agents, the gases can be used as synthesis gas for Fischer-Tropsch synthesis, fuel gas for gas turbines in a power plant and reducing gas for ore reduction, respectively. The H2 concentration, CO level and cold gas efficiency of the resulted gas derived from gasification of bio-oil were significantly higher, while tar content was remarkably lower than those derived from gasification of solid biomass using the same equivalent ratio value and gasifying agent. In short, bio-oil gasification is economically feasible for large scale production of fuels and chemicals.

  2. Advanced power assessment for Czech lignite task 3.6. Topical report

    SciTech Connect

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    Major reforms in the Czech energy sector have been initiated to reverse 40 years of central planning, subsidized energy pricing, unchecked pollution from coal-fired plants, concerns over nuclear safety and fuel cycle management, and dependence on the former U.S.S.R. for oil, gas, and nuclear fuel processing. Prices for electricity, heat, and natural gas paid by industry are close to western levels, but subsidized prices for households are as much as 40% lower and below economic cost. State control of major energy enterprises is being reduced by moving toward government-regulated, investor-owned companies to raise needed capital, but with a strategic stake retained by the state. Foreign firms will participate in privatization, but they are not expected to acquire a controlling interest in Czech energy companies. Economic conditions in the Czech Republic are now improving after the disruptions caused by restructuring since 1989 and separation of the former Czech and Slovak Federal Republics in January 1993. The downturn in the economy after 1989 was concentrated in energy-intensive heavy industry, and recovery is paced by consumer trade, services, light industry and construction. Energy use in relation to gross domestic product (GDP) has declined, but it is still significantly higher than in OECD (Organization for Economic Cooperation and Development) countries. The GDP increased by 2% in 1994 after dropping 22% between 1989 and 1993. A positive balance of payments has been achieved, with foreign investment offsetting a small trade deficit. The government`s external debt is only 4% of GDP. This report studies the application of lignite resources within the newly formulated energy policies of the republic, in light of a move toward privatization and stronger air pollution regulations. Lignite has represented the major energy source for the country.

  3. Integrated stratigraphy of Paleocene lignite seams of the fluvial Tullock Formation, Montana (USA).

    NASA Astrophysics Data System (ADS)

    Noorbergen, Lars J.; Kuiper, Klaudia F.; Hilgen, Frederik J.; Krijgsman, Wout; Dekkers, Mark J.; Smit, Jan; Abels, Hemmo A.

    2015-04-01

    Coal-bearing fluvial sedimentation is generally thought to be dominated by autogenic processes that are processes intrinsic to the sedimentary system. Ongoing research however suggests that several fluvial processes such as floodplain inundation and avulsion, can also be controlled by external forcing such as orbital climate change. Still, the exact role of orbital climate forcing in fluvial sediments is difficult to decipher since riverine deposits are complicated by variable sedimentation rates including erosion of previously deposited material, by lateral heterogeneity of sedimentation, and by scarcity of independent dating methods. The early Paleocene lignite-bearing Tullock Formation of the Williston Basin in eastern Montana represents a record of fluvial sedimentation that is perfectly exposed and, displays a seemingly regular alternation of sandstones and lignite seams. These coal beds contain multiple volcanic ash layers. Here, we use an integrated stratigraphic approach (litho- and magnetostratigraphy, geochemical fingerprinting and radio-isotope dating of volcanic ash layers) to establish a high-resolution time frame for the early Paleocene fluvial sediments. First age estimations indicate that the Tullock Formation in Eastern Montana was deposited over a time span of ~ 1000 kyr subsequent to the Cretaceous - Paleogene boundary, dated at ~ 65.95 Ma [1]. Initial high-resolution magnetostratigraphy revealed the occurrence of the C29r/C29n polarity reversal which was stratigraphic consistent at different field locations. We investigate the regional significance of sedimentary change at multiple sites of the same age in order to provide improved insight on the role of orbital forcing in fluvial coal formation. References: [1] Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., Wijbrans, J.R. (2008). Synchronizing Rock Clocks of Earth History. Science 320, 500-504.

  4. Depositional environment of the San Miguel lignite deposit in Atascosa and McMullen Counties, Texas

    SciTech Connect

    Gowan, S.W.

    1985-01-01

    An analysis of the environment of deposition of the San Miguel lignite deposit was carried out in order to understand newly discovered characteristics of the deposit. The environment of deposition of the overburden and underburden was evaluated through an interpretation of three continuous cores. Four coal cores and a highwall section were carefully described to determine the depositional environmental of the coal seams and partings. These studies were supplemented by the construction of seam and parting isopachs, and the analysis of the distribution of sulfur isotopes, sulfur, forms, and total sulfur within the coal. The sedimentary package is composed of a basal prograding barrier that beach, dune, and back-barrier sands. This unit correlates with a downdip sand that was also interpreted as a prograding barrier by other authors. The barrier is overlain by a series of slit and clay deposits of lagoonal, tidal flat, and tidal channel origin. These deposits are capped by restricted lagoon sediments composed of green, calcareous clays that occasionally contain shell layers. The restricted lagoon deposits formed when the barrier closed the lagoon off from the sea. Peat forming freshwater swamps eventually became established behind the barrier and on top of the restricted lagoon sediments. The parting isopachs reveal a reticulate morphology similar to the mangrove swamps located lateral to the modern Niger River Delta. The partings represent vegetated tidal flat deposits that formed during periodic invasions by the sea that killed the swamp and inundated the peat with sulfate rich water. The lignite interval is capped by open lagoon and tidal flat sediments.

  5. Utilization of lignite power generation residues for the production of lightweight aggregates.

    PubMed

    Anagnostopoulos, Iason M; Stivanakis, Victor E

    2009-04-15

    A novel process is proposed for the utilization of lignite combustion solid residues in the production of inflammable lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering, and carbon contained in BA was used as the process fuel. The main residues bottom ash (BA) and fly ash (FA) from Megalopolis power plant were characterized, mixed in different proportions and treated through pelletization and sintering process. Sintering benefits from combustion of BA carbon content and the product is a hardened porous cake. The energy required for achievement of high temperatures, in the range of 1250 degrees C, was offered by carbon combustion and CO(2) evolution is responsible for porous structure formation. Selected physical properties of sintered material relevant to use as lightweight aggregates were determined, including bulk density, porosity and water absorption. Bulk density varies from 0.83 to 0.91 g/cm(3), porosity varies from 60% to 64% and water absorption varies from 66% to 80%. LWA formed is used for the production of lightweight aggregate concrete (LWAC). Thermal conductivity coefficient varies from 0.25 to 0.37 W/mK (lower than maximum limit 0.43 W/mK) and compressive strength varies from 19 to 23 MPa (higher than minimum limit 17 MPa). The results indicate that sintering of lignite combustion residues is an efficient method of utilization of carbon containing BA and production of LWA for structural and insulating purposes. Carbon content of BA is a key factor in LWA production. Finally, this research work comprises the first proposed application for utilization of BA in Greece.

  6. Depositional environments of overbank sedimentation in the lignite-bearing Grey Clays Member: New evidence from Middle Miocene deposits of central Poland

    NASA Astrophysics Data System (ADS)

    Widera, Marek

    2016-04-01

    A detailed sedimentological study of Polish lignite-bearing successions has not previously been undertaken. This contribution focuses on the lignite lithotypes and lake and crevasse splay lithofacies that together constitute the Grey Clays Member. This lithostratigraphic unit strictly refers to the Middle Miocene overbank fluvial environments in central Poland. It mostly consists of the First Mid-Polish Lignite Seam (MPLS-1) in the Tomisławice lignite opencast mine. This lignite seam, containing four lithotypes, is interbedded by sandy and silty-clayey lithofacies. The lithotype associations are characteristic of the low-lying mires representing: fen or open water (< 2 m deep), bush moor and wet-forest swamp. Thus, during their formation the water table was close to the depositional surface. On the other hand, the occurrence of a muddy association composed of clayey-silty (fines) lithofacies both within and on top of the lignite seam corresponds to the presence of small and deep (> 2 m) lakes in the mire area. This is additional evidence of the relatively long-lasting and slow sedimentation of these very fine-grained clastics from suspension in standing lake water. Conversely, the sandy lithofacies associations, representing crevasse splays, were deposited suddenly during overbank flooding. Crevasse splay deposits are typical of initial stages of avulsion and are moderately diverse both texturally and structurally. Exceptions here are slurry flow deposits that contain rip-up clasts of paleosol aggregates. These crevasse splay deposits provide the first evidence of the fluvial environments of the Mid-Miocene mires (backswamp) in central Poland, and they split the currently exploited lignite seam, MPLS-1, in the study area. Thus, identification and description of lithofacies and lithotypes, and determination of their spatial distribution can contribute to a better understanding of the mire development, of which the examined lignite seam arose.

  7. Experimental investigations of biomass gasification with carbon-dioxide

    NASA Astrophysics Data System (ADS)

    Sircar, Indraneel

    A sustainable energy cycle may include enhanced utilization of solar energy and atmospheric CO2 to produce biomass and enhanced utilization of exhaust CO2 from power plants for synthetic gas production. The reaction of carbon with CO2 is potentially one of the important processes in a future sustainable carbon cycle. Reactions involving carbon and CO2 are also relevant to the chemical process and metal industries. Biomass char has been recognized as a present and future alternative to fossil-fuels for energy production and fuel synthesis. Therefore, biomass char gasification with CO2 recycling is proposed as a sustainable and carbon-neutral energy technology. Biomass char is a complex porous solid and its gasification involves heat and mass transfer processes within pores of multiple sizes from nanometer to millimeter scales. These processes are coupled with heterogeneous chemistry at the internal and external surfaces. Rates for the heterogeneous carbon gasification reactions are affected by inorganic content of the char. Furthermore, pore structure of the char develops with conversion and influences apparent gasification rates. Effective modeling of the gasification reactions has relied on the best available understanding of diffusion processes and kinetic rate property constants from state of the art experiments. Improvement of the influences of inorganic composition, and process parameters, such as pressure and temperature on the gasification reaction rates has been a continuous process. Economic viability of gasification relies on use of optimum catalysts. These aspects of the current status of gasification technologies have motivated the work reported in this dissertation. The reactions between biomass chars and CO2 are investigated to determine the effects of temperature and pressure on the reaction rates for large char particles of relevance to practical gasification technologies. An experimental apparatus consisting of a high-pressure fixed-bed reactor

  8. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    SciTech Connect

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah.

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  9. Hydrogen manufacture by Lurgi gasification of Oklahoma coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Advantages and disadvantages of using the Lurgi gasification process to produce hydrogen from Oklahoma coal are listed. Special attention was given to the production of heat for the process; heat is generated by burning part of pretreated coal in the steam generator. Overall performance of the Lurgi process is summarized in tabular form.

  10. Coal-gasification-process concepts. [Dependence on gasifier pressure

    SciTech Connect

    Miller, C.L.; Tarman, P.B.

    1982-01-01

    First Generation coal gasification continues to grow with the expansion of Lurgi process to make gasoline in South Africa and SNG in the United States. This moving-bed gasifier is no doubt the leading commercial application of coal gasification. This can probably be attributed to its operation at the elevated pressure that simultaneously increases coal throughput and broadens the utility of the raw Syngas product by lowering its coal. Other Second Generation processes also strive to achieve high pressure operation: Ruhrgas 100 to improve moving-bed gasification at 100 bars; Texaco, Shell, Koppers, and Saarberg-Otto to improve entrained-bed gasification at 20 to 40 bars; and U-GAS and Westinghouse and the pressurized Winkler to improve fluidized-bed operation at 10 to 40 bars. Operation at 20 to 40 bars greatly improves gasifier productivity and significantly broadens the use of the raw Syngas produced by all types of gasifiers. Future commercial trends will include the entrained- and fluidized-bed concepts at 20 to 40 bars while even higher operating pressures will be used for the Lurgi moving-bed concept.

  11. Assessment of plasma gasification of high caloric waste streams.

    PubMed

    Lemmens, Bert; Elslander, Helmut; Vanderreydt, Ive; Peys, Kurt; Diels, Ludo; Oosterlinck, Michel; Joos, Marc

    2007-01-01

    Plasma gasification is an innovative technology for transforming high calorific waste streams into a valuable synthesis gas and a vitrified slag by means of a thermal plasma. A test program has been set up to evaluate the feasibility of plasma gasification and the impact of this process on the environment. RDF (refuse derived fuel) from carpet and textile waste was selected as feed material for semi-pilot gasification tests. The aim of the tests was: (1) to evaluate the technical feasibility of making a stable synthesis gas; (2) to characterize the composition of this synthesis gas; (3) to define a suitable after-treatment configuration for purification of the syngas and (4) to characterize the stability of the slag, i.e., its resistance to leaching for use as a secondary building material. The tests illustrate that plasma gasification can result in a suitable syngas quality and a slag, characterized by an acceptable leachability. Based on the test results, a further scale-up of this technology will be prepared and validation tests run.

  12. Optimization Review, Fairfield Coal Gasification Plant Superfund Site, Fairfield, Iowa

    EPA Pesticide Factsheets

    The Fairfield Coal Gasification Plant (FCGP) also known as the Fairfield Former Manufactured Gas Plant (MGP) is located in the southwest 1/4 of the southeast 1/4, Section 26, Township 72 North, Range 10 West of Jefferson County, Iowa.

  13. Power Systems Development Facility Gasification Test Campaign TC20

    SciTech Connect

    Southern Company Services

    2006-09-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of the Transport Gasifier following significant modifications of the gasifier configuration. This demonstration took place during test campaign TC20, occurring from August 8 to September 23, 2006. The modifications proved successful in increasing gasifier residence time and particulate collection efficiency, two parameters critical in broadening of the fuel operating envelope and advancing gasification technology. The gasification process operated for over 870 hours, providing the opportunity for additional testing of various gasification technologies, such as PCD failsafe evaluation and sensor development.

  14. Hydrogen production from algal biomass via steam gasification.

    PubMed

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata.

  15. Gasification of hybrid feedstock using animal manures and hays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to evaluate the efficiency of a proprietary integrated gasification-internal combustion system in producing electricity from mixtures of animal manures such as swine solids, chicken litter, and hays. Five to 10 gallons of mixtures of swine manure, chicken litter, and h...

  16. In-situ coal-gasification data look promising

    SciTech Connect

    Not Available

    1980-07-21

    According to a report given at the 6th Underground Coal Conversion Symposium (Afton, Oklahoma 1980), the Hoe Creek No. 3 underground coal-gasification experiments Oil Gas J. 77 sponsored by the U.S. Department of Energy and the Gas Research Institute and directed by the University of California Lawrence Livermore Laboratory demonstrated the feasibility of in-situ coal conversion and featured the use of a directionally drilled channel to connect the injection and production wells rather than the reverse-burn ordinarily used to produce the connecting channel. In the test, 2816 cu m of coal weighing (APPROX) 4200 tons was consumed, with (APPROX) 18% of the product gas escaping through the overburden or elsewhere. When air injection was used, the average heating value was 217 Btu/std cu ft. The average thermal efficiency of the burn was 65%, and the average gas composition was 35% hydrogen, 5% methane, 11% carbon monoxide, and 44% carbon dioxide. Subsidence occurred after completion of the test. The Uniwell gasification method, scheduled for use in the final experiment in the Deep-1 series of underground coal-gasification tests in Wyoming, seeks to prevent subsidence by use of concentric pipes which are inserted into the vertical well to control the combustion zone. Underground coal-gasification prospects and the mechanics of subsidence are discussed.

  17. Experimental study on cyclone air gasification of wood powder.

    PubMed

    Sun, Shaozeng; Zhao, Yijun; Tian, Hongming; Ling, Feng; Su, Fengming

    2009-09-01

    In this paper, effects of the equivalence ratio (ER) and the secondary air on the gasification system were studied. The results indicate that as the ER varies in the range of 0.20-0.26, the low heating value (LHV) of the producer gas is in the range of 3.64-5.76 MJ/Nm(3), the carbon conversion is 55%-67% and the cold gas efficiency of the gasification system is 33%-47%. In contrast to the gasification without the secondary air, air staged process is a gasification method capable of increasing the LHV of the producer gas from 4.63 to 5.67 MJ/Nm(3), the carbon conversion from 65.5% to 81.2%, and the cold gas efficiency of the gasifier from 42.5% to 56.87%, while the tar content of the producer gas decreases from 13.96 to 5.6g/Nm(3). There exists an optimum ratio of the secondary air.

  18. TECHNOECONOMIC APPRAISAL OF INTEGRATED GASIFICATION COMBINED-CYCLE POWER GENERATION

    EPA Science Inventory

    The report is a technoeconomic appraisal of the integrated (coal) gasification combined-cycle (IGCC) system. lthough not yet a proven commercial technology, IGCC is a future competitive technology to current pulverized-coal boilers equipped with SO2 and NOx controls, because of i...

  19. Gasification characteristics of organic waste by molten salt

    NASA Astrophysics Data System (ADS)

    Sugiura, Kimihiko; Minami, Keishi; Yamauchi, Makoto; Morimitsu, Shinsuke; Tanimoto, Kazumi

    Recently, along with the growth in economic development, there has been a dramatic accompanying increase in the amount of sludge and organic waste. The disposal of such is a significant problem. Moreover, there is also an increased in the consumption of electricity along with economic growth. Although new energy development, such as fuel cells, has been promoted to solve the problem of power consumption, there has been little corresponding promotion relating to the disposal of sludge and organic waste. Generally, methane fermentation comprises the primary organic waste fuel used in gasification systems. However, the methane fermentation method takes a long time to obtain the fuel gas, and the quality of the obtained gas is unstable. On the other hand, gasification by molten salt is undesirable because the molten salt in the gasification gas corrodes the piping and turbine blades. Therefore, a gasification system is proposed by which the sludge and organic waste are gasified by molten salt. Moreover, molten carbonate fuel cells (MCFC) are needed to refill the MCFC electrolyte volatilized in the operation. Since the gasification gas is used as an MCFC fuel, MCFC electrolyte can be provided with the fuel gas. This paper elucidates the fundamental characteristics of sludge and organic waste gasification. A crucible filled with the molten salt comprising 62 Li 2CO 3/38 K 2CO 3, is installed in the reaction vessel, and can be set to an arbitrary temperature in a gas atmosphere. In this instance, the gasifying agent gas is CO 2. Sludge or the rice is supplied as organic waste into the molten salt, and is gasified. The chemical composition of the gasification gas is analyzed by a CO/CO 2 meter, a HC meter, and a SO x meter gas chromatography. As a result, although sludge can generate CO and H 2 near the chemical equilibrium value, all of the sulfur in the sludge is not fixed in the molten salt, because the sludge floats on the surface of the carbonate by the specific

  20. Removal and recovery of metal ions from acid mine drainage using lignite--A low cost sorbent.

    PubMed

    Mohan, Dinesh; Chander, Subhash

    2006-10-11

    Acid mine drainage (AMD), has long been a significant environmental problem resulting from the microbial oxidation of iron pyrite in presence of water and air, affording an acidic solution that contains toxic metal ions. The main objective of this study was to remove and recover metal ions from acid mine drainage (AMD) by using lignite, a low cost sorbent. Lignite has been characterized and used for the AMD treatment. Sorption of ferrous, ferric, manganese, zinc and calcium in multi-component aqueous systems was investigated. Studies were performed at different pH to find optimum pH. To simulate industrial conditions for acid mine wastewater treatment, all the studies were performed using single and multi-columns setup in down flow mode. The empty bed contact time (EBCT) model was used for minimizing the sorbent usage. Recovery of the metal ions as well as regeneration of sorbent was achieved successfully using 0.1 M nitric acid without dismantling the columns.

  1. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor.

    PubMed

    Song, Yuyao; Tahmasebi, Arash; Yu, Jianglong

    2014-12-01

    Co-pyrolysis characteristics of lignite and pine sawdust were studied in a TGA and a fixed-bed reactor. The effects of pyrolysis temperature and blending ratio on the yield and composition of pyrolysis products (gas, tar, and char) were investigated. TGA experiments showed that pine sawdust decomposition took place at lower temperatures compared to lignite. With increasing the pine sawdust content in the blend, the DTG peaks shifted towards lower temperatures due to synergetic effect. In fixed-bed experiments, the synergetic effect increased the yield of volatile matter compared to the calculated values. The major gases released at low temperatures were CO2 and CO. However, hydrogen was the primary gaseous product at higher temperatures. During co-pyrolysis, concentrations of benzene, naphthalene, and hydrocarbons in the tar decreased, accompanied by an increase in phenols and guaiacol concentrations. With increasing pyrolysis temperature, the OH, aliphatic CH, CO, and CO functional groups in char decomposed substantially.

  2. Palynofacies of lignites and associated sediments in the upper paleocene Tuscahoma sand of southwestern Alabama and eastern Mississippi

    SciTech Connect

    Carroll, R.E. )

    1993-09-01

    The Tuscahoma Sand of the Wilcox Group is composed of fine-grained sand, laminated sandy clay, marl and lignite. The Tuscahoma forms a poorly exposed belt from southeastern Alabama and extends northwestward into western Alabama and eastern Mississippi. The sand is assigned to the late Paleocene planktonic foraminiferal Morozovella velascoensis interval zone. Lignites in the Tuscahoma Sand occur as parasequence deposits in the highstand systems tract of a type 2 depositional sequence near the top of the formation. Organic debris associated with these highstand-systems-tract deposits is dominated by land-derived plant tissues. Marine influence is evidenced by the rare occurrence of dinoflagellate cysts, microforminiferal test linings, and the presence of gray, amorphous organic matter. Three palynofacies are recognized within highstand-systems-tract deposits in the upper Tuscahoma Sand based on the occurrence of organic debris. These palynofacies represent freshwater swamp, brackish marsh and marginal- to shallow-water marine depositional environments. Lignites in the Tuscahoma Sand are dominated by an angiosperm pollen assemblage. Gymnosperm pollen is rare, and marine forms are absent. This assemblage reflects deposition under fresh-water swamp conditions. Carbonaceous clay samples vary in the composition of organic debris. However, many are characterized by the occurrence of herbaceous angiosperm pollen. Arborescent angiosperm pollen is common, as are fern spores. Bisaccate conifer pollen is common and dinoflagellate cysts are rare. Fungal elements are abundant and woody tissue commonly is more degraded than in lignite samples. This assemblage represents deposition in coastal, brackish marsh environments. Organic debris in laminated clays, silts, and sands typically have angiosperm and gymnosperm pollen, dinoflagellate cysts, degraded terrestrial plant material, and amorphous organic matter, and represent shallow-marine and marginal-marine deposits.

  3. Environmental assessment of remedial action at the inactive uraniferous lignite processing sites at Belfield and Bowman, North Dakota. [UMTRA Project

    SciTech Connect

    Beranich, S.; Berger, N.; Bierley, D.; Bond, T.M.; Burt, C.; Caldwell, J.A.; Dery, V.A.; Dutcher, A.; Glover, W.A.; Heydenburg, R.J.; Larson, N.B.; Lindsey, G.; Longley, J.M.; Millard, J.B.; Miller, M.; Peel, R.C.; Persson-Reeves, C.H.; Titus, F.B.; Wagner, L.

    1989-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), to clean up the Belfield and Bowman, North Dakota, uraniferous lignite processing sites to reduce the potential health impacts associated with the residual radioactive materials remaining at these sites. Remedial action at these sites must be performed in accordance with the US Environmental Protection Agency's (EPA) standards promulgated for the remedial action and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of North Dakota. The inactive Belfield uraniferous lignite processing site is one mile southeast of Belfield, North Dakota. The inactive Bowman uraniferous lignite processing site at the former town of Griffin, is seven miles northwest of Bowman, North Dakota and 65 road miles south of Belfield. Lignite ash from the processing operations has contaminated the soils over the entire 10.7-acre designated Belfield site and the entire 12.1-acre designated Bowman site. Dispersion of the ash has contaminated an additional 20.6 acres surrounding the Belfield processing site and an additional 59.2 acres surrounding the Bowman processing site. The proposed remedial action is to relocate the contaminated materials at the Belfield processing site to the Bowman processing/disposal site for codisposal with the Bowman contaminated soils. The environmental impacts assessed in this EA were evaluated for the proposed remedial action and the no action alternative and demonstrate that the proposed action would not significantly affect the quality of the human environment and would be performed in compliance with applicable environmental laws. The no action alternative would not be consistent with the intent of Public Law 95-604 and would not comply with the EPA standards. 48 refs., 10 figs., 7 tabs.

  4. Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD

    SciTech Connect

    Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

    2007-03-31

    Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

  5. Current experiences in applied underground coal gasification

    NASA Astrophysics Data System (ADS)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  6. JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System

    SciTech Connect

    Scott Tolbert; Steven Benson

    2008-02-29

    Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and

  7. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-06-01

    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively.

  8. A field study of lignite as a drying aid in the superheated steam drying of anaerobically digested sludge.

    PubMed

    Hoadley, A F A; Qi, Y; Nguyen, T; Hapgood, K; Desai, D; Pinches, D

    2015-10-01

    Dried sludge is preferred when the sludge is either to be incinerated or used as a soil amendment. This paper focuses on superheated steam drying which has many benefits, because the system is totally enclosed, thereby minimising odours and particulate emissions. This work reports on field trials at a wastewater treatment plant where anaerobically digested sludge is dried immediately after being dewatered by belt press. The trials showed that unlike previous off-site tests, the sludge could be dried without the addition of a filter aid at a low production rate. However, the trials also confirmed that the addition of the lignite (brown coal) into the anaerobically digested sludge led to a more productive drying process, improved product quality and a greater fraction of the product being in the desired product size range. It is concluded that these results were achieved because the lignite helped to control the granule size in the dryer. Furthermore neither Salmonella spp or E coli were detected in the dried samples. Tests on spontaneous combustion show that this risk is increased in proportion to the amount of lignite used as a drying aid.

  9. Trace elements in the Fontinalis antipyretica from rivers receiving sewage of lignite and glass sand mining industry.

    PubMed

    Kosior, Grzegorz; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Brudzińska-Kosior, Anna; Bena, Waldemar; Kempers, Alexander J

    2015-07-01

    Intensive lignite and glass sand mining and industrial processing release waste which may contain elements hazardous to the aquatic ecosystem and constitute a potential risk to human health. Therefore, their levels must be carefully controlled. As a result, we examined the effects of sewage on the aquatic Fontinalis antipyretica moss in the Nysa Łużycka (lignite industry) and the Kwisa Rivers (glass sand industry). The Nysa Łużycka and the Kwisa Rivers appeared to be heavily polluted with As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn, which were reflected in the extremely high concentration of these elements in F. antipyretica along the studied watercourses. In the Nysa Łużycka, trace element composition in the moss species is affected by lignite industry with accumulation in its tissues of the highest concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn, while samples from the Kwisa sites influenced by glass sand industry revealed the highest concentrations of As, V and Fe. The principal component and classification analysis classifies the concentration of elements in the aquatic F. antipyretica moss, thus enabling the differentiation of sources of water pollution in areas affected by mining industry.

  10. Environmental assessment of remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota

    SciTech Connect

    Not Available

    1993-09-01

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 authorized the US Department of Energy (DOE) to perform remedial actions at Belfield and Bowman inactive lignite ashing sites in southwestern North Dakota to reduce the potential public health impacts from the residual radioactivity remaining at the sites. The US Environmental Protection Agency (EPA) promulgated standards (40 CFR 192) that contain measures to control the residual radioactive materials and other contaminated materials, and proposed standards to protect the groundwater from further degradation. Remedial action at the Belfield and Bowman sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of North Dakota. The Belfield and Bowman designated sites were used by Union Carbide and Kerr-McGee, respectively, to process uraniferous lignite in the 1960s. Uranium-rich ash from rotary kiln processing of the lignite was loaded into rail cars and transported to uranium mills in Rifle, Colorado, and Ambrosia Lake, New Mexico, respectively. As a result of the ashing process, there is a total of 158,400 cubic yards (yd{sup 3}) [121,100 cubic meters (m{sup 3})] of radioactive ash-contaminated soils at the two sites. Windblown ash-contaminated soil covers an additional 21 acres (8.5 ha) around the site, which includes grazing land, wetlands, and a wooded habitat.

  11. Influence of lignite mining and utilization on organic matter budget in the Alfeios River Plain, Peloponnese (South Greece)

    SciTech Connect

    G. Siavalas; S. Kalaitzidis; G. Cornelissen; A. Chatziapostolou; K. Christanis

    2007-09-15

    The Megalopolis Lignite Centre (MLC) is a lignite mining and power generation complex located in Southern Greece. In the present study, we investigate the influence of mining and combustion activities on the organic matter (OM) budget of the adjacent Alfeios River plain sediments. A total of 28 plain-sediment samples along with 13 lignite and ash samples from the MLC were collected. The sediment samples were collected from sites upstream and downstream, as well as from the vicinity of the MLC. Their OM and total organic carbon contents range from 0.9 to 43.4 and 0.2 to 24.0 wt %, respectively. The particulate OM was classified in coal-derived, carbonized particles and fresh tissues according to its origin. The different OM phases were quantified using maceral analysis on the sediments' light fraction obtained after heavy media separations. Approximately 75 vol % of the OM was of anthropogenic origin (coal and char particles) related to mining, transport, and combustion processes at the MLC, revealing a high contamination degree. The most contaminated sites were those in the vicinity of the MLC, but upstream and downstream sites also proved to contain high concentrations of anthropogenic OM. The polycyclic aromatic hydrocarbons content of the same sediments was very low, similar to pristine areas indicating that there is no contamination from such compounds in the area. 82 refs., 7 figs., 6 tabs.

  12. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  13. Biomass Gasification Research Facility Final Report

    SciTech Connect

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-02GO12024 and DE-FC36-03GO13175) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. The primary objectives of Cooperative Agreement DE-FC36-02GO12024 were the selection, acquisition, and application of a suite of gas analyzers capable of providing near real-time gas analyses to suitably conditioned syngas streams. A review was conducted of sampling options, available analysis technologies, and commercially available analyzers, that could be successfully applied to the challenging task of on-line syngas characterization. The majority of thermochemical process streams comprise multicomponent gas mixtures that, prior to crucial, sequential cleanup procedures, include high concentrations of condensable species, multiple contaminants, and are often produced at high temperatures and pressures. Consequently, GTI engaged in a concurrent effort under Cooperative Agreement DE-FC36-03GO13175 to develop the means to deliver suitably prepared, continuous streams of extracted syngas to a variety of on-line gas analyzers. The review of candidate analysis technology

  14. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    SciTech Connect

    Katherine Dombrowski

    2009-12-31

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance

  15. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    PubMed

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

  16. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    SciTech Connect

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  17. Background hydrologic information in potential lignite mining areas in north-central Mississippi, August 1984

    USGS Publications Warehouse

    Kalkhoff, S.J.

    1985-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Natural Resources, Bureau of Geology, is conducting a hydrologic data collection program in potential lignite-producing areas in Mississippi. During the last two weeks of August 1984, hydrologic data were collected at 15 stream sites that drain potential lignite mining areas in Lafayette, Calhoun, and Yalobusha Counties. Main channel widths ranged from approximately 60 feet at three streams (Coon Creek near Toccopula, Muckaloon Creek near Tula, and Hurricane Creek near Velma) to approximately 120 feet at two streams (Potlockney Creek near Tula, and Savannah Creek near Bruce). Maximum water depths ranged from less than 1.0 foot at most streams to over 5.0 feet at sites on Potlockney Creek near Tula and McGill Creek near Sarepta. Stream discharge ranged from 0.32 cubic feet per second in Persimmon Creek near Bruce to 18.5 cubic feet per second in Puskus Creek near Etta. The specific conductance of stream water ranged from 25 to 160 microsiemens and dissolved solids concentrations ranged from 22 to 91 mg/L (milligrams per liter). Most major ion concentrations were less than 10 mg/L with the exception of calcium (11 mg/L), sodium (12 mg/L) and sulfate (18 mg/L) in the water of Persimmon Creek near Bruce. Dissolved oxygen concentrations were greater than 5.0 mg/L at all but one site. Turbidity values were generally less than 50 units. Nitrate plus nitrite concentrations were equal to or less than 0.10 mg/L in all streams except in Potlockney Creek near Tula where the concentration was 0.11 mg/L. Copper and selenium concentrations in the water at all sampling sites ranged from below the detection limits (1 microgram/g) to 4 micrograms/g (micrograms per gram) and mercury concentrations in bottom material samples ranged from less than 0.01 microgram/g to 0.15 microgram/g. (USGS)

  18. Evaluating Lignite-Derived Products (LDPs) for Agriculture - Does Research Inform Practice?

    NASA Astrophysics Data System (ADS)

    Patti, Antonio; Rose, Michael; Little, Karen; Jackson, Roy; Cavagnaro, Timothy

    2014-05-01

    Lignite-derived products (LDPs), including humic acids and organo-mineral soil conditioners, are being marketed in many parts of the world. They are promoted as plant growth stimulants, additives that improve plant nutrient uptake as well as providing humic materials to improve soil structure and combat soil degradation. There are mixed views regarding the efficacy of these products and there is a lack of scientific studies that verify the efficacy of these products in the field. Anecdotally, agricultural producers become repeat users of the products when they see economic benefits, such as increases in crop yields, while others abandon repeat use when no benefits were seen. In this paper, we present results from a literature meta-analysis1 and a number of field studies that examine the potential for LDPs to improve soil fertility and plant growth. Our findings suggest that complex interactions between LDPs, soil types, environmental conditions and plant species mean that a 'one-size fits all' product or solution is unlikely; and that changes to soil characteristics brought about by LDPs are more apparent over longer time periods than a single cropping season. Most of these studies have not been undertaken in full field trial conditions, where the crop has been grown to harvest. Limited studies in small plots or glass-house conditions often report early benefits. It is not known if these benefits persist. Moreover, the actual composition of these additives may vary significantly and is rarely specified in full. In a study of our own, a small plot experiment evaluated the effect of a single application of a commercial potassium humate product from Victorian lignite on ryegrass and lucerne grown in a sandy, nutrient deficient, low organic matter soil. Treatment resulted in increased shoot growth (up to 33%) of ryegrass during the pasture establishment phase. Root growth was also improved with a 47% increase at 0-10 cm depth and 122% increase at 10-30 cm depth

  19. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    SciTech Connect

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will also affect public water suppliers with respect to DBPs. These new federal drinking water regulations may require public water suppliers to adjust treatment practices or incorporate additional treatment operations into their existing treatment trains. Many options have been identified, including membrane processes, granular activated carbon, powered activated carbon (PAC), enhanced coagulation and/or softening, and alternative disinfectants (e.g., chlorine dioxide, ozone, and chloramines). Of the processes being considered, PAC appears to offer an attractive benefit-to-cost advantage for many water treatment plants, particularly small systems (those serving fewer than 10,000 customers). PAC has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. Activated carbons can be produced from a variety of raw materials, including wood, peat, coconut husks, and numerous types of coal. The Energy & Environmental Research Center (EERC) has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During that study, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon

  20. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

    2004-02-01

    North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP