Sample records for lignite ash slags

  1. Synthesis of inorganic polymers using fly ash and primary lead slag.

    PubMed

    Onisei, S; Pontikes, Y; Van Gerven, T; Angelopoulos, G N; Velea, T; Predica, V; Moldovan, P

    2012-02-29

    The present work reports on the synthesis and properties of inorganic polymers ("geopolymers") made of 100% fly ash from lignite's combustion, 100% primary lead slag and mixtures of the two. In the inorganic polymers with both fly ash and lead slag the main crystalline phases detected are wüstite, magnetite, sodium zinc silicate, quartz, anorthite, and gehlenite; litharge partially dissolves. FTIR analysis in these samples revealed that the main peaks and bands of end members also exist, along with a new amorphous reaction product. In terms of microstructure, both fly ash and lead slag dissolve and contribute in the binding phase whereas the larger particles act as aggregates. For an increasing lead slag in the composition, the binding phase is changing in chemistry and reaches PbO values higher than 50 wt.% for the 100% lead slag inorganic polymer. Regarding the properties of fly ash and lead slag inorganic polymers, compressive strength is higher than 35 MPa in all cases and water absorption diminishes as the lead slag content increases. A comparison of leaching results before and after polymerisation reveals that pH is an important factor as Pb is immobilised in the binding phase, unlike Zn and As. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Characterizations of Deposited Ash During Co-Firing of White Pine and Lignite in Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Shao, Yuanyuan; Zhu, Jesse; Preto, Fernando; Tourigny, Guy; Wang, Jinsheng; Badour, Chadi; Li, Hanning; Xu, Chunbao Charles

    Characterizations of ash deposits from co-firing/co-combusting of a woody biomass (i.e., white pine) and lignite coal were investigated in a fluidized-bed combustor using a custom designed air-cooled probe installed in the freeboard region of the reactor. Ash deposition behaviors on a heat transfer surface were comprehensively investigated and discussed under different conditions including fuel type, fuel blending ratios (20-80% biomass on a thermal basis), and moisture contents. For the combustion of 100% lignite, the compositions of the deposited ash were very similar to those of the fuel ash, while in the combustion of 100% white pine pellets or sawdust the deposited ash contained a much lower contents of CaO, SO3, K2O and P2O5 compared with the fuel ash, but the deposited ash was enriched with SiO2, Al2O3 and MgO. A small addition of white pine (20% on a heat input basis) to the coal led to the highest ash deposition rates likely due to the strong interaction of the CaO and MgO (from the biomass ash) with the alumina and silica (from the lignite ash) during the co-combustion process, evidenced by the detection of high concentrations of calcium/magnesium sulfates, aluminates and silicates in the ash deposits. Interestingly, co-firing of white pine pellets and lignite at a 50% blending ratio led to the lowest ash deposition rates. Ash deposition rates in combustion of fuels as received with a higher moisture content was found to be much lower than those of oven-dried fuels.

  3. Preparation of fly ash-granulated blast furnace slag-carbide slag binder and application in total tailings paste backfill

    NASA Astrophysics Data System (ADS)

    Li, Chao; Hao, Ya-fei; Zhao, Feng-qing

    2018-03-01

    Based on activation and synergistic effect among various materials, a low-cost mine backfill cementing material, FGC binder, was prepared by using fly ash, granulated blast-furnace slag (GBFS), carbide slag and composite activator. The proper proportioning of FGC binder is obtained by response surface experiment optimization method: fly ash 62 %, GBFS 20 %, carbide slag 8 % and compound activators 10 %. Adjusting the material ratio obtains different cementing material which could satisfy requirements of different mined-out areas. With the mass ratio of cementing material and tailings 1:4∼1:8, the concentration of total solid 70 %, the compressive strength values of total tailings filling body at 28 d reaches 1.64∼4.14 MPa, and the backfilling cost is 20 % lower than using OPC cement.

  4. Slags and ashes from municipal waste incineration in Poland - mineralogical and chemical composition

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr; Michalik, Marek

    2013-04-01

    In the next few years there will be a large change in the waste management system in Poland. Its primary aim will be reduction of the amount of landfilled waste by enhancing level of recycling, waste segregation, composting of biomass and incineration. The biggest investment during this transformation is construction of nine incinerators with assumed slags production around 200 thousand tons per year. Slag production is accompanied by fly ash generating. This ash can be a valuable raw material as fly ash from the power industry. Waste management system transformation will cause big increase in slag production in comparison to the present amount and will require taking necessary steps to ensure environmental safety. For this purpose, studies of slags and fly ashes in terms of environmental risk and potential impact on human health are significant. The object of the study are fly ashes and slags produced in the biggest municipal waste incineration power plant in Poland. Two series of samples obtained in municipal waste incineration process were studied in order to characterize mineralogical and chemical composition and to determine the concentrations of heavy metals and their possible negative environmental impact. Characteristics of these materials will be the basis for determining their value in application, for example in building industry. Mineralogical characteristic of slags was based on X-ray diffraction. Characteristic of structures and forms of occurrence of mineral phases was based on the optical microscopy and SEM imaging coupled with EDS analysis. Chemical analysis were performed using ICP-MS/ICP-AES methods. They allowed to follow variability between studied samples and gave basic information about metals. Metals in samples of slag and ashes are present as component of mineral phases and in the form of metallic inclusions in glass or minerals. Potentially hazardous concentrations for environment are observed for copper (330-4900ppm), zinc (1500-8100ppm

  5. A comparison of thermal behaviors of raw biomass, pyrolytic biochar and their blends with lignite.

    PubMed

    Liu, Zhengang; Balasubramanian, Rajasekhar

    2013-10-01

    In this study, thermal characteristics of raw biomass, corresponding pyrolytic biochars and their blends with lignite were investigated. The results showed that pyrolytic biochars had better fuel qualities than their parent biomass. In comparison to raw biomass, the combustion of the biochars shifted towards higher temperature and occurred at continuous temperature zones. The biochar addition in lignite increased the reactivities of the blends. Obvious interactions were observed between biomass/biochar and lignite and resulted in increased total burnout, shortened combustion time and increased maximum weight loss rate, indicating increased combustion efficiencies than that of lignite combustion alone. Regarding ash-related problems, the tendency to form slagging and fouling increased, when pyrolytic biochars were co-combusted with coal. This present study demonstrated that the pyrolytic biochars were more suitable than raw biomass to be co-combusted with lignite for energy generation in existing coal-fired power plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, Susan A., E-mail: s.bernal@sheffield.ac.uk; Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD; Provis, John L., E-mail: j.provis@sheffield.ac.uk

    2013-11-15

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclearmore » magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.« less

  7. The effect of slag addition on strength development of Class C fly ash geopolymer concrete at normal temperature

    NASA Astrophysics Data System (ADS)

    Wardhono, Arie; Law, David W.; Sutikno, Dani, Hasan

    2017-09-01

    This paper presents the effect of slag addition on strength development and workability of fly ash/slag based geopolymer (FASLG) concrete cured at normal temperature. Class C fly ash with high ferrite (Fe) content was used as the primary material. The proportions of fly ash (FA) to slag (SL) are: 1 FA : 0 SL, 0.9 FA : 0.1 SL, 0.7 FA : 0.3 SL, and 0.5 FA : 0.5 SL. The workability and strength properties were determined by slump, vikat, and compressive strength tests. The result shows that the highest compressive strength was achieved by FASLG-3 concrete with 30% slag addition and exhibited a comparable strength to that normal concrete at 28 days. The 30% slag addition also improve the workability and increase the setting time of FASLG concrete specimens. It can be concluded that the slag inclusion on fly ash will improve the performance of geopolymer concrete at normal temperature.

  8. Use of soil-steel slag-class-C fly ash mixtures in subgrade applications.

    DOT National Transportation Integrated Search

    2012-12-07

    In Indiana, large quantities of recyclable : materials - such as steel slag, blast furnace : slag and fly ash - are generated each year as : by-products of various industries. Instead of : disposing these by-products into landfills, : we can recycle ...

  9. Synthesis of geopolymer composites from a mixture of ferronickel slag and fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhang, Kang; Feng, Enjuan; Zhao, Hongyi; Liu, Futian

    2017-03-01

    The synthesis of geopolymers using ferronickel slag and fly ash under alkaline activation was studied. In order to study the effects of different fly ash content on the mechanical properties of the geopolymers produced, the compressive strength of samples was tested at 3, 7, 28 days. The results showed that when the fly ash content was 40%, the compressive strength reached the highest (110.32MPa) at 28 days. XRD analysis showed that the ferronickel slag geopolymers had amorphous aluminosilicate phase formation, indicating that the hydration reaction occurred. FTIR analysis showed the reaction of the geopolymers generated at Si-O-T (Si, Al) and Al-O-Si three-dimensional network. In SEM images, the structure of the geopolymers with 40% fly ash was more compact and cohesive.

  10. Self-degradable Slag/Class F Fly Ash-Blend Cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Warren, J.; Butcher, T.

    2011-03-01

    Self-degradable slag/Class F fly ash blend pozzolana cements were formulated, assuming that they might serve well as alternative temporary fracture sealers in Enhanced Geothermal System (EGS) wells operating at temperatures of {ge} 200 C. Two candidate formulas were screened based upon material criteria including an initial setting time {ge} 60 min at 85 C, compressive strength {ge} 2000 psi for a 200 C autoclaved specimen, and the extent of self-degradation of cement heated at {ge} 200 C for it was contacted with water. The first screened dry mix formula consisted of 76.5 wt% slag-19.0 wt% Class F fly ash-3.8 wt%more » sodium silicate as alkali activator, and 0.7 wt% carboxymethyl cellulose (CMC) as the self-degradation promoting additive, and second formula comprised of 57.3 wt% slag, 38.2 wt% Class F fly ash, 3.8 wt% sodium silicate, and 0.7 wt% CMC. After mixing with water and autoclaving it at 200 C, the aluminum-substituted 1.1 nm tobermorite crystal phase was identified as hydrothermal reaction product responsible for the development of a compressive strength of 5983 psi. The 200 C-autoclaved cement made with the latter formula had the combined phases of tobermorite as its major reaction product and amorphous geopolymer as its minor one providing a compressive strength of 5271 psi. Sodium hydroxide derived from the hydrolysis of sodium silicate activator not only initiated the pozzolanic reaction of slag and fly ash, but also played an important role in generating in-situ exothermic heat that significantly contributed to promoting self-degradation of cementitious sealers. The source of this exothermic heat was the interactions between sodium hydroxide, and gaseous CO{sub 2} and CH{sub 3}COOH by-products generated from thermal decomposition of CMC at {ge} 200 C in an aqueous medium. Thus, the magnitude of this self-degradation depended on the exothermic temperature evolved in the sealer; a higher temperature led to a sever disintegration of sealer. The

  11. Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, A.; Djinovic, J.

    2006-10-01

    The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and leadmore » are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.« less

  12. H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components

    USGS Publications Warehouse

    Drosos, Marios; Leenheer, Jerry A.; Avgeropoulos, Apostolos; Deligiannakis, Yiannis

    2014-01-01

    A fractionation technique, combining dialysis removal of metal and ash components with hydrofluoric acid and pH 10 citrate buffer followed by chromatography of dialysis permeate on XAD-8 resin at decreasing pH values, has been applied to lignite humic acid (lignite-HA) and soil humic acid (soil-HA). H-binding data and non ideal competitive adsorption-Donnan model parameters were obtained for the HA fractions by theoretical analysis of H-binding data which reveal a significant increase of the carboxyl and the phenolic charge for the lignite-HA fractions vs. the parental lignite humic acid (LParentalHA). The fractionated lignite-HA material consisted mainly of permeate fractions, some of which were fulvic acid-like. The fractionated soil-HA material consisted mainly of large macromolecular structures that did not permeate the dialysis membrane during deashing. Chargeable groups had comparable concentrations in soil-HA fractions and parental soil humic acid (SParentalHA), indicating minimal interference of ash components with carboxyl and phenolic (and/or enolic) groups. Fractionation of HA, combined with theoretical analysis of H-binding, can distinguish the supramolecular vs. macromolecular nature of fractions within the same parental HA.

  13. H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components.

    PubMed

    Drosos, Marios; Leenheer, Jerry A; Avgeropoulos, Apostolos; Deligiannakis, Yiannis

    2014-03-01

    A fractionation technique, combining dialysis removal of metal and ash components with hydrofluoric acid and pH 10 citrate buffer followed by chromatography of dialysis permeate on XAD-8 resin at decreasing pH values, has been applied to lignite humic acid (lignite-HA) and soil humic acid (soil-HA). H-binding data and non ideal competitive adsorption-Donnan model parameters were obtained for the HA fractions by theoretical analysis of H-binding data which reveal a significant increase of the carboxyl and the phenolic charge for the lignite-HA fractions vs. the parental lignite humic acid (LParentalHA). The fractionated lignite-HA material consisted mainly of permeate fractions, some of which were fulvic acid-like. The fractionated soil-HA material consisted mainly of large macromolecular structures that did not permeate the dialysis membrane during deashing. Chargeable groups had comparable concentrations in soil-HA fractions and parental soil humic acid (SParentalHA), indicating minimal interference of ash components with carboxyl and phenolic (and/or enolic) groups. Fractionation of HA, combined with theoretical analysis of H-binding, can distinguish the supramolecular vs. macromolecular nature of fractions within the same parental HA.

  14. Processing of ash and slag waste of heating plants by arc plasma to produce construction materials and nanomodifiers

    NASA Astrophysics Data System (ADS)

    Buyantuev, S. L.; Urkhanova, L. A.; Kondratenko, A. S.; Shishulkin, S. Yu; Lkhasaranov, S. A.; Khmelev, A. B.

    2017-01-01

    The resultsare presented of plasma processing slag and ash waste from coal combustion in heating plants. Melting mechanism of ashand slagraw material is considered by an electromagnetic technological reactor. The analysis was conducted of temperature and phase transformations of raw material when it is heated up to the melting point, and also determination of specific energy consumption by using a generalized model of the thermodynamic analysis of TERRA. The study of materials melting temperature conditions and plum of melt was carried with high-temperature thermal imaging method, followed by mapping and 3D-modeling of the temperature fields. The investigations to establish the principal possibilities of using slag waste of local coal as raw material for the production of mineral (ash and slag) fibers found that by chemical composition there are oxides in the following ranges: 45-65% SiO2; 10-25% Al2O3; 10-45% CaO; 5-10% MgO; other minerals (less than 5%). Thus, these technological wastes are principally suitable for melts to produce mineral wool by the plasma method. An analysis of the results shows the melting point of ash and slag waste - 1800-2000 °C. In this case the specific energy consumption of these processes keeps within the limits of 1.1-1.3 kW*h/kg. For comparison it should be noted that the unit cost of electricity in the known high-melting industrial installations 5-6 kW*h/kg. Upon melting ash and slag waste, which contains up to 2-5% of unburned carbon, carbon nanomaterials were discovered.in the form of ultrafine soot accumulating as a plaque on the water-cooled surfaces in the gas cleaning chamber. The process of formation of soot consists in sublimation-desublimation of part of carbon which is in ash and slag, and graphite electrode. Thus, upon melting of ash and slag in the electromagnetic reactor it is possible to obtain melt, and in the subsequent mineral high quality fiber, which satisfies the requirements of normative documents, and

  15. Ash from thermal power plants as secondary raw material.

    PubMed

    Cudić, Vladica; Kisić, Dragica; Stojiljković, Dragoslava; Jovović, Aleksandar

    2007-06-01

    The basic characteristic of thermal power plants in the Republic of Serbia is that they use low-grade brown coal (lignite) as a fuel. Depending on the location of coal mines, lignite may have different properties such as heating value, moisture, and mineral content, resulting in different residue upon combustion. Because of several million tonnes of ash and slag generated every year, their granularmetric particle size distribution, and transport and disposal methods, these plants have a negative impact on the environment. According to the waste classification system in the Republic of Serbia, ash and slag from thermal power plants are classified as hazardous waste, but with an option of usability. The proposed revision of waste legislation in Serbia brings a number of simple and modern solutions. A procedure is introduced which allows for end-of-waste criteria to be set, clarifying the point where waste ceases to be waste, and thereby introducing regulatory relief for recycled products or materials that represent low risk for the environment. The new proposal refocuses waste legislation on the environmental impacts of the generation and management of waste, taking into account the life cycle of resources, and develops new waste prevention programmes. Stakeholders, as well as the general public, should have the opportunity to participate in the drawing up of the programmes, and should have access to them.

  16. Uranium-bearing lignite in southwestern North Dakota

    USGS Publications Warehouse

    Moore, George W.; Melin, Robert E.; Kepferle, Roy C.

    1954-01-01

    Uranium-bearing lignite was mapped and sampled in the Bullion Butte, Sentinel Butte, HT Butte, and Chalky Buttes areas in southwestern North Dakota. The uraniferous lignite occurs at several stratigraphic positions in the Sentinel Butte member of the Fort Union formation of Paleocene age. A total of 261 samples were collected for uranium analysis from 85 localities, Lignite contained as much as 0.045 percent uranium, 10.0 percent ash, and 0.45 percent uranium in the ash was found although the average is lower. Inferred reserves for the four areas examined are estimated to be about 27 million tons of lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite averages more than 30 percent ash in the surface samples. The principal factor that seems to influence the uranium content of lignite beds is their stratigraphic position below the overlying rocks of the White River group of Oligocene age. All of the uranium-bearing beds closely underlie the base of the White River group. Although this relationship seems to be the controlling factor, the relative concentration of uranium may be modified by other conditions. Beds enclosed in permeable rocks are more uraniferous than beds in impermeable rocks, and thin beds have higher content of uranium than thick beds. In addition, thick lignite beds commonly have a top=preferential distribution of uranium. These and other factors suggest that the uranium is secondary and this it was introduced by ground water which had leached uranium from volcanic ash in the overlying rocks of the White River group. It is thought that the uranium is held in the lignite as part of a metallo-organic compound.

  17. Characterization of fly ash, slag and glass hull for the obtaining of vitreous materials

    NASA Astrophysics Data System (ADS)

    Ayala Valderrama, D. M.; Gómez Cuaspud, J. A.

    2017-12-01

    This article presents the structural and thermal characterization of fly ash, the waste from blast furnace slag and the glass hull, generated as common residues in industry, which cannot be recycled easily or destroyed in a simple and fast way. In the particular case of fly ash, at present are being used as a lightweight aggregate in the production of cement, concrete and additive in the production of glass and glass ceramics. As far as the slag and hull, are being used as additives for the asphalt and concretes, however its use still is restricted, reason why its use in alternative ways are necessary. Initially the chemical composition of residues was established, determining that the fly ashes contains SiO2, Al2O3 and Fe2O3 oxides; 90% of the total composition, was confirmed by X-ray diffraction analysis. As minor constituents, small percentages of Mg, P, S, K, Na and Ti were found. For the slag case, the phases of Fe3O4, Ca3Mg (SiO2)4 and Ca(MgAl)(Si,Al)2O6 were identified, observing the presence of amorphous phase higher than 94% of the total phase of the system. Meanwhile, the glass hull sample showed a higher percentage of 95% amorphicity, mainly identifying a weak signal associated with silicon oxide SiO2. The thermal analyses of the samples, exhibit a decrease in mass for samples between 25-1000°C was observed, which can be attributed to different physical-chemical events that occur in the materials. The heat flow for each sample is related with the removal of the water retained by the physisorption processes around 92-110°C in all cases. With this previous characterization of the precursors, a sample was composed using 70% fly ash, 10% slag and 20% of glass hull was composed and treated at 1200°C/1.5 hours, obtaining a dense black glassy material for potential applications in field of the glass ceramics.

  18. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.

    PubMed

    Hasani, F; Shala, F; Xhixha, G; Xhixha, M K; Hodolli, G; Kadiri, S; Bylyku, E; Cfarku, F

    2014-12-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of (40)K, (226)Ra and (232)Th in lignite are found to be 36 ± 8 Bq kg(-1), 9 ± 1 Bq kg(-1) and 9 ± 3 Bq kg(-1), respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash.

    PubMed

    Nguyen, Thuy Chung; Loganathan, Paripurnanda; Nguyen, Tien Vinh; Kandasamy, Jaya; Naidu, Ravi; Vigneswaran, Saravanamuthu

    2017-07-13

    Heavy metals can be serious pollutants of natural water bodies causing health risks to humans and aquatic organisms. The purpose of this study was to investigate the removal of five heavy metals from water by adsorption onto an iron industry blast furnace slag waste (point of zero charge (PZC) pH 6.0; main constituents, Ca and Fe) and a coal industry fly ash waste (PZC 3.0; main constituents, Si and Al). Batch study revealed that rising pH increased the adsorption of all metals with an abrupt increase at pH 4.0-7.0. The Langmuir adsorption maximum for fly ash at pH 6.5 was 3.4-5.1 mg/g with the adsorption capacity for the metals being in the order Pb > Cu > Cd, Zn, Cr. The corresponding values for furnace slag were 4.3 to 5.2 mg/g, and the order of adsorption capacities was Pb, Cu, Cd > Cr > Zn. Fixed-bed column study on furnace slag/sand mixture (1:1 w/w) revealed that the adsorption capacities were generally less in the mixed metal system (1.1-2.1 mg/g) than in the single metal system (3.4-3.5 mg/g). The data for both systems fitted well to the Thomas model, with the adsorption capacity being the highest for Pb and Cu in the single metal system and Pb and Cd in the mixed metal system. Our study showed that fly ash and blast furnace slag are effective low-cost adsorbents for the simultaneous removal of Pb, Cu, Cd, Cr and Zn from water.

  20. Resistance to chloride ion penetration of concretes containing fly ash, silica fume, or slag.

    DOT National Transportation Integrated Search

    1988-01-01

    The effects of two pozzolanic admixtures, fly ash and silica fume, and a ground-granulated blast furnace slag on the chloride ion intrusion of concretes prepared with low water-to-cementitious material ratios (w/c) (0.35 to 0.45) were investigated. E...

  1. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    DOE PAGES

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less

  2. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less

  3. Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. S.H.,; Castel, Arnaud; Akbarnezhad, A.

    This paper evaluates the performance of steel furnace slag (SFS) coarse aggregate in blended slag and low calcium fly ash geopolymer concrete (GPC). The geopolymer binder is composed of 90% of low calcium fly ash and 10% of ground granulated blast furnace slag (GGBFS). Mechanical and physical properties, shrinkage, and detailed microstructure analysis were carried out. The results showed that geopolymer concrete with SFS aggregate offered higher compressive strength, surface resistivity and pulse velocity than that of GPC with traditional aggregate. The shrinkage results showed no expansion or swelling due to delayed calcium oxide (CaO) hydration after 320 days. Nomore » traditional porous interfacial transition zone (ITZ) was detected using scanning electron microscopy, indicating a better bond between SFS aggregate and geopolymer matrix. Energy dispersive spectroscopy results further revealed calcium (Ca) diffusion at the vicinity of ITZ. Raman spectroscopy results showed no new crystalline phase formed due to Ca diffusion. X-ray fluorescence result showed Mg diffusion from SFS aggregate towards geopolymer matrix. The incorporation of Ca and Mg into the geopolymer structure and better bond between SFS aggregate and geopolymer matrix are the most likely reasons for the higher compressive strength observed in GPC with SFS aggregate.« less

  4. Petrography and geochemistry of the San Miguel lignite, Jackson Group (Eocene), south Texas

    USGS Publications Warehouse

    Warwick, Peter D.; Crowley, Sharon S.; Ruppert, Leslie F.; Pontolillo, James

    1996-01-01

    The San Miguel lignite deposit (late Eocene, lower Jackson Group) of south Texas consists of four or more thin (generally < 1 m thick) lignite benches that are separated by claystone and mudstone partings. The partings are composed of altered volcanic air-fall ash that has been reworked by tidal or channel processes associated with a back-barrier depositional environment. The purpose of this study is to examine the relationship between the ash yield and the petrographic and geochemical characteristics of the San Miguel lignite as mined. Particular attention is given to 12 of the environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as possible hazardous air pollutants (HAPs) by the United States Clean Air Act Amendments of 1990. A total of 29 rock and lignite samples were collected and characterized by geochemical and petrographic methods. The major conclusions of the study are as follows: (1) The distribution of Mn is inversely related to the ash yield of the lignite samples. This indicates an organic affinity, or an association with finely disseminated minerals in the lignite that contain this element. (2) On a whole-coal basis, the concentration of the HAPs' element Pb is positively related to ash yield in lignite samples. This indicates an inorganic affinity for Pb. (3) Average whole-coal concentrations of As, Be, Sb, and U in the San Miguel samples are greater than published averages for these elements in other U.S. lignites. (4) The upper and lower lignite benches of the San Miguel deposit are both ash- and algal-rich, indicating that these intervals were probably deposited in wetter conditions than those in which the middle intervals formed. (5) The dominance of the eugelinite maceral subgroup over the huminite subgroup indicates that the San Miguel lignites were subjected to peat-forming conditions (either biogenic or chemical) that enabled degradation of wood cellular material into matrix

  5. Experimental Study on Semi-Dry Flue Gas Desulfurization Ash Used in Steel Slag Composite Material

    NASA Astrophysics Data System (ADS)

    Lu, Lijun; Fang, Honghui

    This article carried out the experimental study on using desulfurization ash in steel slag composite material. This was done by investigating the desulfurization ash content in formula one and formula two samples on the influence of setting time and strength of mortar. Through this study the following conclusions were reached for formula one: (1) a setting time of more than 10 hours is required, (2) a dosage of desulfurization ash of 1 2% is optimal, where flexural strength is reduced by 10% 23% and compressive strength reduced by 5.7% 16.4%. The conclusions of formula two were: (1) when the dosage of desulfurization ash is within 5%, the setting time is within 10 hours; (2) when the dosage of desulfurization ash is 1 2%, the flexural strength is increased by 5 7% and the compressive strength is reduced by 1 2%. The results show that the formula two is better.

  6. Ternary Blends of High Aluminate Cement, Fly ash and Blast-furnace slag for Sewerage Lining Mortar

    NASA Astrophysics Data System (ADS)

    Chao, L. C.; Kuo, C. P.

    2018-01-01

    High aluminate cement (HAC), fly ash (FA) and blast-furnace slag (BFS) have been treated sustainable materials for the use of cement products for wastewater infrastructure due to their capabilities of corrosion resistance. The purpose of this study is to optimize a ternary blend of above mentioned materials for a special type of mortar for sewerage lining. By the using of Taguchi method, four control parameters including water/cementitious material ratio, mix water content, fly ash content and blast-furnace slag content were considered in nine trial mix designs in this study. By evaluating target properties including (1) maximization of compressive strength, (2) maximization of electricity resistance and (3) minimization of water absorption rate, the best possible levels for each control parameter were determined and the optimal mix proportions were verified. Through the implementation of the study, a practical and completed idea for designing corrosion resistive mortar comprising HAC, FA and BSF is provided.

  7. The pH-dependent contaminant leaching from the copper smelter fly ash and slag

    NASA Astrophysics Data System (ADS)

    Jarosikova, Alice; Ettler, Vojtech; Mihaljevic, Martin; Penizek, Vit

    2014-05-01

    Metallurgical wastes produced during smelting processes represent a potential risk of environmental contamination, depending particularly on the content and mobility of the elements contained. Due to leaching, serious environmental impact especially in contaminated soil systems in the vicinity of the smelting plants may occur. In this respect two potentially hazardous metallurgical wastes from the copper smelter Tsumeb (Namibia, Africa) were investigated by laboratory leaching experiments. The leaching behaviours of (i) Ausmelt slag from Cu smelting (9500 ppm As, 24000 ppm Cu, 10200 ppm Pb, 24500 ppm Zn; mineralogy: glass, fayalite, spinel, metallic/sulphide droplets) and (ii) fly ash from Cu smelter bag house filters (43.7 wt% As, 13000 ppm Cu, 39700 ppm Pb, 20000 ppm Zn; mineralogy: arsenolite, galena, gypsum, litharge, anglesite) were studied using a 48-h pH-static leaching test (CEN/TS 14997). The release of metals/metalloids at a range of pH 3-12, investigation of changes in mineralogical composition and PHREEQC speciation-solubility modelling were used to understand processes governing the contaminant leaching from these waste materials. It was observed that the contaminant leaching was highly pH-dependent. The release of metals from slag corresponded to "L-type" leaching curve with Cu being the key contaminant leached (up to 1780 mg/kg). In contrast, As was highly leached also in alkaline conditions (31-173 mg/kg) and significantly exceeded the limit value for hazardous waste materials in all cases (25 mg/kg). Fly ash was found to be extremely reactive in terms of the As release with a "J-type" leaching curve indicating the highest leaching at pH of 11 and 12 (up to 314 g/kg). Arsenic was considered to be the most important contaminant for both waste materials and its release can represent a risk for the environment, especially in case, where the fly ash- or slag-derived particulates are deposited into the soil systems. This study was supported by the Czech

  8. Mineralogical composition of boiler fouling and slagging deposits and their relation to fly ashes: the case of Kardia power plant.

    PubMed

    Kostakis, George

    2011-01-30

    Slagging and fouling deposits from a pulverized lignite fired steam generating unit of the Kardia power plant (West Macedonia, Greece) were mineralogically investigated. The structure and cohesion of these deposits varied, usually depending on the level height of the boiler unit where they were formed. Some of the deposits had complex phase composition. The dominant components of the deposits of the burner zone and of the lower and intermediate boiler zones were the amorphous, anhydrite and hematite, while those of the highest levels contained amorphous, and anhydrite. Furthermore, in deposits formed in various other boiler areas gehlenite, anorthite, diopside, quartz, Ca(2)SiO(4), brownmillerite and other crystalline phases were also identified, usually in low amounts or in traces. The major part of the phases constituting the deposits were formed in the boiler, since only a minor part derived from the unreacted minerals present in lignite. Anhydrite was generated from the reaction of SO(2) with CaO formed mainly by the calcination of calcite as well as from dehydration of gypsum contained in lignite, while hematite was produced mainly from the oxidation of pyrite. The calcium-containing silicates formed in the boiler were mainly the products of reactions between CaO and minerals contained in the lignite. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Construction demolition wastes, Waelz slag and MSWI bottom ash: a comparative technical analysis as material for road construction.

    PubMed

    Vegas, I; Ibañez, J A; San José, J T; Urzelai, A

    2008-01-01

    The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.

  10. The effect of steel slag as a coarse aggregate and Sinabung volcanic ash a filler on high strength concrete

    NASA Astrophysics Data System (ADS)

    Karolina, R.; Putra, A. L. A.

    2018-02-01

    The Development of concrete technology is continues to grow. The requisite for efficient constructions that are often viewed in terms of concrete mechanical behavior, application on the field, and cost estimation of implementation increasingly require engineers to optimize construction materials, especially for concrete materials. Various types of concrete have now been developed according to their needs, such as high strength concrete. On high strength concrete design, it is necessary to consider several factors that will affect the reach of the quality strength, Those are cement, water cement ratio (w/c), aggregates, and proper admixture. In the use of natural mineral, it is important for an engineer to keep an eye on the natural conditions that have been explored. So the selection of aggregates as possible is a material that is not causing nature destruction. On this experiment the use of steel slag from PT.Growth Sumatra Industry as a substitute of coarse and fine aggregate, and volcanic ash of mount Sinabung as microsilka in concrete mixture substituted to create high strength concrete that is harmless for the environment. The use of mount sinabung volcanic ash as microsilika coupled with the use of Master Glenium Sky 8614 superplasticizer. This experiment intend to compare high strength concrete based slag steel as the main constituent aggregates and high strength concrete with a conventional mixture. The research result for 28 days old concrete shows that conventional concrete compressive strength is 67.567 MPa, slag concrete 75.958 Mpa, conventional tensile strength 5.435 Mpa while slag concrete 5.053 Mpa, conventional concrete bending strength 44064.96 kgcm while concrete slag 51473.94 kgcm and modulus of conventional concrete fracture 124.978 kg / cm2 while slag concrete 145.956 kg / cm2. Both concrete slump values shows similar results due to the use of superplasticizer.

  11. Reactivity of alkaline lignite fly ashes towards CO{sub 2} in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin Back; Michael Kuehn; Helge Stanjek

    2008-06-15

    The reaction kinetics between alkaline lignite fly ashes and CO{sub 2} (pCO{sub 2} = 0.01-0.03 MPa) were studied in a laboratory CO{sub 2} flow-through reactor at 25-75{sup o}C. The reaction is characterized by three phases that can be separated according to the predominating buffering systems and the rates of CO{sub 2} uptake. Phase I (pH > 12, < 30 min) is characterized by the dissolution of lime, the onset of calcite precipitation and a maximum uptake, the rate of which seems to be limited by dissolution of CO{sub 2}. Phase II (pH < 10.5, 10-60 min) is dominated by themore » carbonation reaction. CO{sub 2} uptake in phase III (pH < 8.3) is controlled by the dissolution of periclase (MgO) leading to the formation of dissolved magnesium-bicarbonate. Phase I could be significantly extended by increasing the solid-liquid ratios and temperature, respectively. At 75{sup o}C the rate of calcite precipitation was doubled leading to the neutralization of approximately 0.23 kg CO{sub 2} per kg fly ash within 4.5 h, which corresponds to nearly 90% of the total acid neutralizing capacity. 21 refs., 5 figs., 1 tab.« less

  12. Performance of Sustainable Fly Ash and Slag Cement Mortars Exposed to Simulated and Real In Situ Mediterranean Conditions along 90 Warm Season Days

    PubMed Central

    Esteban, María Dolores

    2017-01-01

    Nowadays, cement manufacture is one of the most polluting worldwide industrial sectors. In order to reduce its CO2 emissions, the clinker replacement by ground granulated blast–furnace slag and fly ash is becoming increasingly common. Both additions are well-studied when the hardening conditions of cementitious materials are optimum. Therefore, the main objective of this research was to study the short-term effects of exposure, to both laboratory simulated and real in situ Mediterranean climate environments, on the microstructure and durability-related properties of mortars made using commercial slag and fly ash cements, as well as ordinary Portland cement. The real in situ condition consisted of placing the samples at approximately 100 m away from the Mediterranean Sea. The microstructure was analysed using mercury intrusion porosimetry. The effective porosity, the capillary suction coefficient and the non-steady state chloride migration coefficient were also studied. In view of the results obtained, the non-optimum laboratory simulated Mediterranean environment was a good approach to the real in situ one. Finally, mortars prepared using sustainable cements with slag and fly ash exposed to both Mediterranean climate environments, showed adequate service properties in the short-term (90 days), similar to or even better than those in mortars made with ordinary Portland cement. PMID:29088107

  13. Performance of Sustainable Fly Ash and Slag Cement Mortars Exposed to Simulated and Real In Situ Mediterranean Conditions along 90 Warm Season Days.

    PubMed

    Ortega, José Marcos; Esteban, María Dolores; Sánchez, Isidro; Climent, Miguel Ángel

    2017-10-31

    Nowadays, cement manufacture is one of the most polluting worldwide industrial sectors. In order to reduce its CO₂ emissions, the clinker replacement by ground granulated blast-furnace slag and fly ash is becoming increasingly common. Both additions are well-studied when the hardening conditions of cementitious materials are optimum. Therefore, the main objective of this research was to study the short-term effects of exposure, to both laboratory simulated and real in situ Mediterranean climate environments, on the microstructure and durability-related properties of mortars made using commercial slag and fly ash cements, as well as ordinary Portland cement. The real in situ condition consisted of placing the samples at approximately 100 m away from the Mediterranean Sea. The microstructure was analysed using mercury intrusion porosimetry. The effective porosity, the capillary suction coefficient and the non-steady state chloride migration coefficient were also studied. In view of the results obtained, the non-optimum laboratory simulated Mediterranean environment was a good approach to the real in situ one. Finally, mortars prepared using sustainable cements with slag and fly ash exposed to both Mediterranean climate environments, showed adequate service properties in the short-term (90 days), similar to or even better than those in mortars made with ordinary Portland cement.

  14. Optimization of activator solution and heat treatment of ground lignite type fly ash geopolymers

    NASA Astrophysics Data System (ADS)

    Molnár, Z.; Szabó, R.; Rácz, Á.; Lakatos, J.; Debreczeni, Á.; Mucsi, G.

    2017-02-01

    Geopolymers are inorganic polymers which can be produced by the reaction between silico aluminate oxides and alkali silicates in alkaline medium. Materialscontaining silica and alumina compounds are suitable for geopolymer production. These can beprimary materials or industrial wastes, i. e. fly ash, metallurgical slag and red mud. In this paper, the results of the systematic experimental series are presented which were carried out in order to optimize the geopolymer preparation process. Fly ash was ground for different residence time (0, 5, 10, 30, 60 min) in order to investigate the optimal specific surface area. NaOH activator solution concentration also varied (6, 8, 10, 12, 14 M). Furthermore, sodium silicate was added to NaOH as a network builder solution. In this last serie different heat curing temperatures (30, 60, 90°C) were also applied. After seven days of ageing the physical properties of the geopolymer(compressive strength and specimen density)were measured. Chemical leaching tests on the rawmaterial and the geopolymers were carried out to determine the elements which can be mobilized by different leaching solutions. It was found that the above mentioned parameters (fly ash fineness, molar concentration and composition of activator solution, heat curing) has great effect on the physical and chemical properties of geopolymer specimens. Optimal conditions were as follows: specific surface area of the fly ash above 2000 cm2/g, 10 M NaOH, 30°C heat curing temperature which resulted in 21 MPa compressive strength geopolymer.

  15. Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuhal Gogebakan; Nevin Selcuk

    In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnutmore » shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.« less

  16. Eocene Yegua Formation (Claiborne group) and Jackson group lignite deposits of Texas

    USGS Publications Warehouse

    Hook, Robert W.; Warwick, Peter D.; Swanson, Sharon M.; Hackley, Paul C.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The lignite deposits within the upper Eocene Yegua Formation (Claiborne Group) and the overlying Jackson Group are among the coal resources that were not quantitatively assessed as part of the U.S. Geological Survey's (USGS) National Coal Resource Assessment (NCRA) program in the Gulf Coastal Plain coal province. In the past, these lignite-bearing stratigraphic units often have been evaluated together because of their geographic and stratigraphic proximity (Fisher, 1963; Kaiser, 1974; Kaiser et al., 1980; Jackson and Garner, 1982; Kaiser, 1996) (Figures 1, 2). The term “Yegua-Jackson trend“ is used informally herein for the lignite-bearing outcrops of these Late Eocene deposits in Texas. Lignite beds in the Yegua-Jackson trend generally are higher both in ash yield and sulfur content than those of the underlying Wilcox Group (Figure 2). Recent studies (Senkayi et al., 1987; Ruppert et al., 1994; Warwick et al., 1996, 1997) have shown that some lignite beds within the Yegua-Jackson trend contain partings of volcanic ash and host elevated levels of trace elements that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Amendments of 1990. Lignite beds within the Yegua Formation are thin (less than or equal to 6 ft) and laterally discontinuous in comparison with most Wilcox Group deposits (Ayers, 1989a); in contrast, the Jackson Group lignite beds range up to 12 ft in total thickness and are relatively continuous laterally, extending nearly 32 mi along strike.

  17. Properties of Controlled Low Strength Material with Circulating Fluidized Bed Combustion Ash and Recycled Aggregates

    PubMed Central

    Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2018-01-01

    This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055

  18. Solidification of Dredged Sludge by Hydraulic Ash-Slag Cementitious Materials

    NASA Astrophysics Data System (ADS)

    Zhu, Shu-Jing; Qin, Ying; Hwang, Jiann-Yang

    Solidification treatment is used to treat hazardous wastes for disposal and to remediate the contaminated land. It is an increasingly popular technology for redevelopment of brown fields since treated wastes can often be left on-site, which can improve the site's soil for subsequent construction. In order to find home for the dredged sludge from the Pearl River Estuary Channel in China, the potential uses of treated dredged sludge by solidification treatment as valuable structural fill was investigated. Structure fills were prepared under various formula and curing conditions. Modulus of elasticity was detemined at 7 days, 14 days and 28 days with different types of load application. Atterberg limit, compactibility and CBR values are reported. The relationship between the microstructure and engineering properties of treated sludge are examined. The results clearly show the technical benefits by stabilizing soft soils with Hydraulic ash-slag cementitious materials. XRD and DTA-TG tests were carried out on certain samples to characterize the hydraulic compounds formed.

  19. Investigating waste rock, tailings, slag and coal ash clinker as adsorbents for heavy metals: Batch and column studies

    NASA Astrophysics Data System (ADS)

    Letina, D.; Letshwenyo, W. M.

    2018-06-01

    Wastewater from the mining industry is a concern because most of the time it contains heavy metals with concentrations above permissible levels, posing a threat to terrestrial and aquatic life. The study was conducted to evaluate the effectiveness of locally available waste materials (waste rock, tailings, coal ash clinker, and slag) generated by BCL (Ltd) mine, a copper and nickel mining and smelting company in Botswana, for removal of nickel and copper from the real mining wastewater. Batch adsorption studies were conducted to establish the adsorptive efficiency and kinetics of each media with respect to nickel and copper ions. The best media was further evaluated through fixed bed column studies at 24 and 48 h empty bed contact time. The results indicate that the percentage removal for coal ash clinker, waste rock, smelter slag and tailings was 98%, 15%, 3% and -3% with respect to copper ions, and 46%, 9%, 7% and 2% with respect to nickel ions for each media respectively. Coal ash clinker followed pseudo first order kinetic model and Langmuir isotherm model with respect to nickel ions indicating the dominance of physisorption and mono layer coverage respectively. The Langmuir separation factor (RL) was 0.37 suggesting favourable adsorption onto the media. Fixed bed column studies revealed that copper was completely retained in the bed at both 24 and 48 h contact times. In the case of nickel, removal efficiency ranged between 83% and 99% when contact time was 48 h and between 68% and 99% when the contact time was reduced to 24 h. Breakthrough was not reached after 19 bed volumes. It can be concluded that coal ash clinker is a better candidate for the removal of copper and nickel ions from mining wastewater.

  20. Stratigraphic framework and distribution of lignite on Crowleys Ridge, Arkansas

    USGS Publications Warehouse

    Meissner, Charles R.

    1983-01-01

    of these lignite beds are correlated over distances as much as 30 miles. Other lignite beds thin to a few inches thick and disappear within short distances. Four areas are delineated on Crowleys Ridge that contain one or more lignite beds each 2.5 feet or more thick. Strippable lignite is limited to 300 feet in this area, therefore, all holes were drilled to 300 feet or less. Chemical analyses of eight lignite samples from Crowleys Ridge are on record with the U.S. Geological Survey's National Coal Resources Data System. Two of the samples are from the Wilcox Group, and six are from the Claiborne Group, but the lignite beds from which the samples were taken are unidentified. However, the analyses are believed to be representative of the lignite within the lignite-bearing sequence. The two Wilcox samples had moisture values of 36.3 and 40.1 percent; ash, 30.5 and 20.5 percent (U.S. Bureau of Mines); sulfur content, 0.3 and 1.0 percent; and Btu values, 3,910 and 4,590 on an as received basis. The six Claiborne samples had moisture values ranging from 34.7 to 43.7 percent; ash from 11.9-28.2 percent (USBM); sulfur content, 0.3-3 percent; and Btu values, 3,400 to 5,160. U.S. Geological Survey average ash content for the eight samples was 36.22 percent, and the major oxides are SiO2 (60.75 percent), Al2O3 (15.23 percent), CaO (6.96 percent), Fe2O3 (6.65 percent), and SO3 (5.64 percent). No anomalous values were recorded for the trace element content. Lignite is not currently mined on Crowleys Ridge. It has potential for use as a fuel for direct firing of boilers to generate electricity. It also has potential for gasification to produce pipeline gas, and for liquefaction to produce fuel oil. More drilling and analyses are needed to better define the quantity and quality of lignite beds within the four significant areas with resource potential and to determine the extent of lignite beds 2.5 ft or more thick that occur in several isolated areas.

  1. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium.

    PubMed

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-05-30

    Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the "Wenner" resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC.

  2. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    PubMed Central

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-01-01

    Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the “Wenner” resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC. PMID:28772958

  3. Hydrothermal solidification of municipal solid waste incineration bottom ash with slag addition.

    PubMed

    Jing, Zhenzi; Ran, Xianqiang; Jin, Fangming; Ishida, Emile H

    2010-01-01

    Hydrothermal solidification of municipal solid waste incineration (MSWI) bottom ash has been carried out under saturated steam pressure (1.56 MPa) at 200 degrees C for up to 24 h by mixing quartz, slaked lime and water-cooled blast furnace slag (WBFS). The strength enhancement for the WBFS addition was best. The strength development was shown to be due mainly to tobermorite formation, and the tobermorite formation densified matrix, thus promoting the strength development. WBFS seemed to have a higher reactivity than the quartz during the initial hydrothermal process, which provided more silica available to harden the solidified specimens. However, a longer curing time (24 h) was favorable to the quartz dissolution for tobermorite formation, which in turn, enhanced the strength for quartz addition. Curing time affected the crystal morphology evolution, and the stubby plate of tobermorite seemed to result in a high strength enhancement in this study. Laboratory leaching tests were conducted to determine the amount of heavy metals dissolved from the final solidified specimens, and the leaching results showed that after hydrothermal processing the heavy metals dissolved from the solidified specimens were reduced effectively. As such, the hydrothermal processing may have a high potential for recycling/reusing MSWI ash on a large scale. 2010 Elsevier Ltd. All rights reserved.

  4. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.

    PubMed

    Yang, Y; Xiao, Y; Voncken, J H L; Wilson, N

    2008-06-15

    Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.

  5. Management of Lignite Fly Ash for Improving Soil Fertility and Crop Productivity

    NASA Astrophysics Data System (ADS)

    Ram, Lal C.; Srivastava, Nishant K.; Jha, Sangeet K.; Sinha, Awadhesh K.; Masto, Reginald E.; Selvi, Vetrivel A.

    2007-09-01

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and biofertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. The highest yield LFA dose was 200 t/ha for one-time and repeat applications, the maximum yield being with crop III (combination treatment). One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy-metal contents and in the level of γ-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

  6. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was

  7. Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials

    PubMed Central

    Castaldelli, Vinícius N.; Akasaki, Jorge L.; Melges, José L.P.; Tashima, Mauro M.; Soriano, Lourdes; Borrachero, María V.; Monzó, José; Payá, Jordi

    2013-01-01

    Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders. PMID:28811425

  8. Metal behavior during vitrification of incinerator ash in a coke bed furnace.

    PubMed

    Kuo, Yi-Ming; Lin, Ta-Chang; Tsai, Perng-Jy

    2004-06-18

    In this study, municipal waste incinerator ash was vitrified in a coke bed furnace system and the behavior of metals was investigated. Coke and lime were added to provide heat which facilitated vitrification. Ash contributed more than 90% of metal (except for Ca) input-mass. Metal species with low boiling points accounted for the major fraction of their input-mass adsorbed by air pollution control devices (APCDs) fly ash. Among the remaining metals, those species with light specific weights in this furnace tended to be encapsulated in slag, while heavier species were mainly discharged by ingot. Meanwhile, the leachability of hazardous metals in slag was significantly reduced. The distribution index (DI) was defined and used as an index for distribution of heavy metals in the system. A high DI assures safe slag reuse and implies feasibility of recovering hazardous heavy metals such as Cr, Cu, Fe, Pb and Zn. The vitrification in a coke bed furnace proved to be a useful technology for the final disposal of MSW incinerator ash. The heavy metals are separated into the slag, ingot and fly ash, allowing safe reuse of the slag and possible recovery of the metals contained in the ingot and ash fractions.

  9. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace.

    PubMed

    Zhao, Peng; Ni, Guohua; Jiang, Yiman; Chen, Longwei; Chen, Mingzhou; Meng, Yuedong

    2010-09-15

    Due to the toxicity of dioxins, furans and heavy metals, there is a growing environmental concern on municipal solid waste incinerator (MSWI) fly ash in China. The purpose of this study is directed towards the volume-reduction of fly ash without any additive by thermal plasma and recycling of vitrified slag. This process uses extremely high-temperature in an oxygen-starved environment to completely decompose complex waste into very simple molecules. For developing the proper plasma processes to treat MSWI fly ash, a new crucible-type plasma furnace was built. The melting process metamorphosed fly ash to granulated slag that was less than 1/3 of the volume of the fly ash, and about 64% of the weight of the fly ash. The safety of the vitrified slag was tested. The properties of the slag were affected by the differences in the cooling methods. Water-cooled and composite-cooled slag showed more excellent resistance against the leaching of heavy metals and can be utilized as building material without toxicity problems. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Natural desulfurization in coal-fired units using Greek lignite.

    PubMed

    Konidaris, Dimitrios N

    2010-10-01

    This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash.

  11. High infrared radiance glass-ceramics obtained from fly ash and titanium slag.

    PubMed

    Wang, Shuming; Liang, Kaiming

    2007-11-01

    A new glass-ceramic was synthesized by crystal growth from a homogenous glass obtained by melting a mixture of fly ash collected from a power plant in Hebei province of China, titanium slag collected from a titanium factory in Sichuan province of China, and MgCO(3) as an additive. According to the measurement results of differential thermal analysis, a thermal treatment of nucleating at 850 degrees C for 2h and crystallizing at 985 degrees C for 1.5h was used to obtain the crystallized glass. X-ray diffraction and scanning electron microscopy measurements showed that the main crystalline phase of this material was iron-ion substituted cordierite, (Mg,Fe)(2)Al(4)Si(5)O(18), which is homogeneously dispersed within the parent glass matrix. The infrared radiance and thermal expansion coefficient of this material have been examined, and the results demonstrate that this glass-ceramic material has potential for application in a wide range of infrared heating and drying materials.

  12. Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece

    NASA Astrophysics Data System (ADS)

    Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R.

    2008-08-01

    West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides 40K, 235U, 238U, 226Ra, 228Ra and 232Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for 232Th, 228Ra and 40K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

  13. A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, Kyei-Sing; Bennett, James P.

    Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less

  14. A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures

    DOE PAGES

    Kwong, Kyei-Sing; Bennett, James P.

    2016-11-25

    Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less

  15. Distribution and correlation of the natural radionuclides in a coal mine of the West Macedonia Lignite Center (Greece).

    PubMed

    Tsikritzis, L I; Fotakis, M; Tzimkas, N; Kolovos, N; Tsikritzi, R

    2008-02-01

    The distribution and correlation of six natural nuclides in the West Macedonia Lignite Center, Northern Greece were studied. Fifty-five samples of lignite, aged from 1.8 to 5 million years, and corresponding steriles, beds of marls, clays and sands alternating with the lignite, were collected perpendicular to the mine benches and measured spectroscopically. The mean concentrations of (238)U and (226)Ra in lignites were found to be higher than that in steriles since these nuclides are associated with the organic material of lignite, whereas (238)U/(226)Ra equilibrium was not observed in either lignites or steriles. Finally, the ratio (226)Ra/(228)Ra in lignites was approximately double of that in steriles, confirming the affinity of the (238)U series with the coal matrix in contrast to the (232)Th series. No correlation was found between radionuclide concentrations and the depth of the sample, nor with the ash content of lignite.

  16. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Thermal behaviour of ESP ash from municipal solid waste incinerators.

    PubMed

    Yang, Y; Xiao, Y; Wilson, N; Voncken, J H L

    2009-07-15

    Stricter environmental regulations demand safer treatment and disposal of incinerator fly ashes. So far no sound technology or a process is available for a sustainable and ecological treatment of the waste incineration ashes, and only partial treatment is practised for temporary and short-term solutions. New processes and technology need to be developed for comprehensive utilization and detoxification of the municipal solid waste (MSW) incinerator residues. To explore the efficiency of thermal stabilisation and controlled vitrification, the thermal behaviour of electrostatic precipitator (ESP) ash was investigated under controlled conditions. The reaction stages are identified with the initial moisture removal, volatilization, melting and slag formation. At the temperature higher than 1100 degrees C, the ESP ashes have a quicker weight loss, and the total weight loss reaches up to 52%, higher than the boiler ash. At 1400 degrees C a salt layer and a homogeneous glassy slag were formed. The effect of thermal treatment on the leaching characteristics of various elements in the ESP ash was evaluated with the availability-leaching test. The leaching values of the vitrified slag are significantly lowered than that of the original ash.

  18. Self-compacting concrete with sugarcane bagasse ash – ground blast furnace slag blended cement: fresh properties

    NASA Astrophysics Data System (ADS)

    Le, Duc-Hien; Sheen, Yeong-Nain; Ngoc-Tra Lam, My

    2018-04-01

    In this investigation, major properties in fresh state of self-compacting concrete (SCC) developed from sugarcane bagasse ash and granulated blast furnace slag as supplementary cementitious materials were examined through an experimental work. There were four mix groups (S0, BA10, BA20, and BA30) containing different cement replacing levels; and totally, 12 SCC mixtures and one control mixture were provided for the test. Fresh properties of the proposed SCC were evaluated through measurement of the density, slump, slump-flow, V-funnel test, T500 slump, Box-test, and setting time. The testing results indicated that replacing either SBA and/or BFS to OPC in SCC mixtures led to lower density, lesser flowability, and longer hardening times.

  19. Petrography and geochemistry of selected lignite beds in the Gibbons Creek mine (Manning Formation, Jackson Group, Paleocene) of east-central Texas

    USGS Publications Warehouse

    Warwick, Peter D.; Crowley, Sharon S.; Ruppert, Leslie F.; Pontolillo, James

    1997-01-01

    This study examined the petrographic and geochemical characteristics of two lignite beds (3500 and 4500 beds, Manning Formation, Jackson Group, Eocene) that are mined at the Gibbons Creek mine in east-central Texas. The purpose of the study was to identify the relations among sample ash yield, coal petrography, and trace-element concentrations in lignite and adjoining rock layers of the Gibbons Creek mine. Particular interest was given to the distribution of 12 environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Act Amendments of 1990. Eleven lignite, floor, and rock parting samples were collected from incremental channel samples of the 3500 and 4500 beds that were exposed in a highwall of pit A3 at the Gibbons Creek mine. Short proximate and ultimate and forms of sulfur analyses were performed on all lignite samples, and lignite and rock samples were analyzed for 60 major, minor and trace elements. Representative splits of all lignite samples were ground and cast into pellets, and polished for petrographic analyses in blue-light fluorescence and reflected white light to determine liptinite, inertinite, and huminite maceral group percentages. The following observations summarize our results and conclusions about the geochemistry, petrography, and sedimentology of the 3500 and 4500 beds of the Gibbons Creek lignite deposit: (1) Weighted average dry (db) ash yield for the two beds is 29.7%, average total sulfur content is 2.6%, and average calorific value is 7832 Btu (18.22 MJ/kg). Ash yields are greatest in the lower bench (59.33% db) of the 3500 bed and in the upper bench of the 4500 bed (74.61% db). (2) For lignite samples (on a whole-coal basis), the distributions of two of the HAPs (Pb and Sb) are positively related to ash yield, probably indicating an inorganic affinity for these elements. By using cluster analysis we

  20. Valorization of lignite combustion residues and ferroalumina in the production of aggregates.

    PubMed

    Anagnostopoulos, I M; Stivanakis, V E; Angelopoulos, G N; Papamantellos, D C

    2010-02-15

    The present research study investigates the synergy of industrial solid by-products from lignite combustion (fly ash and bottom ash) and aluminum production (ferroalumina) in the production of lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering. Bottom ash (BA) is used as the principal raw material in mixtures while ferroalumina (FAL) is added in lower percentages (5-30 wt%). BA carbon content is used as the fuel of sintering process in high temperatures, around 1250 degrees C, and gas generation is responsible for porous structure formation. Physical properties such as porosity, water absorption and bulk density, of sintering products are measured. Increase of FAL percentage in sintering mixtures results in decrease of porosity from 61% to 35% and of water absorption from 61% to 21% and in increase of bulk density from 1.02 g/cm(3) to 1.80 g/cm(3) of the produced aggregates. Aggregates produced by FAL addition up to 20 wt% are characterized as LWA. Aggregates formed are used in the production of concrete specimens. Compressive strength of concrete increases by increasing FAL addition in aggregates from 5 wt% to 15 wt% (highest strength value), while decrease by increasing FAL addition from 20 wt% to 30 wt%. FAL addition in lignite ashes sintering mixtures (up to 15 wt%) is considered as an important parameter for enhancing aggregates strength.

  1. Co-combustion of pellets from Soma lignite and waste dusts of furniture works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveci, N.D.; Yilgin, M.; Pehlivan, D.

    2008-07-01

    In this work, volatiles and char combustion behaviors of the fuel pellets prepared from a low quality lignite and the dusts of furniture works and their various blends were investigated in an experimental fixed bed combustion system through which air flowed by natural convection. Combustion data obtained for varied bed temperatures, mass of pellets, and blend compositions has showed that ignition times of the pellets decreased and volatiles combustion rates tended to increase with the burning temperature. It was concluded that some synergy had existed between lignite and lower ratios of furniture work dusts, which was indicated by a promptmore » effect on the volatiles combustion rates. Char combustion rates of blend pellets have depended predominantly on the amount of lignite in the blend. The amounts of combustion residues of the pellets were considerably higher than those calculated from individual ash contents of the raw materials and related to lignite ratio in the blends.« less

  2. Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace

    DOEpatents

    Mathur, Mahendra P.; Ekmann, James M.

    1989-01-01

    The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

  3. Detoxifying PCDD/Fs and heavy metals in fly ash from medical waste incinerators with a DC double are plasma torch.

    PubMed

    Pan, Xinchao; Yan, Jianhua; Xie, Zhengmiao

    2013-07-01

    Medical waste incinerator (MWI) fly ash is regarded as a highly toxic waste because it contains high concentrations of heavy metals and dioxins, including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Therefore fly ash from MWI must be appropriately treated before being discharged into the environment. A melting process based on a direct current thermal plasma torch has been developed to convert MWI fly ash into harmless slag. The leaching characteristics of heavy metals in fly ash and vitrified slag were investigated using the toxicity characteristic leaching procedure, while the content of PCDD/Fs in the fly ashes and slags was measured using method 1613 of the US EPA. The experimental results show that the decomposition rate of PCDD/Fs is over 99% in toxic equivalent quantity value and the leaching of heavy metals in the slag significantly decreases after the plasma melting process. The produced slag has a compact and homogeneous microstructure with density of up to 2.8 g/cm3.

  4. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    PubMed

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.

  5. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    NASA Astrophysics Data System (ADS)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  6. The distribution of trace elements in Turkish lignites in Western Anatolia and the Thrace Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, C.A.; Tuncali, E.; Finkelman, R.

    1999-07-01

    The United States Geological Survey (USGS) and the General Directorate of Mineral Research and Exploration in Turkey (Maden Tetkik ve Arama:MTA) are working together to provide a more complete understanding of the chemical properties of lignites from major Turkish lignite producing areas. The project is a part of the USGS effort to produce an international coal database and is part of the ``Technological and Chemical properties of Turkish Lignite Inventory Project'' being conducted by the MTA General Directorate. The lignites in Turkey formed in several different depositional environments at different geologic times and have differing chemical properties. The Eocene lignitesmore » are limited to northern Turkey. Oligocene lignites, in the Trace Basin of northwestern Turkey, are intercalated with marine sediments. Miocene lignites are generally located in western Turkey. These coal deposits have relatively abundant reserves, with limnic characteristics. The Pliocene-Pleistocene lignites are found in the eastern part of Turkey. Most of these lignites have low calorific values, high moisture and high ash contents. The majority of the lignite extraction is worked in open-pit mines. Turkish lignite production is used mainly by power plants; small amounts are used by households and in industry. All the samples in this study were collected as channel samples of the beds. Analyses of 71 coal samples (mostly lignites) have been completed for 54 elements using various analytical techniques including inductively coupled plasma emission and mass spectrometry, instrumental neutron activation analysis and various single element techniques. Many of these lignites have elemental concentrations similar to those of US lignites. However, maximum or mean concentrations of B, Cr, Cs, Ni, As, Br, Sb, Cs and U in Turkey were higher than the corresponding maximum or mean found in either of the Fort Union or Gulf Coast basins, the two most productive lignite basins in the U.S.« less

  7. Pelletizing lignite

    DOEpatents

    Goksel, Mehmet A.

    1983-11-01

    Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

  8. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.

    PubMed

    Acharya, Prasanna K; Patro, Sanjaya K

    2016-08-01

    Solid waste management is one of the subjects essentially addressing the current interest today. Due to the scarcity of land filling area, utilization of wastes in the construction sector has become an attractive proposition for disposal. Ferrochrome ash (FA) is a dust obtained as a waste material from the gas cleaning plant of Ferro alloy industries. It possesses the chemical requirements of granulated slag material used for the manufacture of Portland cement. Ferrochrome slag (FS) is another residue that is obtained as a solid waste by the smelting process during the production of stainless steel in Ferroalloy industries. FS possesses the required engineering properties of coarse aggregates. The possibility of using FA with lime for partial replacement of ordinary Portland cement (OPC) and FS for total replacement of natural coarse aggregates is explored in this research. The combined effect of FA with lime and FS-addition on the properties of concrete, such as workability, compressive strength, flexural strength, splitting tensile strength and sorptivity, were studied. Results of investigation revealed improvement in strength and durability properties of concrete on inclusion of FA and FS. Concrete mix containing 40% FA with 7% lime (replacing 47% OPC) and100% of FS (replacing 100% natural coarse aggregate) achieved the properties of normal concrete or even better properties at all ages. The results were confirmed by microscopic study such as X-ray diffraction and petrography examination. Environmental compatibility of concrete containing FA and FS was verified by the toxicity characteristic leaching procedure test. © The Author(s) 2016.

  9. Microbial screening test for lignite degradation. Quarterly progress report No. 3, July 1-September 30, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1985-01-01

    Degradation of Beulah std No. 3 lignite was carried out by means of cupric oxidation, modified-autoclaved-cupric oxidation, sodium dichromate oxidation, and also by biological methods. Assessment of the yield of alkaline-soluble and methanol soluble products of both cupric oxidation and modified cupric oxidation (on a moisture-free and ash-free basis) was carried out by both ion chromatography and gel permeation chromatography. Fractionation of lignite for natural-uninoculated-biological growth resulted in no growth for both benzene-methanol fraction and alkaline filtrate fraction, whereas that of alkaline geletinous fraction resulted in positive growth of unidentified white-rot fungi. Acclimation of Polyporus versicolor to lignite was attempted.more » 10 refs.« less

  10. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate

    PubMed Central

    Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash

    2015-01-01

    Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications. PMID:26421315

  11. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate.

    PubMed

    Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash

    2015-01-01

    Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications.

  12. Influence of fly-ash produced by lignite power station on humic substances in ectohumus horizons of Podzols

    NASA Astrophysics Data System (ADS)

    Weber, Jerzy; Jerzykiewicz, Maria; Jamroz, Elżbieta; Kocowicz, Andrzej; Dębicka, Magdalena; Ćwieląg-Piasecka, Irmina

    2017-04-01

    Literature on fly-ash influence on the environment report mainly on alkalization effect on vegetation and changes in chemistry of forest floor. As far as now soils were examined only for changes in pH in surface horizons, physical properties and heavy metal solubility. Soil properties strongly depend on soil organic matter content and humic substances properties, thus their modification plays a crucial role in soil forming processes and changes in the environment. From the other side, the alkalization effects on podzolization processes and particularly on humic substances have not been recognized. The aim of this paper was to characterize changes in properties of humic substances in ectohumus horizons of Podzols affected by alkali blown out from fly-ash dumping site of power station Bełchatów, central Poland. The objects of the investigation were Podzols derived from loose quartz sand, developed under pine forest. They surround the dumping site, which was established to store wastes from lignite combustion in Bełchatów power station. The samples were collected from ectohumus horizons in direct vicinity of the dumping site (50 m) as well as in the control area (7.3 km away) in five replications. Determination of elemental composition and spectroscopic analysis (EPR, FT-IR, ICP-OES and UV-Vis) were performed for humic acids, fulvic acids and humines extracted with standard IHSS procedure. An increase of pH in ectohumus horizons caused by the influence of fly-ash leads to change in humic substances structure. Obtained results showed that humic and fulvic acids from fly-ash affected Podzols indicated higher contents of nitrogen and sulphur, as well as higher O/C and lower C/N ratios. This points out a higher degree of their humification. Also EPR analyses of humic acids and humins affected by fly-ash indicated higher metal ions concentrations. However, the increase of Mn and Fe ions concentration did not affect the Fe(III) and Mn(II) band intensities of EPR spectra

  13. Comparative Study on Synergetic Degradation of a Reactive Dye Using Different Types of Fly Ash in Combined Adsorption and Photocatalysis

    NASA Astrophysics Data System (ADS)

    Giri Babu, P. V. S.; Swaminathan, G.

    2016-09-01

    A comprehensive study was carried out on four different fly ashes used as a catalyst for the degradation of Acid Red 1 using ultraviolet rays. These fly ashes are collected from different thermal power stations located at various places in India and having different chemical compositions. Three fly ashes are from lignite-based thermal power plants, and one is from the coal-based power plant. One fly ash is classified as Class F, two fly ashes are classified as Class C and remaining one is not conforming to ASTM C618 classification. X-Ray Fluorescence analysis was used to identify the chemical composition of fly ashes and SiO2, Al2O3, CaO, Fe2O3 and TiO2 were found to be the major elements present in different proportions. Various analysis were carried out on all the fly ashes like Scanning Electron Microscopy to identify the microphysical properties, Energy Dispersive X-Ray spectroscopy to quantify the elements present in the catalyst and X-Ray Diffraction to identify the catalyst phase analysis. The radical generated during the reaction was identified by Electron paramagnetic resonance spectroscopy. The parameters such as initial pH of the dye solution, catalyst dosage and initial dye concentration which influence the dye degradation efficiency were studied and optimised. In 60 min duration, the dye degradation efficiency at optimum parametric values of pH 2.5, initial dye concentration of 10 mg/L and catalyst dosage of 1.0 g/L using various fly ashes, i.e., Salam Power Plant, Barmer Lignite Power Plant, Kutch Lignite Power Plant and Neyveli Lignite Thermal Power plant (NLTP) were found to be 40, 60, 67 and 95 % respectively. The contribution of adsorption alone was 18 % at the above mentioned optimum parametric values. Among the above four fly ash NLTP fly ashes proved to be most efficient.

  14. Application of LIBS and TMA for the determination of combustion predictive indices of coals and coal blends

    NASA Astrophysics Data System (ADS)

    Ctvrtnickova, T.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2011-04-01

    Presented work brings results of Laser-Induced Breakdown Spectroscopy (LIBS) and Thermo-Mechanical Analysis (TMA) of coals and coal blends used in coal fired power plants all over Spain. Several coal specimens, its blends and corresponding laboratory ash were analyzed by mentioned techniques and results were compared to standard laboratory methods. The indices of slagging, which predict the tendency of coal ash deposition on the boiler walls, were determined by means of standard chemical analysis, LIBS and TMA. The optimal coal suitable to be blended with the problematic national lignite coal was suggested in order to diminish the slagging problems. Used techniques were evaluated based on the precision, acquisition time, extension and quality of information they could provide. Finally, the applicability of LIBS and TMA to the successful calculation of slagging indices is discussed and their substitution of time-consuming and instrumentally difficult standard methods is considered.

  15. Viscosity Determination of Molten Ash from Low-Grade US Coals

    DOE PAGES

    Zhu, Jingxi; Nakano, Jinichiro; Kaneko, Tetsuya Kenneth; ...

    2012-10-01

    In entrained slagging gasifiers, the fluidity of the molten ash is a critical factor for process control since it affects slag formation, the capture of inorganic constituents, refractory wear, and slag drainage along the gasification chamber walls. The use of western coal, or mixtures of eastern and western coals as gasifier feedstock, is likely to occur as western coals become available and technological issues that hinder their use are being resolved. In the present work, the viscosity of synthetic slags with ash chemistries simulating the western U.S. coals, was experimentally measured at a Po 2 = 10 - 8 atmmore » in the temperature range of 1773–1573 K (1500–1300 °C) using a rotating-bob viscometer. Alumina spindles and containment crucibles of both alumina and zirconia were used. Crystallization studies of this slag using a confocal scanning laser microscope found that a (Mg,Fe)Al 2O 4-based spinel precipitated at temperatures below 1723 K (1450 °C), and this agreed with FactSage equilibrium phase prediction. The same spinels were observed in the post-viscometry experiment slags when ZrO 2 crucibles were used and assumed to be in equilibrium with the slag at the higher temperatures. Zirconia dissolution resulted in a slight increase in the solid fraction present in slags at lower temperatures, compared to spinel fraction. Crystal precipitation changed the apparent activation energy and required a longer stabilization times for viscosity measurements. The viscosity results were used in predictive equations based on Veytsman and Einstein's models, with critical nucleation temperatures and the solid fraction calculated with FactSage. In the simulated eastern/western coal feedstock blends based on ash compositions, the fractions of the solid precipitates were also calculated using the thermodynamic program FactSage for each blend composition, and the plastic viscosity of each eastern/western coal slag blend was predicted using Veytsman's model and

  16. Leaching and toxicity behavior of coal-biomass waste cocombustion ashes.

    PubMed

    Skodras, G; Prokopidou, M; Sakellaropoulos, G P

    2006-08-01

    Land disposal of ash residues, obtained from the cocombustion of Greek lignite with biomass wastes, is known to create problems due to the harmful constituents present. In this regard, the leachability of trace elements from lignite, biomass, and blends cocombustion ashes was investigated by using the Toxicity Characteristic Leaching Procedure (TCLP) of the US Environmental Protection Agency (US EPA). In this work, the toxicity of the aqueous leachates and the concentrations of the metals obtained from the leaching procedure were measured using the Microtox test (Vibrio fischeri) and inductive coupled plasma-atomic emission spectrometer (ICP-AES), respectively. The toxic effects of most leachates on Vibrio fischeri were found to be significantly low in both 45% and 82% screening test protocols. However, the liquid sample originating from olive kernels fly ash (FA4) caused the highest toxic effect in both protocols, which can be attributed to its relatively high concentrations of As, Cd, Co, Cu, Mn, Ni, and Zn. Copyright 2006 Wiley Periodicals, Inc.

  17. Porous materials produced from incineration ash using thermal plasma technology.

    PubMed

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Impact of RCRA (PL 94-580) on the use or disposal of solid wastes from Texas lignite-fired utility boilers: a literature survey. Final report. [Flue gas desulfurization sludges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.L.

    A literature survey was conducted in order to determine the amount of information available to the public concerning the impact of the Resource Conservation and Recovery Act of 1976 (RCRA) on the use or disposal of solid wastes from Texas lignite-fired utility boilers. The utility power plants of ALCOA, Big Brown, Martin Lake, Monticello and San Miguel are the only facilities currently using Texas lignite as fuel. RCRA is a comprehensive federal law which provides for the management of hazardous waste from generation to ultimate disposal. Utility solid wastes such as fly ash and flue gas desulfurization (FGD) sludge aremore » currently classified as excluded wastes (wastes exempt from hazardous classification) pending further information regarding these high-volume, low risk wastes. RCRA also provides for the increased need of recovered materials in Subtitle F - Federal Procurement. The lignite deposits of Texas occur in belts that stretch diagonally across the state from Laredo to Texarkana. The sulfur content and Btu value of Texas lignite combined requires that sulfur scrubbers be installed on new power plant units. The utility solid wastes occur in large quantities and leachate from some of these wastes contained detectable amounts of chromium and selenium. However, the concentration of these elements in the leachate was not sufficient to classify any of the utility wastes in this study as hazardous per current RCRA guidelines. In general, fly ash and FGD sludge are classified as Class II wastes and disposed of in an environmentally acceptable manner. Considerable amounts of bottom ash and fly ash are utilized but, thus far, FGD sludge has been landfilled, usually in combination with fly ash.« less

  19. Optical properties of fly ash. Volume 2, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Self, S.A.

    1994-12-01

    Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executivemore » summary of the whole program followed by the dissertation of Ghosal and Ebert. Volume 2 contains the dissertation of Ebert which covers the measurements of the optical constants of slags, and calculations of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.« less

  20. Low-Chrome/Chrome Free Refractories for Slagging Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, J.P.; Kwong, K.-S.; Powell, C.P.

    2007-01-01

    Gasifiers are containment vessels used to react carbon-containing materials with oxygen and water, producing syngas (CO and H2) that is used in chemical and power production. It is also a potential source of H2 in a future hydrogen economy. Air cooled slagging gasifiers are one type of gasifier, operating at temperatures from 1275-1575º C and at pressures of 400 psi or higher. They typically use coal or petroleum coke as the carbon source, materials which contain ash impurities that liquefy at the gasification temperatures, producing liquid slag in quantities of 100 or more tons/day, depending on the carbon fed ratemore » and the percent ash present in the feedstock. The molten slag is corrosive to refractory linings, causing chemical dissolution and spalling. The refractory lining is composed of chrome oxide, alumina, and zirconia; and is replaced every 3-24 months. Gasifier users would like greater on-line availability and reliability of gasifier liners, something that has impacted gasifier acceptance by industry. Research is underway at NETL to improve refractory service life and to develop a no-chrome or low-chrome oxide alternative refractory liner. Over 250 samples of no- or low-chrome oxide compositions have been evaluated for slag interactions by cup testing; with potential candidates for further studies including those with ZrO2, Al2O3, and MgO materials. The development of improved liner materials is necessary if technologies such as IGCC and DOE’s Near Zero Emissions Advanced Fossil Fuel Power Plant are to be successful and move forward in the marketplace.« less

  1. The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Collier, N. C.; Milestone, N. B.; Yang, C. H.

    2011-06-01

    The UK currently uses composite blends of Portland cement and other inorganic cementitious material such as blastfurnace slag and pulverised fuel ash to encapsulate or immobilise intermediate and low level radioactive wastes. Typically levels up 9:1 blast furnace slag:Portland cement or 4:1 pulverised fuel ash:Portland cement are used. Whilst these systems offer many advantages, their high pH causes corrosion of various metallic intermediate level radioactive wastes. To address this issue, lower pH/weakly alkaline cementitious systems have to be explored. While the blast furnace slag:Portland cement system is referred to as a composite cement system, the underlying reaction is actually an indirect activation of the slag hydration by the calcium hydroxide generated by the cement hydration, and by the alkali ions and gypsum present in the cement. However, the slag also can be activated directly with activators, creating a system known as alkali-activated slag. Whilst these activators used are usually strongly alkaline, weakly alkaline and near neutral salts can also be used. In this paper, the potential for using weakly alkaline and near neutral salts to activate slag in this manner is reviewed and discussed, with particular emphasis placed on the immobilisation of reactive metallic nuclear wastes.

  2. A preliminary report on a zone containing thick lignite beds, Denver Basin, Colorado

    USGS Publications Warehouse

    Soister, Paul E.

    1973-01-01

    hand pressure. Quality of the lignite is lowered by the non-coal partings and, locally at least, by some small blebs and balls of clay in the lignite itself, especially at the base. Available analyses indicate that the following general figures, on an as-received basis, may be applied to relatively clean lignite from this zone: 6,000-7,000 Btu, 20-35 percent moisture, 8-18 percent ash, and 0.3-0.5 percent sulfur. Rank of the lignite is lignite A as calculated by the formulas of the American Society for Testing and . Materials (ASTM), although some parts, especially of deeper beds, may be as high as subbituminous C coal in rank. Best utilization of the lignite probably would be by gasification, liquefaction, or similar methods, because of the numerous non-coal partings and low quality. The thickest known lignite bed is estimated to contain at least 1.25 billion short tons of lignite. Two methods of roughly estimating the order of magnitude of lignite resources, in beds at least 4 feet thick and within 1,000 feet of the surface in this zone, indicate resources are on the order of 20 billion tons.

  3. ²²⁶Ra, ²³²Th and ⁴⁰K radionuclides enhancement rate and dose assessment for residues of lignite-fired thermal power plants in Turkey.

    PubMed

    Parmaksiz, A; Arikan, P; Vural, M; Yeltepe, E; Tükenmez, I

    2011-11-01

    A total of 77 coal, slag and fly ash samples collected from six thermal power plants were measured by gamma-ray spectrometry. The average (226)Ra activity concentrations in coal, slag and fly ash were measured as 199.8±16.7, 380.3±21.8 and 431.5±29.0 Bq kg(-1), respectively. The average (232)Th activity concentrations in coal, slag and fly ash were measured as 32.0±2.4, 74.0±9.0 and 87.3±9.8 Bq kg(-1), respectively. The average (40)K activity concentrations in coal, slag and fly ash were found to be 152.8±12.1, 401.3±25.0 and 439.0±30.2 Bq kg(-1), respectively. The radium equivalent activities of samples varied from 147.6±8.5 to 1077.4±53.3 Bq kg(-1). The gamma and alpha index of one thermal power plant's fly ash were calculated to be 3.5 and 5 times higher than that of the reference values. The gamma absorbed dose rates were found to be higher than that of the average Earth's crust. The annual effective dose of residues measured in four thermal power plants were calculated higher than that of the permitted dose rate for public, i.e. 1 mSv y(-1).

  4. Thermal exploitation of wastes with lignite for energy production.

    PubMed

    Grammelis, Panagiotis; Kakaras, Emmanuel; Skodras, George

    2003-11-01

    The thermal exploitation of wastewood with Greek lignite was investigated by performing tests in a laboratory-scale fluidized bed reactor, a 1-MW(th) semi-industrial circulating fluidized bed combustor, and an industrial boiler. Blends of natural wood, demolition wood, railroad sleepers, medium-density fiberboard residues, and power poles with lignite were used, and the co-combustion efficiency and the effect of wastewood addition on the emitted pollutants were investigated. Carbon monoxide, sulfur dioxide, and oxides of nitrogen emissions were continuously monitored, and, during the industrial-scale tests, the toxic emissions (polychlorinated dibenzodioxins and dibenzofurans and heavy metals) were determined. Ash samples were analyzed for heavy metals in an inductively coupled plasma-atomic emission spectroscopy spectrophotometer. Problems were observed during the preparation of wastewood, because species embedded with different compounds, such as railway sleepers and demolition wood, were not easily treated. All wastewood blends were proven good fuels; co-combustion proceeded smoothly and homogeneous temperature and pressure profiles were obtained. Although some fluctuations were observed, low emissions of gaseous pollutants were obtained for all fuel blends. The metal element emissions (in the flue gases and the solid residues) were lower than the legislative limits. Therefore, wastewood co-combustion with lignite can be realized, provided that the fuel handling and preparation can be practically performed in large-scale installations.

  5. Plant uptake of 238U, 235U, 232Th, 226Ra, 210Pb and 40K from a coal ash and slag disposal site and control soil under field conditions: A preliminary study.

    PubMed

    Skoko, Božena; Marović, Gordana; Babić, Dinko; Šoštarić, Marko; Jukić, Mirela

    2017-06-01

    The aim of this study was to investigate the uptake of 238 U, 235 U, 232 Th, 226 Ra, 210 Pb and 40 K by plants that grow on a coal ash and slag disposal site known for its higher content of naturally occurring radionuclides. Plant species that were sampled are common for the Mediterranean flora and can be divided as follows: grasses & herbs, shrubs and trees. To compare the activity concentrations and the resultant concentration ratios of the disposal site with those in natural conditions, we used control data specific for the research area, obtained for plants growing on untreated natural soil. Radionuclide activity concentrations were determined by high resolution gamma-ray spectrometry. Media parameters (pH, electrical conductivity and organic matter content) were also analysed. We confirmed significantly higher activity concentrations of 238 U, 235 U, 226 Ra and 210 Pb in ash and slag compared to control soil. However, a significant increase in the radionuclide activity concentration in the disposal site's vegetation was observed only for 226 Ra. On the contrary, a significantly smaller activity concentration of 40 K in ash and slag had no impact on its activity concentration in plant samples. The calculated plant uptake of 238 U, 235 U, 226 Ra and 210 Pb is significantly smaller in comparison with the uptake at the control site, while it is vice versa for 40 K. No significant difference was observed between the disposal site and the control site's plant uptake of 232 Th. These results can be the foundation for further radioecological assessment of this disposal site but also, globally, they can contribute to a better understanding of nature and long-term management of such disposal sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Gasification Slag and the Mechanisms by Which Phosphorous Additions Reduce Slag Wear and Corrosion in High Cr2O3 Refractories

    NASA Astrophysics Data System (ADS)

    Bennett, James; Nakano, Anna; Nakano, Jinichiro; Thomas, Hugh

    Gasification is a high-temperature/high-pressure process that converts carbonaceous materials such as coal and/or petcoke into CO and H2, feedstock materials used in power generation and chemical production. Gasification is considered an important technology because of its high process efficiency and the ability to capture environmental pollutants such as CO2, SO3 and Hg. Ash impurities in the carbon feedstock materials melt and coalesce during gasification (1325-1575 °C), becoming slag that attaches to and flows down the gasifier sidewall, corroding and eroding the high Cr2O3 refractory liner used to protect the gasification chamber. Phosphate additions to high Cr2O3 refractory have been found to alter slag/refractory interactions and dramatically reduce refractory wear by the following mechanisms: a) spinel formation, b) slag chemistry changes, c) two phase liquid formation, and d) oxidation state changes. The mechanisms and how they work together to impact material wear/corrosion will be discussed.

  7. Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging.

    PubMed

    Guo, Feihong; Zhong, Zhaoping

    2018-08-01

    This work presents studies on the co-combustion of anthracite coal and wood pellets in fluidized bed. Prior to the fluidized bed combustion, thermogravimetric analysis are performed to investigate the thermodynamic behavior of coal and wood pellets. The results show that the thermal decomposition of blends is divided into four stages. The co-firing of coal and wood pellets can promote the combustion reaction and reduce the emission of gaseous pollutants, such as SO 2 and NO. It is important to choose the proportion of wood pellets during co-combustion due to the low combustion efficiency caused by large pellets with poor fluidization. Wood pellets can inhibit the volatilization of trace elements, especially for Cr, Ni and V. In addition, the slagging ratio of wood pellets ash is reduced by co-firing with coal. The research on combustion of coal and wood pellets is of great significance in engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Paleocene-eocene lignite beds of southwest Alabama: Parasequence beds in highstand systems tracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancini, E.A.; Tew, B.H.; Carroll, R.E.

    1993-09-01

    In southwest Alabama, lignite beds are present in at least four stratigraphic intervals that span approximately 8 m.y. of geologic time. Lignite is found in the Paleocene Oak Hill Member and Coal Bluff Member of the Naheola Formation of the Midway Group and the Paleocene Tuscahoma Sand and the Eocene Hatchetigbee Formation of the Wilcox Group. Lignite beds range in thickness from 0.5 to 11 ft and consist of 32-53% moisture, 13-39% volatile matter, 4-36% fixed carbon, and 5-51% ash. These Paleocene and Eocene lignite beds occur as parasequence deposits in highstand systems tracts of four distinct third-order depositional sequences.more » The lignite beds are interpreted as strata within highstand systems tract parasequences that occur in mud-dominated regressive intervals. Lignite beds were deposited in coastal marsh and low-lying swamp environments as part of deltaic systems that prograded into southwestern Alabama from the west. As sediment was progressively delivered into the basin from these deltas, the effects of relative sea level rise during an individual cycle were overwhelmed, producing a net loss of accommodation and concomitant overall basinward progradation of the shoreline (regression). Small-scale fluctuations in water depth resulting from the interaction of eustasy, sediment yield, and subsidence led to cyclical flooding of the low-lying coastal marshes and swamps followed by periods of progradational and regression. Highstand systems tract deposition within a particular depositional sequence culminated with a relative sea level fall that resulted in a lowering of base level and an abrupt basinward shift in coastal onlap. Following sea level fall and the subsequent accumulation of the lowstand deposits, significant relative sea level rise resulted in the marine inundation of the area previously occupied by coastal marshes and swamps and deposition of the transgressive systems tract of the overlying sequence.« less

  9. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on {sup 25}Mg, {sup 27}Al, {sup 29}Si, {sup 31}P and {sup 39}K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC andmore » GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.« less

  10. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag.

    PubMed

    Zhou, Xian; Zhou, Min; Wu, Xian; Han, Yi; Geng, Junjun; Wang, Teng; Wan, Sha; Hou, Haobo

    2017-09-01

    Fly ash is a hazardous byproduct of municipal solid waste incineration (MSWI). Cementitious material that is based on ground-granulated blast furnace slag (GGBFS) has been tested and proposed as a binder to stabilize Pb, Cd, and Zn in MSWI fly ash (FA). Cr, however, still easily leaches from MSWI FA. Different reagents, such as ascorbic acid (VC), NaAlO 2 , and trisodium salt nonahydrate, were investigated as potential Cr stabilizers. The results of the toxicity characteristic leaching procedure (TCLP) showed that VC significantly improved the stabilization of Cr via the reduction of Cr(VI) to Cr(III). VC, however, could interfere with the hydration process. Most available Cr was transformed into stable Cr forms at the optimum VC content of 2 wt%. Cr leaching was strongly pH dependent and could be represented by a quintic polynomial model. The results of X-ray diffraction and scanning electron microscopy-energy dispersive analysis revealed that hollow spheres in raw FA were partially filled with hydration products, resulting in the dense and homogeneous microstructure of the solidified samples. The crystal structures of C-S-H and ettringite retained Zn and Cr ions. In summary, GGBFS-based cementitious material with the low addition of 2 wt% VC effectively immobilizes Cr-bearing MSWI FA. Copyright © 2017. Published by Elsevier Ltd.

  11. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece

    NASA Astrophysics Data System (ADS)

    Samara, Constantini

    Total suspended particle mass concentrations (TSP) were determined in the Kozani-Ptolemais-Florina basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a 1-year period (November 2000-November 2001) at 10 receptor sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Particulate emissions were also collected from a variety of sources including fly ash, lignite dust, automobile traffic, domestic heating, and open-air burning of agricultural biomass and refuse, and analyzed for the same chemical components. Ambient and source chemical profiles were used for source identification and apportionment of TSP by employing a chemical mass balance (CMB) receptor model. Diesel burning in vehicular traffic and in the power plants for generator start up was found to be the major contributor to ambient TSP levels at all 10 sites. Other sources with significant contributions were domestic coal burning, vegetative burning (wood combustion and agricultural burns) and refuse open-air burning. Fly ash escaping the electrostatic precipitators of the power plants was a minor contributor to ambient TSP.

  12. Stripping-coal deposits on lower Lignite Creek, Nenana coal field, Alaska

    USGS Publications Warehouse

    Wahrhaftig, Clyde; Birman, Joseph H.

    1954-01-01

    Stripping-coal reserves in an area of about 9.4 square miles extending from the Nenana River about 6 miles up the valley of Lignite Creek are estimated to amount to about 95, 000, 000 tons. The stripping-coal reserves are located in the lower and middle members of the Tertiary coal-bearing formation. Five continuous beds in the middle member range in thickness from 5 to 30 feet, and a discontinuous bed at the base of the lower member is about 60 feet thick. Analyses of outcrop samples, as received at the laboratory, show a heating content of 7,500--8,200 Btu, an ash content of 6 to 14 percent, and a moisture content of 25 percent. The reserve estimate is based on a maximum thickness of overburden of 200 feet. Coal below the level of Lignite Creek or its major tributaries was not considered as it was assumed that stripping would be by hydraulic methods. Uncertainties regarding the position of the coal outcrops and the extent of burning of the coal beds are the basis for a recommendation that, where possible, the stripping reserves be tested by drilling. Overburden consists largely of weakly consolidated sandstone and includes some coarse gravel and a few boulders 20 feet or more in diameter. Water for hydraulic mining can be obtained from the Nenana River. Lignite Creek does not appear to be a dependable source. Disposal of debris may affect the channel of the Nenana River causing damage to railroads and structures. Landslides are common in the valley of Lignite Creek and will affect mining operations and transportation routes.

  13. Synthetic Coal Slag Infiltration into Varying Refractory Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Tetsuya K; Thomas, Hugh; Bennett, James P

    The infiltrations of synthetic coal slag into 99%Al{sub 2}O{sub 3}, 85%Al{sub 2}O{sub 3}–15%SiO{sub 2}, and 90%Cr{sub 2}O{sub 3}–10%Al{sub 2}O{sub 3} refractories with a temperature gradient induced along the penetration direction were compared to one another. The infiltrating slag was synthesized with a composition that is representative of an average of the ash contents from U S coal feedstock. Experiments were conducted with a hot-face temperature of 1450°C in a CO/CO{sub 2} atmosphere. Minimal penetration was observed in the 90%Cr{sub 2}O{sub 3}–10%Al{sub 2}O{sub 3} material because interactions between the refractory and the slag produced a protective layer of FeCr{sub 2}O{sub 4},more » which impeded slag flow into the bulk of the refractory. After 5 h, the 99%Al{sub 2}O{sub 3} sample exhibited an average penetration of 12.7 mm whereas the 85%Al{sub 2}O{sub 3}–15%SiO{sub 2} sample showed 3.8 mm. Slag infiltrated into the 99%Al{sub 2}O{sub 3} and 85%Al{sub 2}O{sub 3}–15%SiO{sub 2} refractory systems by dissolving the respective refractories' matrix materials, which consist of fine Al{sub 2}O{sub 3} particles and an amorphous alumino-silicate phase. Due to enrichment in SiO{sub 2}, a network-former, infiltration into the 85%Al{sub 2}O{sub 3}–15%SiO{sub 2} system yielded a higher viscosity slag and hence, a shallower penetration depth. The results suggest that slag infiltration can be limited by interactions with the refractory through the formation of either a solid layer that physically impedes fluid flow or a more viscous slag that retards infiltration.« less

  14. Study on the ratio and properties of the slurry of light insulation masonry with volcanic slag

    NASA Astrophysics Data System (ADS)

    Liguang, Xiao; Dawei, Jiang

    2017-12-01

    Volcanic slag is a kind of natural high quality porous material, and it has a good thermal insulation effect, and it is an extremely rich natural resource. Therefore, this paper adopts the natural volcanic slag as the aggregate to build the insulation mortar mix design for the slag masonry, and tests the related performance of the mortar. The results show that adopts natural volcanic slag as the aggregate and the cement use fly ash to replace, and the appropriate uniform sealing pores were introduced into the mortar mix. The performance of the manufactured products can meet the requirements of JC/T890. The coefficient of thermal conductivity of lightweight masonry mortar is less than 0.14W/(m•K), and the frost resistance is greater than 100 times, and it is with a low price.

  15. Combinations of pozzolans and ground, granulated blast-furnace slag for durable hydraulic cement concrete

    DOT National Transportation Integrated Search

    1999-08-01

    Hydraulic cement concretes were produced using pozzolans and ground, granulated, blast-furnace slag to investigate the effect of these materials on durability. The pozzolans used were an ASTM C 618 Class F fly ash with a low lime content and a dry, d...

  16. Industrial Application Study on New-Type Mixed-Flow Fluidized Bed Bottom Ash Cooler

    NASA Astrophysics Data System (ADS)

    Zeng, B.; Lu, X. F.; Liu, H. Z.

    As a key auxiliary device of CFB boiler, the bottom ash cooler (BAC) has a direct influence on secure and economic operation of the boiler. The operating situation of domestic CFB power plant is complex and changeable with a bad coal-fired condition. The principle for designing BAC suitable for the bad coal-fired condition and high parameter CFB boilers was summarized in this paper. Meanwhile, a new-type mixed-flow fluidized bed bottom ash cooler was successfully designed on the basis of the comprehensive investigation on the existing BAC s merits and drawbacks. Using coarse/fine slag separation technology and micro-bubbling fluidization are the significant characteristics of this new BAC. This paper also puts great emphasis on its industrial test in a 460t/h CFB boiler. The results indicate that it achieves significant separation of the coarse/fine slag, an obvious cooling effect, no slag block and coking phenomenon, and continuous stable operation. Figs 7, Tabs 4 and Refs 11.

  17. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.

    PubMed

    Wang, Kuen-Sheng; Lin, Kae-Long; Lee, Ching-Hwa

    2009-02-15

    This work describes a novel approach for melting municipal solid waste incinerator (MSWI) fly ash, based on self-propagating reactions, by using energy-efficient simulated waste-derived thermite. The self-propagating characteristics, the properties of the recycled alloy and slag and the partitioning of heavy metals during the process are also studied. Experimental results demonstrate that the mix ratio of fly ash to the starting mixture of less than 30% supports the development of the self-propagating reaction with a melting temperature of 1350-2200 degrees C. Furthermore, metallic iron (or alloy) and the slag were retrieved after activation of the thermite reactions among the starting mixtures. It was noted that more than 91wt.% of iron was retrieved as alloy and the rest of non-reductive oxides as slag. During the thermite reactions, the partition of heavy metals to the SFA and flue gas varied with the characteristics of the target metals: Cd was mainly partitioned to flue gas (75-82%), and partition slightly increased with the increasing fly ash ratio; Pb and Zn, were mainly partitioned to the SFA, and the partition increased with increasing fly ash ratio; Cu was partitioned to the SFA (18-31%) and was not found in the flue gas; and moreover stable Cr and Ni were not identified in both the SFA and flue gas. On the other hand, the determined TCLP leaching concentrations were all well within the current regulatory thresholds, despite the various FA ratios. This suggests that the vitrified fly ash samples were environmental safe in heavy metal leaching. The results of this study suggested that melting of municipal solid waste incinerator fly ash by waste-derived thermite reactions was a feasible approach not only energy-beneficial but also environmental-safe.

  18. Advanced power assessment for Czech lignite. Task 3.6, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.

    1995-12-01

    The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is amore » challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.« less

  19. Solubilization of Australian lignites by microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catcheside, D.E.A.; Mallett, K.J.; Cox, R.E.

    1988-01-01

    Australia has substantial lignite deposits, particularly in the Latrobe Valley in Victoria where 4.10/sup 10/ tons are accessible with available technologies. The authors have investigated the susceptibility of these coal to solubilization by microorganisms, including species additional to those already identified as active on North American lignites. The data presented here show that acid oxidized lignites from the Latrobe Valley are solubilized by each of seven species of microorganisms previously found to be active on Leonardite and oxidized North American lignites. These are the wood rot fungi: Trametes versicolor, Poria placenta and Phanerochaete chrysosporium, the lignin degrading prokaryote Streptomyces viridosporusmore » and three fungi isolated from lignite in Mississippi: Candida ML-13, Cunninghamelia YML-1 and Penicillium waksmanii.« less

  20. Ash chemistry and sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Backman, R.; Hupa, Mikko

    1996-12-31

    The thermal behavior of a fuel ash is one important factor to consider when fireside slagging and fouling problems in steam boilers are addressed. It is well known that different types of chemical reactions and melts in deposits play an important role in the build-up of problematic fireside deposits. Low viscous melts occur in steam boilers mainly when salt mixtures are present in the ash. Such are Merent mixtures of alkali and earth alkali sulfates, chlorides and carbonates. These mixtures do not melt at a certain temperature but form a melt in a temperature range which in some cases maymore » be several hundreds of degrees. The amount of melt is crucial for the deposit build-up. For some boilers it has been found that roughly 10 - 20 weight-% melt in an ash mixture would be enough to cause extensive deposit formation, while 60 - 80 weight-% melt would already cause the ash to be so wet it would flow down a vertical tube and not cause any further deposit growth.« less

  1. The chemical composition of tertiary Indian coal ash and its combustion behaviour - a statistical approach: Part 2

    NASA Astrophysics Data System (ADS)

    Sharma, Arpita; Saikia, Ananya; Khare, Puja; Dutta, D. K.; Baruah, B. P.

    2014-08-01

    In Part 1 of the present investigation, 37 representative Eocene coal samples of Meghalaya, India were analyzed and their physico-chemical characteristics and the major oxides and minerals present in ash samples were studied for assessing the genesis of these coals. Various statistical tools were also applied to study their genesis. The datasets from Part 1 used in this investigation (Part 2) show the contribution of major oxides towards ash fusion temperatures (AFTs). The regression analysis of high temperature ash (HTA) composition and initial deformation temperature (IDT) show a definite increasing or decreasing trend, which has been used to determine the predictive indices for slagging, fouling, and abrasion propensities during combustion practices. The increase or decrease of IDT is influenced by the increase of Fe2O3, Al2O3, SiO2, and CaO, respectively. Detrital-authigenic index (DAI) calculated from the ash composition and its relation with AFT indicates Sialoferric nature of these coals. The correlation analysis, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA) were used to study the possible fouling, slagging, and abrasion potentials in boilers during the coal combustion processes. A positive relationship between slagging and heating values of the coal has been found in this study.

  2. Long-term leaching tests with high ash fusion Maryland coal slag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browman, M.G.

    The main objective of this project was to investigate the potential environmental impact of the storage or disposal of coal gasification residues. In this regard, this investigation examined the quality of leachate produced during the long-term outdoor storage slag generated at the TVA 200-t/d Texaco gasifier in Muscle Shoals, Alabama. Evaluative laboratory extraction tests were also conducted on both the coarse and fine slag. Leachate quality was tracked in both the surface water and the water at depth after it percolated through the slag pile (leachate well water) by measuring pH and conductivity on a weekly basis and toxic tracemore » elements and other chemical species quarterly or at longer intervals. The major species observed in the leachate well water were Ca and Mg cations as well as sulfate anions. The average electrical conductivity measured in the leachate well water was 2503 {mu}mhos/cm. The measured pH decreased from an initial value of 8.2 and stabilized at about 7.1 with occasional excursions to values as low as 6.3 during dry periods. Concurrently, sulfate concentrations averaged 1083 mg/l with occasional peaks as high as 2600 mg/l. Fe and Mn concentrations measured in the leachate well waters averaged 2.0 and 1.68 mg/l, respectively. Concentrations of species for which Primary Maximum Contaminant Limits (MCLs) for public drinking water supplies have been established were generally below the primary limits with the exception of Se and F which exceeded the limits occasionally. Concentrations of Fe, Mn, sulfate, and total dissolved solids were markedly above the Secondary MCLs set for these species. 35 refs., 2 figs., 21 tabs.« less

  3. Filter materials for metal removal from mine drainage--a review.

    PubMed

    Westholm, Lena Johansson; Repo, Eveliina; Sillanpää, Mika

    2014-01-01

    A large number of filter materials, organic and inorganic, for removal of heavy metals in mine drainage have been reviewed. Bark, chitin, chitosan, commercial ion exchangers, dairy manure compost, lignite, peat, rice husks, vegetal compost, and yeast are examples of organic materials, while bio-carbons, calcareous shale, dolomite, fly ash, limestone, olivine, steel slag materials and zeolites are examples of inorganic materials. The majority of these filter materials have been investigated in laboratory studies, based on various experimental set-ups (batch and/or column tests) and different conditions. A few materials, for instance steel slag materials, have also been subjects to field investigations under real-life conditions. The results from these investigations show that steel slag materials have the potential to remove heavy metals under different conditions. Ion exchange has been suggested as the major metal removal mechanisms not only for steel slag but also for lignite. Other suggested removal mechanisms have also been identified. Adsorption has been suggested important for activated carbon, precipitation for chitosan and sulphate reduction for olivine. General findings indicate that the results with regard to metal removal vary due to experimental set ups, composition of mine drainage and properties of filter materials and the discrepancies between studies renders normalisation of data difficult. However, the literature reveals that Fe, Zn, Pb, Hg and Al are removed to a large extent. Further investigations, especially under real-life conditions, are however necessary in order to find suitable filter materials for treatment of mine drainage.

  4. Origin and significance of high nickel and chromium concentrations in pliocene lignite of the Kosovo Basin, Serbia

    USGS Publications Warehouse

    Ruppert, L.; Finkelman, R.; Boti, E.; Milosavljevic, M.; Tewalt, S.; Simon, N.; Dulong, F.

    1996-01-01

    Trace element data from 59 Pliocene lignite cores from the lignite field in the Kosovo Basin, southern Serbia, show localized enrichment of Ni and Cr (33-304 ppm and 8-176 ppm, respectively, whole-coal basis). Concentrations of both elements decrease from the western and southern boundaries of the lignite field. Low-temperature ash and polished coal pellets of selected bench and whole-coal samples were analyzed by X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray analyses. These analyses show that most of the Ni and Cr are incorporated in detrital and, to a lesser degree, in authigenic minerals. The Ni- and Cr-bearing detrital minerals include oxides, chromites, serpentine-group minerals and rare mixed-layer clays. Possible authigenic minerals include Ni-Fe sulfates and sulfides. Analyses of three lignite samples by a supercritical fluid extraction technique indicate that some (1-11%) of the Ni is organically bound. Ni- and Cr-bearing oxides, mixed-layer clays, chromites and serpentine-group minerals were also identified in weathered and fresh samples of laterite developed on serpentinized Paleozoic peridotite at the nearby Glavica and C??ikatovo Ni mines. These mines are located along the western and northwestern rim, respectively, of the Kosovo Basin, where Ni contents are highest. The detrital Ni- and Cr-bearing minerals identified in lignite samples from the western part of the Kosovo Basin may have been transported into the paleoswamp by rivers that drained the two Paleocene laterites. Some Ni may have been transported directly into the paleoswamp in solution or, alternatively, Ni may have been leached from detrital minerals by acidic peat water and adsorbed onto organic matter and included into authigenic mineral phases. No minable source of Ni and Cr is known in the southern part of the lignite field; however, the mineral and chemical data from the lignite and associated rocks suggest that such a source area may exist.

  5. Management of mine spoil for crop productivity with lignite fly ash and biological amendments.

    PubMed

    Ram, L C; Srivastava, N K; Tripathi, R C; Jha, S K; Sinha, A K; Singh, G; Manoharan, V

    2006-04-01

    Long-term field trials using lignite fly ash (LFA) were carried out in rice crops during the period 1996-2000 at Mine I, Neyveli Lignite Corporation, Tamil Nadu. LFA, being alkaline and endowed with an excellent pozzolanic nature, silt loam texture, and plant nutrients, has the potential to improve the texture, fertility, and crop productivity of mine spoil. The rice crops were the first, third, fifth, and sixth crops in rotation. The other crops, such as green gram (second) and sun hemp (fourth), were grown as green manure. For experimental trials, LFA was applied at various dosages (0, 5, 10, 20, 50, 100, and 200 t/ha), with and without press mud (10 t/ha), before cultivation of the first crop. Repeat applications of LFA were made at the same dosages in treatments of up to 50 t/ha (with and without press mud) before cultivation of the third and fifth crops. Press mud, a lightweight organic waste product from the sugar industry, was used as an organic amendment and source of plant nutrients. Also, a recommended dosage of chemical fertilizer, along with gypsum, humic acid, and biofertilizer as supplementing agents, was applied in all the treatments, including control. With one-time and repeat applications of LFA, from 5 to 20 t/ha (with and without press mud), the crop yield (grain and straw) increased significantly (p < 0.05), in the range from 3.0 to 42.0% over the corresponding control. The maximum yield was obtained with repeat applications of 20 t/ha of LFA with press mud in the third crop. The press mud enhanced the yield in the range of 1.5-10.2% with various dosages of LFA. The optimum dosage of LFA was 20 t/ha for both one-time and repeat applications. Repeat applications of LFA at lower dosages of up to 20 t/ha were more effective in increasing the yield than the corresponding one-time applications of up to 20 t/ha and repeat applications at 50 t/ha. One-time and repeat applications of LFA of up to 20 t/ha (with and without press mud), apart from

  6. Alteration of municipal and industrial slags under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Rafał Kowalski, Piotr; Michalik, Marek

    2014-05-01

    The Waste Management System in Poland is being consequently built since 1998. After important changes in legislation, local governments have taken over the duty of waste collection. New points of selective collection of wastes have been opened and new sorting and composting plants were built. The last stage of introducing the Waste Management System is construction of waste incineration power plants. From nine installations which were planned, six are now under construction and they will start operating within the next two years. It is assumed that the consumption of raw wastes for these installations will reach 974 thousand tons per year. These investments will result in increased slags and ashes production. Now in Poland several local waste incinerators are operating and predominant amount of produced incineration residues is landfilled. These materials are exposed to atmospheric conditions in time of short term storage (just after incineration) and afterwards for a longer period of time on the landfill site. During the storage of slags low temperature mineral transformations and chemical changes may occur and also some components can be washed out. These materials are stored wet because of the technological processes. The aim of this study is to investigate the influence of storage in atmospheric conditions on slags from incineration of industrial and municipal wastes. The experiment started in January 2013. During this period slag samples from incineration of industrial and municipal wastes were exposed to atmospheric conditions. Samples were collected after 6 and 12 months. Within this time the pH value was measured monthly, and during the experimental period remained constant on the level of 9.5. After 6 months of exposure only slight changes in mineral compositions were observed in slags. The results of XRD analysis of municipal slags showed increase in content of carbonate minerals in comparison to the raw slag samples. In industrial slags, a decrease in

  7. Effect of Rice Husk Ash Insulation Powder on the Reoxidation Behavior of Molten Steel in Continuous Casting Tundish

    NASA Astrophysics Data System (ADS)

    Kim, Tae Sung; Chung, Yongsug; Holappa, Lauri; Park, Joo Hyun

    2017-06-01

    Rice husk ash (RHA) has been widely used as an insulation powder in steel casting tundish. Its effect on the reoxidation of molten steel in tundish as well as on the corrosion of magnesia refractory was investigated. The reoxidation of the steel, indicated by an oxygen pickup, was progressed by increasing the ratio of RHA to the sum of RHA and carryover ladle slag ( R ratio) greater than about 0.2. The increase of the silica activity in the slag layer promoted the self-dissociation of SiO2 from the slag layer into the molten steel, resulting in the silicon and oxygen pickup as the R ratio increased. The total number of reoxidation inclusions dramatically increased and the relative fraction of Al2O3-rich inclusions increased by increasing the R ratio. Hence, the reoxidation of molten steel in tundish might become more serious due to the formation of alumina-rich inclusions as the casting sequence increases. MgO in the refractory directly dissolved into the molten slag layer without forming any intermediate compound layer ( e.g., spinel), which is a completely different situation from the general slag-refractory interfacial reaction. A flow was possibly induced by the bursting of gas bubbles at the ash-slag (-refractory) interface, since the silica in the RHA powder continuously dissolved into the molten slag pool. Thus, the RHA insulation powder has a negative effect on the corrosion of MgO refractory.

  8. Coal fly ash-slag-based geopolymers: microstructure and metal leaching.

    PubMed

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernández-Pereira, Constantino

    2009-07-15

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilize a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  9. Lignite pellets and methods of agglomerating or pelletizing

    DOEpatents

    Baker, Albert F.; Blaustein, Eric W.; Deurbrouck, Albert W.; Garvin, John P.; McKeever, Robert E.

    1981-01-01

    The specification discloses lignite pellets which are relatively hard, dust resistant, of generally uniform size and free from spontaneous ignition and general degradation. Also disclosed are methods for making such pellets which involve crushing as mined lignite, mixing said lignite with a binder such as asphalt, forming the lignite binder mixture into pellets, and drying the pellets.

  10. Vitrification of MSWI Fly Ash by Thermal Plasma Melting and Fate of Heavy Metals

    NASA Astrophysics Data System (ADS)

    Ni, Guohua; Zhao, Peng; Jiang, Yiman; Meng, Yuedong

    2012-09-01

    Municipal solid waste incinerator (MSWI) fly ash with high basicity (about 1.68) was vitrified in a thermal plasma melting furnace system. Through the thermal plasma treatment, the vitrified product (slag) with amorphous dark glassy structure was obtained, and the leachability of hazardous metals in slag was significantly reduced. Meanwhile, it was found that the cooling rate affects significantly the immobility of heavy metals in slag. The mass distribution of heavy metals (Zn, Cd, Cr, Pb, As, Hg) was investigated in residual products (slag, secondary residues and flue gas), in order to analyze the behavior of heavy metals in thermal plasma atmosphere. Heavy metal species with low boiling points accounting for the major fraction of their input-mass were adsorbed in secondary residues by pollution abatement devices, while those with high boiling points tended to be encapsulated in slag.

  11. Geochemistry and mineralogy of fly-ash from the Mae Moh lignite deposit, Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, B.R.; Powell, M.A.; Fyfe, W.S.

    The concentration of 21 elements in fly ash from three boilers (75 MW, 150 MW, and 300 MW) at the EGAT power plant, Mae Moh, Thailand, were determined by INAA. The concentration of 10 major elements was determined by XRF. As, Co, Cr, Ni, Mo, and Sb generally increase in concentration going from bottom ash (BA) through the sequence of electrostatic precipitator ashes (ESPA) and reach maxima of As (352 ppm), Co (45 ppm), Cr (105 ppm), Mo (32 ppm), Ni (106 ppm), and Sb (15 ppm) in the ESPA. Ce, Cs, Fe, Hf, La, Sc, Ta, Tb, and Ybmore » did not exhibit concentration trends or are variable except in the case of one boiler, which showed an increase going from BA to ESPA. Only Br decreased in composition going from BA to ESPA. Rb, Sm, U, and Th showed marked variation in trends. The major elements identified by EDS were Al, Si, S, K, Ca, Fe, and Ba, with minor amounts of Mg, Na, Ti, Mn, and Sr. Al, Si, K, and Ca occur together and are present in most of the fly-ash particles. Ba was found as a major component with Ca, Al, and Si. Fe and Ca are usually associated with sulfur. Some small spheres (< 5 {mu}m) are comprised almost entirely of Fe (probably as oxide). Symplectite textures are noted in high-Fe phases. All elements except Br are significantly enriched in the fly ash relative to the coal, which contains 35% ash. Particle chemistry is consistent with the major mineral phases identified by XRD, which include: quartz, magnetite, mullite, gehlenite, anorthite, hematite, anhydrite, and clinopyroxene.« less

  12. Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal.

    PubMed

    Onenc, Sermin; Retschitzegger, Stefan; Evic, Nikola; Kienzl, Norbert; Yanik, Jale

    2018-01-01

    This study presents combustion behavior and emission results obtained for different fuels: poultry litter (PL) and its char (PLC), scrap tires (ST) and its char (STC) and blends of char/lignite (PLC/LIG and STC/LIG). The combustion parameters and emissions were investigated via a non-isothermal thermogravimetric method and experiments in a lab-scale reactor. Fuel indexes were used for the prediction of high temperature corrosion risks and slagging potentials of the fuels used. The addition of chars to lignite caused a lowering of the combustion reactivity (anti-synergistic effect). There was a linear correlation between the NO x emissions and the N content of the fuel. The form of S and the concentrations of alkali metals in the fuel had a strong effect on the extent of SO 2 emissions. The use of PL and PLC in blends reduced SO 2 emissions and sulphur compounds in the fly ash. The 2S/Cl ratio in the fuel showed that only PLC and STC/PLC would show a risk of corrosion during combustion. The ratio of basic to acidic oxides in fuel indicated that ST, STC and STC/LIG have low slagging potential. The molar (Si+P+K)/(Ca+Mg) ratio, which was used for PL, PLC and PLC containing blends, showed that the ash melting temperatures of these fuels would be higher than 1000 °C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Pipeline transportation of upgraded Yugoslavian lignite fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ljubicic, B.; Anderson, C.; Bukurov, Z.

    1993-12-31

    Hydraulic transport and handling procedures for coal are not widely used, but when practiced, they result in a technically and economically successful operation. Potentially the most attractive way to utilize lignitic coals for power generation would be to combine hydraulic mining techniques with aqueous ash removal, hydrothermal processing, solids concentration, and coal-water fuel (CWF) combustion. Technical and economic assessment of this operation is being implemented within the Yugoslavian-American Scientific Technical Cooperation Agreement. The Energy and Environmental Research Center (EERC), Grand Forks, North Dakota, with support from the U.S. Department of Energy, has entered into a jointly sponsored research project withmore » Electric Power of Serbia (EPS), Belgrade, Yugoslavia, to investigate the application of the nonevaporative hydrothermal drying procedure, commonly called hot-water drying (HWD), developed at the EERC, to the lignite from the Kovin deposit. Advances in hydrothermal treatment of low-rank coals (LRCs) at the EERC have enabled cheaper, more reactive LRCs to be used in coal-water fuels (CWFs). HWD is a high-temperature, nonevaporative drying technique carried out at high pressure in water that permanently alters the structure of LRC. It solves the stability problems by producing a safe, easily transported, liquid fuel that can be handled and used like oil. For continued or increased success, it is necessary to evaluate carefully all aspects of slurry technology that permit further optimization. This paper discusses some aspects of low-rank coal hydraulic transport combined with hydrothermal treatment as an alternative energy solution toward less oil dependence in Yugoslavia.« less

  14. Utilization of lignite power generation residues for the production of lightweight aggregates.

    PubMed

    Anagnostopoulos, Iason M; Stivanakis, Victor E

    2009-04-15

    A novel process is proposed for the utilization of lignite combustion solid residues in the production of inflammable lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering, and carbon contained in BA was used as the process fuel. The main residues bottom ash (BA) and fly ash (FA) from Megalopolis power plant were characterized, mixed in different proportions and treated through pelletization and sintering process. Sintering benefits from combustion of BA carbon content and the product is a hardened porous cake. The energy required for achievement of high temperatures, in the range of 1250 degrees C, was offered by carbon combustion and CO(2) evolution is responsible for porous structure formation. Selected physical properties of sintered material relevant to use as lightweight aggregates were determined, including bulk density, porosity and water absorption. Bulk density varies from 0.83 to 0.91 g/cm(3), porosity varies from 60% to 64% and water absorption varies from 66% to 80%. LWA formed is used for the production of lightweight aggregate concrete (LWAC). Thermal conductivity coefficient varies from 0.25 to 0.37 W/mK (lower than maximum limit 0.43 W/mK) and compressive strength varies from 19 to 23 MPa (higher than minimum limit 17 MPa). The results indicate that sintering of lignite combustion residues is an efficient method of utilization of carbon containing BA and production of LWA for structural and insulating purposes. Carbon content of BA is a key factor in LWA production. Finally, this research work comprises the first proposed application for utilization of BA in Greece.

  15. Future of lignite resources: a life cycle analysis.

    PubMed

    Wang, Qingsong; Liu, Wei; Yuan, Xueliang; Zheng, Xiaoning; Zuo, Jian

    2016-12-01

    Lignite is a low-quality energy source which accounts for 13 % of China's coal reserves. It is imperative to improve the quality of lignite for large-scale utilization. To further explore and analyze the influence of various key processes on the environment and economic costs, a lignite drying and compression technology is evaluated using an integrated approach of life cycle assessment and life cycle costs. Results showed that lignite mining, direct air emissions, and electricity consumption have most significant impacts on the environment. An integrated evaluation of life cycle assessment and life cycle costs showed that the most significant contributor to the environmental impacts and economic costs was the lignite mining process. The impact of transportation and wastewater treatment process on the environment and economic costs was small enough to be ignored. Critical factors were identified for reducing the environmental and economic impacts of lignite drying and compression technology. These findings provide useful inputs for both industrial practice and policy making for exploitation, processing, and utilization of lignite resources.

  16. Microscopic observations of self-healing products in calcareous fly ash mortars.

    PubMed

    Jóźwiak-Niedźwiedzka, Daria

    2015-01-01

    The results of microstructural characterization of mortars containing fly ash class C (High Calcium Fly Ash) from combustion of lignite are presented. The evaluation of the microstructure was performed using scanning electron microscope, optical, and confocal microscope. The tested beams were bent till the crack and microcracks opening, which were healed during the different curing time. The results showed that the replacement of cement with fly ash class C influenced the process of crack healing. The addition of HCFA, at both 30% and 60%, speeds up the self-healing process in cracks and particularly in micro-cracks. In the research, the completely filling up of the cracks by new phases has not been observed, only the beginning of such process has been noticed. © 2014 Wiley Periodicals, Inc.

  17. Optical properties of fly ash. Volume 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Self, S.A.

    1994-12-01

    Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executivemore » summary of the whole program followed by the dissertation of Ghosal. Volume 1 contains the dissertation of Ghosal which covers the characterization of fly ash and the measurements of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.« less

  18. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    PubMed

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I

    2016-06-01

    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sustainable Mining Land Use for Lignite Based Energy Projects

    NASA Astrophysics Data System (ADS)

    Dudek, Michal; Krysa, Zbigniew

    2017-12-01

    This research aims to discuss complex lignite based energy projects economic viability and its impact on sustainable land use with respect to project risk and uncertainty, economics, optimisation (e.g. Lerchs and Grossmann) and importance of lignite as fuel that may be expressed in situ as deposit of energy. Sensitivity analysis and simulation consist of estimated variable land acquisition costs, geostatistics, 3D deposit block modelling, electricity price considered as project product price, power station efficiency and power station lignite processing unit cost, CO2 allowance costs, mining unit cost and also lignite availability treated as lignite reserves kriging estimation error. Investigated parameters have nonlinear influence on results so that economically viable amount of lignite in optimal pit varies having also nonlinear impact on land area required for mining operation.

  20. Effect of SiO2 on immobilization of metals and encapsulation of a glass network in slag.

    PubMed

    Kuo, Yi-Ming; Lin, Ta-Chang; Tsai, Perng-Jy

    2003-11-01

    The final disposal of ash from an incinerator is of special concern because of the possibility of its releasing toxic substances. Melting/vitrification has been regarded as a prospective technology of ash treatment. The object of this investigation was to evaluate the effect of silica (SiO2) addition on the immobilization of hazardous metals and the encapsulation of a glass network during the vitrification process. Four specimens with SiO2/fly ash mixing ratios of 0, 0.1, 0.2, and 0.3, respectively, were tested. The mobility of metals in slag was then estimated by a sequential extraction procedure. X-ray diffraction analysis indicates that SiO2 leads to the polymerization of silicates. The encapsulation of aluminum, calcium, and magnesium would not be observed unless adequate amount of SiO2 was added. It was also found that SiO2 addition enhances the formation of a compact and interconnected glass network structure and, thus, contributes to the chemical stability of metals in slag. After vitrification, the mobility of cadmium, copper, iron, chromium, nickel, lead, and zinc was significantly reduced. However, there is no significant correlation between the immobilization of these metals and the addition of SiO2.

  1. Microbial desulphurization of Turkish lignites by White Rot Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinar Aytar; Mesut Sam; Ahmet Cabuk

    2008-03-15

    Biodesulphurization experiments were carried out with Tuncbilek lignite, characterized by high sulfur content (2.59%) by using Trametes versicolor ATCC 200801 and Phanerochaete chrysosporium ME 446. At fungal biomass studies, the effects of various parameters on fungal desulphurization of coals such as pH, temperature, pulp density, incubation time, and sterilization were investigated for both microorganisms. The maximum desulphurization (40%) was observed after 6 days of incubation at 35{sup o}C for T. versicolor. The optimum pH was measured at 6, and the agitation rate was fixed at 125 rpm. The pulp density was found as 5% (w/v) for the high extent ofmore » desulphurization. Also, calorific value did not change during this experiment. However, the ash and metal contents of coal were eliminated. 30 refs., 6 figs., 2 tabs.« less

  2. A review of the lignite resources of Arkansas

    USGS Publications Warehouse

    Willett, Jason C.; Hackley, Paul C.; Warwick, Peter D.; S.J. Law,; Nichols, Douglas J.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    This review of the lignite resources of Arkansas is a part of the U.S. Geological Survey’s (USGS) National Coal Resource Assessment (NCRA) of the Gulf Coastal Plain Coal Province, which also includes coal-bearing areas in the states of Texas, Louisiana, Alabama, Mississippi, Tennessee, and Kentucky (see Ruppert et al., 2002; Dennen, 2009; and other chapters of this publication). Lignite mining is not planned in Arkansas in the immediate future, and the lignite resources of the state were not assessed in detail as part of the NCRA. This chapter includes reviews of the geology of the lignite-bearing units, historical mining, previous investigations of lignite resources, and coal quality. Palynological data for lignite samples collected in Arkansas as part of this work are presented in Table 1.The lignite-bearing stratigraphic units of Arkansas are part of the Mississippi Embayment of the Gulf Coastal Plain, a trough of Cretaceous through Quaternary sedimentary strata that plunge gently southward along an axis that generally is coincident with the course of the Mississippi River (Figure 1) (Cushing et al., 1964). The sedimentary strata of the Gulf Coastal Plain of Arkansas are, in general, flat-lying or gently dipping southeastward to eastward toward the embayment axis. Coal and lignite occur in Cretaceous through Tertiary strata of Arkansas and previously have been investigated in two principal regions within the State where units of these ages crop out: south-central Arkansas (West Gulf Coastal Plain) and Crowley’s Ridge in the northeastern part of the State (Figure 2).

  3. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.

    PubMed

    Chang, E-E; Pan, Shu-Yuan; Chen, Yi-Hung; Chu, Hsiao-Wen; Wang, Chu-Fang; Chiang, Pen-Chi

    2011-11-15

    Carbon dioxide (CO(2)) sequestration experiments using the accelerated carbonation of three types of steelmaking slags, i.e., ultra-fine (UF) slag, fly-ash (FA) slag, and blended hydraulic slag cement (BHC), were performed in an autoclave reactor. The effects of reaction time, liquid-to-solid ratio (L/S), temperature, CO(2) pressure, and initial pH on CO(2) sequestration were evaluated. Two different CO(2) pressures were chosen: the normal condition (700 psig) and the supercritical condition (1300 psig). The carbonation conversion was determined quantitatively by using thermo-gravimetric analysis (TGA). The major factors that affected the conversion were reaction time (5 min to 12h) and temperature (40-160°C). The BHC was found to have the highest carbonation conversion of approximately 68%, corresponding to a capacity of 0.283 kg CO(2)/kg BHC, in 12h at 700 psig and 160°C. In addition, the carbonation products were confirmed to be mainly in CaCO(3), which was determined by using scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) to analyze samples before and after carbonation. Furthermore, reaction kinetics were expressed with a surface coverage model, and the carbon footprint of the developed technology in this investigation was calculated by a life cycle assessment (LCA). Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Treatment of fly ash from power plants using thermal plasma.

    PubMed

    Al-Mayman, Sulaiman; AlShunaifi, Ibrahim; Albeladi, Abdullah; Ghiloufi, Imed; Binjuwair, Saud

    2017-01-01

    Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20-50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy.

  5. Treatment of fly ash from power plants using thermal plasma

    PubMed Central

    Al-Mayman, Sulaiman; AlShunaifi, Ibrahim; Albeladi, Abdullah; Binjuwair, Saud

    2017-01-01

    Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20–50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy. PMID:28546898

  6. Residence time effects on technetium reduction in slag-based cementitious materials.

    PubMed

    Arai, Yuji; Powell, Brian A; Kaplan, D I

    2018-01-15

    A long-term disposal of technetium-99 ( 99 Tc) has been considered in a type of cementitious formulation, slag-based grout, at the U.S. Department of Energy, Savannah River Site, Aiken SC, U.S.A. Blast furnace slag, which contains S and Fe electron donors, has been used in a mixture with fly ash, and Portland cement to immobilize 99 Tc(VII)O 4 - (aq) in low level radioactive waste via reductive precipitation reaction. However the long-term stability of Tc(IV) species is not clearly understood as oxygen gradually diffuses into the solid structure. In this study, aging effects of Tc speciation were investigated as a function of depth (<2.5cm) in slag-based grout using X-ray absorption spectroscopy. All of Fe(II) in solids was oxidized to Fe(III) after 117d. However, elemental S, sulfide, and sulfoxide persists at the 0-8mm depths even after 485d, suggesting the presence of a reduced zone below the surface few millimeters. Pertechnetate was successfully reduced to Tc(IV) after 29d. Distorted hydrolyzed Tc(IV) octahedral molecules were partially sulfidized and or polymerized at all depths (0-8mm) and were stable in 485d aged sample. The results of this study suggest that variable S species contribute to stabilize the partially sulfidized Tc(IV) species in aged slag-based grout. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Influence of Specific Surface of Lignite Fluidal Ashes on Rheological Properties of Sealing Slurries / Wpływ Powierzchni Właściwej Popiołów Fluidalnych z Węgla Brunatnego na Właściwości Reologiczne Zaczynów Uszczelniających

    NASA Astrophysics Data System (ADS)

    Stryczek, Stanisław; Wiśniowski, Rafał; Gonet, Andrzej; Złotkowski, Albert

    2012-11-01

    New generation fly ashes come from the combustion of coal in fluid-bed furnaces with simultaneous sulphur-removal from gases at ca. 850°C. Accordingly, all produced ashes basically differ in their physicochemical properties from the traditional silica ones. The aim of the laboratory analyses was determining the influence of specific surface and granular composition of fluidal ash on rheological properties of slurries used for sealing up the ground and rock mass media with hole injection methods, geoengineering works and cementing casing pipes in deep boreholes. Fluidal ash from the combustion of lignite contain active Puzzolan appearing in the form of dehydrated clayey minerals and active components activating the process of hydration ashes, i.e. CaO, anhydrite II and CaCO3. The ashes have a weak point, i.e. their high water diment, which the desired rheological properties related with the range of their propagation in the rock mass cannot not be acquired for injection works in the traditional sealing slurries technology. Increasing the water-to-mixture ratio should eliminate this feature of fluidal ashes. Laboratory analyses were performed for slurries based on metallurgical cement CEM III/A 32,5 having water-to-mixture ratios: 0.5; 0.6 ; 0.7 and 0.8; the fluidal ash concentration in the slurries was 30 wt.% (with respect to the mass of dry cement). Basing on the obtained results there were determined optimum recipes of sealing slurries in view of their rheological parameters which could be applied both in drilling technologies (cementing casing pipes, closing of boreholes, plugging) and in geoengineering works related with sealing up and reinforcing ground and rock mass media.

  8. Simulation of 0.3 MWt AFBC test rig burning Turkish lignites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selcuk, N.; Degirmenci, E.; Oymak, O.

    1997-12-31

    A system model coupling bed and freeboard models for continuous combustion of lignite particles of wide size distribution burning in their own ash in a fluidized bed combustor was modified to incorporate: (1) a procedure for faster computation of particle size distributions (PSDs) without any sacrifice in accuracy; (2) energy balance on char particles for the determination of variation of temperature with particle size, (3) plug flow assumption for the interstitial gas. An efficient and accurate computer code developed for the solution of the conservation equations for energy and chemical species was applied to the prediction of the behavior ofmore » a 0.3 MWt AFBC test rig burning low quality Turkish lignites. The construction and operation of the test rig was carried out within the scope of a cooperation agreement between Middle East Technical University (METU) and Babcock and Wilcox GAMA (BWG) under the auspices of Canadian International Development Agency (CIDA). Predicted concentration and temperature profiles and particle size distributions of solid streams were compared with measured data and found to be in reasonable agreement. The computer code replaces the conventional numerical integration of the analytical solution of population balance with direct integration in ODE form by using a powerful integrator LSODE (Livermore Solver for Ordinary Differential Equations) resulting in two orders of magnitude decrease in CPU (Central Processing Unit) time.« less

  9. Integrated stratigraphy of Paleocene lignite seams of the fluvial Tullock Formation, Montana (USA).

    NASA Astrophysics Data System (ADS)

    Noorbergen, Lars J.; Kuiper, Klaudia F.; Hilgen, Frederik J.; Krijgsman, Wout; Dekkers, Mark J.; Smit, Jan; Abels, Hemmo A.

    2015-04-01

    Coal-bearing fluvial sedimentation is generally thought to be dominated by autogenic processes that are processes intrinsic to the sedimentary system. Ongoing research however suggests that several fluvial processes such as floodplain inundation and avulsion, can also be controlled by external forcing such as orbital climate change. Still, the exact role of orbital climate forcing in fluvial sediments is difficult to decipher since riverine deposits are complicated by variable sedimentation rates including erosion of previously deposited material, by lateral heterogeneity of sedimentation, and by scarcity of independent dating methods. The early Paleocene lignite-bearing Tullock Formation of the Williston Basin in eastern Montana represents a record of fluvial sedimentation that is perfectly exposed and, displays a seemingly regular alternation of sandstones and lignite seams. These coal beds contain multiple volcanic ash layers. Here, we use an integrated stratigraphic approach (litho- and magnetostratigraphy, geochemical fingerprinting and radio-isotope dating of volcanic ash layers) to establish a high-resolution time frame for the early Paleocene fluvial sediments. First age estimations indicate that the Tullock Formation in Eastern Montana was deposited over a time span of ~ 1000 kyr subsequent to the Cretaceous - Paleogene boundary, dated at ~ 65.95 Ma [1]. Initial high-resolution magnetostratigraphy revealed the occurrence of the C29r/C29n polarity reversal which was stratigraphic consistent at different field locations. We investigate the regional significance of sedimentary change at multiple sites of the same age in order to provide improved insight on the role of orbital forcing in fluvial coal formation. References: [1] Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., Wijbrans, J.R. (2008). Synchronizing Rock Clocks of Earth History. Science 320, 500-504.

  10. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    USGS Publications Warehouse

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  11. Preparation and combustion of Yugoslavian lignite-water fuel, Task 7.35. Topical report, July 1991--December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.M.; DeWall, R.A.; Ljubicic, B.R.

    1994-03-01

    Yugoslavia`s interest in lignite-water fuel (LWF) stems from its involvement in an unusual power project at Kovin in northern Serbia. In the early 1980s, Electric Power of Serbia (EPS) proposed constructing a 600-MW power plant that would be fueled by lignite found in deposits along and under the Danube River. Trial underwater mining at Kovin proved that the dredging operation is feasible. The dredging method produces a coal slurry containing 85% to 90% water. Plans included draining the water from the coal, drying it, and then burning it in the pulverized coal plant. In looking for alternative ways to utilizemore » the ``wet coal`` in a more efficient and economical way, a consortium of Yugoslavian companies agreed to assess the conversion of dredged lignite into a LWF using hot-water-drying (HWD) technology. HWD is a high-temperature, nonevaporative drying technique carried out under high pressure in water that permanently alters the structure of low-rank coals. Changes effected by the drying process include irreversible removal of moisture, micropore sealing by tar, and enhancement of heating value by removal of oxygen, thus, enhancement of the slurry ability of the coal with water. Physical cleaning results indicated a 51 wt % reduction in ash content with a 76 wt % yield for the lignite. In addition, physical cleaning produced a cleaned slurry that had a higher attainable solids loading than a raw uncleaned coal slurry. Combustion studies were then performed on the raw and physically cleaned samples with the resulting indicating that both samples were very reactive, making them excellent candidates for HWD. Bench-scale results showed that HWD increased energy densities of the two raw lignite samples by approximately 63% and 81%. An order-of-magnitude cost estimate was conducted to evaluate the HWD and pipeline transport of Kovin LWF to domestic and export European markets. Results are described.« less

  12. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    PubMed

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  13. Biodegradation of photo-oxidized lignite and characterization of the products

    NASA Astrophysics Data System (ADS)

    Li, Jiantao; Liu, Xiangrong; Yue, Zilin; Zhang, Yaowen

    2018-01-01

    Biodegradation of photo-oxidized Inner Mongolia lignite by pseudomonas aeruginosa was studied and the degradation percentage reached 56.27%, while the corresponding degradation percentage of the strain degrading raw Inner Mongolia lignite is only 23.16%. The degradation products were characterized. Proximate and ultimate analyses show that the higher oxygen content increased by photo-oxidation pretreatment maybe promoted the degradation process. Ultraviolet spectroscopy (UV) analysis of the liquid product reveals that it contains unsaturated structures and aromatic rings are the main structure units. Gas chromatography-mass spectrometry (GC-MS) analysis indicates that the main components of the ethyl acetate extracts are low molecular weight organic compounds, such as ketones, acids, hydrocarbons, esters and alcohols. Infrared spectroscopy (IR) analysis of raw lignite, photo-oxidized lignite and residual lignite demonstrates that the absorption peaks of functional groups in residual lignite disappeared or weakened obviously. Scanning electron microscopy (SEM) analysis manifests that small holes appear in photo-oxidized lignite surface, which may be promote the degradation process and this is only from the physical morphology aspects, so it can be inferred from the tests and analyses results that the more important reason of the high degradation percentage is mostly that the photo-oxidation pretreatment changes the chemical structures of lignite.

  14. Alkali-activated concrete with Serbian fly ash and its radiological impact.

    PubMed

    Nuccetelli, Cristina; Trevisi, Rosabianca; Ignjatović, Ivan; Dragaš, Jelena

    2017-03-01

    The present paper reports the results of a study on different types of fly ash from Serbian coal burning power plants and their potential use as a binder in alkali-activated concrete (AAC) depending on their radiological and mechanical properties. Five AAC mixtures with different types of coal burning fly ash and one type of blast furnace slag were designed. Measurements of the activity concentrations of 40 K, 226 Ra and 232 Th were done both on concrete constituents (fly ash, blast furnace slag and aggregate) and on the five solid AAC samples. Experimental results were compared by using the activity concentration assessment tool for building materials - the activity concentration index I, as introduced by the EU Basic Safety Standards (CE, 2014). All five designed alkali-activated concretes comply with EU BSS screening requirements for indoor building materials. Finally, index I values were compared with the results of the application of a more accurate index - I(ρd), which accounts for thickness and density of building materials (Nuccetelli et al., 2015a). Considering the actual density and thickness of each concrete sample index - I(ρd) values are lower than index I values. As an appendix, a synthesis of main results concerning mechanical and chemical properties is provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukasinovic-Pesic, V.; Rajakovic, L.J.

    2009-07-01

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less

  16. Enrichment and oral bioaccessibility of selected trace elements in fly ash-derived magnetic components.

    PubMed

    Bourliva, Anna; Papadopoulou, Lambrini; Aidona, Elina; Simeonidis, Konstantinos; Vourlias, George; Devlin, Eamonn; Sanakis, Yiannis

    2017-01-01

    The mineralogy, morphology, and chemical composition of magnetic fractions separated from fly ashes (FAs) originating from Greek lignite-burning power plants was investigated. The oral bioaccessibility of potentially harmful elements (PHEs) from the fly ash magnetic fractions (FAMFs) was also assessed using in vitro gastrointestinal extraction (BARGE Unified Bioaccessibility Method, UBM). The FAMFs isolated were in the range 4.6-18.4%, and their mass specific magnetic susceptibility ranged from 1138 × 10 -8 to 1682 × 10 -8  m 3 /kg. XRD analysis and Mossbauer spectroscopy indicated that the dominant iron species were Fe-rich aluminosilicate glass along with magnetite, hematite, and maghemite (in decreasing order). The raw FAs exhibited differences in their chemical composition, indicating the particularity of every lignite basin. The elemental contents of FAMFs presented trends with fly ash type; thus, the FAMFs of high-Ca FAs were enriched in siderophile (Cr, Co, Ni) and lithophile (Cs, Li, Rb) elements and those separated from low-Ca FAs were presented depleted in chalcophile elements. Based on UBM extraction tests, the PHEs were more bioaccessible from the non-magnetic components of the FAs compared to the magnetic ones; however, the bioaccessible fractions estimated for the FAMFs were exceeding 40 % in many cases. Arsenic was found to be significantly bioaccessible (median ~ 80 %) from FAMFs despite the lower As contents in the magnetic fraction.

  17. First Report of Microfaunal Remains from Lignitic Sequences of Bhavnagar Lignite Mine (khadsaliya Formation), Gujarat, India: Implication to Depositional Environments and Age

    NASA Astrophysics Data System (ADS)

    Maurya, A. S.

    2016-12-01

    FIRST REPORT OF MICROFAUNAL REMAINS FROM LIGNITIC SEQUENCES OF BHAVNAGAR LIGNITE MINE (KHADSALIYA FORMATION), GUJARAT, INDIA: IMPLICATION TO DEPOSITIONAL ENVIRONMENTS AND AGEABHAYANAND SINGH MAURYA1*, SANJAY KUMAR VERMA1, PRAGYA PANDEY11Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee Moderately preserved fish otoliths, fish vertebra, bivalves, pteropods, ostracods and foraminifereral remains were recovered from the grey to greenish-grey clays of Khadsaliya Formation, Bhavnagar Lignite Mine (western India) and quantitatively analyzed to understand the depositional environment. The bio-facies assemblage is diverse and dominated by fauna Fishes, Bivalve, Pteropods and with rare occurrences of Ostracoda and Foraminifera. Fish fauna includes otoliths represented by Ambassidarum, Apogonidarum, Percoideorum and Gobiidarum vastani, out of which Gobiidarum vastani is possibly representing Ypresian (early Eocene). The Globanomalina ovalis a smaller planktic foraminifer is known to be a very short ranged species corresponds to Planktic Foranimiferal Zone 5 to 6 (P5-P6) i.e late Thanetian to early Yepresian. Presence of both fresh water (Lepisosteus, Osteoglossidae), fresh water (Cypridopsis) ostracods and shallow marine fauna (Enchodus, Egertonia and Stephanodus) of fish vertebra; (Cardita) bivalve, , marine water (Globanomalina, Eggrella, Pyrulinoides) foraminifer suggests that Bhavnagar lignite mine have an assemblage of admixed fauna and rocks of Khaldsiya formation at Bhavnagar Lignite mine deposited under marine transgressive-regressive cycles. Some of the microfauna from Bhavnagar lignite mine show close affinities with microfaunal assemblages of the Vastan lignite mine of Gujarat, India which is stated to be of Ypresian (early Eocene).

  18. A review of Alabama lignite deposits

    USGS Publications Warehouse

    Aubourg, Claire E.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    This review of Alabama lignite deposits is a part of the U.S. Geological Survey (USGS) National Coal Resource Assessment (NCRA) of the Gulf Coast region (see Ruppert et al., 2002; Dennen, 2009; and other chapters of this publication). Because lignite is not currently mined in Alabama, a detailed assessment of the state was not made, and only a review is presented in this chapter.

  19. Leaching characteristics of fly ash from thermal power plants of Soma and Tuncbilek, Turkey.

    PubMed

    Baba, Alper; Kaya, Abidin

    2004-02-01

    Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions but also with the disposal of ash residues. In particular, use of low quality coal with high ash content results in huge quantities of fly ash to be disposed of. The main problem related to fly ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly ash contacts water. In this study, fly ash samples obtained from thermal power plants, namely Soma and Tunçbilek, located at the west part of Turkey, were subjected to toxicity tests such as European Committee for standardization (CEN) and toxicity characteristic leaching (TCLP) procedures of the U.S. Environmental Protection Agency (U.S. EPA). The geochemical composition of the tested ash samples from the power plant show variations depending on the coal burned in the plants. Furthermore, the CEN and TCLP extraction results showed variations such that the ash samples were classified as 'toxic waste' based on TCLP result whereas they were classified as 'non-toxic' wastes based on CEN results, indicating test results are pH dependent.

  20. Engineering properties of lightweight geopolymer synthesized from coal bottom ash and rice husk ash

    NASA Astrophysics Data System (ADS)

    Thang, Nguyen Hoc; Hoa, Nguyen Ngoc; Quyen, Pham Vo Thi Ha; Tuyen, Nguyen Ngoc Kim; Anh, Tran Vu Thao; Kien, Pham Trung

    2018-04-01

    Geopolymer technology was developed by Joseph Davidovits in 1970s based on reactions among alumino-silicate resources in high alkaline conditions. Geopolymer has been recently gaining attention as an alternative binder for Ordinary Portland cement (OPC) due to its low energy and CO2 burden. The raw materials used for geopolymerization normally contain high SiO2 and Al2O3 in the chemical compositions such as meta-kaoline, rice husk ash, fly ash, bottom ash, blast furnace slag, red mud, and others. Moreover, in this paper, coal bottom ash (CBA) and rice husk ash (RHA), which are industrial and agricultural wastes, respectively, were used as raw materials with high alumino-silicate resources. Both CBA and RHA were mixed with sodium hydroxide (NaOH) solution for 20 minutes to obtain the geopolymer pastes. The pastes were filled in 5-cm cube molds according to ASTM C109/C109M 99, and then cured at room condition for hardening of the geopolymer specimens. After 24 hours, the specimens were removed out of the molds and continuously cured at room condition for 27 days. The geopolymer-based materials were then tested for engineering properties such as compressive strength (MPa), volumetric weight (kg/m3), and water absorption (kg/m3). Results indicated that the material can be considered lightweight with volumetric weight from 1192 to 1425 kg/m3; compressive strength at 28 days is in the range of 12.38 to 37.41 MPa; and water absorption is under 189.92 kg/m3.

  1. Numerical Simulation of Slag Eye Formation and Slag Entrapment in a Bottom-Blown Argon-Stirred Ladle

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tang, Haiyan; Yang, Shufeng; Wang, Minghui; Li, Jingshe; Liu, Qing; Liu, Jianhui

    2018-06-01

    A transient mathematical model is developed for simulating the bubble-steel-slag-top gas four-phase flow in a bottom-blown argon-stirred ladle with a 70-ton capacity. The Lagrangian discrete phase model (DPM) is used for describing the moving behavior of bubbles in the steel and slag. To observe the formation process of slag eye, the volume of fluid (VOF) model is used to track the interfaces between three incompressible phases: metal/slag, metal/gas, and slag/gas. The complex multiphase turbulent flow induced by bubble-liquid interactions is solved by a large eddy simulation (LES) model. Slag eye area and slag droplet dispersion are investigated under different gas flow rates. The results show that the movement of bubbles, formation and collapse of slag eye, volatility of steel/slag interface and behavior of slag entrapment can be properly predicted in the current model. When the gas flow rate is 300 L/min, the circulation driven by the bubble plume will stir the entire ladle adequately and form a slag eye of the right size. At the same time, it will not cause strong erosion to the ladle wall, and the fluctuation of the interface is of adequate intensity, which will be helpful for improving the desulfurization efficiency; the slag entrapment behavior can also be decreased. Interestingly, with the motion of liquid steel circulation, the collision and coalescence of dispersed slag droplets occur during the floating process in the vicinity of the wall.

  2. Numerical investigation of slag formation in an entrained-flow gasifier

    NASA Astrophysics Data System (ADS)

    Zageris, G.; Geza, V.; Jakovics, A.

    2018-05-01

    A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification in account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and viable solutions such as radial inlet positioning for decreasing the amount of undesirable deposits are proposed. We also conclude that the particular chemical reactions that take place inside the gasifier play a significant role in determining how slagging occurs inside a gasifier.

  3. The study of the burning possibilities of solid combustibles in the determined conditions for complete usage of caloric [energy] and ashes resulted

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voina, N.I.; Barca, F.; Mogos, D.

    1995-12-31

    In modern combustors, 95--98% of the organic mass of a solid combustible is converted into caloric energy; 2--4% remain in the fly ash captured in electrofilters and hydraulically removed in most cases. The 2--4% unburned materials in fly ash, together with the water from being hydraulically transported, make it difficult for the use of the fly ash for metal extraction or as a binder in the materials industry. This work presents the research results of a study in which the burning process was modified to result in fly ash without carbon content and fly ash removal by dry capture. Laboratorymore » fluidized-bed combustion of lignite with and without addition of limestone for sulfur capture was used to generate ashes for further study. The ashes were studied for their use as binders and as a cement substitute.« less

  4. Concentrations and source apportionment of PM10 and associated elemental and ionic species in a lignite-burning power generation area of southern Greece.

    PubMed

    Argyropoulos, G; Grigoratos, Th; Voutsinas, M; Samara, C

    2013-10-01

    Ambient concentrations of PM10 and associated elemental and ionic species were measured over the cold and the warm months of 2010 at an urban and two rural sites located in the lignite-fired power generation area of Megalopolis in Peloponnese, southern Greece. The PM10 concentrations at the urban site (44.2 ± 33.6 μg m(-3)) were significantly higher than those at the rural sites (23.7 ± 20.4 and 22.7 ± 26.9 μg m(-3)). Source apportionment of PM10 and associated components was accomplished by an advanced computational procedure, the robotic chemical mass balance model (RCMB), using chemical profiles for a variety of local fugitive dust sources (power plant fly ash, flue gas desulfurization wet ash, feeding lignite, infertile material from the opencast mines, paved and unpaved road dusts, soil), which were resuspended and sampled through a PM10 inlet onto filters and then chemically analyzed, as well as of other common sources such as vehicular traffic, residential oil combustion, biomass burning, uncontrolled waste burning, marine aerosol, and secondary aerosol formation. Geological dusts (road/soil dust) were found to be major PM10 contributors in both the cold and warm periods of the year, with average annual contribution of 32.6 % at the urban site vs. 22.0 and 29.0 % at the rural sites. Secondary aerosol also appeared to be a significant source, contributing 22.1 % at the urban site in comparison to 30.6 and 28.7 % at the rural sites. At all sites, the contribution of biomass burning was most significant in winter (28.2 % at the urban site vs. 14.6 and 24.6 % at the rural sites), whereas vehicular exhaust contribution appeared to be important mostly in the summer (21.9 % at the urban site vs. 11.5 and 10.5 % at the rural sites). The highest contribution of fly ash (33.2 %) was found at the rural site located to the north of the power plants during wintertime, when winds are favorable. In the warm period, the highest contribution of fly ash was found at the

  5. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material.

    PubMed

    Phummiphan, Itthikorn; Horpibulsuk, Suksun; Rachan, Runglawan; Arulrajah, Arul; Shen, Shui-Long; Chindaprasirt, Prinya

    2018-01-05

    Granulated Blast Furnace Slag (GBFS) was used as a replacement material in marginal lateritic soil (LS) while class C Fly Ash (FA) was used as a precursor for the geopolymerization process to develop a low-carbon pavement base material at ambient temperature. Unconfined Compression Strength (UCS) tests were performed to investigate the strength development of geopolymer stabilized LS/GBFS blends. Scanning Electron Microscopy and X-ray Diffraction analysis were undertaken to examine the role of the various influencing factors on UCS development. The influencing factors studied included GBFS content, Na 2 SiO 3 :NaOH ratio (NS:NH) and curing time. The 7-day soaked UCS of FA geopolymer stabilized LS/GBFS blends at various NS:NH ratios tested was found to satisfy the specifications of the Thailand national road authorities. The GBFS replacement was found to be insignificant for the improvement of the UCS of FA geopolymer stabilized LS/GBFS blends at low NS:NH ratio of 50:50. Microstructural analysis indicated the coexistence of Calcium Silicate Hydrate (CSH) and Sodium Alumino Silicate Hydrate products in FA geopolymer stabilized LS/GBFS blends. This research enables GBFS, which is traditionally considered as a waste material, to be used as a replacement and partially reactive material in FA geopolymer pavement applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bioprocessing of lignite coals using reductive microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, D.L.

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coalmore » depolymerizing enzymes.« less

  7. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    NASA Astrophysics Data System (ADS)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  8. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-06-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively.

  9. -Based Slag System

    NASA Astrophysics Data System (ADS)

    Jiang, Binbin; Wang, Wanlin; Sohn, Il; Wei, Juan; Zhou, Lejun; Lu, Boxun

    2014-06-01

    The crystallization behavior of a CaO-Al2O3-based slag system with various ZrO2 content (from 1 to 5 wt pct) and CaO/Al2O3 (C/A) ratio (from 0.8 to 1.2) has been studied by using single hot thermocouple technology (SHTT) in this article. The continuous-cooling-transformation (CCT) diagrams and time-temperature-transformation (TTT) diagrams of the above slag system were constructed for the analysis of the varying crystallization behaviors. The results suggested that Al2O3 tended to enhance the slag samples crystallization when the C/A ratio ranged from 0.8 to 1.2, and the critical cooling rate and crystallization temperature increased with the decrease of C/A ratio; meanwhile, the incubation time was also getting shorter with the reduction of C/A ratio. The addition of ZrO2 would enhance the crystallization of slag samples because of the induced heterogeneous nucleation of molten slag. However, the general crystallization was determined by the balance between molten slag viscosity and heterogeneous nucleation, such that Sample 3 (C/A = 1.0, ZrO2 = 3 pct, B2O3 = 10 pct, Li2O = 3 pct [in wt pct]) would demonstrate the strongest crystallization kinetics in a high-temperature zone. The different crystals formed during the tests were also analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD).

  10. Reuse potential of low-calcium bottom ash as aggregate through pelletization.

    PubMed

    Geetha, S; Ramamurthy, K

    2010-01-01

    Coal combustion residues which include fly ash, bottom ash and boiler slag is one of the major pollutants as these residues require large land area for their disposal. Among these residues, utilization of bottom ash in the construction industry is very low. This paper explains the use of bottom ash through pelletization. Raw bottom ash could not be pelletized as such due to its coarseness. Though pulverized bottom ash could be pelletized, the pelletization efficiency was low, and the aggregates were too weak to withstand the handling stresses. To improve the pelletization efficiency, different clay and cementitious binders were used with bottom ash. The influence of different factors and their interaction effects were studied on the duration of pelletization process and the pelletization efficiency through fractional factorial design. Addition of binders facilitated conversion of low-calcium bottom ash into aggregates. To achieve maximum pelletization efficiency, the binder content and moisture requirements vary with type of binder. Addition of Ca(OH)(2) improved the (i) pelletization efficiency, (ii) reduced the duration of pelletization process from an average of 14-7 min, and (iii) reduced the binder dosage for a given pelletization efficiency. For aggregate with clay binders and cementitious binder, Ca(OH)(2) and binder dosage have significant effect in reducing the duration of pelletization process. 2010 Elsevier Ltd. All rights reserved.

  11. Crystallization phenomena in slags

    NASA Astrophysics Data System (ADS)

    Orrling, Carl Folke

    2000-09-01

    The crystallization of the mold slag affects both the heat transfer and the lubrication between the mold and the strand in continuous casting of steel. In order for mold slag design to become an engineering science rather than an empirical exercise, a fundamental understanding of the melting and solidification behavior of a slag must be developed. Thus it is necessary to be able to quantify the phenomena that occur under the thermal conditions that are found in the mold of a continuous caster. The double hot thermocouple technique (DHTT) and the Confocal Laser Scanning Microscope used in this study are two novel techniques for investigating melting and solidification phenomena of transparent slags. Results from these techniques are useful in defining the phenomena that occur when the slag film infiltrates between the mold and the shell of the casting. TTT diagrams were obtained for various slags and indicated that the onset of crystallization is a function of cooling rate and slag chemistry. Crystal morphology was found to be dependent upon the experimental temperature and four different morphologies were classified based upon the degree of melt undercooling. Continuous cooling experiments were carried out to develop CCT diagrams and it was found that the amount and appearance of the crystalline fraction greatly depends on the cooling conditions. The DHTT can also be used to mimic the cooling profile encountered by the slag in the mold of a continuous caster. In this differential cooling mode (DCT), it was found that the details of the cooling rate determine the actual response of the slag to a thermal gradient and small changes can lead to significantly different results. Crystal growth rates were measured and found to be in the range between 0.11 mum/s to 11.73 mum/s depending on temperature and slag chemistry. Alumina particles were found to be effective innoculants in oxide melts reducing the incubation time for the onset of crystallization and also extending

  12. Structure, properties, and surfactant adsorption behavior of fly ash carbon

    NASA Astrophysics Data System (ADS)

    Kulaots, Indrek

    The objective of this research was to suggest methods by which certain problems associated with use of coal fly ash as a pozzolanic agent in concrete mixtures could be alleviated, guided by a better characterization of fly ash properties. A sample suite of eighty fly ashes was gathered from utilities across the world (mainly US-based) and included ashes from coals ranging in rank from bituminous to lignite. The widely used foam index test is used to characterize ashes with respect to their propensity to adsorb surfactants (called Air Entraining Admixtures or AEAs) used to impart freeze-thaw resistance to concrete. In ash-containing concrete mixtures, AEAs are adsorbed from the polar concrete-water solution onto non-polar unburned carbon surfaces in the ash. The AEA uptake by fly ashes only crudely correlates with the amount of carbon in the fly ash, because carbon surface area, accessibility and polarity all play a role in determining adsorption capacities. Fly ash carbon particle size distribution is also a key factor. Fine carbon particles in fly ash fractions of <106mum are responsible for about 90% of surfactant adsorption capacity. Surfactant adsorption on fly ash carbon is, in the foam index test, a dynamic process. The time of the test (typically <10 minutes) is not long enough to permit penetration of small porosity by the relatively large AEA molecules, and only the most readily available adsorption surface near the geometrical surface of the carbon particles is utilized. The nature of the foam index test was also examined, and it is recommended that a more standardized test procedure based upon pure reagents be adopted for examining the nature of fly ashes. Several possible reagents were identified. Room temperature fly ash ozonation is a powerful technique that allows increasing fly ash surface polarity in a relatively short time and thus is very effective for decreasing the AEA uptake capacity. Depending on the ozone input concentration, sample amount

  13. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover.

    PubMed

    Kim, Gil Won; Ho, Adrian; Kim, Pil Joo; Kim, Sang Yoon

    2016-09-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to mitigate CH4 emissions, as well as to prevent water infiltration using vegetation on landfill cover soils. In our previous studies, bottom ash from coal-fired power plants was selected among several industrial residues (blast furnace slag, bottom ash, construction waste, steel manufacture slag, stone powder sludge, and waste gypsum) as the best additive for ET cover systems, with the highest mechanical performance achieved for a 35% (wtwt(-1)) bottom ash content in soil. In this study, to evaluate the field applicability of bottom ash mixed soil as ET cover, four sets of lysimeters (height 1.2m×width 2m×length 6m) were constructed in 2007, and four different treatments were installed: (i) soil+bottom ash (35% wtwt(-1)) (SB); (ii) soil+compost (2% wtwt(-1), approximately corresponding to 40Mgha(-1) in arable field scale) (SC); (iii) soil+bottom ash+compost (SBC); and (iv) soil only as the control (S). The effects of bottom ash mixing in ET cover soil on CH4 oxidation potential and vegetation growth were evaluated in a pilot ET cover system in the 5th year after installation by pilot experiments using the treatments. Our results showed that soil properties were significantly improved by bottom ash mixing, resulting in higher plant growth. Bottom ash addition significantly increased the CH4 oxidation potential of the ET cover soil, mainly due to improved organic matter and available copper concentration, enhancing methanotrophic abundances in soil amended with bottom ash. Conclusively, bottom ash could be a good alternative as a soil additive in the ET cover system to improve vegetation growth and mitigate CH4 emission impact in the waste landfill system. Copyright © 2016

  14. Leaching Behavior of Slags from AN Old Lead Smelter in Chihuahua, Mexico: Metals, Chlorides, Nitrates, Sulfates and Tds Analyses

    NASA Astrophysics Data System (ADS)

    Espejel-Garcia, D.; Wenglas-Lara, G.; Villalobos-Aragon, A.; Espejel-Garcia, V. V.

    2013-05-01

    Waste materials (such as, smelter slags, waste glass, tires, plastics, rubbish, ashes, etc.), have a large potential to substitute natural materials, reducing costs, especially for the construction industry. Smelter slags are resistant and have better compression strength values in comparison to natural aggregates, and generally are far beyond of what the standard ratios need to qualify a material as a good one for construction. But this material has a big problem within it: the existence of toxic elements and compounds in high concentrations, which means that water and soil contamination can be present after water infiltrates through this material; so we perform leaching experiments to characterize and measure the possible contamination under controlled conditions. To perform the slags-leaching experiments, we used an EA-NEN-7375-2004 tank test standard from Netherlands. This test was selected because to our knowledge it is the only one which allows the use of coarse material, as the one utilized in construction. The leaching experiments sampling was performed at different times: 6, 24, 168 and 360 hours, to compare the leachate concentration at the two different pH's values (5 and 8) selected to simulate real conditions. For the leaching experiments, the slags were mixed with natural road base material (gravel-sands from volcanic rocks) at different proportions of 30% and 50%. In order to understand the slags' leaching behavior, other experiments were carried out with the pure material, for both (slags and natural aggregates). After analyses by ICP-OES , the slags from this smelter in Chihuahua contain Pb (0.5 - 4 wt.%), Zn (15-35 wt.%) and As (0.6 wt.%), as well such as: bicarbonates, chlorides, nitrates, sulfates, Mg, K, Na, Ca and TDS. Based on the results of the leaching analyses, via atomic absorption technique, we conclude that Pb and As concentrations are provided by the slags, meanwhile, the bicarbonates, chlorides, Na and Ca are contributed by the road

  15. Microbial screening test for lignite degradation. Quarterly progress report No. 1, January-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1985-01-01

    Potassium permanganate and sodium hypochlorite oxidation of lignitic coal were performed. Ion chromatography of low molecular weight carboxylic acids - oxalic acid, formic acid, and acetic acid - produced by potassium permanganate and sodium hypochlorite oxidation was executed. Oxalic acid was found to be the most predominant low molecular weight species. It was estimated that about 10% of the carbon present in the chemical structure of lignite was converted to oxalic acid by sodium hypochlorite oxidation. Ion chromatography analysis showed that about 43% of the lignite carbon was converted to carbon dioxide in all experiments. Biological degradation of lignite bymore » P. versicolor, a white-rot fungus, on lignite/agar and lignite slurry was attempted. Apparently, P. versicolor is capable of growing on lignite slurry. Acclimation of P. versicolor to lignite was proceeded. Biochemical reaction test for laccase production of P. versicolor was performed and found to be positive. 15 refs., 5 figs., 6 tabs.« less

  16. Novel Sessile Drop Software for Quantitative Estimation of Slag Foaming in Carbon/Slag Interactions

    NASA Astrophysics Data System (ADS)

    Khanna, Rita; Rahman, Mahfuzur; Leow, Richard; Sahajwalla, Veena

    2007-08-01

    Novel video-processing software has been developed for the sessile drop technique for a rapid and quantitative estimation of slag foaming. The data processing was carried out in two stages: the first stage involved the initial transformation of digital video/audio signals into a format compatible with computing software, and the second stage involved the computation of slag droplet volume and area of contact in a chosen video frame. Experimental results are presented on slag foaming from synthetic graphite/slag system at 1550 °C. This technique can be used for determining the extent and stability of foam as a function of time.

  17. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    PubMed Central

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400–800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively. PMID:26074060

  18. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production.

    PubMed

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-06-15

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*10(5) tons of standard coal and 1.74*10(6) tons of CO2, respectively.

  19. Evaluation of interactions between soil and coal fly ash leachates using column percolation tests.

    PubMed

    Tsiridis, V; Petala, M; Samaras, P; Sakellaropoulos, G P

    2015-09-01

    The aim of this work was the assessment of the environmental impact of different origin fly ashes with regard to their final disposal. The experimental procedure included the performance of single column tests and column tests of fly ash and soil in series. The appraisal of the potential environmental hazards was implemented using physicochemical analyses and bioassays. Two different fly ash samples were examined, one fly ash produced from the combustion of sub-bituminous coal (CFA) and one fly ash produced from the combustion of lignite (LFA). Single column percolation tests were performed according to NEN 7343 protocol, while fly ash/soil experiments were conducted incorporating slight modifications to this protocol. The study focused on the release of metals Ba, Cr, Cu, Mo, Se and Zn and the ecotoxic behavior of leachates on crustacean Daphnia magna and bacteria Vibrio fischeri. The infiltration of the leachates of both fly ashes through soil affected considerably their leaching profile. The transport of Cu and Zn was facilitated by the dynamic leaching conditions and influenced by the pH of the leachates. Moreover, the release and bioavailability of Cr, Cu and Zn was probably altered during the infiltration experiments and organisms' response was not always correlated with the concentration of metals. Nevertheless, the results are signalling that possible manipulations and final disposal of fly ash should be considered when environmental threats are investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Greener durable concretes through geopolymerisation of blast furnace slag

    NASA Astrophysics Data System (ADS)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2015-05-01

    The eco-friendliness of concrete is quantified by parameters such as ‘embodied energy’ (EE) and ‘embodied CO2 emission’ (ECO2e), besides duration of designed ‘service life’. It may be noted that ECO2e is also referred as carbon footprint (CF) in the literature. Geopolymer (GP) is an inorganic polymeric gel, a type of amorphous alumino-silicate product, which can be synthesised by polycondensation reactions. The concrete reported in this paper was prepared using industrial wastes in the form of blast furnace slag, fly ash as geopolymeric source materials and sodium silicate and sodium hydroxide as activators. Many mechanical properties such as compressive strength, chloride diffusion, steel corrosion, rapid chloride permeability test and rapid migration test are compared with Portland cement.

  1. Coal fly ash based carbons for SO2 removal from flue gases.

    PubMed

    Rubio, B; Izquierdo, M T

    2010-07-01

    Two different coal fly ashes coming from the burning of two coals of different rank have been used as a precursor for the preparation of steam activated carbons. The performance of these activated carbons in the SO(2) removal was evaluated at flue gas conditions (100 degrees C, 1000 ppmv SO(2), 5% O(2), 6% H(2)O). Different techniques were used to determine the physical and chemical characteristics of the samples in order to explain the differences found in their behaviour. A superior SO(2) removal capacity was shown by the activated carbon obtained using the fly ash coming from a sub-bituminous-lignite blend. Experimental results indicated that the presence of higher amount of certain metallic oxides (Ca, Fe) in the carbon-rich fraction of this fly ash probably has promoted a deeper gasification in the activation with steam. A more suitable surface chemistry and textural properties have been obtained in this case which explains the higher efficiency shown by this sample in the SO(2) removal. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Firing system modification to alter ash properties for reduction of deposition and slagging under low NOx firing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, D.; Lewis, R.; Tobiasz, R.

    1998-12-31

    The composition and properties of ash formed during coal firing have a major impact on boiler performance. Higher ash content in the coal can mean higher costs associated with coal handling, transportation, ash removal and ash disposal along with higher costs due to the increased ash content`s deleterious effects on pulverizing, combustion and heat transfer. ABB C-E Services, Inc. has conducted research for many years on what might be done to minimize the adverse effects of ash on boiler performance. Recently, ABB C-E Services has studied the effects of firing system modifications on ash composition and properties and the effectmore » these firing system modifications have on overall furnace performance. The subject of this paper is the impact of the installation of the CFS Concentric Firing System on the propensity for boiler wall ash deposition. For this study, CFS yaw angles were varied and particle samples were collected at the waterwalls for the different yaw angles tested. These ash samples were analyzed for ash composition. The results showed that with a larger CFS yaw angle (the air stream directed more towards the boiler walls) the base/acid ratio, iron content and sulfur content of the particle samples collected at the waterwall were reduced. This effect is due to several contributing factors: (1) an oxidizing environment produced by injecting more air toward the walls; and (2) an aerodynamic change which impacts the particle combustion time/temperature history.« less

  3. Triple-activated blast furnace slag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, W.J.

    1995-12-31

    The current shortage of portland cement in the world will require the use of Ground Granulated Blast Furnace Slag (GGBFS) to fill demands in many industrialized countries. Therefore, an extensive series of triple-activated slag experiments have been undertaken to optimize an economical combination of mechanical properties for alkali-activated slags. Na{sub 2}OSiO{sub 2} (N Grade), Ca(OH){sub 2}, H{sub 2}O and Na{sub 2}CO{sub 3} have been added as activators in 5 to 10, 0 to 5 and 0 to 5 weight percentages of water and slag in a mix with a water:cement ratio of 1:1. Silica Fume and Sika 10 superplasticizer havemore » been added as 1 and 10 weight percent of slag. Set times, initial hardening times and compressive strengths at percentages of the mix to identify more refined formulations. Finally, the resulting aggregate to develop a triple-activated slag formulation with the ultimate objective of contributing toward satisfying the world shortage of high performance concrete.« less

  4. An overview of recovery of metals from slags.

    PubMed

    Shen, Huiting; Forssberg, E

    2003-01-01

    Various slags are produced as by-products in metallurgical processes or as residues in incineration processes. According to the origins and the characteristics, the main slags can be classified into three categories, namely ferrous slag, non-ferrous slag and incineration slag. This paper analysed and summarised the generation, characteristics and application of various slags, and discussed the potential effects of the slags on the environment. On this basis, a review of a number of methods for recovery of metals from the slags was made. It can be seen that a large amount of slags is produced each year. They usually contain a quantity of valuable metals except for blast furnace slag and they are actually a secondary resource of metals. By applying mineral processing technologies, such as crushing, grinding, magnetic separation, eddy current separation, flotation and so on, leaching or roasting, it is possible to recover metals such as Fe, Cr, Cu, Al, Pb, Zn, Co, Ni, Nb, Ta, Au, and Ag etc. from the slags. Recovery of metals from the slags and utilisation of the slags are important not only for saving metal resources, but also for protecting the environment.

  5. Firing system modification to alter ash properties for reduction of deposition and slagging under low NOx firing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, D.; Lewis, R.; Tobiasz, R.

    1998-07-01

    The composition and properties of ash formed during coal firing have a major impact on boiler performance. Higher ash content in the coal can mean higher costs associated with coal handling, transportation, ash removal and ash disposal along with higher costs due to the increased ash content's deleterious effects on pulverizing, combustion and heat transfer. ABB C-E Services, Inc. has conducted research what might be done to minimize the adverse effects of ash on boiler performance for many years. Recently, ABB C-E Services has studied the effects of firing system modifications on ash composition and properties and the effect thesemore » firing system modifications have on overall furnace performance. The subject of this paper is the impact of the installation of the CFS{trademark} yaw angles were varied and particle samples were collected at the waterwalls for the different yaw angles tested. These ash samples were analyzed for ash composition. The results showed that with a larger CFS{trademark} yaw angle (the air stream directed more towards the boiler walls) the base/acid ratio, iron content and sulfur content of the particle samples collected at the waterwall were reduced. This effect is due to several contributing factors: (1) an oxidizing environment produced by injecting more air toward the walls; and (2) an aerodynamic change which impacts the particle combustion time/temperature history.« less

  6. Changes in water absorptivity of slag based cement mortars exposed to sulphur-oxidising A. thiooxidans bacteria

    NASA Astrophysics Data System (ADS)

    Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.

    2017-10-01

    Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.

  7. Preliminary report on near-surface lignite occurrences, Cleveland County, Arkansas

    USGS Publications Warehouse

    Heermann, Stephen E.

    1983-01-01

    Four cross sections were constructed from lithologic descriptions of 43 drill holes in Cleveland County, Ark., in order to illustrate the occurrence of lignite and to relate the lignite beds to the regional stratigraphic framework. Of 43 holes drilled, 8 contained beds of lignite, but only two had beds greater than 30 in. thick. These beds are apparently lenticular and are restricted to the upper 60 ft. of the Cockfield Formation of the Claiborne Group of Middle Eocene age. The Cockfield Formation is at or near the surface west of the Saline River.

  8. Lignite Research Project.

    ERIC Educational Resources Information Center

    Robinson, Fred

    Since it became known in l979 that the Arkansas Power and Light Company was going to build a large electricity generating plant near Hampton and that there would be a lignite mining operation established there to support the power plant, the Warren public schools have been preparing to meet the impact on the schools. Because it was assumed that…

  9. Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions

    USGS Publications Warehouse

    Behar, F.; Lewan, M.D.; Lorant, F.; Vandenbroucke, M.

    2003-01-01

    The objectives of the study are to compare product compositions and yields generated from lignite artificially matured by open nonhydrous pyrolysis, closed nonhydrous pyrolysis, and hydrous pyrolysis. The pyrolysis products were fractionated into CO2, H2O, CH4, C2-C5, C8-C14, C14+ saturates, C14+ aromatics and NSOs (resins+asphaltenes). All three methods generated high and similar quantities of water during pyrolysis that ranged between 14.6 and 15.2 wt.% of the original lignite. As a result of this high water content generated by the lignite, the experiments with no added water are referred to as nonhydrous rather than anhydrous. Rock-Eval pyrolysis and elemental analyses were conducted on the recovered lignite after solvent extraction to determine their residual hydrocarbon generation potential and to plot their position in a van Krevelen diagram, respectively. Residual lignite from the closed nonhydrous and hydrous experiments showed relationships between vitrinite reflectance (%Ro) values and atomic H/C ratios that occurred within the fields observed for natural maturation of coal. Although no significant differences in the atomic H/C ratios were observed between closed nonhydrous and hydrous pyrolysis, the vitrinite reflectance values were on the average 0.2% Ro lower in the residual lignite from the nonhydrous experiments. The remaining hydrocarbon generation potential as determined by Rock-Eval pyrolysis of the residual lignite showed that the nonhydrous residuals had on the average 16 mg more hydrocarbon potential per gram of original lignite than the hydrous residuals. This suggests there is a better release of the pyrolysis products from the lignite network in the hydrous experiments once generation occurs. For gas generation, at maximum yields, open nonhydrous pyrolysis generates the most hydrocarbon gas (21.0 mg/g original lignite), which is 20% more than closed nonhydrous pyrolysis and 29% more than hydrous pyrolysis. Closed nonhydrous pyrolysis

  10. Microbial screening test for lignite degradation. Quarterly progress report No. 4, October-December 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1985-01-01

    Chemical oxidation of lignite by means of hydrogen peroxide - acetic acid was executed. Methanol fractionation of the oxidized product yielded 76.4% methanol solubles, 9.3% methanol insolubles and 11.2% CO/sub 2/. Biodegradation of the methanol fraction by soil bacteria was found to be positive as demonstrated by gel permeation chromatography (GPC). The shift of the average molecular weight throughout biodegradation was estimated to be from 310 g/mole, to 243 g/mole, zero day and four weeks respectively. Biodegradation of lignitic substrates, benzene - methanol fraction (A - 1), aqueous alkaline fraction (A - 2), clean lignite residue (A - 3), rawmore » lignite, and methanol soluble fraction after oxidation, by means of oil - field soil bacteria and Polyporus versicolor ATCC 12679 was attempted. All previous mentioned lignitic substrates yielded positive results for oil-field soil bacteria, while A - 2 fraction and raw lignite yielded positive results for P. versicolor. Unidentified fungi strains, N 1, L 1, and L 2 were also tested on lignitic substrates. Mild growth was observed in these cases.« less

  11. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  12. The immersion freezing behavior of ash particles from wood and brown coal burning

    NASA Astrophysics Data System (ADS)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Hartmann, Susan; Hellner, Lisa; Pettersson, Jan B. C.; Prager, Andrea; Stratmann, Frank; Wex, Heike

    2016-11-01

    It is generally known that ash particles from coal combustion can trigger ice nucleation when they interact with water vapor and/or supercooled droplets. However, data on the ice nucleation of ash particles from different sources, including both anthropogenic and natural combustion processes, are still scarce. As fossil energy sources still fuel the largest proportion of electric power production worldwide, and biomass burning contributes significantly to the global aerosol loading, further data are needed to better assess the ice nucleating efficiency of ash particles. In the framework of this study, we found that ash particles from brown coal (i.e., lignite) burning are up to 2 orders of magnitude more ice active in the immersion mode below -32 °C than those from wood burning. Fly ash from a coal-fired power plant was shown to be the most efficient at nucleating ice. Furthermore, the influence of various particle generation methods on the freezing behavior was studied. For instance, particles were generated either by dispersion of dry sample material, or by atomization of ash-water suspensions, and then led into the Leipzig Aerosol Cloud Interaction Simulator (LACIS) where the immersion freezing behavior was examined. Whereas the immersion freezing behavior of ashes from wood burning was not affected by the particle generation method, it depended on the type of particle generation for ash from brown coal. It was also found that the common practice of treating prepared suspensions in an ultrasonic bath to avoid aggregation of particles led to an enhanced ice nucleation activity. The findings of this study suggest (a) that ash from brown coal burning may influence immersion freezing in clouds close to the source and (b) that the freezing behavior of ash particles may be altered by a change in sample preparation and/or particle generation.

  13. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    PubMed

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  14. Survey of synfuel technology for lignite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sondreal, E.A.

    1982-01-01

    The most important market for lignite will continue to be the electric utility industry, where it is used to fuel large pc-fired boilers serving major regional power grids. However, the growth of this market and thechnology is being challenged by new and more stringent environmental control requirements, including the international concern over acid rain. Environmental and economic issues could either encourage or limit the development of a synfuels market for lignite depending on the cost effectiveness of the technological solutions that are developed. Clearly the United States needs to develop its coal resources to reduce dependence on imported oil. However,more » demand for coal derived substitute petroleum will be constrained by cost for the forseeable future. Government policy initiatives and new technology will be the keys to removing these constraints in the decades ahead. A crossover point with respect to petroleum and natural gas will be reached at some point in the future, which will allow synthetic fuels to penetrate the markets now served by oil and gas. Those of us who are today concerned with the development of lignite resources can look forward to participating in the major synfuels market that will emerge when those economic conditions are realized.« less

  15. Refractory Degradation by Slag Attack in Coal Gasification

    DTIC Science & Technology

    2009-02-01

    REFRACTORY DEGRADATION BY SLAG ATTACK IN COAL GASIFICATION Jinichiro Nakano 1,2 , Sridhar Seetharaman 1,2 , James Bennett 3 , Kyei-Sing...and two synthetic slags (coal and petcoke). Pulverized slag samples were placed at specific microstructure locations on refractory substrates and...heated to 1500 ºC at log(Po2) = -9, using a high-speed heating chamber. Cross-sections of the slag /refractory interface indicated unique slag

  16. Leaching of polycyclic aromatic hydrocarbons from power plant lignite ash--influence of parameters important for environmental pollution.

    PubMed

    Pergal, Miodrag M; Relić, Dubravka; Tešić, Zivoslav Lj; Popović, Aleksandar R

    2014-03-01

    Nikola Tesla B power plant (TENT B), located at the Sava River, in Obrenovac, 50 km west from the Serbian's capital, Belgrade, is the second largest coal-fired power plant in the country, consisting of two blocks, each of 620 MW capacity. In order to investigate the threat polycyclic aromatic hydrocarbons (PAHs) from deposited coal ash, obtained by coal combustion in this power plant, can represent for the surrounding environment, samples of coal ash were submitted to extraction with river water used for transport of coal ash to the dump, as well as with water of different ionic strength and acidity. It was found that, out of 16 EPA priority PAHs, only naphthalene, acenaphthylene, fluorene, phenantrene, fluoranthene, and pyrene were found in measurable concentrations in the different extracts. Their combined concentration was around 0.1 μg/L, so they do not, in terms of leached concentrations, represent serious danger for the surrounding environment. In all cases of established (and leached) PAH compounds, changes of ionic strength, acidity, or the presence of organic compounds in river water may to some extent influence the leached concentrations. However, under the examined conditions, similar to those present in the environment, leached concentrations were not more than 50 % greater than the concentrations leached by distilled water. Therefore, water desorption is likely the most important mechanism responsible for leaching of PAH compounds from filter coal ash.

  17. Microbial screening test for lignite degradation: Quarterly progress report No. 9 for the period January-March 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, Teh Fu

    1987-03-01

    Anaerobic fermentation of water soluble fraction of modified lignite was attempted. Solubilized lignite formed bioprecipitate after biodegradation. Fermentation of water solubilized lignite in enrichment media produced gases and organic acids. FT-IR spectra of solubilized lignite after biodegradation showed that the concentration of organic oxygen have decreased and that the concentration of -CH/sub 3/ terminal group have increased. Solubilized lignite may serve as sole carbon source by using selective media. Bacteria was suspected of being able to utilize fulvic-like materials from solubilized lignite. Isolation of anaerobic bacteria was achieved by surface culture, and it indicated morphological differences among isolated colonies. Alginatemore » gel entrapment, an immobilization method, was applied to T. versicolor fungal cells. Active fungal growth was observed from the immobilized spheres on sodium-alginate gel. It seems that the immobilized biocatalysts may be used to enhance the production of bioextract from lignite in a reactor system. Hydroxylation of lignite was accomplished through Fenton reaction at pH 7.5. FT-IR analysis showed that lignite treated with Fenton's reagent exhibits weaker aromatic bending and ether linkage than untreated lignite. 13 refs., 8 figs.« less

  18. Humic Acid Isolations from Lignite by Ion Exchange Method

    NASA Astrophysics Data System (ADS)

    Kurniati, E.; Muljani, S.; Virgani, D. G.; Neno, B. P.

    2018-01-01

    The humic liquid is produced from lignite extraction using alkali solution. Conventional humic acid is obtained by acidifying a humic solution using HCl. The purpose of this research is the formation of solid humic acid from lignite by ion exchange method using cation resin. The results showed that the addition of cation resin was able to reduce the pH from 14 to pH 2 as well as the addition of acid (HCl), indicating the exchange of Na + ions with H + ions. The reduction of pH in the humic solution is influenced by the concentration of sodium ions in the humic solution, the weight of the cation resin, and the ion exchange time. The IR spectra results are in good agreement for humic acid from lignite characterization.

  19. Elemental properties of coal slag and measured airborne exposures at two coal slag processing facilities

    PubMed Central

    Mugford, Christopher; Boylstein, Randy; Gibbs, Jenna L

    2017-01-01

    In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of silica sand abrasives containing >1% silica due to the risk of silicosis. This gave rise to substitutes including coal slag. An Occupational Safety and Health Administration investigation in 2010 uncovered a case cluster of suspected pneumoconiosis in four former workers at a coal slag processing facility in Illinois, possibly attributable to occupational exposure to coal slag dust. This article presents the results from a National Institute for Occupational Safety and Health industrial hygiene survey at the same coal slag processing facility and a second facility. The industrial hygiene survey consisted of the collection of: a) bulk samples of unprocessed coal slag, finished granule product, and settled dust for metals and silica; b) full-shift area air samples for dust, metals, and crystalline silica; and c) full-shift personal air samples for dust, metals, and crystalline silica. Bulk samples consisted mainly of iron, manganese, titanium, and vanadium. Some samples had detectable levels of arsenic, beryllium, cadmium, and cobalt. Unprocessed coal slags from Illinois and Kentucky contained 0.43–0.48% (4,300–4,800 mg/kg) silica. Full-shift area air samples identified elevated total dust levels in the screen (2–38 mg/m3) and bag house (21 mg/m3) areas. Full-shift area air samples identified beryllium, chromium, cobalt, copper, iron, nickel, manganese, and vanadium. Overall, personal air samples for total and respirable dust (0.1–6.6 mg/m3 total; and 0.1–0.4 mg/m3 respirable) were lower than area air samples. All full-shift personal air samples for metals and silica were below published occupational exposure limits. All bulk samples of finished product granules contained less than 1% silica, supporting the claim coal slag may present less risk for silicosis than silica sand. We note that the results presented here are solely from two coal slag processing

  20. Elemental properties of coal slag and measured airborne exposures at two coal slag processing facilities.

    PubMed

    Mugford, Christopher; Boylstein, Randy; Gibbs, Jenna L

    2017-05-01

    In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of silica sand abrasives containing >1% silica due to the risk of silicosis. This gave rise to substitutes including coal slag. An Occupational Safety and Health Administration investigation in 2010 uncovered a case cluster of suspected pneumoconiosis in four former workers at a coal slag processing facility in Illinois, possibly attributable to occupational exposure to coal slag dust. This article presents the results from a National Institute for Occupational Safety and Health industrial hygiene survey at the same coal slag processing facility and a second facility. The industrial hygiene survey consisted of the collection of: (a) bulk samples of unprocessed coal slag, finished granule product, and settled dust for metals and silica; (b) full-shift area air samples for dust, metals, and crystalline silica; and (c) full-shift personal air samples for dust, metals, and crystalline silica. Bulk samples consisted mainly of iron, manganese, titanium, and vanadium. Some samples had detectable levels of arsenic, beryllium, cadmium, and cobalt. Unprocessed coal slags from Illinois and Kentucky contained 0.43-0.48% (4,300-4,800 mg/kg) silica. Full-shift area air samples identified elevated total dust levels in the screen (2-38 mg/m 3 ) and bag house (21 mg/m 3 ) areas. Full-shift area air samples identified beryllium, chromium, cobalt, copper, iron, nickel, manganese, and vanadium. Overall, personal air samples for total and respirable dust (0.1-6.6 mg/m 3 total; and 0.1-0.4 mg/m 3 respirable) were lower than area air samples. All full-shift personal air samples for metals and silica were below published occupational exposure limits. All bulk samples of finished product granules contained less than 1% silica, supporting the claim coal slag may present less risk for silicosis than silica sand. We note that the results presented here are solely from two coal slag processing

  1. Rare and Rare-Earth Metals in Coal Processing Waste

    NASA Astrophysics Data System (ADS)

    Cherkasova, Tatiana; Cherkasova, Elizaveta; Tikhomirova, Anastasia; Bobrovni-kova, Alyona; Goryunova, Irina

    2017-11-01

    An urgent issue for power plants operating on solid fuels (coal) is the issue of utilization or use of accumulated production waste - ash and slag materials - in the related production. Ash-slag materials are classified as "waste", usually grade 5; tens of millions of tons of them being pro-duced annually in the Kemerovo region, which threatens the ecology of the region. At the same time, ash and slag is a very promising raw material. The use of this material as a base for the final product allows us to signifi-cantly expand the possibilities of using coal. The most widespread is the system of ash and slag involving in construction or as a replacement for sand in road construction, or as an additive to building mixtures. However, there are both industrially valuable and environmentally dangerous ele-ments in ash-slag materials. Ash-slag materials can be considered as inde-pendent ore deposits located on the surface and requiring the costs of their extraction.

  2. Microbial screening test for lignite degradation. Quarterly progress report No. 2, April-June 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1985-01-01

    Fractionation of lignite was performed by means of: (1) benzene-methanol followed by aqueous alkaline extraction; and (2) benzene followed by methanol-alkaline extraction. The residue obtained by the latter fractionation was oxidized by means of cupric oxide and separated into methanol soluble fraction and methanol insoluble residue. Methanol-alkaline fraction was further divided into methylene chloride extractable portion and methylene chloride non-extractable portion. Fourier Transform Infrared Spectroscopy (FT-IR) was employed to characterize functional groups present in the raw lignite sample, benzene-methanol fraction, aqueous alkaline fraction, lignite residue, and benzene fraction. FT-IR was also used for the analysis of both methylene chloride extractablemore » and non-extracted portions. The following are some functional groups identified by the spectra of the fractions mentioned above: OH, amide, aromatic, CH, CO, C=C, CH/sub 2/, C-CH/sub 3/, SiCH/sub 3/, epoxide, and C-O-C. Both, raw lignite sample and aqueous alkaline fraction produced positive results for P. versicolor growth, whereas benzene-methanol fraction and lignite residue produced negative results. Acclimation of P. versicolor to lignite was accomplished up to 80% lignite and 20% neopeptone and maltose. 10 refs., 9 figs., 6 tabs.« less

  3. Characteristics and environmental aspects of slag: a review

    USGS Publications Warehouse

    Piatak, Nadine M.; Parsons, Michael B.; Seal, Robert R.

    2015-01-01

    The composition of ferrous slag is dominated by Ca and Si. Steel slag may contain significant Fe, whereas Mg and Al may be significant in Fe slag. Calcium-rich olivine-group silicates, melilite-group silicates that contain Al or Mg, Ca-rich glass, and oxides are the most commonly reported major phases in ferrous slag. Calcite and trace amounts of a variety of sulfides, intermetallic compounds, and pure metals are typically also present. The composition of non-ferrous slag, most commonly from base-metal production, is dominated by Fe and Si with significant but lesser amounts of Al and Ca. Silicates in the olivine, pyroxene, and melilite groups, as well as glass, spinels, and SiO2 (i.e., quartz and other polymorphs) are commonly found in non-ferrous slag. Sulfides and intermetallic compounds are less abundant than the silicates and oxides. The concentrations of some elements exceed generic USEPA soil screening levels for human contact based on multiple exposure pathways; these elements include Al, Cr, Cu, Fe, Mn, Pb, and Zn based on bulk chemical composition. Each slag type usually contains a specific suite of elements that may be of environmental concern. In general, non-ferrous slag may have a higher potential to negatively impact the environment compared to ferrous slag, and is thus a less attractive material for reuse, based on trace element chemistry, principally for base metals. However, the amount of elements released into the environment is not always consistent with bulk chemical composition. Many types of leaching tests have been used to help predict slag’s long-term environmental behavior. Overall, ferrous slags produce an alkaline leachate due to the dissolution of Ca oxides and silicates derived from compounds originally added as fluxing agents, such as lime. Ferrous slag leachate is commonly less metal-rich than leachate from non-ferrous slag generated during base metal extraction; the latter leachate may even be acidic due to the oxidation of

  4. Texas lignite mining: Groundwater and slope stability control in the nineties and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence J.

    As lignite mining in Texas approaches and exceeds depths of 200 feet below ground level, rising costs demand that innovative mining approaches be used in order to maintain the economic viability of lignite mining. Groundwater and slope stability problems multiply at these depths, resulting in increasing focus on how to control these costs. Dewatering costs are consistently rising for the lignite industry, as deeper mining encounters more and larger saturated sand bodies. These sands require dewatering in order to improve slope stability. Planning and analysis become more important as the number of wells grows beyond what can be managed withmore » a simple {open_quotes}cookie-cutter{close_quotes} approach. Slope stability plays an increasing role in mining concerns as deeper lignite is recovered. Slope stability causes several problems, including loss of lignite, increased rehandle, and hazards to personnel and equipment. Traditional lignite mine planning involved a fairly {open_quotes}generic{close_quotes} pit design with one design highwall angle, one design spoil angle, and little geotechnical evaluation of the deposit. This {open_quotes}one mine-one design{close_quotes} approach, while cost-effective in the past, is now being replaced by a more critical analysis of the design requirements of each area. Geotechnical evaluation plays an increasing role in the planning and operational aspects of lignite mining. Laboratory core sample test results can be used for slope stability modeling, in order to obtain more accurate design and operational information.« less

  5. Petrological, geochemical and isotopic characteristics of lignite and calcified lignite from mining area Pesje, Velenje Basin, Slovenia

    NASA Astrophysics Data System (ADS)

    Vrabec, Mirijam; Markič, Miloš; Vrabec, Marko; Jaćimović, Radojko; Kanduč, Tjaša

    2014-05-01

    Lignite (organic rich) and calcified lignite (inorganic rich) samples from excavation field -50c mining area Pesje, Velenje Basin, Slovenia were investigated. During geological and structural mapping lignite and calcified lignite samples were systematically taken for determination of their petrological, geochemical and isotopic characteristics. Lignite is composed of fine detritical gelified matrix. At least five different types of calcified lignite were recognized forming laminations, calcifications after wood, petrified wood and complete replacements of lignite with carbonate. All measured parameters so far indicate geochemical processes during sedimentation of the Velenej Basin. After macroscopic description samples were split to organic and inorganic component (Ward, 1984) and powdered in an agate mortar for geochemical and isotopic analyses. Major and trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Sb, Se, Th, U, Zn) in these samples were determined by instrumental neutron activation analysis (INAA) using k-0 standardization method (Jaćimović et al, 2002). The isotopic composition of carbon and nitrogen was determined using a Europa 20-20 continuous flow IRMS ANCA-SL preparation module. A 1 mg amount of a sample was weighed in a tin capsule for carbon and 10 mg for nitrogen analysis. Samples for carbon analyses were pretreated with 1 M HCl to remove carbonates. Carbonate samples from carbonate-rich strata and calcified xylite were first roasted at 450 deg C (Krantz et al., 1987). Three miligrams of carbonate sample was transformed into CO2 by reaction with anhydrous H3PO4 at 55 deg C under vacuum (McCrea, 1950) and measured with GV 2003 isotope ratio mass spectrometer. Measured isotopic composition of oxygen as VPDB values was recalculated to the VSMOW reference standard to enable the comparison with data from other coal basins. SEM/EDXS of carbonate rich sediments was performed with JEOL JSM 5800 electron microanalyzer scanning electron microscope

  6. Recovery of metal values from copper slag and reuse of residual secondary slag.

    PubMed

    Sarfo, Prince; Das, Avimanyu; Wyss, Gary; Young, Courtney

    2017-12-01

    Resource and environmental factors have become major forces in mining and metallurgy sectors driving research for sustainability purposes. The concept of zero-waste processing has been gaining ground readily. The scant availability of high quality raw materials has forced the researchers to shift their focus to recycling while the exceedingly stringent environmental regulations have forced researchers to explore new frontiers of minimizing/eliminating waste generation. The present work is aimed at addressing both aspects by employing recycling to generate wealth from copper slag and producing utilizable materials at the same time thus restoring the ecosystem. Copper slag was characterized and processed. The pyro-metallurgical processing prospects to generate utilizable materials were arrived at through rigorous thermodynamic analysis. Carbothermal reduction at elevated temperature (near 1440°C) helped recover a majority of the metal values (e.g., Fe, Cu and Mo) into the iron-rich alloy product which can be a feed material for steel making. On the other hand, the non-metallic residue, the secondary slag, can be used in the glass and ceramic industries. Reduction time and temperature and carbon content were shown to be the most important process variables for the reaction which were optimized to identify the most favored operating regime that maximizes the metal recovery and simultaneously maximizes the hardness of the secondary slag and minimizes its density, the two major criteria for the secondary slag product to be utilizable. The flux addition level was shown to have relatively less impact on the process performance if these are maintained at an adequate level. The work established that the copper slag, a waste material, can be successfully processed to generate reusable products through pyrometallurgical processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hydrology and geochemistry of a slag-affected aquifer and chemical characteristics of slag-affected ground water, northwestern Indiana and northeastern Illinois

    USGS Publications Warehouse

    Bayless, E. Randall; Greeman, T.K.; Harvey, C.C.

    1998-01-01

    Slag is a by-product of steel manufacturing and a ubiquitous fill material in northwestern Indiana. Ground water associated with slag deposits generally is characterized by high pH and elevated concentrations of many inorganic water-quality constituents. The U.S. Geological Survey, in cooperation with the Indiana Department of Environmental Management, conducted a study in northwestern Indiana from June 1995 to September 1996 to improve understanding of the effects of slag deposits on the water quality of a glacial-outwash aquifer. The Bairstow Landfill, a slag-fill deposit overlying the Calumet aquifer near Hammond, Indiana, was studied to represent conditions in slag-deposit settings that are common in northwestern Indiana. Ground water from 10 observation wells, located in four nests at the site, and surface water from the adjacent Lake George were analyzed for values of field-measured parameters and concentrations of major ions, nutrients, trace elements, and bulk properties. Solid-phase samples of slag and aquifer sediment collected during drilling were examined with X-ray diffraction and geochemical digestion and analysis. Concentrations of calcium, potassium, sodium, and sulfate were highest in wells screened partly or fully in slag. Potassium concentrations in ground water ranged from 2.9 to 120 milligrams per liter (mg/L), were highest in water from slag deposits, and decreased with depth. The highest concentrations for aluminum, barium, molybdenum, nickel, and selenium were in water from the slag. Silica concentrations were highest in wells screened directly beneath the slag?aquifer interface, and magnesium concentrations were highest in intermediate and deep aquifer wells. Silica concentrations in shallow and intermediate aquifer wells ranged from 27 to 41 mg/L and were about 10 times greater than those in water from slag deposits. The highest concentrations for chromium, lead, and zinc were in ground water from immediately below the slag

  8. Pilot-scale steam aging of steel slags.

    PubMed

    Kumar, Praveen; Satish Kumar, D; Marutiram, K; Prasad, Smr

    2017-06-01

    Solid waste management has gained importance in the steel industry in view of rising environmental concerns and scarcity of raw materials. In spite of significant developments in reducing waste generation and development of recycling technologies, steel slag is still a concern for the industry as most of it is dumped. Steel slag is similar to stone aggregates in strength, but its volumetric instability in contact with water hinders its application as aggregates in construction. A part of steel slag is normally exposed to rain and sun for natural aging and stabilization for months before use. The natural aging process is slow and time-consuming, and thus restricts its usage. The steelmaking slag can be put to effective use as coarse aggregates if quickly aged and stabilized by pre-reacting the free expansive phases. In the present work, a new process has been developed to accelerate the steel slag aging process using steam in a 30 T pilot scale facility. The setup has controlled steam injection, distribution, and process control system for steam, temperature, flow, and pressure. Steam percolates through the minute pores in the slag lumps and hydrates the expansive free lime and MgO phases, making it stable. The aged slag expansion properties were tested using an in-house developed expansion testing apparatus. The process is capable of reducing the expansion of steel slag from 3.5% to <1.5% (standard requirement) in 7 days. The aged steel slag is currently being used in roads at JSW Steel, Vijayanagar Works.

  9. Mineral resource of the month: ferrous slag

    USGS Publications Warehouse

    ,

    2009-01-01

    The article offers information on mineral resource ferrous slag. Ferrous slag is produced through the addition of materials such as limestone and dolomite to blast and steel furnaces to remove impurities from iron ore and to lower the heat requirements for processes in iron and steel making. It is stated that the method of cooling is important for the market uses and value of ferrous slag. Some types of slag can be used in construction, glass manufacturing and thermal insulation.

  10. The solidification behavior of calcium oxide-aluminum oxide slags

    NASA Astrophysics Data System (ADS)

    Prapakorn, Kritsada

    The binary CaO-Al2O3 based slag and the ternary CaO-Al2O3-MgO based slag are common slags covering and inclusions that are found in calcium treated Al-killed, continuously cast steels. However, the effect of cooling conditions and chemistry on the solidification behavior of these slags is not well characterized. To better understand this phenomena, the solidification behavior of these slags was studied by using double hot thermocouple technique. TTT and CCT diagrams of these slags were determined to quantify the solidification behavior in both dry and humid atmospheres. In this work, these slag samples were easily undercooled and the solidification behavior of these slags was found to be a strong function of cooling conditions. The crystallization tendency of these slags follows the trends suggested by the phase diagram. In CaO-Al2O3 based slags, The eutectic composition (50%CaO) give the lowest crystallization tendency due to the lowest liquidus temperature. In a eutectic CaO-Al2O3 slag sample, dissolved water in the sample increases crystallization tendency and enhances the growth. It was also found that the crystalline phase that formed during cooling in both the dry and humid conditions is the mixture between 3CaO.Al2O 3 and CaO.Al2O3 phases. In CaO-Al2O3-MgO based slags, the crystallization tendency increases with MgO content because the high MgO content leads to the high liquidus temperature. The effect of dissolved of water on the crystallization of CaO-Al2O3-MgO based slags is not as prominent as in the eutectic CaO-Al2O3 slag. Thus, the addition of MgO to CaO-Al2O3 slags was seen to minimize or eliminate the effect of humidity on the solidification of CaO-Al2O3 based slags. In this work, Uhlmann's method was used to estimate the solid-liquid interfacial energy of CaO-Al2O3 based slag for the temperature between 1100--1250°C. The result is between 0.25--0.4 Joules/m 2.

  11. Environmental geology of the Wilcox Group Lignite Belt, east Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, C.D.; Basciano, J.M.

    This report provides a data base for decisions about lignite mining and reclamation in the Wilcox Group of East Texas. A set of environmental geologic maps, which accompanies this report, depicts the character of the land that will be affected by mining. The environmental geologic maps of the East Texas lignite belt provide an accurate inventory of land resources. The maps identify areas where mining is most likely to occur, areas of critical natural resources that could be affected by mining, such as aquifer recharge areas, and areas of natural hazards, such as floodplains. Principal areas of both active andmore » planned surface mining are also located. The seven environmental geologic maps cover the outcrop area of the Wilcox Group, the major lignite host, and adjacent geologic units from Bastrop County to Texarkana. This report begins with a discussion of various physical aspects of the lignite belt, including geology, hydrology, soils, climate, and land use, to aid in understanding the maps. The criteria and methodology used to delineate the environmental geologic units are discussed. Varied applications of the environmental geologic maps are considered. 23 references, 9 figures, 3 tables.« less

  12. Carbothermic Reduction Reactions at the Metal-Slag Interface in Ti-Bearing Slag from a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo

    2017-11-01

    Carbothermic reduction reactions at the metal-slag interface and the mechanisms of iron loss during the smelting of vanadium-bearing titanomagnetite in a blast furnace are still not clear as a result of the limited ability to observe the high-temperature zone of a blast furnace. The chemical composition of a Ti-bearing slag was determined by x-ray fluorescence and x-ray diffraction. The interfaces were characterized by scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy. The interfacial chemical reactions were deduced based on the characterization results and on the thermodynamic calculations performed using Factsage 6.4. The results indicated that the forms of iron in the slag were iron droplets wetted by Ti(C x , N1- x ), mechanically separated by iron and iron oxide. The different forms possessed unique characteristics and were formed by different mechanisms. Iron droplets wetted by Ti(C x , N1- x ) were generated through a series of interfacial reactions between TiO2 in the slag and [C] and [N] in the metal. Iron droplets without attached Ti(C x , N1- x ) were mainly located on the edges of pores and were attributed to the reduction of Fe x O in the slag. Insufficient reduction of iron-bearing minerals made it difficult for iron droplets to aggregate and separate from the slag, which created an Fe x O-enriched zone.

  13. Development of an ash particle deposition model considering build-up and removal mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjell Strandstroem; Christian Muellera; Mikko Hupa

    2007-12-15

    Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling has long been considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles.more » The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. 12 refs., 10 figs.« less

  14. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, M.E.

    1996-10-22

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.

  15. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, Max E.

    1996-01-01

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an eletrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable.

  16. 40 CFR 302.6 - Notification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transportation of coal and coal ash (including fly ash, bottom ash, and boiler slags), including the dumping and... coal and coal ash, including fly ash, bottom ash, and boiler slags. (d) Except for releases of..., chromium, copper, lead, nickel, selenium, silver, thallium, or zinc is not required if the mean diameter of...

  17. Risk assessment of heavy metals from combustion of pelletized municipal sewage sludge.

    PubMed

    Xiao, Zhihua; Yuan, Xingzhong; Leng, Lijian; Jiang, Longbo; Chen, Xiaohong; Zhibin, Wu; Xin, Peng; Jiachao, Zhang; Zeng, Guangming

    2016-02-01

    Fly ash and slag are important by-products obtained from combustion of municipal sewage sludge (MSS) after pelletization. The quantitative environmental impact assessment of heavy metals in fly ash and slag, compared to MSS, were performed in accordance with bioavailability and eco-toxicity, geo-accumulation index (GAI), risk assessment code (RAC), and potential ecological risk index (PERI). The results demonstrated that not only direct but also long-term bioavailability and eco-toxicity of heavy metals in fly ash and slag decreased except direct bioavailability and eco-toxicity of Pb in fly ash. The GAI demonstrated that combustion significantly weakened (P < 0.05) the pollution levels of heavy metals. PERI indicated that all risks attributed to heavy metals were significantly lowered (P < 0.05) from 777.07 (very high risk) in MSS to 288.72 (moderate risk) and 64.55 (low risk) in fly ash and slag, respectively. In terms of the RAC, seven heavy metals had low even no risk to the environments after combustion besides As in slag. The environmental risk of heavy metals in fly ash and slag was decreased compared with MSS. However, the results of PERI showed that fly ash had a moderate risk.

  18. Appraisal of Hydrologic Information Needed in Anticipation of Lignite Mining in Lauderdale County, Tennessee

    USGS Publications Warehouse

    Parks, William Scott

    1981-01-01

    Lignite in western Tennessee occurs as lenses or beds at various stratigraphic horizons in the Coastal Plain sediments of Late Cretaceous and Tertiary age. The occurrence of this lignite has been known for many decades, but not until the energy crisis was it considered an important energy resource. In recent years, several energy companies have conducted extensive exploration programs in western Tennessee, and tremendous reserves of lignite have been found. From available information, Lauderdale County was selected as one of the counties where strip-mining of lignite will most likely occur. Lignite in this county occurs in the Jackson and Cockfield Formations, undivided, of Tertiary age. The hydrology of the county is known only from regional studies and the collection of some site-specific data. Therefore, in anticipation of the future mining of lignite, a plan is needed for obtaining hydrologic and geologic information to adequately define the hydrologic system before mining begins and to monitor the effects of strip-mining once it is begun. For this planning effort, available hydrologic, geologic, land use, and associated data were located and compiled; a summary description of the surface and shallow subsurface hydrologic system was prepared: the need for additional baseline hydrologic information was outlined; and plans to monitor the effects of strip-mining were proposed. This planning approach, although limited to a county area, has transferability to other Coastal Plain areas under consideration for strip-mining of lignite.

  19. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens.

    PubMed

    Sun, Jianlei; Bai, Mei; Shen, Jianlin; Griffith, David W T; Denmead, Owen T; Hill, Julian; Lam, Shu Kee; Mosier, Arvin R; Chen, Deli

    2016-09-15

    Beef cattle feedlots are a major source of ammonia (NH3) emissions from livestock industries. We investigated the effects of lignite surface applications on NH3 and nitrous oxide (N2O) emissions from beef cattle feedlot pens. Two rates of lignite, 3 and 6kgm(-2), were tested in the treatment pen. No lignite was applied in the control pen. Twenty-four Black Angus steers were fed identical commercial rations in each pen. We measured NH3 and N2O concentrations continuously from 4th Sep to 13th Nov 2014 using Quantum Cascade Laser (QCL) NH3 analysers and a closed-path Fourier Transform Infrared Spectroscopy analyser (CP-FTIR) in conjunction with the integrated horizontal flux method to calculate NH3 and N2O fluxes. During the feeding period, 16 and 26% of the excreted nitrogen (N) (240gNhead(-1)day(-1)) was lost via NH3 volatilization from the control pen, while lignite application decreased NH3 volatilization to 12 and 18% of the excreted N, for Phase 1 and Phase 2, respectively. Compared to the control pen, lignite application decreased NH3 emissions by approximately 30%. Nitrous oxide emissions from the cattle pens were small, 0.10 and 0.14gN2O-Nhead(-1)day(-1) (<0.1% of excreted N) for the control pen, for Phase 1 and Phase 2, respectively. Lignite application increased direct N2O emissions by 40 and 57%, to 0.14 and 0.22gN2O-Nhead(-1)day(-1), for Phase 1 and Phase 2, respectively. The increase in N2O emissions resulting from lignite application was counteracted by the lower indirect N2O emission due to decreased NH3 volatilization. Using 1% as a default emission factor of deposited NH3 for indirect N2O emissions, the application of lignite decreased total N2O emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.

    2009-07-15

    There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with flymore » ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.« less

  1. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping

    NASA Astrophysics Data System (ADS)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.

  2. Utilizing steel slag in environmental application - An overview

    NASA Astrophysics Data System (ADS)

    Lim, J. W.; Chew, L. H.; Choong, T. S. Y.; Tezara, C.; Yazdi, M. H.

    2016-06-01

    Steel slags are generated as waste material or byproduct every day from steel making industries.The potential environmental issues which are related with the slag dump or reprocessing for metal recovery are generally being focused in the research. However the chemistry and mineralogy of slag depends on metallurgical process which is able to determine whether the steel slag can be the reusable products or not. Nowadays, steel slag are well characterized by using several methods, such as X-ray Diffraction, ICP-OES, leaching test and many more. About the industrial application, it is mainly reused as aggregate for road construction, as armour stones for hydraulic engineering constructions and as fertilizers for agricultural purposes. To ensure the quality of steel slag for the end usage, several test methods are developed for evaluating the technical properties of steel slag, especially volume stability and environmental behaviour. In order to determine its environmental behaviour, leaching tests have been developed. The focus of this paper however is on those applications that directly affect environmental issues including remediation, and mitigation of activities that negatively impact the environment.

  3. Mechanism of Selenium Loss in Copper Slag

    NASA Astrophysics Data System (ADS)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  4. Mechanism of Selenium Loss in Copper Slag

    NASA Astrophysics Data System (ADS)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  5. Immobilization of Cr (VI) in stainless steel slag and Cd, As, and Pb in wastewater using blast furnace slag via a hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Tae, Soon-Jae; Morita, Kazuki

    2017-05-01

    The immobilization of hexavalent chromium in stainless steel slag using blast furnace slag as the immobilizing agent and by performing a hydrothermal treatment was investigated. The results showed that there was no immobilization in the absence of the blast furnace slag. On the other hand, the hexavalent chromium in stainless steel slag could be immobilized through the hydrothermal reaction when blast furnace slag was used at 250 °C for 24 h. A leaching test was performed to evaluate the degree of immobilization of hexavalent chromium in the products formed by the hydrothermal reaction. It was found that the degree of immobilization was very high. Based on the results obtained, the immobilization mechanism of hexavalent chromium in stainless steel slag, resulting from the hydrothermal treatment of blast furnace slag, could be elucidated. Finally, the immobilization of cadmium, lead, and arsenic using blast furnace slag as the immobilization agent was also studied while focusing on the effects of the hydrothermal treatment.

  6. Lithofacies control of lignite distribution and ground-water quality, Wilcox group (Eocene), east-central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, W.B. Jr.; Lewis, A.H.

    1984-04-01

    Deep lignite resources (200-2000 ft; 61-610 m) were evaluated regionally using 1470 geophysical well logs to interpret lithofacies, lignite occurrence, and resistivity (water quality). The regional distribution of lithofacies indicates that in the region, the Wilcox Group is a fluvial-deltaic system. The primary fluvial system entered the Wilcox coastal plain west of Waco, Texas, trended southeast, and supplied a 75-mi (120-km) wide fluvial-deltaic system comparable in size to the Mississippi system. Lignites are most abundant in the Calvert Bluff Formation (upper Wilcox). Lower Calvert Bluff lignites are thickest and most extensive southwest of the Navasota River, whereas those of themore » upper Calvert Bluff are thickest northeast of the Brazos River. In the shallow subsurface, Calvert Bluff lignites are found in dip-elongate low-sand areas (flood plains) between channel-sand belts. Basinward, laterally continuous lignites coincide with high net sand areas comprise of distributary channel sands indicative of a delta-plain setting. The wilcox Group is a major aquifer. Maps of resistivity values show that Wilcox channel sands are conduits for ground-water flow. High values of formation resistivity (low total dissolved solids) exist in recharge areas at outcrop and around salt domes. Elongate trends of high resistivity values extend tens of miles basinward and coincide with axes of major sands. Resistivity values decrease basinward and the 20 ohm-m contour delineates the downdip limit of fresh water. Lithofacies and lignite occurrence maps are guides to exploration for deep lignite. Resistivity maps can be used to explore for ground-water resources.« less

  7. Dissolution of steel slags in aqueous media.

    PubMed

    Yadav, Shashikant; Mehra, Anurag

    2017-07-01

    Steel slag is a major industrial waste in steel industries, and its dissolution behavior in water needs to be characterized in the larger context of its potential use as an agent for sequestering CO 2 . For this purpose, a small closed system batch reactor was used to conduct the dissolution of steel slags in an aqueous medium under various dissolution conditions. In this study, two different types of steel slags were procured from steel plants in India, having diverse structural features, mineralogical compositions, and particle sizes. The experiment was performed at different temperatures for 240 h of dissolution at atmospheric pressure. The dissolution rates of major and minor slag elements were quantified through liquid-phase elemental analysis using an inductively coupled plasma atomic emission spectroscopy at different time intervals. Advanced analytical techniques such as field emission gun-scanning electron microscope, energy-dispersive X-ray, BET, and XRD were also used to analyze mineralogical and structural changes in the slag particles. High dissolution of slags was observed irrespective of the particle size distribution, which suggests high carbonation potential. Concentrations of toxic heavy metals in the leachate were far below maximum acceptable limits. Thus, the present study investigates the dissolution behavior of different mineral ions of steel slag in aqueous media in light of its potential application in CO 2 sequestration.

  8. A Parametric Study of Slag Skin Formation in Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Yanke, Jeff; Krane, Matthew John M.

    In electroslag remelting (ESR), the slag generates heat, chemically refines the melting electrode material, and forms frozen skin on the mold. An axisymmetric model is used to simulate fluid flow, heat transfer, solidification, and electromagnetics and their interaction with slag skin formation in ESR. A volume of fluid (VOF) method is used to track the slag/metal interface, allowing simulation of slag freezing to the mold. Mold diameter and applied current are varied to determine how these parameters affect melt rate and formation of slag skin during ESR. Variations in the slag skin thickness within the slag cap are found to have a significant impact on melt rate and depth of metal sump. Changes in slag cap volume resulted in small changes in melt rate.

  9. Chemical characterization and receptor modeling of PM10 in the surroundings of the opencast lignite mines of Western Macedonia, Greece.

    PubMed

    Samara, Constantini; Argyropoulos, George; Grigoratos, Theodoros; Kouras, Αthanasios; Manoli, Εvangelia; Andreadou, Symela; Pavloudakis, Fragkiskos; Sahanidis, Chariton

    2018-05-01

    The Western Macedonian Lignite Center (WMLC) in northwestern Greece is the major lignite center in the Balkans feeding four major power plants of total power exceeding 4 GW. Concentrations of PM 10 (i.e., particulate matters with diameters ≤10 μm) are the main concern in the region, and the high levels observed are often attributed to the activities related to power generation. In this study, the contribution of fugitive dust emissions from the opencast lignite mines to the ambient levels of PM 10 in the surroundings was estimated by performing chemical mass balance (CMB) receptor modeling. For this purpose, PM 10 samples were concurrently collected at four receptor sites located in the periphery of the mine area during the cold and the warm periods of the year (November-December 2011 and August-September 2012), and analyzed for a total of 26 macro- and trace elements and ionic species (sulfate, nitrate, chloride). The robotic chemical mass balance (RCMB) model was employed for source identification/apportionment of PM 10 at each receptor site using as inputs the ambient concentrations and the chemical profiles of various sources including the major mine operations, the fly ash escaping the electrostatic filters of the power plants, and other primary and secondary sources. Mean measured PM 10 concentrations at the different sites ranged from 38 to 72 μg m -3 . The estimated total contribution of mines ranged between 9 and 22% in the cold period increasing to 36-42% in the dry warm period. Other significant sources were vehicular traffic, biomass burning, and secondary sulfate and nitrate aerosol. These results imply that more efficient measures to prevent and suppress fugitive dust emissions from the mines are needed.

  10. Environmental characteristics and utilization potential of metallurgical slag: Chapter 19

    USGS Publications Warehouse

    Piatak, Nadine; De Vivo, Benedetto; Belkin, Harvey E.; Lima, Annamaria

    2018-01-01

    Slag, an abundant byproduct from the pyrometallurgical processing of ores, can be an environmental liability or a valuable resource. The most common environmental impact of slag is from the leaching of potentially toxic elements, acidity, or alkalinity that may impact nearby soils and surface water and groundwater. Factors that influence its environmental behavior include physical characteristics, such as grain size and porosity, chemical composition with some slag being enriched in certain elements, the mineralogy and partitioning of elements in more or less reactive phases, water-slag interactions, and site conditions. Many of these same factors also influence its resource potential. For example, crystalline ferrous slag is most commonly used as construction aggregate, whereas glassy (i.e., granulated) slag is used in cement. Also, the calcium minerals found in ferrous slag result in useful applications in water treatment. In contrast, the high trace-element content of some base-metal slags makes the slags economically attractive for extraction of residual elements. An evaluation tool is used to help categorize a particular slag as an environmental hazard or valuable byproduct. Results for one type of slag, legacy steelmaking slag from the Chicago area in the USA, suggest the material has potential to be used for treating phosphate-rich or acidic waters; however, the pH and trace-element content of resulting solutions may warrant further examination.

  11. Moderate Dilution of Copper Slag by Natural Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Bao-jing; Zhang, Ting-an; Niu, Li-ping; Liu, Nan-song; Dou, Zhi-he; Li, Zhi-qiang

    2018-01-01

    To enable use of copper slag and extract the maximum value from the contained copper, an innovative method of reducing moderately diluted slag to smelt copper-containing antibacterial stainless steel is proposed. This work focused on moderate dilution of copper slag using natural gas. The thermodynamics of copper slag dilution and ternary phase diagrams of the slag system were calculated. The effects of blowing time, temperature, matte settling time, and calcium oxide addition were investigated. The optimum reaction conditions were identified to be blowing time of 20 min, reaction temperature of 1250°C, settling time of 60 min, CaO addition of 4% of mass of slag, natural gas flow rate of 80 mL/min, and outlet pressure of 0.1 MPa. Under these conditions, the Fe3O4 and copper contents of the residue were 7.36% and 0.50%, respectively.

  12. An overview on characterization, utilization and leachate analysis of biomedical waste incinerator ash.

    PubMed

    Rajor, Anita; Xaxa, Monika; Mehta, Ratika; Kunal

    2012-10-15

    Solid waste management is one of the major global environmental issues, as there is continuous increase in industrial globalization and generation of waste. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Biomedical waste pose a significant impact on health and environment. A proper waste management system should be required to dispose hazardous biomedical waste and incineration should be the best available technology to reduce the volume of this hazardous waste. The incineration process destroys pathogens and reduces the waste volume and weight but leaves a solid material called biomedical waste ash as residue which increases the levels of heavy metals, inorganic salts and organic compounds in the environment. Disposal of biomedical waste ash in landfill may cause contamination of groundwater as metals are not destroyed during incineration. The limited space and the high cost for land disposal led to the development of recycling technologies and the reuse of ash in different systems. In order to minimize leaching of its hazardous components into the environment several studies confirmed the successful utilization of biomedical waste ash in agriculture and construction sector. This paper presents the overview on the beneficial use of ash in agriculture and construction materials and its leachate characteristics. This review also stressed on the need to further evaluate the leachate studies of the ashes and slag for their proper disposal and utilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Changes in floral composition with depositional environment in Texas Eocene Manning Formation lignites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gennett, J.A.; Raymond, A.L.

    1986-09-01

    The floral composition of palynomorph assemblages of Jacksonian Texas lignites is closely linked to depositional systems. Localities on the eastern Gulf coastal plain are included in the late Eocene Fayette delta system, and lignite formation is considered to have occurred in lower deltaic environments. Samples are commonly dominated by grains of Caprifoliipites/Salixpollenites, Momites, or Nyssa, indicating dicotyledonous tree-dominated swamps. Some samples contain abundant Cicatricosspories spores, suggesting marshy, fern-dominated areas. The San Miguel lignite deposit in McMullen County is located on the eastern margin of the south Texas strand-plain/barrier-bar system. Caprifoliipites/Salixpollenites pollen is rare in the San Miguel, and most ofmore » the levels are dominated by small tricolporates such as cupuliferoipollenites and Sapotaceae. Nyssa is locally important. The lignite is considered to have been deposited in a nondeltaic freshwater swamp behind a barrier island. The Miguel Alleman deposit, across the Mexican border in Tamaulipas, is thought to have developed in a lagoonal-estuarine environment. Dinoflagellates such as Wetzeliella are common at some levels, indicating marine conditions. As with San Miguel, small tricolporates and Momipites are common. These assemblages contrast with Sabinian floras. Wilcox Group east Texas lignites were formed in fluvial environments. Betulaceous pollen is common in these coals. Sabinian south Texas lignites formed in marine environments yield dinoflagellates and Chenopodium-type pollen. Chenopods are common in present-day Gulf Coast salt marshes but seem to have been absent from Jackson-age seacoasts.« less

  14. Study of Reaction Between Slag and Carbonaceous Materials

    NASA Astrophysics Data System (ADS)

    Maroufi, Samane; Mayyas, Mohannad; Mansuri, Irshad; O'Kane, Paul; Skidmore, Catherine; Jin, Zheshi; Fontana, Andrea; Sahajwalla, Veena

    2017-10-01

    The chemical interaction of a typical slag of EAF with three different carbon sources, coke, rubber-derived carbon (RDC), coke-RDC blend, was studied in atmospheric pressure at 1823 K (1550 °C). Using an IR-gas analyzer, off-gases evolved from the sample were monitored. While the coke-RDC blend exhibited the best reducing performance in reaction with molten slag, the RDC sample showed poor interaction with the molten slag. The gasification of the coke, RDC, and coke-RDC blend was also carried out under oxidizing conditions using a gas mixture of CO2 (4 wt pct) and Ar (96 wt pct) and it was shown that the RDC sample had the highest rate of gasification step C0 {\\longrightarrow}\\limits{{k3 }}{CO} + nCf (11.6 site/g s (×6.023 × 1023/2.24 × 104)). This may be attributed to its disordered structure confirmed by Raman spectra and its nano-particle morphology observed by FE-SEM. The high reactivity of RDC with CO2 provided evidence that the Boudouard reaction was fast during the interaction with molten slag. However, low reduction rate of iron oxide from slag with RDC can be attributed to the initial weak contact between RDC and molten slag implying that the contact between carbonaceous matter and slag plays significant roles in the reduction of iron oxide from slag.

  15. Slag processing system for direct coal-fired gas turbines

    DOEpatents

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  16. Review of lignite resources of western Tennessee and the Jackson Purchase area, western Kentucky

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; Thomas, Roger E.; Nichols, Douglas J.

    2006-01-01

    Introduction: This review of the lignite deposits of western Tennessee and the Jackson Purchase area in western Kentucky (Fig. 1) is a preliminary report on part of the U.S. Geological Survey's National Coal Resource Assessment of the Gulf Coastal Plain Coal Province. Lignite deposits of western Kentucky and Tennessee are an extension of the Gulf Coastal Plain Coal Province (Cushing and others, 1964), and currently are not economic to mine. These deposits have not been extensively investigated or developed as an energy resource. This review includes a description of the geology of the lignite-bearing units, a discussion of the available coal quality data, and information on organic petrology. Palynological data for lignite samples collected in Kentucky and Tennessee as part of this work are presented in an Appendix.

  17. Comparative study of antimicrobial efficiency of metallurgical slags suitable for construction applications

    NASA Astrophysics Data System (ADS)

    Strigac, J.; Stevulova, N.; Mikusinec, J.; Varecka, L.; Hudecova, D.

    2017-10-01

    The article deals with comparative study of antimicrobial efficiency of metallurgical slags suitable for construction applications. The tested slags were as follows: granulated blast-furnace slag (GS1), air cooled blast-furnace slag (AS2), demetallized steel slag (DS3), calcerous ladle slag (LS4), slag from copper refining (CS5). The antimicrobial activity was tested on selected representatives of bacteria, yeasts, and filamentous fungi. The highest antibacterial activity possessed LS4, which intensely inhibited growth of bacteria with the lowest concentration of slag (10%) in the growth media. 100% inhibition of growth of some bacteria was observed only in slags LS4, DS3 and AS2 in concentrations 20% - 60% of slag. Antibacterial activity of slag samples was decreasing in the order: LS4 > DS3 > AS2 > GS1 > CS5. Growth of all model yeasts was 100% inhibited at as low concentration as 20% of slag GS1 and DS3, and 10% of slag LS4. Antiyeast activity of slags was decreasing in the order: LS4 > GS1 = DS3 > AS2 > CS5. Regarding that filamentous fungi were selectively sensitive to presence of slags, it is possible to determine only approximate order of inhibition effectiveness of slags to fungi: LS4 > GS1 = DS3 > AS2 = CS5.

  18. Molybdate adsorption from steel slag eluates by subsoils.

    PubMed

    Matern, K; Rennert, T; Mansfeldt, T

    2013-11-01

    Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.

    PubMed

    Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-02

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  20. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    PubMed Central

    Glinicki, Michał A.; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-01

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash. PMID:28787821

  1. Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchsbaum, L.

    2009-08-15

    North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

  2. Long term mechanical properties of alkali activated slag

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.

    2018-01-01

    This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.

  3. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Shiyun, E-mail: tjzhongshiyun@163.com; Ni Kun; Li Jinmei

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer The mortar with uncalcined FGD gypsum has suitable workability. Black-Right-Pointing-Pointer The strength of mortar with uncalcined FGD gypsum is higher than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The dry shrinkage of mortar with uncalcined FGD gypsum is lower than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The leaching of sulfate ion of mortar is studied. - Abstract: A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratiomore » (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO{sub 4}{sup 2-} from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO{sub 4}{sup 2-} releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO{sub 4}{sup 2-} from the mortar with 20% FGD gypsum is

  4. Modified DHTT Equipment for Crystallization Studies of Mold Slags

    NASA Astrophysics Data System (ADS)

    Kölbl, Nathalie; Harmuth, Harald; Marschall, Irmtraud

    2018-04-01

    The double hot thermocouple technique (DHTT) enables simulations of the temperature gradient at near-service conditions during continuous casting of steel. With the equipment applied so far, a rectangular slag film of even thickness often cannot be achieved. Further, the minimum temperature frequently lies within the slag film. Modified equipment can avoid these disadvantages via the following design features. The entire furnace chamber is heated to the selected temperature of the cold wire, and the minimum temperature is not located within the slag film. Furthermore, the shape of the heating wire is improved, which enables mounting of a thin, rectangular slag film between four platinum wires. This modification allows for investigations on transparent and translucent slags. So far, the results from DHTT investigations were represented via snapshots of the samples at certain experimental times. Therefore, appropriate methods for the graphical representation of the results were suggested: the maximum crystallinity, the time related to certain crystallinities with a dependence on the position within the slag film, and the crystal growth rate. The CaO-MgO-Al2O3-SiO2 slag investigated with this equipment was mineralogically examined additionally, and based on thermodynamic calculations, the allocation of temperatures to certain positions within the crystallized slag film was possible.

  5. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, Almir, E-mail: almir@ufscar.b; Lima, Sofia Araujo, E-mail: sofiaalima@yahoo.com.b

    2010-06-15

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction asmore » inert materials. The present study used ash collected from four sugar mills in the region of Sao Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.« less

  6. Time, Temperature, and Cationic Dependence of Alkali Activation of Slag: Insights from Fourier Transform Infrared Spectroscopy and Spectral Deconvolution.

    PubMed

    Dakhane, Akash; Madavarapu, Sateesh Babu; Marzke, Robert; Neithalath, Narayanan

    2017-08-01

    The use of waste/by-product materials, such as slag or fly ash, activated using alkaline agents to create binding materials for construction applications (in lieu of portland cement) is on the rise. The influence of activation parameters (SiO 2 to Na 2 O ratio or M s of the activator, Na 2 O to slag ratio or n, cation type K + or Na + ) on the process and extent of alkali activation of slag under ambient and elevated temperature curing, evaluated through spectroscopic techniques, is reported in this paper. Fourier transform infrared spectroscopy along with a Fourier self-deconvolution method is used. The major spectral band of interest lies in the wavenumber range of ∼950 cm -1 , corresponding to the antisymmetric stretching vibration of Si-O-T (T = Si or Al) bonds. The variation in the spectra with time from 6 h to 28 days is attributed to the incorporation of Al in the gel structure and the enhancement in degree of polymerization of the gel. 29 Si nuclear magnetic resonance spectroscopy is used to quantify the Al incorporation with time, which is found to be higher when Na silicate is used as the activator. The Si-O-T bond wavenumbers are also generally lower for the Na silicate activated systems.

  7. The Effect of Propellant Variables on Slag in Subscale Spin Motors. Part 1; Design and Qualification of a Slag Discrimination Motor

    NASA Technical Reports Server (NTRS)

    Perkins, F. M.; Beus, R. W.; May, D. H.

    1995-01-01

    The formation, collection, and expulsion of aluminum oxide slag is known to affect the performance of many solid rocket motor systems. Slag expulsion, in particular, is believed to be capable of causing pressure and thrust perturbations. Propellant combustion studies, performed and documented by many investigators, have shown that variations in propellant raw materials and processing affect the nature of alumina droplets at the burning propellant surface, and hence, may affect the quantity of slag retained in the motor chamber, available for expulsion. Thiokol has completed an experimental and analytical evaluation to determine the effects of several material and process variables on Space SHuttle propellant and its propensity to 'slag'. This paper describes the test article, a small scale spin motor with special nozzle, designed and qualified as a slag discriminating tool for use in the evaluation.

  8. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    NASA Astrophysics Data System (ADS)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  9. Reuse of steel slag in bituminous paving mixtures.

    PubMed

    Sorlini, Sabrina; Sanzeni, Alex; Rondi, Luca

    2012-03-30

    This paper presents a comprehensive study to evaluate the mechanical properties and environmental suitability of electric arc furnace (EAF) steel slag in bituminous paving mixtures. A variety of tests were executed on samples of EAF slag to characterize the physical, geometrical, mechanical and chemical properties as required by UNI EN specifications, focusing additionally on the volumetric expansion associated with hydration of free CaO and MgO. Five bituminous mixtures of aggregates for flexible road pavement were designed containing up to 40% of EAF slag and were tested to determine Marshall stability and indirect tensile strength. The leaching behaviour of slag samples and bituminous mixtures was evaluated according to the UNI EN leaching test. The tested slag showed satisfactory physical and mechanical properties and a release of pollutants generally below the limits set by the Italian code. Tests on volume stability of fresh materials confirmed that a period of 2-3 months is necessary to reduce effects of oxides hydration. The results of tests performed on bituminous mixtures with EAF slag were comparable with the performance of mixtures containing natural aggregates and the leaching tests provided satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements

    PubMed Central

    Wu, Yann-Hwang; Huang, Ran; Tsai, Chia-Jung; Lin, Wei-Ting

    2015-01-01

    This study investigates the feasibility of co-firing fly ashes from different boilers, circulating fluidized beds (CFB) or stokers as a sustainable material in alkali activators for ground granulated blast-furnace slag (GGBS). The mixture ratio of GGBS and co-firing fly ashes is 1:1 by weight. The results indicate that only CF fly ash of CFB boilers can effectively stimulate the potential characteristics of GGBS and provide strength as an alkali activator. CF fly ash consists of CaO3 (48.5%), SiO2 (21.1%), Al2O3 (13.8%), SO3 (10.06%), Fe2O3 (2.25%) and others (4.29%). SA fly ash consists of Al2O3 (19.7%), SiO2 (36.3%), Fe2O3 (28.4%) and others (15.6%). SB fly ash consists of Al2O3 (15%), SiO2 (25.4%), Zn (20.6%), SO3 (10.9%), Fe2O3 (8.78%) and others (19.32%). The mixtures of SA fly ash and SB fly ash with GGBS, respectively, were damaged in the compressive strength test during seven days of curing. However, the built up strength of the CF fly ash and GGBS mixture can only be maintained for 7–14 days, and the compressive strength achieves 70% of that of a controlled group (cement in hardening cement paste). The strength of blended CF fly ash and GGBS started to decrease after 28 days, and the phenomenon of ettrigite was investigated due to the high levels of sulfur content. The CaO content in sustainable co-firing fly ashes must be higher than a certain percentage in reacting GGBS to ensure the strength of blended cements. PMID:28787970

  11. A novel way to upgrade the coarse part of a high calcium fly ash for reuse into cement systems.

    PubMed

    Antiohos, S K; Tsimas, S

    2007-01-01

    Reject fly ash (rFA) represents a significant portion of the fly ashes produced from coal-fired power plants. Due to the high carbon content and large particle mean diameter, rFA is not utilized in the construction sector (for example, as supplementary cementing material) and is currently dumped into landfills, thus representing an additional environmental burden. Recently, the feasibility of using rFA in a relatively small number of applications, like solidification/stabilization of other wastes, has been investigated by different researchers. However, as the overall amount of fly ash utilized in such applications is still limited, there is a need to investigate other possibilities for rFA utilization starting from a deeper understanding of its properties. In the work presented herein, mechanical and hydration properties of cementitious materials prepared by blending the coarse fraction of a lignite high-calcium fly ash with ordinary cement were monitored and compared with the respective ones of a good quality fly ash-cement mixture. The results of this work reveal that a relatively cheap, bilateral classification-grinding method is able to promote the pozzolanic behavior of the rFAs, so that the overall performances of rFA containing cements are drastically improved. The evaluation of these results supports the belief that appropriate utilization of non-standardized materials may lead to new environmental-friendly products of superior quality.

  12. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chad Wocken; Michael Holmes; John Pavlish

    2008-06-30

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced themore » effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs

  13. Petrographic Composition of Lignite from the Lake Somerville Spillway (East-central Texas)

    NASA Astrophysics Data System (ADS)

    Pawelec, Sandra; Bielowicz, Barbara

    2017-12-01

    In the presented paper, the macroscopic and microscopic composition of lignite from Lake Somerville Spillway has been examined. The study area is the upper part of the Manning Formation, located north-west of Somerville in the central-eastern part of Texas. There are three exposures: NE, SW and MC (Main Central) with visible parts of late-Eocene lignite seams belonging to the Jackson Group. The Manning section is divided into four marine dominated parasequences (P1 through P4). Lignite samples outlining the P1 parasequence from the MC and NE outcrops and the argillate sample from the lower part of the P2 parasequence, NE outcrop. Macroscopic characterization was carried out based on lithological classifications of humic coal. On this basis, it has been shown that the main lithotype occurring in the deposit is detritic (matrix) coal with a high share of mineral matter. The maceral composition of coal was determined according to the ICCP guidelines. The macerals from liptinite group were determined under fluorescent light. The maceral group content analysis was performed with use of 500-600 equally spaced points on the surface of the polished sections. It has been found that the examined coal is dominated by macerals from the huminite group, with a share ranging from 20.8 to 65.3% volume, including atrinite (9.8-22.8% volume, 17.5% volume on average). In the examined coal, macerals from the inertinite group (10.1 to 44.8%), especially semifusinite (max. 13.9%), fusinite (max. 9.3%) and funginite (max. 6.3 %) are of particularly large share. In the liptinite group, particular attention was paid to the content of alginite (max. 4.5%) and bituminite (max. 1.3 %), which indicate the paralic sedimentation environment of the examined coal. Additionally, the variability of macerals and maceral groups within the exposures and levels of the P1 parasequence was examined. The last step was to compare lignite from Lake Somerville Spillway with other lignites belonging to the

  14. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study.

    PubMed

    Zhang, Lei; Li, Bao; Xia, Yangchao; Liu, Shengyu

    2017-09-01

    Lignite is an important and useful fossil fuel in the world and the strong hydrophilicity of it limits its applications. Surfactant adsorption on lignite is an effective way to make it hydrophobic. In this work, aiming to examine the effect of the degree of ethoxylation on the adsorption behavior of dodecyl poly ethoxylated surfactants on lignite and the wettability modification of modified lignite by surfactant adsorption, different combined systems formed by surfactants, water and a model surface of Wender lignite have been studied using molecular dynamics simulation. The adsorption configurations vary with the degree of ethoxylation. At the same adsorption amounts, increasing the degree of ethoxylation can make the adsorption layer more compactness and bring stronger adsorption strength. The results of binding energy and its components show that the adsorption of alkyl polyoxyethylene ethers surfactant on lignite is physically adsorbed rather than electrostatically or chemisorbed. Meanwhile, van der Waals interaction plays a dominant role in the adsorption. The addition of surfactant could reduce the possibility of the interaction between water and lignite. Compared to the original lignite, the interaction between them is weakened after surfactant adsorption in water/surfactant/lignite system, thus strengthening the hydrophobicity of lignite. Similar to the adsorption strength, hydrophobicity of modified lignite increases with the increase of the degree of ethoxylation. The lignite surface properties are changed due to surfactant adsorption by analyzing the compositions of interaction energy and the change of hydrogen bonds. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Photochemical dissolution of Turkish lignites in tetralin at different irradiation power and reaction times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Karacan; T. Torul

    2007-08-15

    The effect of the power of ultraviolet (UV) irradiation on the tetrahydrofuran (THF) solubles yield (the total soluble product) and the soluble product distribution of the dissolution of Turkish lignites (Beypazari and Tuncbilek lignite) in tetralin at ambient temperatures has been investigated. The lignite samples were exposed to UV irradiation for 1, 2, 3, 5, and 10 days in the power of irradiation ranging from 0 to 180 W at 60 W intervals. The yields of THF solubles and oils increased with increasing irradiation power and time. The optimum irradiation power depends on the irradiation time to obtain the highestmore » degradation products. However, the yield of degradation products depends also on the lignite type. The largest fraction obtained from lignites by photochemical energy is oil. While the yields of THF solubles and oils sharply increased with irradiation power at longer reaction times, the yields of asphaltenes (AS) slightly decreased. Increasing oil yields is relatively larger when AS yields tend to decrease. These trends of AS and oil yields are ascribable to conversion of AS to oils at higher power. Small changes were observed in the PAS yields under all conditions. 27 refs., 5 figs., 1 tab.« less

  16. Size-dependent enrichment of waste slag aggregate fragments abraded from asphalt concrete.

    PubMed

    Takahashi, Fumitake; Shimaoka, Takayuki; Gardner, Kevin; Kida, Akiko

    2011-10-30

    Authors consider the environmental prospects of using melted waste slag as the aggregate for asphalt pavement. In particular, the enrichment of slag-derived fragments in fine abrasion dust particles originated from slag asphalt concrete and its size dependency were concerned. A series of surface abrasion tests for asphalt concrete specimens, containing only natural aggregates as reference or 30 wt% of substituted slag aggregates, were performed. Although two of three slag-asphalt concretes generated 1.5-3.0 times larger amount of abrasion dust than the reference asphalt concrete did, it could not be explained only by abrasion resistance of slag. The enrichment of slag-derived fragments in abrasion dust, estimated on the basis of the peak intensity of quartz and heavy metal concentrations, had size dependency for all slag-asphalt concretes. Slag-derived fragments were enriched in abrasion dust particles with diameters of 150-1000 μm. Enrichment factors were 1.4-2.1. In contrast, there was no enrichment in abrasion dust particles with diameter less than 75 μm. This suggests that prior airborne-size fragmentation of substituted slag aggregates does not need to be considered for tested slag aggregates when environmental risks of abrasion dust of slag-asphalt pavement are assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Study of Chromium Oxide Activities in EAF Slags

    NASA Astrophysics Data System (ADS)

    Yan, Baijun; Li, Fan; Wang, Hui; Sichen, Du

    2016-02-01

    The activity coefficients of chromium in Cu-Cr melts were determined by equilibrating liquid copper with solid Cr2O3 in CO-CO2 atmosphere. The temperature dependence of the activity coefficients of chromium in Cu-Cr melts could be expressed as lg γ_{Cr}(s)^{0} = { 3 2 5 9( ± 1 8 6} )/T - 0. 5 9( { ± 0. 1} ). Based on the above results, the activities of bivalent and trivalent chromium oxide in some slags at 1873 K (1600 °C) were measured. The slags were equilibrated with Cu-Cr melts under two oxygen partial pressures ( {p_{O}_{ 2} }} } = 6.9 × 10-4 and 1.8 × 10-6 Pa, respectively). The morphology of the quenched slags and the solubility of chromium oxide in the melts were investigated by EPMA, SEM, and XRD. Under both oxygen partial pressures, the slags were saturated by the solid solution MgAl2- x Cr x O4- δ . At the low oxygen partial pressure (1.8 × 10-6 Pa), the content of Cr in the liquid phase varied from 0.4 to 1.6 mass pct with the total Cr content in the slags increasing from 1.3 to 10.8 mass pct. At the high oxygen partial pressure (6.9 × 10-4 Pa), the content of Cr in the liquid phase decreased to the level of 0.2 to 0.6 mass pct. Both the activities of CrO and Cr2O3 in slag were found to increase approximately linearly with the increase of the total Cr content in slag. While the oxygen partial pressure had minor effect on the activity of Cr2O3 in the slag, it had significant effect on the activity of CrO.

  18. Geohydrologic reconnaissance of the Avoca lignite deposit area near Williston, northwestern North Dakota

    USGS Publications Warehouse

    Horak, W.F.; Crosby, O.A.

    1985-01-01

    The Avoca lignite deposit in the Sentinel Butte Member of the Fort Union Formation consists of four potentially strippable lignite beds. Average bed thicknesses, in descending order, are 5, 5, 9, and 8 .feet. In the area between Stony Creek and Crazy Man Coulee, the lignite beds are unsaturated, and between Stony Creek and Little Muddy River, only the two lowest beds are saturated. Natural discharge to outcrops in the stream valleys results in low potentiometric levels in the lignite beds.Aquifers in sandstone beds in the Fox Hills Sandstone and the Hell Creek Formation probably would yield as much as 50 gallons per minute of sodium bicarbonate type water. Dissolved-solids concentrations range from 800 to 2,000 milligrams per liter. The aquifers are from 1,100 to 1,800 feet below land surface. Sandstone beds in the Ludlow and Cannonball Members of the Fort Union Formation probably could yield several gallons per minute of sodium bicarbonate water with dissolved-solids concentrations ranging from 800 to 2,000 milligrams per liter. Aquifers in the Ludlow and Cannonball Members lie between 700 and 1,300 feet below land surface. Individual sand beds in the Tongue River and Sentinel Butte Members of the Fort Union Formation are the shallowest aquifers encountered below the minable lignite beds. Properly constructed wells completed in these sand beds could yield as much as 40 gallons per minute. The water generally is a sodium bicarbonate type with dissolved-solids concentrations ranging from about 500 to 4,200 milligrams per liter. Alluvium and glacial-drift deposits constitute the Little Muddy aquifer bordering the lignite deposit on the west and south. The aquifer could yield as much as 1,200 gallons per minute of sodium bicarbonate type water with dissolved-solids concentrations ranging from 975 to 1, 730 milligrams per liter.Little Muddy Creek and Stony Creek have significant base flow. The flow is contributed partly by discharge from the lignite. Quality of water

  19. Characterization and recovery of copper values from discarded slag.

    PubMed

    Das, Bisweswar; Mishra, Barada Kanta; Angadi, Shivakumar; Pradhan, Siddharth Kumar; Prakash, Sandur; Mohanty, Jayakrushna

    2010-06-01

    In any copper smelter large quantities of copper slag are discarded as waste material causing space and environmental problems. This discarded slag contains important amounts of metallic values such as copper and iron. The recovery of copper values from an Indian smelter slag that contains 1.53% Cu, 39.8% Fe and 34.65% SiO(2) was the focus of the present study. A complete investigation of the different phases present in the slag has been carried out by means of optical microscopy, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. It is observed that iron and silica are mostly associated with the fayalite phase whereas copper is present in both oxide and sulfide phases. These oxide and sulfide phases of copper are mostly present within the slag phase and to some extent the slag is also embedded inside the oxide and sulfide phases. The recovery of copper values from the discarded slag has been explored by applying a flotation technique using conventional sodium isopropyl xanthate (SIX) as the collector. The effects of flotation parameters such as pH and collector concentration are investigated. Under optimum flotation conditions, it is possible to achieve 21% Cu with more than 80% recovery.

  20. 40 CFR 302.6 - Notification requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ash, bottom ash, and boiler slags), including the dumping and land spreading operations that occur..., bottom ash, and boiler slags. (d) Except for releases of radionuclides, notification of the release of an..., selenium, silver, thallium, or zinc is not required if the mean diameter of the particles released is...

  1. A review of lignite resources of western Tennessee and the Jackson Purchase area, western Kentucky

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; Thomas, Roger E.; Nichols, Douglas J.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    This review of the lignite deposits of western Tennessee and the Jackson Purchase area in western Kentucky (Figure 1) is an updated report on part of the U.S. Geological Survey's National Coal Resource Assessment of the Gulf Coastal Plain Coal Province (see Ruppert et al., 2002; Hackley et al., 2006; Dennen, 2009; and other chapters of this publication). Lignite deposits of western Kentucky and Tennessee are an extension of the Gulf Coastal Plain Coal Province (Cushing et al., 1964), and currently are not economic to mine. These deposits have not been extensively investigated or developed as an energy resource. This review includes a description of the geology of the lignite-bearing units, a discussion of the available coal quality data, and information on organic petrology. Palynological data for lignite samples collected in Kentucky and Tennessee as part of this work are presented in Table 1. Lignite trace element data originally presented in Hackley et al. (2006) are not included in this report due to potential laboratory quality control issues during the time the samples were analyzed (U.S. Geological Survey Energy Resources Program, 2010).

  2. Leaching modelling of slurry-phase carbonated steel slag.

    PubMed

    Costa, G; Polettini, A; Pomi, R; Stramazzo, A

    2016-01-25

    In the present work the influence of accelerated mineral carbonation on the leaching behaviour of basic oxygen furnace steel slag was investigated. The environmental behaviour of the material as evaluated through the release of major elements and toxic metals under varying pH conditions was the main focus of the study. Geochemical modelling of the eluates was used to derive a theoretical description of the underlying leaching phenomena for the carbonated material as compared to the original slag. Among the investigated elements, Ca and Si were most appreciably affected by carbonation. A very clear effect of carbonation on leaching was observed for silicate phases, and lower-Ca/Si-ratio minerals were found to control leaching in carbonated slag eluates as compared to the corresponding untreated slag sample as a result of Ca depletion from the residual slag particles. Clear evidence was also gained of solubility control for Ca, Mg and Mn by a number of carbonate minerals, indicating a significant involvement of the original slag constituents in the carbonation process. The release of toxic metals (Zn, V, Cr, Mo) was found to be variously affected by carbonation, owing to different mechanisms including pH changes, dissolution/precipitation of carbonates as well as sorption onto reactive mineral surfaces. The leaching test results were used to derive further considerations on the expected metal release levels on the basis of specific assumptions on the relevant pH domains for the untreated and carbonated slag. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Growth promotion effect of steelmaking slag on Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Nogami, R.; Tam, L. T.; Anh, H. T. L.; Quynh, H. T. H.; Thom, L. T.; Nhat, P. V.; Thu, N. T. H.; Hong, D. D.; Wakisaka, M.

    2016-04-01

    A growth promotion effect of steelmaking slag on Spirulina platensis M135 was investigated. The growth promotion effect was obtained that was 1.27 times greater than that obtained by the control by adding 500 mg L-1 of steelmaking slag and culturing for 60 days. The lipid content decreased in a concentration-dependent manner with steelmaking slag, whereas the carbohydrate content remained constant. The protein content of S. platensis M135 increased in a concentration-dependent manner with steelmaking slag when cultured at day 45. The superoxide dismutase activity of S. platensis M135 exhibited a decreasing trend in a time-dependent manner and an increasing trend in the control. The superoxide dismutase activity was lower than that of the control at day 1 but was higher at day 30. No genetic damage was observed up to 500 mg L-1 of steelmaking slag at 30 days of culture. Recovery from genetic damage was observed at 1,000 mg L-1 of steelmaking slag but not at higher concentrations.

  4. Slag-Based Nanomaterial in the Removal of Hexavalent Chromium

    NASA Astrophysics Data System (ADS)

    Baalamurugan, J.; Ganesh Kumar, V.; Govindaraju, K.; Naveen Prasad, B. S.; Bupesh Raja, V. K.; Padmapriya, R.

    Slag-based nanomaterial is a by-product obtained during steel production and has wide range of components in the form of oxides. In this study, Induction Furnace (IF) steel slag-based application in adsorption of hexavalent chromium is investigated. IF slag has mixture of oxides mainly Fe2O3 and Chromium (VI) a highly toxic pollutant leads to environmental pollution and causes problem to human health mainly, carcinogenetic diseases. Slag-based nanomaterial is characterized using High Resolution Scanning Electron Microscope (HR-SEM) in which the size was around 100nm and X-ray Fluorescence (XRF) spectroscopy. Further inductively coupled plasma mass spectroscopy and Fourier transform infrared spectroscopy were used for adsorption studies. Slag activation using NaOH (alkali activation) to the intent of surface hydroxyl (-OH) group attachment will be a cost-effective process in the removal of hexavalent chromium. Cr(VI) ions are adsorbed on the surface of alkali activated slag material. The core-shell formation of Fe(II)/Fe(III)/Cr(VI) and the adsorption are investigated in detail in the present study.

  5. Alkali-Activated Natural Pozzolan/Slag Binder for Sustainable Concrete

    NASA Astrophysics Data System (ADS)

    Najimi, Meysam

    This study aimed to fully replace Portland cement (PC) with environmentally friendly binders capable of improving longevity of concrete. The new binders consisted of different proportions of natural Pozzolan and slag which were alkaline-activated with various combinations of sodium hydroxide and sodium silicate. A step-by-step research program was designed to (1) develop alkali-activated natural Pozzolan/slag pastes with adequate fresh and strength properties, (2) produce alkali-activated natural Pozzolan/slag mortars to assess the effects of dominant variables on their plastic and hardened properties, and (3) finally produce and assess fresh, mechanical, dimensional, transport and durability properties of alkali-activated natural Pozzolan/slag concretes. The major variables included in this study were binder combination (natural Pozzolan/slag combinations of 70/30, 50/50 and 30/70), activator combination (sodium silicate/sodium hydroxide combinations of 20/80, 25/75 and 30/70), and sodium hydroxide concentration (1, 1.75 and 2.5M). The experimental program assessed performance of alkali-activated natural Pozzolan/slag mixtures including fresh properties (flow and setting times), unit weights (fresh, demolded and oven-dry), mechanical properties (compressive and tensile strengths, and modulus of elasticity), transport properties (absorption, rapid chloride penetration, and rapid chloride migration), durability (frost resistance, chloride induced corrosion, and resistance to sulfuric acid attack), and dimensional stability (drying shrinkage). This study also compared the performance of alkali-activated natural Pozzolan/slag concretes with that of an equivalent reference Portland cement concrete having a similar flow and strength characteristics. The results of this study revealed that it was doable to find optimum binder proportions, activator combinations and sodium hydroxide concentrations to achieve adequate plastic and hardened properties. Nearly for all studied

  6. The effect of environmental pollution on the respiratory system of lignite miners: a diachronic study.

    PubMed

    Sichletidis, L; Tsiotsios, I; Chloros, D; Daskalopoulou, E; Ziomas, I; Michailidis, K; Kottakis, I; Konstantinidis, T H; Palladas, P

    2004-01-01

    It is not known whether working in surface lignite mines can cause x-ray lesions or disorders of respiratory function. The aim of the study was to investigate the diachronic impact of environmental pollution on the respiratory system of lignite miners at mines in Eordea, Greece. Cases of 199 workers (Group A) residing permanently in the Eordea valley and 151 (Group B) living outside the Eordea valley were studied during Phase I and then re-examined after three years (Phase II). These cases were compared to those of 71 office workers living in Eordea valley (Group C) and to 96 living in Grevena, a region without pollution (Group D). The study included the completion of the MRC questionnaire for the detection of respiratory diseases, pulmonary function tests, measurement of diffusion capacity, otorhinolaryngologic examination, rhinomanonetry as well as chest and paranasal cavity X-rays. Chronic bronchitis was reported by 26.8%, 24.8%, 17.9% and 10.6% respectively of the subjects of groups A, B, C and D according to the answers of the questionnaire (p<0.001). The spirometry and diffusion capacity findings presented no considerable differences either in the 4 groups or between phases I and II of the study. The main problems were detected in the upper airways. A very high prevalence of severe nasal obstruction (73%, 71.2%, 55.7% and 19.3% in Groups A, B, C and D respectively) was detected. Furthermore, a high percentage of atrophic rhinitis (14%) was detected both among workers (Groups A and B) and subjects living in the Eordea valley who participated as controls (Group C). From the X-rays, hypertrophy of nasal turbinates-cartilage and polyposis was observed as follows: Group A: 53.9%, Group B: 48.1%, Group C: 46.5% and Group D: 20.3% (p<0.001). The findings related to the upper respiratory system may be due to excessive pollution by airborne particles (fly ash) pollution in the region and particularly to chromium, nickel, cobalt and lead found at high concentration

  7. Evaluation of copper slag blast media for railcar maintenance

    NASA Technical Reports Server (NTRS)

    Sagers, N. W.; Finlayson, Mack H.

    1989-01-01

    Copper slag was tested as a blasting substitute for zirconium silicate which is used to remove paint from railroad cars. The copper slag tested is less costly, strips paint faster, is produced near the point of need, provides a good bonding surface for paint, and permits the operator to work in a more comfortable position, i.e., standing nearly erect instead of having to crouch. Outdoor blasting with the tested Blackhawk (20 to 40 mesh) copper slag is also environmentally acceptable to the State of Utah. Results of tests for the surface erosion rate with copper slag blasting are included.

  8. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    PubMed

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  9. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    PubMed

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  10. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete

    PubMed Central

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-01-01

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions. PMID:28787998

  11. A comparative study of nitrogen conversion during pyrolysis of coconut fiber, its corresponding biochar and their blends with lignite.

    PubMed

    Liu, Zhengang; Balasubramanian, Rajasekhar

    2014-01-01

    In the present study, the conversion of fuel-N to HCN and NH3 was investigated during rapid pyrolysis of raw biomass (coconut fiber), its corresponding biochar and their blends with lignite within a temperature range of 600-900°C. The results showed that the raw biomass and the biochar showed totally different nitrogen partitioning between NH3 and HCN. HCN was the dominant nitrogen pollutant from pyrolysis of raw biomass, while for the biochar pyrolysis the yield of NH3 was slightly higher than that of HCN. Synergistic interactions occurred within both raw biomass/lignite and biochar/lignite blends, especially for the biochar/lignite blend, and resulted in reduced yields of HCN and NH3, decreased the total nitrogen percentage retained in the char and promoted harmless N2 formation. These findings suggest that biochar/lignite co-firing for energy production may have the enhanced benefit of reduced emissions of nitrogen pollutants than raw biomass/lignite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The behavior of sulfur in industrial pyrometallurgical slags

    NASA Astrophysics Data System (ADS)

    Nagamori, Meguru

    1994-08-01

    Dissolution of sulfur in industrial slags, even at such a low level as 1 mass% S or so, increases the solubility of certain valuable metals by an order of magnitude. The phenomenon is accounted for in terms of Flood-Førland-Grjotheim's model for dianionic salt solutions, whereas its rigorous analysis requires the digaseous Gibbs-Duhem integration. In the research described here, the distribution of sulfur among gas, slag, and metallic iron phases in the bath smelting of iron ore was computer-simulated based on a two-sites model coupled with sulfide capacity data. The solubilities of Ag, Cu, Co, and Ni in industrial slags are reviewed by applying the sulfidic-oxidic dissolution model to copper-matte smelting, nickel-slag cleaning (Falconbridge, Canada), and the imperial smelting process for zinc and lead (Hachinohe, Japan).

  13. Uranium distribution in pseudowollastonite slag from a phosphorus furnace

    USGS Publications Warehouse

    Young, Edward; Altschuler, Zalman S.

    1956-01-01

    Silicate slag from the Victor Chemical Company phosphorus furnace at Tarpon Springs, Fla., has been found to consist essentially of pseudowollastonite, α-CaSiO3. The first-formed crystals are euhedral laths which form a mesh making up most of the slag. As the slag continues to solidify, its composition changes slightly and more equant, subhedral crystals of pseudowollastonite are deposited within the framework of the earlier material. Finally, anherdral masses of fibrous, poorly crystallized material are deposited in the remaining pore spaces which are not always completely filled. Spherules of iron phosphide, Fe2P, occur very sparsely in the slag as inclusions from the immiscible iron phosphide melt. Uranium content increases in the later crystal products of the slag, and by heavy-liquid fractionation it has been possible to segregate partially the phases and to obtain a fourfold concentration of uranium in 5 percent of the material and a twofold concentration in 30 percent of the material. Nuclear-emulsion studies indicate that the last phases of the silicate slag are actually eight times as radioactive as the early phases. In addition, the iron phosphide spherules are comparably enriches in uranium.

  14. Stabilization of Black Cotton Soil Using Micro-fine Slag

    NASA Astrophysics Data System (ADS)

    Shukla, Rajesh Prasad; Parihar, Niraj Singh

    2016-09-01

    This work presents the results of laboratory tests conducted on black cotton soil mixed with micro-fine slag. Different proportions of micro-fine slag, i.e., 3, 6, 9, 12 and 15 % were mixed with the black cotton soil to improve soil characteristics. The improvement in the characteristics of stabilized soil was assessed by evaluating the changes in the physical and strength parameters of the soil, namely, the Atterberg limits, free swell, the California Bearing Ratio (CBR), compaction parameters and Unconfined Compressive Strength (UCS). The mixing of micro-fine slag decreases the liquid limit, plasticity index and Optimum Moisture Contents (OMC) of the soil. Micro-fine slag significantly increases the plastic limit, UCS and CBR of the soil up to 6-7 % mixing, but mixing of more slag led to decrease in the UCS and CBR of the soil. The unsoaked CBR increased by a substantial amount unlike soaked CBR value. The swell potential of the soil is reduced from medium to very low. The optimum amount of micro-fine slag is found to be approximately 6-7 % by the weight of the soil.

  15. Adsorption Behavior of Surfactant on Lignite Surface: A Comparative Experimental and Molecular Dynamics Simulation Study

    PubMed Central

    He, Meng; Zhang, Wei; Cao, Xiaoqiang; You, Xiaofang; Li, Lin

    2018-01-01

    Experimental and computational simulation methods are used to investigate the adsorption behavior of the surfactant nonylphenol ethoxylate (NPEO10), which contains 10 ethylene oxide groups, on the lignite surface. The adsorption of NPEO10 on lignite follow a Langmuir-type isotherm. The thermodynamic parameters of the adsorption process show that the whole process is spontaneous. X-ray photoelectron spectroscopic (XPS) analysis indicates that a significant fraction of the oxygen-containing functional groups on the lignitic surface were covered by NPEO10. Molecular dynamics (MD) simulations show that the NPEO10 molecules were found to adsorb at the water-coal interface. Moreover, polar interactions are the main effect in the adsorption process. The density distributions of coal, NPEO10, and water molecules along the Z axis show that the remaining hydrophobic portions of the surfactant extend into the solution, creating a more hydrophobic coal surface that repels water molecules. The negative interaction energy calculated from the density profiles of the head and tail groups along the three spatial directions between the surfactant and the lignitic surface suggest that the adsorption process is spontaneous. The self-diffusion coefficients show that the presence of NPEO10 causes higher water mobility by improving the hydrophobicity of lignite. PMID:29389899

  16. Microscopic Study of Carbon Surfaces Interacting with High Carbon Ferromanganese Slag

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Kolbeinsen, Leiv

    2015-02-01

    The interaction of carbon materials with molten slags occurs in many pyro-metallurgical processes. In the production of high carbon ferromanganese in submerged arc furnace, the carbothermic reduction of MnO-containing silicate slags yields the metal product. In order to study the interaction of carbon with MnO-containing slags, sessile drop wettability technique is employed in this study to reduce MnO from a molten slag drop by carbon substrates. The interfacial area on the carbon substrate before and after reaction with slag is studied by scanning electron microscope. It is indicated that no Mn metal particles are found at the interface through the reduction of the MnO slag. Moreover, the reduction of MnO occurs through the contribution of Boudouard reaction and it causes carbon consumption in particular active sites at the interface, which generate carbon degradation and open pore growth at the interface. It is shown that the slag is fragmented to many micro-droplets at the reaction interface, potentially due to the effect on the interfacial energies of a provisional liquid Mn thin film. The rapid reduction of these slag micro-droplets affects the carbon surface with making deep micro-pores. A mechanism for the formation of slag micro-droplets is proposed, which is based on the formation of provisional micro thin films of liquid Mn at the interface.

  17. The durability of concrete containing a high-level of fly ash or a ternary blend of supplementary cementing materials

    NASA Astrophysics Data System (ADS)

    Gilbert, Christine M.

    The research for this study was conducted in two distinct phases as follows: Phase 1: The objective was to determine the effect of fly ash on the carbonation of concrete. The specimens made for this phase of the study were larger in size than those normally used in carbonation studies and were are meant to more accurately reflect real field conditions. The results from early age carbonation testing indicate that the larger size specimens do not have a measured depth of carbonation as great as that of the smaller specimens typically used in carbonation studies at the same age and under the same conditions. Phase 2: The objective was to evaluate the performance of ternary concrete mixes containing a ternary cement blend consisting of Portland cement, slag and Type C fly ash. It was found that concrete mixtures containing the fly ash with the lower calcium (CaO) content (in binary or ternary blends) provided superior durability performance and resistance to ASR compared to that of the fly ash with the higher CaO content. Ternary blends (regardless of the CaO content of the fly ash) provided better overall durability performance than binary blends of cementing materials or the control.

  18. Influence of lithium slag from lepidolite on the durability of concrete

    NASA Astrophysics Data System (ADS)

    Qi, Luo; Shaowen, Huang; Yuxuan, Zhou; Jinyang, Li; Weiliang, Peng; Yufeng, Wen

    2017-04-01

    This paper mainly studies the effect of lithium slag from lepidolite on the property of concrete including dry shrinkage, anti-carbonation, wear resistance and chloride ion resistance. Concrete interface structure has been observed with SEM. The results show that adding lithium slag to concrete can improve concrete property including dry shrinkage, wear resistance and chloride ion resistance. However, the wear resistance tends to decrease when the amount of lithium slag reach 20%. Lithium slag also has negative effect on anti-carbonation property. With the increasing amount of lithium slag, anti-carbonation property of concrete decrease gradually.

  19. Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA

    USGS Publications Warehouse

    Bayless, E.R.; Schulz, M.S.

    2003-01-01

    Slag is a ubiquitous byproduct of the iron- and steel-refining industries. In northwestern Indiana and northeastern Illinois, slag has been deposited over more than 52 km2 of land surface. Despite the widespread use of slag for fill and construction purposes, little is known about its chemical effects on the environment. Two slagdisposal sites were examined in northwestern Indiana where slag was deposited over the native glacial deposits. At a third site, where slag was not present, background conditions were defined. Samples were collected from cores and drill cuttings and described with scanning electron microscopy and electron microprobe analysis. Ground-water samples were collected and used to assess thermodynamic equilibria between authigenic minerals and existing conditions. Differences in the mineralogy at background and slag-affected sites were apparent. Calcite, dolomite, gypsum, iron oxides, and clay minerals were abundant in native sediments immediately beneath the slag. Mineral features indicated that these minerals precipitated rapidly from slag drainage and co-precipitated minor amounts of non-calcium metals and trace elements. Quartz fragments immediately beneath the slag showed extensive pitting that was not apparent in sediments from the background site, indicating chemical weathering by the hyperalkaline slag drainage. The environmental impacts of slag-related mineral precipitation include disruption of natural ground-water flow patterns and bed-sediment armoring in adjacent surface-water systems. Dissolution of native quartz by the hyperalkaline drainage may cause instability in structures situated over slag fill or in roadways comprised of slag aggregates.

  20. Environmental impact of ferrochrome slag in road construction.

    PubMed

    Lind, B B; Fällman, A M; Larsson, L B

    2001-01-01

    Vargon Alloys in Western Sweden is one of the largest producers of ferrochrome slag in Europe. Ferrochrome slag is a by-product from the production of ferrochrome, an essential component in stainless steel. Extensive tests have been carried out on the physical properties of the ferrochrome slag from Vargon Alloys and it was found to be highly suitable as road construction material. The composition and leaching tests of the ferrochrome slag show that the chromium content is high, 1-3%, although leaching under normal conditions is very low. With the exception of potassium (K), which had a potential leaching capacity (availability test) of around 16%, the leaching of chromium, nickel, zinc and other elements was just a few per cent. However, all these tests were conducted in the laboratory. What happens out in the field, under the influence of acid rain and biological activity, and how does this compare with the laboratory results? To answer this question an investigation was carried out to study the environmental impact of ferrochrome slag in roads that were built in 1994. The investigation includes soil sampling (total content and leachable amounts of metals) and groundwater analysis (filtered and non-filtered samples). In addition, a new method involving the bio-uptake of chromium and other metals by the roots of the dandelion (Taraxacum officinale) was tested. The results show that there was a low migration of particles from the slag to the underlying soil and that the leaching into the groundwater was also low for all the elements analysed. However, there seemed to be a significant uptake of Cr by plants growing with their roots in the slag. An investigation of plant uptake was an important complement to laboratory leaching tests on alternative materials.

  1. Crystallization of Synthetic Blast Furnace Slags Pertaining to Heat Recovery

    NASA Astrophysics Data System (ADS)

    Esfahani, Shaghayegh

    Heat recovery from blast furnace slags is often contradicted by another requirement, to generate amorphous slag for its use in cement production. As both the rate and extent of heat recovery and slag structure are determined by its cooling rate, a relation between the crystallization kinetics and the cooling conditions is highly desired. In this study, CaO-SiO2-Al2O3-MgO (CSAM) slags with different basicities were studied by Single Hot Thermocouple Technique (SHTT) during isothermal treatment and non-isothermal cooling. Their time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams were plotted and compared with each other. Furthermore, kinetic parameters such as the Avrami exponent (n), rate coefficient (K) and effective activation energy of crystallization (EA) were found by analysis of data obtained from in-situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In addition to the experimental work, a mathematical model was developed and validated that predicts the amount of crystallization during cooling. A second mathematical model that calculates temperature history of slag during its cooling was coupled with the above model, to allow studying the effect of parameters such as the slag/air ratio and granule size on the heat recovery and glass content of slag.

  2. Co-gasification of solid waste and lignite - a case study for Western Macedonia.

    PubMed

    Koukouzas, N; Katsiadakis, A; Karlopoulos, E; Kakaras, E

    2008-01-01

    Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct

  3. Glass ceramics for incinerator ash immobilization

    NASA Astrophysics Data System (ADS)

    Malinina, G. A.; Stefanovsky, O. I.; Stefanovsky, S. V.

    2011-09-01

    Calcined solid radioactive waste (incinerator slag) surrogate and either Na 2Si 2O 5 or Na 2B 4O 7 (borax) at various mass ratios were melted in silicon carbide crucibles in a resistive furnace at temperatures of up to 1775 K (slag without additives). Portions of the melts were poured onto a metal plate; the residues were slowly cooled in turned-off furnace. Both quenched and slowly cooled materials were composed of the same phases. At high slag contents in silicate-based materials nepheline and britholite were found to be major phases. Britholite formed at higher slag content (85 wt.%) became major phase in the vitrified slag. In the system with borax at low slag contents (25 and 50 wt.%) material are composed of predominant vitreous and minor calcium silicate larnite type phase Ca 2SiO 4 where Ca 2+ ions are replaced by different cations. The materials containing slag in amount of 75 wt.% and more are chemically durable. The changes in the structure of anionic motif of quenched samples depending on slag loading were studied by IR spectroscopy.

  4. Preliminary geologic investigation of the West Glendive lignite deposits, Dawson County, Montana

    USGS Publications Warehouse

    Banet, Arthur C.

    1979-01-01

    Four major lignite beds, all in the Fort Union Formation (Paleocene), occur in the West Glendive area, Dawson County, Montana. The Newton Ranch and Poverty Flats beds are in the Lebo Member and the Peuse and Kolberg Ranch beds are in the Tongue River Member. Correlation of the lignite beds across the area shows that the Peuse bed is the thickest and most extensive. Field mapping and drill-hole data indicate that folding and faulting are more common than previously reported.

  5. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    DOT National Transportation Integrated Search

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  6. Cyanidation Study of Slag Rich in Silver

    NASA Astrophysics Data System (ADS)

    Pérez-Labra, Miguel; Romero-Serrano, J. Antonio; Ávila-Davila, E. O.; Reyes-Pérez, M.; Barrientos-Hernández, F. R.; Hernández, I. A. Lira

    Slag from smelting reduction processes were characterized by chemical analysis, XRD, SEM-EDS and XRF. The results revealed Ag concentrations of 362 g/t of slag, the slag mineralogical characterization by XRD and SEM-EDS showed mineralogical species oxidized complex containing Pb, Zn, Ca, Si, Fe, As, S in its structure, silver was found in globules associated lead in the slag and the furutobeite specie. The leaching study was conducted to evaluate process variables such as NaCN concentration: from 7.8×10-3M - 1.26×10-1M, temperature: 25-50°C, particle size: +140 mesh to -400 mesh, stirring speed of 750 rpm - 900 rpm. All studies were performed with a NaOH concentration of 0.2 M. The optimal values of silver recovery encountered in conditions of 7.8×10-3M NaCN, agitation rate of 750 rpm, temperature of 35°C and with a treatment time of 240 min. We also observed that a particle size -400 mesh will have optimum recoveries compared to +140 mesh, +200, +270 and +325.

  7. Stabilization of carbon dioxide and chromium slag via carbonation.

    PubMed

    Wu, Xingxing; Yu, Binbin; Xu, Wei; Fan, Zheng; Wu, Zucheng; Zhang, Huimin

    2017-08-01

    As the main greenhouse gas, CO 2 is considered as a threat in the context of global warming. Many available technologies to reduce CO 2 emission was about CO 2 separation from coal combustion and geological sequestration. However, how to deal with the cost-effective storage of CO 2 has become a new challenge. Moreover, chromium pollution, the treatment of which requires huge energy consumption, has attracted people's widespread attention. This study is aimed to develop the sequestration of CO 2 via chromium slag. A dynamic leaching experiment of chromium slag was designed to testify the ability of CO 2 adsorption onto chromium slag and to release Cr(VI) for stabilization. The results showed that the accumulative amounts of Cr(VI) were ca. 2.6 mg/g released from the chromium slag after 24 h of leaching. In addition, ca. 89 mg/g CO 2 was adsorbed by using pure CO 2 in the experiment at 12 h. Calcite is the only carbonate species in the post-carbonated slag analyzed by powder X-ray diffraction and thermal analysis. The approach provides the feasibility of the utilization of chromium slag and sequestration of the carbon dioxide at the same time at ordinary temperatures and pressures.

  8. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands.

    PubMed

    Shi, Pengbo; Jiang, Yingbo; Zhu, Hongtao; Sun, Dezhi

    2017-07-01

    The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca 2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied in this paper. Modeling results of Ca 2+ and OH - release from slag indicated that pseudo-second-order reaction had a better fitness than pseudo-first-order reaction. Changing pH value from 7 to 12 resulted in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak adsorption capacity at pH 7. High Ca 2+ concentration in solution also inhibited the adsorption of ammonium onto zeolite. There are two proposed mechanisms for steel slag inhibiting the ammonium adsorption capacity of zeolite. On the one hand, OH - released from steel slag can react with ammonium ions to produce the molecular form of ammonia (NH 3 ·H 2 O), which would cause the dissociation of NH 4 + from zeolite. On the other hand, Ca 2+ could replace the NH 4 + ions to adhere onto the surface of zeolite. An innovative substrate filling configuration with zeolite placed upstream of the steel slag was then proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that this novel filling configuration was superior to two other filling configurations in terms of ammonium removal.

  9. The effects of combined supplementary cementitious materials on physical properties of Kansas concrete pavements.

    DOT National Transportation Integrated Search

    2013-12-01

    This study evaluated the effects of combining varying proportions of slag cement and Class C fly ash : with Type I/II cement in concrete pavement. Three different ternary cementitious material combinations : containing slag cement and Class C fly ash...

  10. Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete.

    PubMed

    Yang, Sheng-Fu; Wang, To-Mai; Lee, Wen-Cheng; Sun, Kin-Seng; Tzeng, Chin-Ching

    2010-10-15

    This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with high velocity compressed air. The basic technological characteristics of MMVF, including morphology, diameter, shot content, length and chemical resistance, are described in this work. Laboratory experiments were conducted on the fiber-reinforced concrete. The effects of fibrous content on compressive strength and flexural strength are presented. The experimental results showed the proper additive of MMVF in concrete can enhance its mechanical properties. MMVF products produced from incinerator ashes treated with the thermal plasma technique have great potential for reinforcement in concrete. 2010 Elsevier B.V. All rights reserved.

  11. Products of steel slags an opportunity to save natural resources.

    PubMed

    Motz, H; Geiseler, J

    2001-01-01

    In Germany, and in the most industrial countries, the use of blast furnace and steel slags as an aggregate for civil engineering, for metallurgical use and as fertiliser has a very long tradition. Since the introduction of the basic oxygen steel making furnace (BOF) process and the electric arc furnace (EAF) process the German steel industry started extensive research on the development of fields of application for BOF and EAF slags. These investigations have been mainly performed by Forschungsgemeinschaft Eisenhüttenschlacken e. V. (FEhS), the Research Association for blast furnace and steel slags. Today steel slags are well characterised and long-term experienced materials mainly used as aggregates for road construction (e.g. asphaltic or unbound layers), as armour-stones for hydraulic engineering constructions (e.g. stabilisation of shores), and as fertiliser for agriculture purposes. These multifarious fields of application could only be achieved because the steelworks influence the quality of slags by a careful selection of raw materials and a suitable process route. Furthermore, subsequent procedures like a treatment of the liquid slag, an appropriate heat treatment and a suitable processing have been developed to ensure that the quality of steel slags is always adequate for the end use. Depending on the respective field of application, the suitability of steel slags has to be proven by determining the technical properties, as well as the environmental compatibility. For this reason test methods have been developed to evaluate the technical properties especially the volume stability and the environmental behaviour. To evaluate the volume stability a suitable test (steam test) has been developed and the results from laboratory tests were compared with the behaviour of steel slags under practical conditions, e.g. in a road. To determine the environmental behaviour leaching tests have been developed. In the meanwhile most of these test methods are drafted or

  12. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    PubMed

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  13. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    NASA Astrophysics Data System (ADS)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied

  14. Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.).

    PubMed

    Gwon, Hyo Suk; Khan, Muhammad Israr; Alam, Muhammad Ashraful; Das, Suvendu; Kim, Pil Joo

    2018-04-13

    Over the past decades, with increasing steel manufacturing, the huge amount of by-products (slags) generated need to be reused in an efficient way not only to reduce landfill slag sites but also for sustainable and eco-friendly agriculture. Our preliminary laboratory study revealed that compared to blast furnace slag, electric arc furnace slag and ladle furnace slag, the Linz-Donawitz converter (LD) slag markedly decreased CH 4 production rate and increased microbial activity. In the greenhouse experiment, the LD slag amendment (2.0 Mg ha -1 ) significantly (p < 0.05) increased grain yield by 10.3-15.2%, reduced CH 4 emissions by 17.8-24.0%, and decreased inorganic As concentrations in grain by 18.3-19.6%, compared to the unamended control. The increase in yield is attributed to the increased photosynthetic rates and increased availability of nutrients to the rice plant. Whereas, the decrease in CH 4 emissions could be due to the higher Fe availability in the slag amended soil, which acted as an alternate electron acceptor, thereby, suppressed CH 4 emissions. The more Fe-plaque formation which could adsorb more As and the competitive inhibition of As uptake with higher availability of Si could be the reason for the decrease in As uptake by rice cultivated with LD slag amendment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Characterization and Recovery of Valuables from Waste Copper Smelting Slag

    NASA Astrophysics Data System (ADS)

    Prince, Sarfo; Young, Jamie; Ma, Guojun; Young, Courtney

    Silicate slags produced from smelting copper concentrates contains valuables such as Cu and Fe as well as heavy metals such as Pb and As which are considered hazardous. In this paper, various slags were characterized with several techniques: SEM-MLA, XRD, TG-DTA and ICP-MS. A recovery process was developed to separate the valuables from the silicates thereby producing value-added products and simultaneously reducing environmental concerns. Results show that the major phases in air-cooled slag are fayalite and magnetite whereas the water-cooled slag is amorphous. Thermodynamic calculations and carbothermal reduction experiments indicate that most of Cu and Fe can be recovered from both types using minor amounts of lime and alumina and treating at 1350°C (1623K) or higher for 30 min. The secondary slag can be recycled to the glass and/or ceramic industries.

  16. The investigation of solid slag obtained by neutralization of sewage sludge.

    PubMed

    Kavaliauskas, Zydrunas; Valincius, Vitas; Stravinskas, Giedrius; Milieska, Mindaugas; Striugas, Nerijus

    2015-11-01

    The purpose of this research is to investigate the feasibility of utilizing the slag collected after gasification of organic fuel combined with sewage sludge. The residue left after gasification process is likely usable as raw material for production of supercondensers. The sewage sludge neutralization system consists of a dosing system (fuel tank), gasifier, plasma reactor, electrostatic filter, and heat exchangers. For the gasification process, dried solid sewage is supplied in proportion of 70% to biomass 30% by weight. The slag is collected in a specially designed chamber beneath the gasifier. A scanning electron microscope (SEM) was used to evaluate surface morphology of the samples. Elemental analysis of the sewage sludge slag was performed using the energy-dispersive spectroscopy (EDS) method, which showed different solid-state elements contained in the porous structure of the solid phase: carbon 29%, aluminum 26%, potassium 20%, chlorine 1%, and others. The specific surface area of the sewage sludge slag is 6.15 m(2)/g as the BET analysis shows. In order to use the slag as a secondary raw material, detailed analysis of the structure and properties is necessary for a decision on whether the slag left after gasification of sewage sludge is suitable for any further usages. Initial results indicate that the slag may be used for production of electrodes for supercapacitors. Every year thousands of tons of sewage sludge are formed in Lithuania. Sewage sludge consists of organic and inorganic compounds. Partial combustion, plasma decomposition, and other methods are used to neutralize the sewage sludge. The incineration of sewage sludge results in generation of solid-phase slag. In this paper the material structure and composition of a solid slag (formed during neutralization of sewage sludge) is considered. Also, the impact the ambient temperature on structure and composition of solid slag is analyzed.

  17. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.

    PubMed

    Gesoğlu, Mehmet; Güneyisi, Erhan; Mahmood, Swara Fuad; Öz, Hatice Öznur; Mermerdaş, Kasım

    2012-10-15

    Ground granulated blast furnace slag (GGBFS), a by-product from iron industry, was recycled as artificial coarse aggregate through cold bonding pelletization process. The artificial slag aggregates (ASA) replaced partially the natural coarse aggregates in production of self-compacting concrete (SCC). Moreover, as being one of the most widely used mineral admixtures in concrete industry, fly ash (FA) was incorporated as a part of total binder content to impart desired fluidity to SCCs. A total of six concrete mixtures having various ASA replacement levels (0%, 20%, 40%, 60%, and 100%) were designed with a water-to-binder (w/b) ratio of 0.32. Fresh properties of self-compacting concretes (SCC) were observed through slump flow time, flow diameter, V-funnel flow time, and L-box filling height ratio. Compressive strength of hardened SCCs was also determined at 28 days of curing. It was observed that increasing the replacement level of ASA resulted in decrease in the amount of superplasticizer to achieve a constant slump flow diameter. Moreover, passing ability and viscosity of SCC's enhanced with increasing the amount of ASA in the concrete. The maximum compressive strength was achieved for the SCC having 60% ASA replacement. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Environmental impacts of asphalt mixes with electric arc furnace steel slag.

    PubMed

    Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč

    2011-01-01

    Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Chromium Distribution between Liquid Slag and Matte Phases

    NASA Astrophysics Data System (ADS)

    Eric, R. Hurman

    The distribution of chromium between liquid silicate slags and copper-iron-nickel matte phases encountered in electric smelting of PGM containing South African sulphide concentrates were experimentally studied under controlled partial pressures of oxygen and sulphur. The reported experiments were conducted under silica saturation through the use of silica crucibles. Seven representative slag compositions were equilibrated with a typical sulphur deficient matte containing 18% Ni, 11% Cu, 42% Fe and 29% S. The slag constituents varied in the following ranges: SiO2: 42-58%, Al2O3: 3.5-9.0%, Fe2O3: 13-21%, MgO: 15.6-25%, CaO: 2-15%, Cr2O3: 0.2-3.5%. The slag and matte samples were synthetically prepared from pure components. The chromium content of the two phases was analysed chemically. According to the present available results of this ongoing research it was found that the partition of chromium to the matte phase decreased with an increase in the partial pressures of both oxygen and sulphur where the value of the distribution coefficient of chromium between the matte and the slag phase varied from as low as 0.07 to as high as 5.5.

  20. The origin and distribution of HAPs elements in relation to maceral composition of the A1 lignite bed (Paleocene, Calvert Bluff Formation, Wilcox Group), Calvert mine area, east-central Texas

    USGS Publications Warehouse

    Crowley, Sharon S.; Warwick, Peter D.; Ruppert, Leslie F.; Pontolillo, James

    1997-01-01

    The origin and distribution of twelve potentially Hazardous Air Pollutants (HAPs; As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) identified in the 1990 Clean Air Act Amendments were examined in relation to the maceral composition of the A1 bed (Paleocene, Calvert Bluff Formation, Wilcox Group) of the Calvert mine in east-central Texas. The 3.2 m-thick A1 bed was divided into nine incremental channel samples (7 lignite samples and 2 shaley coal samples) on the basis of megascopic characteristics. Results indicate that As, Cd, Cr, Ni, Pb, Sb, and U are strongly correlated with ash yield and are enriched in the shaley coal samples. We infer that these elements are associated with inorganic constituents in the coal bed and may be derived from a penecontemporaneous stream channel located several kilometers southeast of the mining block. Of the HAPs elements studied, Mn and Hg are the most poorly correlated to ash yield. We infer an organic association for Mn; Hg may be associated with pyrite. The rest of the trace elements (Be, Co, and Se) are weakly correlated with ash yield. Further analytical work is necessary to determine the mode of occurrence for these elements. Overall, concentrations of the HAPs elements are generally similar to or less than those reported in previous studies of lignites of the Wilcox Group, east-central region, Texas. Petrographic analysis indicates the following ranges in composition for the seven lignite samples: liptinites (5–8%), huminites (88–95%), and inertinites (trace amounts to 7%). Samples from the middle portion of the A1 bed contain abundant crypto-eugelinite compared to the rest of the samples; this relationship suggests that the degradation of plant material was an important process during the development of the peat mire. With the exception of Hg and Mn, relatively low levels of the HAPs elements studied are found in the samples containing abundant crypto-eugelinite. We infer that the peat-forming environment for this

  1. Crystallization Behavior of Copper Smelter Slag During Molten Oxidation

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2015-10-01

    Copper slag is composed of iron silicate obtained by smelting copper concentrate and silica flux. One of the most important criteria for the utilization of this secondary resource is the recovery of iron from the slag matrix to decrease the volume of dumped slag. The molten oxidation process with crushing magnetic separation appears to be a more sustainable approach and is based on directly blowing oxidizing gas onto molten slag after the copper smelting process. In the current study, using an infrared furnace, the crystallization behavior of the slag during molten oxidation was studied to better understand the trade-off between magnetite and hematite precipitations, as assessed by X-ray diffraction (using an internal standard). Furthermore, the crystal morphology was examined using a laser microscope and Raman imaging system to understand the iron oxide transformation, and the distribution of impurities such as Cu, Zn, As, Cr, and Pb were complemented with scanning electron microscopy and energy dispersive spectroscopy. In addition, the reaction mechanism was investigated with a focus on the oxidation processes.

  2. Possible linkages between lignite aquifers, pathogenic microbes, and renal pelvic cancer in northwestern Louisiana, USA

    USGS Publications Warehouse

    Bunnell, J.E.; Tatu, C.A.; Bushon, R.N.; Stoeckel, D.M.; Brady, A.M.G.; Beck, M.; Lerch, H.E.; McGee, B.; Hanson, B.C.; Shi, R.; Orem, W.H.

    2006-01-01

    In May and September, 2002, 14 private residential drinking water wells, one dewatering well at a lignite mine, eight surface water sites, and lignite from an active coal mine were sampled in five Parishes of northwestern Louisiana, USA. Using a geographic information system (GIS), wells were selected that were likely to draw water that had been in contact with lignite; control wells were located in areas devoid of lignite deposits. Well water samples were analyzed for pH, conductivity, organic compounds, and nutrient and anion concentrations. All samples were further tested for presence of fungi (cultures maintained for up to 28 days and colonies counted and identified microscopically) and for metal and trace element concentration by inductively-coupled plasma mass spectrometry and atomic emission spectrometry. Surface water samples were tested for dissolved oxygen and presence of pathogenic leptospiral bacteria. The Spearman correlation method was used to assess the association between the endpoints for these field/laboratory analyses and incidence of cancer of the renal pelvis (RPC) based on data obtained from the Louisiana Tumor Registry for the five Parishes included in the study. Significant associations were revealed between the cancer rate and the presence in drinking water of organic compounds, the fungi Zygomycetes, the nutrients PO4 and NH3, and 13 chemical elements. Presence of human pathogenic leptospires was detected in four out of eight (50%) of the surface water sites sampled. The present study of a stable rural population examined possible linkages between aquifers containing chemically reactive lignite deposits, hydrologic conditions favorable to the leaching and transport of toxic organic compounds from the lignite into the groundwater, possible microbial contamination, and RPC risk. ?? Springer Science+Business Media B.V. 2006.

  3. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    PubMed

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of Slag Ejection on Solid Rocket Motor Performance

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Purinton, David C.; Hengel, John E.; Skelley, Stephen E.

    1995-01-01

    In past firings of the Reusable Solid Rocket Motor (RSRM) both static test and flight motors have shown small pressure perturbations occurring primarily between 65 and 80 seconds. A joint NASA/Thiokol team investigation concluded that the cause of the pressure perturbations was the periodic ingestion and ejection of molten aluminum oxide slag from the cavity around the submerged nozzle nose which tends to trap and collect individual aluminum oxide droplets from the approach flow. The conclusions of the team were supported by numerous data and observations from special tests including high speed photographic films, real time radiography, plume calorimeters, accelerometers, strain gauges, nozzle TVC system force gauges, and motor pressure and thrust data. A simplistic slag ballistics model was formulated to relate a given pressure perturbation to a required slag quantity. Also, a cold flow model using air and water was developed to provide data on the relationship between the slag flow rate and the chamber pressure increase. Both the motor and the cold flow model exhibited low frequency oscillations in conjunction with periods of slag ejection. Motor and model frequencies were related to scaling parameters. The data indicate that there is a periodicity to the slag entrainment and ejection phenomena which is possibly related to organized oscillations from instabilities in the dividing streamline shear layer which impinges on the underneath surface of the nozzle.

  5. Leaching behavior of rare earth elements in Fort Union lignite coals of North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane

    Rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including those previously mined in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from amore » single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This paper details the results of a study on characterization of North Dakota lignite and lignite-related feedstocks as an assessment of their feasibility for rare earth element recovery. The abundance, distribution and modes of occurrence of the rare earth elements in the samples collected were determined in this initial study to inform the selection of appropriate extraction and concentration methods to recover the rare earth elements. Materials investigated include the lignite coals, clay-rich sediments associated with the coal seams, and materials associated with a lignite beneficiation system and power plant. The results show that high rare earth element levels exist both in lignite coals and associated sediments. The form of the rare earth elements in the clay materials is primarily as ultra-fine mineral grains. In the lignite coals, approximately 80-95% of the rare earths content is organically associated, primarily as coordination

  6. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sang-Woo; Jang, Cheol-Hyeon, E-mail: jangch@hanbat.ac.kr

    2011-03-15

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonizedmore » sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.« less

  7. Utilization of High-Temperature Slags From Metallurgy Based on Crystallization Behaviors

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Zhang, Zuotai

    2018-05-01

    Here, following the principle of modifying crystallization behaviors, including avoidance and optimization, we review recent research on the utilization of hot slags. Because of the high-temperature property (1450-1650°C), the utilization of hot slags are much different from that of other wastes. We approach this issue from two main directions, namely, material recycling and heat utilization. From the respect of material recycling, the utilization of slags mainly follows total utilization and partial utilization, whereas the heat recovery from slags follows two main paths, namely, physical granulation and chemical reaction. The effective disposal of hot slags greatly depends on clarifying the crystallization behaviors, and thus, we discuss some optical techniques and their applicable scientific insights. For the purpose of crystallization avoidance, characterizing the glass-forming ability of slags is of great significance, whereas for crystallization modification, the selection of chemical additives and control of crystallization conditions comprise the central routes.

  8. The use of steel slag in concrete

    NASA Astrophysics Data System (ADS)

    Martauz, P.; Vaclavik, V.; Cvopa, B.

    2017-10-01

    This paper presents the results of a research dealing with the use of unstable steel slag as a 100% substitute for natural aggregate in the production of concrete. Portland cement CEM I 42.5N and alkali activated hybrid cement H-CEMENT were used as the binder. The test results confirm the possibility to use steel slag as the filler in the production of concrete.

  9. A Navy User’s Guide for Quality Assurance of New Concrete Construction

    DTIC Science & Technology

    2012-06-01

    types and blends of cements, fly ash, silica fume, and blast furnace slag . During construction, concrete samples are taken to test and document the...chemical compositions provided by specific types and blends of cements, fly ash, silica fume, and blast furnace slag when used with specific aggregates...of portland cement and blast furnace slag . Before the 11 owner accepts the completed structure, all cracks transverse to the steel rebar in excess

  10. Recycling of residual IGCC slags and their benefits as degreasers in ceramics.

    PubMed

    Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E

    2013-11-15

    This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    NASA Astrophysics Data System (ADS)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  12. Controlling chromium slag pollution utilising scavengers: a case of Shandong Province, China.

    PubMed

    Liu, Changhao; Côté, Raymond P

    2015-04-01

    The problem of chromium slag pollution is a great challenge for China. It is now an urgent task for China to take effective measures to eliminate chromium slag pollution. This article examines the case of the treatment of chromium slag in Shandong Province and explores how chromium slag pollution can be eliminated in Shandong Province. It shows that the chromium slag stockpiled by the chemical plants was successfully utilised by local steel companies, who act as 'scavenger companies'. The driving mechanism, seeking a potential 'scavenger company' within the local region and the role of the local government on the case of Shandong Province are discussed. This article concludes that local steel companies can be utilised to effectively and efficiently treat the chromium slag while benefiting the steel companies. The local governments need to play multiple roles in solving the problem of chromium slag pollution. Seeking and identifying 'scavenger companies' within a region could be an important approach to reducing pollution within the region. © The Author(s) 2015.

  13. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.

    PubMed

    Toptas, Asli; Yildirim, Yeliz; Duman, Gozde; Yanik, Jale

    2015-02-01

    In this study, the combustion behavior of different kinds of torrefied biomass (lignocellulosic and animal wastes) and their blends with lignite was investigated via non-isothermal thermogravimetric method under air atmosphere. For comparison, combustion characteristics of raw biomasses were also determined. Torrefaction process improved the reactivity of char combustion step of biomasses. Characteristic combustion parameters for blends showed non-additivity behavior. It was found that the mixture of torrefied biomasses and lignite at a ratio of 1:1 had a lower ignition and burnout temperature than the coal-only sample. Although no interactions were observed between the lignite and torrefied biomass at initial step of combustion, a certain degree of interaction between the components occurred at char combustion step. Kinetic parameters of combustion were calculated by using the Coats Redfern model. Overall, this study showed that poultry litters can be used as a substitute fuel in coal/biomass co-firing systems by blending with lignocellulosic biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mineralogical Characterization of Copper Slag from Tongling Nonferrous Metals Group China

    NASA Astrophysics Data System (ADS)

    Chun, Tiejun; Ning, Chao; Long, Hongming; Li, Jiaxin; Yang, Jialong

    2016-09-01

    In this paper, the mineralogical characterization of typical copper slag supplied by the Tongling Nonferrous Metals Group China was performed based on x-ray fluorescence, x-ray diffraction, and scanning electron microscopy with energy dispersive spectroscopy. The results show that the dominant phases of the slag are fayalite, glassy substance and magnetite. The minor accessory phases consist of copper matte, metallic copper and other complex lead and zinc minerals. The contents of iron, copper, lead and zinc in copper slag are 40.21%, 0.79%, 0.24%, and 2.80%, respectively. The mineralogy of copper slag indicates that these valuable elements are difficult to recover by beneficiation processes due to the complicated occurrences. Instead, the pyro-metallurgical processes appear promising in recovering the valuable metals from copper slag.

  15. Effects of Slag-Based Silicon Fertilizer on Rice Growth and Brown-Spot Resistance

    PubMed Central

    Ning, Dongfeng; Song, Alin; Fan, Fenliang; Li, Zhaojun; Liang, Yongchao

    2014-01-01

    It is well documented that slag-based silicon fertilizers have beneficial effects on the growth and disease resistance of rice. However, their effects vary greatly with sources of slag and are closely related to availability of silicon (Si) in these materials. To date, few researches have been done to compare the differences in plant performance and disease resistance between different slag-based silicon fertilizers applied at the same rate of plant-available Si. In the present study both steel and iron slags were chosen to investigate their effects on rice growth and disease resistance under greenhouse conditions. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the effects of slags on ultrastructural changes in leaves of rice naturally infected by Bipolaris oryaze, the causal agent of brown spot. The results showed that both slag-based Si fertilizers tested significantly increased rice growth and yield, but decreased brown spot incidence, with steel slag showing a stronger effect than iron slag. The results of SEM analysis showed that application of slags led to more pronounced cell silicification in rice leaves, more silica cells, and more pronounced and larger papilla as well. The results of TEM analysis showed that mesophyll cells of slag-untreated rice leaf were disorganized, with colonization of the fungus (Bipolaris oryzae), including chloroplast degradation and cell wall alterations. The application of slag maintained mesophyll cells relatively intact and increased the thickness of silicon layer. It can be concluded that applying slag-based fertilizer to Si-deficient paddy soil is necessary for improving both rice productivity and brown spot resistance. The immobile silicon deposited in host cell walls and papillae sites is the first physical barrier for fungal penetration, while the soluble Si in the cytoplasm enhances physiological or induced resistance to fungal colonization. PMID:25036893

  16. Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture.

    PubMed

    Xue, Yongjie; Wu, Shaopeng; Hou, Haobo; Zha, Jin

    2006-11-16

    Chinese researchers have commenced a great deal of researches on the development of application fields of basic oxygen steel making furnace slag (BOF slag) for many years. Lots of new applications and properties have been found, but few of them in asphalt mixture of road construction engineering. This paper discussed the feasibility of BOF steel slag used as aggregate in asphalt pavement by two points of view including BOF steel slag's physical and micro-properties as well as steel slag asphalt materials and pavement performances. For the former part, this paper mainly concerned the mechanochemistry and physical changes of the steel slag and studied it by performing XRD, SEM, TG and mercury porosimeter analysis and testing method. In the second part, this paper intended to use BOF steel slag as raw material, and design steel slag SMA mixture. By using traditional rutting test, soak wheel track and modified Lottman test, the high temperature stability and water resistance ability were tested. Single axes compression test and indirect tensile test were performed to evaluate the low temperature crack resistance performance and fatigue characteristic. Simultaneously, by observing steel slag SMA pavement which was paved successfully. A follow-up study to evaluate the performance of the experimental pavement confirmed that the experimental pavement was comparable with conventional asphalt pavement, even superior to the later in some aspects. All of above test results and analysis had only one main purpose that this paper validated the opinion that using BOF slag in asphalt concrete is feasible. So this paper suggested that treated and tested steel slag should be used in a more extensive range, especially in asphalt mixture paving projects in such an abundant steel slag resource region.

  17. Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: Stabilisation/solidification of heavy metals.

    PubMed

    Yliniemi, Juho; Pesonen, Janne; Tiainen, Minna; Illikainen, Mirja

    2015-09-01

    Recovered fuel-biofuel fly ash from a fluidized bed boiler was alkali-activated and granulated with a sodium-silicate solution in order to immobilise the heavy metals it contains. The effect of blast-furnace slag and metakaolin as co-binders were studied. Leaching standard EN 12457-3 was applied to evaluate the immobilisation potential. The results showed that Ba, Pb and Zn were effectively immobilised. However, there was increased leaching after alkali activation for As, Cu, Mo, Sb and V. The co-binders had minimal or even negative effect on the immobilisation. One exception was found for Cr, in which the slag decreased leaching, and one was found for Cu, in which the slag increased leaching. A sequential leaching procedure was utilized to gain a deeper understanding of the immobilisation mechanism. By using a sequential leaching procedure it is possible fractionate elements into watersoluble, acid-soluble, easily-reduced and oxidisable fractions, yielding a total 'bioavailable' amount that is potentially hazardous for the environment. It was found that the total bioavailable amount was lower following alkali activation for all heavy metals, although the water-soluble fraction was higher for some metals. Evidence from leaching tests suggests the immobilisation mechanism was chemical retention, or trapping inside the alkali activation reaction products, rather than physical retention, adsorption or precipitation as hydroxides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Kinetic Investigations of SiMn Slags From Different Mn Sources

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghwa Peace; Tangstad, Merete

    2018-06-01

    The kinetics of MnO and SiO2 reduction were investigated for Silicomanganese (SiMn) slags using a Thermogravimetric analysis (TGA) between 1773 K and 1923 K (1500 °C and 1650 °C) under CO atmospheric pressure. The charge materials were based on Assmang ore and HC FeMn Slag. Rate models for MnO and SiO2 reduction were applied to describe the metal-producing rates, as shown by the following equations: r_{MnO} = k_{MnO} × A × ( {a_{MnO} - {a_{Mn} }/{K_{T }}} ) r_{{{SiO}2 }} = k_{SiO2} × A × ( {a_{{{SiO}2 }} - {a_{Si} }/{K_{T }}} ). The results show that the choice of raw materials in the charge considerably affected the reduction rate of MnO and SiO2. The highest reduction rate was found to be from charges using HC FeMn slag. The difference in the driving forces was insignificant among the SiMn slags, and the similar slag viscosities could not explain the different reduction rates. Instead, the difference is attributed to small amounts of sulfur and the amount of iron in the charge. In addition, the rate models were applicable to describe the reduction of MnO and SiO2 in SiMn slags.

  19. Reuse of EAF Slag as Reinforcing Filler for Polypropylene Matrix Composites

    NASA Astrophysics Data System (ADS)

    Cornacchia, G.; Agnelli, S.; Gelfi, M.; Ramorino, G.; Roberti, R.

    2015-06-01

    Electric-arc furnace (EAF) slag, the by-product of steel fabricated at the EAF, is in most cases still sent to dumps, with serious environmental consequences. This work shows an innovative, economically convenient application for EAF slag: its use as reinforcing filler for polypropylene. Composites based on polypropylene containing 10-40 wt.% of EAF slag particles were prepared by melt compounding followed by injection molding. A physical-chemical analysis of the EAF slag was performed to determine microstructural features and main component phases. Leaching tests demonstrated that, although EAF slag can release small amounts of toxic elements, such as heavy metals, incorporating such material into the polymeric matrix immobilizes the heavy metals inside that matrix. The mechanical characterization of the polymer-based composites was performed. Incorporating EAF slag particles raises the Young's modulus and the tensile strength at yield, whereas elongation at break and the impact strength of the polymer-based composite are significantly reduced only when large amounts of filler are added, i.e., 30% or more.

  20. Steel slag in hot mix asphalt concrete : final report

    DOT National Transportation Integrated Search

    2000-04-01

    In September 1994, steel slag test and control sections were constructed in Oregon to evaluate the use of steel slag in hot mix asphalt concrete (HMAC). This report covers the construction and five-year performance of a pavement constructed with 30% ...

  1. Preliminary findings of chemistry and bioaccessibility in base metal smelter slags.

    PubMed

    Morrison, Anthony L; Gulson, Brian L

    2007-08-15

    Leaching of toxic metals from slag waste produced during smelting of Pb-Zn ores is generally considered to be negligible. A 1.4 million tonne stockpile of slag containing up to 2.5% Pb and other contaminants has accumulated on a smelter site at North Lake Macquarie, New South Wales, Australia, and it has also been freely used within the community for landscaping and drainage projects. It had been suggested that Pb in fine particles derived from the slags may be a potential contributor to the blood Pb of some children in this community, although there is conflicting evidence in the literature for such a hypothesis. Bioaccessibility of lead and selected metals derived from nine slag samples collected from areas of public open space was examined using a relatively simple in vitro gastric dissolution technique. Size analyses of the slag samples demonstrate that finely-sized material was present in the slags which could be ingested, especially by children. The finer-sized particles contain high levels of Pb (6,490-41,400 ppm), along with Cd and As. Pb bioaccessibility of the slags was high, averaging 45% for -250 microm material and 75% for particles in the size range -53+32 microm. Increasing bioaccessibility and Pb concentration showed an inverse relationship to particle size. Almost 100% of Pb would be bioaccessible in the smallest slag particles (<20 microm), which also contained very high Pb levels ranging from 50,000 to 80,000 ppm and thus constitute a potential health hazard for children.

  2. Preliminary study of tin slag concrete mixture

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd Jamil; Mansor, Ishak; Pauzi Ismail, Mohamad; Sani, Suhairy; Azmi, Azhar; Sayuti, Shaharudin; Zaidi Ibrahim, Mohd; Adli Anuar, Abul; Rahim, Abdul Adha Abdul

    2018-01-01

    The study focuses on practices to facilitate tin smelting industry to reduce radioactive waste product (Tin Slag) by diluting its radioactivity to a safe level and turning it to a safer infrastructural building product. In the process the concrete mix which include Portland cement, sand, tin slag, water and plasticizer are used to produce interlocking brick pavements, piles and other infrastructural products. The mixing method follows DOE (UK) standard method of mixing targeted at in selected compressive strength suitable for its function and durability. A batching machine is used in the mixing and six test cubes are produced for the test. The testing equipment used are a compressional machine, ultrasonic measurement and a Geiger Muller counter to evaluate of the concrete mix to find the lowest emission of radiation surface dose without compromising the strength of concrete mix. The result obtained indicated the radioactivity of tin slag in the mixing process has reduced to background level that is 0.5μSv/h while the strength and workability of the concrete has not been severely affected. In conclusion, the concrete mix with tin slag has shown the potential it can be turned into a safe beneficial infrastructural product with good strength.

  3. Geophysical Investigation of Buried Slag at the Parrot Tailings Site, Butte, Montana

    NASA Astrophysics Data System (ADS)

    Ha, C. D. M.; Shepherd, K.; Mack, A.; Rutherford, B. S.; Speece, M. A.

    2016-12-01

    Butte, Montana, has served as an important mining district for more than 120 years. This area contains historic mine waste from decades of unregulated mining practices. In July 1881, the Parrot smelter in Butte started operations and was soon processing ore and producing copper. The Parrot smelter also had a concentrating plant that treated the ore prior to smelting. The Parrot smelter wastes (slag and tailings) were later covered with Berkeley Pit crushed quartz monzonite overburden. The slag is bricked because it was deposited hot and, as a consequence forms a laterally extensive, cohesive, hard body that is difficult to remove without blasting. With the mine waste being covered by unknown quantities of overburden and soil throughout the area, and core data being limited and expensive to retrieve, the only economical method of discovery is geophysics. Several geophysical techniques were used to determine the lateral boundaries and depth of the buried slag body. The geophysical methods used were seismic, gravity, electromagnetic induction, and magnetics. Not all of these geophysical surveys produced useful results due to the nature of the slag. For instance, electromagnetic induction could not distinguish between the slag and adjacent tailings; and, the microgravity profiles showed only a small gravitational field variation caused by the density contrast between slag and the surrounding tailings, sediment and granitic cover. On the other hand, the seismic surveys resulted in unexpected first arrival times that distinctly showed velocity variations due to the slag. In addition, the slag body produced a large magnetic response. Unpublished, proprietary well data allowed us to model the slag body from our magnetic data. This model was confirmed by projecting velocity tomograms, that we created using seismic diving waves, onto our magnetic models. Model results were combined to form a three-dimensional image of the slag body. These results will be used to help

  4. Experimental investigation of ash deposits on convection heating surfaces of a circulating fluidized bed municipal solid waste incinerator.

    PubMed

    Tang, Zhi; Chen, Xiaoping; Liu, Daoyin; Zhuang, Yaming; Ye, Minghua; Sheng, Hongchan; Xu, Shaojuan

    2016-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction, as well as a source of renewable energy. During MSW combustion, increased formation of deposits on convection heating exchanger surfaces can pose severe operational problems, such as fouling, slagging and corrosion. These problems can cause lower heat transfer efficiency from the hot flue gas to the working fluid inside the tubes. A study was performed where experiments were carried out to examine the ash deposition characteristics in a full-scale MSW circulating fluidized bed (CFB) incinerator, using a newly designed deposit probe that was fitted with six thermocouples and four removable half rings. The influence of probe exposure time and probe surface temperature (500, 560, and 700°C) on ash deposit formation rate was investigated. The results indicate that the deposition mass and collection efficiency achieve a minimum at the probe surface temperature of 560°C. Ash particles are deposited on both the windward and leeward sides of the probe by impacting and thermophoretic/condensation behavior. The major inorganic elements present in the ash deposits are Ca, Al and Si. Compared to ash deposits formed on the leeward side of the probe, windward-side ash deposits contain relatively higher Ca and S concentrations, but lower levels of Al and Si. Among all cases at different surface temperatures, the differences in elemental composition of the ash deposits from the leeward side are insignificant. However, as the surface temperature increases, the concentrations of Al, Si, K and Na in the windward-side ash deposits increase, but the Ca concentration is reduced. Finally, governing mechanisms are proposed on the basis of the experimental data, such as deposit morphology, elemental composition and thermodynamic calculations. Copyright © 2016. Published by Elsevier B.V.

  5. 78 FR 63463 - Intent To Prepare a Regional Environmental Impact Statement for Surface Coal and Lignite Mining...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Environmental Impact Statement for Surface Coal and Lignite Mining in the State of Texas AGENCY: Department of..., indirect, and cumulative effects associated with a decision to develop and assess data and information with... responsibility. These coal and lignite mining activities may eventually require authorization from the USACE...

  6. Infiltration of Slag Film into the Grooves on a Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Cho, Jung-Wook; Jeong, Hee-Tae

    2013-02-01

    An analytical model is developed to clarify the slag film infiltration into grooves on a copper mold during the continuous casting of steel slabs. A grooved-type casting mold was applied to investigate the infiltration of slag film into the grooves of a pitch of 0.8 mm, width of 0.7 mm, and depth of 0.6 mm at the vicinity of a meniscus. The plant trial tests were carried out at a casting speed of 5.5 m min-1. The slag film captured at a commercial thin slab casting plant showed that both the overall and the liquid film thickness were decreased exponentially as the distance from the meniscus increases. In contrast, the infiltration of slag film into the grooves had been increased with increasing distance from the meniscus. A theoretic model has been derived based on the measured profile of slag film thickness to calculate the infiltration of slag film into the grooves. It successfully reproduces the empirical observation that infiltration ratio increased sharply along casting direction, about 80 pct at 50 mm and 95 pct at 150 mm below the meniscus. In the model calculation, the infiltration of slag film increases with increasing groove width and/or surface tension of the slag. The effect of groove depth is negligible when the width to depth ratio of the groove is larger than unity. It is expected that the developed model for slag film infiltration in this study will be widely utilized to optimize the design of groove dimensions in continuous casting molds.

  7. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, D.L.

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coalmore » depolymerizing enzymes.« less

  8. Study on the Effect of Straw Fiber on the Performance of Volcanic Slag Concrete

    NASA Astrophysics Data System (ADS)

    Xiao, Li-guang; Liu, Xi-xu

    2018-03-01

    In this paper, the effects of straw fiber on the working performance, mechanical properties and frost resistance of volcanic slag lightweight aggregate concrete were studied. The experimental results show that the straw fiber is subjected to surface carbonization treatment and mixed into the volcanic slag light aggregate concrete. The flexural strength and fracture pressure ratio of volcanic slag lightweight aggregate concrete are improved obviously Improved volcanic slag lightweight aggregate concrete brittleness improves toughness. Carbonized straw fiber greatly improves the frost resistance of volcanic slag lightweight aggregate concrete. So that the volcanic slag light aggregate concrete freeze-thaw cycle can reach 300 times.

  9. Beneficiation of Turkish lignites by thermal treatment and magnetic separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onal, G.; Renda, D.; Mustafaev, I.

    1999-07-01

    In this paper, the improvement of Turkish lignites by semi-coking and REMS magnetic separation, in two stages, is discussed. The oxidation and decomposition of pyrite through the thermal treatment result in the formation of iron oxide and pyrrhotite on the surface. In addition to pyrite, part of the organic sulfur is also removed. After thermal treatment of lignites at temperatures ranging from 370 to 650 C, the application of REMS magnetic separator produces a product higher in calorific value and lower in sulfur content. The product can be utilized after briquetting. The volatile gases can also be used after sulfurmore » removal. This process appears to be feasible as a clean coal manufacture from the point of energy efficiency. A short economic analysis is also presented.« less

  10. Corrosion Behavior of Ceramic Cup of Blast Furnace Hearth by Liquid Iron and Slag

    NASA Astrophysics Data System (ADS)

    Li, Yanglong; Cheng, Shusen; Wang, Zhifeng

    2016-10-01

    Three kinds of sample bricks of ceramic cups for blast furnace hearth were studied by dynamic corrosion tests based on different corrosion systems, i.e., liquid iron system, liquid slag system and liquid iron-slag system. Considering the influence of temperature and sample rotational speed, the corrosion profiles and mass loss of the samples were analyzed. In addition, the microstructure of the corroded samples was observed by optical microscope (OM) and scanning electron microscope (SEM). It was found that the corrosion profiles could be divided into iron corrosion region, slag corrosion region and iron-slag corrosion region via corrosion degree after iron-slag corrosion experiment. The most serious corrosion occurred in iron-slag corrosion region. This is due to Marangoni effect, which promotes a slag film formed between liquid iron and ceramic cup and results in local corrosion. The corrosion of the samples deepened with increasing temperature of liquid iron and slag from 1,623 K to 1,823 K. The variation of slag composition had greater influence on the erosion degree than that of rotational speed in this experiment. Taking these results into account the ceramic cup composition should be close to slag composition to decrease the chemical reaction. A microporous and strong material should be applied for ceramic cup.

  11. Predicting Water Quality Problems Associated with Coal Fly Ash Disposal Facilities Using a Trace Element Partitioning Study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.; Graham, E. Y.

    2006-12-01

    For much of the U.S., coal-fired power plants are the most important source of electricity for domestic and industrial use. Large quantities of fly ash and other coal combustion by-products are produced every year, the majority of which is impounded in lagoons and landfills located throughout the country. Many older fly ash disposal facilities are unlined and have been closed for decades. Fly ash often contains high concentrations of toxic trace elements such as arsenic, boron, chromium, molybdenum, nickel, selenium, lead, strontium and vanadium. Trace elements present in coal fly ash are of potential concern due to their toxicity, high mobility in the environment and low drinking water MCL values. Concern about the potential release of these toxic elements into the environment due to leaching of fly ash by acid rain, groundwater or acid mine drainage has prompted the EPA to develop national standards under the subtitle D of the Resource Conservation and Recovery Act (RCRA) to regulate ash disposal in landfills and surface impoundments. An attempt is made to predict the leaching of toxic elements into the environment by studying trace element partitioning in coal fly ash. A seven step sequential chemical extraction procedure (SCEP) modified from Filgueiras et al. (2002) is used to determine the trace element partitioning in seven coal fly ash samples collected directly from electric power plants. Five fly ash samples were derived from Eastern Bituminous coal, one derived from Western Sub-bituminous coal and the other derived from Northern Lignite. The sequential chemical extraction procedure gives valuable information on the association of trace elements: 1) soluble fraction, 2) exchangeable fraction, 3) acid soluble fraction, 4) easily reducible fraction, 5) moderately reducible fraction, 6) poorly reducible fraction and 7) oxidizable organics/sulfide fraction. The trace element partitioning varies with the composition of coal fly ash which is influenced by the

  12. Predicting Slag Generation in Sub-Scale Test Motors Using a Neural Network

    NASA Technical Reports Server (NTRS)

    Wiesenberg, Brent

    1999-01-01

    Generation of slag (aluminum oxide) is an important issue for the Reusable Solid Rocket Motor (RSRM). Thiokol performed testing to quantify the relationship between raw material variations and slag generation in solid propellants by testing sub-scale motors cast with propellant containing various combinations of aluminum fuel and ammonium perchlorate (AP) oxidizer particle sizes. The test data were analyzed using statistical methods and an artificial neural network. This paper primarily addresses the neural network results with some comparisons to the statistical results. The neural network showed that the particle sizes of both the aluminum and unground AP have a measurable effect on slag generation. The neural network analysis showed that aluminum particle size is the dominant driver in slag generation, about 40% more influential than AP. The network predictions of the amount of slag produced during firing of sub-scale motors were 16% better than the predictions of a statistically derived empirical equation. Another neural network successfully characterized the slag generated during full-scale motor tests. The success is attributable to the ability of neural networks to characterize multiple complex factors including interactions that affect slag generation.

  13. The opportunity of silicate product manufacturing with simultaneous pig iron reduction from slag technogenic formations

    NASA Astrophysics Data System (ADS)

    Sheshukov, O. Yu.; Lobanov, D. A.; Mikheenkov, M. A.; Nekrasov, I. V.; Egiazaryan, D. K.

    2017-09-01

    There are two main kinds of slag in modern steelmaking industry: the electric arc furnace slag (EAF slag) and ladle furnace slag (LF slag). The all known slag processing schemes provide the iron-containing component reduction while silicate component stays unprocessed. On the contrary, the silicate processing schemes doesn't provide the utilization of the iron-containing component. The present-day situation doesn't solve the problem of total slag utilization. The aim of this work is to investigate the opportunity of silicate product obtaining with simultaneous pig iron reduction from EAF and LF slags. The tests are conducted by the method of simplex-lattice design. The test samples are heated and melted under reductive conditions, slowly cooled and then analyzed by XRD methods. The experiment results prove the opportunity: the Portland clinker and pig iron can be simultaneously produced on the basis of these slags with a limestone addition.

  14. Spectral Study of Modified Humic Acids from Lignite

    NASA Astrophysics Data System (ADS)

    Zherebtsov, Sergey; Malyshenko, Natalya; Bryukhovetskaya, Ludmila; Ismagilov, Zinfer

    2017-11-01

    The IR-Fourier, ESR and solid-state 13C NMR analysis are used for investigation of unmodified and modified humic acids obtained from Tisul lignite (the Kansko-Achinsk Basin). Treatment with Hydrogen peroxide used for modification of humic acids and it changes the functionalgroup composition of the humic acids and increases the sorptional capacity

  15. Study of the Mechanism of Liquid Slag Infiltration for Lubrication in Slab Continuous Casting

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoda; Wang, Qiangqiang; He, Shengping; Wang, Qian

    2018-04-01

    Consistent and uniform lubrication of the solidifying shell, especially in the meniscus, is crucial for the smooth continuous casting operation and production of strands free of surface defects. Thus, the current study established a coupled model to study the inflow behavior of liquid slag to the mold-strand channel, taking the solidification of steel and slag and the periodic oscillation of mold into account. The difficulties and solutions for the simulation were described in detail. The predicted profiles of the slag rim and initial shell were in good agreement with the reports. The main results indicated that liquid slag could be squeezed out and back into the slag pool in a negative strip period while a large amount of liquid slag could infiltrate into the mold-strand channel. Thus, the amount of slag consumed in the negative strip period was relatively small compared with that in the positive strip period. The predicted variation of slag consumption during mold oscillation was periodic, and the average value was 0.274 kg/m2, which agreed well with the slag consumption in industrial practice. The current model can predict and optimize the oscillation parameters aiming at stable lubrication conditions.

  16. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Cao; Quan-Hai Wang; Jun Li

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gasmore » inside the reactor was about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155{sup o}C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155{sup o}C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, at testing conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBR addition alone). 25 refs., 5 figs., 1 tab.« less

  17. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    PubMed

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).

  18. Effect of Slag Impregnation on Macroscopic Deformation of Bauxite-Based Material

    NASA Astrophysics Data System (ADS)

    Coulon, Antoine; De Bilbao, Emmanuel; Michel, Rudy; Bouchetou, Marie-Laure; Brassamin, Séverine; Gazeau, Camille; Zanghi, Didier; Poirier, Jacques

    This work aims at studying the volume change of bauxite corroded by a molten slag. Cylindrical samples were prepared by mixing ground bauxite with slag. Optical measurement at high temperature (1450 °C) of deformation with a high-resolution camera has been developed. Image processing allowed for determining the change in diameter of the sample. We showed that the deformation was induced by the precipitation of new expansive crystallised phases observed by SEM-EDS analyses. Adding pellets of the same slag upon the samples allowed to emphasize the effect of the slag amount on the size change. The change in diameter significantly increased in the impregnated area.

  19. Utilization of steel slag for Portland cement clinker production.

    PubMed

    Tsakiridis, P E; Papadimitriou, G D; Tsivilis, S; Koroneos, C

    2008-04-01

    The aim of the present research work is to investigate the possibility of adding steel slag, a by-product of the conversion of iron to steel process, in the raw meal for the production of Portland cement clinker. Two samples of raw meals were prepared, one with ordinary raw materials, as a reference sample ((PC)(Ref)), and another with 10.5% steel slag ((PC)(S/S)). Both raw meals were sintered at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the steel slag did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting times, compressive strengths and soundness. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the steel slag did not negatively affect the quality of the produced cement.

  20. Comparison of metallurgical coke and lignite coke for power generation in Thailand

    NASA Astrophysics Data System (ADS)

    Ratanakuakangwan, Sudlop; Tangjitsitcharoen, Somkiat

    2017-04-01

    This paper presents and compares two alternatives of cokes in power generation which are the metallurgical coke with coke oven gas and the coke from lignite under the consideration of the energy and the environment. These alternatives not only consume less fuel due to their higher heat content than conventional coal but also has less SO2 emission. The metallurgical coke and its by-product which is coke oven gas can be obtained from the carbonization process of coking coal. According to high grade coking coal, the result in the energy attitude is not profitable but its sulfur content that directly affects the emission of SO2 is considered to be very low. On the other hand, the coke produced from lignite is known as it is the lowest grade from coal and it causes the high pollution. Regarding to energy profitability, the lignite coke is considered to be much more beneficial than the metallurgical coke in contrast to the environmental concerns. However, the metallurgical coke has the highest heating value. Therefore, a decision making between those choices must be referred to the surrounding circumstances based on energy and environment as well as economic consideration in the further research.

  1. Using Natural Cementation Systems to Control Corrosion Dust on Un-surfaced Roads

    DTIC Science & Technology

    2010-02-01

    metallurgical slags ), volcanic glass , fly ash and low-fired clays • Can use waste alkali from manufacturing operations • No Portland cement is involved Soil...solidified with alkali- activated glass slag US Army Corps of Engineers 4 Pohakuloa Training Area (PTA) as a Test Site • Serious dust problem at site...Conventional Cement? • Glass can be both the aggregate and form the cementing phase • Waste glass ( slag , fly ash) can be used • More alkaline solution is

  2. Characterization of airborne particles at a high-btu coal-gasification pilot plant.

    PubMed

    Davidson, C I; Santhanam, S; Stetter, J R; Flotard, R D; Gebert, E

    1982-12-01

    Airborne particles in fugitive emissions have been measured at a slagging fixed-bed coal-gasification pilot plant using lignite. Sampling was conducted during shutdown operations and opening of the gasifier following an aborted startup. Aerosol collected with a Sierra high-volume impactor was subjected to analysis by gas chromatography, mass spectrometry, and scanning electron microscopy; aerosol collected with an Andersen low-volume impactor was subjected to flameless atomic absorption analysis. The data show that the bulk of the trace organic material is associated with small particles: these data are similar to data on ambient air reported in the literature. Particle morphologies resemble those of fly ash from coal combustion, including smooth spheres, vesicular spheres, and crystalline material. Trace element size distributions are bimodal and resemble data for ambient air. Pb-containing particles are generally submicron, while particles containing Al, Fe, and other crustal species are mostly of supermicron size. Aluminum-based aerosol enrichment factors calculated from the lignite composition show that the composition of the aerosol resembles that of the coal, with the exception of modest enrichments of Mg, Na, As, and Pb in the submicron size range. Aerosol enrichment factors based on the earth's crustal composition are somewhat greater than those based on coal composition for several elements, suggesting potential errors in using crustal enrichment data to investigate chemical fractionation during aerosol formation.

  3. Toxicity assessment and geochemical model of chromium leaching from AOD slag.

    PubMed

    Liu, Bao; Li, Junguo; Zeng, Yanan; Wang, Ziming

    2016-02-01

    AOD (Argon Oxygen Decarburization) slag is a by-product of the stainless steel refining process. The leaching toxicity of chromium from AOD slag cannot be ignored in the recycling process of the AOD slag. To assess the leaching toxicity of the AOD slag, batch leaching tests have been performed. PHREEQC simulations combined with FactSage were carried out based on the detailed mineralogical analysis and petrophysical data. Moreover, Pourbaix diagram of the Cr-H2O system was protracted by HSC 5.0 software to explore the chromium speciation in leachates. It was found that AOD slag leachate is an alkaline and reductive solution. The Pourbaix diagram of the Cr-H2O system indicated that trivalent chromium, such as Cr(OH)4(-), is the major chromium species in the experimental Eh-pH region considered. However, toxic hexavalent chromium was released with maximum concentrations of 30 µg L(-1) and 18 µg L(-1) at L/S 10 and 100, respectively, during the earlier leaching stage. It concluded that the AOD slag possessed a certain leaching toxicity. After 10 d of leaching, trivalent chromium was the dominant species in the leachates, which corresponded to the results of PHREEQC simulation. Leaching toxicity of AOD slag is based on the chromium speciation and its transformation. Great attention should be focused on such factors as aging, crystal form of chromium-enriched minerals, and electrochemical characteristics of the leachates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Tin recovery from tin slag using electrolysis method

    NASA Astrophysics Data System (ADS)

    Jumari, Arif; Purwanto, Agus; Nur, Adrian; Budiman, Annata Wahyu; Lerian, Metty; Paramita, Fransisca A.

    2018-02-01

    The process in industry, including in mining industry, would surely give negative effect such as waste polluting to the environment. Some of waste could be potentially reutilized to be a commodity with the higher economic value. Tin slag is one of them. The aim of this research was to recover the tin contained in tin slag. Before coming to the electrolysis, tin slag must be treated by dissolution. The grinded tin slag was dissolved into HCl solution to form a slurry. During dissolution, the slurry was agitated and heated, and finally filtered. The filtrate obtained was then electrolyzed. During the process of electrolysis, solid material precipitated on the used cathode. The precipitated solid was then separated and dried. The solid was then analyzed using XRD, XRF and SEM. The XRD analysis showed that the longest time of dissolution and electrolysis the highest the purity obtained in the product. The SEM analysis showed that the longest time of electrolysis the smallest tin particle obtained. Optimum time achieved in this research was 2 hours for the recovering time and 3 hours for the electrolysis time, with 9% tin recovered.

  5. Effect of Silicate Slag Application on Wheat Grown Under Two Nitrogen Rates

    PubMed Central

    White, Brandon; Tubana, Brenda S.; Babu, Tapasya; Mascagni, Henry; Agostinho, Flavia; Datnoff, Lawrence E.; Harrison, Steve

    2017-01-01

    Field studies were established on the alluvial floodplain soils in Louisiana, from 2013 to 2015, to evaluate the effect of silicate slag applications on productivity of wheat (Triticum aestivum), under sufficient and high nitrogen (N) application rates. Treatments were arranged in a randomized complete block design, with four replications consisting of twelve treatments: a factorial combination of two N (101 and 145 kg N ha−1) and five silicate slag rates (0, 1, 2, 4.5, and 9 Mg ha−1), and two control plots (with and without lime). Nitrogen had a greater impact on wheat productivity than silicate slag application. Wheat grain yield reached over 7000 kg ha−1 with applications of 145 kg N, and 9 Mg silicate slag per ha for soil having Si level <20 mg kg−1. Yield increases due to N or Si were attributed to the increase in number of spike m−2 and grain number spike−1. Silicate slag application effectively raised soil pH, and availability of several plant-essential nutrients, including plant-available N (nitrate, NO3−), demonstrating the benefits of slag application are beyond increasing plant-available Si. The benefits of silicate slag application were clearly observed in wheat supplied with high N, and on soil with low plant-available Si. PMID:29019922

  6. Determination of particle-bound polycyclic aromatic hydrocarbons emitted from co-pelletization combustion of lignite and rubber wood sawdust

    NASA Astrophysics Data System (ADS)

    Kan, R.; Kaosol, T.; Tekasakul, P.; Tekasakul, S.

    2017-09-01

    Determination of particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) emitted from co-pelletization combustion of lignite and rubber wood sawdust in a horizontal tube furnace is investigated using High Performance Liquid Chromatography with coupled Diode Array and Fluorescence Detection (HPLC-DAD/FLD). The particle-bound PAHs based on the mass concentration and the toxicity degree are discussed in the different size ranges of the particulate matters from 0.07-11 μm. In the present study, the particle-bound PAHs are likely abundant in the fine particles. More than 70% of toxicity degree of PAHs falls into PM1.1 while more than 80% of mass concentration of PAHs falls into PM2.5. The addition of lignite amount in the co-pelletization results in the increasing concentration of either 4-6 aromatic ring PAHs or high molecular weight PAHs. The high contribution of 4-6 aromatic ring PAHs or high molecular weight PAHs in the fine particles should be paid much more attention because of high probability of human carcinogenic. Furthermore, the rubber wood sawdust pellets emit high mass concentration of PAHs whereas the lignite pellets emit high toxicity degree of PAHs. By co-pelletized rubber wood sawdust with lignite (50% lignite pellets) has significant effect to reduce the toxicity degree of PAHs by 70%.

  7. Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification Microstructure and Mineralogy

    NASA Astrophysics Data System (ADS)

    Liu, Chunwei; Guo, Muxing; Pandelaers, Lieven; Blanpain, Bart; Huang, Shuigen

    Slag valorization in added value construction applications can contribute substantially to the sustainability of steel industry. The present work aims to investigate the crystallization behavior of a typical industrial Basic Oxygen Furnace (BOF) slag (CaO-FeOx-SiO2-based slag) by varying the basicity through hot stage engineering. A sample of industry Basic Oxygen Slag (BOF) was mixed with different quantities of silica (SiO2) to modify basicity. The effect of basicity on solidification microstructure and mineralogy was studied. The results suggest that the mineralogy of the solidified slag can be manipulated to enhance its suitability as raw material for construction applications.

  8. Ash characteristics and plant nutrients in some aquatic biomasses

    NASA Astrophysics Data System (ADS)

    Masto, Reginald; Pandit, Ankita; George, Joshy; Mukhopadhyay, Sangeeta; Selvi, Vetrivel; Ram, Lal

    2016-04-01

    is released at 800 °C. The salgging tendencies based on both base: acid ratio and slagging factor, fouling probabilities based on fouling factors is in the order Hydrilla > Eichornia > Lemna > Spirogyra. Among the different heavy metals Zn, Pb, Cu, and Ni have concentration > 100 mg/kg; Cr and V content was > 50 mg/kg; Co, > 10 mg/kg. In general the heavy metal contents were higher in Spirogyra. Due to the volatile nature Cd and Pb decreases in ash with temperature and is lost continuously in flue gas. Plant nutrient content was relatively higher for Eichornia: K (8 - 12.8 %), P (5.7 - 7.3 %), Ca (9.2 - 10.8 %), Mg (2.8 - 3.6 %), S (1.9 - 2.9 %), Zn (0.033 - 0.045 %), Fe (3.3 - 4.7 %), Cu (0.009 - 0.013 %), Mn (0.8 -1.3%). Among the four biomasses we have studied, Eichornia could be a potential candidate for energy extraction in view of its C content and widespread availability in many parts of the globe, and fast multiplication associated with the eutrophication of water bodies.

  9. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    PubMed

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A discussion on improving hydration activity of steel slag by altering its mineral compositions.

    PubMed

    Wang, Qiang; Yan, Peiyu; Feng, Jianwen

    2011-02-28

    This study aims to investigate the ways to improve the cementitious properties of steel slag. The results show that the cementitious phase of steel slag is composed of silicate and aluminate, but the large particles of these phases make a very small contribution to the cementitious properties of steel slag. RO phase (CaO-FeO-MnO-MgO solid solution), Fe(3)O(4), C(2)F and f-CaO make no contribution to the cementitious properties of steel slag. A new kind of steel slag with more cementitious phase and less RO phase can be obtained by removing some large particles. This new steel slag possesses better cementitious properties than the original steel slag. The large particles can be used as fine aggregates for concrete. Adding regulating agent high in CaO and SiO(2) during manufacturing process of steel slag to increase the cementitious phase to inert phase ratio is another way to improve its cementitious properties. The regulating agent should be selected to adapt to the specific steel slag and the alkalinity should be increased as high as possible on the premise that the f-CaO content does not increase. The cooling rate should be enhanced to improve the hydration activity of the cementitious phase at the early ages and the grindability of steel slag. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Characterization of structure and thermophysical properties of three ESR slags

    NASA Astrophysics Data System (ADS)

    Plotkowski, A.; deBarbadillo, J.; Krane, Matthew J. M.

    2016-07-01

    The structure and properties of electroslag remelting (ESR) slags were characterized. Slags samples of three compositions were obtained from industrial remelting processes at Special Metals Corporation and from casting in a laboratory vacuum induction melter. The structure of the slag samples was observed using optical and electron microscopy, and phases were identified and their relative amounts quantified using X-ray diffraction. Laser flash thermal diffusivity, density, and differential scanning calorimetry measurements for specific heat were performed to determine the bulk thermal conductivity of the samples. Sample porosity was measured as a function of depth using a serial sectioning technique, and a onedimensional computational model was developed to estimate the thermal conductivity of the fully dense slags. These results are discussed in context with previous studies, and opportunities for future research are identified. AFRL Case Number: 88ABW-2015-1871.

  12. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant.

    PubMed

    Hocheng, Hong; Su, Cheer; Jadhav, Umesh U

    2014-12-01

    The generation of 300–500 kg of slag per ton of the steel produced is a formidable amount of solid waste available for treatment. They usually contain considerable quantities of valuable metals. In this sense, they may become either important secondary resource if processed in eco-friendly manner for secured supply of contained metals or potential pollutants, if not treated properly. It is possible to recover metals from steel slag by applying bioleaching process. Electric arc furnace (EAF) slag sample was used for bioleaching of metals. In the present study, before bioleaching experiment water washing of an EAF slag was carried out. This reduced slag pH from 11.2 to 8.3. Culture supernatants of Acidithiobacillus thiooxidans (At. thiooxidans), Acidithiobacillus ferrooxidans (At. ferrooxidans), and Aspergillus niger (A. niger) were used for metal solubilization. At. thiooxidans culture supernatant containing 0.016 M sulfuric acid was found most effective for bioleaching of metals from an EAF slag. Maximum metal extraction was found for Mg (28%), while it was least for Mo (0.1%) in six days. Repeated bioleaching cycles increased metal recovery from 28% to 75%, from 14% to 60% and from 11% to 27%, for Mg, Zn and Cu respectively.

  13. Effect of Slag-Steel Reaction on the Initial Solidification of Molten Steel during Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lou, Zhican; Zhang, Haihui

    2018-03-01

    With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.

  14. Effect of Slag-Steel Reaction on the Initial Solidification of Molten Steel during Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lou, Zhican; Zhang, Haihui

    2018-06-01

    With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.

  15. [Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].

    PubMed

    Wang, Tian-jiao; Chen, Tong; Zhan, Ming-xiu; Guo, Ying; Li, Xiao-dong

    2016-03-15

    Environmentally persistent free radicals (EPFRs) are relatively highly stable and found in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Recent studies have concentrated on model dioxin formation reactions and there are few studies on actual waste incineration fly ash. In order to study EPFRs and the correlation with dioxins and heavy metals in waste incineration fly ash, the spins of EPFRs, concentration of PCDD/Fs and metals in samples from 6 different waste incinerators were detected. The medical waste incineration fly ash from Tianjin, municipal solid waste incineration fly ash from Jiangxi Province, black carbon and slag from municipal solid waste incinerator in Lanxi, Zhejiang Province, all contained EPFRs. Above all the signal in Tianjin sample was the strongest. Hydroxyl radicals, carbon-center radicals and semiquinone radicals were detected. Compared with other samples, Jiangxi fly ash had the highest toxic equivalent quantity (TEQ) of dioxins, up to 7.229 4 ng · g⁻¹. However, the dioxin concentration in the Tianjin sample containing the strongest EPFR signals was only 0.092 8 ng · g⁻¹. There was perhaps little direct numeric link between EPFRs and PCDD/Fs. But the spins of EPFRs in samples presented an increasing trend as the metal contents increased, especially with Al, Fe, Zn. The signal strength of radicals was purposed to be related to the metal contents. The concentration of Zn (0.813 7% ) in the Tianjin sample was the highest and this sample contained much more spins of oxygen-center radicals. We could presume the metal Zn had a greater effect on the formation of EPFRs, and was easier to induce the formation of radicals with a longer half-life period.

  16. Energy crops cultivated on the slag from incineration of the sewage sludge energy value assessment

    NASA Astrophysics Data System (ADS)

    Głowacka, Anna; Tarnowski, Krzysztof; Bering, Sławomira; Mazur, Jacek; Kiper, Justyna; Wołoszyk, Czesław

    2017-11-01

    In 2011-2013, research on the fertilizer value of slag from the incineration of municipal sewage sludge as an alternative source of phosphorus was carried out. The research scheme included 5 variants (in 4 repetitions) fertilization cultivated for grain with mineral fertilizers and ash. (P1, P2 and P3 - consecutive doses of phosphorus from ash) from municipal sewage sludge combustion: NK, NPK, NK+P1, NK+P2 and NK+P3. The obtained results indicate that the average of the three years of research, the value for the straw spring rape heat of combustion was 15.99 MJ/kg d.m., corn straw 16.20 MJ/kg d.m., triticale straw 17.06 MJ/kg d.m. and Miscanthus 17.34 MJ/kg d.m. The highest value of combustion heat for spring rape straw and miscanthus performed for objects fertilized with NK + P3 - 16.08 MJ/kg d.m. (Spring rape) and 17.57 MJ/kg d.m. (Miscanthus); For corn straw objects fertilized with nitrogen and potassium - 16.35 MJ/kg d.m. and triticale straw objects fertilized with NPK and NK + P2 - 17.10 MJ/kg d.m. Straw calorific value of tested plants was lower than the combustion heat by an average of 6.97% (triticale) to 7.38% (spring rape).

  17. Determination of optimal environmental policy for reclamation of land unearthed in lignite mines - Strategy and tactics

    NASA Astrophysics Data System (ADS)

    Batzias, Dimitris F.; Pollalis, Yannis A.

    2012-12-01

    In this paper, optimal environmental policy for reclamation of land unearthed in lignite mines is defined as a strategic target. The tactics concerning the achievement of this target, includes estimation of optimal time lag between each lignite site (which is a segment of the whole lignite field) complete exploitation and its reclamation. Subsidizing of reclamation has been determined as a function of this time lag and relevant implementation is presented for parameter values valid for the Greek economy. We proved that the methodology we have developed gives reasonable quantitative results within the norms imposed by legislation. Moreover, the interconnection between strategy and tactics becomes evident, since the former causes the latter by deduction and the latter revises the former by induction in the time course of land reclamation.

  18. Hydrologic and geochemical data for the Big Brown lignite mine area, Freestone County, Texas

    USGS Publications Warehouse

    Dorsey, Michael E.

    1985-01-01

    Lignite mining in east and east-central Texas is increasing in response to increased energy needs throughout the State. Associated with the increase in mining activities is a greater need to know the effects of mining activities on the water quantity and quality of near-surface aquifers. The near-surface lignite beds mined at the Big Brown Lignite Mine are from the Calvert Bluff Formation of the Wilcox Group of Eocene age, which is a minor aquifer generally having water suitable for all uses, in eastern Freestone County, Texas. One of the potential hydro!ogic effects of surface-coal mining is a change in the quality of ground water associated with replacement of aquifer materials by mine spoils. The purpose of this report is to compile and categorize geologic, mineralogic, geochemical, and hydrologic data for the Big Brown Lignite Mine and surrounding area in east-central Texas. Included are results of pasteextract analyses, constituent concentrations in water from batch-mixing experiments, sulfur analyses, and minerals or mineral groups detected by X-ray diffraction in 12 spoil material samples collected from 3 locations at the mine site. Also, common-constituent and trace-constituent concentrations in water from eight selected wells, located updip and downdip from the mine, are presented. Dissolved-solids concentrations in water from batch-mixing experiments vary from 12 to 908 milligrams per liter. Water from selected wells contain dissolved-solids concentrations ranging from 75 to 510 milligrams per liter.

  19. Carbonate and lignite cycles in the Ptolemais Basin: Orbital control and suborbital variability (Late Neogene, northern Greece)

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Tougiannidis, N.; Ricken, W.; Rolf, C.; Kleineder, M.; Bertram, N.; Antoniadis, P.

    2009-04-01

    We recently commenced a project to investigate deep drillings as well as outcrops in the Ptolemais Basin, northern Greece, for paleoenvironmental and paleoclimate change. Specific attention is paid to mining sites Achlada, Vevi, Vegora, Amynteon, North Field, South Field, and Lava. The sediment archive comprises Upper Miocene to Quaternary continental lake deposits (up to 800 m thick) with an extended Lower Pliocene section. The Upper Miocene sections are composed of diatomaceous mud and gray marls. Pliocene lake sediments commence with the Kyrio member (lignite/grey marl), followed by the Theodoxus member (beige marl/lignite), and the Notio member (marl with intercalated sand /lignite). The limnic deposits show striking rhythmic bedding of (mostly) carbonates and lignites, reflecting orbital-induced humidity and temperature changes in this small NW-SE elongated continental basin. First, we retrieved chronometric information by determining magnetic polarity changes on three sites as independent stratigraphic ground-truth in combination with palynological evidence and published data. Then we conducted a number of high-resolution (1 - 6 cm increment), non-destructive measurements to obtain paleoclimate proxies: photospectrometry (colors L, a, b), magnetic susceptibility, and natural gamma. Accordingly, we achieved a multi-proxy insight into paleoclimate and paleoenvironmental evolution at unprecedented temporal resolution (up to a few decades!) over long time series and at a number of key sites. Using the newly-developed ESALab software, we conducted spectral and evolutionary spectral analysis to evaluate the cyclo-stratigraphic development. As for orbital variability, spectral power is concentrated on precession, hemi-precession, and eccentricity, with only minor impact of orbital tilt. We used this information to increase the temporal resolution of our age models by tuning as many precession (insolation) maxima as possible to carbonate minima (lignite maxima

  20. Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil.

    PubMed

    Lima, L R P de Andrade; Bernardez, L A

    2011-05-30

    For 33 years, a primary lead smelter operated in Santo Amaro (Brazil). Since the 1970s, large amounts of Pb and Cd have been widely documented in the blood and hair of people living near the smelter. The plant closed down in 1993, and several years later, the Pb levels in the blood of children under 4 years of age living near the smelter were high, where the disposed lead slag was suspected to be the main source of this contamination. The objective of this study is to elucidate the source of the Pb contamination and any other potentially toxic contamination, focusing on the characterization of the slag. The samples used for this characterization study were taken from the slag heaps. The results of the chemical analysis showed that the major constituents of the slag, in decreasing order of wt%, were the following: Fe(2)O(3) (28.10), CaO (23.11), SiO(2) (21.39), ZnO (9.47), MgO (5.44), PbO (4.06), Al(2)O(3) (3.56), C (2.26), MnO (1.44), Na(2)O (0.27), S (0.37), K(2)O (0.26), and TiO(2) (0.25). The Cd content of the slag was 57.3mg/kg, which is relatively low. The X-ray diffraction and the electron probe microanalyzer X-ray mapping indicated that the major phases in the slag were wüstite, olivine, kirschsteinite, and franklinite. Only spheroidal metallic Pb was found in the slag. The leaching study showed that the slag was stable at a pH greater than 2.8, and only in an extremely acidic environment was the solubilization of the Pb enhanced significantly. The solubilization of Zn was very limited in the acidic and alkaline environments. These results can be explained by the limited leachability of the metallic Pb and Zn-bearing compounds. The leaching study used TCLP, SPLP, and SWEP and indicated that the lead slag was stable in weak acidic environments for short contact times. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Smelting reduction and kinetics analysis of magnetic iron in copper slag using waste cooking oil.

    PubMed

    Li, Bo; Wang, Xubin; Wang, Hua; Wei, Yonggang; Hu, Jianhang

    2017-05-25

    To improve the recovery of copper, the viscosity of copper molten slag is decreased by the reduction of magnetic iron, which, in turn, accelerates the settling and separation of copper droplets from the slag. A new technology is proposed in which waste cooking oil is used as a reductant to reduce magnetic iron in the copper smelting slag and consequently reduce carbon emissions in the copper smelting process. A kinetic model of the reduction of magnetic iron in copper slag by waste cooking oil was built using experimental data, and the accuracy of the model was verified. The results indicated that the magnetic iron content in the copper slag decreased with increasing reduction time and an increase in temperature more efficiently reduced magnetic iron in the copper slag. The magnetic iron in the copper slag gradually transformed to fayalite, and the viscosity of the copper molten slag decreased as the magnetic iron content decreased during the reduction process. The reduction of magnetic iron in the copper molten slag using waste cooking oil was a first-order reaction, and the rate-limiting step was the mass transfer of Fe 3 O 4 through the liquid boundary layer.

  2. Process of discharging charge-build up in slag steelmaking processes

    DOEpatents

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1994-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag-containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  3. 15. TAKING A CAST AT FURNACE NO. 1 HOT SLAG, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. TAKING A CAST AT FURNACE NO. 1 HOT SLAG, BY-PRODUCT IN SMELTING OF PIG IRON, CAN BE SEEN FLOWING INTO THE SLAG YARD. VIEW IS LOOKING SOUTH. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  4. Friction and Braking Application of Unhazardous Palm Slag Brake Pad Composite

    NASA Astrophysics Data System (ADS)

    Khoni, Norizzahthul Ainaa Abdul; Ruzaidi Ghazali, Che Mohd; Bakri Abdullah, Mohd Mustafa Al

    2018-03-01

    This paper reveals new alternative friction materials for brake pads. Palm slag was studied as new friction materials in brake pads but its much harder made it difficult to be applied. As a way to reduce the hardness, tire dust was including as purpose on stabilizing the hardness of brake pads. The palm slag was sieves to get desired size that is 150 μm, 300 μm and 600 μm. The percentage weight of materials used are 20% graphite, 20% aluminium oxide, 20% steel fiber, 20% polyester resin and another 40% are varied between tire dust and palm slag. All of materials were blend and compress by using hot pressed machine. The composites properties that were examined are density, porosity, hardness, compressive strength, microstructure analysis and wear rate. The composition of 30% palm slag, 10% tire dust and larger size of filler give better result of mechanical properties and less wear rate of brake pads composites. Then, palm slag can be used in producing of non asbestos brake pads.

  5. Synthesis and Characterization of Titanium Slag from Ilmenite by Thermal Plasma Processing

    NASA Astrophysics Data System (ADS)

    Samal, Sneha

    2016-09-01

    Titanium rich slag has emerged as a raw material for alternative titanium source. Ilmenite contains 42-50% TiO2 as the mineralogical composition depending on the geographical resources. Application of titanium in paper, plastic, pigment and other various industries is increasing day by day. Due to the scarcity of natural raw mineral rutile (TiO2), ilmenite is considered as precursor for the extraction of TiO2. Ilmenite is reduced at the initial stage for the conversion of complex iron oxide into simpler form. Therefore, pre-reduction of ilmenite concentrate is essential to minimize the energy consumption during thermal plasma process. Thermal plasma processing of ilmenite for the production of titania rich slag is considered to be the direct route to meet the current demand of industrial needs of titanium. Titania rich slag contains 70-80% TiO2 as the major component with some other minor impurities, like oxide phases of Si, Al, Cr, Mg, Mn, Ca, etc. Usually titanium is present in tetravalent forms with globular metallic iron in the slag. Titania rich slag undergoes leaching for the removal of iron and transforming the slag into synthetic rutile having 85-95% of TiO2.

  6. Experimental Investigation on Reduction Kinetics of Stainless Steel-Making Slag in Iron Bath Smelting Reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Liu, Jienan; Yang, Yanfeng; Liu, Luming; Liu, Jiechao; Luo, Lijian; Ma, Yubao; Hong, Xin

    Reduction kinetics of stainless steel slag in iron bath smelting reduction was studied at the temperature of 1500°C ˜ 1650°C. It was concluded that the reduction process consisted of two parts. That is to say smelting reduction was controlled by stainless steel slag melting initially and by interface reaction later. In order to increase smelting reaction rate, the melting point of slag should be decreased at the first stage and adjust the liquidity of slag at later stage. Smelting reaction rate will be accelerated by means of optimize the slag content. The optimal reduction result that all most all of the chromium in slag been recovered was obtained in temperature was 1500°C, basicity of slag was 1.0˜1.2, the value of Al2O3+MgO was 25%.

  7. Maximum availability and mineralogical control of chromium released from AOD slag.

    PubMed

    Li, Junguo; Liu, Bao; Zeng, Yanan; Wang, Ziming; Gao, Zhiyuan

    2017-03-01

    AOD (argon oxygen decarburization) slag is the by-product in the stainless steel refining process. Chromium existing in AOD slag can leach out and probably poses a serious threat to the environment. To assess the leaching toxicity of chromium released from AOD slag, the temperature-dependent maximum availability leaching test was performed. To determine the controlling mineralogical phases of chromium released from AOD slag, a Visual MINTEQ simulation was established based on Vminteq30 and the FactSage 7.0 database. The leaching tests indicated that the leaching availability of chromium was slight and mainly consisted of trivalent chromium. Aging of AOD slag under the atmosphere can oxidize trivalent chromium to hexavalent chromium, which could be leached out by rainwater. According to the simulation, the chromium concentration in leachates was controlled by the freely soluble pseudo-binary phases in the pH = 7.0 leaching process and controlled by the Cr 2 O 3 phase in the pH = 4.0 leaching process. Chromium concentrations were underestimated when the controlling phases were determined to be FeCr 2 O 4 and MgCr 2 O 4 . Facilitating the generation of the insoluble spinel-like phases during the cooling and disposal process of the molten slag could be an effective approach to decreasing the leaching concentration of chromium and its environmental risk.

  8. Evaluation of the suitability of tin slag in cementitious materials: Mechanical properties and Leaching behaviour

    NASA Astrophysics Data System (ADS)

    Rustandi, Andi; Wafa' Nawawi, Fuad; Pratesa, Yudha; Cahyadi, Agung

    2018-01-01

    Tin slag, a by-product of tin production has been used in cementitious application. The present investigation focuses on the suitability of tin slag as primary component in cement and as component that substitute some amount of Portland Cement. The tin slags studied were taken from Bangka, Indonesia. The main contents of the tin slag are SiO2, Al2O3, and Fe2O3 according to the XRF investigation. The aim of this article was to study the mechanical behaviour (compressive strength), microstructure and leaching behaviour of tin slag blended cement. This study used air-cooled tin slag that had been passed through 400# sieve to replace Portland Cement with ratio 0, 10, 20, 30, 40 by weight. Cement pastes and tin slag blended cement pastes were prepared by using water/cement ratio (W/C) of 0.40 by weight and hydrated for various curing ages of 3, 7, 14 days The microstructure of the raw tin slag was investigated using Scanning Electron Microscope (SEM). The phase composition of each cement paste was investigated using X-ray Diffraction (XRD). The aim of the leachability test was to investigate the environmental impacts of tin slag blended cement product in the range 4-8 pH by using static pH-dependent leaching test. The result show that the increase of the tin slag content decreasing the mortar compressive strength at early ages. The use of tin slag in cement provide economic benefits for all related industries.

  9. Activated-Lignite-Based Super Large Granular Slow-Release Fertilizers Improve Apple Tree Growth: Synthesis, Characterizations, and Laboratory and Field Evaluations.

    PubMed

    Tang, Yafu; Wang, Xinying; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Cheng, Dongdong

    2017-07-26

    In this work, lignite, a low-grade coal, was modified using the solid-phase activation method with the aid of a Pd/CeO 2 nanoparticle catalyst to improve its pore structure and nutrient absorption. Results indicate that the adsorption ability of the activated lignite to NO 3 - , NH 4 + , H 2 PO 4 - , and K + was significantly higher than that of raw lignite. The activated lignite was successfully combined with the polymeric slow-release fertilizer, which exhibits typical slow-release behavior, to prepare the super large granular activated lignite slow-release fertilizer (SAF). In addition to the slow-release ability, the SAF showed excellent water-retention capabilities. Soil column leaching experiments further confirmed the slow-release characteristics of the SAF with fertilizer nutrient loss greatly reduced in comparison to traditional and slow-release fertilizers. Furthermore, field tests of the SAF in an orchard showed that the novel SAF was better than other tested fertilizers in improve the growth of young apple trees. Findings from this study suggest that the newly developed SAF has great potential to be used in apple cultivation and production systems in the future.

  10. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    PubMed

    Mattila, Hannu-Petteri; Zevenhoven, Ron

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ash Analysis

    NASA Astrophysics Data System (ADS)

    Marshall, Maurice R.

    Ash refers to the inorganic residue remaining after either ignition or complete oxidation of organic matter in a foodstuff. A basic knowledge of the characteristics of various ashing procedures and types of equipment is essential to ensure reliable results. Two major types of ashing are used: dry ashing, primarily for proximate composition and for some types of specific mineral analyses; wet ashing (oxidation), as a preparation for the analysis of certain minerals. Microwave systems now are available for both dry and wet ashing, to speed the processes. Most dry samples (i.e., whole grain, cereals, dried vegetables) need no preparation, while fresh vegetables need to be dried prior to ashing. High-fat products such as meats may need to be dried and fat extracted before ashing. The ash content of foods can be expressed on either a wet weight (as is) or on a dry weight basis. For general and food-specific information on measuring ash content, see references (1-11).

  12. Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early Eocene), Gujarat, western India

    NASA Astrophysics Data System (ADS)

    Rao, M. R.; Sahni, Ashok; Rana, R. S.; Verma, Poonam

    2013-04-01

    Early Eocene sedimentary successions of south Asia, are marked by the development of extensive fossil-bearing, lignite-rich sediments prior to the collision of India with Asia and provide data on contemporary equatorial faunal and vegetational assemblages. One such productive locality in western India is the Vastan Lignite Mine representing approximately a 54-52 Ma sequence dated by the presence of benthic zone marker species, Nummulites burdigalensis burdigalensis. The present study on Vastan Lignite Mine succession is based on the spore-pollen and dinoflagellate cyst assemblages and documents contemporary vegetational changes. 86 genera and 105 species belonging to algal remains (including dinoflagellate cysts), fungal remains, pteridophytic spores and angiospermous pollen grains have been recorded. On the basis of first appearance, acme and decline of palynotaxa, three cenozones have been recognized and broadly reflect changing palaeodepositional environments. These are in ascending stratigraphic order (i) Proxapertites Spp. Cenozone, (ii) Operculodinium centrocarpum Cenozone and (iii) Spinizonocolpites Spp. Cenozone. The basal sequence is lagoonal, palm-dominated and overlain by more open marine conditions with dinoflagellate cysts and at the top, mangrove elements are dominant. The succession has also provided a unique record of fish, lizards, snakes, and mammals.

  13. Function evaluation of asphalt mixture with industrially produced BOF slag aggregate.

    PubMed

    Zhao, Meiling; Wu, Shaopeng; Chen, Zongwu; Li, Chao

    2016-07-04

    Laboratory research suggested that basic oxygen furnace (BOF) slag-based asphalt mixture was a functional material. However, the BOF slag aggregate's quality was difficult to control when it was heavily used in entity engineering. The primary objective of this research was to evaluate the functional performances of asphalt mixture containing BOF slag coarse aggregate (BSCA), which was from an industrialized production line. Limestone mixture was a control group. The Marshall method was first adopted to design asphalt mixtures. The performances of limestone asphalt mixture and BOF slag asphalt mixture including fatigue failure resistance and moisture stability were then evaluated and compared. Results showed that the asphalt mixture containing BSCA possessed better durability, which meant the quality of BSCA from industrialized production lines was well controlled and this BSCA can be heavily used in entity engineering.

  14. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete.

    PubMed

    Ahmedzade, Perviz; Sengoz, Burak

    2009-06-15

    This paper presents the influences of the utilization of steel slag as a coarse aggregate on the properties of hot mix asphalt. Four different asphalt mixtures containing two types of asphalt cement (AC-5; AC-10) and coarse aggregate (limestone; steel slag) were used to prepare Marshall specimens and to determine optimum bitumen content. Mechanical characteristics of all mixtures were evaluated by Marshall stability, indirect tensile stiffness modulus, creep stiffness, and indirect tensile strength tests. The electrical sensitivity of the specimens were also investigated in accordance with ASTM D257-91. It was observed that steel slag used as a coarse aggregate improved the mechanical properties of asphalt mixtures. Moreover, volume resistivity values demonstrated that the electrical conductivity of steel slag mixtures were better than that of limestone mixtures.

  15. Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal.

    PubMed

    Park, Taejun; Ampunan, Vanvimol; Maeng, Sungkyu; Chung, Eunhyea

    2017-01-01

    Phosphorus removal has been studied for decades to reduce the environmental impact of phosphorus in natural waterbodies. Slag has been applied for the phosphorus removal by several mechanisms. In this study, sodium hydroxide coating was applied on the slag surface to enhance the efficiency of precipitation-coagulation process. In the batch test, it was found that the capacity of the slag to maintain high pH decreases with increasing its exposure time to the aqueous solution. In the column test, the coarse-grained coated slag showed higher phosphorus removal efficiency than the fine-grained uncoated slag. The coated slag maintained pH higher than uncoated slag and, accordingly, the removal efficiency of phosphorus was higher. Especially, when pH was less than 8, the removal efficiency decreased significantly. However, coated slag provided an excess amount of aluminum and sodium. Thus, a return process to reuse aluminum and sodium as a coagulant was introduced. The return process yields longer lifespan of slag with higher phosphorus removal and lower concentration of cations in the effluent. With the return process, the phosphorus removal efficiency was kept higher than 60% until 150 bed volumes; meanwhile, the efficiency without return process became lower than 60% at 25 bed volumes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants.

    PubMed

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-03-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500°C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition.

    PubMed

    Zhang, Ying; Zhang, Chaojie; Zhang, Xuan; Feng, Leiyu; Li, Yongmei; Zhou, Qi

    2016-10-01

    Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment. Copyright © 2016. Published by Elsevier B.V.

  18. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    DOEpatents

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  19. Thermodynamic Simulation of Viscosity of TiO2-Ti2O3-CaO Ternary Slag

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ma, W. H.; Zhang, S. J.; Lei, Y.; Wen, J. H.

    2017-12-01

    The viscosity of high titanium slag at high temperature is one of the key factors of slag-iron separation. Based on the Einstein-Roscoe equation, thermodynamic simulation of viscosity of TiO2-Ti2O3-CaO ternary slag is studied by using FactSage® software, and the effects of temperature, CaO content and solid-phase particles on the viscosity of slag were studied. The results show that the increase of CaO content has the effect of reducing melting temperature and viscosity of TiO2-Ti2O3-CaO ternary slag. After the TiO2-Ti2O3-CaO ternary slag is completely melted, the increase of temperature has little effect on viscosity of slag, and the viscosity is about 110~125mPa·s. When the temperature is lower than melting temperature, TiO2-Ti2O3-CaO ternary slag will precipitate solid-phase particles, and the precipitation process is carried out in stages, and with the decrease of temperature, the precipitation will increase and the viscosity will sharply increase. TiO2-Ti2O3-CaO ternary titanium slag has obvious characteristics of short slag.

  20. Evaluation of hydraulic cement concretes containing slag added at the mixer.

    DOT National Transportation Integrated Search

    1985-01-01

    The study evaluated the effect of ground, granulated, iron slags on the properties of hydraulic cement concretes such as normally used in highway construction. Two cements with different alkali contents and two slags with different activity indices, ...

  1. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: Processing and characterization of MSWI fly ash.

    PubMed

    Aubert, J E; Husson, B; Sarramone, N

    2006-08-25

    This paper is the first of a series of two articles dealing with the processes applied to MSWI fly ash with a view to reusing it safely in cement-based materials. Part 1 presents two stabilization processes and Part 2 deals with the use of the two treated fly ashes (TFA) in mortars. Two types of binder were used: an Ordinary Portland Cement (OPC) containing more than 95% clinker (CEM I 52.5R) and a binary blend cement composed of 70% ground granulated blast furnace slag and 30% clinker (CEM III-B 42.5N). In this first part, two stabilization processes are presented: the conventional process, called "A", based on the washing, phosphation and calcination of the ash, and a modified process, called "B", intended to eliminate metallic aluminum and sulfate contained in the ash. The physical, chemical and mineralogical characteristics of the two TFA were comparable. The main differences observed were those expected, i.e. TFA-B was free of metallic aluminum and sulfate. The mineralogical characterization of the two TFAs highlighted the presence of large amounts of a calcium aluminosilicate phase taking two forms, a crystalline form (gehlenite) and an amorphous form. Hydration studies on pastes containing mixed TFA and calcium hydroxide showed that this phase reacted with calcium hydroxide to form calcium aluminate hydrates. This formation of hydrates was accompanied by a hardening of the pastes. These results are very encouraging for the reuse of such TFA in cement-based materials because they can be considered as pozzolanic additions and could advantageously replace a part of the cement in cement-based materials. Finally, leaching tests were carried out to evaluate the environmental impact of the two TFAs. The elements which were less efficiently stabilized by process A were zinc, cadmium and antimony but, when the results of the leaching tests were compared with the thresholds of the European landfill directive, TFA-A could nevertheless be accepted at landfills for non

  2. Effect of Iron Redox Equilibrium on the Foaming Behavior of MgO-Saturated Slags

    NASA Astrophysics Data System (ADS)

    Park, Youngjoo; Min, Dong Joon

    2018-04-01

    In this study, the foaming index of CaO-SiO2-FetO and CaO-SiO2-FetO-Al2O3 slags saturated with MgO was measured to understand the relationship between their foaming behavior and physical properties. The foaming index of MgO-saturated slags increases with the FetO content due to the redox equilibrium of FetO. Experimental results indicated that MgO-saturated slag has relatively high ferric ion concentration, and the foaming index increases due to the effect of ferric ion. Therefore, the foaming behavior of MgO-saturated slag is more reasonably explained by considering the effect of ferric ion on the estimation of slag properties such as viscosity, surface tension, and density. Specifically, the estimation of slag viscosity was additionally verified by NBO/T, and this is experimentally obtained through Raman spectroscopy.

  3. Kinetics of steel slag leaching: Batch tests and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr; Chaurand, Perrine; Rose, Jerome

    2011-02-15

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can bemore » used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.« less

  4. Effect of calcium silicate slag application on radium-226 concentrations in plant tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortvedt, J.J.

    A greenhouse pot experiment was conducted to determine if plants absorb Ra from slag applied to soil. Slag at rates equivalent to 0 and 22 mt/ha was mixed with Mountview silt loam (Typic Paleudults) limed to pH 5.8 and 7.2. Three clippings each of fescue (Festuca arundiancea Schreb.), and Swiss chard (Beta vulgaris L.), and one harvest of wheat (Triticum aestivum L.) for grain and straw were grown on separate series of treated soil, and plant samples were analyzed for radioactivity due to /sup 226/Ra uptake. Samples of sugarcane (Saccharum officinarum L.) forage and extracted juice from field experiments inmore » Florida testing this slage as a Si source also were analyzed for radioactivity. Dry forage yields of fescue and wheat were not affected by slag applications, but those of Swiss chard were somewhat higher on slag-treated soil at pH 5.8. Wheat grain and straw yields were higher on soil at pH 7.2 than at pH 5.8 regardless of slag treatment. Uptake of /sup 226/Ra by fescue forage and wheat grain and straw was not affected by slag application. Concentrations of /sup 226/Ra were similar in forage and extracted juice from untreated sugarcane or that treated with slag at rates up to 5.6 mt/ha. These results suggest that plant uptake of radionuclides is negligible from calcium silicate slag applied at the recommended rates for liming acid soils or as a source of Si for sugarcane.« less

  5. Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates

    NASA Astrophysics Data System (ADS)

    Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang

    2018-03-01

    Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.

  6. Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates

    NASA Astrophysics Data System (ADS)

    Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang

    2018-06-01

    Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.

  7. Computational Fluid Dynamic Modeling of Zinc Slag Fuming Process in Top-Submerged Lance Smelting Furnace

    NASA Astrophysics Data System (ADS)

    Huda, Nazmul; Naser, Jamal; Brooks, Geoffrey; Reuter, Markus A.; Matusewicz, Robert W.

    2012-02-01

    Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag-gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.

  8. Converter slag-coal cinder columns for the removal of phosphorous and other pollutants.

    PubMed

    Yang, Jian; Wang, Su; Lu, Zhibo; Yang, Jian; Lou, Shanjie

    2009-08-30

    A mixture of converter slag and coal cinder as adsorbent for the removal of phosphorous and other pollutants was studied in the paper. The maximum P adsorption capacity, pH of solution, contact time and initial phosphate concentration were evaluated in batch experiments for the two materials firstly. The data of P sorption were best fitted to Langumir equation, and the maximum adsorption capacities of converter slag and coal cinder were 2.417 and 0.398 mg P/g, respectively. The pH of solutions with converter slag and coal cinder changed dramatically with time and closed to 8 in 8h, and the influence of initial pH on phosphate removal by coal cinder was more significant than by converter slag. Phosphate removal rate by converter slag decreased with increase of initial phosphate concentrations. Subsequently, two flow-through columns (Column 1#, V(converter slag):V(coal cinder)=1:5; Column 2#, V(converter slag):V(coal cinder)=1:3) were operated for the removal of phosphorous and other pollutants from the effluents of a vermifilter for nearly eleven months. Results indicated the average removal efficiency of total phosphorus, dissolved phosphorus, COD and NH(4)(+)-N by Column 1# were 44%, 56%, 31% and 67%, and by Column 2# were 42%, 54%, 24% and 57%, respectively. Column 1# had higher removal efficiency for P and other pollutants.

  9. Effect of MgO and MnO on Phosphorus Utilization in P-Bearing Steelmaking Slag

    NASA Astrophysics Data System (ADS)

    Lin, Lu; Bao, Yan-Ping; Wang, Min; Li, Xiang

    2016-04-01

    In order to recycle the phosphorus in P-bearing converter slag and make it used as slag phosphate fertilizer, the effect of MgO and MnO in P-bearing steelmaking slag on phosphorus existence form, P2O5 solubility and magnetic separation behavior were researched systematically. The results show that the phosphorus in slag is mainly in the form of n2CaO · SiO2-3CaO · P2O5 (for short nC2S-C3P) solid solution in the P-rich phase for CaO-SiO2-FetO-P2O5-X (X stands for MgO and MnO, respectively). And the increasing of MgO and MnO content has no influence on precipitation of nC2S-C3P solid solution in slag, MnO and MgO mainly enter into RO phase and base phase to form MnFe2O4 and MgFe2O4, which has little effect on the P2O5 content of P-rich phase, so which has little effect on the degree of phosphorus enrichment and phosphorus occurrence form of the P-bearing slag. And adding MgO and MnO into CaO-SiO2-P2O5-Fe2O3 slag system can break the complex net structure formed by Si-O on certain degree, and also hinder the precipitation of β-Ca3(PO4)2 crystal with low citric acid solubility during the melting-cooling process. Therefore, adding appropriate MgO and MnO content into slag can improve the slag P2O5 solubility, but the effect of different amounts of MgO and MnO on the P2O5 solubility has little difference. Meanwhile, adding MgO and MnO into slag can improve the metallization of slag and magnetism of iron-rich phase, make the magnetic substances content increase and separation of phosphorus and iron incomplete, so it is adverse to phosphorus resources recovery from P-bearing slag by magnetic separation method. In order to recycle the phosphorus in P-bearing converter slag, the MgO and MnO content in the P-bearing slag should be controlled in the steelmaking process.

  10. 40 CFR 424.30 - Applicability; description of the slag processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... processing subcategory. 424.30 Section 424.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Slag Processing Subcategory § 424.30 Applicability; description of the slag processing subcategory. The provisions of this...

  11. Evaluation of portland cement concrete pavement with high slag content cement.

    DOT National Transportation Integrated Search

    2013-10-01

    The performance of a section of concrete pavement built with 30 percent Ground Granulated Blast Furnace Slag (GGBFS) is compared to a control section of concrete pavement built with 25 percent GGBFS to determine if the higher slag content pavement is...

  12. Micronutrient availability from steel slag amendment in pine bark substrates

    USDA-ARS?s Scientific Manuscript database

    Steel slag is a byproduct of the steel industry that can be used as a liming agent, but also has a high mineral nutrient content. While micronutrients are present in steel slag, it is not known if the mineral form of the micronutrients would render them available for plant uptake. The objective of...

  13. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    NASA Astrophysics Data System (ADS)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  14. Fate of polychlorinated dibenzo-p-dioxins and dibenzofurans in a fly ash treatment plant.

    PubMed

    Li, Hsing-Wang; Wu, Yee-Lin; Lee, Wen-Jhy; Chang-Chien, Guo-Ping

    2007-09-01

    To understand the fate of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in a fly ash treatment plant that used the Waelz rotary kiln process (hereafter the Waelz process), the samples of input and output media were collected and analyzed. The most important PCDD/F source in input mass was electric arc furnace (EAF) fly ash, which had a mean PCDD/F content of 18.51 ng/g and contributed more than 99% of PCDD/F input mass, whereas the PCDD/F input mass fractions contributed by the coke, sand, and ambient air were only 0.04%, 0.02%, and 0.000002%, respectively. For the PCDD/F output mass in the Waelz process, the major total PCDD/F contents of 43.73 and 10.78 ng/g were in bag-filter and cyclone ashes, which accounted for approximately 69% and 17%, respectively, whereas those of stack flue gas and slag were 14% and 0.423%, respectively. The Waelz process has a dechlorination mechanism for higher chlorinated congeners, but it is difficult to decompose the aromatic rings of PCDD/Fs. Therefore, this resulted in the accumulation of lower chlorinated congeners. The output/input ratio of total PCDD/F mass and total PCDD/F international toxicity equivalence (I-TEQ) was 0.62 and 1.19, respectively. Thus, the Waelz process for the depletion effect of total PCDD/F mass was positive but minor, whereas the effect for total PCDD/F I-TEQ was adverse overall.

  15. Advantages and risks of using steel slag in preparing composts from raw organic waste.

    PubMed

    Tu, Xuefei; Aneksampant, Apichaya; Kobayashi, Shizusa; Tanaka, Atsushi; Nishimoto, Ryo; Fukushima, Masami

    2017-01-02

    It had been reported that iron and manganese oxides in steel slag enhanced the production of humic acid (HA) from low-molecular-weight compounds, such as phenolic acids, amino acids, and saccharides. In the present study, this function of steel slag was applied to the composting of raw organic wastes (ROWs). The degree of humification of HAs is an important factor in evaluating compost quality. Thus, HAs were extracted from the prepared composts and the humification parameters were determined, in terms of elemental compositions, acidic functional group contents, molecular weights, spectroscopic parameters from UV-vis absorption and 13 C NMR spectra. The timing for adding steel slag affected the degree of humification of HAs in the composts. The weight average molecular weight of a HA when slag was added initially (29 kDa) was significantly higher than when slag was added after elevating the temperature of the compost pile (17-18 kDa). These results show that ROWs are decomposed to low-molecular-weight compounds after the pile temperature is elevated and the presence of slag enhances the polycondensation of these compounds to produce HAs with a higher degree of humification. Because the slag used in the present study contained several-tens ng g -1 to several μg g -1 of toxic elements (B, Cu, Cr, and Zn), leaching tests for these elements from the prepared composts were carried out. Levels for leaching boron from composts prepared by adding slag (0.2-0.4 mg L -1 ) were obviously higher than the corresponding levels without slag (0.05 mg L -1 ).

  16. Corrosion Behavior of Carbon Steel in Concrete Material Composed of Tin Slag Waste in Aqueous Chloride Solution

    NASA Astrophysics Data System (ADS)

    Rustandi, Andi; Cahyadi, Agung; Taruli Siallagan, Sonia; Wafa' Nawawi, Fuad; Pratesa, Yudha

    2018-01-01

    Tin slag is a byproduct of tin ore smelting process which is rarely utilized. The main purpose of this work is to investigate the use of tin slag for concrete cement material application compared to the industrial Ordinary Portland Cement (OPC). Tin slag composition was characterized by XRD and XRF analysis. The characterization results showed the similar chemical composition of tin slag and OPC. It also revealed the semi crystalline structure of tin slag sample. Several electrochemical tests were performed to evaluate corrosion behavior of tin slag, OPC and various mixed composition of both materials and the addition of CaO. The corrosion behavior of OPC and tin slag were evaluated by using Cyclic Polarization, Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Frequency Modulation (EFM) methods. Aqueous sodium chloride (NaCl) solution with 3.5% w.t concentration which similar to seawater was used as the electrolyte in this work. The steel specimen used as the reinforce bar (rebar) material of the concrete was carbon steel AISI 1045. The rebar was embedded in the concrete cement which composed of OPC and the various composition of tin slag including slag without addition of CaO and slag mixed with addition of 50 % CaO. The electrochemical tests results revealed that tin slag affected its corrosion behavior which becoming more active and increasing the corrosion rate as well as decreasing the electrochemical impedance.

  17. Effect of Temperature and Graphite Immersion Method on Carbothermic Reduction of Fayalite Slag

    NASA Astrophysics Data System (ADS)

    Mitrašinović, Aleksandar

    2017-09-01

    In this work, graphite flakes were used to reduce fayalite slag originated from the pyrometallurgical copper extraction process. Experiments were conducted with a significantly different contact area between graphite and slag at two temperatures, 1300°C and 1400°C. The process was continuously monitored via the concentration change of CO and CO2 in off-gas. Reduction rate values in experiments where 150-micron-diameter graphite flakes were submerged into the slag and left to float slowly to the top are about four times higher compared with when graphite flakes were dispersed at the top surface of liquid slag. The activation energy for instigating reduction was 302.61 kJ mol-1 and 306.67 kJ mol-1 in the case where graphite flakes were submerged into the slag and dispersed at the surface, respectively. The reduction process is characterized by two distinctive periods: an initial steep increase in the concentration of CO and CO2 controlled by the Boudouard reaction and a subsequent slow decrease of CO and CO2 concentrations in the off-gas controlled by mass transfer of reducible oxides from bulk to the gas-slag interface.

  18. Combined Performance of Polypropylene Fibre and Weld Slag in High Performance Concrete

    NASA Astrophysics Data System (ADS)

    Ananthi, A.; Karthikeyan, J.

    2017-12-01

    The effect of polypropylene fibre and weld slag on the mechanical properties of High Performance Concrete (HPC) containing silica fume as the mineral admixtures was experimentally verified in this study. Sixteen series of HPC mixtures(70 MPa) were designed with varying fibre fractions and Weld Slag (WS). Fibre added at different proportion (0, 0.1, 0.3 and 0.6%) to the weight of cement. Weld slag was substituted to the fine aggregate (0, 10, 20 and 30%) at volume. The addition of fibre decreases the slump at 5, 9 and 14%, whereas the substitution of weld slag decreases by about 3, 11 and 21% with respect to the control mixture. Mechanical properties like compressive strength, split tensile strength, flexural strength, Ultrasonic Pulse Velocity test (UPV) and bond strength were tested. Durability studies such as Water absorption and Sorptivity test were conducted to check the absorption of water in HPC. Weld slag of 10% and fibre dosage of 0.3% in HPC, attains the maximum strength and hence this combination is most favourable for the structural applications.

  19. Calculation of Distribution Coefficients of Cobalt and Copper in Matte and Slag Phases in Reduction-Vulcanization Process of Copper Converter Slag

    NASA Astrophysics Data System (ADS)

    Du, Ke; Li, Hongxu; Zhang, Mingming

    2017-11-01

    Copper and cobalt are two of the most valuable metals that can be recovered from copper converter slag. In the reduction-vulcanization process, copper is reduced before cobalt, while FeS vulcanizes Cu2O into Cu2S and forms the matte phase. The matte phase can dissolve the reduced metals as solvent. In this study, the distribution coefficient of cobalt between metallic cobalt in matte and CoO in slag, namely L Co, was calculated to be 5000-8500 at the reaction temperature of 1600-1700 K, while the distribution coefficient between CoS and CoO, namely L_{Co}^{{^' } }}, was calculated to be between 6 and 8. The distribution coefficient of copper between metallic copper in matte and Cu2O in slag, namely L Cu, was calculated to be in the range of 7500-8500, while the coefficient between Cu2S and Cu2O, namely L_{Cu}^{{^' } }}, was calculated to be in the range of 60,000-75,000.

  20. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    PubMed

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Results of core drilling for uranium-bearing lignites in the Bar H area, Slim Buttes, Harding County, South Dakota

    USGS Publications Warehouse

    Zeller, Howard D.

    1953-01-01

    Core drilling in the Car H area, Slim Buttes, Harding County, South Dakota, under a contract with the B. H. Mott Drilling Co., Huntington, West Virginia, was resumed June 12, 1952 after a 6-month recess during the winter and was completed July 18, 1952. The drilling was undertaken to obtain information on the distribution and extent of the uranium-bearing lignite beds along the southeast edge of the Bar H area. Eight holes totalling 885 feet were drilled and 52 feet of lignite core submitted for study and analysis. The report includes detailed lithographic descriptions of the lignite cores, Bureau of Mines coal analyses, and the results of 100 chemical analyses for uranium. The drilling showed that the thicker, more persistent lignite beds exposed in the northern part of the Bar H area were removed by erosion prior to the deposition of the overlaying White River formation in the south-eastern part of the area. The beds penetrated by drilling were not of sufficient thickness or uranium content to add to the previously known reserves.

  2. Protecting black ash from the emerald ash borer

    Treesearch

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  3. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Haoliang, E-mail: haoliang.huang@tudelft.nl; Ye, Guang; Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling,more » when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.« less

  4. Lignite-to-methanol: an engineering evaluation of Winkler gasification and ICI methanol synthesis route. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyen, S.; Baily, E.; Mawer, J.

    1980-10-01

    The objective of the work reported herein was to develop a preliminary conceptual design, capital requirements, and product cost for a lignite-to-methanol plant incorporating Winkler Gasification Technology and ICI Methanol synthesis. The lignite-to-methanol complex described herein is designed to produce 15,000 TPD of fuel grade methanol. The complex is designed to be self-sufficient with respect to all utility services, offsites, and other support facilities, including power generation. Following is a summary of the results of the study: (1) Tons per day (TPD) of Lignite Feedstock and Fuel (as received) was 47,770; (2) TPD of Fuel Grade Methanol Product was 15,000;more » (3) Thermal efficiency, % (HHV) was 47.4; (4) Plant investment expressed in terms of first quarter of 1980 was ($ Million) 1545; and (5) Applying the economic premises used by EPRI for fuel conversion plant utility type financing, the calculated levelized and first year product costs are included.« less

  5. 54. View from southeast of KinneyOsborne slag granulator at right ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. View from southeast of Kinney-Osborne slag granulator at right and stack at left that vented steam generated when water was sprayed on hot slag to solidify and fracture it. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  6. Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Li, Guangqiang; Qin, Qingwei

    Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.

  7. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.

    PubMed

    van Zomeren, André; van der Laan, Sieger R; Kobesen, Hans B A; Huijgen, Wouter J J; Comans, Rob N J

    2011-11-01

    Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH±12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained

  8. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    PubMed Central

    Grau, Francisco; Choo, Hyunwook; Hu, Jong Wan; Jung, Jongwon

    2015-01-01

    Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM), and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA) maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes. PMID:28793611

  9. [Influence of liquid ceramic additive on binding of heavy metal during the vitrification of fly ash from municipal solid waste incinerator].

    PubMed

    Li, Run-dong; Nie, Yong-feng; Li, Ai-min; Wang, Lei; Chi, Yong; Cen, Ke-fa

    2004-09-01

    Vitrification process can effectively control the leachability of heavy metals in fly ash generated from municipal solid waste incinerator (MWSI). The use of liquid ceramic (LC) additive as a heavy metal chemical stabilization agent was evaluated for MSWI fly ash. The residuals of chromium, lead and zinc in slag increase by different degree with liquid ceramic additive at 1400 degrees C, while those of cadmium and copper decreases. The migrating characteristic of nickel is hardly affected by the additive less than 10%. The volatilization of Cr and Zn occurs after 61 minute with 10% addition of LC, and the binding efficiency of Cr decreases with increasing of melting temperature. The results indicate that the binding efficiency of heavy metals was affected greatly by LC additive and showed significant differences according to type of heavy metal during melting process. The short melting time (no longer than 33 min) is useful to obtain high binding efficiency of heavy metals.

  10. Effect of electric arc furnace slag on growth and physiology of maize (Zea mays L.).

    PubMed

    Radić, Sandra; Crnojević, Helena; Sandev, Dubravka; Jelić, Sonja; Sedlar, Zorana; Glavaš, Katarina; Pevalek-Kozlina, Branka

    2013-12-01

    Basic slag, used in this study as a potential source of certain nutrients, is a byproduct of the production of steel in electric arc furnace (EAF). A pot experiment with two nutrient-poor substrates was conducted to investigate to compare the effect of EAF steel slag and fertilizers NPK + F e on growth and availability of specific nutrients to maize. Mineral content of both substrate and plant leaves, growth, chlorophyll fluorescence and photosynthetic pigments were measured following six weeks of cultivation. As steel slag also contains trace amounts of heavy metals, certain oxidative parameters (antioxidative enzyme activities and lipid peroxidation) were evaluated as well. The steel slag improved soil mineral composition, increased above ground maize biomass by providing Fe, Mn, Mg, K and partly P and improved photosynthetic parameters. The potential phytotoxicity of EAF slag containing substrates was not determined as evaluated by MDA (malondialdehyde), GR (glutathione reductase) and APX (ascorbate peroxidase) levels. The obtained results show that EAF steel slag is comparable to NPK + F e in supplying nutrients for maize growth, indicating the potential of EAF steel slag as an inexpensive and non-phytotoxic nutrient supplier especially in poor soils.

  11. Molten Slag Would Boost Coal Conversion

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.

    1984-01-01

    Reactor increases residence time of uncovered char. Near-100percent carbon conversion achievable in reactor incorporating moltenslag bath. Slag maintains unconverted carbon impinging on surface at high temperatures for longer period of time, enhancing conversion.

  12. Preparation and characterization of a hybrid alkaline binder based on a fly ash with no commercial value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mejia, Johanna M.; Rodriguez, Erich; Mejia de Gutierrez, Ruby

    2015-05-18

    Alkali-activated Portland fly ash cement (FA/OPC) and alkali activated blast furnace slag-fly ash cement (FA/GBFS) were prepared using 70% of a low quality fly ash (FA). The low quality is associated with a high content of unburned material (loss of ignition of 14.6%). The hybrid cements were activated by the alkaline solution in order to obtain an overall SiO 2/Al 2O 3 molar ratio of 5.0 and 6.0 and unique overall Na 2O/SiO 2 molar ratio of 0.21. The microstructural characterization of the blended pastes generated in the systems showed the coexistence of amorphous gels C-A-S-H and N-A-S-H gels inmore » the hybrid systems. The addition of OPC or GBFS increases the compressive strength (at 28 days of curing) up to 127% compared with the geopolymer systems based only on FA used in this study. The content of silicates soluble also plays an important role in the reaction products and higher SiO 2/Al 2O 3 lead to obtain higher mechanical performance and denser structure. The results obtained show that these hybrid cements are an effective way for valorization the waste used in this study for the production of high strength and low-carbon footprint cement-type material.« less

  13. Emerald ash borer infestation of ash stumps

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Buprestidae), was first found in North America in 2002. Eradication efforts are currently underway for this insect in both Canada and the United States. As part of the eradication program, thousands of ash trees are cut and chipped. Ash trees are known to produce stump sprouts, and therefore...

  14. Production of a nitrogeneous humic fertilizer by the oxidation-ammoniation of lignite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coca, J.

    1984-12-01

    Two lignite samples were oxidised with HNO/sub 3/ (20% wt) at 75 C and treated afterwards with NH/sub 3/ in a fluidised-bed reactor in a temperature range 100-375 C. The effects of temperature, NH/sub 3/ flow rate, and reaction time on the total N/sub 2/ content of the product are reported. The product contained 7-13% wt of total N/sub 2/ which increased as the ammoniation temperature increased. Soil nitrification measurements of the N/sub 2/-enriched lignites showed that the maximum conversion to nitrates and rate of nitrification are exhibited by the product obtained at the lowest ammoniation temperature, i.e. 100 C.more » Maximum conversion to nitrates at that temperature was 45%, which compares well with similar products such as ammoniated peat (35%) and ammonium nitrohumates (45%).« less

  15. Selective Sulfidation of Lead Smelter Slag with Sulfur

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  16. Lignite deposits of the Kutch Basin, western India: Carbon isotopic and palynological signatures of the early Eocene hyperthermal event ETM2

    NASA Astrophysics Data System (ADS)

    Agrawal, Shailesh; Verma, Poonam; Rao, M. R.; Garg, Rahul; Kapur, Vivesh V.; Bajpai, Sunil

    2017-09-01

    This study presents new results of combined palynological and stable carbon isotope (δ13C) investigations carried out in the well known lignite sequence at Panandhro, District Kutch, in the Gujarat state of western India. Dinoflagellate cysts and associated spore-pollen assemblage assign an early Eocene (Ypresian) age to the lignitic succession at Panandhro. Furthermore, a pronounced negative Carbon Isotope Excursion (CIE) of about 2.7‰, correlated to the Second Eocene Thermal Maximum (53.7 Ma), a globally recognized hyperthermal event, was discovered in the middle part of the succession, consistent with the palynological constraints. This is the first record of an Eocene hyperthermal event (ETM2) from the Kutch Basin. Our data has regional implications for the age of the lignitic sequences across western India as it demonstrates that there is no significant age difference between the lignite deposits of the Kutch and Cambay basins. Our results also support a Lutetian age for the previously described vertebrate fossils, including whales, from the Panandhro mine section.

  17. Arsine Poisoning in a Slag-Washing Plant

    PubMed Central

    Kipling, M. D.; Fothergill, R.

    1964-01-01

    An investigation was carried out in an aluminium recovery works after the simultaneous occurrence of haemolytic anaemia in two workers in the slag disposal plant. The first worker was admitted to hospital suffering from nausea, backache, and haematuria. Jaundice developed on the next day. His urine contained protein, urobilin, haemoglobin, and methaemoglobin but no red cells. During the course of his illness the haemoglobin was reduced to 6·8 g./100 ml. There was no abnormality of the blood film and red cell fragility was normal. A fellow worker was affected at the same time and was treated at home for the same symptoms. Examination five days later showed a haemoglobin level similar to that of the first worker. He had suffered the same symptoms eight years previously, and at this time another worker had suffered from jaundice at home and a third had been investigated for neurological symptoms. Ten years previously another worker had been admitted to hospital with anaemia, jaundice, and haemoglobinuria. At this works scrap aluminium is melted with sodium chloride and fluorspar as a flux. The slag from the furnace is later broken up and dissolved in a rotating drum by a stream of water. The soluble portion is carried into a lagoon, whilst the 3% aluminium is retained in the drum and discharged weekly. Two men are employed at a time and another six have been employed in the past 10 years. Five parts per million of arsine were found to be present in the atmosphere during slag washing, but higher levels would have occurred on the occasions when slag from the making of an aluminium copper alloy from copper with an arsenic content was similarly treated. The mechanism of arsenic production is discussed and the literature on the role of aluminium reviewed. PMID:14106139

  18. Pre-fired, refractory block slag dams for wet bottom furnace floors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vihnicka, R.S.; Meskimen, R.L.

    1998-12-31

    Slagging (wet bottom), utility boilers count on a refractory coating over the furnace floor tube structure for protection from corrosion damage from both the harsh, hot gas atmosphere from the burning fuel and the acidic coal slag. To protect and extend the life of this protective refractory coating the boiler original equipment manufacturers (OEMs) utilized a water-cooled monkey ring or slag chill ring (typically a 6--8 inch high ring of small diameter tubes) surrounding the slag tap locations on most wet bottom furnace floors (both utility and package boilers). The old water-cooled tube ring was such a high maintenance item,more » however, that it`s use has been discontinued in all but the most extreme environments throughout both utility and industrial applications. Where the use of the ring was discontinued, there has been a corresponding shortening of life on the protective floor refractory coatings (high maintenance cost), further aggravated by recent OSHA restrictions limiting the use of chrome oxide refractory materials in these types of boilers. This paper describes the developmental process and the final resultant product (a non-watercooled, slag dam made from pre-fired refractory shapes), undertaken by the inventors. Derived operational benefits a concept 2 project, with NO{sub x} Title 4 and Title 1 significance (which is currently underway) will also be detailed.« less

  19. Phosphorus removal characteristics in hydroxyapatite crystallization using converter slag.

    PubMed

    Kim, Eung-Ho; Hwang, Hwan-Kook; Yim, Soo-Bin

    2006-01-01

    This study was performed to investigate the phosphorus removal characteristics in hydroxyapatite (HAP) crystallization using converter slag as a seed crystal and the usefulness of a slag column reactor system. The effects of alkalinity, and the isomorphic-substitutable presence of ionic magnesium, fluoride, and iron on HAP crystallization seeded with converter slag, were examined using a batch reactor system. The phosphorus removal efficiencies of the batch reactor system were found to increase with increases in the iron and fluoride ion concentrations, and to decrease with increases in the alkalinity and magnesium ion concentration. A column reactor system for HAP crystallization using converter slag was found to achieve high, stable levels of phosphorus elimination: the average PO4-P removal efficiency over 414 days of operation was 90.4%, in which the effluent phosphorus concentration was maintained at less than 0.5 mg/L under the appropriate phosphorus crystallization conditions. The X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra of the crystalline material deposited on the seed particles exhibited peaks consistent with HAP. Scanning electron micrograph (SEM) images showed that finely distributed crystalline material was formed on the surfaces of the seed particles. Energy dispersive X-ray spectroscopy (EDS) mapping analysis revealed that the molar Ca/P composition ratio of the crystalline material was 1.72.

  20. Effect of Cr2O3 Pickup on Dissolution of Lime in Converter Slag

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Chen, Weiqing; Zhao, Xiaobo; Yang, Yindong; McLean, Alex

    2017-09-01

    Application of low-nickel laterite ore containing chromium as charging material for ironmaking can reduce raw material costs, but result in an increase of chromium content in the hot metal and hence, Cr2O3 content in the steelmaking slag, which subsequently causes many problems related to lime dissolution for the steelmaking operation. In this work, a rotating cylinder method was employed to study the effect of Cr2O3 on lime dissolution in steelmaking slag. The lime dissolution mechanism, rate control step and affecting factors, including slag basicity, FeOx and B2O3 content, and the formation of phases at reacted layer, were discussed. It was found that mass transfer was the rate control step in slag phase, increase of Cr2O3 and slag basicity delayed lime dissolution due to the formation of high-melting temperature phases of FeO · Cr2O3 spinel and 2CaO · SiO2 at the slag/lime reacted interface. Addition of B2O3 promoted lime dissolution and suppressed formation of FeO · Cr2O3 spinel.

  1. Novel Approach for Modeling of Nonuniform Slag Layers and Air Gap in Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Kong, Lingwei; Yao, Man; Zhang, Xiaobing

    2017-02-01

    Various kinds of surface defects on the continuous casting slab usually originate from nonuniform heat transfer and mechanical behavior, especially during the initial solidification inside the mold. In this article, a model-coupled inverse heat transfer problem incorporating the effect of slag layers and air gap is developed to study the nonuniform distribution of liquid slag, solid slag, and air gap layers. The model considers not only the formation and evolution of slag layers and air gap but also the temperatures in the mold copper as measured by thermocouples. The simulation results from the model and the measured temperatures from experiments are shown to be in good agreement with each other. At the casting speed of 0.65 m/min, the liquid slag film disappears and transforms into solid slag entirely at about 400 mm away from meniscus, and an air gap begins to form. Until the mold exit, the maximum thickness of the solid slag layer and air gap gradually increases to 1.34 and 0.056 mm, respectively. The results illustrate that the magnitude and nonuniform distribution of the slag layers and air gap along the cross direction, correlating with heat flux between the shell and mold, eventually determine the temperature profiles of the mold hot face and slab surface. The proposed model may provide a convenient approach for analyzing nonuniform heat transfer and mechanical behaviors between the mold and slab in the real casting process.

  2. Use of steel slag as a new material for roads

    NASA Astrophysics Data System (ADS)

    Ochoa Díaz, R.; Romero Farfán, M.; Cardenas, J.; Forero, J.

    2017-12-01

    This research paper aims to analyse the behaviour of MDC-19 hot dense asphalt mixtures with steel slag as coarse aggregate, by using asphalt 80-100, in order to verify if this residue has suitable characteristics that allow its use. The physical and mechanical characterization was accomplished using phosphorous slag from the company Acerías Paz del Río S.A. The working formula was then determined for each mixture using the RAMCODES methodology, the briquettes were produced in the laboratory and then, the design verification was performed. Taking into account the results obtained, it is concluded that the use of phosphorous slag as coarse aggregate in asphalt mixtures is workable, since acceptable design parameters and verification are obtained that meet the specifications for use as a rolling layer.

  3. Production of brown and black pigments by using flotation waste from copper slag.

    PubMed

    Ozel, Emel; Turan, Servet; Coruh, Semra; Ergun, Osman Nuri

    2006-04-01

    One of the major problems in copper-producing countries is the treatment of the large amount of copper slag or copper flotation waste generated from copper slag which contains significant amounts of heavy metals such as Cu, Zn, Pb and Co. Dumping or disposal of such large quantities of flotation waste from copper slag causes environmental and space problems. In this study, the treatment of flotation waste from copper slag by a thermal method and its use as an iron source in the production of inorganic brown and black pigments that are used in the ceramic industry were investigated. The pigments were produced by calcining different amounts of flotation waste and chromite, Cr2O3, ZnO and CoO mixtures. The pigments obtained were added to transparent ceramic glazes and porcelainized tile bodies. Their colours were defined by L*a*b* measurements with a spectrophotometer. The results showed that flotation waste from copper slag could be used as an iron source to produce brown and black pigments in both ceramic body and glazes.

  4. Development and demonstration of a lignite-pelletizing process. Phase II report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    The current work began with scale-up of laboratory equipment to commercial size equipment. For this purpose, BCI used an existing pilot plant that had been assembled to pelletize and indurate taconite ore. BCI determined therewith that lignite pellets can be produced continuously on a pilot scale using the basic process developed in the laboratory. The resulting pellets were found to be similar to the laboratory pellets at equivalent binder compositions. Tests of product made during a 5-ton test run are reported. A 50-ton demonstration test run was made with the pilot plant. Pellet production was sustained for a two-week period.more » The lignite pelletizing process has, therefore, been developed to the point of demonstration in a 50-ton test. BCI has completed and cost estimated a conceptually designed 4000 TPD facility. BCI believes it has demonstrated a technically feasible process to agglomerate lignite by using an asphalt emulsion binder. Product quality is promising. Capital and operating costs appear acceptable to justify continuing support and development. The next step should focus on three areas: production development, process refinement, and cost reduction. For further development, BCI recommends consideration of a 5 to 10 ton/h pilot plant or a 20 to 40 ton/h module of a full sized plant, the lower first cost of the former being offset by the ability to incorporate the latter into a future production unit. Other specific recommendations are made for future study that could lead to process and cost improvements: Binder Formulation, disc Sizing, Drier Bed Depth, and Mixing Approach. Pellet use other than power plant fuel is considered.« less

  5. Analytic Hierarchy and Economic Analysis of a Plasma Gasification System for Naval Air Station Oceana-Dam Neck

    DTIC Science & Technology

    2014-08-30

    asbestos containing material, pathological wastes, contaminated soils, glass waste, hazardous fly ash, solvents, ceramic waste, incinerator ash, paints...industrial waste into synthetic gas (Syn-Gas) and slag . For this study, the focus will be on the disposal of municipal solid waste. However, there is...Chemical Reactor The two primary by-products resulting from the gasification process are molten slag , which is collected through a portal at the base

  6. Reactions in the Tuyere Zone of Ironmaking Blast Furnace

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Lee, Hae-Geon; Zhao, Baojun

    2018-02-01

    A series of slags can be formed in the lower part of the ironmaking blast furnace that play important roles in smooth furnace operation, and in determining iron quality and productivity. The final slag tapped from the BF has been investigated extensively as it can be collected directly. Unfortunately, difficulties in accessing the interiors of the blast furnace limit the full understanding of other slags such as primary and bosh slags. In this study, different types of samples directly obtained from the tuyere zone of the blast furnace have been systematically analyzed and characterized using scanning electron microscopy (SEM), electron probe X-ray microanalysis (EPMA), and X-ray fluorescence (XRF), with focus on the characteristics of slags formed in the tuyere level. The samples were identified into three groups according to their morphological, mineralogical, and chemical properties: (1) tuyere slags originating from the reactions between ash and dripping slags; (2) bosh slags in the CaO-SiO2-Al2O3-MgO-FeO system, with a CaO/SiO2 weight ratio of around 1.50, and Al2O3 and MgO concentrations close to those of final slags; and (3) coke ash that did not react with bosh slags. These findings will provide useful information on the evaluation of slags inside the blast furnace and the reactions in the tuyere zone.

  7. Oscillation-Mark Formation and Liquid-Slag Consumption in Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Meng, Xiangning; Wang, Ning; Zhu, Miaoyong

    2017-04-01

    Traditional understanding on the complex multiphysics phenomenon of the meniscus in the oscillating mold for continuously cast steel, including oscillation-mark formation and liquid-slag consumption, has never considered the shape influence of the flux channel between the mold wall and the solidifying shell surface. Based on the reciprocating oscillation of mold, this study was carried out to calculate theoretically the periodic pressure and the liquid-slag layer thickness in the flux channel for the upper and the lower meniscus that possess different shapes in combination with a transient equilibrium profile of the flux channel as well as the sinusoidal and the nonsinusoidal oscillation modes of mold. The effect of flux channel shape on the multiphysics phenomenon in the meniscus was determined by the physical oscillation simulation by using an experimental cold model mold. The results show that the shape difference between the upper and the lower meniscus leads to the opposite direction of pressure in the flux channel. The pressure in the opposite direction plays a respective role in oscillation-mark formation and liquid-slag consumption in an oscillation cycle of mold, and thus, it makes a new mechanism for explaining the multiphysics phenomenon in the meniscus. The oscillation mark is initially formed by the rapid increase of positive channel pressure in the upper meniscus, and most of the liquid slag is infiltrated into the flux channel by the negative channel pressure in the lower meniscus from the end of a positive strip time to the beginning of the next positive strip time, including the negative strip time in between. Furthermore, the physical characteristics of the lubrication behavior in the meniscus are summarized, including liquid-slag infiltration, solidifying shell deformation, and the thickness change of the liquid-slag layer.

  8. Ecohydrological perspective of phytogenic organic and inorganic components in Greek lignites: a quantitative reinterpretation

    NASA Astrophysics Data System (ADS)

    Mulder, Christian; Sakorafa, Vasiliki; Burragato, Francesco; Visscher, Henk

    2000-06-01

    A consensus about the development of freshwater wetlands in relation to time and space is urgently required. Our study aims to address this issue by providing additional data for a fine-scaled comparison of local depositional settings of Greek mires during the Pliocene and Pleistocene. Lignite profiles exhibit phytogenic organic components (macerals) that have been used to investigate the past peat-forming vegetation structure and their succession series. The organic petrology of lignite samples from the opencast mines of Komanos (Ptolemais) and Choremi (Megalopolis) was achieved to assess the water supply, wetland type, nutrient status and vegetation physiognomy. A holistic approach (a study of ecosystems as complete entities) was carried out for a paleoecological reconstruction of the mires. Huminite, liptinite and inertinite were traced by means of their chemical and morphological differences together with the morphogenic and taphonomic affinities. The problem of combining independent information from different approaches in a multivariate calibration setup has been considered. Linear regression, non-metric multidimensional scaling and one-way analysis of variance tested the occurrence of palynological and petrological proxies. Although the lignite formation and deposition are less related to humid periods than expected, the resulting differences occurring in the reconstructed development stages appear to be related to astronomically forced climate fluctuations.

  9. Monitoring the Thickness of Coal-Conversion Slag

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1984-01-01

    Technique adapts analogous ocean-floor-mapping technology. Existing ocean floor acoustic technology adapted for real-time monitoring of thickness and viscosity of flowing slag in coal-conversion processing.

  10. Recovery of Gallium from Secondary V-Recycling Slag by Alkali Fusion

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Zhang, Gui-fang

    Secondary V-recycling slag, an industrial waste containing high gallium is being dumped continuously, which causes the loss of gallium. Thus, the alkali fusion process was employed to recover gallium from this slag. The effects factors on extraction of gallium such as roasting temperature, roasting time, alkali fusion agent concentration and CaO concentration were investigated in the paper. The experimental results indicated that excessive roasting temperature and roasting time is unfavorable to the recovery rate of gallium. The appropriate roasting temperature and duration are 1000°C and 2 hours, respectively; The appropriate proportioning of Na2CO3: NaOH is 2:1 when the concentration of alkali fusion agent weighs 0.4 times the mass of the slag; In order to remove SiO2 from the leaching liquor, CaO should be used as an additive in the roasting process. The appropriate concentration of CaO should weigh 0.2 times the mass of the slag. Employing these optimal alkali fusion conditions in the roasting process, gallium recovery is above 90%.

  11. Elemental properties of copper slag and measured airborne exposures at a copper slag processing facility.

    PubMed

    Mugford, Christopher; Gibbs, Jenna L; Boylstein, Randy

    2017-08-01

    In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of abrasives containing >1% silica, giving rise to abrasive substitutes like copper slag. We present results from a National Institute for Occupational Safety and Health industrial hygiene survey at a copper slag processing facility that consisted of the collection of bulk samples for metals and silica; and full-shift area and personal air samples for dust, metals, and respirable silica. Carcinogens, suspect carcinogens, and other toxic elements were detected in all bulk samples, and area and personal air samples. Area air samples identified several areas with elevated levels of inhalable and respirable dust, and respirable silica: quality control check area (236 mg/m 3 inhalable; 10.3 mg/m 3 respirable; 0.430 mg/m 3 silica), inside the screen house (109 mg/m 3 inhalable; 13.8 mg/m 3 respirable; 0.686 mg/m 3 silica), under the conveyor belt leading to the screen house (19.8 mg/m 3 inhalable), and inside a conveyor access shack (11.4 mg/m 3 inhalable; 1.74 mg/m 3 respirable; 0.067 mg/m 3 silica). Overall, personal dust samples were lower than area dust samples and did not exceed published occupational exposure limits. Silica samples collected from a plant hand and a laborer exceeded the American Conference of Governmental Industrial Hygienist Threshold Limit Value of 0.025 µg/m 3 . All workers involved in copper slag processing (n = 5) approached or exceeded the Occupational Safety and Health Administration permissible exposure limit of 10 µg/m 3 for arsenic (range: 9.12-18.0 µg/m 3 ). Personal total dust levels were moderately correlated with personal arsenic levels (R s = 0.70) and personal respirable dust levels were strongly correlated with respirable silica levels (R s = 0.89). We identified multiple areas with elevated levels of dust, respirable silica, and metals that may have implications for personal exposure at other facilities if preventive

  12. Reproducing ten years of road ageing--accelerated carbonation and leaching of EAF steel slag.

    PubMed

    Suer, Pascal; Lindqvist, Jan-Erik; Arm, Maria; Frogner-Kockum, Paul

    2009-09-01

    Reuse of industrial aggregates is still hindered by concern for their long-term properties. This paper proposes a laboratory method for accelerated ageing of steel slag, to predict environmental and technical properties, starting from fresh slag. Ageing processes in a 10-year old asphalt road with steel slag of electric arc furnace (EAF) type in the subbase were identified by scanning electron microscopy (SEM) and leaching tests. Samples from the road centre and the pavement edge were compared with each other and with samples of fresh slag. It was found that slag from the pavement edge showed traces of carbonation and leaching processes, whereas the road centre material was nearly identical to fresh slag, in spite of an accessible particle structure. Batches of moisturized road centre material exposed to oxygen, nitrogen or carbon dioxide (CO2) were used for accelerated ageing. Time (7-14 days), temperature (20-40 degrees C) and initial slag moisture content (8-20%) were varied to achieve the carbonation (decrease in pH) and leaching that was observed in the pavement edge material. After ageing, water was added to assess leaching of metals and macroelements. 12% moisture, CO2 and seven days at 40 degrees C gave the lowest pH value. This also reproduced the observed ageing effect for Ca, Cu, Ba, Fe, Mn, Pb, Ca (decreased leaching) and for V, Si, and Al (increased leaching). However, ageing effects on SO4, DOC and Cr were not reproduced.

  13. A geochemical study of macerals from a Miocene lignite and an Eocene bituminous coal, Indonesia

    USGS Publications Warehouse

    Stankiewicz, B.A.; Kruge, M.A.; Mastalerz, Maria

    1996-01-01

    Optical and chemical studies of maceral concentrates from a Miocene lignite and an Eocene high-volatile bituminous C coal from southeastern Kalimantan, Indonesia were undertaken using pyro-Lysis, optical, electron microprobe and FTIR techniques Pyrolysis products of vitrinite from bituminous coal were dominated by straight-chain aliphatics and phenols. The huminite of the Miocene lignite produced mostly phenolic compounds upon pyrolysis. Differences in the pyrolysis products between the huminite and vitrinite samples reflect both maturation related and paleobotanical differences. An undefined aliphatic source and/or bacterial biomass were the likely contributors of n-alkyl moieties to the vitrinite. The resinite fraction in the lignite yielded dammar-derived pyrolysis products, as well as aliphatics and phenols as the products of admixed huminite and other liptinites. The optically defined resinite-rich fraction of the bituminous coal from Kalimantan produced abundant n-aliphatic moieties upon pyrolysis, but only two major resin markers (cadalene and 1,6-dimethylnaphthalene). This phenomenon is likely due to the fact that Eocene resins were not dammar-related. Data from the electron microprobe and Fourier transform infrared spectrometry strongly support the results obtained by Py GC MS and microscopy.

  14. Limitations and plausibility of the Pliocene lignite hypothesis in explaining the etiology of Balkan endemic nephropathy.

    PubMed

    Maharaj, S V M

    2014-01-01

    Balkan endemic nephropathy (BEN) is a chronic, tubulointerstitial renal disease often accompanied by urothelial cancer that has a lethality of nearly 100%. One of the many factors that have been proposed to play an etiological role in BEN is exposure to organic compounds from Pliocene lignite coal deposits via the drinking water in endemic areas. The objective of this study was to systematically evaluate the role of the tenets of the Pliocene lignite hypothesis in the etiology of BEN in order to provide an improved understanding of the hypothesis for colleagues and patients alike. A comprehensive compilation of the possible limitations of the hypothesis, with each limitation addressed in turn is presented. The Pliocene lignite hypothesis can best account for, is consistent with, or has the potential to explain the evidence associated with the myriad of factors related to BEN. Residents of endemic areas are exposed to complex mixtures containing hundreds of organic compounds at varying doses and their potentially more toxic (including nephrotoxic) and/or carcinogenic metabolites; however, a multifactorial etiology of BEN appears most likely.

  15. The use of fractionated fly ash of thermal power plants as binder for production of briquettes of coke breeze and dust

    NASA Astrophysics Data System (ADS)

    Temnikova, E. Yu; Bogomolov, A. R.; Lapin, A. A.

    2017-11-01

    In this paper, we propose to use the slag and ash material of thermal power plants (TPP) operating on pulverized coal fuel. The elemental and chemical composition of fly ash of five Kuzbass thermal power plants differs insignificantly from the composition of the mineral part of coking coal because coke production uses a charge, whose composition defines the main task: obtaining coke with the required parameters for production of iron and steel. These indicators are as follows: CRI reactivity and strength of the coke residue after reaction with CO2 - CSR. The chemical composition of fly ash of thermal power plants and microsilica with bulk density of 0.3-0.6 t/m3 generated at production of ferroalloys was compared. Fly ash and microsilica are the valuable raw material for production of mineral binder in manufacturing coke breeze briquettes (fraction of 2-10 mm) and dust (0-200 μm), generated in large quantities during coking (up to 40wt%). It is shown that this binder is necessary for production of smokeless briquettes with low reactivity, high strength and cost, demanded for production of cupola iron and melting the silicate materials, basaltic rocks in low-shaft furnaces. It is determined that microsilica contains up to 90% of silicon oxide, and fly ash contains up to 60% of silicon oxide and aluminum oxide of up to 20%. On average, the rest of fly ash composition consists of basic oxides. According to calculation by the VUKHIN formula, the basicity index of briquette changes significantly, when fly ash is introduced into briquette raw material component as a binder. The technology of coke briquette production on the basis of the non-magnetic fraction of TPP fly ash in the ratio from 3.5:1 to 4.5:1 (coke breeze : coke dust) with the addition of the binder component to 10% is proposed. The produced briquettes meet the requirements by CRI and require further study on CSR requirements.

  16. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water.

    PubMed

    Huanosta-Gutiérrez, T; Dantas, Renato F; Ramírez-Zamora, R M; Esplugas, S

    2012-04-30

    The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H(2)O(2) (slag/H(2)O(2)) and H(2)O(2)/UV (slag/H(2)O(2)/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H(2)O(2)/UV and slag/H(2)O(2) treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD(5)/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Visualisation and quantification of heavy metal accessibility in smelter slags: The influence of morphology on availability.

    PubMed

    Morrison, Anthony L; Swierczek, Zofia; Gulson, Brian L

    2016-03-01

    The Imperial Smelting Furnace (ISF) for producing lead and zinc simultaneously has operated on four continents and in eleven countries from the 1950's. One of the process changes that the ISF introduced was the production of a finely granulated slag waste. Although this slag contained significant amounts of residual lead (Pb) and zinc (Zn), because of its glassy nature it was considered environmentally benign. From the Cockle Creek smelter near Boolaroo at the northern end of Lake Macquarie, NSW, Australia, it is estimated that around 2.1 million tonnes of the fine slag was distributed into the community and most remains where it was originally utilised. Residual tonnages of slag of this magnitude are common worldwide wherever the ISF operated. Studies of base metal smelting slags have concluded that mineralogical and morphological characteristics of the slag play a critical role in moderating environmental release of toxic elements. Scanning electron microscopy (SEM) and microanalysis of the ISF slags has shown that the Pb and associated elements are present as discrete nodules (∼6-22 μm) in the slag and that they are not associated with Zn which is contained in the glass slag phase. Using an automated SEM and analysis technique (QEMSCAN(®)) to "map" the mineralogical structure of the particles, it was possible to quantitatively determine the degree of access infiltrating fluids might have to the reaction surface of the Pb phases. The level of access decreases with increasing particle size, but in even the largest sized particles (-3350 + 2000 μm) nearly 80% of the Pb-containing phases were totally or partially accessible. These results provide evidence that the toxic elements in the slags are not contained by the glassy phase and will be vulnerable to leaching over time depending on their individual phase reactivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of Physicochemical Properties of Slag and Flux on the Removal Rate of Oxide Inclusion from Molten Steel

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Park, Joo Hyun

    2016-12-01

    The slag-metal reaction experiments were carried out using a high-frequency induction furnace to confirm the effect of slag composition on the removal rate of inclusions in molten steel through the CaO-based slags. The apparent rate constant of oxygen removal ( k O) was obtained as a function of slag composition. It increased with increasing basicity, and the content of MgO and CaF2, whereas it decreased by increasing the content of Al2O3 in the slag. The removal rate of inclusions was strongly affected not only by the driving force of the chemical dissolution but also by the viscosity of the slags and fluxes.

  19. Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions

    NASA Astrophysics Data System (ADS)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.

    2014-09-01

    This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.

  20. Availability of arsenic, copper, lead, thallium, and zinc to various vegetables grown in slag-contaminated soils.

    PubMed

    Bunzl, K; Trautmannsheimer, M; Schramel, P; Reifenhäuser, W

    2001-01-01

    To anticipate a possible hazard resulting from the plant uptake of metals from slag-contaminated soils, it is useful to study whether vegetables exist that are able to mobilize a given metal in the slag to a larger proportion than in an uncontaminated control soil. For this purpose, we studied the soil to plant transfer of arsenic, copper, lead, thallium, and zinc by the vegetables bean (Phaseolus vulgaris L. 'dwarf bean Modus'), kohlrabi (Brassica oleracea var. gongylodes L.), mangold (Beta vulgaris var. macrorhiza ), lettuce (Lactuca sativa L. 'American gathering brown'), carrot (Daucus carota L. 'Rotin', 'Sperlings's'), and celery [Apium graveiolus var. dulce (Mill.) Pers.] from a control soil (Ap horizon of a Entisol) and from a contaminated soil (1:1 soil-slag mixtures). Two types of slags were used: an iron-rich residue from pyrite (FeS2) roasting and a residue from coal firing. The metal concentrations in the slags, soils, and plants were used to calculate for each metal and soil-slag mixture the plant-soil fractional concentration ratio (CRfractional,slag), that is, the concentration ratio of the metal that results only from the slag in the soil. With the exception of TI, the resulting values obtained for this quantity for As, Cu, Pb, and Zn and for all vegetables were significantly smaller than the corresponding plant-soil concentration ratios (CRcontrol soil) for the uncontaminated soil. The results demonstrate quantitatively that the ability of a plant to accumulate a given metal as observed for a control soil might not exist for a soil-slag mixture, and vice versa.

  1. Perspectives regarding the use of metallurgical slags as secondary metal resources - A review of bioleaching approaches.

    PubMed

    Potysz, Anna; van Hullebusch, Eric D; Kierczak, Jakub

    2018-05-05

    Smelting activity by its very nature produces large amounts of metal-bearing waste, often called metallurgical slag(s). In the past, industry used to dispose of these waste products at dumping sites without the appropriate environmental oversight. Once there, ongoing biogeochemical processes affect the stability of the slags and cause the release of metallic contaminants. Rather than viewing metallurgical slags as waste, however, such deposits should be viewed as secondary metal resources. Metal bioleaching is a "green" treatment route for metallurgical slags, currently being studied under laboratory conditions. Metal-laden leachates obtained at the bioleaching stage have to be subjected to further recovery operations in order to obtain metal(s) of interest to achieve the highest levels of purity possible. This perspective paper considers the feasibility of the reuse of base-metal slags as secondary metal resources. Special focus is given to current laboratory bioleaching approaches and associated processing obstacles. Further directions of research for development of more efficient methods for waste slag treatment are also highlighted. The optimized procedure for slag treatment is defined as the result of this review and should include following steps: i) slag characterization (chemical and phase composition and buffering capacity) following the choice of initial pH, ii) the choice of particle size, iii) the choice of the liquid-to-solid ratio, iv) the choice of microorganisms, v) the choice of optimal nutrient supply (growth medium composition). An optimal combination of all these parameters will lead to efficient extraction and generation of metal-free solid residue. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Artificial intelligence-based computer modeling tools for controlling slag foaming in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Wilson, Eric Lee

    Due to increased competition in a world economy, steel companies are currently interested in developing techniques that will allow for the improvement of the steelmaking process, either by increasing output efficiency or by improving the quality of their product, or both. Slag foaming is one practice that has been shown to contribute to both these goals. However, slag foaming is highly dynamic and difficult to model or control. This dissertation describes an effort to use artificial intelligence-based tools (genetic algorithms, fuzzy logic, and neural networks) to both model and control the slag foaming process. Specifically, a neural network is trained and tested on slag foaming data provided by a steel plant. This neural network model is then controlled by a fuzzy logic controller, which in turn is optimized by a genetic algorithm. This tuned controller is then installed at a steel plant and given control be a more efficient slag foaming controller than what was previously used by the steel plant.

  3. Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching

    NASA Astrophysics Data System (ADS)

    Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza

    2018-03-01

    Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.

  4. Morphological Characterization Of Titania Slag Obtained From Red Sediment Placer Ilmenite Using Microwave Energy

    NASA Astrophysics Data System (ADS)

    Srikant, S. S.; Mukherjee, P. S.; Bhima Rao, R.

    2015-04-01

    This paper deals with the main objective to observe the effect of microwave heat treatment for the production of Titania rich slag and pig iron from placer ilmenite. The experiments carried out in the present investigation on the oxidized ilmenite sample for microwave heat treatment in microwave sintering furnace reveals that a product can be obtained containing Titania rich slag and metalized iron. The in-depth characterisation of these products using SEM-EDAX shows that around 75-85 % of titanium dioxide is formed in terms of titania rich slag by using microwave sintering furnace after reduction of oxidized ilmenite with proper stoichiometric graphitic carbon and silicon carbide (SiC) susceptor. The titania rich slag is considered to be better input material for production of pigment grade titanium dioxide. On the other hand, the pig iron obtained as by product from titania rich slag is also important for automobile and steel industries application.

  5. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO{sub 2} pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zomeren, Andre van; Laan, Sieger R. van der; Kobesen, Hans B.A.

    2011-11-15

    Highlights: > Accelerated carbonation studied to improve environmental properties of steel slag. > Carbonation found to occur predominantly at surface of the steel slag grains. > Combined geochemical modelling and mineral analysis revealed controlling processes. > Enhanced V-leaching with di-Ca silicate (C2S) dissolution identified as major source. > Identified mineral transformations provide guidance for further quality improvement. - Abstract: Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this studymore » is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO{sub 2} pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 {sup o}C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO{sub 2} and the resulting pH reduction occurred within 24 h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also

  6. Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.; Sambamurthi, Jay K.

    1996-01-01

    Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle.

  7. Investigation of Use of Slag Aggregates and Slag Cements in Concrete Pavements to Reduce the Maintenance Cost

    DOT National Transportation Integrated Search

    2017-12-01

    The objective of this research was to evaluate the influence of using the ACBFS aggregate (slag aggregate) as a replacement for natural aggregates on the properties of pavement concrete designed to meet the standard specifications of the Indiana Depa...

  8. Part II. Hydrothermal steel slag valorization: hydrogen and nano-magnetite production

    NASA Astrophysics Data System (ADS)

    Crouzet, Camille; Brunet, Fabrice; Recham, Nadir; Auzende, Anne-Line; Findling, Nathaniel; Magnin, Valérie; Ferrasse, Jean-Henry; Goffé, Bruno

    2017-10-01

    The effect of acidic conditions (in a pH range of 3 to 6) and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150 – 350°C range for acid acetic concentrations from 0 to 4M. Reaction progress was monitored with the amount of produced H2. Higher temperature and lower pH are found to enhance the hydrothermal oxidation kinetics of the slag. These two parameters are believed to increase iron dissolution rate which has already been identified as the rate limiting step of the hydrothermal oxidation of pure FeO. An activation energy of 28 × 4 kJ/mole is found for the hydrothermal oxidation of the steel slag which compares very well with that of pure FeO under similar conditions. In the case of the slag run in water at 300°C for 70.5 hours, magnetite product has been separated magnetically and characterized. Particles were found to fall in three size ranges: 10 – 30 nm, 100 – 300 nm and 1 – 10 µm. The smallest fraction (10 – 30 nm) is comparable to the 10 – 20 nm size range that is achieved when nanomagnetite are synthesized by co-precipitation methods. Obviously, the production of nanomagnetite enhances the economic interest of the hydrothermal processing of steel slags, which has already proven its capacity to produce high-purity H2.

  9. Effects of thin-film accelerated carbonation on steel slag leaching.

    PubMed

    Baciocchi, R; Costa, G; Polettini, A; Pomi, R

    2015-04-09

    This paper discusses the effects of accelerated carbonation on the leaching behaviour of two types of stainless steel slags (electric arc furnace and argon oxygen decarburisation slag). The release of major elements and toxic metals both at the natural pH and at varying pH conditions was addressed. Geochemical modelling of the eluates was used to theoretically describe leaching and derive information about mineralogical changes induced by carbonation. Among the investigated elements, Ca and Si were most appreciably affected by carbonation. A very clear effect of carbonation on leaching was observed for silicate phases; geochemical modelling indicated that the Ca/Si ratio of Ca-controlling minerals shifted from ∼ 1 for the untreated slag to 0.5-0.67 for the carbonated samples, thus showing that the carbonation process left some residual Ca-depleted silicate phases while the extracted Ca precipitated in the form of carbonate minerals. For toxic metals the changes in leaching induced by carbonation appeared to be mainly related to the resulting pH changes, which were as high as ∼ 2 orders of magnitude upon carbonation. Depending on the specific shape of the respective solubility curves, the extent of leaching of toxic metals from the slag was differently affected by carbonation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Producing fired bricks using coal slag from a gasification plant in indiana

    USGS Publications Warehouse

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  11. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    PubMed

    Kotnik; Horvat; Mandic; Logar

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg2+, Hg0) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  12. Steel Slag and Shredded Tires as Media for Blind Inlets to Improve Water Quality

    NASA Astrophysics Data System (ADS)

    Gonzalez, J. M.; Smith, D. R.; Livingston, S.

    2015-12-01

    Off-site transport of contaminants through surface runoff affects water quality. Blind inlets are proven conservation practices for reducing surface runoff, and consequently reducing nutrient loadings from small agricultural closed depressions to water bodies. Gravel is the most widely used blind inlet media to reduce flow, but not to sorb contaminants from the water. Readily available byproducts, such as steel slag and shredded tires, could be used as alternative media in blind inlets to sorb nutrients and pesticides from surface runoff. Sorption isotherms were performed to investigate the sorption capabilities of steel slag and shredded tires for phosphate and atrazine in electrolyte background solutions containing either 10 mM CaCl2 or KCl. Results of this research demonstrated that phosphate and atrazine were irreversibly sorbed by the steel slag and shredded tires. The steel slag increased the pH solution increased about 4 pH units after the sorption step; while the pH of the solution with shredded tires remained the same. Desorption of the phosphate and atrazine was low from the steel slag and shredded tires, respectively. Thus, the above results suggest that the steel slag and shredded tires can potentially be used as media to sorb phosphate and atrazine, respectively.

  13. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.

    PubMed

    Maweja, Kasonde; Mukongo, Tshikele; Mutombo, Ilunga

    2009-05-30

    Cleaning experiments of a copper matte smelting slag from the water-jacket furnace was undertaken by direct reduction in a laboratory-scale electric furnace. The effects of coal-to-slag ratio, w, and the reduction time, t, were considered for two different coal/slag mixing procedures. In the first procedure, metallurgical coal was added to the molten slag, whereas in the second procedure, coal was premixed with the solid slag before charging into the furnace. The recovery of heavy metals (Cu, Co), and the fuming of Pb and Zn were investigated. Contamination of the metal phase by iron and the acidity index of the final slag were analysed as these may impede the economical viability of the process. The lower w value of 2.56% yielded a recovery rate of less than 60% for copper and less than 50% for cobalt, and around 70% for zinc. However, increasing w to 5% allowed the recovery of 70-90% for Cu, Co and Zn simultaneously after 30-60 min reduction of the molten slag. After reduction, the cleaned slags contained only small amounts of copper and cobalt (<0.4 wt%). Fuming of lead and zinc was efficient as the %Pb of the residual slag dropped to levels lower than 0.04% after 30 min of reduction. Ninety percent of the lead was removed from the initial slag and collected in the dusts. The zinc content of the cleaned slags quickly dropped to between 1 and 3 wt% from the initial 8.2% after 30 min reduction for w value of 5 and after 60 min reduction for w value of 2.56. The dusts contained about 60% Zn and 10% Pb. Recovery of lead from fuming of the slag was higher than 90% in all the experimental conditions considered in this study.

  14. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years.

    PubMed

    Luo, Youfa; Wu, Yonggui; Wang, Hu; Xing, Rongrong; Zheng, Zhilin; Qiu, Jing; Yang, Lian

    2018-05-01

    This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N 2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.

  15. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.

    PubMed

    Li, Hailong; Zhang, Weilin; Wang, Jun; Yang, Zequn; Li, Liqing; Shih, Kaimin

    2018-04-01

    Copper slag is a byproduct of the pyrometallurgical smelting of copper concentrate. It was used in this study to catalyze elemental mercury (Hg 0 ) oxidation in simulated coal combustion flue gas. The copper slag exhibited excellent catalytic performance in Hg 0 oxidation at temperatures between 200 °C and 300 °C. At the most optimal temperature of 250 °C, a Hg 0 oxidation efficiency of 93.8% was achieved under simulated coal combustion flue gas with both a high Hg 0 concentration and a high gas hourly space velocity of 128,000 h -1 . Hydrogen chloride (HCl) was the flue gas component responsible for Hg 0 oxidation over the copper slag. The transition metal oxides, including iron oxides and copper oxide in the copper slag, exhibited significant catalytic activities in the surface-mediated oxidation of Hg 0 in the presence of HCl. It is proposed that the Hg 0 oxidation over the copper slag followed the Langmuir-Hinshelwood mechanism whereby reactive chlorine species that originated from HCl reacted with the physically adsorbed Hg 0 to form oxidized mercury. This study demonstrated the possibility of reusing copper slag as a catalyst for Hg 0 oxidation and revealed the mechanisms involved in the process and the key factors in the performance. This knowledge has fundamental importance in simultaneously reducing industrial waste and controlling mercury emissions from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Investigations on phosphorus recovery and reuse as soil amendment from electric arc furnace slag filters.

    PubMed

    Bird, Simon C; Drizo, Aleksandra

    2009-11-01

    Electric arc furnace (EAF) steel slag has been identified as an effective filter material for the removal of phosphorus (P) from both point and non-point sources. To determine the feasibility of land-applying P saturated EAF steel slag this study was undertaken to investigate (i) saturated EAF steel slag material's potential as a P fertilizer or soil amendment and (ii) P desorption and metals leachate from saturated EAF steel slag material to surface runoff. Medicago sativa (alfalfa) was planted in a nutrient depleted washed sand media. Phosphorus was added either as saturated EAF steel slag or as a standard commercial phosphate fertilizer in order to assess the plant availability of the P from saturated EAF steel slag. Four different P application levels were tested: a low (20 lbs acre furrow slice(-1) (5.5 g P m(-3))) two medium (40 and 60 lbs. acre f.s.(-1) (11 and 16.5 g P m(-3))) and a high (120 lbs. acre f.s.(-1) (33 g P m(-3))). The above-ground biomass of half of the plants was harvested after 5 weeks and the second half at 10 weeks. All treatments regardless of the P source used showed high rates of germination. At the first harvest period (5 weeks) significantly higher above-ground biomass (p < 0.01) was seen at the 3 highest P amendment rates in treatments with triple super phosphate fertilizer (TSP) than with EAF steel slag. However, by the second harvest (10 weeks) only the highest amendment rate of TSP showed a significantly higher amount of biomass (p < 0.01), suggesting that EAF steel slag might be an effective slow release P source. In a second experiment, a rain simulator was used to assess desorption of DRP, TP and metals from a saturated and semi-saturated EAF steel slag. The results revealed that the total amounts of DRP and TP released to surface runoff from EAF steel slag were negligible when compared to the total quantities of P retained by this material. Overall the results from this study demonstrated that once the EAF steel slag filter

  17. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    PubMed

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  18. MSW fly ash stabilized with coal ash for geotechnical application.

    PubMed

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.

  19. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  20. Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags

    NASA Astrophysics Data System (ADS)

    Jakobsson, Lars Klemet; Tangstad, Merete

    2018-04-01

    Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.

  1. In Situ Observation of Calcium Aluminate Inclusions Dissolution into Steelmaking Slag

    NASA Astrophysics Data System (ADS)

    Miao, Keyan; Haas, Alyssa; Sharma, Mukesh; Mu, Wangzhong; Dogan, Neslihan

    2018-06-01

    The dissolution rate of calcium aluminate inclusions in CaO-SiO2-Al2O3 slags has been studied using confocal scanning laser microscopy (CSLM) at elevated temperatures: 1773 K, 1823 K, and 1873 K (1500 °C, 1550 °C, and 1600 °C). The inclusion particles used in this experimental work were produced in our laboratory and their production technique is explained in detail. Even though the particles had irregular shapes, there was no rotation observed. Further, the total dissolution time decreased with increasing temperature and decreasing SiO2 content in the slag. The rate limiting steps are discussed in terms of shrinking core models and diffusion into a stagnant fluid model. It is shown that the rate limiting step for dissolution is mass transfer in the slag at 1823 K and 1873 K (1550 °C and 1600 °C). Further investigations are required to determine the dissolution mechanism at 1773 K (1500 °C). The calculated diffusion coefficients were inversely proportional to the slag viscosity and the obtained values for the systems studied ranged between 5.64 × 10-12 and 5.8 × 10-10 m2/s.

  2. A possible link between Balkan endemic nephropathy and the leaching of toxic organic compounds from Pliocene lignite by groundwater: Preliminary investigation

    USGS Publications Warehouse

    Orem, W.H.; Feder, G.L.; Finkelman, R.B.

    1999-01-01

    Balkan endemic nephropathy (BEN) is a fatal kidney disease that is known to occur only in clusters of villages in alluvial valleys of tributaries of the Danube River in Bulgaria, Romania, Yugoslavia, Bosnia, and Croatia. The confinement of this disease to a specific geographic area has led to speculation that an environmental factor may be involved in the etiology of BEN. Numerous environmental factors have been suggested as causative agents for producing BEN, including toxic metals in drinking water, metal deficiency in soils of BEN areas, and environmental mycotoxins to name a few. These hypotheses have either been disproved or have failed to conclusively demonstrate a connection to the etiology of BEN, or the clustering of BEN villages. In previous work, we observed a distinct geographic relationship between the distribution of Pliocene lignites in the Balkans and BEN villages. We hypothesized that the long-term consumption of well water containing toxic organic compounds derived from the leaching of nearby Pliocene lignites by groundwater was a primary factor in the etiology of BEN. In our current work, chemical analysis using 13C nuclear magnetic resonance (13CNMR) spectroscopy indicated a high degree of organic functionality in Pliocene lignite from the Balkans, and suggested that groundwater can readily leach organic matter from these coal beds. Semi-quantitative gas chromatography/mass spectroscopy analysis of solvent extracts of groundwater from shallow wells in BEN villages indicated the presence of potentially toxic aromatic compounds, such as napthalene, fluorene, phenanthrene, and pyrene at concentrations in the ppb range. Laboratory leaching of Balkan Pliocene lignites with distilled water yielded soluble organic matter (> 500 MW) containing large amounts of aromatic structures similar to the simple/discrete aromatic compounds detected in well water from BEN villages. These preliminary results are permissive of our hypothesis and suggest that further

  3. Multiple model approach to evaluation of accelerated carbonation for steelmaking slag in a slurry reactor.

    PubMed

    Pan, Shu-Yuan; Liu, Hsing-Lu; Chang, E-E; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-07-01

    Basic oxygen furnace slag (BOFS) exhibits highly alkaline properties due to its high calcium content, which is beneficial to carbonation reaction. In this study, accelerated carbonation of BOFS was evaluated under different reaction times, temperatures, and liquid-to-solid (L/S) ratios in a slurry reactor. CO2 mass balance within the slurry reactor was carried out to validate the technical feasibility of fixing gaseous CO2 into solid precipitates. After that, a multiple model approach, i.e., theoretical kinetics and empirical surface model, for carbonation reaction was presented to determine the maximal carbonation conversion of BOFS in a slurry reactor. On one hand, the reaction kinetics of BOFS carbonation was evaluated by the shrinking core model (SCM). Calcite (CaCO3) was identified as a reaction product through the scanning electronic microscopy and X-ray diffraction analyses, which provided the rationale of applying the SCM in this study. The rate-limiting step of carbonation was found to be ash-diffusion controlled, and the effective diffusivity for carbonation of BOFS in a slurry reactor were determined accordingly. On the other hand, the carbonation conversion of BOFS was predicted by the response surface methodology (RSM) via a nonlinear mathematical programming. According to the experimental data, the highest carbonation conversion of BOFS achieved was 57% under an L/S ratio of 20 mL g(-1), a CO2 flow rate of 0.1 L min(-1), and a pressure of 101.3 kPa at 50 °C for 120 min. Furthermore, the applications and limitations of SCM and RSM were examined and exemplified by the carbonation of steelmaking slags. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The Influence of Sulfur on Dephosphorization Kinetics Between Bloated Metal Droplets and Slag Containing FeO

    NASA Astrophysics Data System (ADS)

    Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.

    2017-10-01

    The bloating behavior of metal droplets and the dephosphorization behavior of bloated droplets at 1853 K (1580 °C) were investigated using X-ray fluoroscopy coupled with constant volume pressure change measurements and chemical analysis of quenched samples. The effect of sulfur content on dephosphorization kinetics was studied during the decarburization period. The slag foamed during the reaction forming a foamy layer over a dense layer. After a short incubation period, the droplets became bloated due to internal decarburization. The bloated droplets floated from the dense slag into the foamy slag. The behavioral changes are directly related to the effect of sulfur on the incubation time for swelling. The dephosphorization reaction was very fast; droplets with low sulfur contents experienced phosphorus reversion shortly after entering the foamy slag, while those with higher sulfur content took a longer time to swell and went through reversion before they entered the foam. The dephosphorization rate and maximum phosphorus partition were higher at lower CO evolution rates because the dynamic interfacial oxygen potential increased with the decreasing oxygen consumption rate. The rate controlling step for dephosphorization was initially a combination of mass transport in both the metal and the slag. As the iron oxide in the slag was depleted, the rate control shifted to mass transport in slag.

  5. Case cluster of pneumoconiosis at a coal slag processing facility.

    PubMed

    Fagan, Kathleen M; Cropsey, Erin B; Armstrong, Jenna L

    2015-05-01

    During an inspection by the Occupational Safety and Health Administration (OSHA) of a small coal slag processing plant with 12 current workers, four cases of pneumoconiosis were identified among former workers. The OSHA investigation consisted of industrial hygiene sampling, a review of medical records, and case interviews. Some personal sampling measurements exceeded the OSHA Permissible Exposure Limit (PEL) for total dust exposures of 15 mg/m(3), and the measured respirable silica exposure of 0.043 mg/m(3), although below OSHA's current PEL for respirable dust containing silica, was above the American Conference of Governmental Industrial Hygienists' Threshold Limit Value (TLV). Chest x-rays for all four workers identified small opacities consistent with pneumoconiosis. This is the first known report of lung disease in workers processing coal slag and raises concerns for workers exposed to coal slag dust. © 2015 Wiley Periodicals, Inc.

  6. Vanadium removal from LD converter slag using bacteria and fungi.

    PubMed

    Mirazimi, S M J; Abbasalipour, Z; Rashchi, F

    2015-04-15

    Removal of vanadium from Linz-Donawits (LD) converter slag was investigated by means of three different species of microbial systems: Acidithiobacillus thiooxidans (autotrophic bacteria), Pseudomonas putida (heterotrophic bacteria) and Aspergillus niger (fungi). The bioleaching process was carried out in both one-step and two-step process and the leaching efficiencies in both cases were compared. Formation of inorganic and organic acids during the leaching process caused mobilization of vanadium. In order to reduce toxic effects of the metal species on the above mentioned microorganisms, a prolonged adaptation process was performed. Both bacteria, A. thiooxidans and P. putida were able to remove more than 90% of vanadium at slag concentrations of 1-5 g L(-1) after 15 days. Also, the maximum achievable vanadium removal in the fungal system was approximately 92% at a slag concentration of 1 g L(-1) after 22 days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effects of Temperature, Oxygen Partial Pressure, and Materials Selection on Slag Infiltration into Porous Refractories for Entrained-Flow Gasifiers

    NASA Astrophysics Data System (ADS)

    Kaneko, Tetsuya Kenneth

    The penetration rate of molten mineral contents (slag) from spent carbonaceous feedstock into porous ceramic-oxide refractory linings is a critical parameter in determining the lifecycle of integrated gasification combined cycle energy production plants. Refractory linings that withstand longer operation without interruption are desirable because they can mitigate consumable and maintenance costs. Although refractory degradation has been extensively studied for many other high-temperature industrial processes, this work focuses on the mechanisms that are unique to entrained-flow gasification systems. The use of unique feedstock mixtures, temperatures from 1450 °C to 1600 °C, and oxygen partial pressures from 10-7 atm to 10-9 atm pose engineering challenges in designing an optimal refractory material. Experimentation, characterization, and modeling show that gasifier slag infiltration into porous refractory is determined by interactions between the slag and the refractory that either form a physical barrier that impedes fluid flow or induce an increased fluid viscosity that decelerates the velocity of the fluid body. The viscosity of the slag is modified by the thermal profile of the refractory along the penetration direction as well as reactions between the slag and refractory that alter the chemistry, and thereby the thermo-physical properties of the fluid. Infiltration experiments reveal that the temperature gradient inherently present along the refractory lining limits penetration. A refractory in near-isothermal conditions demonstrates deeper slag penetration as compared to one that experiences a steeper thermal profile. The decrease in the local temperatures of the slag as it travels deeper into the refractory increases the viscosity of the fluid, which in turn slows the infiltration velocity of fluid body into the pores of the refractory microstructure. With feedstock mixtures that exhibit high iron-oxide concentrations, a transition-metal-oxide, the oxygen

  8. Interfacial Tension in the CaO-Al2O3-SiO2-(MgO) Liquid Slag-Solid Oxide Systems

    NASA Astrophysics Data System (ADS)

    Abdeyazdan, Hamed; Monaghan, Brian J.; Longbottom, Raymond J.; Rhamdhani, M. Akbar; Dogan, Neslihan; Chapman, Michael W.

    2017-08-01

    Interfacial phenomenon is critical in metal processing and refining. While it is known to be important, there are little data available for key oxide systems in the literature. In this study, the interfacial tension ( σ LS) of liquid slag on solid oxides (alumina, spinel, and calcium aluminate), for a range of slags in the CaO-Al2O3-SiO2-(MgO) system at 1773 K (1500 °C), has been evaluated. The results show that basic ladle-type slags exhibit lower σ LS with oxide phases examined compared to that of acid tundish-type slags. Also, within the slag types (acid and base), σ LS was observed to decrease with increasing slag basicity. A correlation between σ LS and slag structure was observed, i.e., σ LS was found to decrease linearly with increasing of slag optical basicity (Λ) and decrease logarithmically with decreasing of slag viscosity from acid to base slags. This indicated a higher σ LS as the ions in the slag become larger and more complex. Through a work of adhesion ( W) analysis, it was shown that basic ladle slags with lower σ LS result in a greater W, i.e., form a stronger bond with the solid oxide phases examined. This indicates that all other factors being equal, the efficiency of inclusion removal from steel of inclusions of similar phase to these solid oxides would be greater.

  9. Development of novel ash hybrids to introgress resistance to emerald ash borer into north American ash species

    Treesearch

    Jennifer L. Koch; David W. Carey; Mary E. Mason

    2008-01-01

    Currently, there is no evidence that any of the native North American ash species have any resistance to the emerald ash borer (EAB). This means that the entire ash resource of the eastern United States and Canada is at risk of loss due to EAB. In contrast, outbreaks of EAB in Asian ash species are rare and appear to be isolated responses to stress (Bauer et al. 2005,...

  10. Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yio, M.H.N., E-mail: marcus.yio11@imperial.ac.uk; Phelan, J.C.; Wong, H.S.

    2014-02-15

    A method for determining the original mix composition of hardened slag-blended cement-based materials based on analysis of backscattered electron images combined with loss on ignition measurements is presented. The method does not require comparison to reference standards or prior knowledge of the composition of the binders used. Therefore, it is well-suited for application to real structures. The method is also able to calculate the degrees of reaction of slag and cement. Results obtained from an experimental study involving sixty samples with a wide range of water/binder (w/b) ratios (0.30 to 0.50), slag/binder ratios (0 to 0.6) and curing ages (3more » days to 1 year) show that the method is very promising. The mean absolute errors for the estimated slag, water and cement contents (kg/m{sup 3}), w/b and s/b ratios were 9.1%, 1.5%, 2.5%, 4.7% and 8.7%, respectively. 91% of the estimated w/b ratios were within 0.036 of the actual values. -- Highlights: •A new method for estimating w/b ratio and slag content in cement pastes is proposed. •The method is also able to calculate the degrees of reaction of slag and cement. •Reference standards or prior knowledge of the binder composition are not required. •The method was tested on samples with varying w/b ratios and slag content.« less

  11. Effect of co-combustion on the burnout of lignite/biomass blends: a Turkish case study.

    PubMed

    Haykiri-Acma, H; Yaman, S

    2008-11-01

    Co-combustion of Turkish Elbistan lignite and woody shells of hazelnut was performed in a TGA up to 1173 K with a heating rate of 20 K/min. SEM images of each fuel revealed the differences in their physical appearances. Hazelnut shell was blended with lignite in the range of 2-20 wt% to observe the co-combustion properties. Maximum burning rates (Rmax), temperatures of the maximum burning rates (T(R-max)), and the final burnout values of the parent samples and the blends were compared. The results were interpreted considering lignite properties and the major biomass ingredients such as cellulosics, hemicellulosics, and lignin. Deviations between the theoretical and experimental burnout values were evaluated at various temperatures. Burnout characteristics of the blends up to 10 wt% were concluded to have a synergistic effect so the addition of hazelnut shell up to 8 wt% provided higher burnouts than the expected theoretical ones, whereas addition of as much as 10 wt% led to a decrease in the burnout. However, the additive effects were more favorable for the blend having a biomass content of 20 wt%. Apparent activation energy, Rmax, and T(R-max), were found to follow the additive behavior for the blend samples.

  12. The Effect of CaO on Gas/Slag/Matte/Tridymite Equilibria in Fayalite-Based Copper Smelting Slags at 1473 K (1200 °C) and P(SO2) = 0.25 Atm

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2018-04-01

    Fundamental experimental studies have been undertaken to determine the effect of CaO on the equilibria between the gas phase (CO/CO2/SO2/Ar) and slag/matte/tridymite phases in the Cu-Fe-O-S-Si-Ca system at 1473 K (1200 °C) and P(SO2) = 0.25 atm. The experimental methodology developed in the Pyrometallurgy Innovation Centre was used. New experimental data have been obtained for the four-phase equilibria system for fixed concentrations of CaO (up to 4 wt pct) in the slag phase as a function of copper concentration in matte, including the concentrations of dissolved sulfur and copper in slag, and Fe/SiO2 ratios in slag at tridymite saturation. The new data provided in the present study are of direct relevance to the pyrometallurgical processing of copper and will be used as an input to optimize the thermodynamic database for the copper-containing multi-component multi-phase system.

  13. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    PubMed

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant. Copyright © 2014 John Wiley & Sons, Ltd.

  14. A pilot-scale study of wet torrefaction treatment for upgrading palm oil empty fruit bunches as clean solid fuel

    NASA Astrophysics Data System (ADS)

    Gusman, M. H.; Sastroredjo, P. N. E.; Prawisudha, P.; Hardianto, T.; Pasek, A. D.

    2017-05-01

    Less utilized empty fruit bunch (EFB) is seldom used as solid biofuel due to its high alkali content that potentially cause ash deposit called slagging and fouling. This phenomenon could harm biomass-fired power plant equipment. Some pre-treatment of EFB is needed to reduce EFB ash deposit potential. The effect of wet torrefaction pre-treatment in laboratory scale was successfully proven in decreasing slagging and fouling potential while increasing EFB calorific value that could fulfill clean solid fuel criteria. This research focuses on wet torrefaction process that conducted on a pilot scale with the capacity of 250 liters. It was found that wet torrefaction process can improve the product’s calorific value up to 9.41% while reduce its ash content down to 1.01% comparing to the raw EFB. The reduction of ash content also leads to the reduction of slagging and fouling tendency that presents in terms of alkali index. Alkali index is a quantitative method that can be calculated after obtaining metal oxides fraction on solid fuel. Metal oxides could be obtained by using energy dispersive x-ray spectroscopy.

  15. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.

    PubMed

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Kříbek, Bohdan; Mapani, Ben

    2017-02-01

    The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mineralogical determination and geo-chemical modeling of chromium release from AOD slag: Distribution and leachability aspects.

    PubMed

    Li, Junguo; Liu, Bao; Zeng, Yanan; Wang, Ziming

    2017-01-01

    AOD (argon oxygen decarburization) slag, which is the by-product of the stainless steel refining process, is a recyclable slag because of its high content of calcium and silicon. The leaching toxicity cannot be ignored in the recycling process because the slag contains a certain amount of Cr. In this study, the mineral analysis, batch leaching tests and thermodynamic and kinetic modeling by PHREEQC combined with FactSage software were performed to explore the influence of the dissolution of primary minerals and the precipitation of secondary minerals on the elution of Cr from AOD slag. The results indicated that the main minerals in the original AOD slag are larnite, merwinite, pyroxene and periclase. Cr was dispersed in the mineral phases mentioned above. The simulation of Cr leaching controlled by Cr(III)-hydroxide corresponded better to the batch leaching tests, while the Cr leaching controlled by chromite or double control was underestimated. Increasing the L/S ratio enhances the pH of the leachate and restrains the elution of Cr from the AOD slag. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Limitations and plausibility of the Pliocene lignite hypothesis in explaining the etiology of Balkan endemic nephropathy

    PubMed Central

    Maharaj, S V M

    2014-01-01

    Background: Balkan endemic nephropathy (BEN) is a chronic, tubulointerstitial renal disease often accompanied by urothelial cancer that has a lethality of nearly 100%. Introduction: One of the many factors that have been proposed to play an etiological role in BEN is exposure to organic compounds from Pliocene lignite coal deposits via the drinking water in endemic areas. Objectives: The objective of this study was to systematically evaluate the role of the tenets of the Pliocene lignite hypothesis in the etiology of BEN in order to provide an improved understanding of the hypothesis for colleagues and patients alike. Methods: A comprehensive compilation of the possible limitations of the hypothesis, with each limitation addressed in turn is presented. Results: The Pliocene lignite hypothesis can best account for, is consistent with, or has the potential to explain the evidence associated with the myriad of factors related to BEN. Conclusions: Residents of endemic areas are exposed to complex mixtures containing hundreds of organic compounds at varying doses and their potentially more toxic (including nephrotoxic) and/or carcinogenic metabolites; however, a multifactorial etiology of BEN appears most likely. PMID:24075451

  18. Leaching behavior of rare earth elements in fort union lignite coals of North America

    DOE PAGES

    Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane; ...

    2018-03-30

    Fort Union lignite coal samples were subjected to a series of aqueous leaching experiments to understand the extraction behavior of the rare earth elements (REE). This testing was aimed at understanding the modes of occurrence of the REE in the lignite coals, as well as to provide foundational data for development of rare earth extraction processes. In a first series of tests, a sequential leaching process was used to investigate modes of occurrence of the REE of select lignite coals. The tests involved sequential exposure to solvents consisting of water, ammonium acetate and dilute hydrochloric acid (HCl). The results indicatedmore » that water and ammonium acetate extracted very little of the REE, indicating the REE are not present as water soluble or ion-exchangeable forms. However, the data shows that a large percentage of the REE were extracted with the hydrochloric acid (80–95 wt%), suggesting presence in HCl-soluble mineral forms such as carbonates, and/or presence as organic complexes. A second series of tests was performed involving single-step leaching with dilute acids and various operating parameters, including acid type, acid concentration, acid/coal contact time and coal particle size. For select samples, additional tests were performed to understand the results of leaching, including float-sink density separations and humic acid extraction. The results have shown that the majority of REE in Fort Union lignites appear to be associated weakly with the organic matrix of the coals, most likely as coordination complexes of carboxylic acid groups. The light REE and heavy REE exhibit different behaviors, however. The extractable light REE appear to have association both in acid-soluble mineral forms and as organic complexes, whereas the extractable heavy REE appear to be almost solely associated with the organics. In conclusion, scandium behavior was notably different than yttrium and the lanthanides, and the data suggests the extractable content is

  19. Leaching behavior of rare earth elements in fort union lignite coals of North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane

    Fort Union lignite coal samples were subjected to a series of aqueous leaching experiments to understand the extraction behavior of the rare earth elements (REE). This testing was aimed at understanding the modes of occurrence of the REE in the lignite coals, as well as to provide foundational data for development of rare earth extraction processes. In a first series of tests, a sequential leaching process was used to investigate modes of occurrence of the REE of select lignite coals. The tests involved sequential exposure to solvents consisting of water, ammonium acetate and dilute hydrochloric acid (HCl). The results indicatedmore » that water and ammonium acetate extracted very little of the REE, indicating the REE are not present as water soluble or ion-exchangeable forms. However, the data shows that a large percentage of the REE were extracted with the hydrochloric acid (80–95 wt%), suggesting presence in HCl-soluble mineral forms such as carbonates, and/or presence as organic complexes. A second series of tests was performed involving single-step leaching with dilute acids and various operating parameters, including acid type, acid concentration, acid/coal contact time and coal particle size. For select samples, additional tests were performed to understand the results of leaching, including float-sink density separations and humic acid extraction. The results have shown that the majority of REE in Fort Union lignites appear to be associated weakly with the organic matrix of the coals, most likely as coordination complexes of carboxylic acid groups. The light REE and heavy REE exhibit different behaviors, however. The extractable light REE appear to have association both in acid-soluble mineral forms and as organic complexes, whereas the extractable heavy REE appear to be almost solely associated with the organics. In conclusion, scandium behavior was notably different than yttrium and the lanthanides, and the data suggests the extractable content is

  20. Dissolution Behaviour of Hazardous Materials from Steel Slag with Wet Grinding Method

    NASA Astrophysics Data System (ADS)

    Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji

    2016-06-01

    Steel slag is a by-product from steel industry and it contains variety of hazardous materials. In this study, the dissolution behaviour and removal potential of hazardous materials from steel slag with the wet grinding method was investigated. The slag was wet ground in the CO2 atmosphere and the slurry produced was filtered using centrifugal separator to separate the liquid and solid sediments. Then, the concentrations of dissolved metal elements in the liquid sediment were analyzed by ICP-MS. The changes of pH during the grinding were also investigated. It was found that the pHs were decreased immediately after the CO2 gas introduced into the vessel. The pHs were ranging from 6.8 to 7.6 at the end of grinding. The dissolved concentration of Zn and Cr were ranging from 5~45 [mg/dm3] and 0.2~2.5 [mg/dm3] respectively. The ratios of Zn removal for stainless steel oxidizing and reducing slag were very high, but those from normal steel oxidizing and reducing slag were very low. It is assumed that the Zn dissolved as ZnOH+ from Zn(OH)2 that formed due to the reaction between ZnO and water. Dissolution of Cr also occurred but in very low quantity compared to the dissolution of Zn. The dissolution of Cr occurred due to the grinding process and small amount of Cr(OH)3 was formed during the grinding. This small formation of Cr(OH)3 resulted to the low dissolved concentration of Cr in the form of Cr(OH)2+. According to the XRD analysis, the Cr mostly existed in the slags as Cr(IIl) in the form of MgCr2O4 and FeCr2O4.

  1. Correlation of Slag Expulsion with Ballistic Anomalies in Shuttle Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Sambamurthi, Jay K.; Alvarado, Alexis; Mathias, Edward C.

    1996-01-01

    During the Shuttle launches, the solid rocket motors (SRM) occasionally experience pressure perturbations (8-13 psi) between 65-75 s into the motor burn time. The magnitudes of these perturbations are very small in comparison with the operating motor chamber pressure, which is over 600 psi during this time frame. These SRM pressure perturbations are believed to he caused primarily by the expulsion of slag (aluminum oxide). Two SRM static tests, TEM-11 and FSM-4, were instrumented extensively for the study of the phenomena associated with pressure perturbations. The test instrumentation used included nonintrusive optical and infrared diagnostics of the plume, such as high-speed photography, radiometers, and thermal image cameras. Results from all of these nonintrusive observations provide substantial circumstantial evidence to support the scenario that the pressure perturbation event in the Shuttle SRM is caused primarily by the expulsion of molten slag. In the static motor tests, the slag was also expelled preferentially near the bottom of the nozzle because of slag accumulation at the bottom of the aft end of the horizontally oriented motor.

  2. Foaming Index of CaO-SiO2-FeO-MgO Slag System

    NASA Astrophysics Data System (ADS)

    Park, Youngjoo; Min, Dong Joon

    A study on the effect of FeO and MgO content on foaming index in EAF slag system was carried out. The height of the slag foam was measured by electric probe maintaining steady state in gas formation and escape. Foaming index, which is the measurement of gas capturing potential of the slag, is calculated from the foam height and gas flow rate. Viscosity and surface tension, which are the key properties for the foaming index, are calculated by Urbain's model and additive method, respectively. Dimensional analysis also performed to determine the dominancy of properties and resulted that the important factor was a ratio between viscosity and surface tension. The effect of each component on the viscosity, surface tension and foaming index of the slag is evaluated to be in strong relationship.

  3. Electrolytic Reduction of Titania Slag in Molten Calcium Chloride Bath

    NASA Astrophysics Data System (ADS)

    Mohanty, Jayashree

    2012-05-01

    Ferro-titanium is prepared by direct electrolytic reduction of titania-rich slag obtained from plasma smelting of ilmenite in molten CaCl2. The product after electro-reduction is characterized by x-ray diffraction, scanning electron microscopy, and electron probe microanalysis. The electrolysis is carried out at a cell voltage of 3.0 V, taking graphite as the electrolysis cell as well as the anode, and a titania-rich slag piece wrapped by a nichrome wire is used as the cathode.

  4. Experimental study of dissolution of minerals and CO2 sequestration in steel slag.

    PubMed

    Yadav, Shashikant; Mehra, Anurag

    2017-06-01

    This study strives to achieve a substantial amount of steel slag carbonation without using any harmful chemicals. For this purpose, experiments were performed in an aqueous medium, in a semi-batch reactor, to investigate the effect of varying reaction conditions during the steel slag CO 2 sequestration process. Further, studying the effect of dissolution on carbonation reactions and the mineralogical changes that subsequently occur within the slag helps provide insight into the parameters that ultimately have an impact on the carbonation rate as well the magnitude of the impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking.

    PubMed

    Yang, Gordon C C; Chuang, Tsun-Nan; Huang, Chien-Wen

    2017-04-01

    The main objective of this work was to promote zero waste of municipal incinerator fly ash (MIFA) by full-scale melting in electric arc furnaces (EAFs) of steel mini mills around the world. MIFA, generally, is considered as a hazardous waste. Like in many countries, MIFA in Taiwan is first solidified/stabilized and then landfilled. Due to the scarcity of landfill space, the cost of landfilling increases markedly year by year in Taiwan. This paper presents satisfactory results of treating several hundred tons of MIFA in a full-scale steel mini mill using the approach of "melting MIFA while EAF steelmaking", which is somewhat similar to "molten salt oxidation" process. It was found that this practice yielded many advantages such as (1) about 18wt% of quicklime requirement in EAF steelmaking can be substituted by the lime materials contained in MIFA; (2) MIFA would totally end up as a material in fractions of recyclable EAF dust, oxidized slag and reduced slag; (3) no waste is needed for landfilling; and (4) a capital cost saving through the employment of existing EAFs in steel mini mills instead of building new melting plants for the treatment of MIFA. Thus, it is technically feasible to achieve zero waste of MIFA by the practice of this innovative melting technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Differential utilization of ash phloem by emerald ash borer larvae: Ash species and larval stage effects

    Treesearch

    Yigen Chen; Michael D. Ulyshen; Therese M. Poland

    2012-01-01

    Two experiments were performed to determine the extent to which ash species (black, green and white) and larval developmental stage (second, third and fourth instar) affect the efficiency of phloem amino acid utilization by emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae. EAB larvae generally utilized green ash...

  7. Study of PCDD/Fs distribution in fly ash, ash deposits, and bottom ash from a medical waste incinerator in China.

    PubMed

    Du, Yingzhe; Jin, Yuqi; Lu, Shengyong; Peng, Zheng; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Over the past decades in China, the number of medical waste incinerators (MWIs) has been rising rapidly, causing emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, samples of fly ash, ash deposits, and bottom ash from typical MWIs were analyzed for PCDD/Fs and their distribution characteristics. Results showed international toxic equivalent (I-TEQ) values in the range of 6.9-67 ng I-TEQ/g in fly ash and ash deposits, whereas the concentration in bottom ash was extremely low (only 1.33 pg I-TEQ/g), yet the generation of PCDD/Fs was mostly de novo synthesis in fly ash and ash deposits according to the ratio of PCDFs to PCDDs; the major distribution differences of PCDD/Fs in fly ash was manifested by the content of toxic furan 2,3,7,8-TCDF but other toxic PCDD/Fs showed similar distribution. Other findings are that 2,3,4,7,8-PeCDF had the most contribution to TEQ concentration, and that the most abundant toxic furan congener is 1,2,3,4,6,7,8-HpCDF. Correlation analysis showed that there was no significant correlation between PCDD/Fs concentration and several other physical and chemical parameters. This paper is of interest because it presents the emission performances of PCDD/Fs in ash from medical waste incineration in China. PCDD/F contents in fly ash and ash deposits vary between 6.9 and 67.3 ng I-TEQ/g. However, the concentration in bottom ash was extremely low (only 1.33 x 10(-3) ng I-TEQ/g). The fingerprints of PCDD/Fs in fly ash are almost similar, except for 2,3,7,8-TCDF. There is no marked correlation between PCDD/Fs and other physicochemical properties.

  8. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    PubMed

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  9. Physical and computational studies of slag behavior in an entrained flow gasifier

    NASA Astrophysics Data System (ADS)

    Pummill, Randy

    This work details an investigation of how to modify slag flow so as to maintain a clear line of sight across the reaction section of an entrained-flow coal gasifier. Physical and computational models were developed to study methods of diverting the molten slag that flows vertically down the walls of the reactor. The physical models employed silicone oil of varying viscosity. The computational models were developed using the Fluent software package. Based on the insight gained from the results of the models, two devices were created and tested in a pilot scale gasifier located at the University of Utah. The first method of slag diversion studied employed a gas jet to impact the slag film and cause it to flow around a sight port in the gasifier wall. By studying the film and jet interactions, it was discovered that the resulting behavior of such a system can be described by a dimensionless ratio of the kinetic energy of the jet and the surface energy of the film. The development of the dimensionless number, called a Lotte number in this work, is presented in detail. Generally, viscous films will be broken by a jet when the Lotte number is greater than 5 and will reclose when the Lotte number falls below a value of 1.5. The second slag diversion method studied used a round alumina tube protruding horizontally into the reaction section to break up the film. As the film impacts the tube, it progresses horizontally along the length of the tube before resuming the downward flow. The models helped to establish how far the tube should protrude into the reactor in order to successfully break up the slag flow. Slag diversion devices were constructed and installed on a pilot scale gasifier. The jet diversion method was found to require an unreasonably large amount of purge gas to be successful and the metal jet suffered from the high temperature of the reactor despite the cooling effect of the gas. The tube diversion method worked very well for a series of experiments. However

  10. Simulation of past exposure in slag wool production.

    PubMed

    Fallentin, B; Kamstrup, O

    1993-08-01

    A survey of the working conditions at a Danish slag wool production factory during the early technological phase in the 1940s is presented. No exposure data, however, are available for that period. So, a full-scale simulation of the past production of slag wool has been performed. Air monitoring was carried out in the working area around the cupola furnace. The aim was to measure exposure to air pollutants other than fibres. Such exposure might have confounded a possible association between lung cancer and exposure to fibres, in the early technological phase of slag wool production. The simulation experiment demonstrated exposure to PAH, a known lung carcinogen. The effect of other concurrent exposures is difficult to assess. Time-weighted average concentrations of particulate material ranged between 12.9 and 49.1 mg m-3 at the upper decks around the cupola. Corresponding concentrations of the dominant metals zinc and lead were 4.4-22.7 mg Zn m-3 and 0.9-4.7 mg Pb m-3. Significant concentrations of PAH up to 269 micrograms PAH m-3 (4 micrograms BaP m-3) occurred during ignition of the cupola furnace. The carbon monoxide level reached 270 ppm also during ignition.

  11. Nonisothermal Carbothermal Reduction Kinetics of Titanium-Bearing Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Hu, Mengjun; Wei, Ruirui; Hu, Meilong; Wen, Liangying; Ying, Fangqing

    2018-05-01

    The kinetics of carbothermal reduction of titanium-bearing blast furnace (BF) slag has been studied by thermogravimetric analysis and quadrupole mass spectrometry. The kinetic parameters (activation energy, preexponential factor, and reaction model function) were determined using the Flynn-Wall-Ozawa and Šatava-Šesták methods. The results indicated that reduction of titanium-bearing BF slag can be divided into two stages, namely reduction of phases containing iron and gasification of carbon (< 1095°C), followed by reduction of phases containing titanium (> 1095°C). CO2 was the main off-gas in the temperature range of 530-700°C, whereas CO became the main off-gas when the temperature was greater than 900°C. The activation energy calculated using the Flynn-Wall-Ozawa method was 221.2 kJ/mol. D4 is the mechanism function for carbothermal reduction of titanium-bearing BF slag. Meanwhile, a nonisothermal reduction model is proposed based on the obtained kinetic parameters.

  12. Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth

    NASA Astrophysics Data System (ADS)

    Liu, Yan-xiang; Zhang, Jian-liang; Wang, Zhi-yu; Jiao, Ke-xin; Zhang, Guo-hua; Chou, Kuo-chih

    2017-02-01

    To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces, experiments were carried out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content. The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%, whereas it increases when the FeO content exceeds 10wt%. Meanwhile, the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%. Moreover, slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke. The slag/coke interface is divided into three layers: slag layer, iron-rich layer, and coke layer. TiO2 in the slag is reduced by carbon, and the generated Ti diffuses into iron.

  13. Basalt Fiber for Volcanic Slag Lightweight Aggregate Concrete Research on the Impact of Performance

    NASA Astrophysics Data System (ADS)

    Xiao, Li-guang; Li, Gen-zhuang

    2018-03-01

    In order to study the effect of basalt fiber on the mechanical properties and durability of volcanic slag lightweight aggregate concrete, the experimental study on the flexural strength, compressive strength and freeze-thaw resistance of volcanic slag concrete with different basalt fiber content were carried out, the basalt fiber was surface treated with NaOH and water glass, the results show that the surface treatment of basalt fiber can significantly improve the mechanical properties, durability and other properties of volcanic slag lightweight aggregate concrete.

  14. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.

    PubMed

    Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong

    2016-02-16

    A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.

  15. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    PubMed

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  16. Effects of slag on flexural strength of slurry infiltrated fibrous concrete

    NASA Astrophysics Data System (ADS)

    Elavarasi, D.; Saravana Raja Mohan, K.; Parthasarathy, P.; Dinesh, T.

    2017-07-01

    Slurry infiltrated fibrous concrete is one of the new advanced concrete composite which differs from method of fabrication and composition of the matrix. Extensive research is being carried out on alternative binders or supplements to cement aiming to reduce environmental impact. However, little has been published to investigate the structural behaviour of SIFCON incorporating with mineral admixtures, particularly as regards its ultrahigh ductility, which may alter the mode of failure from brittle to the more desirable ductile. An experimental study was carried out to investigate the flexural behavior of SIFCON containing three different percentage of fibre content 6%,8% &10% with incorporation of optimum dosage of blast furnace slag replaced by cement. Strength characteristics such as Compressive strength and splitting tensile strength test were carry out for SIFCON incorporating 10% of fibre content and different percentage of slag (0, 15, 30, 45, 60%&75%) to optimize the replacement level. The test results found that the maximum strengths were attained at 30% of blast furnace slag replaced by cement. To study the flexural behavior of SIFCON beam of size 1.2x0.1x0.2m containing different percentages (6%, 8% & 10%) fibre content incorporating with and without the optimum percentage of slag were cast and tested. Both flexural strength and Load displacement characteristics of the specimens were studied under flexure. The outcomespresentedfromtest resultshave been compared. The test results reveals that the flexural strength, toughness, ductility and stiffness characteristics were significantly improved due to incorporation of optimum dosage of slag enhancing when compared to without mineral admixtures also compared to conventional concrete(RCC). Major conclusions were drawn from the investigations which are presented.

  17. Host resistance to emerald ash borer: development of novel ash hybrids

    Treesearch

    Jennifer L. Koch; David W. Carey; Richard Larson

    2007-01-01

    In contrast to the rapid destruction of ash trees in the United States by emerald ash borer (EAB, Agrilus planipennis Fairmaire), outbreaks of EAB in Asia appear to be isolated responses to stress, such as drought, and do not devastate the ash population. This indicates that in Asia, ash trees may have a level of inherent resistance. This resistance...

  18. Potential of fly ash for neutralisation of acid mine drainage.

    PubMed

    Qureshi, Asif; Jia, Yu; Maurice, Christian; Öhlander, Björn

    2016-09-01

    Lignite (PK), bituminous (FI) and biomass (SE) fly ashes (FAs) were mineralogically and geochemically characterised, and their element leachability was studied with batch leaching tests. The potential for acid neutralisation (ANP) was quantified by their buffering capacity, reflecting their potential for neutralisation of acid mine drainage. Quartz was the common mineral in FAs detected by XRD with iron oxide, anhydrite, and magnesioferrite in PK, mullite and lime in FI, and calcite and anorthite in SE. All the FAs had high contents of major elements such as Fe, Si, Al and Ca. The Ca content in SE was six and eight times higher compared to PK and FI, respectively. Sulphur content in PK and SE was one magnitude higher than FI. Iron concentrations were higher in PK. The trace element concentrations varied between the FAs. SE had the highest ANP (corresponding to 275 kg CaCO3 tonne(-1)) which was 15 and 10 times higher than PK and FI, respectively. The concentrations of Ca(2+), SO4 (2-), Na(+) and Cl(-) in the leachates were much higher compared to other elements from all FA samples. Iron, Cu and Hg were not detected in any of the FA leachates because of their mild to strong alkaline nature with pH ranging from 9 to 13. Potassium leached in much higher quantity from SE than from the other ashes. Arsenic, Mn and Ni leached from PK only, while Co and Pb from SE only. The concentrations of Zn were higher in the leachates from SE. The FAs used in this study have strong potential for the neutralisation of AMD due to their alkaline nature. However, on the other hand, FAs must be further investigated, with scaled-up experiments before full-scale application, because they might leach pronounced concentrations of elements of concern with decreasing pH while neutralising AMD.

  19. Temporal dissolution of potentially toxic elements from silver smelting slag by synthetic environmental solutions.

    PubMed

    Ash, Christopher; Borůvka, Luboš; Tejnecký, Václav; Šebek, Ondřej; Nikodem, Antonín; Drábek, Ondřej

    2013-11-15

    Waste slag which is created during precious metal smelting contains high levels of potentially toxic elements (PTE) which can be mobilised from unconfined deposits into the local environment. This paper examines the extractability of selected PTE (Pb, Zn, Cd, Mn) from slag samples by synthetic solutions designed to replicate those in the environment. Extracting agents were used to replicate potential leaching scenarios which are analogous to natural chemical weathering. Slag was submersed in a rainwater simulation solution (RSS), weak citric acid solution (representing rhizosphere secretions) and control solutions (deionised water) for a one month period with solution analyses made at intervals of 1, 24, 168 and 720 h. In 1 mM citric acid, dissolution of Cd and Zn showed little change with time, although for Zn the initial dissolution was considerable. Lead in citric acid was characterized by overall poor extractability. Mn solubility increased until an equilibrium state occurred within 24 h. The solubility of studied metals in citric acid can be characterized by a short time to equilibrium. RSS proved to be an effective solvent that, unlike citric acid solution, extracted increasing concentrations of Cd, Mn and Zn with time. Solubility of Pb in RSS was again very low. When taken as a proportion of a single 2 M HNO3 extraction which was applied to slag samples, Cd was the element most readily leached into RSS and control samples. In both studied solvents, slag heterogeneity is prominent in the case of Cd and Zn solubility. Contact time with solvent appears to be an important variable for the release of PTE from slag into solution. The purpose of this study was to provide insight into the environmental chemical dissolution of PTE from slag, which causes their enrichment in surrounding soils and surface waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.

    PubMed

    Li, Yunjiao; Perederiy, Ilya; Papangelakis, Vladimiros G

    2008-04-01

    Huge quantities of slag, a waste solid product of pyrometallurgical operations by the metals industry are dumped continuously around the world, posing a potential environmental threat due to entrained values of base metals and sulfur. High temperature pressure oxidative acid leaching of nickel smelter slags was investigated as a process to facilitate slag cleaning and selective dissolution of base metals for economic recovery. Five key parameters, namely temperature, acid addition, oxygen overpressure, solids loading and particle size, were examined on the process performance. Base metal recoveries, acid and oxygen consumptions were accurately measured, and ferrous/ferric iron concentrations were also determined. A highly selective leaching of valuable metals with extractions of >99% for nickel and cobalt, >97% for copper, >91% for zinc and <2.2% for iron was successfully achieved for 20 wt.% acid addition and 25% solids loading at 200-300 kPa O(2) overpressure at 250 degrees C in 2h. The acid consumption was measured to be 38.5 kg H(2)SO(4)/t slag and the oxygen consumption was determined as 84 kg O(2)/t slag which is consistent with the estimated theoretical oxygen consumption. The as-produced residue containing less than 0.01% of base metals, hematite and virtually zero sulfidic sulfur seems to be suitable for safe disposal. The process seems to be able to claim economic recovery of base metals from slags and is reliable and feasible.

  1. Suitability of adsorption isotherms for predicting the retention capacity of active slag filters removing phosphorus from wastewater.

    PubMed

    Pratt, C; Shilton, A

    2009-01-01

    Active slag filters are an emerging technology for removing phosphorus (P) from wastewater. A number of researchers have suggested that adsorption isotherms are a useful tool for predicting P retention capacity. However, to date the appropriateness of using isotherms for slag filter design remains unverified due to the absence of benchmark data from a full-scale, field filter operated to exhaustion. This investigation compared the isotherm-predicted P retention capacity of a melter slag with the P adsorption capacity determined from a full-scale, melter slag filter which had reached exhaustion after five years of successfully removing P from waste stabilization pond effluent. Results from the standard laboratory batch test showed that P adsorption correlated more strongly with the Freundlich Isotherm (R(2)=0.97, P<0.01) than the Langmuir Isotherm, a similar finding to previous studies. However, at a P concentration of 10 mg/L, typical of domestic effluent, the Freundlich equation predicted a retention capacity of 0.014 gP/kg slag; markedly lower than the 1.23 gP/kg slag adsorbed by the field filter. Clearly, the result generated by the isotherm bears no resemblance to actual field capacity. Scanning electron microscopy analysis revealed porous, reactive secondary minerals on the slag granule surfaces from the field filter which were likely created by weathering. This slow weathering effect, which generates substantial new adsorption sites, is not accounted for by adsorption isotherms rendering them ineffective in slag filter design.

  2. The use of waste materials for concrete production in construction applications

    NASA Astrophysics Data System (ADS)

    Teara, Ashraf; Shu Ing, Doh; Tam, Vivian WY

    2018-04-01

    To sustain the environment, it is crucial to find solutions to deal with waste, pollution, depletion and degradation resources. In construction, large amounts of concrete from buildings’ demolitions made up 30-40 % of total wastes. Expensive dumping cost, landfill taxes and limited disposal sites give chance to develop recycled concrete. Recycled aggregates were used for reconstructing damaged infrastructures and roads after World War II. However, recycled concrete consists fly ash, slag and recycled aggregate, is not widely used because of its poor quality compared with ordinary concrete. This research investigates the possibility of using recycled concrete in construction applications as normal concrete. Methods include varying proportion of replacing natural aggregate by recycled aggregate, and the substitute of cement by associated slag cement with fly ash. The study reveals that slag and fly ash are effective supplementary elements in improving the properties of the concrete with cement. But, without cement, these two elements do not play an important role in improving the properties. Also, slag is more useful than fly ash if its amount does not go higher than 50%. Moreover, recycled aggregate contributes positively to the concrete mixture, in terms of compression strength. Finally, concrete strength increases when the amount of the RA augments, related to either the high quality of RA or the method of mixing, or both.

  3. Effects of hauling timber, lignite coal, and coke fuel on Louisiana highways and bridges.

    DOT National Transportation Integrated Search

    2005-03-01

    This study included the development of a methodology to assess the economic impact of overweight permitted vehicles hauling timber, lignite coal, and coke fuel on Louisiana highways and bridges. Researchers identified the highway routes and bridges b...

  4. Mineralogy and origin of coarse-grained segregations in the pyrometallurgical Zn-Pb slags from Katowice-Wełnowiec (Poland)

    NASA Astrophysics Data System (ADS)

    Warchulski, R.; Gawęda, A.; Janeczek, J.; Kądziołka-Gaweł, M.

    2016-10-01

    The unique among pyrometallurgical slags, coarse-grained (up to 2.5 cm) segregations (up to 40 cm long) rimmed by "aplitic" border zones occur within holocrystalline historical Zn-smelting slag in Katowice, S Poland. Slag surrounding the segregations consists of olivine, spinel series, melilite, clinopyroxene, leucite, nepheline and sulphides. Ca-olivines, kalsilite and mica compositionally similar to oxykinoshitalite occur in border zones in addition to olivine, spinel series and melilite. Miarolitic and massive pegmatite-like segregations are built of subhedral crystals of melilite, leucite, spinel series, clinopyroxene and hematite. Melilite, clinopyroxenes and spinels in the segregations are enriched in Zn relatively to original slag and to fine-grained border zones. The segregations originated as a result of crystallization from residual melt rich in volatiles (presumably CO2). The volatile-rich melt was separated during fractional crystallization of molten slag under the cover of the overlying hot (ca. 1250 °C) vesicular slag, preventing the escape of volatiles. That unique slag system is analogous to natural magmatic systems.

  5. Preparation of Al-Ti Master Alloy by Electrochemical Recovery of Titanium-Reducing Slag in Molten Salts

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wang, Yaowu; Feng, Naixiang

    2018-02-01

    An electrochemical method for the preparation of an Al-Ti master alloy in Al electrolysis melts of Na3AlF6-Al2O3-LiF at 980°C was investigated. The Ti-reducing slag (5.24 wt.% Ti in the Ti-reducing slag) was obtained from the aluminothermic reduction of Na2TiF6. The cold test (i.e., the aluminothermic reduction process without applying any voltages) result revealed the capability of the Al cathode to reduce the Ti slag, and the recovery rate could reach 45.8% at 980°C over 3.5 h with the addition of 10 wt.% Ti-reducing slag. In contrast, the recovery rate of Ti after electrolysis at 3.0 V could reach 99.2%. Thus, the electrochemical treatment for Ti-reducing slag is a cooperative process involving aluminothermic and electrochemical reduction reactions. Electrochemical analysis indicated that the Ti ions are reduced to metallic Ti according to Ti4+ → Ti3+ → Ti. An Al-Ti alloy layer could be prepared on the external surface of the Mo electrode after electrolysis with the addition of 12 wt.% Ti-reducing slag.

  6. Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-Jie; Ni, Wen; Li, Ke-Qing; Huang, Xiao-Yan; Zhu, Li-Ping

    2011-08-01

    The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag (NS) and blast furnace slag (BFS) with a small amount of quartz sand was investigated. A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process. The results show that the iron-rich system has much lower melting temperature, glass transition temperature ( T g), and glass crystallization temperature ( T c), which can result in a further energy-saving process. The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C. The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample. The crystallization process can be completed in a few minutes. A distinct boundary between the crystallized part and the non-crystallized part exists during the process. In the non-crystallized part showing a black colour, some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to T c. In the crystallized part showing a khaki colour, a compact structure is formed by augite crystals.

  7. Electrical properties of alkali-activated slag composite with combined graphite/CNT filler

    NASA Astrophysics Data System (ADS)

    Rovnaník, P.; Míková, M.; Kusák, I.

    2017-10-01

    Alkali-activated industrial by-products such as blast furnace slag are known to possess properties which are comparable to or even better than those observed for ordinary Portland cement. The combination of alkali-activated slag matrix with conductive filler introduces new functionalities which are commonly known for self-sensing or self-heating concrete. The present paper discusses the effect of the mixture of two different conductive fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-activated slag mortars. Prepared samples were also tested for their mechanical properties and microstructure was investigated by means of mercury intrusion porosimetry and scanning electron microscopy. The percolation threshold for the resistance was reached for the mixture containing 0.1% CNTs and 8% graphite powder.

  8. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    USDA-ARS?s Scientific Manuscript database

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  9. Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory

    NASA Astrophysics Data System (ADS)

    Yang, Xue-Min; Li, Jin-Yan; Zhang, Meng; Chai, Guo-Min; Zhang, Jian

    2014-12-01

    A thermodynamic model for predicting sulfide capacity of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT- model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT- model has been verified through comparing the determined sulfide capacity after Ban-ya et al.[20] with the calculated by the developed IMCT- model and the calculated by the reported sulfide capacity models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration of FetO as 0.0637 or oxygen partial as 2.27 × 10-6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of N FeO/ N CaO, , , and . Sulfide capacity of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity of the slags.

  10. Exchangeable Sodium Percentage decrease in saline sodic soil after Basic Oxygen Furnace Slag application in a lysimeter trial.

    PubMed

    Pistocchi, Chiara; Ragaglini, Giorgio; Colla, Valentina; Branca, Teresa Annunziata; Tozzini, Cristiano; Romaniello, Lea

    2017-12-01

    The Basic Oxygen Furnace Slag results from the conversion of hot metal into steel. Some properties of this slag, such as the high pH or calcium and magnesium content, makes it suitable for agricultural use as a soil amendment. Slag application to agricultural soils is allowed in some European countries, but to date there is no common regulation in the European Union. In Italy soils in coastal areas are often affected by excess sodium, which has several detrimental effects on the soil structure and crop production. In this study, carried out within an European project, the ability of the Basic Oxygen Furnace Slag to decrease the soil Exchangeable Sodium Percentage of a sodic soil was evaluated. A three-year lysimeter trial with wheat and tomato crops was carried out to assess the effects of two slag doses (D1, 3.5 g kg -1 year -1 and D, 2, 7 g kg -1 year -1 ) on exchangeable cations in comparison with unamended soil. In addition, the accumulation in the topsoil of vanadium and chromium, the two main trace metals present in the Basic Oxygen Furnace Slag, was assessed. After two years, the soil Exchangeable Sodium Percentage was reduced by 40% in D1 and 45% in D2 compared to the control. A concomitant increase in exchangeable bivalent cations (Ca ++ and Mg ++ ) was observed. We concluded that bivalent cations supplied with the slag competed with sodium for the sorption sites in the soil. The slag treatments also had a positive effect on tomato yields, which were higher than the control. Conversely the wheat yield was lower in the slag-amended soil, possibly because of the toxicity of vanadium added with the slag. This study showed that Basic Oxygen Furnace Slag decreased the Exchangeable Sodium Percentage, but precautions are needed to avoid the build up of toxic concentrations of trace metals in the soil, especially vanadium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Volcanic ash melting under conditions relevant to ash turbine interactions

    PubMed Central

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  12. Volcanic ash melting under conditions relevant to ash turbine interactions.

    PubMed

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  13. Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel

    NASA Astrophysics Data System (ADS)

    Criado, Maria; Provis, John L.

    2018-06-01

    The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.

  14. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc.

    PubMed

    Jin, Fei; Al-Tabbaa, Abir

    2014-12-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration products and microstructure were studied by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The major hydration products were calcium silicate hydrate and hydrotalcite-like phases. The unconfined compressive strength was measured up to 160 d. Findings show that lead had a slight influence on the strength of MgO-slag paste while zinc reduced the strength significantly as its concentration increased. Leachate results using the TCLP tests revealed that the immobilisation degree was dependent on the pH and reactive MgO activated slag showed an increased pH buffering capacity, and thus improved the immobilisation efficiency compared to lime activated slag. It was proposed that zinc was mainly immobilised within the structure of the hydrotalcite-like phases or in the form of calcium zincate, while lead was primarily precipitated as the hydroxide. It is concluded, therefore, that reactive MgO activated slag can serve as clinker-free alternative binder in the S/S process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The effects of pore structure on the behavior of water in lignite coal and activated carbon.

    PubMed

    Nwaka, Daniel; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-09-01

    The effects of physical structure (pore structure) on behavior of water in lignite coal and activated carbon (AC) samples were investigated by using Differential Scanning Calorimetry (DSC) and low-temperature X-ray diffraction (XRD) techniques. AC samples with different pore structures were prepared at 800°C in steam and the results were compared with that of parent lignite coal. The DSC results confirmed the presence of two types of freezable water that freeze at -8°C (free water) and -42°C (freezable bound water). A shift in peak position of free water (FW) towards lower temperature was observed in AC samples compared to the lignite coal with decreasing water loading. The amount of free water (FW) increased with increasing gasification conversion. The amounts of free and freezable bound water (FBW) in AC samples were calculated and correlated to pore volume and average pore size. The amount of FW in AC samples is well correlated to the pore volume and average pore size of the samples, while an opposite trend was observed for FBW. The low-temperature XRD analysis confirmed the existence of non-freezable water (NFW) in coal and AC with the boundary between the freezable and non-freezable water (NFW) determined. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags.

    PubMed

    Yin, Nang-Htay; Sivry, Yann; Guyot, François; Lens, Piet N L; van Hullebusch, Eric D

    2016-09-15

    The leaching behavior of Pb and Zn from lead blast furnace (LBF) and imperial smelting furnace (ISF) slags sampled in the North of France was studied as a function of pHs and under two atmospheres (open air and nitrogen). The leaching of major elements from the slags was monitored as a function of pH (4, 5.5, 7, 8.5 and 10) under both atmospheres for different slag-water interaction times (1 day and 9 days). The leaching results were coupled with a geochemical model; Visual MINTEQ version 3.0, and a detailed morphological and mineralogical analysis was performed on the leached slags by scanning and transmission electron microscopy (SEM and TEM). Significant amounts of Ca, Fe and Zn were released under acidic conditions (pH 4) with a decrease towards the neutral to alkaline conditions (pH 7 and 10) for both LBF and ISF slags. On the other hand, Fe leachability was limited at neutral to alkaline pH for both slags. The concentrations of all elements increased gradually after 216 h compared to initial 24 h of leaching period. The presence of oxygen under open-air atmosphere not only enhanced oxidative weathering but also encouraged formation of secondary oxide and carbonate phases. Formation of carbonates and clay minerals was suggested by Visual MINTEQ which was further confirmed by SEM & TEM. The hydration and partial dissolution of hardystonite, as well as the destabilization of amorphous glassy matrix mainly contributed to the release of major elements, whereas the spinel related oxides were resistant against pH changes and atmospheres within the time frame concerned for both LBF and ISF slags. The total amount of Pb leached out at pH 7 under both atmospheres suggested that both LBF and ISF slags are prone to weathering even at neutral environmental conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Emerald ash borer aftermath forests: the future of ash ecosystems

    Treesearch

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms

    2011-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...

  18. Effect of mineral admixtures on kinetic property and compressive strength of self Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Jagalur Mahalingasharma, Srishaila; Prakash, Parasivamurthy; Vishwanath, K. N.; Jawali, Veena

    2017-06-01

    This paper presents experimental investigations made on the influence of chemical, physical, morphological and mineralogical properties of mineral admixtures such as fly ash, ground granulate blast furnace slag, metakaoline and micro silica used as a replacement of cement in self compacting concrete on workability and compressive strength. Nineteen concrete mixes were cast by replacing with cement by fly ash or ground granulated blast furnace slag as binary blend at 30%, 40%, 50% and with addition of micro silica and metakaoline at 10% as a ternary blend with fly ash, ground granulated blast furnace slag and obtained results were compare with control mix. Water powder ratio 0.3 and super plasticizer dosage 1% of cementitious material was kept constant for all the mixes. The self compacting concrete tested for slump flow, V-funnel, L-Box, J-Ring, T50, and compressive strength on concrete cube were determined at age of 3, 7, 28, 56, 90 days.

  19. Application of PCA and SIMCA statistical analysis of FT-IR spectra for the classification and identification of different slag types with environmental origin.

    PubMed

    Stumpe, B; Engel, T; Steinweg, B; Marschner, B

    2012-04-03

    In the past, different slag materials were often used for landscaping and construction purposes or simply dumped. Nowadays German environmental laws strictly control the use of slags, but there is still a remaining part of 35% which is uncontrolled dumped in landfills. Since some slags have high heavy metal contents and different slag types have typical chemical and physical properties that will influence the risk potential and other characteristics of the deposits, an identification of the slag types is needed. We developed a FT-IR-based statistical method to identify different slags classes. Slags samples were collected at different sites throughout various cities within the industrial Ruhr area. Then, spectra of 35 samples from four different slags classes, ladle furnace (LF), blast furnace (BF), oxygen furnace steel (OF), and zinc furnace slags (ZF), were determined in the mid-infrared region (4000-400 cm(-1)). The spectra data sets were subject to statistical classification methods for the separation of separate spectral data of different slag classes. Principal component analysis (PCA) models for each slag class were developed and further used for soft independent modeling of class analogy (SIMCA). Precise classification of slag samples into four different slag classes were achieved using two different SIMCA models stepwise. At first, SIMCA 1 was used for classification of ZF as well as OF slags over the total spectral range. If no correct classification was found, then the spectrum was analyzed with SIMCA 2 at reduced wavenumbers for the classification of LF as well as BF spectra. As a result, we provide a time- and cost-efficient method based on FT-IR spectroscopy for processing and identifying large numbers of environmental slag samples.

  20. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Sulfide Capacity

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; He, Wenchao; Liang, Dong; Bai, Chenguang

    2017-10-01

    The effect of Al2O3 and Al2O3/SiO2 ratio on the sulfide capacity of the molten aluminosilicate CaO-SiO2-Al2O3-MgO-TiO2 slag system with high Al2O3 content was measured at 1773 K (1500 °C) using a metal-slag equilibration method. The sulfide capacity between silicate-based and aluminate-based slag was also compared based on the thermodynamic analysis and structural characteristics of melts. At a fixed CaO/SiO2 ratio of 1.20, the sulfide capacity decreases with increasing Al2O3 content primarily due to the decrease of free oxygen (FO) and the activity of O2-. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.79 causes a significant increase in the sulfide capacity of the slags, and a slight increase is found when the Al2O3/SiO2 ratio is more than 0.79. The effect of the substitution of silica by alumina on the sulfide capacity of the slags was not only due to an increase in the activity of basic oxides ( a_{{{O}^{2 - } }} ) but also to a decrease in the stability of sulfide ( γ_{{{S}^{2 - } }} ). Moreover, a_{{{O}^{2 - } }} and γ_{{{S}^{2 - } }} increase in a similar degree, and the weaker binding electronegativity of Al3+ with oxygen atoms results in a slight increase in the final sulfide capacity in the aluminate-based slag system with Al2O3 ↔ SiO2 substitution. Five different sulfide capacity models were employed to predict the sulfide capacity, and the iso-sulfide capacity distribution diagram based on the Young's model was obtained in the high Al2O3 corner of the diagram.