Sample records for limb array etalon

  1. Two-year solid hydrogen cooler for the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument

    NASA Technical Reports Server (NTRS)

    Naes, L. G.; Nast, T. C.; Roche, A. E.; Forney, P. B.

    1983-01-01

    The Cryogenic Limb Array Etalon Spectrometer (CLAES) will be one of thirteen instruments on board the Upper Atmospheric Research Satellite (UARS) in late 1988. CLAES is to be employed for the measurement of stratospheric trace species concentrations affecting the ozone layer balance. It is an earth-limb viewing instrument which requires cryogenic cooling in order to obtain the necessary performance sensitivity. The present investigation is concerned with the solid hydrogen cryogen subsystem which provides the instrument temperature needed. Attention is given to the studies which led to the selection of solid hydrogen as cooling agent, the baseline cooler system, aspects of baseline performance sensitivity, and nominal cooler operations.

  2. CLAES blocker filter rejection requirements. [Cryogenic Limb Array Etalon Spectrometer

    NASA Technical Reports Server (NTRS)

    James, T. C.; Kumer, J. B.; Roche, A. E.; Sterritt, L. W.; Uplinger, W. G.

    1986-01-01

    Some details of the calculations of out-of-band spectral rejection requirements for the CLAES blocker filters are described. For a particular blocker centered within an etalon bandpass, the signal to be expected when a particular etalon transmission peak is centered at the central wavelength of the blocker filter is calculated. This signal is compared with the total signal arising from all other transmission peaks within the etalon bandpass and all of the radiation from the entire spectrum outside of the etalon bandpass. The results for a few of the blocker filters are listed, and the design goals are compared with theoretical design results.

  3. Low earth orbiting Nadir Etalon Sounding Spectrometer instrument concept for temperature, moisture and trace species, LeoNESS

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Sterritt, L. W.; Roche, A. E.; Rosenberg, W. J.; Morrow, H. E.; Shenk, W. E.; Susskind, J.

    1992-01-01

    A concept for a low earth orbiting nadir etalon spectrometer sounder (LeoNESS) is described which can achieve retrieval of temperature, H2O, surface, boundary conditions, cloudiness, and trace species with an accuracy that meets or exceeds the AIRS specifications. Options employing 65-K and 30-K detectors are examined; the former may be implemented via passive radiative cooling. The concept, which is derived from the Cryogenic Limb Array Etalon Spectrometer, has the potential for improving the horizontal and vertical resolution.

  4. Simultaneous Observations fo Polar Stratospheric Clouds and HNO3 over Scandinavia in January, 1992

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Santee, M. L.; Read, W. G.; Grainger, R. G.; Lambert, A.; Mergenthaler, J. L.; Dye, J. E.; Baumbardner, D.; Randel, W. J.; Tabazadeh, A.; hide

    1996-01-01

    Simultaneous observations of Polar Stratospheric Cloud aerosol extinction and HNO3 mixing ratios over Scandinavia are examined for January 9-10, 1992. Data measured by the Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon, Spectrometer (CLAES), and Improved Stratospheric and Mesospheric Sounder (ISAMA) experiments on the Upper Atmosphere Research Satellite (UARS) are examined at locations adjacent to parcel trajectory positions.

  5. Mechanical testing of large cryogenic structures

    NASA Technical Reports Server (NTRS)

    Newkirk, Roger; Burriesci, Larry

    1990-01-01

    The mechanical testing performed on the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument installed on the Upper Atmosphere Research Satellite is discussed. The CLAES determines temperatures and concentrations of stratospheric minor species as a function of altitude by measuring the atmospheric infrared emission spectra. CLAES is based on a telescope optical system and infrared spectrometer which are cooled with cryogens.

  6. Utilization of UARS Data in Validation of Photochemical and Dynamical Mechanism in Stratospheric Models

    NASA Technical Reports Server (NTRS)

    Rodriquez, Jose M.; Hu, Wenjie; Ko, Malcolm K.W.

    1996-01-01

    The global three-dimensional measurement of long- and short-lived species from Upper Atmospheric Research Satellite (UARS) provides a unique opportunity to validate chemistry and dynamics mechanisms in the middle atmosphere. During the past three months, we focused on expanding our study of data-model comparisons to whole time periods when Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument were operating.

  7. Recirculating Etalon Spectrometer

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A. (Inventor); Fahey, Molly E. (Inventor); Krainak, Michael A. (Inventor)

    2017-01-01

    Systems, methods, and devices may provide an optical scheme that achieves simultaneous wavelength channels and maintains the resolution and luminosity of an etalon. Various embodiments may provide a method to optically recirculate the light reflected from the etalon back through the same etalon at new angles. Various embodiments create an etalon spectrometer based on angular dispersion without moving parts and without losing the light that is not initially transmitted. Various embodiments may provide a spectrally-resolved receiver and/or transmitter. Various embodiments may provide a system including a retro-reflector, a detector or transmitter array, and an etalon disposed between the retro-reflector and the detector or transmitter array, wherein the retro-reflector is configured to redirect light reflected by the etalon back to the etalon at a different angle of incidence than an original angle of incidence on the etalon of the light reflected by the etalon.

  8. CLAES Product Improvement by Use of the GSFC Data Assimilation System (DAS)

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Douglass, Anne (Technical Monitor)

    2000-01-01

    This report presents the Cryogenic Limb Array Etalon Spectrometer (CLAES) product improvement by use of the GSFC Data Assimilation System (DAS). The first task is to plug line of sight gradients derived from the CTM for 2/20/92 into the forward model of our retrieval software (RSW) in order to assess the impact on the retrieved quantities. The reporting period covers 12 May 2000 - 21 December 2000.

  9. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  10. Performance analysis for the cryogenic etalon spectrometer on the Upper Atmospheric Research Satellite

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Forney, P. B.; Kumer, J. B.; Naes, L. G.; Nast, T. C.

    1983-01-01

    The Upper Atmospheric Research Satellite (UARS) program has the objective of providing an 18-month to 2-year platform for observations of the upper atmosphere, giving particular attention to the stratosphere, mesosphere, and lower thermosphere. The primary aims of the mission are related to the measurement of the solar energy input between 120 and 500 km, the acquisition of global maps of the vertical and horizontal distribution of a series of critical trace and minor species, and the investigation of the dynamics of the upper atmosphere. One of several instruments designed to perform neutral species measurements on board the satellite is the Cryogenic Limb Array Etalon Spectrometer (CLAES). The CLAES experiment is concerned with measurements of concentrations of species of interest to the ozone layer balance. Attention is given to the performance requirements of the instrument and the effects of these requirements on the cryogenic design.

  11. Cirrus and Polar Stratospheric Cloud Studies using CLAES Data

    NASA Technical Reports Server (NTRS)

    Mergenthaler, John L.; Douglass, A. (Technical Monitor)

    2001-01-01

    We've concluded a 3 year (Period of Performance- January 21, 1998 to February 28, 2001) study of cirrus and polar stratospheric clouds using CLAES (Cryogenic Limb Array Etalon Spectrometer) data. We have described the progress of this study in monthly reports, UARS (Upper Atmosphere Research Satellite) science team meetings, American Geophysical Society Meetings, refereed publications and collaborative publications. Work undertaken includes the establishment of CLAES cloud detection criteria, the refinement of CLAES temperature retrieval techniques, compare the findings of CLAES with those of other instruments, and present findings to the larger community. This report describes the progress made in these areas.

  12. High frequency ultrasound imaging using Fabry-Perot optical etalon

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R.; O'Donnell, M.

    2005-04-01

    Optical detection of ultrasound provides a unique and appealing way of forming detector arrays (1D or 2D) using either raster beam scanning or simultaneous array detection exploiting wide area illumination. Etalon based optical techniques are of particular interest, due to their relatively high sensitivity resulting from multiple optical reflections within the resonance structure. Detector arrays formed by etalon based techniques are characterized by high element density and small element active area, which enables high resolution imaging at high ultrasonic frequencies (typically 10-50 MHz). In this paper we present an application of an optical etalon structure for very high frequency ultrasound detection (exceeding 100 MHz). A thin polymer Fabry-Perot etalon (10 μm thickness) has been fabricated using spin coating of polymer photoresist on a glass substrate and gold evaporation forming partially reflecting mirrors on both faces of the polymer layer. The optical resonator formed by the etalon structure has a measured Q-factor of 300. The characteristic broadband response of the optical signal was demonstrated by insonifying the etalon using two different ultrasound transducers and recording the resulting intensity modulation of optical reflection from the etalon. A focused 10 MHz transducer was used for the low MHz frequency region, and a 50 MHz focused transducer was used for the high frequency region. The optical reflection signal was compared to the pulse/echo signal detected by the same ultrasound transducer. The measured signal to noise ratio of the optically detected signal is comparable to that of the pulse/echo signal in both low and high frequency ranges. The etalon detector was integrated in a photoacoustic imaging system. High resolution images of phantom targets and biological tissue (nerve cord) were obtained. The additional information of optical absorption obtained by photoacoustic imaging, along with the high resolution detection of the etalon, offer unique advantages for intravascular and neurological imaging devices.

  13. Three-dimensional evolution of water vapor distributions in the Northern Hemisphere stratosphere as observed by the MLS

    NASA Technical Reports Server (NTRS)

    Lahoz, W. A.; O'Neill, A.; Carr, E. S.; Harwood, R. S.; Froidevaux, L.; Read, W. G.; Waters, J. W.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.

    1994-01-01

    The three-dimensional evolution of stratospheric water vapor distributions observed by the Microwave Limb Sounder (MLS) during the period October 1991 - July 1992 is documented. The transport features inferred from the MLS water vapor distributions are corroborated using other dynamical fields, namely, nitrous oxide from the Cryogenic Limb Array Etalon Spectrometer instrument, analyzed winds from the U.K. Meteorological Office (UKMO), UKMO-derived potential vorticity, and the diabatic heating field. By taking a vortex-centered view and an along-track view, the authors observe in great detail the vertical and horizontal structure of the northern winter stratosphere. It is demonstrated that the water vapor distributions show clear signatures of the effects of diabatic descent through isentropic surfaces and quasi-horizontal transport along isentropic surfaces, and that the large-scale winter flow is organized by the interaction between the westerly polar vortex and the Aleutian high.

  14. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    NASA Technical Reports Server (NTRS)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  15. Non-LTE calculation of HCL earthlimb emission and implication for detection of HCl in the atmosphere

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; James, T. C.

    1982-01-01

    Calculation results are presented for the contribution of the non-Local Thermodynamic Equilibrium process of resonant scattering of sunlight in the 1-0 band of HCl to the earthlimb radiance, for the case of tangent altitudes from 20 to 90 km. It is established that the mechanism in question is a significant contributor to radiance at altitudes as low as 20 km, and that it becomes greater than the Local Thermodynamic Equilibrium contribution above 40 km. Attention is given to the prospects for detection of HCl at altitudes approaching 80 km, by means of the Cryogenic Limb Array Etalon Spectrometer scheduled for deployment by the NASA Upper Atmospheric Research Satellite.

  16. Responsive etalon based on PNIPAM@SiO2 composite spacer with rapid response rate and excellent repeatability for sensing application

    NASA Astrophysics Data System (ADS)

    Wang, Tieqiang; Wang, Shuli; Zhang, Xun; Song, Guoshuai; Yu, Ye; Chen, Xinyang; Fu, Yu; Zhang, Junhu; Yang, Bai

    2015-07-01

    In this paper, we demonstrate a responsive etalon fabricated through combining colloidal lithography and surface-initiated atom-transfer radical polymerization (SI-ATRP). The responsive etalon is simply constructed with one responsive spacer sandwiched by two reflective layers, and the middle responsive spacer is constructed by grafting thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) brushes on a SiO2 nanosphere array. The etalon possesses one single interference peak in the visible region, and the interference peak changes sensitively against the concentration of the external stimulant (water vapor) or the temperature of the system, owing to the responsiveness of the PNIPAM brush. Importantly, the as-prepared etalon shows a rapid response rate and excellent stability, and it is also handy to realize the miniaturization and integration of the responsive etalon based on a conventional micro-fabrication method. These features all make the as-prepared responsive etalon an attractive candidate for future sensing applications. We believe such responsive etalons are promising for the fabrication of smart photonic materials and optical sensors that may be useful in tissue engineering, medical diagnosis, public security, and biochip areas.

  17. 1984-1995 Evolution of Stratospheric Aerosol Size, Surface Area, and Volume Derived by Combining SAGE II and CLAES Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Bauman, Jill J.

    2000-01-01

    This SAGE II Science Team task focuses on the development of a multi-wavelength, multi- sensor Look-Up-Table (LUT) algorithm for retrieving information about stratospheric aerosols from global satellite-based observations of particulate extinction. The LUT algorithm combines the 4-wavelength SAGE II extinction measurements (0.385 <= lambda <= 1.02 microns) with the 7.96 micron and 12.82 micron extinction measurements from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument, thus increasing the information content available from either sensor alone. The algorithm uses the SAGE II/CLAES composite spectra in month-latitude-altitude bins to retrieve values and uncertainties of particle effective radius R(sub eff), surface area S, volume V and size distribution width sigma(sub g).

  18. Long-term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    An extensive body of research this quarter is documented. Further methodical analysis of temperature residuals in Cryogenic Limb Array Etalon Spectrometer (CLAES) Version 8 level 3AT data show signatures during December 1992 at middle and high northern latitudes that, when compared to Naval Research Laboratory/Mountain Wave Forecast Model (NRL)/(MWFM) mountain wave hindcasts, reveal evidence of long mountain waves in these data over Eurasia, Greenland, Scandinavia and North America. The explicit detection of gravity waves in limb-scanned Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) temperatures is modeled at length, to derive visibility functions. These insights are used to convert CRISTA gravity wave temperature residuals into data that more closely resemble gravity wave fluctuations detected in data from other satellite instruments, such as Microwave Limb Sounder (MLS), Limb Infrared Monitor of the Stratosphere (LIMS) and Global Positioning System/Meteorology (GPS)/(MET). Finally, newly issued mesospheric temperatures from inversion of CRISTA 15gin emissions are analyzed using a new method that uses separate Kalman fits to the ascending and descending node data. This allows us to study global gravity wave amplitudes at two local times, 12 hours apart. In the equatorial mesosphere, where a large diurnal tidal temperature signal exists, we see modulations of gravity wave activity that are consistent with gravity wave-tidal interactions produced by tidal temperature variability.

  19. All-Optical Ultrasound Transducers for High Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Sheaff, Clay Smith

    High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.

  20. Multiorder etalon sounder (MOES) development and test for balloon experiment

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Wnag, Jinxue; Wu, Jian

    1993-01-01

    The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES concept and laboratory experiments were worked on for the past several years. Both theoretical studies and laboratory prototype experiments showed that MOES is very competitive compared with other high resolution sounders in terms of complexity and performance and has great potential as a compact and rugged high resolution atmospheric temperature and trace species sounder from the polar platform or the geostationary platform. The logical next step is to convert our laboratory prototype to a balloon instrument, so that field test of MOES can be carried out to prove the feasibility and capability of this new technology. Some of the activities related to the development of MOES for a possible balloon flight demonstration are described. Those research activities include the imaging quality study on the CLIO, the design and construction of a MOES laboratory prototype, the test and calibration of the MOES prototype, and the design of the balloon flight gondola.

  1. Telescope-optical system performance analysis for the Cryogenic Limb Array Etalon Spectrometer (CLAES) on the Upper Atmospheric Research Satellite

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Forney, P. B.; Morrow, H. E.; Anapol, M.

    1983-01-01

    A first-order performance analysis of the CLAES telescope-optical system is presented. The experiment involves the passive measurement of earth-limb radiance over a 10-60 km tangent altitude range, and is based on a solid Fabry-Perot spectrometer which provides spectral resolution of 0.25/cm for atmospheric emission spectroscopy over the 3.5-12 micron IR range. The optical system is required to provide a high degree of off-axis rejection and stray-light control, primarily to suppress intense emission from the earth surface. The astigmatism and other geometric aberrations are corrected by a secondary mirror which produces an excellent image of the primary one, allowing for location of a diffraction control or Lyot stop. The off-axis scattering performance of the telescope is examined in terms of the mirror scatter coefficient and point source rejection ratio. A mirror bidirectional reflectance distribution function of 0.0001 at 1 deg with a 1/theta-squared roll-off between 1 and 0.2 deg is realizable based on recent measurements. This results in an off-axis radiance term that is generally small in comparison with the system-limiting NER.

  2. Evaluation of a Multi-Decadal Simulation of Stratospheric Ozone by Comparison with Total Ozone Mapping Spectrometer (TOMS) Observations

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Stolarski, Richard S.; Steenrod, Steven; Pawson, Steven

    2003-01-01

    One key application of atmospheric chemistry and transport models is prediction of the response of ozone and other constituents to various natural and anthropogenic perturbations. These include changes in composition, such as the previous rise and recent decline in emission of man-made chlorofluorcarbons, changes in aerosol loading due to volcanic eruption, and changes in solar forcing. Comparisons of hindcast model results for the past few decades with observations are a key element of model evaluation and provide a sense of the reliability of model predictions. The 25 year data set from Total Ozone Mapping Spectrometers is a cornerstone of such model evaluation. Here we report evaluation of three-dimensional multi-decadal simulation of stratospheric composition. Meteorological fields for this off-line calculation are taken from a 50 year simulation of a general circulation model. Model fields are compared with observations from TOMS and also with observations from the Stratospheric Aerosol and Gas Experiment (SAGE), Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon Spectrometer (CLAES), and the Halogen Occultation Experiment (HALOE). This overall evaluation will emphasize the spatial, seasonal, and interannual variability of the simulation compared with observed atmospheric variability.

  3. Etalon Array Reconstructive Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Eric; Ma, Qian; Liu, Zhaowei

    2017-01-01

    Compact spectrometers are crucial in areas where size and weight may need to be minimized. These types of spectrometers often contain no moving parts, which makes for an instrument that can be highly durable. With the recent proliferation in low-cost and high-resolution cameras, camera-based spectrometry methods have the potential to make portable spectrometers small, ubiquitous, and cheap. Here, we demonstrate a novel method for compact spectrometry that uses an array of etalons to perform spectral encoding, and uses a reconstruction algorithm to recover the incident spectrum. This spectrometer has the unique capability for both high resolution and a large working bandwidth without sacrificing sensitivity, and we anticipate that its simplicity makes it an excellent candidate whenever a compact, robust, and flexible spectrometry solution is needed.

  4. Stratospheric warmings during February and March 1993

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Zurek, R. W.; O'Neill, A.; Swinbank, R.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.

    1994-01-01

    Two stratospheric warmings during February and March 1993 are described using United Kingdom Meteorological Office (UKMO) analyses, calculated potential vorticity (PV) and diabetic heating, and N2O observed by the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument on the Upper Atmosphere Research Satellite (UARS). The first warming affected temperatures over a larger region, while the second produced a larger region of reversed zonal winds. Tilted baroclinic zones formed in the temperature field, and the polar vortex tilted westward with height. Narrow tongues of high PV and low N2O were drawn off the polar vortex, and irreversibly mixed. Tongues of material were drawn from low latitudes into the region between the polar vortex and the anticyclone; diabatic descent was also strongest in this region. Increased N2O over a broad region near the edge of the polar vortex indicates the importance of horizontal transport. N2O decreased in the vortex, consistent with enhanced diabatic descent during the warmings.

  5. A Near IR Fabry-Perot Interferometer for Wide Field, Low Resolution Hyperspectral Imaging on the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.

    2000-01-01

    We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.

  6. Remote sounding of tropospheric minor constituents

    NASA Technical Reports Server (NTRS)

    Drayson, S. Roland; Hays, Paul B.; Wang, Jinxue

    1993-01-01

    The etalon interferometer, or Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution was widely used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2) and the High Resolution Doppler Imager (HRDI) to be flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible spectral region. The successful space flight of DE-FPI and the test and delivery of UARS-HRDI demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory (SPRL). The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. CLIO makes the use of linear array detectors more practical and efficient with FPI, the combination of FPI and CLIO represents a very promising new technique for the remote sensing of the lower atmospheres of Earth, Mars, Venus, Neptune, and other planets. The Multiorder Etalon Spectrometer (MOES), as a combination of the rugged etalon and the CLIO, compares very favorably to other spaceborne optical instruments in terms of performance versus complexity. The feasibility of an advanced etalon spectrometer for the remote sensing of tropospheric trace species, particularly carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) was discussed. The etalon atmospheric spectroscopy techniques are described, instrument design and related technical issues are discussed. The primary objective is to establish the concept of atmospheric spectroscopy with the CLIO and etalon system and its applications for the measurements of tropospheric trace species analyze system requirements and performance, determine the feasibility of components and subsystem implementation with available technology, and develop inversion algorithm for retrieval simulation and data analysis.

  7. Tunable Fabry-Perot etalon-based long-wavelength infrared imaging spectroradiometer.

    PubMed

    Marinelli, W J; Gittins, C M; Gelb, A H; Green, B D

    1999-04-20

    Imaging spectrometry enables passive, stand-off detection and analysis of the chemical composition of gas plumes and surfaces over wide geographic areas. We describe the use of a long-wavelength infrared imaging spectroradiometer, comprised of a low-order tunable Fabry-Perot etalon coupled to a HgCdTe detector array, to perform multispectral detection of chemical vapor plumes. The tunable Fabry-Perot etalon used in this research provides coverage of the 9.5-14-microm spectral region with a resolution of 7-9 cm(-1). The etalon-based imaging system provides the opportunity to image a scene at only those wavelengths needed for chemical species identification and quantification and thereby minimize the data volume necessary for selective species detection. We present initial results using a brassboard imaging system for stand-off detection and quantification of chemical vapor plumes against near-ambient-temperature backgrounds. These data show detection limits of 22 parts per million by volume times meter (ppmv x m) and 0.6 ppmv x m for dimethyl methyphosphonate and SF6, respectively, for a gas/background DeltaT of 6 K. The system noise-equivalent spectral radiance is approximately 2 microW cm(-2) sr(-1) microm(-1). Model calculations are presented comparing the measured sensitivity of the sensor to the anticipated signal levels for two chemical release scenarios.

  8. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-01-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite (UARS) are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605/cm (10.8, 8.0, and 6.2 micrometers) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheriodal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  9. A search of UARS data for ozone depletions caused by the highly relativistic electron precipitation events of May 1992

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean; Goldberg, Richard A.; Jackman, Charles H.; Chenette, D. L.; Gaines, E. E.

    1999-01-01

    Highly relativistic electron precipitation (HRE) events containing significant fluxes of electrons with E>1MeV have been predicted by models to deplete mesospheric ozone. For the electron fluxes measured during the great HRE of May 1992, depletions were predicted to occur between altitudes of 55 and 80 km, where HOx reactions cause a local minimum in the ozone number density and mixing ratio. Measurements of the precipitating electron fluxes by the particle environment monitor (PEM) tend to underestimate their intensity; thus the predictions of ozone depletion should be considered an estimate of a lower limit. Since the horizontal distribution of the electron precipitation follows the terrestrial magnetic field, it would show a distinct boundary equatorward of the L=3 magnetic shell and be readily distinguished from material that was not affected by the HRE precipitation. To search for possible ozone depletion effects, we have analyzed data from the cryogenic limb array etalon spectrometer and microwave limb sounder instruments on UARS for the above HRE. A simplified diurnal model is proposed to understand the ozone data from UARS, also illustrating the limitations of the UARS instruments for seeing the ozone depletions caused by the HRE events. This diurnal analysis limits the relative ozone depletion at around 60 km altitude to values of <10% during the very intense May 1992 event, consistent with our prediction using an improved Goddard Space Flight Center two-dimensional model.

  10. Study of Fabry-Perot Etalon Stability and Tuning for Spectroscopic Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Mielke-Fagan, Amy F.; Elam, Kristie A.

    2010-01-01

    The Fabry-Perot interferometer is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating flow properties such as gas velocity and temperature. Rayleigh scattered light from a focused laser beam can be directly imaged through a solid Fabry-Perot etalon onto a CCD detector to provide the spectral content of the scattered light. The spatial resolution of the measurements is governed by the locations of interference fringes. The location of the fringes can be changed by altering the etalon?s physical characteristics, such as thickness and index of refraction. For a fused silica solid etalon the physical properties can be adjusted by changing the etalon temperature; hence changing the order of the interference pattern and the physical fringe locations. Controlling the temperature of the etalon can provide for a slow time-response spatial scanning method for this type of etalon system. A custom designed liquid crystal Fabry-Perot (LCFP) can provide for a fast time-response method of scanning the etalon system. Voltage applied to the liquid crystal interface sets the etalon?s properties allowing Rayleigh measurements to be acquired at varying spatial locations across the image of the laser beam over a very short time period. A standard fused silica etalon and a tunable LCFP etalon are characterized to select the system that is best suited for Rayleigh scattering measurements in subsonic and supersonic flow regimes. A frequency-stabilized laser is used to investigate the apparent frequency stability and temperature sensitivity of the etalon systems. Frequency stability and temperature sensitivity data of the fused silica and LCFP etalon systems are presented in this paper, along with measurements of the LCFP etalon?s tuning capabilities. Rayleigh scattering velocity measurements with both etalon systems are presented, in an effort to determine which etalon is better suited to provide optical flow measurements of velocity, temperature, and density.

  11. Long-term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    This quarter was largely devoted to a detailed study of temperature data acquired by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS. Our analysis used the same sequence of methods that have been developed, tested and refined on a more limited subset of temperature data acquired by the CRISTA instrument. We focused on a limited subset of our reasoning that geographical and vertical trends in the small-scale temperature variability could be compared with similar trends observed in November 1994 by the CRISTA-SPAS satellite. Results, backed up with hindcasts from the Mountain Wave Forecast Model (MWFM), reveal strong evidence of mountain waves, most persuasively in the Himalayas on 16-17 November, 1992. These CLAES results are coherent over the 30-50 km range and compare well with MWFM hindcasts for the same period. This constitutes, we believe, the first clear evidence that CLAES explicitly resolved long wavelength gravity waves in its CO2 temperature channel. A series of other tasks, related to mesoscale modeling of mountain waves in CRISTA data and fitting of ground-based and HRDI data on global scales, were seen through to publication stage in peer-reviewed journals.

  12. Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS)

    NASA Astrophysics Data System (ADS)

    Kumer, John B.; Rairden, Richard L.; Mitchell, Keith E.; Roche, Aidan E.; Mergenthaler, John L.

    2002-11-01

    The Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS) uses relatively inexpensive off the shelf components in a small and simple package to provide ultra high spectral resolution over a limited spectral range. For example, the modest first try laboratory test setup DECTOSS we describe in this presentation achieves resolving power ~ 105 on a spectral range of about 1 nm centered near 760 nm. This ultra high spectral resolution facilitates some important atmospheric remote sensing applications including profiling cirrus and/or aerosol above bright reflective surfaces in the O2 A-band and the column measurements of CO and CO2 utilizing solar reflectance spectra. We show details of the how the use of ultra high spectral resolution in the O2 A-band improves the profiling of cirrus and aerosol. The DECTOSS utilizes a Narrow Band Spectral Filter (NBSF), a Low Resolution Etalon (LRE) and a High Resolution Etalon (HRE). Light passing through these elements is focused on to a 2 Dimensional Array Detector (2DAD). Off the shelf, solid etalons with airgap or solid spacer gap are used in this application. In its simplest application this setup utilizes a spatially uniform extended source so that spatial and spectral structure are not confused. In this presentation we'll show 2D spectral data obtained in a desktop test configuration, and in the first try laboratory test setup. These were obtained by illuminating a Lambertian screen with (1) monochromatic light, and (2) with atmospheric absorption spectra in the oxygen (O2) A-band. Extracting the 1D spectra from these data is a work in progress and we show preliminary results compared with (1) solar absorption data obtained with a large Echelle grating spectrometer, and (2) theoretical spectra. We point out areas for improvement in our laboratory test setup, and general improvements in spectral range and sensitivity that are planned for our next generation field test setup.

  13. Single and tandem Fabry-Perot etalons as solar background filters for lidar.

    PubMed

    McKay, J A

    1999-09-20

    Atmospheric lidar is difficult in daylight because of sunlight scattered into the receiver field of view. In this research methods for the design and performance analysis of Fabry-Perot etalons as solar background filters are presented. The factor by which the signal to background ratio is enhanced is defined as a measure of the performance of the etalon as a filter. Equations for evaluating this parameter are presented for single-, double-, and triple-etalon filter systems. The role of reflective coupling between etalons is examined and shown to substantially reduce the contributions of the second and third etalons to the filter performance. Attenuators placed between the etalons can improve the filter performance, at modest cost to the signal transmittance. The principal parameter governing the performance of the etalon filters is the etalon defect finesse. Practical limitations on etalon plate smoothness and parallelism cause the defect finesse to be relatively low, especially in the ultraviolet, and this sets upper limits to the capability of tandem etalon filters to suppress the solar background at tolerable cost to the signal.

  14. Solid, 3-mirror Fabry-Perot etalon.

    PubMed

    Stephen, Mark; Fahey, Molly; Miller, Ian

    2017-04-01

    We present modeling and performance of a solid, fused silica, 3-mirror Fabry-Perot-type etalon. 3-mirror etalons have been known for decades to have superior theoretical performance but for the first time we demonstrate an etalon with sufficient quality to realize the benefits of the more complex design. 3-mirror etalons have better passband shape and higher contrast ratio enabling significantly improved wavelength separation. We show the optical cavity design and construction of the new etalon and show >95% peak transmission, improved passband shape and 20 dB better out-of-band rejection than a similar 2-mirror etalon.

  15. Multiple Etalon Systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael; Six, N. Frank (Technical Monitor)

    2002-01-01

    Multiple etalons systems are discussed that meet the 4-meter NSO/Advance Technology Solar Telescope (http://www.nso.edu/ATST/index.html) instrument and science requirements for a narrow bandpass imaging system. A multiple etalon system can provide an imaging interferometer working in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, and a wide-band and broad-band high-resolution imager. Specific dual and triple etalon configurations will be described that provides spectrographic passband of 2.0-3.5nm and reduces parasitic light levels to 1/10000 as required by precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like triple etalon system provides for spectral purity of 100 thousandths. The triple designs have the advantage of reducing the finesse requirement on each etalon, allowing much more stable blocking filters, and can have very high spectral purity. A dual-etalon double-pass Cavallini-like configuration can provide a competing configuration. This design can provide high contrast with only a double etalon. The selection of the final focal plan instrument will depend on a trade-off of the ideal instrument versus reality, the number of etalons, the aperture of etalons, the number of blocking filters the electronic control system and computer interfaces, the temperature control and controllers for the etalons and the electronics. The use of existing experience should provide significant cost savings. The heritage of use of etalons and multiple etalon systems in solar physics come from a number of observatories, which includes MSFC Solar Observatory (NASA), Sac Peak Observatory (NSO), and Kiepenheuer Institute for Solar Physics (Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will reply on the existing experience from these observatories.

  16. Multiple-etalon systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael

    2003-01-01

    Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 micron and reduce parasitic light levels to 10(exp -4) as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10(exp -5). The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut fur Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these observatories.

  17. Nematic Fabry-Perot etalons for ground- and space-based atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Noto, John; Schneller, Kristin E.; Schneller, William J.; Kerr, Robert B.; Doe, R. A.

    1997-10-01

    Birefringent, nematic liquid crystals (LC) have been laminated between the substrates of several Fabry-Perot etalons. The application of an electric field allows the effective index of refraction of the LC to be varied. A polymer alignment layer is used to align the crystals perpendicular to the optical axis of the Fabry-Perot etalon. An oscillating electric field is used to rotate the crystal around the optical axis of the etalon, effectively changing the index of refraction. This change in index is used to tune the Fabry-Perot etalon in a manner similar to traditional pressure and mechanical tuning systems. However, the approach described here has the advantage of producing a solid-state etalon that is tunable without needing a bulky pressure system or environmentally sensitive piezo-electric stacks. A two etalon spectrometer consisting of two Fabry- Perot etalons coupled to a CID detector has been developed. A suppression etalon with a gap of 10 micrometers , and a LC wit a refractive index of 1.63 are used in conjunction with a high resolution etalon to produce an instrument ideal for observing the atomic spectra of hot, light neutral species and the molecular bands in the atmosphere. Several other etalons have been constructed to further develop this technology. Clear apertures greater than 2 inches have been achieved, and a hybrid spacer technique has been developed to allow for etalons with spacings of up to 1 cm. Fabry- Perot partial reflective coatings capable of operation from the visible to the NIR will also be discussed.

  18. A Novel, Poly-Etalon, Fabry-Perot for Planetary Research

    NASA Technical Reports Server (NTRS)

    Kerr, Robert B.; Doe, Richard; Noto, John

    1997-01-01

    In an effort to develop a mechanically robust, high throughput and solid state spectrometer several liquid crystal Fabry-Perot etalons were constructed. The etalons were tested for spectral response, radiation resistance and optical transmission. The first year of this project was spent developing and understanding the properties of the liquid crystal etalons; in the second year an intensified all-sky imaging system was developed around a pair of LC etalons. The imaging system, developed jointly with SRI International represents a unique brassboard to demonstrate the use of LC etalons as tunable filters. The first set of etalons constructed in year one of this project were tested for spectral response and throughput while etalon surrogates were exposed to proton radiation simulating the exposure of an object in Low Earth Orbit (LEO). The 2" diameter etalons had a measure finesse of approximately 10 and were tunable over five orders. Liquid crystals exposed to proton irradiation showed no signs of damage. In year two two larger diameter (3") etalons were constructed with gaps of 3 and 5 microns. This pair of etalons is for use in a high resolution, all-sky spectral imager. The WATUMI imager system follows the heritage of all sky, narrow band, intensified imagers however it includes two LC Fabry-Perot etalons to provide tunability and the ability to switch wavelengths rapidly, an import consideration in auroral airglow imaging. This work also resulted in two publications and one poster presentation. The instrument will be uniquely capable, with superior throughput and speed, to measure optical airglow of multiple emission lines in harsh conditions.

  19. An Investigation of Aerosol and Ozone Measurements from the Cryogenic Limb Array Etalon Spectrometer: Validation and Relation to Other Chemical Species

    NASA Technical Reports Server (NTRS)

    Deshler, Terry

    1997-01-01

    Throughout this study we focused on comparisons of CLAES and in situ measurements of ozone and aerosol extinction. Thus the comparison is between satellite data representative of large spatial regions and in situ data representative of nearly point samples. Both instruments provide vertical profiles, but the region of overlap is limited to between approximately 10 and 100 mb. CLAES Version 7 ozone measurements have been compared to electrochemical cell ozonesonde measurements over McMurdo Station, Antarctica (78 deg S, 167 deg E), Dumont d'Urville, Antarctica (66.7 deg S, 140 deg E), Laramie, Wyoming (41 deg N, 106 deg W), and Bear Island, Norway (74.3 deg N, 19 deg E). Comparisons were made between vertical ozone profiles, and between integrated column ozone over the region of overlap of the measurements. Comparisons using CLAES Version 8 data are underway. CLAES Version 8 aerosol extinction measurements at all wavelengths have also been compared to University of Wyoming aerosol extinctions over McMurdo Station, Antarctica, and over Laramie, Wyoming. Coincidences in all cases were determined by minimizing the distance between the CLAES observations and the surface station, and the time separation between the satellite and in situ measurements.

  20. Mixing in the Extratropical Stratosphere: Model-measurements Comparisons using MLM Diagnostics

    NASA Technical Reports Server (NTRS)

    Ma, Jun; Waugh, Darryn W.; Douglass, Anne R.; Kawa, Stephan R.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    We evaluate transport processes in the extratropical lower stratosphere for both models and measurements with the help of equivalent length diagnostic from the modified Lagrangian-mean (MLM) analysis. This diagnostic is used to compare measurements of long-lived tracers made by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on the Upper Atmosphere Research Satellite (UARS) with simulated tracers. Simulations are produced in Chemical and Transport Models (CTMs), in which meteorological fields are taken from the Goddard Earth Observing System Data Assimilation System (GEOS DAS), the Middle Atmosphere Community Climate Model (MACCM2), and the Geophysical Fluid Dynamics Laboratory (GFDL) "SKYHI" model, respectively. Time series of isentropic equivalent length show that these models are able to capture major mixing and transport properties observed by CLAES, such as the formation and destruction of polar barriers, the presence of surf zones in both hemispheres. Differences between each model simulation and the observation are examined in light of model performance. Among these differences, only the simulation driven by GEOS DAS shows one case of the "top-down" destruction of the Antarctic polar vortex, as observed in the CLAES data. Additional experiments of isentropic advection of artificial tracer by GEOS DAS winds suggest that diabatic movement might have considerable contribution to the equivalent length field in the 3D CTM diagnostics.

  1. Trajectory Hunting: A Case Study of Rapid Chlorine Activation in December 1992 as Seen by UARS

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Santee, M. L.; Rodriguez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.; Livesey, N. J.

    2000-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the Atmospheric and Environmental Research, Inc. (AER) photochemical box model. As a case study, we investigate rapid chlorine activation in the Arctic lower stratosphere on December 29, 1992 associated with a polar stratospheric cloud (PSC) event. Eleven air parcels that have been sampled several times along five-day trajectories at the 465 K (approx. 46 hPa), 520 K (approx. 31 hPa), and 585 K (approx. 22 hPa) levels were investigated. For the first time, the latest versions of the Cryogenic Limb Array Etalon Spectrometer (CLAES, version 9) and Microwave Limb Sounder (MLS, version 5) data sets are analyzed, and their consistency is assessed. A detailed sensitivity study with the AER photochemical box model along these trajectories leads to the conclusion that for the December 24-29, 1992 episode: (1) the individual CLAES ClONO2 and MLS ClO measurements are self-consistent within their uncertainties; and (2) most of the time, UARS measurements of ClO, ClONO2, HNO3, and aerosol extinction at 780 cm(exp -1) agree within the range of their uncertainties with the model calculations. It appears that the HNO3 and aerosol extinction measurements for four parcels at 520 K look more supportive for the nitric acid trihydrate (NAT) scheme, However, the uncertainties in the individual UARS measurements and UK Meteorological Office temperature do not allow a definite discrimination between the NAT and supercooled ternary solution (STS) PSC schemes for this chlorine activation episode in December 1992.

  2. Trajectory Hunting: A Case Study of Rapid Chlorine Activation in December 1992 as Seen by UARS

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Santee, M. L.; Rodriquez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.; Livesey

    2000-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the Atmospheric and Environmental Research, Inc. (AER) photochemical box model. As a case study, we investigate rapid chlorine activation in the Arctic lower stratosphere on December 29, 1992 associated with a polar stratospheric cloud (PSC) event. Eleven air parcels that have been sampled several times along 5-day trajectories at the 465 K (approx. 46 hPa), 520 K (approx. 31 hPa), and 585 K (approx. 22 hPa) levels were investigated. For the first time, the latest versions of the Cryogenic Limb Array Etalon Spectrometer (CLAES, version 9) and Microwave Limb Sounder (MLS, version 5) data sets are analyzed, and their consistency is assessed. A detailed sensitivity study with the AER photochemical box model along these trajectories leads to the conclusion that for the December 24-29, 1992 episode (1) the individual CLAES version 9 ClONO2 and MLS version 5 ClO measurements are self-consistent within their uncertainties; and (2) most of the time, UARS measurements of ClO, ClONO2, HNO3, and aerosol extinction at 780 cm (exp -1) agree within the range of their uncertainties with the model calculations. It appears that the HNO3 and aerosol extinction measurements for four parcels at 520 K look more supportive for the nitric acid trihydrate (NAT) scheme. However, the uncertainties in the individual UARS measurements and U.K. Meteorological Office temperature do not allow a definite discrimination between the NAT and supercooled ternary solution (STS) PSC schemes for this chlorine activation episode in December 1992.

  3. Use of gamma ray radiation to parallel the plates of a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Skinner, Wilbert R.; Hays, Paul B.; Anderson, Sally M.

    1987-01-01

    The use of gamma radiation to parallel the plates of a Fabry-Perot etalon is examined. The method for determining the etalon parallelism, and the procedure for irradiating the posts are described. Changes in effective gap for the etalon over the surface are utilized to measure the parallelism of the Fabry-Perot etalon. An example in which this technique is applied to an etalon of fused silica plates, which are 132 mm in diameter and coded with zinc sulfide and cryolite, with Zerodur spaces 2 cm in length. The effect of the irradiation of the posts on the thermal performance of the etalon is investigated.

  4. Solid, 3-Mirror Fabry-Perot Etalon

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Fahey, Molly; Miller, Ian

    2017-01-01

    We present modeling and performance of a solid, fused silica, 3-mirror Fabry-Perot-type etalon. We show the optical cavity design and construction of the new etalon and show >95% peak transmission, improved passband shape and 20 dB better out of band rejection than a similar 2-mirror etalon.

  5. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  6. A New Remote Sensing Filter Radiometer Employing a Fabry-Perot Etalon and a CCD Camera for Column Measurements of Methane in the Earth Atmosphere

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Huang, W.; Heaps, W. S.

    2012-01-01

    A portable remote sensing system for precision column measurements of methane has been developed, built and tested at NASA GSFC. The sensor covers the spectral range from 1.636 micrometers to 1.646 micrometers, employs an air-gapped Fabry-Perot filter and a CCD camera and has a potential to operate from a variety of platforms. The detector is an XS-1.7-320 camera unit from Xenics Infrared solutions which combines an uncooled InGaAs detector array working up to 1.7 micrometers. Custom software was developed in addition to the graphical user basic interface X-Control provided by the company to help save and process the data. The technique and setup can be used to measure other trace gases in the atmosphere with minimal changes of the etalon and the prefilter. In this paper we describe the calibration of the system using several different approaches.

  7. Stable and rugged etalon for the Dynamics Explorer Fabry-Perot interferometer. I - Design and construction

    NASA Astrophysics Data System (ADS)

    Rees, D.; Fuller-Rowell, T. J.; Lyons, A.; Killeen, T. L.; Hays, P. B.

    1982-11-01

    The cemented etalons are shown to be rugged and highly stable for high-resolution spectroscopy and to be well suited to space applications. The etalons will be of considerable value as the tuning elements of dye laser systems and as the stable spectral disperser for pulse and CW laser spectroscopy. Even for etalons 15 cm in diameter, the strength of the cemented bond is greatly in excess of the maximum steady and impulsive forces experienced from the much larger etalon plate mass (2-4 kg rather than 200 g). It is thought that the small but systematic and significant positive increment in the thermal expansion coefficient which occurs when an etalon and its spacers are cemented may be linked to the cessation of the microscopic migration that occurs with an optically contacted bond under thermal or mechanical stress. The etalon comprises two flat plates of fused silica, with spacers constructed of Zerodur (a polycrystalline glass ceramic of extremely low expansion coefficient) which are cemented together using cyanoacrylic adhesives.

  8. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOEpatents

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  9. Ultra-High Aggregate Bandwidth Two-Dimensional Multiple-Wavelength Diode Laser Arrays

    DTIC Science & Technology

    1994-04-09

    surface temperature across the wafer during the growth of the cavity spacer region using the fact that the molecular beam epitaxy (MBE) growth of GaAs...substrate surface temperature across the wafer during the growth of the cavity spacer region. Using the fact that, during an molecular beam epitaxy (MBE...K. Bacher and J.S. Harris, "Periodically Induced Mode Shift in Vertical Cavity Fabry Perot Etalons Grown by Molecular Beam Epitaxy ," to be presented

  10. Rubidium-traced white-light etalon calibrator for radial velocity measurements at the cm s-1 level

    NASA Astrophysics Data System (ADS)

    Stürmer, Julian; Seifahrt, Andreas; Schwab, Christian; Bean, Jacob L.

    2017-04-01

    We report on the construction and testing of a vacuum-gap Fabry-Pérot etalon calibrator for high precision radial velocity spectrographs. Our etalon is traced against a rubidium frequency standard to provide a cost effective, yet ultra precise wavelength reference. We describe here a turn-key system working at 500 to 900 nm, ready to be installed at any current and next-generation radial velocity spectrograph that requires calibration over a wide spectral bandpass. Where appropriate, we have used off-the-shelf, commercial components with demonstrated long-term performance to accelerate the development timescale of this instrument. Our system combines for the first time the advantages of passively stabilized etalons for optical and near-infrared wavelengths with the laser-locking technique demonstrated for single-mode fiber etalons. We realize uncertainties in the position of one etalon line at the 10 cm s-1 level in individual measurements taken at 4 Hz. When binning the data over 10 s, we are able to trace the etalon line with a precision of better than 3 cm s-1. We present data obtained during a week of continuous operation where we detect (and correct for) the predicted, but previously unobserved shrinking of the etalon Zerodur spacer corresponding to a shift of 13 cm s-1 per day.

  11. Low cost photonic comb for sub-m/s wavelength calibration

    NASA Astrophysics Data System (ADS)

    Betters, Christopher H.; Hermouet, Maxime; Blanc, Thomas; Colless, James I.; Bland-Hawthorn, Joss; Kos, Janez; Leon-Saval, Sergio

    2016-07-01

    A fundamental limitation of precision radial velocity measurements is the accuracy and stability of the calibration source. Here we present a low-cost alternative to more complex laser metrology based systems that utilises a single-mode fibre Fabry-Perot etalon. There are three key elements on this photonic comb: i) an optical fibre etalon with thermo-electric coolers; ii) a Rubidium Saturation Absorption Spectroscopy (SAS) setup; and iii) an optical fibre switch system for simultaneous laser locking of the etalon. We simultaneously measure the Rubidium D2 transitions around 780.2 nm and the closest etalon line. A PID loop controls the etalon temperate to maintain the position of its peak with an RMS error of <10cm/s for 10 minute integration intervals in continous operation. The optical fibre switch system allows for a time multiplexed coupling of the etalon to a spectrograph and SAS system.

  12. Rayleigh Scattering Measurements Using a Tunable Liquid Crystal Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2010-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, velocity, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of a tunable liquid crystal (LC) Fabry-Perot etalon in Rayleigh scattering experiments at NASA Glenn Research Center. The LC etalon provides a robust interferometry system that can be tuned rapidly by adjusting the voltage applied to the liquid crystal interface. Tuning the interferometer is often necessary to control the physical locations of the concentric interference fringes when Rayleigh light is imaged through the LC etalon. The LC etalon diagnostic system was tested in a 1-cm diameter nozzle flow in two different scattering configurations to evaluate its usefulness for Rayleigh measurements compared to a traditional non-tunable fused silica Fabry-Perot etalon.

  13. Double-Edge Molecular Measurement of Lidar Wind Profiles at 355 nm

    NASA Technical Reports Server (NTRS)

    Flesia, Cristina; Korb, C. Laurence; Hirt, Christian; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We built a direct detection Doppler lidar based on the double-edge molecular technique and made the first molecular based wind measurements using the eyesafe 355 nm wavelength. Three etalon bandpasses are obtained with Step etalons on a single pair of etalon plates. Long-term frequency drift of the laser and the capacitively stabilized etalon is removed by locking the etalon to the laser frequency. We use a low angle design to avoid polarization effects. Wind measurements of 1 to 2 m/s accuracy are obtained to 10 km altitude with 5 mJ of laser energy, a 750s integration, and a 25 cm telescope. Good agreement is obtained between the lidar and rawinsonde measurements.

  14. Measurement of the curvature of a surface using parallel light beams

    DOEpatents

    Chason, Eric H.; Floro, Jerrold A.; Seager, Carleton H.; Sinclair, Michael B.

    1999-01-01

    Apparatus for measuring curvature of a surface wherein a beam of collimated light is passed through means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90.degree. about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90.degree. relative to the line onto which the single set of parallel beams from the first etalon would have fallen.

  15. Measurement of the curvature of a surface using parallel light beams

    DOEpatents

    Chason, E.H.; Floro, J.A.; Seager, C.H.; Sinclair, M.B.

    1999-06-15

    Apparatus is disclosed for measuring curvature of a surface wherein a beam of collimated light is passed through a means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90[degree] about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90[degree] relative to the line onto which the single set of parallel beams from the first etalon would have fallen. 5 figs.

  16. Spectral response of fiber-coupled Fabry-Perot etalons.

    PubMed

    Ionov, Pavel

    2014-03-01

    In many remote sensing applications one or multiple Fabry-Perot etalons are used as high-spectral-resolution filter elements. These etalons are often coupled to a receiving telescope with a multimode fiber, leading to subtle effects of the fiber mode order on the overall spectral response of the system. A theoretical model is developed to treat the spectral response of the combined system: fiber, collimator, and etalon. The method is based on a closed-form expression of the diffracted mode in terms of a Hankel transform. In this representation, it is shown how the spectral effect of the fiber and collimator can be separated from the details of the etalon and can be viewed as a mode-dependent spectral broadening and shift.

  17. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media

    NASA Astrophysics Data System (ADS)

    Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-05-01

    Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.

  18. Stratospheric Assimilation of Chemical Tracer Observations Using a Kalman Filter. Pt. 2; Chi-Square Validated Results and Analysis of Variance and Correlation Dynamics

    NASA Technical Reports Server (NTRS)

    Menard, Richard; Chang, Lang-Ping

    1998-01-01

    A Kalman filter system designed for the assimilation of limb-sounding observations of stratospheric chemical tracers, which has four tunable covariance parameters, was developed in Part I (Menard et al. 1998) The assimilation results of CH4 observations from the Cryogenic Limb Array Etalon Sounder instrument (CLAES) and the Halogen Observation Experiment instrument (HALOE) on board of the Upper Atmosphere Research Satellite are described in this paper. A robust (chi)(sup 2) criterion, which provides a statistical validation of the forecast and observational error covariances, was used to estimate the tunable variance parameters of the system. In particular, an estimate of the model error variance was obtained. The effect of model error on the forecast error variance became critical after only three days of assimilation of CLAES observations, although it took 14 days of forecast to double the initial error variance. We further found that the model error due to numerical discretization as arising in the standard Kalman filter algorithm, is comparable in size to the physical model error due to wind and transport modeling errors together. Separate assimilations of CLAES and HALOE observations were compared to validate the state estimate away from the observed locations. A wave-breaking event that took place several thousands of kilometers away from the HALOE observation locations was well captured by the Kalman filter due to highly anisotropic forecast error correlations. The forecast error correlation in the assimilation of the CLAES observations was found to have a structure similar to that in pure forecast mode except for smaller length scales. Finally, we have conducted an analysis of the variance and correlation dynamics to determine their relative importance in chemical tracer assimilation problems. Results show that the optimality of a tracer assimilation system depends, for the most part, on having flow-dependent error correlation rather than on evolving the error variance.

  19. High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.

    2014-01-01

    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.

  20. Interferometric measurement of the temperature dependence of an index of refraction: application to fused silica.

    PubMed

    Dupouy, Paul-Edouard; Büchner, Matthias; Paquier, Philippe; Trénec, Gérard; Vigué, Jacques

    2010-02-01

    The light reflected by an uncoated Fabry-Perot etalon presents dark rings which give a very sensitive measurement of the variations of the return optical path in the etalon. By measuring the diameters of these rings as a function of the etalon temperature T, we get a sensitive measurement of the derivative dn/dT of the index of refraction n. We have made this experiment with a fused silica etalon and we have achieved a 2% relative uncertainty on dn/dT, comparable to the uncertainty of the best experiments.

  1. Tunable UV Filters

    NASA Technical Reports Server (NTRS)

    Bruner, Marilyn E. (Principal Investigator); Rosenberg, William A.

    1996-01-01

    This report describes an investigation intended to determine the practical short wavelength limit for Fabry-Perot etalons operating in the far ultraviolet. This portion of the investigation includes a design study of multilayer dielectric reflector coatings that would be required by such an etalon. Results of the study indicate that etalons may be made to operate at wavelengths as short as 121 nm.

  2. Micromachined Tunable Fabry-Perot Filters for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Barclay, Richard; Bier, Alexander; Chen, Tina; DiCamillo, Barbara; Deming, Drake; Greenhouse, Matthew; Henry, Ross; Hewagama, Tilak; Jacobson, Mindy; Loughlin, James; hide

    2002-01-01

    Micromachined Fabry-Perot tunable filters with a large clear aperture (12.5 to 40 mm) are being developed as an optical component for wide-field imaging 1:1 spectroscopy. This program applies silicon micromachining fabrication techniques to miniaturize Fabry-Perot filters for astronomical science instruments. The filter assembly consists of a stationary etalon plate mated to a plate in which the etalon is free to move along the optical axis on silicon springs attached to a stiff silicon support ring. The moving etalon is actuated electrostatically by electrode pairs on the fixed and moving etalons. To reduce mass, both etalons are fabricated by applying optical coatings to a thin freestanding silicon nitride film held flat in drumhead tension rather than to a thick optical substrate. The design, electro-mechanical modeling, fabrication, and initial results will be discussed. The potential application of the miniature Fabry-Perot filters will be briefly discussed with emphasis on the detection of extra-solar planets.

  3. Line Profile Measurements of the Lunar Exospheric Sodium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Line, Michael R.; Roesler, Fred L.; Lupie, Olivia L.

    2012-01-01

    We report ongoing results of a program to measure the lunar sodium exospheric line profile from near the lunar limb out to two lunar radii (approx 3500 km). These observations are conducted from the National Solar Observatory McMath-Pierce telescope using a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,600 (1.7 km/s) to measure line widths and velocity shifts of the Na D2 (5889 950 A) emission line in equatorial and polar regions at different lunar phases. The typical field of view (FOV) is 3 arcmin (approx 360 km) with an occasional smaller 1 arcmin FOV used right at the limb edge. The first data were obtained from full Moon to 3 days following full Moon (waning phase) in March 2009 as part of a demonstration run aimed at establishing techniques for a thorough study of temperatures and velocity variations in the lunar sodium exosphere. These data indicate velocity displacements from different locations off the lunar limb range between 150 and 600 m/s from the lunar rest velocity with a precision of +/- 20 to +/- 50 m/s depending on brightness. The measured Doppler line widths for observations within 10.5 arcmin of the east and south lunar limbs for observations between 5 deg and 40 deg lunar phase imply temperatures ranging decreasing from 3250 +/- 260K to 1175 +/- 150K. Additional data is now being collected on a quarterly basis since March 2011 and preliminary results will be reported.

  4. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  5. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  6. Development of the Double Etalon Fabry-Perot Interferometer for Determining Total and Tropospheric Ozone Concentrations

    NASA Technical Reports Server (NTRS)

    Cook, William

    1999-01-01

    Measuring and understanding the distribution of ozone through the lower levels of Earth's atmosphere are high priorities in global change and climate research. Of particular interest now is the global distribution of ozone in the upper troposphere and lower stratosphere. Global coverage of the stratospheric ozone is feasible only via remote sensing instruments on a space-based platform. And though extensive monitoring tropospheric ozone is possible using instruments flown aboard conventional aircraft, a space-based system would be significantly less costly and provide information over a much broader area and produce more uniform coverage. Here we describe the prototype of an instrument being developed to monitor, from an orbiting spacecraft, the ozone found in Earth's upper troposphere and lower stratosphere. Our new spectrometer is an infrared Fabry-Perot interferometer which uses two synchrounously tuned etalons: a high resolution narrow band device and a lower resolution broader band filtering etalon. The prototype is a scanning device making use of nearly collimated input radiation and a single element detector. As presently configured, it is capable of providing a resolution better than 0.07/cm with a spectral band width approximately 5/cm wide and centered at 1054.7/cm. For the future space-based emission device a modification of the the prototype was to be made to employ innovative circle-to-line detector optics, those developed or in development at UM/SPRL, and a focal plane array detector. These enhancements would enable a simultaneous recording of the entire spectral range of interest, but with simple detection electronics and a significant gain in signal-to-noise over that of the scanning version.

  7. A novel fiber Bragg grating wavelength demodulation system based on F-P etalon

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Guo, Jinghong; Xu, Guoliang; Lv, Lidong; Tu, Guojie; Xia, Lan

    2014-10-01

    This paper designs and implies a high precision FBG demodulation system which based on F-P etalon. In order to reduce the influence of the temperature drift effect, the peristaltic effect, and the nonlinear effect of F-P filter in traditional tunable filter method, F-P etalon is added as dynamical calibration and wavelength reference. Meanwhile segmentation demodulation which uses ASE spectral characteristics is applied to achieve high accuracy of the center wavelength of FBG. The experiment shows that the stability, resolution are 0.65pm, 0.23pm, respectively. Key words: fiber optics; fiber Bragg grating sensor system; tunable Fabry-Perot filter; F-P etalon; spectrum segmentation demodulation

  8. Resolution-enhanced Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Aubrun, J. N.; Rosenberg, W. J.; Roche, A. E.

    1993-01-01

    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound.

  9. High-precision thermal expansion measurements using small Fabry-Perot etalons

    NASA Astrophysics Data System (ADS)

    Davis, Mark J.; Hayden, Joseph S.; Farber, Daniel L.

    2007-09-01

    Coefficient of thermal expansion (CTE) measurements using small Fabry-Perot etalons were conducted on high and low thermal expansion materials differing in CTE by a factor of nearly 400. The smallest detectable change in length was ~10 -12 m. The sample consisted of a mm-sized Fabry-Perot etalon equipped with spherical mirrors; the material-under-test served as the 2.5 mm-thick spacer between the mirrors. A heterodyne optical setup was used with one laser locked to an ~780 nm hyperfine line of Rb gas and the other locked to a resonance of the sample etalon; changes in the beat frequency between the two lasers as a function of temperature directly provided a CTE value. The measurement system was tested using the high-CTE SCHOTT optical glass N-KF9 (CTE = 9.5 ppm/K at 23 °C). Measurements conducted under reproducibility conditions using five identically-prepared N-KF9 etalons demonstrate a precision of 0.1 ppm/K; absolute values (accuracy) are within 2-sigma errors with those made using mechanical dilatometers with 100-mm long sample rods. Etalon-based CTE measurements were also made on a high-CTE (~10.5 ppm/K), proprietary glass-ceramic used for high peak-pressure electrical feedthroughs and revealed statistically significant differences among parts made under what were assumed to be identical conditions. Finally, CTE measurements were made on etalons constructed from SCHOTT's ultra-low CTE Zerodur (R) glass-ceramic (CTE about -20 ppb/K at 50 °C for the material tested herein).

  10. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    PubMed

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  11. Stable and rugged etalon for the Dynamics Explorer Fabry-Perot interferometer. 1: Design and construction.

    PubMed

    Rees, D; Fuller-Rowell, T J; Lyons, A; Killeen, T L; Hays, P B

    1982-11-01

    This is one of two papers which describe the development and performance of a very stable and rugged etalon designed for use in the Fabry-Perot interferometer, one of the instruments of the NASA Dynamics Explorer satellite mission, and which will obtain global measurements of the thermospheric and mesospheric wind and temperature with an accuracy of aporoximately 10 m/sec. The etalon consists of two flat plates of fused silica, with spacers constructed of Zerodur (a polycrystalline glass ceramic of extremely low expansion coefficient) which are cemented together using cyanoacrylic adhesives. This provides adequate mechanical integrity and stability for any space flight application and has a thermal expansion coefficient of the etalon cavity of <10(-7)/ degrees C.

  12. Communication using VCSEL laser array

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2008-01-01

    Ultrafast directional beam switching, using coupled vertical cavity surface emitting lasers (VCSELs) is combined with a light modulator to provide information transfer at bit rates of tens of GHz. This approach is demonstrated to achieve beam switching frequencies of 32-50 GHz in some embodiments and directional beam switching with angular differences of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches. A Mach-Zehnder interferometer, a Fabry-Perot etalon, or a semiconductor-based electro-absorption transmission channel, among others, can be used as a light modulator.

  13. Electro-Optic Modulator.

    DTIC Science & Technology

    An electro - optic modulator is used to modulate coherent light beams by the application of an electric potential. It combines a Fabry-Perot etalon and...a diffraction grating in a single unit. An etalon is constructed with an electro - optic material between reflecting surfaces. A voltage applied...between alternate, spaced-apart electrodes of a metal grid attached to one reflecting surface induces a diffraction grating in the electro optic material. Light entering the etalon is diffracted, reflected and efficiently coupled out.

  14. A rubidium traced white-light etalon calibrator for MAROON-X

    NASA Astrophysics Data System (ADS)

    Stürmer, Julian; Seifahrt, Andreas; Schwab, Christian; Bean, Jacob L.

    2016-07-01

    We report on the construction and testing of a vacuum-gap Fabry-Perot etalon calibrator for high precision radial velocity spectrographs. The etalon is referenced against hyper fine transitions of rubidium to provide a precise wavelength calibrator for MAROON-X, a new fiber-fed, red-optical, high-precision radial-velocity spectrograph currently under construction for one of the twin 6.5m Magellan Telescopes in Chile. We demonstrate a turnkey system, ready to be installed at any current and next generation radial velocity spectrograph that requires calibration over a wide spectral band-pass. Uncertainties in the position of one etalon line are at the 10 cm s-1 level in individual measurements taken at 4 Hz. Our long-term stability is mainly limited by aging effects of the spacer material Zerodur, which imprints a 12 cm s-1 daily drift. However, as the etalon position is traced by the rubidium reference with a precision of <3 cm s-1 for integration times longer than 10s, we can fully account for this effect at the RV data reduction level.

  15. First Observations from the Multi-Application Solar Telescope (MAST) Narrow-Band Imager

    NASA Astrophysics Data System (ADS)

    Mathew, Shibu K.; Bayanna, Ankala Raja; Tiwary, Alok Ranjan; Bireddy, Ramya; Venkatakrishnan, Parameswaran

    2017-08-01

    The Multi-Application Solar Telescope is a 50 cm off-axis Gregorian telescope recently installed at the Udaipur Solar Observatory, India. In order to obtain near-simultaneous observations at photospheric and chromospheric heights, an imager optimized for two or more wavelengths is being integrated with the telescope. Two voltage-tuneable lithium-niobate Fabry-Perot etalons along with a set of interference blocking filters have been used for developing the imager. Both of the etalons are used in tandem for photospheric observations in Fe i 6173 Å and chromospheric observation in Hα 6563 Å spectral lines, whereas only one of the etalons is used for the chromospheric Ca II line at 8542 Å. The imager is also being used for spectropolarimetric observations. We discuss the characterization of the etalons at the above wavelengths, detail the integration of the imager with the telescope, and present a few sets of observations taken with the imager set-up.

  16. A tunable, solid, Fabry-Perot etalon for solar seismology

    NASA Technical Reports Server (NTRS)

    Rust, David M.; Burton, Clive H.; Leistner, Achim J.

    1986-01-01

    A solid etalon has been designed and fabricated from a 50-mm diameter wafer of optical-quality lithium niobate. The finished etalon has a free spectral range of 0.325 nm at 588 nm. The parallel faces are coated with silver, and the central 15-mm aperture of the etalon has a finesse of 18.6. The reflective faces double as electrodes, and application of voltage will shift the passband. This feature was used in a servo circuit to stabilize the passband against temperature and tilt-induced drifts to better than three parts in one billion. Operated in the stabilized mode for day-long sessions, this filter alternately samples the wings of a narrow atomic absorption line in the solar spectrum and produces a signal proportional to velocity on the solar disk. The Fourier transform of this signal yields information on acoustic waves in the solar interior.

  17. Stability of an optically contacted etalon to cosmic radiation. [aboard Dynamics Explorer satellite

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Dettman, D. L.; Hays, P. B.

    1980-01-01

    An investigation has been completed to determine the effects of prolonged exposure to cosmic radiation on Zerodur spacing elements used between two dielectric reflectors on silica substrates in the plane Fabry-Perot etalon selected for flight in the Dynamics Explorer satellite. The measured radiation expansion coefficient for Zerodur is approximately -4.0 x 10 to the -12th/rad. In addition to the overall change in gap dimension, test data indicate a degradation in etalon parallelism, which is ascribed to the different doses received by the three spacers due to their differing distances from a Co-60 source. The effect is considered to be of practical use in the tuning and parallelism adjustment of fixed gap etalons. The variation is small enough not to pose a problem for the satellite instrument where expected radiation doses are less than 10,000 rads.

  18. Theoretical Study of an Actively Mode-Locked Fiber Laser Stabilized by an Intracavity Fabry-Perot Etalon: Linear Regime

    DTIC Science & Technology

    2007-07-01

    24, No. 8 /August 2007 Parkhomenko et al.qual to the Kuizenga– Siegman limit of a laser without ispersion [8]. The paper is organized as follows. In...dura- ion 2T0 /2s, where 2s is the Kuizenga– Siegman limit 8], on the detuning between the etalon and the laser odes, , for an etalon with a finesse F...B 1799he pulse duration decreases until the pulse duration be- omes equal to Kuizenga– Siegman limit of 2T0=6 ps for he laser . This limit is reached

  19. Single mode wavelength control of modulated AlGaAs lasers with external and internal etalon feedback

    NASA Technical Reports Server (NTRS)

    Maynard, William L.

    1989-01-01

    Single mode lasing without mode hops has been obtained for VSIS and CSP laser diodes with an external etalon attached to the laser's front facet for up to an 8 C range CW and a 4 C range pulsed, with .07 nm/C tuning. Tests of thin tapered-thickness (TTT) laser diodes show CW and pulsed single mode lasing over 10 C and 2 C ranges, respectively, with .08 nm/C tuning. An analysis of the TTT structure reveals the equivalent of an internal etalon. The time-resolved pulsed behavior for both types of lasers show single mode lasing within the proper temperature ranges with minor modes present only early in the optical pulse, if at all. The external etalon produces noticeable interference fringes in the farfield pattern, while those of the TTT lasers are smooth. Ongoing CW lifetest results indicate stability to within one longitudinal mode after a few hundred hours of operation, along with at least several thousand hours lifetime.

  20. Etalon (standard) for surface potential distribution produced by electric activity of the heart.

    PubMed

    Szathmáry, V; Ruttkay-Nedecký, I

    1981-01-01

    The authors submit etalon (standard) equipotential maps as an aid in the evaluation of maps of surface potential distributions in living subjects. They were obtained by measuring potentials on the surface of an electrolytic tank shaped like the thorax. The individual etalon maps were determined in such a way that the parameters of the physical dipole forming the source of the electric field in the tank corresponded to the mean vectorcardiographic parameters measured in a healthy population sample. The technique also allows a quantitative estimate of the degree of non-dipolarity of the heart as the source of the electric field.

  1. Interferometers adaptations to lidars

    NASA Technical Reports Server (NTRS)

    Porteneuve, J.

    1992-01-01

    To perform daytime measurements of the density and temperature by Rayleigh lidar, it is necessary to select the wavelength with a very narrow spectral system. This filter is composed by an interference filter and a Fabry Perot etalon. The Fabry Perot etalon is the more performent compound, and it is necessary to build a specific optic around it. The image of the entrance pupil or the field diaphragm is at the infinite and the other diaphragm is on the etalon. The optical quality of the optical system is linked to the spectral resolution of the system to optimize the reduction of the field of view. The resolution is given by the formula: R = 8(xD/Fd)exp 2 where R = lambda/delta(lambda), x = diameter of the field diaphragm, D = diameter of the reception mirror, F = focal length of the telescope, and d = useful diameter of the etalon. In the Doppler Rayleigh lidars, the PF interferometer is the main part of the experiment and the exact spectral adaptation is the most critical problem. In the spectral adaptation of interferometers, the transmittance of the system will be acceptable if the etalon is exactly adjusted to the wavelength of the laser. It is necessary to work with a monomode laser, and adjust the shift to the bandpass of the interferometer. We are working with an interferometer built with molecular optical contact. This interferometer is put in a special pressure closed chamber.

  2. Compressible Fabry-Perot refractometer.

    PubMed

    Andersson, M; Eliasson, L; Pendrill, L R

    1987-11-15

    The use of a long, thermally stable Fabry-Perot etalon as a refractometer is considered in detail in this study of the refractive index of air. The etalon consists of two flat plates of fused silica 60 mm in diameter, with a cylindrical spacer made of Zerodur (a polycrystalline glass ceramic of extremely low thermal expansion) 200 mm long. The interferogram of light from a frequency-stabilized He-Ne laser is imaged with large-diameter mirror optics. The principal result is a demonstration of the effects of changes in atmospheric pressure on the etalon. The measured refractive-index values deviate by 2 parts in 10(7) from calculated values. Possible causes of error are considered in detail.

  3. Bright and dark gap solitons in a negative index Fabry-Pérot etalon.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2004-11-19

    We predict the existence of bright and dark gap solitons in a single slab of negative index material. The formation of gap solitons is made possible by the exceptional interplay between the linear dispersive properties of the negative index etalon and the effect of a cubic nonlinearity.

  4. PAWS locker: a passively aligned internal wavelength locker for telecommunications lasers

    NASA Astrophysics Data System (ADS)

    Boye, Robert R.; Te Kolste, Robert; Kathman, Alan D.; Cruz-Cabrera, Alvaro; Knight, Douglas; Hammond, J. Barney

    2003-11-01

    This paper presents the passively aligned Wavesetter (PAWS) locker: a micro-optic subassembly for use as an internal wavelength locker. As the wavelength spacing in dense wavelength division multiplexing (WDM) decreases, the performance demands placed upon source lasers increase. The required wavelength stability has led to the use of external wavelength lockers utilizing air-spaced, thermally stabilized etalons. However, package constraints are forcing the integration of the wavelength locker directly into the laser module. These etalons require active tuning be done during installation of the wavelength locker as well as active temperature control (air-spaced etalons are typically too large for laser packages). A unique locking technique will be introduced that does not require an active alignment or active temperature compensation. Using the principles of phase shifting interferometry, a locking signal is derived without the inherent inflection points present in the signal of an etalon. The theoretical background of PAWS locker will be discussed as well as practical considerations for its implementation. Empirical results will be presented including wavelength accuracy, alignment sensitivity and thermal performance.

  5. Continued Development of an Ultra-Narrow Bandpass Filter for Solar Research

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1993-01-01

    The objective of work under this task was to develop ultranarrow optical bandpass filters and related technology necessary for construction of a compact solar telescope capable of operating unattended in space. The scientific problems to which such a telescope could be applied include solar seismology, solar activity monitoring, solar irradiance variations, solar magnetic field evolution, and the location of targets for narrow-field specialized telescopes. We have demonstrated a Y-cut lithium-niobate Fabry-Perot etalon. This filter will be used on the Flare Genesis Experiment. We also obtained solar images with a Z-cut etalon. The technical report on etalon filters is attached to this final report. We believe that work under this grant will lead to the commercial availability of a universal optical filter with approximately 0.1 A bandwidth. Progress was made toward making a suitable 1-2 A tunable blocker filter, but it now appears that the best approach is to make a double-cavity etalon that will not require such a narrow blocker. Broader band blockers are commercially available.

  6. Silicon-Etalon Fiber-Optic Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus; Flatico, Joseph M.; Azar, Massood Tabib

    1993-01-01

    Developmental temperature sensor consists of silicon Fabry-Perot etalon attached to end of optical fiber. Features immunity to electrical interference, small size, light weight, safety, and chemical inertness. Output encoded in ration of intensities at two different wavelengths, rather than in overall intensity, with result that temperature readings not degraded much by changes in transmittance of fiber-optic link.

  7. Applicability of Neural Networks to Etalon Fringe Filtering in Laser Spectrometers

    NASA Technical Reports Server (NTRS)

    Nicely, J. M.; Hanisco, T. F.; Riris, H.

    2018-01-01

    We present a neural network algorithm for spectroscopic retrievals of concentrations of trace gases. Using synthetic data we demonstrate that a neural network is well suited for filtering etalon fringes and provides superior performance to conventional least squares minimization techniques. This novel method can improve the accuracy of atmospheric retrievals and minimize biases.

  8. Metrology of semiconductor structures using novel Fabry Perot fringe stretching system

    NASA Astrophysics Data System (ADS)

    Walecki, Wojtek J.; Pravdivtsev, Alexander

    2017-08-01

    We describe patent pending fiber optic apparatus for measurements of thicknesses and distance employing low resolution spectrometer and etalon. The application of an additional known reference etalon "stretches fringes" and allows us to use Fabry Perot interference to investigate thick samples and large distances which would not be possible when using the low resolution spectrometer alone.

  9. Applicability of neural networks to etalon fringe filtering in laser spectrometers

    NASA Astrophysics Data System (ADS)

    Nicely, J. M.; Hanisco, T. F.; Riris, H.

    2018-05-01

    We present a neural network algorithm for spectroscopic retrievals of concentrations of trace gases. Using synthetic data we demonstrate that a neural network is well suited for filtering etalon fringes and provides superior performance to conventional least squares minimization techniques. This novel method can improve the accuracy of atmospheric retrievals and minimize biases.

  10. Water Ice on Pluto

    NASA Image and Video Library

    2015-10-08

    Regions with exposed water ice are highlighted in blue in this composite image from New Horizons' Ralph instrument, combining visible imagery from the Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). The strongest signatures of water ice occur along Virgil Fossa, just west of Elliot crater on the left side of the inset image, and also in Viking Terra near the top of the frame. A major outcrop also occurs in Baré Montes towards the right of the image, along with numerous much smaller outcrops, mostly associated with impact craters and valleys between mountains. The scene is approximately 280 miles (450 kilometers) across. Note that all surface feature names are informal. http://ppj2:8080/catalog/PIA19963

  11. Silicon-etalon fiber-optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus; Flatico, Joseph M.; Azar, Massood Tabib

    1989-01-01

    A temperature sensor is described which consists of a silicon etalon that is sputtered directly onto the end of an optical fiber. A two-layer protective cap structure is used to improve the sensor's long-term stability. The sensor's output is wavelength encoded to provide a high degree of immunity from cable and connector effects. This sensor is extremely compact and potentially inexpensive.

  12. Use of PZT's for adaptive control of Fabry-Perot etalon plate figure

    NASA Technical Reports Server (NTRS)

    Skinner, WIlbert; Niciejewski, R.

    2005-01-01

    A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.

  13. Optical modulation from an electro-optic polymer based hybrid Fabry-Perot etalon using transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Zhang, Hongxi; DeRose, Christopher T.; Norwood, Robert A.; Fallahi, Mahmoud; Luo, Jingdong; Jen, Alex K.-Y.; Liu, Boyang; Ho, Seng-Tiong; Peyghambarian, Nasser

    2007-02-01

    Fabry-Perot etalons using electro-optic (EO) organic materials can be used for devices such as tunable filters and spatial light modulators (SLM's) for wavelength division multiplexing (WDM) communication systems 1-5 and ultrafast imaging systems. For these applications the SLM's need to have: (i) low insertion loss, (ii) high speed operation, and (iii) large modulation depth with low drive voltage. Recently, there have been three developments which together can enhance the SLM performance to a higher level. First, low loss distributed Bragg reflector (DBR) mirrors are now used in SLM's to replace thin metal mirrors, resulting in reduced transmission loss, high reflectivity (>99%) and high finesse. Second, EO polymer materials have shown excellent properties for wide bandwidth optical modulation for information technology due to their fabrication flexibility, compatibility with high speed operation, and large EO coefficients at telecommunication wavelengths. For instance, the EO polymer AJL8/APC (AJL8: nonlinear optical chromophore, and APC: amorphous polycarbonate has recently been incorporated into waveguide modulators and achieved good performance for optical modulation. Finally, very low loss transparent conducting oxide (TCO) electrodes have drawn increasing attention for applications in optoelectronic devices. Here we will address how the low loss indium oxide (In IIO 3) electrodes with an absorption coefficient ~1000/cm and conductivity ~204 S/cm can help improve the modulation performance of EO polymer Fabry-Pérot étalons using the advanced electro-optic (EO) polymer material (AJL8/APC). A hybrid etalon structure with one highly conductive indium tin oxide (ITO) electrode outside the etalon cavity and one low-absorption In IIO 3 electrode inside etalon cavity has been demonstrated. High finesse (~234), improved effective applied voltage ratio (~0.25), and low insertion loss (~4 dB) have been obtained. A 10 dB isolation ratio and ~10% modulation depth at 200 kHz with only 5 V applied voltage have been achieved. These results indicate that such etalons are very promising candidates for ultrafast spatial light modulation in information technology.

  14. A flexible electrode array for muscle impedance measurements in the mouse hind limb: A tool to speed research in neuromuscular disease

    NASA Astrophysics Data System (ADS)

    Li, J.; Rutkove, S. B.

    2013-04-01

    Electrical impedance myography (EIM) is a bioelectrical impedance technique focused on the assessment of neuromuscular diseases using tetrapolar surface arrays. Recently, we have shown that reproducible and sensitive EIM measurements can be made on the gastrocnemius muscle of the mouse hind limb and that these are sensitive to disease alterations. A dedicated array would help speed data acquisition and provide additional sensitivity to disease-induced alterations. A flexible electrode array was developed with electrode sizes of 1mm × 1mm by Parlex, Inc. Tetrapolar electrode sets were arranged both parallel to (longitudinal) and orthogonally to (transverse) the major muscle fiber direction of the gastrocnemius muscle. Measurements were made with a dedicated EIM system. A total of 11 healthy animals and 7 animals with spinal muscular atrophy (a form of motor neuron disease) were evaluated after the fur was completely removed with a depilatory agent from the hind limb. Standard electrophysiologic testing (compound motor action potential amplitude and motor unit number estimation) was also performed. The flexible electrode array demonstrated high repeatability in both the longitudinal and transverse directions in the healthy and diseased animals (with intraclass correlation coefficients of 0.94 and 0.89, respectively, for phase angle measured transversely). In addition, differences between healthy and diseased animals were identifiable. For example, the 50 kHz transverse phase angle was higher in the healthy as compared to the SMA animals (16.8° ± 0.5 vs. 14.3° ± 0.7, respectively) at 21 weeks of age (p = 0.01). Differences in anisotropy were also identifiable. Correlations to several standard neurophysiologic parameters also appeared promising. This novel flexible tetrapolar electrode array can be used on the mouse hind limb and provides multidirectional data that can be used to assess muscle health. This technique has the potential of finding widespread use in the evaluation of drug therapies in neuromuscular animal disease models.

  15. Neuroprosthetic limb control with electrocorticography: approaches and challenges.

    PubMed

    Thakor, Nitish V; Fifer, Matthew S; Hotson, Guy; Benz, Heather L; Newman, Geoffrey I; Milsap, Griffin W; Crone, Nathan E

    2014-01-01

    Advanced upper limb prosthetics, such as the Johns Hopkins Applied Physics Lab Modular Prosthetic Limb (MPL), are now available for research and preliminary clinical applications. Research attention has shifted to developing means of controlling these prostheses. Penetrating microelectrode arrays are often used in animal and human models to decode action potentials for cortical control. These arrays may suffer signal loss over the long-term and therefore should not be the only implant type investigated for chronic BMI use. Electrocorticographic (ECoG) signals from electrodes on the cortical surface may provide more stable long-term recordings. Several studies have demonstrated ECoG's potential for decoding cortical activity. As a result, clinical studies are investigating ECoG encoding of limb movement, as well as its use for interfacing with and controlling advanced prosthetic arms. This overview presents the technical state of the art in the use of ECoG in controlling prostheses. Technical limitations of the current approach and future directions are also presented.

  16. Theoretical, Experimental and Numerical Studies on Hybrid Acoustooptic Bistable Devices

    DTIC Science & Technology

    1991-06-01

    the nonlinear Fabri - Perot etalon, the linear/nonlinear interface and multiple quantum well semiconductor devices. In what follows, I will first...done in connection with absorptive and dispersive optical bistability in a nonlinear Fabri - Perot 3 etalon (for an excellent analysis, see ref. (3...While the first effect is observed when the operating frequency is close to the resonant frequency of the atoms constituting the Fabri - Perot , dispersive

  17. CBET Experiments with Wavelength Shifting at the Nike Laser

    NASA Astrophysics Data System (ADS)

    Weaver, James; McKenty, P.; Bates, J.; Myatt, J.; Shaw, J.; Obenschain, K.; Oh, J.; Kehne, D.; Obenschain, S.; Lehmberg, R. H.; Tsung, F.; Schmitt, A. J.; Serlin, V.

    2016-10-01

    Studies conducted at NRL during 2015 searched for cross-beam energy transport (CBET) in small-scale plastic targets with strong gradients in planar, cylindrical, and spherical geometries. The targets were irradiated by two widely separated beam arrays in a geometry similar to polar direct drive. Data from these shots will be presented that show a lack of a clear CBET signature even with wavelength shifting of one set of beams. This poster will discuss the next campaign being planned, in part, with modelling codes developed at LLE. The next experiments will use a target configuration optimized to create stronger SBS growth. The primary path under consideration is to increase scale lengths 5-10x over the previous study by using exploding foils or low density foams. In addition to simulations, the presentation will also discuss improvements to the diagnostic suite and laser operations; for example, a new set of etalons will be available for the next campaign that should double the range of wavelength shifting between the two beam arrays. Work supported by DoE/NNSA.

  18. Fine wavelength id for tunable laser local oscillators. [sensing the absorption emission spectra of atmospheric gases

    NASA Technical Reports Server (NTRS)

    Savage, M. G.; Augeri, R. C.

    1980-01-01

    A wavelength ID device which consists of an electronic show that the etalon has a finesse F 30 which is maintainable for several days. These tests also demonstrate that the etalon system is capable of resonance frequency stability during similar time periods. With currently available coatings, this level of performance is achievable over an optical bandwidth delta lambda = 3 micrometers centered at lambda = 10 micrometers.

  19. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    NASA Technical Reports Server (NTRS)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1995-01-01

    A conversion efficiency of 42% and slope efficiency of 60% relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84 mW at a crystal temperature of 275 K. The emission spectrum is etalon tunable over a range of7 nm (16.3/cm) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(exp -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  20. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging of the full vector magnetic field at the height of maximum magnetic influence (minimum plasma beta) can be accomplished, albeit difficult, by measuring the Zeeman splitting of the CIV resonance pair. Designs of multiple VUV FPIs can be developed for integration into future orbiting solar observatories to obtain rapid cadence, spectral imaging of the transition region.

  1. Tunable diode laser-pumped Tm,Ho:YLF laser operated in continuous-wave and Q-switched modes

    NASA Technical Reports Server (NTRS)

    Mcguckin, B. T.; Hemmati, H.; Menzies, R. T.

    1992-01-01

    Tunable continuous-wave and pulsed laser output was obtained from a Tm-sensitized Ho:YLiF4 crystal at subambient temperatures when longitudinally pumped with a diode laser array. A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to the absorbed pumped power have been achieved at a crystal temperature of 275 K. The emission spectrum was etalon tunable over a range of 16/cm centered at 2067 nm with fine tuning capability of the transition frequency with crystal temperature at measured rate of -0.03/cm/K. Output energies of 0.22 mJ per pulse and 22 ns pulse duration were recorded at Q-switch frequencies that correspond to an effective upper laser level lifetime of 6 ms, and a pulse energy extraction efficiency of 64 percent.

  2. Observations of lower-stratospheric ClONO2, HNO3, and aerosol by the UARS CLAES experiment between January 1992 and April 1993

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Kumer, J. B.; Mergenthaler, J. L.; Nightingale, R. W.; Uplinger, W. G.; Ely, G. A.; Potter, J. F.; Wuebbles, D. J.; Connell, P. S.; Kinnison, D. E.

    1994-01-01

    This paper discusses simultaneous measurements of stratospheric ClONO2, HNO3, temperature, and aerosol extinction coefficient by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on the NASA Upper Atmosphere Research Satellite (UARS), obtained over the period 9 January 1992 through 23 April 1993. The discussion concentrates on the stratosphere region near 21 km of particular interest to heterogeneously driven ozone depletion. For periods between 12 June and 1 September 1992 at latitudes poleward of about 60 deg S, when temperatures were below type I polar stratospheric cloud (PSC) formation thresholds throughout the lower stratosphere, CLAES observed high levels of PSCs coincident with highly depleted fields of both HNO3 and ClONO2. By 17 September, the incidence of PSCs had greatly diminished in the lower stratosphere, but both CLONO2 and HNO3 remained highly depleted. These observations are consistent with the removal of gaseous HNO3 through the formation of nitric acid trihydrate (NAT) particles and the removal of ClONO2 through heterogeneous reactions on the particle surfaces. They also suggest substantial denitrification of the lower Antarctic vortex through sedimentation of PSC particles. In the Northern Hemisphere winter of 1992/93 far fewer PSCs were observed in the Arctic lower-stratosphere vortex, which had shorter periods and more localized regions of cold temperatures. Both HNO3 and ClONO2 maintained much higher levels inside the Arctic vortex than seen in the Antarctic throughout the winter/spring period. Following 28 February 1993 when Arctic vortex temperatures rose above 195 K, ClONO2 was observed in large quantities (greater than 2.1 ppbv near 21 km) inside the vortex. The persistence of relatively high levels of HNO3 inside the Arctic spring vortex compared with the low levels seen in the Antarctic spring vortex suggest a much lower level of denitrification in the Arctic.

  3. Fast Optoelectronic Switching Processes in Surface-Emitting Semiconductor Lasers and Nonlinear Etalons

    DTIC Science & Technology

    1992-05-01

    molecular beam epitaxy (MWE). The crystal growers have been persuaded of the importance of this work, and several substrate rotation arrangements and In...RPG VCSELS for optical pumping at 800 wm GaAs/GaAlAs RPA etalons without epitaxial reflectors. The first three wafers were destined for above- and below...of MOCVD-grown GaAs/GaAIAs RPO- VCSEL samples with 20 quantum wells and epitaXial multilayer high-reflectivity stacks with R=3.995 and 0.999 was pumped

  4. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    NASA Technical Reports Server (NTRS)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1993-01-01

    A conversion efficiency of 42 percent and slope efficiency of 60 percent relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84mW at a crystal temperature of 275K. The emission spectrum is etalon tunable over a range of 7nm (16.3 cm(sup -1) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(sup -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  5. System and method for generating a displacement with ultra-high accuracy using a fabry-perot interferometer

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A system and method for generating a desired displacement of an object, i.e., a target, from a reference position with ultra-high accuracy utilizes a Fabry-Perot etalon having an expandable tube cavity for resolving, with an Iodine stabilized laser, displacements with high accuracy and for effecting (as an actuator) displacements of the target. A mechanical amplifier in the form of a micropositioning stage has a platform and a frame which are movable relative to one another, and the tube cavity of the etalon is connected between the platform and frame so that an adjustment in length of the cavity effects a corresponding, amplified movement of the frame relative to the cavity. Therefore, in order to provide a preselected magnitude of displacement of the stage frame relative to the platform, the etalon tube cavity is adjusted in length by a corresponding amount. The system and method are particularly well-suited for use when calibrating a high accuracy measuring device.

  6. Modeling of direct detection Doppler wind lidar. I. The edge technique.

    PubMed

    McKay, J A

    1998-09-20

    Analytic models, based on a convolution of a Fabry-Perot etalon transfer function with a Gaussian spectral source, are developed for the shot-noise-limited measurement precision of Doppler wind lidars based on the edge filter technique by use of either molecular or aerosol atmospheric backscatter. The Rayleigh backscatter formulation yields a map of theoretical sensitivity versus etalon parameters, permitting design optimization and showing that the optimal system will have a Doppler measurement uncertainty no better than approximately 2.4 times that of a perfect, lossless receiver. An extension of the models to include the effect of limited etalon aperture leads to a condition for the minimum aperture required to match light collection optics. It is shown that, depending on the choice of operating point, the etalon aperture finesse must be 4-15 to avoid degradation of measurement precision. A convenient, closed-form expression for the measurement precision is obtained for spectrally narrow backscatter and is shown to be useful for backscatter that is spectrally broad as well. The models are extended to include extrinsic noise, such as solar background or the Rayleigh background on an aerosol Doppler lidar. A comparison of the model predictions with experiment has not yet been possible, but a comparison with detailed instrument modeling by McGill and Spinhirne shows satisfactory agreement. The models derived here will be more conveniently implemented than McGill and Spinhirne's and more readily permit physical insights to the optimization and limitations of the double-edge technique.

  7. Health monitoring of unmanned aerial vehicle based on optical fiber sensor array

    NASA Astrophysics Data System (ADS)

    Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande

    2017-10-01

    The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.

  8. MARLI: MARs LIdar for global climate measurements from orbit

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Sun, X.; Yu, A. W.; Abshire, J. B.

    2017-12-01

    NASA-GSFC is developing a pulsed multifunction lidar instrument to remotely measure winds in the Martian atmosphere from orbit. The key capabilities of this multifunctional atmospheric pulsed lidar will include continuous measurement of the aerosol backscatter profiles, the cross polarized (ice) backscatter profiles, the Doppler (wind profiles), and the range to the scattering surface from orbit. Our approach for MARLI is to use a direct detection lidar with efficient lasers, a large area low-mass telescope, a simple and rugged Doppler discriminator and with photon-sensitive detectors. The induced Doppler shifts on laser backscattered from aerosols in the Martian atmosphere will be detected using a time-resolved change in transmission through a solid etalon from two, slightly off-axis backscattered beams and the edge technique. In this presentation we report on the current progress of the core measurement of wind. We have demonstrated in the lab Doppler measurements down to 5m/s using a spinning target a pulsed lidar and edge technique. The laser is a seeded, pulsed-YAG in a MOPA configuration, operating at 1064nm producing pulses of 20ns and at a few mJ at 4KHz. Center frequency drift is less than 10MHz per minute. The Doppler discriminator is a solid etalon of 60 mm diameter and 40 mm thick with a peak transmission of over 65% and a bandpass of 100MHz FWHM. The detector is a cooled MCT array. We will also report on the deployment of the breadboard instrument to the GGAO to directly measure surface winds using the 48" telescope. The results from our field trials, the laser, detector and instrument will be more fully described in the presentation.

  9. Fiber-optic temperature sensor using a spectrum-modulating semiconductor etalon

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Anthan, Donald J.; Beheim, Glenn; Anthan, Donald J.

    1987-01-01

    Described is a fiber-optic temperature sensor that uses a spectrum modulating SiC etalon. The spectral output of this type of sensor may be analyzed to obtain a temperature measurement which is largely independent of the transmission properties of the sensor's fiber-optic link. A highly precise laboratory spectrometer is described in detail, and this instrument is used to study the properties of this type of sensor. Also described are a number of different spectrum analyzers that are more suitable for use in a practical thermometer.

  10. Limb-brightened jet of 3C 84 revealed by the 43 GHz very-long-baseline-array observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, H.; Hada, K.; Haga, T.

    2014-04-10

    We present a study of the sub-parsec scale radio structure of the radio galaxy 3C 84/NGC 1275 based on the Very Long Baseline Array data at 43 GHz. We discover a limb brightening in the 'restarted' jet that is associated with the 2005 radio outburst. In the 1990s, the jet structure was ridge brightening rather than limb brightening, despite the observations being done with similar angular resolutions. This indicates that the transverse jet structure has recently changed. This change in the morphology reveals an interesting agreement with the γ-ray flux increase, i.e., the γ-ray flux in the 1990s was atmore » least seven times lower than the current one. One plausible explanation for the limb brightening is that the velocity structure of the jet is in the context of the stratified jet, which is a successful scenario that explains the γ-ray emission in some active galactic nuclei. If this is the case, then the change in apparent transverse structure might be caused by the change in the transverse velocity structure. We argue that the transition from ridge brightening to limb brightening is related to the γ-ray time variability on the timescale of decades. We also discuss the collimation profile of the jet.« less

  11. Ultrafast Imaging using Spectral Resonance Modulation

    NASA Astrophysics Data System (ADS)

    Huang, Eric; Ma, Qian; Liu, Zhaowei

    2016-04-01

    CCD cameras are ubiquitous in research labs, industry, and hospitals for a huge variety of applications, but there are many dynamic processes in nature that unfold too quickly to be captured. Although tradeoffs can be made between exposure time, sensitivity, and area of interest, ultimately the speed limit of a CCD camera is constrained by the electronic readout rate of the sensors. One potential way to improve the imaging speed is with compressive sensing (CS), a technique that allows for a reduction in the number of measurements needed to record an image. However, most CS imaging methods require spatial light modulators (SLMs), which are subject to mechanical speed limitations. Here, we demonstrate an etalon array based SLM without any moving elements that is unconstrained by either mechanical or electronic speed limitations. This novel spectral resonance modulator (SRM) shows great potential in an ultrafast compressive single pixel camera.

  12. Some design considerations for a satellite-borne magnetograph

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1985-01-01

    The design criteria for a compact magnetograph that can monitor solar magnetic fields from a free-flying satellite for 5 to 10 years are reviewed. The signal-to-noise ratio that can be obtained with a 10-cm f/10 refractor operated with a Fabry-Perot filter and a solid-state detector array is derived. The telescope measures the longitudinal component of the magnetic field for the entire solar disk in a few minutes at a 20-G threshold and at 3-arcsec resolution. The Fabry-Perot filter has a lithium niobate etalon, which can be tuned electrically and operated at a fixed tilt angle in such a manner that it cancels the solar rotational Doppler shifts in the transmitted spectrum. Principles of operation of various types of polarization modulators are presented, and it is concluded that photoelastic modulators and liquid-crystal devices hold the most promise for use in a satellite-borne magnetograph,

  13. Antenna and solar arrays from Soyuz spacecraft

    NASA Image and Video Library

    2013-08-29

    View of antenna and solar arrays (with an Earth limb in the background) taken from a window in the Russian Soyuz spacecraft currently docked to the International Space Station. Photo taken by an Expedition 36 crewmember. Per Twitter message: View out the window to the right of my seat in Soyuz while docked to ISS.

  14. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  15. HARLIE 3-D Aerosol Backscatter and Wind Profile Measurements During Recent Field Experiments: Background Noise Reduction with a Fabry-Perot Etalon Filter in the HARLIE System

    NASA Technical Reports Server (NTRS)

    Lee, Sangwoo; Miller, David O.; Schwemmer, Geary; Wilkerson, Thomas D.; Andrus, Ionio; Egbert, Cameron; Anderson, Mark; Starr, David OC. (Technical Monitor)

    2002-01-01

    Background noise reduction of War signals is one of the most important factors in achieving better signal to noise ratio and precise atmospheric data from Mar measurements. Fahey Perot etalons have been used in several lidar systems as narrow band pass filters in the reduction of scattered sunlight. An slalom with spectral bandwidth, (Delta)v=0.23/cm, free spectral range, FSR=6.7/cm, and diameter, d=24mm was installed in a fiber coupled box which included a 500 pm bandwidth interference Filter. The slalom box couples the telescope and detector with 200 pm core fibers and 21 mm focal length collimators. The angular magnification is M=48. The etalon box was inserted into the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) system and tested during the HARGLO-2 intercomparison campaign conducted in November 2001 at Wallops Island, Virginia. This paper presents the preliminary test results of the slalom and a complete analysis will be presented at the conference.

  16. Tilt-tuned etalon locking for tunable laser stabilization.

    PubMed

    Gibson, Bradley M; McCall, Benjamin J

    2015-06-15

    Locking to a fringe of a tilt-tuned etalon provides a simple, inexpensive method for stabilizing tunable lasers. Here, we describe the use of such a system to stabilize an external-cavity quantum cascade laser; the locked laser has an Allan deviation of approximately 1 MHz over a one-second integration period, and has a single-scan tuning range of approximately 0.4  cm(-1). The system is robust, with minimal alignment requirements and automated lock acquisition, and can be easily adapted to different wavelength regions or more stringent stability requirements with minor alterations.

  17. Fabrication and metrology of lithium niobate narrowband optical filters for the solar orbiter

    NASA Astrophysics Data System (ADS)

    Gensemer, Stephen D.; Farrant, David

    2014-06-01

    We report on the fabrication of custom voltage tunable etalons for the SO/PHI spaceborne solar imaging instrument [A. Gandorfer, S. K. Solanki, J. Woch, V. M. Pillet, A. A. Herrero, and T. Appourchaux, J. Phys.: Conference Series 271, 012086 (2011)]. The etalons were manufactured to place a transmission maximum within 0.3 Å of the FeI emission line at 6175.0 Å. Meeting this specification requires an overall thickness specified to within ±15 nm, over a 60 mm aperture. We describe here the metrology, modelling and coating procedures we developed to achieve this.

  18. Spectrally narrowed lasing of a self-injection KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro

    1990-08-01

    Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.

  19. Simulation of a sensor array for multiparameter measurements at the prosthetic limb interface

    NASA Astrophysics Data System (ADS)

    Rowe, Gabriel I.; Mamishev, Alexander V.

    2004-07-01

    Sensitive skin is a highly desired device for biomechanical devices, wearable computing, human-computer interfaces, exoskeletons, and, most pertinent to this paper, for lower limb prosthetics. The measurement of shear stress is very important because shear effects are key factors in developing surface abrasions and pressure sores in paraplegics and users of prosthetic/orthotic devices. A single element of a sensitive skin is simulated and characterized in this paper. Conventional tactile sensors are designed for measurement of the normal stress only, which is inadequate for comprehensive assessment of surface contact conditions. The sensitive skin discussed here is a flexible array capable of sensing shear and normal forces, as well as humidity and temperature on each element.

  20. Detection of Genes Regulated by Lmx1b During Limb Dorsalization

    PubMed Central

    Feenstra, Jennifer M.; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E.; Eppey, Richard J.; Oberg, Kerby C.

    2012-01-01

    Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wildtype mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism which includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. PMID:22417325

  1. Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rok; Park, Eunseo; Oh, Hyungjik Jay; Park, Sang-Young; Lim, Hyung-Chul; Park, Chandeok

    2013-12-01

    In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR) observations for the International Laser Ranging Service (ILRS) associate analysis center (AAC). Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/ GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD) and finding solutions of a terrestrial reference frame (TRF) and Earth orientation parameters (EOPs). For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS) value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS) 08 C04 results, shows that standard deviations of polar motion XP and YP are 0.754 milliarcseconds (mas) and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

  2. Development of a 4-15 μm infrared GaAs hyperspectral QWIP imager

    NASA Astrophysics Data System (ADS)

    Jhabvala, M.; Gunapala, S.; Reuter, D.; Choi, K. K.; Bandara, S.; Liu, J.; La, A.; Banks, S.; Cho, J.; Hwang, T.; Tsay, S.; Rafol, D.; Huet, H.; Chauvet, N.; Huss, T.

    2003-10-01

    In the on-going evolution of GaAs quantum well infrared photodetectors (QWIPs) we have developed a four band, 640 × 512, 23 μm × 23 μm pixel array which we have subsequently integrated with a linear variable etalon (LVE) filter providing over 200 spectral bands across the 4-15.4 μm wavelength region. This effort was a collaboration between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL) and the Army Research Laboratory (ARL) sponsored by the Earth Science Technology Office of NASA. The QWIP array was fabricated by graded molecular beam epitaxial (MBE) growth that was specifically tailored to yield four distinct bands (FWHM): Band 1; 4.5-5.7 μm, Band 2; 8.5-10 μm, Band 3; 10-12 μm and Band 4; 13.3-14.8 μm. Each band occupies a swath that comprises 128 × 640 elements. The addition of the LVE (which is placed directly over the array) further divides the four "broad" bands into 209 separate spectral bands ranging in width from 0.02 μm at 5 μm to 0.05 μm at 15 μm. The detector is cooled by a mechanical cryocooler to 46 K. The camera system is a fully reflective, f/4.2, 3-mirror system with a 21° × 25° field of view. The project goals were: (1) develop the 4 band GaAs QWIP array; (2) develop the LVE and; (3) implement a mechanical cryocooler. This paper will describe the efforts and results of this undertaking with emphasis on the overall system characteristics.

  3. Developments of capacitance stabilised etalon technology

    NASA Astrophysics Data System (ADS)

    Bond, R. A.; Foster, M.; Thwaite, C.; Thompson, C. K.; Rees, D.; Bakalski, I. V.; Pereira do Carmo, J.

    2017-11-01

    This paper describes a high-resolution optical filter (HRF) suitable for narrow bandwidth filtering in LIDAR applications. The filter is composed of a broadband interference filter and a narrowband Fabry-Perot etalon based on the capacitance stabilised concept. The key requirements for the HRF were a bandwidth of less than 40 pm, a tuneable range of over 6 nm and a transmission greater than 50%. These requirements combined with the need for very high out-of-band rejection (greater than 50 dB in the range 300 nm to 1200 nm) drive the design of the filter towards a combination of high transmission broadband filter and high performance tuneable, narrowband filter.

  4. The Stable Solar Analyzer

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Appourchaux, T.

    1988-01-01

    Progress in the development of an instrument with very high (1:10 billion) wavelength stability designed to measure solar surface velocities and magnetic fields is reported. The instrument determines Doppler and Zeeman shifts in solar spectral lines by a 6-point weighted average. It is built around an electrically tunable solid lithium-niobate Fabry-Perot etalon that is stabilized against a diode laser which itself is locked to a resonance line of cesium 133. Key features are the etalon, which acts as a wide-angle 0.017-nm solar filter, the camera with a specially stabilized shutter, and the instrument control and data collection system. Use of the instrument in helioseismological research is emphasized.

  5. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  6. Detection et caracterisation de naines brunes et exoplanetes avec un filtre accordable pour applications dans l'espace

    NASA Astrophysics Data System (ADS)

    Ingraham, Patrick Jon

    This thesis determines the capability of detecting faint companions in the presence of speckle noise when performing space-based high-contrast imaging through spectral differential imagery (SDI) using a low-order Fabry-Perot etalon as a tunable filter. The performance of such a tunable filter is illustrated through the Tunable Filter Imager (TFI), an instrument designed for the James Webb Space Telescope (JWST). Using a TFI prototype etalon and a custom designed test bed, the etalon's ability to perform speckle-suppression through SDI is demonstrated experimentally. Improvements in contrast vary with separation, ranging from a factor of ˜10 at working angles greater than 11 lambda/D and increasing up to a factor of ˜60 at 5 lambda/D. These measurements are consistent with a Fresnel optical propagation model which shows the speckle suppression capability is limited by the test bed and not the etalon. This result demonstrates that a tunable filter is an attractive option to perform high-contrast imaging through SDI. To explore the capability of space-based SDI using an etalon, we perform an end-to-end Fresnel propagation of JWST and TFI. Using this simulation, a contrast improvement ranging from a factor of ˜7 to ˜100 is predicted, depending on the instrument's configuration. The performance of roll-subtraction is simulated and compared to that of SDI. The SDI capability of the Near-Infrared Imager and Slitless Spectrograph (NIRISS), the science instrument module to replace TFI in the JWST Fine Guidance Sensor is also determined. Using low resolution, multi-band (0.85-2.4 microm) multi-object spectroscopy, 104 objects towards the central region of the Orion Nebular Cluster have been assigned spectral types including 7 new brown dwarfs, and 4 new planetary mass candidates. These objects are useful for determining the substellar initial mass function and for testing evolutionary and atmospheric models of young stellar and substellar objects. Using the measured H band magnitudes, combined with our determined extinction values, the classified objects are used to create an Hertzsprung-Russell diagram for the cluster. Our results indicate a single epoch of star formation beginning ˜1 Myr ago. The initial mass function of the cluster is derived and found to be consistent with the values determined for other young clusters and the galactic disk.

  7. Detection of genes regulated by Lmx1b during limb dorsalization.

    PubMed

    Feenstra, Jennifer M; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E; Eppey, Richard J; Oberg, Kerby C

    2012-05-01

    Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wild type mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes that were differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism that includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. © 2012 The Authors. Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  8. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves.

    PubMed

    Davis, T S; Wark, H A C; Hutchinson, D T; Warren, D J; O'Neill, K; Scheinblum, T; Clark, G A; Normann, R A; Greger, B

    2016-06-01

    An important goal of neuroprosthetic research is to establish bidirectional communication between the user and new prosthetic limbs that are capable of controlling >20 different movements. One strategy for achieving this goal is to interface the prosthetic limb directly with efferent and afferent fibres in the peripheral nervous system using an array of intrafascicular microelectrodes. This approach would provide access to a large number of independent neural pathways for controlling high degree-of-freedom prosthetic limbs, as well as evoking multiple-complex sensory percepts. Utah Slanted Electrode Arrays (USEAs, 96 recording/stimulating electrodes) were implanted for 30 days into the median (Subject 1-M, 31 years post-amputation) or ulnar (Subject 2-U, 1.5 years post-amputation) nerves of two amputees. Neural activity was recorded during intended movements of the subject's phantom fingers and a linear Kalman filter was used to decode the neural data. Microelectrode stimulation of varying amplitudes and frequencies was delivered via single or multiple electrodes to investigate the number, size and quality of sensory percepts that could be evoked. Device performance over time was assessed by measuring: electrode impedances, signal-to-noise ratios (SNRs), stimulation thresholds, number and stability of evoked percepts. The subjects were able to proportionally, control individual fingers of a virtual robotic hand, with 13 different movements decoded offline (r = 0.48) and two movements decoded online. Electrical stimulation across one USEA evoked >80 sensory percepts. Varying the stimulation parameters modulated percept quality. Devices remained intrafascicularly implanted for the duration of the study with no significant changes in the SNRs or percept thresholds. This study demonstrated that an array of 96 microelectrodes can be implanted into the human peripheral nervous system for up to 1 month durations. Such an array could provide intuitive control of a virtual prosthetic hand with broad sensory feedback.

  9. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves

    NASA Astrophysics Data System (ADS)

    Davis, T. S.; Wark, H. A. C.; Hutchinson, D. T.; Warren, D. J.; O'Neill, K.; Scheinblum, T.; Clark, G. A.; Normann, R. A.; Greger, B.

    2016-06-01

    Objective. An important goal of neuroprosthetic research is to establish bidirectional communication between the user and new prosthetic limbs that are capable of controlling >20 different movements. One strategy for achieving this goal is to interface the prosthetic limb directly with efferent and afferent fibres in the peripheral nervous system using an array of intrafascicular microelectrodes. This approach would provide access to a large number of independent neural pathways for controlling high degree-of-freedom prosthetic limbs, as well as evoking multiple-complex sensory percepts. Approach. Utah Slanted Electrode Arrays (USEAs, 96 recording/stimulating electrodes) were implanted for 30 days into the median (Subject 1-M, 31 years post-amputation) or ulnar (Subject 2-U, 1.5 years post-amputation) nerves of two amputees. Neural activity was recorded during intended movements of the subject’s phantom fingers and a linear Kalman filter was used to decode the neural data. Microelectrode stimulation of varying amplitudes and frequencies was delivered via single or multiple electrodes to investigate the number, size and quality of sensory percepts that could be evoked. Device performance over time was assessed by measuring: electrode impedances, signal-to-noise ratios (SNRs), stimulation thresholds, number and stability of evoked percepts. Main results. The subjects were able to proportionally, control individual fingers of a virtual robotic hand, with 13 different movements decoded offline (r = 0.48) and two movements decoded online. Electrical stimulation across one USEA evoked >80 sensory percepts. Varying the stimulation parameters modulated percept quality. Devices remained intrafascicularly implanted for the duration of the study with no significant changes in the SNRs or percept thresholds. Significance. This study demonstrated that an array of 96 microelectrodes can be implanted into the human peripheral nervous system for up to 1 month durations. Such an array could provide intuitive control of a virtual prosthetic hand with broad sensory feedback.

  10. Optical fiber pressure and acceleration sensor fabricated on a fiber endface

    DOEpatents

    Zhu, Yizheng; Wang, Xingwei; Xu, Juncheng; Wang, Anbo

    2006-05-30

    A fiber optic sensor has a hollow tube bonded to the endface of an optical fiber, and a diaphragm bonded to the hollow tube. The fiber endface and diaphragm comprise an etalon cavity. The length of the etalon cavity changes when applied pressure or acceleration flexes the diaphragm. The entire structure can be made of fused silica. The fiber, tube, and diaphragm can be bonded with a fusion splice. The present sensor is particularly well suited for measuring pressure or acceleration in high temperature, high pressure and corrosive environments (e.g., oil well downholes and jet engines). The present sensors are also suitable for use in biological and medical applications.

  11. Two-dimensional interferometric Rayleigh scattering velocimetry using multibeam probe laser

    NASA Astrophysics Data System (ADS)

    Sheng, Wang; Jin-Hai, Si; Jun, Shao; Zhi-yun, Hu; Jing-feng, Ye; Jing-Ru, Liu

    2017-11-01

    In order to achieve the two-dimensional (2-D) velocity measurement of a flow field at extreme condition, a 2-D interferometric Rayleigh scattering (IRS) velocimetry using a multibeam probe laser was developed. The method using a multibeam probe laser can record the reference interference signal and the flow interference signal simultaneously. What is more, this method can solve the problem of signal overlap using the laser sheet detection method. The 2-D IRS measurement system was set up with a multibeam probe laser, aspherical lens collection optics, and a solid Fabry-Perot etalon. A multibeam probe laser with 0.5-mm intervals was formed by collimating a laser sheet passing through a cylindrical microlens arrays. The aspherical lens was used to enhance the intensity of the Rayleigh scattering signal. The 2-D velocity field results of a Mach 1.5 air flow were obtained. The velocity in the flow center is about 450 m/s. The reconstructed results fit well with the characteristic of flow, which indicate the validity of this technique.

  12. A Compact Polarization Imager

    NASA Technical Reports Server (NTRS)

    Thompson, Karl E.; Rust, David M.; Chen, Hua

    1995-01-01

    A new type of image detector has been designed to analyze the polarization of light simultaneously at all picture elements (pixels) in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a custom-designed charge-coupled device with signal-analysis circuitry, all integrated on a silicon chip. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Other applications include environmental monitoring and robot vision. Innovations in the IDID include two interleaved 512 x 1024 pixel imaging arrays (one for each polarization plane), large dynamic range (well depth of 10(exp 6) electrons per pixel), simultaneous readout and display of both images at 10(exp 6) pixels per second, and on-chip analog signal processing to produce polarization maps in real time. When used with a lithium niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can reveal tiny differences between simultaneous images at two wavelengths.

  13. The Lemur Conjecture

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    In previous research we designed an interferometric quantum seismograph that uses entangled photon states to enhance sensitivity in an optomechanic device. However, a spatially-distributed array of such sensors, with each sensor measuring only nm-vibrations, may not provide sufficient sensitivity for the prediction of major earthquakes because it fails to exploit potentially critical phase information. We conjecture that relative phase information can explain the anecdotal observations that animals such as lemurs exhibit sensitivity to impending earthquakes earlier than can be done confidently with traditional seismic technology. More specifically, we propose that lemurs use their limbs as ground motion sensors and that relative phase differences are fused in the brain in a manner similar to a phased-array or synthetic-aperture radar. In this paper we will describe a lemur-inspired quantum sensor network for early warning of earthquakes. The system uses 4 interferometric quantum seismographs (e.g., analogous to a lemurs limbs) and then conducts phase and data fusion of the seismic information. Although we discuss a quantum-based technology, the principles described can also be applied to classical sensor arrays

  14. High-Resolution Infrared Filter System for Solar Spectroscopy and Polarimetry

    NASA Astrophysics Data System (ADS)

    Cao, W.; Ma, J.; Wang, J.; Goode, P. R.; Wang, H.; Denker, C.

    2003-05-01

    We report on the design of an imaging filter system working at the near infrared (NIR) of 1.56 μ m to obtain monochromatic images and to probe weak magnetic fields in different layers of the deep photosphere with high temporal resolution and spatial resolution at Big Bear Solar Observatory (BBSO). This filter system consists of an interference filter, a birefringent filter, and a Fabry-Pérot etalon. As the narrowest filter system, the infrared Fabry-Pérot plays an important role in achieving narrow band transmission and high throughput, maintaining wavelength tuning ability, and assuring stability and reliability. In this poster, we outline a set of methods for the evaluation and calibration of the near infrared Fabry-Pérot etalon. Two-dimensional characteristic maps of the near infrared Fabry-Pérot etalon, including full-width-at-half-maximum (FWHM), effective finesse, peak transmission, along with free spectral range, flatness, roughness, stability and repeatability were obtained with lab equipments. Finally, by utilizing these results, a detailed analysis of the filter performance for the Fe I 1.5648 μ m and Fe I 1.5652 μ m Zeeman sensitive lines is presented. These results will benefit the design of NIR spectro-polarimeter of Advanced Technology Solar Telescope (ATST).

  15. Design and simulation of 532nm Rayleigh-Mie Doppler wind Lidar system

    NASA Astrophysics Data System (ADS)

    Peng, Zhuang; Xie, Chenbo; Wang, Bangxin; Shen, Fahua; Tan, Min; Li, Lu; Zhang, Zhanye

    2018-02-01

    Wind is one of the most significant parameter in weather forecast and the research of climate.It is essential for the weather forecast seasonally to yearly ,atmospheric dynamics,study of thermodynamics and go into the water, chemistry and aerosol which are have to do with global climate statusto measure three-dimensional troposphericwind field accurately.Structure of the doppler wind lidar system which based on Fabry-Perot etalon is introduced detailedly. In this section,the key parameters of the triple Fabry-Perot etalon are optimized and this is the key point.The results of optimizing etalon are as follows:the FSR is 8GHz,the FWHM is1GHz,3.48 GHz is the separation distance between two edge channels,and the separation distance between locking channel and the left edge channel is 1.16 GHz. In this condition,the sensitivity of wind velocity of Mie scattering and Rayleigh scattering is both 0.70%/(m/s) when the temperature is 255K in the height of 5Km and there is no wind. The simulation to this system states that in+/-50m/s radial wind speed range, the wind speed bias induced by Mie signal is less than 0.15m/s from 5 to 50km altitude.

  16. Ectodermal Wnt6 is an early negative regulator of limb chondrogenesis in the chicken embryo

    PubMed Central

    2010-01-01

    Background Pattern formation of the limb skeleton is regulated by a complex interplay of signaling centers located in the ectodermal sheath and mesenchymal core of the limb anlagen, which results, in the forelimb, in the coordinate array of humerus, radius, ulna, carpals, metacarpals and digits. Much less understood is why skeletal elements form only in the central mesenchyme of the limb, whereas muscle anlagen develop in the peripheral mesenchyme ensheathing the chondrogenic center. Classical studies have suggested a role of the limb ectoderm as a negative regulator of limb chondrogenesis. Results In this paper, we investigated the molecular nature of the inhibitory influence of the ectoderm on limb chondrogenesis in the avian embryo in vivo. We show that ectoderm ablation in the early limb bud leads to increased and ectopic expression of early chondrogenic marker genes like Sox9 and Collagen II, indicating that the limb ectoderm inhibits limb chondrogenesis at an early stage of the chondrogenic cascade. To investigate the molecular nature of the inhibitory influence of the ectoderm, we ectopically expressed Wnt6, which is presently the only known Wnt expressed throughout the avian limb ectoderm, and found that Wnt6 overexpression leads to reduced expression of the early chondrogenic marker genes Sox9 and Collagen II. Conclusion Our results suggest that the inhibitory influence of the ectoderm on limb chondrogenesis acts on an early stage of chondrogenesis upsteam of Sox9 and Collagen II. We identify Wnt6 as a candidate mediator of ectodermal chondrogenic inhibition in vivo. We propose a model of Wnt-mediated centripetal patterning of the limb by the surface ectoderm. PMID:20334703

  17. Development of Silicon-substrate Based Fabry-Perot Etalons for far-IR Astrophysics

    NASA Astrophysics Data System (ADS)

    Stacey, Gordon

    We propose to design, construct and test silicon-substrate-based (SSB) mirrors necessary for high performance Fabry-Perot interferometers (FPIs) to be used in the 25-40 um mid-IR band. These mirrors will be fabricated from silicon wafers that are anti-reflection coated (ARC) by micromachining an artificial dielectric meta-material on one side, and depositing optimized gold-metalized patterns on the other. Two mirrors with the metalized surfaces facing one-another form the Fabry-Perot cavity, also known as the FPI etalon. The exterior surfaces of the silicon mirrors are anti-reflection coated for both good transmission in the science band, and to prevent unwanted parasitic FPI cavities from forming between the four surfaces (one anti-reflection coated, one metalized for each mirror) of the FPI etalon. The mirrors will be tested within a Miniature Cryogenic Scanning Fabry-Perot (MCSF) that we have designed through support of a previous NASA grant (NNX09AB95G). This design is based on our long experience in constructing and using scanning FPI in the mid-IR to submm range, and fits within test-beds we have on hand that are suitable for both warm and cold tests. The key technologies are the ARC and tuned mirrors that are enabled by silicon nano-machining techniques. The creation of these SSB mirrors promises greatly improved performance over previous versions of mid-IR to submm-band FPIs that are based on mirrors made from free-standing metal mesh stretched over support rings. Performance is improved both structurally and in terms of sensitivity, and is measured as the product of the cavity finesse times transmission. Our electromagnetic modeling suggests that SSB mirrors will improve this product by a factor of 2 over the best free standing mesh etalons available. This translates into a factor of sqrt(2) improvement in sensitivity per etalon, or a full factor of 2 when used in a tandem (dual etalon) FPI spectrometer. The SSB improvements are due to both the stiff (~ 0.8 mm thick) silicon substrate and the silicon nanofabrication techniques and include the effects of (1) precisely tuned reflective surfaces, (2) very smooth mirror surfaces leading to greater cavity efficiency, (3) reduced susceptibility to vibrations due the silicon support structures, (4) reduced susceptibility to defect finesse due to reduced mounting stress, and (5) greatly improved mechanical robustness that could result in space-qualified hardware. These improvements are enabled by the combination of silicon-based technologies and our sophisticated electromagnetic modeling. The finished products have many science applications. For example, the SSB mirrors within an MCSF would convert the FORCAST or HAWC+ cameras on SOFIA into imaging spectrometers capable of widescale mapping of the mid to far-IR fine structure lines from the Galactic Center, Galactic star formation regions and external galaxies. In fact, this new etalon technology could be used in any mid to far-IR camera, converting the camera into a moderate (100 to 4000) to high resolving power (~100,000) imaging spectrometer at modest cost. A particularly interesting application could be a large format (~10 cm diameter) FPI that could deliver resolving powers in excess of 5000 for a 10 m space telescope, which might be the incarnation of the next major far-IR space mission (see NASA Cosmic Origins Newsletter, V4, No. 1, March 2015). Our program addresses NASA's Strategic goal 1: "Expand the frontiers of knowledge, capability, and opportunity in space."; Objective 1.6: "Discover how the Universe works, explore how it began and evolved, and search for life on planets around other stars,"• specifically "Technology development and demonstration."• It also addresses Strategic Goal 2 via Objective 2.4: "Advance the Nation's STEM education and workforce pipeline by working collaborative with other agencies to engage students, teachers, and faculty in NASA's missions and unique assets."•

  18. Normal incidence reflective-mode etalons with novel spectral properties

    NASA Astrophysics Data System (ADS)

    Te Kolste, Robert D.

    2003-11-01

    Etalons having one surface which is highly reflective have been used for a variety of applications. By varying the coating type and carefully controlling the thicknesses of the coatings on the lower reflectance side, one can obtain interesting and useful properties. One example is a low finesse but highly efficient element having a reflectance which is very sinusoidal with respect to wavelength. By adding additional layers, functions which are asymmetric about the reflectance peak with respect to wavelength can be obtained, including behavior which approximates a sawtooth reflectance as a function of wavelength. Such devices are easily fabricated at the wafer scale, and can be used in wavelength monitoring and control applications such as wavelength lockers for tunable lasers.

  19. High Accuracy Ultraviolet Index of Refraction Measurements Using a Fourier Transform Spectrometer

    PubMed Central

    Gupta, Rajeev; Kaplan, Simon G.

    2003-01-01

    We have constructed a new facility at the National Institute of Standards and Technology (NIST) to measure the index of refraction of transmissive materials in the wavelength range from the visible to the vacuum ultraviolet. An etalon of the material is illuminated with synchrotron radiation, and the interference fringes in the transmittance spectrum are measured using a Fourier transform spectrometer. The refractive index of calcium fluoride, CaF2, has been measured from 600 nm to 175 nm and the resulting values agree with a traditional goniometric measurement to within 1 × 10−5. The uncertainty in the index values is currently limited by the uncertainty in the thickness measurement of the etalon. PMID:27413620

  20. Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques

    NASA Technical Reports Server (NTRS)

    Reid, J.; Cassidy, D. T.; Menzies, R. T.

    1982-01-01

    Measurements of the linewidths of Pb-salt diode lasers operating in the 8- and 9-micron region are reported. The linewidths of the 9-micron lasers were determined by conventional heterodyne techniques, while for the 8-micron lasers a new technique based on a Fabry-Perot etalon was used. The new technique avoids the complexity and limited wavelength range of the heterodyne measurements and can be used for any tunable laser. The linewidths observed varied from 0.6 to more than 500-MHz FWHM. The linewidth was found to vary dramatically from device to device, to depend strongly on junction temperature and injection current, and to be correlated with vibrations caused by operation of a closed-cycle refrigerator.

  1. Determination of the Ephemeris Accuracy for AJISAI, LAGEOS and ETALON Satellites, Obtained with A Simplified Numerical Motion Model Using the ILRS Coordinates

    NASA Astrophysics Data System (ADS)

    Kara, I. V.

    This paper describes a simplified numerical model of passive artificial Earth satellite (AES) motion. The model accuracy is determined using the International Laser Ranging Service (ILRS) highprecision coordinates. Those data are freely available on http://ilrs.gsfc.nasa.gov. The differential equations of the AES motion are solved by the Everhart numerical method of 17th and 19th orders with the integration step automatic correction. The comparison between the AES coordinates computed with the motion model and the ILRS coordinates enabled to determine the accuracy of the ephemerides obtained. As a result, the discrepancy of the computed Etalon-1 ephemerides from the ILRS data is about 10'' for a one-year ephemeris.

  2. A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.

    2010-01-01

    We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.

  3. Hyperspectral Infrared Imaging of Flames Using a Spectrally Scanning Fabry-Perot Filter

    NASA Technical Reports Server (NTRS)

    Rawlins, W. T.; Lawrence, W. G.; Marinelli, W. J.; Allen, M. G.; Piltch, N. (Technical Monitor)

    2001-01-01

    The temperatures and compositions of gases in and around flames can be diagnosed using infrared emission spectroscopy to observe molecular band shapes and intensities. We have combined this approach with a low-order scanning Fabry-Perot filter and an infrared camera to obtain spectrally scanned infrared emission images of a laboratory flame and exhaust plume from 3.7 to 5.0 micrometers, at a spectral resolution of 0.043 micrometers, and a spatial resolution of 1 mm. The scanning filter or AIRIS (Adaptive Infrared Imaging Spectroradiometer) is a Fabry-Perot etalon operating in low order (mirror spacing = wavelength) such that the central spot, containing a monochromatic image of the scene, is viewed by the detector array. The detection system is a 128 x 128 liquid-nitrogen-cooled InSb focal plane array. The field of view is controlled by a 50 mm focal length multielement lens and an V4.8 aperture, resulting in an image 6.4 x 6.4 cm in extent at the flame and a depth of field of approximately 4 cm. Hyperspectral images above a laboratory CH4/air flame show primarily the strong emission from CO2 at 4.3 micrometers, and weaker emissions from CO and H2O. We discuss techniques to analyze the spectra, and plans to use this instrument in microgravity flame spread experiments.

  4. Use of the Boomerang catalyst advantage closure device to facilitate complex multistaged percutaneous revascularization procedures for the treatment of critical limb ischemia.

    PubMed

    Garcia, Joel A; Casserly, Ivan P

    2009-07-01

    An increasing spectrum of complex peripheral arterial disease may be successfully treated using percutaneous revascularization techniques. A pair of challenging peripheral revascularization procedures in patients with critical limb ischemia is presented, where an array of interventional tools and techniques were required, and the off-label use of the Boomerang catalyst system closure device was important in managing a variety of complex arterial access issues and ultimately allowing procedural success. Copyright 2009 Wiley-Liss, Inc.

  5. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  6. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays

    NASA Astrophysics Data System (ADS)

    Dowden, B. R.; Frankel, M. A.; Normann, R. A.; Clark, G. A.

    2012-02-01

    High-channel-count intrafascicular electrode arrays provide comprehensive and selective access to the peripheral nervous system. One practical difficulty in using several electrode arrays to evoke coordinated movements in paralyzed limbs is the identification of the appropriate stimulation channels and stimulus parameters to evoke desired movements. Here we present the use of a six degree-of-freedom load cell placed under the foot of a feline to characterize the muscle activation produced by three 100-electrode Utah Slanted Electrode Arrays (USEAs) implanted into the femoral nerves, sciatic nerves, and muscular branches of the sciatic nerves of three cats. Intramuscular stimulation was used to identify the endpoint force directions produced by 15 muscles of the hind limb, and these directions were used to classify the forces produced by each intrafascicular USEA electrode as flexion or extension. For 451 USEA electrodes, stimulus intensities for threshold and saturation muscle forces were identified, and the 3D direction and linearity of the force recruitment curves were determined. Further, motor unit excitation independence for 198 electrode pairs was measured using the refractory technique. This study demonstrates the utility of 3D endpoint force monitoring as a simple and non-invasive metric for characterizing the muscle-activation properties of hundreds of implanted peripheral nerve electrodes, allowing for electrode and parameter selection for neuroprosthetic applications.

  7. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays.

    PubMed

    Dowden, B R; Frankel, M A; Normann, R A; Clark, G A

    2012-02-01

    High-channel-count intrafascicular electrode arrays provide comprehensive and selective access to the peripheral nervous system. One practical difficulty in using several electrode arrays to evoke coordinated movements in paralyzed limbs is the identification of the appropriate stimulation channels and stimulus parameters to evoke desired movements. Here we present the use of a six degree-of-freedom load cell placed under the foot of a feline to characterize the muscle activation produced by three 100-electrode Utah Slanted Electrode Arrays (USEAs) implanted into the femoral nerves, sciatic nerves, and muscular branches of the sciatic nerves of three cats. Intramuscular stimulation was used to identify the endpoint force directions produced by 15 muscles of the hind limb, and these directions were used to classify the forces produced by each intrafascicular USEA electrode as flexion or extension. For 451 USEA electrodes, stimulus intensities for threshold and saturation muscle forces were identified, and the 3D direction and linearity of the force recruitment curves were determined. Further, motor unit excitation independence for 198 electrode pairs was measured using the refractory technique. This study demonstrates the utility of 3D endpoint force monitoring as a simple and non-invasive metric for characterizing the muscle-activation properties of hundreds of implanted peripheral nerve electrodes, allowing for electrode and parameter selection for neuroprosthetic applications.

  8. Diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser at 2.06 μm.

    PubMed

    Zhang, Xinlu; Zhang, Su; Xiao, Nana; Cui, Jinhui; Zhao, Jiaqun; Li, Li

    2014-03-10

    We report on a laser diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser near room temperature. For transmission of 5%, the maximum single frequency output power of 221 mW at 2064.4 nm was obtained by using two uncoated etalons. The single frequency Tm, Ho:LLF laser operated on the fundamental transverse mode with an M2 factor of 1.13, and the output frequency could be tuned continuously near 1.5 GHz by angle tuning only of the 1 mm thick etalon. Furthermore, the influence of output coupler transmission on the laser performance was also investigated. The single frequency laser can be used as a seed laser for coherent Doppler lidar and differential absorption lidar systems.

  9. Multiple-Point Mass Flux Measurement System Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Clem, Michelle M.

    2009-01-01

    A multiple-point Rayleigh scattering diagnostic is being developed to provide mass flux measurements in gas flows. Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, temperature, and velocity measurements. Rayleigh scattered light from a focused 18 Watt continuous-wave laser beam is directly imaged through a solid Fabry-Perot etalon onto a CCD detector which permits spectral analysis of the light. The spatial resolution of the measurements is governed by the locations of interference fringes, which can be changed by altering the etalon characteristics. A prototype system has been used to acquire data in a Mach 0.56 flow to demonstrate feasibility of using this system to provide mass flux measurements. Estimates of measurement uncertainty and recommendations for system improvements are presented

  10. Simultaneous, proportional, multi-axis prosthesis control using multichannel surface EMG.

    PubMed

    Yatsenko, Dimitri; McDonnall, Daniel; Guillory, K Shane

    2007-01-01

    Most upper limb prosthesis controllers only allow the individual selection and control of single joints of the limb. The main limiting factor for simultaneous multi-joint control is usually the availability of reliable independent control signals that can intuitively be used. In this paper, a novel method is presented for extraction of individual muscle source signals from surface EMG array recordings, based on EMG energy orthonormalization along principle movement vectors. In cases where independently-controllable muscles are present in residual limbs, this method can be used to provide simultaneous, multi-axis, proportional control of prosthetic systems. Initial results are presented for simultaneous control of wrist rotation, wrist flexion/extension, and grip open/close for two intact subjects under both isometric and non-isometric conditions and for one subject with transradial amputation.

  11. Sensing Pressure Distribution on a Lower-Limb Exoskeleton Physical Human-Machine Interface

    PubMed Central

    De Rossi, Stefano Marco Maria; Vitiello, Nicola; Lenzi, Tommaso; Ronsse, Renaud; Koopman, Bram; Persichetti, Alessandro; Vecchi, Fabrizio; Ijspeert, Auke Jan; van der Kooij, Herman; Carrozza, Maria Chiara

    2011-01-01

    A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer’s skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented. PMID:22346574

  12. CLAES CH4, N2O and CCL2F2 (F12) global data. [Cryogenic Array Etalon Spectrometer

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.

    1993-01-01

    Zonal mean comparisons of CH4 (for altitude regions above the 1.35 ppmv contour), of N2O (above the 210 ppbv contour), and of F12 (above the 360 pptv contour) with UARS prelaunch climatology and with recent models shows reasonable agreement, and some interesting differences in the details of equatorial uplift and descent near the winter poles, including apparent north-south differences. Prominent features such as the double peaked uplift structure in the April-May SAMS data are clearly evident in all three CLAES tracers. Contours of SAMS CH4 and N2O occur mostly at higher pressures than in the CLAES data, presumably due in part to increased tropospheric content of these gases, and/or perhaps some dynamic difference associated with the 15 years time difference between the data sets. The CLAES F12 are the first long time base global data sets. These show more tropical uplift than climatology or models. This might suggest a somewhat shorter lifetime of F12 in the stratosphere than is currently accepted.

  13. Ganymede in Visible and Infrared Light

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This montage compares New Horizons' best views of Ganymede, Jupiter's largest moon, gathered with the spacecraft's Long Range Reconnaissance Imager (LORRI) and its infrared spectrometer, the Linear Etalon Imaging Spectral Array (LEISA).

    LEISA observes its targets in more than 200 separate wavelengths of infrared light, allowing detailed analysis of their surface composition. The LEISA image shown here combines just three of these wavelengths -- 1.3, 1.8 and 2.0 micrometers -- to highlight differences in composition across Ganymede's surface. Blue colors represent relatively clean water ice, while brown colors show regions contaminated by dark material.

    The right panel combines the high-resolution grayscale LORRI image with the color-coded compositional information from the LEISA image, producing a picture that combines the best of both data sets.

    The LEISA and LORRI images were taken at 9:48 and 10:01 Universal Time, respectively, on February 27, 2007, from a range of 3.5 million kilometers (2.2 million miles). The longitude of the disk center is 38 degrees west. With a diameter of 5,268 kilometers (3,273 miles), Ganymede is the largest satellite in the solar system.

  14. Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements

    PubMed Central

    Park, Nam Su; Chun, Soo Kyung; Han, Ga-Hee; Kim, Chang-Seok

    2017-01-01

    We demonstrate a novel wavelength-comb-swept laser based on two intra-cavity filters: an acousto-optic tunable filter (AOTF) and a Fabry-Pérot etalon filter. The AOTF is used for the tunable selection of the output wavelength with time and the etalon filter for the narrowing of the spectral linewidth to extend the coherence length. Compared to the conventional wavelength-swept laser, the acousto-optic–based wavelength-comb-swept laser (WCSL) can extend the measureable range of displacement measurements by decreasing the sensitivity roll-off of the point spread function. Because the AOTF contains no mechanical moving parts to select the output wavelength acousto-optically, the WCSL source has a high wavenumber (k) linearity of R2 = 0.9999 to ensure equally spaced wavelength combs in the wavenumber domain. PMID:28362318

  15. Proximal weakness of lower limbs as the sole presentation of hyperthyroidism: report of one case.

    PubMed

    Chen, Chu-Chin; Chiu, Pao-Chin; Shih, Chen-Houng; Hsieh, Kai-Sheng

    2005-01-01

    Most children with acute or chronic flaccid limb weakness have a disorder of motor unit. However, it is very important to exclude cerebral or other upper motor neuron disorders before we approach such patients as pure muscle disorders. In general, neuropathy results in distal limb weakness, myopathy manifests with proximal weakness. There are exceptions, however. Accurate diagnosis in this wide array of disorders is dependent on a careful clinical assessment followed by the appropriate investigations. Here we report a 14-year-old girl who presented with progressive difficulty in rising up from the floor for one month. Neurological examination revealed an obese, clumsy but clear girl with stable vital signs. The muscle power of neck and upper limbs was normal. There was positive Gower sign, but the toe and heel gaits were acceptable. The initial blood work and motor/sensory nerve conduction velocity were unremarkable. Further study for thyroid function showed a hyperthyroid state. The proximal myopathy recovered soon after medical treatment. There were no other symptoms, and signs indicating hyperthyroidism and proximal myopathy of lower limbs was the isolated clinical feature. Hyperthyroid myopathy is common in hyperthyroidism, but is unusual as the sole presenting symptom.

  16. Duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion.

    PubMed

    Klopocki, Eva; Lohan, Silke; Doelken, Sandra C; Stricker, Sigmar; Ockeloen, Charlotte W; Soares Thiele de Aguiar, Renata; Lezirovitz, Karina; Mingroni Netto, Regina Celia; Jamsheer, Aleksander; Shah, Hitesh; Kurth, Ingo; Habenicht, Rolf; Warman, Matthew; Devriendt, Koenraad; Kordass, Ulrike; Hempel, Maja; Rajab, Anna; Mäkitie, Outi; Naveed, Mohammed; Radhakrishna, Uppala; Antonarakis, Stylianos E; Horn, Denise; Mundlos, Stefan

    2012-02-01

    Split-hand/foot malformation (SHFM)-also known as ectrodactyly-is a congenital disorder characterised by severe malformations of the distal limbs affecting the central rays of hands and/or feet. A distinct entity termed SHFLD presents with SHFM and long bone deficiency. Mouse models suggest that a defect of the central apical ectodermal ridge leads to the phenotype. Although six different loci/mutations (SHFM1-6) have been associated with SHFM, the underlying cause in a large number of cases is still unresolved. High resolution array comparative genomic hybridisation (CGH) was performed in patients with SHFLD to detect copy number changes. Candidate genes were further evaluated for expression and function during limb development by whole mount in situ hybridisation and morpholino knock-down experiments. Array CGH showed microduplications on chromosome 17p13.3, a locus previously associated with SHFLD. Detailed analysis of 17 families revealed that this copy number variation serves as a susceptibility factor for a highly variable phenotype with reduced penetrance, particularly in females. Compared to other known causes for SHFLD 17p duplications appear to be the most frequent cause of SHFLD. A ~11.8 kb minimal critical region was identified encompassing a single gene, BHLHA9, a putative basic loop helix transcription factor. Whole mount in situ hybridisation showed expression restricted to the limb bud mesenchyme underlying the apical ectodermal ridge in mouse and zebrafish embryos. Knock down of bhlha9 in zebrafish resulted in shortening of the pectoral fins. Genomic duplications encompassing BHLHA9 are associated with SHFLD and non-Mendelian inheritance characterised by a high degree of non-penetrance with sex bias. Knock-down of bhlha9 in zebrafish causes severe reduction defects of the pectoral fin, indicating a role for this gene in limb development.

  17. Sonic hedgehog: restricted expression and limb dysmorphologies

    PubMed Central

    Hill, Robert E; Heaney, Simon JH; Lettice, Laura A

    2003-01-01

    Sonic hedgehog, SHH, is required for patterning the limb. The array of skeletal elements that compose the hands and feet, and the ordered arrangement of these bones to form the pattern of fingers and toes are dependent on SHH. The mechanism of action of SHH in the limb is not fully understood; however, an aspect that appears to be important is the localized, asymmetric expression of Shh. Shh is expressed in the posterior margin of the limb bud in a region defined as the zone of polarizing activity (ZPA). Analysis of mouse mutants which have polydactyly (extra toes) shows that asymmetric expression of Shh is lost due to the appearance of an ectopic domain of expression in the anterior limb margin. One such polydactylous mouse mutant, sasquatch (Ssq), maps to the corresponding chromosomal region of the human condition pre-axial polydactyly (PPD) and thus represents a model for this condition. The mutation responsible for Ssq is located 1 Mb away from the Shh gene; however, the mutation disrupts a long-range cis-acting regulator of Shh expression. By inference, human pre-axial polydactyly results from a similar disruption of Shh expression. Other human congenital abnormalities also map near the pre-axial polydactyly locus, suggesting a major chromosomal region for limb dysmorphologies. The distinct phenotypes range from loss of all bones of the hands and feet to syndactyly of the soft tissue and fusion of the digits. We discuss the role played by Shh expression in mouse mutant phenotypes and the human limb dysmorphologies. PMID:12587915

  18. Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Rodriguez, J. M.; Hu, W.; Ko, M. K. W.; Weisenstein, D. K.; Kumer, J. B.; Mergenthaler, J. L.; Russell, J. M., III; Koike, M.; Yue, G. K.

    1998-01-01

    We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include: N2O, HNO3 and ClONO2 (Cryogen Limb Array Etalon Spectrometer (CLAES), version 7), temperature, methane, ozone, H2O, HCI, NO and NO2 (HALogen Occultation Experiment (HALOE), version 18). The analysis is carried out for the data from January 1992 to September 1994 in the 100-1 mbar (approximately 17-47 km) altitude range and over 10 degree latitude bins from 70 deg S to 70 deg N. Temporal-spatial evolution of aerosol surface area density (SAD) is adopted according to the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady-state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOy) is obtained by three different methods: (1) as a sum of the UARS measured NO, NO2, HNO3, and CIONO2; (2) from the N2O-NOy correlation, (3) from the CH4-NOy correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated NOx/NOy ratios and the NO, NO2, and HNO3 profiles are compared to the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years. However, the model underestimates the NO2 content, particularly, in the 30-7 mbar (approximately 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground based measurements at 45 deg S and 45 deg N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at mid-latitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 deg S suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.

  19. Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Rodriquez, J. M.; Hu, W.; Ko, M. K. W.; Weisenstein, D. K.; Mergenthaler, J. L.; Russell, J. M., III; Koike, M.; Yue, G. K.

    1998-01-01

    We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include: N2O, HNO3 and ClONO2 (Cryogen Limb Array Etalon Spectrometer (CLAES), version 7), temperature, methane, ozone, H2O, HCl, NO and NO2 (HALogen Occultation Experiment (HALOE), version 18). The analysis is carried out for the data from January 1992 to September 1994 in the 100-1 mbar (approx.17-47 km) altitude range and over 10 degree latitude bins from 70degS to 70degN. Temporal-spatial evolution of aerosol surface area density (SAD) is adopted according to the Stratospheric Aerosol and Gas Experiment (SAGE) 11 data. A diurnal steady-state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NO(y)) is obtained by three different methods: (1) as a sum of the UARS measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NO(y) correlation, and (3) from the CH4-NO(y) correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated NO(x)/NO(y) ratios and the NO, NO2, and HNO3 profiles are compared to the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years. However, the model underestimates the NO2 content, particularly, in the 30-7 mbar (approx. 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground based measurements at 45degS and 45degN are also presented. Our analysis indicates that ground-based and HALOE v. 18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at mid-latitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45degS suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.

  20. STS-31 Hubble Space Telescope (HST) solar array (SA) deploy aboard OV-103

    NASA Image and Video Library

    1990-04-25

    During STS-31, the Hubble Space Telescope (HST) is held in appendage deploy position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS) above the payload bay (PLB) and crew compartment cabin. While in this position the solar array (SA) wing bistem cassette (HST center) is deployed from its stowed location along side the Support System Module (SSM) forward shell. A high gain antenna (HGA) remains stowed along the SSM. The Earth's surface and the Earth limb creates a dramatic backdrop.

  1. Demonstrations Using a Fabry-Perot. I. Multiple-Slit Interference

    ERIC Educational Resources Information Center

    Roychoudhuri, Chandrasekhar

    1975-01-01

    Describes a demonstration technique for showing multiple-slit interference patterns with the use of a Fabry-Perot etalon and a laser beam. A simple derivation of the analytical expression for such fringes is presented. (Author/CP)

  2. Fiber-pigtailed silicon photonic sensors for methane leak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chu; Xiong, Chi; Zhang, Eric

    We present comprehensive characterization of silicon photonic sensors for methane leak detection. Sensitivity of 40 ppmv after 1 second integration is reported. Fourier domain characterization of on-chip etalon drifts is used for further sensor improvement.

  3. REVIEW ARTICLE: Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources

    NASA Astrophysics Data System (ADS)

    Quinlan, F.; Ozharar, S.; Gee, S.; Delfyett, P. J.

    2009-10-01

    Recent experimental work on semiconductor-based harmonically mode-locked lasers geared toward low noise applications is reviewed. Active, harmonic mode-locking of semiconductor-based lasers has proven to be an excellent way to generate 10 GHz repetition rate pulse trains with pulse-to-pulse timing jitter of only a few femtoseconds without requiring active feedback stabilization. This level of timing jitter is achieved in long fiberized ring cavities and relies upon such factors as low noise rf sources as mode-lockers, high optical power, intracavity dispersion management and intracavity phase modulation. When a high finesse etalon is placed within the optical cavity, semiconductor-based harmonically mode-locked lasers can be used as optical frequency comb sources with 10 GHz mode spacing. When active mode-locking is replaced with regenerative mode-locking, a completely self-contained comb source is created, referenced to the intracavity etalon.

  4. Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.

    PubMed

    Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R

    2014-10-10

    Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062  nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067  nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067  nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.

  5. Improvement in Rayleigh Scattering Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2012-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous velocity, density, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of an acousto-optic frequency shifting device to improve measurement accuracy in Rayleigh scattering experiments at the NASA Glenn Research Center. The frequency shifting device is used as a means of shifting the incident or reference laser frequency by 1100 MHz to avoid overlap of the Rayleigh and reference signal peaks in the interference pattern used to obtain the velocity, density, and temperature measurements, and also to calibrate the free spectral range of the Fabry-Perot etalon. The measurement accuracy improvement is evaluated by comparison of Rayleigh scattering measurements acquired with and without shifting of the reference signal frequency in a 10 mm diameter subsonic nozzle flow.

  6. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    DOE PAGES

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%,more » which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.« less

  7. End-to-end simulations of the visible tunable filter for the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Schmidt, Wolfgang; Schubert, Matthias; Ellwarth, Monika; Baumgartner, Jörg; Bell, Alexander; Fischer, Andreas; Halbgewachs, Clemens; Heidecke, Frank; Kentischer, Thomas; von der Lühe, Oskar; Scheiffelen, Thomas; Sigwarth, Michael

    2016-08-01

    The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectroscopy and spectropolarimetry based. The instrument will be one of the first-light instruments of the Daniel K. Inouye Solar Telescope that is currently under construction on Maui (Hawaii). The VTF is being developed by the Kiepenheuer Institut fuer Sonnenphysik in Freiburg as a German contribution to the DKIST. We perform end-to-end simulations of spectropolarimetric observations with the VTF to verify the science requirements of the instrument. The instrument is simulated with two Etalons, and with a single Etalon. The clear aperture of the Etalons is 250 mm, corresponding to a field of view with a diameter of 60 arcsec in the sky (42,000 km on the Sun). To model the large-scale figure errors we employ low-order Zernike polynomials (power and spherical aberration) with amplitudes of 2.5 nm RMS. We use an ideal polarization modulator with equal modulation coefficients of 3-1/2 for the polarization modulation We synthesize Stokes profiles of two iron lines (630.15 nm and 630.25 nm) and for the 854.2 nm line of calcium, for a range of magnetic field values and for several inclination angles. We estimated the photon noise on the basis of the DKIST and VTF transmission values, the atmospheric transmission and the spectral flux from the Sun. For the Fe 630.25 nm line, we obtain a sensitivity of 20 G for the longitudinal component and for 150 G for the transverse component, in agreement with the science requirements for the VTF.

  8. Hyperspectral interferometry: Sizing microscale surface features in the pine bark beetle.

    PubMed

    Beach, James M; Uertz, James L; Eckhardt, Lori G

    2015-10-01

    A new method of interferometry employing a Fabry-Perot etalon model was used to locate and size microscale features on the surface of the pine bark beetle. Oscillations in the reflected light spectrum, caused by self-interference of light reflecting from surfaces of foreleg setae and spores on the elytrum, were recorded using white light hyperspectral microscopy. By making the assumption that pairs of reflecting surfaces produce an etalon effect, the distance between surfaces could be determined from the oscillation frequency. Low frequencies of less than 0.08 nm(-1) were observed in the spectrum below 700 nm while higher frequencies generally occupied wavelengths from 600 to 850 nm. In many cases, two frequencies appeared separately or in combination across the spectrum. The etalon model gave a mean spore size of 3.04 ± 1.27 μm and a seta diameter of 5.44 ± 2.88 μm. The tapering near the setae tip was detected as a lowering of frequency. Spatial fringes were observed together with spectral oscillations from surfaces on the exoskeleton at higher magnification. These signals were consistent with embedded multi-layer reflecting surfaces. Possible applications for hyperspectral interferometry include medical imaging, detection of spore loads in insects and other fungal carriers, wafer surface and subsurface inspection, nanoscale materials, biological surface analysis, and spectroscopy calibration. This is, to our knowledge, the first report of oscillations directly observed by microscopy in the reflected light spectra from Coleoptera, and the first demonstration of broadband hyperspectral interferometry using microscopy that does not employ an internal interferometer. © 2015 Wiley Periodicals, Inc.

  9. First Light from Triple-Etalon Fabry-Perot Interferometer for Atmospheric OI Airglow (6300 A)

    NASA Astrophysics Data System (ADS)

    Watchorn, S.; Noto, J.; Pedersen, T.; Betremieux, Y.; Migliozzi, M.; Kerr, R. B.

    2006-05-01

    Scientific Solutions, Inc. (SSI) has developed a triple-etalon Fabry-Perot interferometer (FPI) to observe neutral winds in the ionosphere by measuring neutral oxygen (O I) emission at 630.0 nm during the day. This instrument is to be deployed in the SSI airglow building at the Cerro Tololo observatory (30.17S 70.81W) in Chile, in support of the Comm/Nav Outage Forecast System (C/NOFS) project. Post-deployment observation will be made in conjunction with two other Clemson University Fabry-Perots in Peru, creating a longitudinal chain of interferometers for thermospheric observations. These instruments will make autonomous day and night observations of thermospheric dynamics. Instruments of this type can be constructed for a global chain of autonomous airglow observatories. The FPI presented in this talk consists of three independently pressure-controlled etalons, fed collimated light by a front optical train headed by an all-sky lens with a 160-degree field of view. It can be controlled remotely via a web-based service which allows any internet-connected computer to mimic the control computer at the instrument site. In fall 2005, the SSI system was first assembled at the Millstone Hill Observatory in Westford, Massachusetts, and made day and evening observations. It was then moved to the High-frequency Active Auroral Research Project (HAARP) site in Gakona, Alaska, to participate in joint optical/ionospheric heating campaigns. Additionally, natural airglow observations were made, both locally and remotely via the internet from Massachusetts. The Millstone and HAARP observations with two etalons yielded strong 630-nm atmospheric Fraunhofer absorption lines, with some suggestion of the Ring effect. By modeling the atmospheric absorption line as the constant times the corresponding solar absorption -- itself modeled as a Gaussian plus a polynomial -- the absorption feature is subtracted, leaving only the emission feature. Software ring-summing tools developed at the University of Wisconsin are employed to increase the signal-to-noise of the resulting data. Results to date will be presented and discussed, as well as prospects and plans for the instrument. This research is supported by the Air Force Research Laboratory through the Small Business Innovative Research program, and by the National Science Foundation's CEDAR program.

  10. A three-dimensional thermal and electromagnetic model of whole limb heating with a MAPA.

    PubMed

    Charny, C K; Levin, R L

    1991-10-01

    Previous studies by the authors have shown that if properly implemented, the Pennes assumptions can be applied to quantify bioheat transfer during extremity heating. Given its relative numerical simplicity and its ability to predict temperatures in thermoregulated tissue, the Pennes model of bioheat transfer was utilized in a three-dimensional thermal model of limb heating. While the arterial blood temperature was assumed to be radially uniform within a cross section of the limb, axial gradients in the arterial and venous blood temperatures were computed with this three-dimensional model. A realistically shaped, three-dimensional finite element model of a tumor-bearing human lower leg was constructed and was "attached" mathematically to the whole body thermal model of man described in previous studies by the authors. The central as well as local thermoregulatory feedback control mechanisms which determine blood perfusion to the various tissues and rate of evaporation by sweating were input into the limb model. In addition, the temperature of the arterial blood which feeds into the most proximal section of the lower leg was computed by the whole body thermal model. The variations in the shape of the tissues which comprise the limb were obtained from computerized tomography scans. Axial variations in the energy deposition patterns along the length of the limb exposed to a miniannular phased array (MAPA) applicator were also input into this model of limb heating. Results indicate that proper positioning of the limb relative to the MAPA is a significant factor in determining the effectiveness of the treatment. A patient-specific hyperthermia protocol can be designed using this coupled electromagnetic and thermal model.

  11. Requirement for ErbB2/ErbB signaling in developing cartilage and bone.

    PubMed

    Fisher, Melanie C; Clinton, Gail M; Maihle, Nita J; Dealy, Caroline N

    2007-08-01

    During endochondral ossification, the skeletal elements of vertebrate limbs form and elongate via coordinated control of chondrocyte and osteoblast differentiation and proliferation. The role of signaling by the ErbB family of receptor tyrosine kinases, which consists of ErbB1 (epidermal growth factor receptor or EGFR), ErbB2, ErbB3 and ErbB4, has been little studied during cartilage and bone development. Signaling by the ErbB network generates a diverse array of cellular responses via formation of ErbB dimers activated by distinct ligands that produce distinct signal outputs. Herstatin is a soluble ErbB2 receptor that acts in a dominant negative fashion to inhibit ErbB signaling by binding to endogenous ErbB receptors, preventing functional dimer formation. Here, we examine the effects of Herstatin on limb skeletal element development in transgenic mice, achieved via Prx1 promoter-driven expression in limb cartilage and bone. The limb skeletal elements of Prx1-Herstatin embryos are shortened, and chondrocyte maturation and osteoblast differentiation are delayed. In addition, proliferation by chondrocytes and periosteal cells of Prx1-Herstatin limb skeletal elements is markedly reduced. Our study identifies requirements for ErbB signaling in the maintenance of chondrocyte and osteoblast proliferation involved in the timely progression of chondrocyte maturation and periosteal osteoblast differentiation.

  12. Coding of position by simultaneously recorded sensory neurones in the cat dorsal root ganglion

    PubMed Central

    Stein, R B; Weber, D J; Aoyagi, Y; Prochazka, A; Wagenaar, J B M; Shoham, S; Normann, R A

    2004-01-01

    Muscle, cutaneous and joint afferents continuously signal information about the position and movement of individual joints. How does the nervous system extract more global information, for example about the position of the foot in space? To study this question we used microelectrode arrays to record impulses simultaneously from up to 100 discriminable nerve cells in the L6 and L7 dorsal root ganglia (DRG) of the anaesthetized cat. When the hindlimb was displaced passively with a random trajectory, the firing rate of the neurones could be predicted from a linear sum of positions and velocities in Cartesian (x, y), polar or joint angular coordinates. The process could also be reversed to predict the kinematics of the limb from the firing rates of the neurones with an accuracy of 1–2 cm. Predictions of position and velocity could be combined to give an improved fit to limb position. Decoders trained using random movements successfully predicted cyclic movements and movements in which the limb was displaced from a central point to various positions in the periphery. A small number of highly informative neurones (6–8) could account for over 80% of the variance in position and a similar result was obtained in a realistic limb model. In conclusion, this work illustrates how populations of sensory receptors may encode a sense of limb position and how the firing of even a small number of neurones can be used to decode the position of the limb in space. PMID:15331686

  13. Ammonia Ice Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The top cloud layer on Jupiter is thought to consist of ammonia ice, but most of that ammonia 'hides' from spectrometers. It does not absorb light in the same way ammonia does. To many scientists, this implies that ammonia churned up from lower layers of the atmosphere 'ages' in some way after it condenses, possibly by being covered with a photochemically generated hydrocarbon mixture. The New Horizons Linear Etalon Imaging Spectral Array (LEISA), the half of the Ralph instrument that is able to 'see' in infrared wavelengths that are absorbed by ammonia ice, spotted these clouds and watched them evolve over five Jupiter days (about 40 Earth hours). In these images, spectroscopically identified fresh ammonia clouds are shown in bright blue. The largest cloud appeared as a localized source on day 1, intensified and broadened on day 2, became more diffuse on days 3 and 4, and disappeared on day 5. The diffusion seemed to follow the movement of a dark spot along the boundary of the oval region. Because the source of this ammonia lies deeper than the cloud, images like these can tell scientists much about the dynamics and heat conduction in Jupiter's lower atmosphere.

  14. Pseudoslit Spectrometer

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; McCabe, George H.

    2004-01-01

    The pseudoslit spectrometer is a conceptual optoelectronic instrument that would offer some of the advantages, without the disadvantages, of prior linear-variable etalon (LVE) spectrometers and prior slit spectrometers. The pseudoslit spectrometer is so named because it would not include a slit, but the combined effects of its optical components would include a spatial filtering effect approximately equivalent to that of a slit. Like a prior LVE spectrometer, the pseudoslit spectrometer would include an LVE (essentially, a wedge-like narrowband- pass filter, the pass wavelength of which varies linearly with position in one dimension) in a focal plane covering an imaging planar array of photodetectors. However, the pseudoslit spectrometer would be more efficient because unlike a prior LVE spectrometer, the pseudoslit spectrometer would not have to be scanned across an entire field of view to obtain the spectrum of an object of interest that may occupy only a small portion of the field of view. Like a prior slit spectrometer, the pseudoslit spectrometer could acquire the entire spectrum of such a small object without need for scanning. However, the pseudoslit spectrometer would be optically and mechanically simpler: it would have fewer components and, hence, would pose less of a problem of alignment of components and would be less vulnerable to misalignment.

  15. Photonic all-silicon microsensor for electromagnetic power in the microwave and millimeter-wave range

    NASA Astrophysics Data System (ADS)

    Rendina, Ivo; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G.; Iodice, Mario

    2000-03-01

    A new type of non-perturbing electromagnetic power sensor for microwaves and millimeter-waves, based on the thermo- optical effect in a silicon interferometric etalon cavity is presented. The incident field power is partially dissipated into the all-silicon metal-less etalon, constituting the sensing element of the detector, so causing its temperature increase. This, in turn, induces the intensity modulation of a probe laser beam reflected by the cavity after a multiple beam interference process. The sensing element is directly connected to an optical fiber for remote interrogation, so avoiding the use of perturbing coaxial cables. The performances of such a new class of non-perturbing and wideband probes, in terms of sensitivity and resolution are discussed in detail. The experimental results concerning the characterization of a preliminary prototype sensor are presented and compared with theoretical data. The dependence of the sensor response on the electromagnetic frequency and on the sensing element characteristics is finally discussed.

  16. Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)

    2000-01-01

    We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watchorn, Steven

    Because this was a Phase I project, it did not add extensively to the body of A-band knowledge. There was no basic research performed on that subject. The principal addition was that a mechanical and optical design for a triple-etalon Fabry-Perot interferometer (FABSOAR) capable of A-band sensing was sketched out and shown to be within readily feasible instrument fabrication parameters. The parameters for the proposed triple-etalon Fabry-Perot were shown to be very similar to existing Fabry-Perots built by Scientific Solutions. The mechanical design for the FABSOAR instrument incorporated the design of previous Scientific Solutions imagers, condensing the three three-inch-diameter etalonsmore » into a single, sturdy tube. The design allowed for the inclusion of a commercial off-the-shelf (COTS) filter wheel and a thermocooled CCD detector from Andor. The tube has supports to mount to a horizontal or vertical opticaltable surface, and was to be coupled to a Scientific Solutions pointing head at the Millstone Hill Observatory in Massachusetts for Phase II calibration and testing.« less

  18. Optofluidic refractometer using resonant optical tunneling effect.

    PubMed

    Jian, A Q; Zhang, X M; Zhu, W M; Yu, M

    2010-12-30

    This paper presents the design and analysis of a liquid refractive index sensor that utilizes a unique physical mechanism of resonant optical tunneling effect (ROTE). The sensor consists of two hemicylindrical prisms, two air gaps, and a microfluidic channel. All parts can be microfabricated using an optical resin NOA81. Theoretical study shows that this ROTE sensor has extremely sharp transmission peak and achieves a sensitivity of 760 nm∕refractive index unit (RIU) and a detectivity of 85 000 RIU(-1). Although the sensitivity is smaller than that of a typical surface plasmon resonance (SPR) sensor (3200 nm∕RIU) and is comparable to a 95% reflectivity Fabry-Pérot (FP) etalon (440 nm∕RIU), the detectivity is 17 000 times larger than that of the SPR sensor and 85 times larger than that of the FP etalon. Such ROTE sensor could potentially achieve an ultrahigh sensitivity of 10(-9) RIU, two orders higher than the best results of current methods.

  19. Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex.

    PubMed

    Callier, Thierri; Schluter, Erik W; Tabot, Gregg A; Miller, Lee E; Tenore, Francesco V; Bensmaia, Sliman J

    2015-10-01

    The dexterous manipulation of objects depends heavily on somatosensory signals from the limb. The development of anthropomorphic robotic arms and of algorithms to decode intended movements from neuronal signals has stimulated the need to restore somatosensation for use in upper-limb neuroprostheses. Without touch and proprioception, patients have difficulty controlling prosthetic limbs to a level that justifies the required invasive surgery. Intracortical microstimulation (ICMS) through chronically implanted electrode arrays has the potential to provide rich and intuitive sensory feedback. This approach to sensory restoration requires, however, that the evoked sensations remain stable over time. To investigate the stability of ICMS-evoked sensations, we measured the ability of non-human primates to detect ICMS over experimental sessions that spanned years. We found that the performance of the animals remained highly stable over time, even when they were tested with electrodes that had experienced extensive stimulation. Given the stability of the sensations that it evokes, ICMS may thus be a viable approach for sensory restoration.

  20. Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Callier, Thierri; Schluter, Erik W.; Tabot, Gregg A.; Miller, Lee E.; Tenore, Francesco V.; Bensmaia, Sliman J.

    2015-10-01

    Objective. The dexterous manipulation of objects depends heavily on somatosensory signals from the limb. The development of anthropomorphic robotic arms and of algorithms to decode intended movements from neuronal signals has stimulated the need to restore somatosensation for use in upper-limb neuroprostheses. Without touch and proprioception, patients have difficulty controlling prosthetic limbs to a level that justifies the required invasive surgery. Intracortical microstimulation (ICMS) through chronically implanted electrode arrays has the potential to provide rich and intuitive sensory feedback. This approach to sensory restoration requires, however, that the evoked sensations remain stable over time. Approach. To investigate the stability of ICMS-evoked sensations, we measured the ability of non-human primates to detect ICMS over experimental sessions that spanned years. Main results. We found that the performance of the animals remained highly stable over time, even when they were tested with electrodes that had experienced extensive stimulation. Significance. Given the stability of the sensations that it evokes, ICMS may thus be a viable approach for sensory restoration.

  1. Planoconcave optical microresonator sensors for photoacoustic imaging: pushing the limits of sensitivity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guggenheim, James A.; Zhang, Edward Z.; Beard, Paul C.

    2016-03-01

    Most photoacoustic scanners use piezoelectric detectors but these have two key limitations. Firstly, they are optically opaque, inhibiting backward mode operation. Secondly, it is difficult to achieve adequate detection sensitivity with the small element sizes needed to provide near-omnidirectional response as required for tomographic imaging. Planar Fabry-Perot (FP) ultrasound sensing etalons can overcome both of these limitations and have proved extremely effective for superficial (<1cm) imaging applications. To achieve small element sizes (<100μm), the etalon is illuminated with a focused laser beam. However, this has the disadvantage that beam walk-off due to the divergence of the beam fundamentally limits the etalon finesse and thus sensitivity - in essence, the problem is one of insufficient optical confinement. To overcome this, novel planoconcave micro-resonator sensors have been fabricated using precision ink-jet printed polymer domes with curvatures matching that of the laser wavefront. By providing near-perfect beam confinement, we show that it is possible to approach the maximum theoretical limit for finesse (f) imposed by the etalon mirror reflectivities (e.g. f=400 for R=99.2% in contrast to a typical planar sensor value of f<50). This yields an order of magnitude increase in sensitivity over a planar FP sensor with the same acoustic bandwidth. Furthermore by eliminating beam walk-off, viable sensors can be made with significantly greater thickness than planar FP sensors. This provides an additional sensitivity gain for deep tissue imaging applications such as breast imaging where detection bandwidths in the low MHz can be tolerated. For example, for a 250 μm thick planoconcave sensor with a -3dB bandwidth of 5MHz, the measured NEP was 4 Pa. This NEP is comparable to that provided by mm scale piezoelectric detectors used for breast imaging applications but with more uniform frequency response characteristics and an order-of-magnitude smaller element size. Following previous proof-of-concept work, several important advances towards practical application have been made. A family of sensors with bandwidths ranging from 3MHz to 20MHz have been fabricated and characterised. A novel interrogation scheme based on rapid wavelength sweeping has been implemented in order to avoid previously encountered instability problems due to self-heating. Finally, a prototype microresonator based photoacoustic scanner has been developed and applied to the problem of deep-tissue (>1cm) photoacoustic imaging in vivo. Imaging results for second generation microresonator sensors (with R = 99.5% and thickness up to ~800um) are compared to the best achievable with the planar FP sensors and piezoelectric receivers.

  2. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.

    PubMed

    Witteveen, Heidi J B; Rietman, Hans S; Veltink, Peter H

    2015-06-01

    User feedback about grasping force and hand aperture is very important in object handling with myoelectric forearm prostheses but is lacking in current prostheses. Vibrotactile feedback increases the performance of healthy subjects in virtual grasping tasks, but no extensive validation on potential users has been performed. Investigate the performance of upper-limb loss subjects in grasping tasks with vibrotactile stimulation, providing hand aperture, and grasping force feedback. Cross-over trial. A total of 10 subjects with upper-limb loss performed virtual grasping tasks while perceiving vibrotactile feedback. Hand aperture feedback was provided through an array of coin motors and grasping force feedback through a single miniature stimulator or an array of coin motors. Objects with varying sizes and weights had to be grasped by a virtual hand. Percentages correctly applied hand apertures and correct grasping force levels were all higher for the vibrotactile feedback condition compared to the no-feedback condition. With visual feedback, the results were always better compared to the vibrotactile feedback condition. Task durations were comparable for all feedback conditions. Vibrotactile grasping force and hand aperture feedback improves grasping performance of subjects with upper-limb loss. However, it should be investigated whether this is of additional value in daily-life tasks. This study is a first step toward the implementation of sensory vibrotactile feedback for users of myoelectric forearm prostheses. Grasping force feedback is crucial for optimal object handling, and hand aperture feedback is essential for reduction of required visual attention. Grasping performance with feedback is evaluated for the potential users. © The International Society for Prosthetics and Orthotics 2014.

  3. "Look and feel your best": representations of artificial limb users in prosthetic company advertisements.

    PubMed

    Murray, Craig D; Forshaw, Mark J

    2014-01-01

    Artificial limbs (prosthetics) are considered important for keeping the person physically active and avoiding an array of negative health outcomes associated with non-use. Increasingly, the potential users of these limbs are the focus of commercial prosthetic company advertisements. It has been argued that it is important to examine such media representations, not least because people's beliefs regarding health and illness are often forged from the discourses and constructions available to them in such material, but because these representations mediate individual lived experience. This article provides a thematic analysis, drawing upon discourse analysis and semiotics, of textual-pictorial representations of artificial limb users in the advertisements of prosthetic companies. The data set was comprised of advertisements that appeared over a 2-year period in inMotion, an international magazine produced and distributed by a major amputee advocacy group. The findings indicate that dominant societal constructions of work, gender and family are drawn on in depicting artificial limb users. These offer generally positive representations that draw on socially pervasive stereotypes. The findings are discussed in relation to literature concerning the experience and meaning of prosthesis use, and the implications for health professionals working with this group are set out. Implications for Rehabilitation People who lose a limb are increasingly being exposed to advertisements from prosthetic companies. Such advertisements have the potential to foster unrealistic expectations regarding rehabilitation following amputation. Healthcare professionals need to be mindful of how these advertisements mediate lived experience and impact on rehabilitation when planning personal care plans.

  4. Copy number analysis of NIPBL in a cohort of 510 patients reveals rare copy number variants and a mosaic deletion.

    PubMed

    Cheng, Yu-Wei; Tan, Christopher A; Minor, Agata; Arndt, Kelly; Wysinger, Latrice; Grange, Dorothy K; Kozel, Beth A; Robin, Nathaniel H; Waggoner, Darrel; Fitzpatrick, Carrie; Das, Soma; Del Gaudio, Daniela

    2014-03-01

    Cornelia de Lange syndrome (CdLS) is a genetically heterogeneous disorder characterized by growth retardation, intellectual disability, upper limb abnormalities, hirsutism, and characteristic facial features. In this study we explored the occurrence of intragenic NIPBL copy number variations (CNVs) in a cohort of 510 NIPBL sequence-negative patients with suspected CdLS. Copy number analysis was performed by custom exon-targeted oligonucleotide array-comparative genomic hybridization and/or MLPA. Whole-genome SNP array was used to further characterize rearrangements extending beyond the NIPBL gene. We identified NIPBL CNVs in 13 patients (2.5%) including one intragenic duplication and a deletion in mosaic state. Breakpoint sequences in two patients provided further evidence of a microhomology-mediated replicative mechanism as a potential predominant contributor to CNVs in NIPBL. Patients for whom clinical information was available share classical CdLS features including craniofacial and limb defects. Our experience in studying the frequency of NIBPL CNVs in the largest series of patients to date widens the mutational spectrum of NIPBL and emphasizes the clinical utility of performing NIPBL deletion/duplication analysis in patients with CdLS.

  5. The Navy Precision Optical Interferometer: an update

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; Baines, Ellyn K.; Schmitt, Henrique R.; Restaino, Sergio R.; Clark, James H.; Benson, James A.; Hutter, Donald J.; Zavala, Robert T.; van Belle, Gerard T.

    2016-08-01

    We describe the current status of the Navy Precision Optical Interferometer (NPOI), including developments since the last SPIE meeting. The NPOI group has added stations as far as 250m from the array center and added numerous infrastructure improvements. Science programs include stellar diameters and limb darkening, binary orbits, Be star disks, exoplanet host stars, and progress toward high-resolution stellar surface imaging. Technical and infrastructure projects include on-sky demonstrations of baseline bootstrapping with six array elements and of the VISION beam combiner, control system updates, integration of the long delay lines, and updated firmware for the Classic beam combiner. Our plans to add up to four 1.8 m telescopes are no longer viable, but we have recently acquired separate funding for adding three 1 m AO-equipped telescopes and an infrared beam combiner to the array.

  6. Velocity Plume Profiles for Hall Thrusters Using Laser Diagnostic

    DTIC Science & Technology

    2010-06-01

    53 Collecting LIF Using Fiber Optics .............................................................................58 Vacuum ...54 Figure 40. Etalon Issue Through Vacuum Chamber Window [25]. ................................. 55 Figure 41. Collimator with Adapter in a...Methodology Facility Set-up Vacuum Chamber Testing took place within a vacuum chamber located at the AFIT Space Propulsion Analysis and System Simulation

  7. Self-Powered Optical Spectroscopy

    DTIC Science & Technology

    2015-08-27

    orthogonally  polarized  optical   frequency   combs.  FPE:   Fabry -­‐Perot  etalon;  PC:  polarization  controller;  FPBS...at-home spectral analysis of bodily fluids like urine to facilitate testing for disease . The work for this project is ongoing; we expect to submit a

  8. High-Resolution, Ground-Based Observations of the Lunar Exosphere during the month of May from 2013 to 2016.

    NASA Astrophysics Data System (ADS)

    Kuruppuaratchi, D. C. P.; Oliversen, R. J.; Mierkiewicz, E. J.; Robertson, S. D.; Gallant, M.; Rosborough, S.; Sarantos, M.; Derr, N. J.

    2017-12-01

    We apply high resolution spectroscopy to investigate the lunar exosphere by measuring sodium and potassium spectral line profiles to determine the variations in exospheric effective temperatures and velocities. Observations were made at the National Solar Observatory McMath-Pierce Telescope. We used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 (1.7 km/s) to measure the line widths and radial velocities of Doppler shifted sodium D2 (5889.9509 Å) and potassium D1 (7698.9646 Å) emission lines. The instrument's, 2 arcmin ( 224 km) and 3 arcmin ( 336km), Field of View (FOV) is positioned off the limb in equatorial and high latitude regions. Therefore, observations taken at 1st and 3rd quarter are taken at local noon while observations taken at full moon are at 6 am (dawn) and 6 pm (dusk) locally. We discuss data taken during the month of May/June from 2013 to 2016 for sodium and 2014 to 2016 for potassium. The deconvolved line widths indicate sodium temperatures at large phase angles (phase > 40o) are on the order of 1600 K while temperatures near full Moon are on the order of 4500 K. Line widths and temperatures are largest during full Moon; a trend that is not due to geometrical effects of looking `down' the tail. A slight asymmetry between waxing phase data and waning phase data is seen in all years. At limb relative intensity data for sodium, corrected for the Sun-Moon motion, show intensities that are higher after full Moon; a result that is consistent with enhanced PSD efficiency after the Moon resides in the plasma sheet. The potassium relative intensity decreases significantly as the waxing moon approaches full moon but like sodium its intensity increases after exiting the magnetotail. November results for each year will be compared with May results to establish any orbital trends. This work was partially supported by the NASA Planetary Astronomy programs, NNX11AE38G and NNX13AL30G.

  9. Advances in selective activation of muscles for non-invasive motor neuroprostheses.

    PubMed

    Koutsou, Aikaterini D; Moreno, Juan C; Del Ama, Antonio J; Rocon, Eduardo; Pons, José L

    2016-06-13

    Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments.

  10. Alternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards.

    PubMed

    Bergmann, Philip J; Irschick, Duncan J

    2010-06-01

    Body shape has a fundamental impact on organismal function, but it is unknown how functional morphology and locomotor performance and kinematics relate across a diverse array of body shapes. We showed that although patterns of body shape evolution differed considerably between lizards of the Phrynosomatinae and Lerista, patterns of locomotor evolution coincided between clades. Specifically, we found that the phrynosomatines evolved a stocky phenotype through body widening and limb shortening, whereas Lerista evolved elongation through body lengthening and limb shortening. In both clades, relative limb length played a key role in locomotor evolution and kinematic strategies, with long-limbed species moving faster and taking longer strides. In Lerista, the body axis also influenced locomotor evolution. Similar patterns of locomotor evolution were likely due to constraints on how the body can move. However, these common patterns of locomotor evolution between the two clades resulted in different kinematic strategies and levels of performance among species because of their morphological differences. Furthermore, we found no evidence that distinct body shapes are adaptations to different substrates, as locomotor kinematics did not change on loose or solid substrates. Our findings illustrate the importance of studying kinematics to understand the mechanisms of locomotor evolution and phenotype-function relationships.

  11. Life on the rocks: habitat use drives morphological and performance evolution in lizards.

    PubMed

    Goodman, Brett A; Miles, Donald B; Schwarzkopf, Lin

    2008-12-01

    As a group, lizards occupy a vast array of habitats worldwide, yet there remain relatively few cases where habitat use (ecology), morphology, and thus, performance, are clearly related. The best known examples include: increased limb length in response to increased arboreal perch diameter in anoles and increased limb length in response to increased habitat openness for some skinks. Rocky habitats impose strong natural selection on specific morphological characteristics, which differs from that imposed on terrestrial species, because moving about on inclined substrates of irregular sizes and shapes constrains locomotor performance in predictable ways. We quantified habitat use, morphology, and performance of 19 species of lizards (family Scincidae, subfamily Lygosominae) from 23 populations in tropical Australia. These species use habitats with considerable variation in rock availability. Comparative phylogenetic analyses revealed that occupation of rock-dominated habitats correlated with the evolution of increased limb length, compared to species from forest habitats that predominantly occupied leaf litter. Moreover, increased limb length directly affected performance, with species from rocky habitats having greater sprinting, climbing, and clinging ability than their relatives from less rocky habitats. Thus, we found that the degree of rock use is correlated with both morphological and performance evolution in this group of tropical lizards.

  12. A global space-based stratospheric aerosol climatology: 1979-2016

    NASA Astrophysics Data System (ADS)

    Thomason, Larry W.; Ernest, Nicholas; Millán, Luis; Rieger, Landon; Bourassa, Adam; Vernier, Jean-Paul; Manney, Gloria; Luo, Beiping; Arfeuille, Florian; Peter, Thomas

    2018-03-01

    We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979-2014) and we have extended it through 2016 following an identical process. GloSSAC focuses on the Stratospheric Aerosol and Gas Experiment (SAGE) series of instruments through mid-2005, and on the Optical Spectrograph and InfraRed Imager System (OSIRIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data thereafter. We also use data from other space instruments and from ground-based, air, and balloon borne instruments to fill in key gaps in the data set. The end result is a global and gap-free data set focused on aerosol extinction coefficient at 525 and 1020 nm and other parameters on an "as available" basis. For the primary data sets, we developed a new method for filling the post-Pinatubo eruption data gap for 1991-1993 based on data from the Cryogenic Limb Array Etalon Spectrometer. In addition, we developed a new method for populating wintertime high latitudes during the SAGE period employing a latitude-equivalent latitude conversion process that greatly improves the depiction of aerosol at high latitudes compared to earlier similar efforts. We report data in the troposphere only when and where it is available. This is primarily during the SAGE II period except for the most enhanced part of the Pinatubo period. It is likely that the upper troposphere during Pinatubo was greatly enhanced over non-volcanic periods and that domain remains substantially under-characterized. We note that aerosol levels during the OSIRIS/CALIPSO period in the lower stratosphere at mid- and high latitudes is routinely higher than what we observed during the SAGE II period. While this period had nearly continuous low-level volcanic activity, it is possible that the enhancement in part reflects deficiencies in the data set. We also expended substantial effort to quality assess the data set and the product is by far the best we have produced. GloSSAC version 1.0 is available in netCDF format at the NASA Atmospheric Data Center at https://eosweb.larc.nasa.gov/. GloSSAC users should cite this paper and the data set DOI (https://doi.org/10.5067/GloSSAC-L3-V1.0).

  13. Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Rodriguez, Jose M.; Hu, Wen-Jie; Ko, Malcolm K. W.; Weisenstein, Debra K.; Kumer, John B.; Mergenthaler, John L.; Russel, James M., III; Koike, Makoto; Yue, Glenn K.

    1999-01-01

    We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include N2O, HNO3, and ClONO2 from the cryogenic limb array etalon spectrometer (CLAES), version 7 (v.7), and temperature, methane, ozone, H2O, HCl, NO and NO2 from the halogen occultation experiment (HALOE), version 18. The analysis is carried out for the UARS data obtained between January 1992 and September 1994 in the 100-to 1-mbar (approx. 17-47 km) altitude range and over 10 degrees latitude bins from 70 S to 70 N. The spatiotemporal evolution of aerosol surface area density (SAD) is adopted from analysis of the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD, and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOy) is obtained by three different methods: (1) as a sum of the UARS-measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NOy correlation, and (3) from the CH4-NOy correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated monthly averaged NOx/NOy ratios and the NO, NO2, and HNO3 profiles are compared with the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years, such as recovery of NOx after the eruption, their seasonal variability and vertical profiles. However, the model underestimates the NO2 content, particularly in the 30- to 7-mbar (approx.23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground-based measurements at 45 S and 45 N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at midlatitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 S, suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.

  14. Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements. Appendix F

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Rodriguez, Jose M.; Hu, Wenjie; Ko, Malcolm K. W.; Weisenstein, Debra K.; Kumer, John B.; Mergenthaler, John L.; Russell, James M., III; Koike, Makoto; Yue, Glenn K.

    1999-01-01

    We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include N2O, HNO3, and ClONO2 from the cryogenic limb array etalon spectrometer (CLAES), version 7 (v.7), and temperature, methane, ozone, H2O, HCl, NO and NO2 from the halogen occultation experiment (HALOE), version 18. The analysis is carried out for the UARS data obtained between January 1992 and September 1994 in the 100- to 1-mbar (approx. 17-47 km) altitude range and over 10 deg latitude bins from 70 deg S to 70 deg N. The spatiotemporal evolution of aerosol surface area density (SAD) is adopted from analysis of the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD, and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOY) is obtained by three different methods: (1) as a sum of the UARS-measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NOY correlation; and (3) from the CH4-NOY correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated monthly averaged NO(x)/NO(y) ratios and the NO, NO2, and HNO3 profiles are compared with the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years, such as recovery of NO(x) after the eruption, their seasonal variability and vertical profiles. However, the model underestimates the NO2 content, particularly in the 30- to 7-mbar (approx. 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground-based measurements at 45 deg S and 45 deg N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at midlatitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 deg S, suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.

  15. Marker-based method to measure movement between the residual limb and a transtibial prosthetic socket.

    PubMed

    Childers, Walter Lee; Siebert, Steven

    2016-12-01

    Limb movement between the residuum and socket continues to be an underlying factor in limb health, prosthetic comfort, and gait performance yet techniques to measure this have been underdeveloped. Develop a method to measure motion between the residual limb and a transtibial prosthetic socket. Single subject, repeated measures with mathematical modeling. The gait of a participant with transtibial amputation was recorded using a motion capture system using a marker set that included arrays on the anterior distal tibia and the lateral epicondyle of the femur. The proximal or distal translation, anterior or posterior translation, and angular movements were quantified. A random Monte Carlo simulation based on the precision of the motion capture system and a model of the bone moving under the skin explored the technique's accuracy. Residual limb tissue stiffness was modeled as a linear spring based on data from Papaioannou et al. Residuum movement relative to the socket went through ~30 mm, 18 mm, and 15° range of motion. Root mean squared errors were 5.47 mm, 1.86 mm, and 0.75° when considering the modeled bone-skin movement in the proximal or distal, anterior or posterior, and angular directions, respectively. The measured movement was greater than the root mean squared error, indicating that this method can measure motion between the residuum and socket. The ability to quantify movement between the residual limb and the prosthetic socket will improve prosthetic treatment through the evaluation of different prosthetic suspensions, socket designs, and motor control of the prosthetic interface. © The International Society for Prosthetics and Orthotics 2015.

  16. Maiden flight of the infrared sounder GLORIA

    NASA Astrophysics Data System (ADS)

    Friedl-Vallon, Felix; Gloria-Team

    2013-05-01

    The Gimballed Limb Radiance Imager of the Atmosphere (GLORIA) instrument is an imaging Fourier transform spectrometer that is capable to operate on various high altitude research aircraft and on stratospheric balloons. The instrument is a joint development of the Helmholtz Centers Jülich and Karlsruhe Institute of Technology. GLORIA has flown for the first time in December 2011 on board the Russian Geophysica M55 research aircraft. Atmospheric measurements with GLORIA are possible in limb and nadir geometry. The scientific focus in limb sounding mode is on dynamics, tropopause region, TTL and polar UTLS. The nadir mode is tailored to processes in the troposphere such as biomass burning events and high precision methane measurements. The combination of limb and nadir will combine good spatial resolution in both the troposphere and lower stratosphere. In addition, GLORIA serves as a proof of concept instrument for the candidate ESA Earth explorer mission PREMIER. The GLORIA spectrometer consists of a classical Michelson interferometer combined with an infrared camera. The spectral range of the first instrument version extends from 780 cm-1 to 1400 cm-1 with a spectral resolution of up to 0.075 cm-1. The high speed HgCdTe focal plane array with 256×256 elements allows in the limb mode an extremely high spatial sampling of up to 100 m in the vertical domain. The spectrometer is mounted in a gimballed frame that permits agility in elevational and azimuthal direction, as well as image rotation. Scene acquisition and scene stabilisation are accomplished by a control system based on an inertial measurement unit. Limb scenes can be chosen within 45° and 132° to the flight direction of the aircraft allowing tomographic analysis of sampled air volumes.

  17. Single- and dual-wavelength laser operation of a diode-pumped Nd:LaF3 single crystal around 1.05 μm and 1.32 μm

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Huiying; Cai, Zhiping; Moncorgé, Richard

    2016-07-01

    Calibrated room temperature polarized emission spectra recorded between 850 and 1400 nm and nearly free from any reabsorption effect are presented for the first time. A laser output power of 2.35 W is obtained at 1063.45 nm with a laser slope efficiency of about 56% by pumping an uncoated Nd:LaF3 single crystal with a fiber-coupled laser diode at 790 nm inside a standard two-mirror linear laser cavity. True dual-wavelength laser operation on two orthogonally polarized laser lines around 1040 and 1065 nm as well as continuous laser wavelength tuning around 1040 nm, 1048 nm and 1064 nm are also achieved for the first time by using either an intracavity etalon or a birefringent filter. Laser operation is finally obtained around 1330.73 nm with a maximum output power of 0.18 W and a laser slope efficiency of about 4% and simultaneous dual-wavelength laser operation at 1329.04 and 1359.67 nm is demonstrated by using a glass etalon.

  18. Preliminary diffusion tensor imaging studies in limb-girdle muscular dystrophies

    NASA Astrophysics Data System (ADS)

    Hidalgo-Tobon, S.; Hernandez-Salazar, G.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodriguez, A. O.; Delgado-Hernandez, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. This type of dystrophy involves the shoulder and pelvic girdles, distinct phenotypic or clinical characteristics are recognized. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee. USA), using a combination of two eight-channel coil array. Diffusion Tensor Imaging (DTI) data were acquired using a SE-EPI sequence, diffusion weighted gradients were applied along 30 non-collinear directions with a b-value=550 s/mm2. The connective tissue content does not appear to have a significant effect on the directionality of the diffusion, as assessed by fractional anisotropy. The fibers of the Sartorius muscle and gracilis showed decreased number of tracts, secondary to fatty infiltration and replacement of connective tissue and muscle mass loss characteristic of the underlying pathology. Our results demonstrated the utility of non-invasive MRI techniques to characterize the muscle pathology, through quantitative and qualitative methods such as the FA values and tractrography.

  19. Tunable, diode side-pumped Er: YAG laser

    DOEpatents

    Hamilton, Charles E.; Furu, Laurence H.

    1997-01-01

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 .mu.m, and is tunable over a 6 nm range near about 2.936 .mu.m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 .mu.m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 .mu.m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems.

  20. Tunable, diode side-pumped Er:YAG laser

    DOEpatents

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  1. Semiconductor Nonlinear Waveguide Devices and Integrated-Mirror Etalons

    NASA Astrophysics Data System (ADS)

    Chuang, Chih-Li.

    This dissertation investigates different III-V semiconductor devices for applications in nonlinear photonics. These include passive and active nonlinear directional couplers, current-controlled optical phase shifter, and integrated -mirror etalons. A novel method to find the propagation constants of an optical waveguide is introduced. The same method is applied, with minor modifications, to find the coupling length of a directional coupler. The method presented provides a tool for the design of optical waveguide devices. The design, fabrication, and performance of a nonlinear directional coupler are presented. This device uses light intensity to control the direction of light coming out. This is achieved through photo-generated-carriers mechanism in the picosecond regime and through the optical Stark effect in the femtosecond regime. A two-transverse -dimensions beam-propagation computation is used to model the switching behavior in the nonlinear directional coupler. It is found that, by considering the pulse degradation effect, the computation agrees well with experiments. The possibility of operating a nonlinear directional coupler with gain is investigated. It is concluded that by injecting current into the nonlinear directional coupler does not provide the advantages hoped for and the modelling using 2-D beam -propagation methods verifies that. Using current injection to change the refractive index of a waveguide, an optical phase shifter is constructed. This device has the merit of delivering large phase shift with almost no intensity modulation. A phase shift as large as 3pi is produced in a waveguide 400 μm in length. Finally, a new structure, grown by the molecular beam epitaxy machine, is described. The structure consists of two quarter-wave stacks and a spacer layer to form an integrated-mirror etalon. The theory, design principles, spectral analyses are discussed with design examples to clarify the ideas. Emphasis is given to the vertical-cavity surface-emitting laser constructed from this structure. Here we demonstrated the cw operation of the VCSEL at room temperature.

  2. Instrument for fluorescence sensing of circulating cells with diffuse light in mice in vivo.

    PubMed

    Zettergren, Eric; Vickers, Dwayne; Runnels, Judith; Murthy, Shashi K; Lin, Charles P; Niedre, Mark

    2012-03-01

    Accurate quantification of circulating cell populations in mice is important in many areas of preclinical biomedical research. Normally, this is done either by extraction and analysis of small blood samples or, more recently, by using microscopy-based in vivo fluorescence flow cytometry. We describe a new technological approach to this problem using detection of diffuse fluorescent light from relatively large blood vessels in vivo. The diffuse fluorescence flow cytometer (DFFC) uses a laser to illuminate a mouse limb and an array of optical fibers coupled to a high-sensitivity photomultiplier tube array operating in photon counting mode to detect weak fluorescence signals from cells. We first demonstrate that the DFFC instrument is capable of detecting fluorescent microspheres and Vybrant-DiD-labeled cells in a custom-made optical flow phantom with similar size, optical properties, linear flow rates, and autofluorescence as a mouse limb. We also present preliminary data demonstrating that the DFFC is capable of detecting circulating cells in nude mice in vivo. In principle, this device would allow interrogation of the whole blood volume of a mouse in minutes, with sensitivity improvement by several orders of magnitude compared to current approaches. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. LOLA: Lunar Optical Long-baseline Array. 1992-1993 space design

    NASA Technical Reports Server (NTRS)

    Bronte, Daniel; Chaney, Joanne; Curran, Christine; Ferguson, Keith; Flint, Eric; Giunta, Tony; Knill, Duane; Levesque, Daniel; Lyon, Donald; Murphy, Sean

    1993-01-01

    In the fall of 1992, the design and analysis of a lunar-based optical interferometer telescope array was initiated by a group of students in the Department of Aerospace Engineering at Virginia Tech. This project was undertaken at the suggestion of the Space Exploration Initiative Office at the NASA Langley Research Center. The original array design requirements, listed below, centered on the primary objective of resolving earth-type planets about stars out to a distance of ten parsecs: spectrum coverage spanning wavelengths from five nm to five mm, with a primary operating mode in the visible spectrum; a total collecting area providing a signal-to-noise ratio (SNR) of no less than 10.0 for a median wavelength of 500 nm; the individual array elements must be identical and have a maximum optical diameter of 2.0 m; and lunar site selection is limited to ten degrees north and south of the lunar equator on the lunar far side while not closer than 15 degrees to either near-side limb. Following construction by astronaut crews, array operation will be conducted from earth and astronomical observations will not be conducted during the lunar day. The entire system is designed for minimum achievable mass. The majority of the original design requirements for the telescope array were met.

  4. Experience of Testing Practice-Oriented Educational Model of Pedagogical Master's Program

    ERIC Educational Resources Information Center

    Shukshina, Tatjana I.; Buyanova, Irina B.; Gorshenina, Svetlana N.; Neyasova, Irina A.

    2016-01-01

    The recent changes in the Russian educational regulations have predetermined the search for new conceptual approaches and ways to improve the content and arrangement of pedagogical staff training. More attention is paid to the implementation of the professional standard of a teacher intended to set the etalon of a graduate of a pedagogical higher…

  5. Sensing of DNA by Graphene-on-Silicon FET Structures at DC and 101 GHz

    DTIC Science & Technology

    2015-01-01

    For each G in Fig. 2, T displays the oscillatory Airy-function behavior characteristic of all parallel-plate etalons (and Fabry – Perot resonators) with...approximately 5 mm. The output signal from the Schottky rectifier is fed to a 1000-gain low-noise voltage ampli- fier, and then demodulated with a lock-in

  6. Real-time control of walking using recordings from dorsal root ganglia.

    PubMed

    Holinski, B J; Everaert, D G; Mushahwar, V K; Stein, R B

    2013-10-01

    The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.

  7. Near IR observations of Quiet Chromosphere

    NASA Astrophysics Data System (ADS)

    Prasad Choudhary, Debi; Deng, N.; Tejamoortula, U.; Penn, M. J.

    2009-05-01

    We have carried out the observations of quiet solar limb during April 29 to May 1, 2008, March 9-13, 2009 using the vertical spectrograph at the focal plane of McMath-Pierce telescope at Kitt Peak National Observatory. The solar limb was mostly featureless during the observations. The New Infrared Array (NAC) at the exit port of the spectrograph has been used to record the limb spectrum at HeI 1083.0 nm, Hydrogen Paschen beta at 1281.8 nm and Brackett gamma 2165.5 nm wavelength regions. The NAC is a 1024 x 1024 InSb Alladin III Detector operating over 1-5 micron range with high density sampling at 0.018 arc second/pixel. The all-reflective optical train minimizes number of surfaces and eliminates ghosts leading to low scatter, ghost-free optics. The close-cycle cryogenic provides a stable cooling environment over six hour period with an accuracy of about 0.01K leading to low dark current. The low read out noise combined with low scattered light and dark current makes NAC an ideal detector for making high quality infrared spectral observations of solar limb. In this presentation, we shall compare the line parameters of these lines around the solar disk. Acknowledgements: This work is supported by NSF under grant ATM 05-48952 and by NASA under grant NNX08AQ32G.

  8. Scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Burrows, John P.; Chance, Kelly V.

    1991-01-01

    The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY is an instrument which measures backscattered, reflected, and transmitted light from the earth's atmosphere and surface. SCIAMACHY has eight spectral channels which observe simultaneously the spectral region between 240 and 1700 nm and selected windows between 1940 and 2400 nm. Each spectral channel contains a grating and linear diode array detector. SCIAMACHY observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries.

  9. Smart Sensing and Dynamic Fitting for Enhanced Comfort and Performance of Prosthetics

    DTIC Science & Technology

    2015-10-01

    developing the antenna pressure/shear sensors and the bubble actuators for pressure regulation. An antenna sensor that is capable of measuring shear and...liner materials. We have characterized the load bearing capability of bubble actuator arrays at different actuation pressures. A “limb-socket...laboratory test setup was developed for capturing the internal pressure change of bubble actuators when the “limb” was subjected to the external force. 15

  10. Influence of fracture anisotropy on ground water ages and chemistry, Valley and Ridge province, Pennsylvania

    USGS Publications Warehouse

    Burton, W.C.; Plummer, Niel; Busenberg, E.; Lindsey, B.D.; Gburek, W.J.

    2002-01-01

    Model ground water ages based on chlorofluorocarbons (CFCs) and tritium/helium-3 (3H/3He) data were obtained from two arrays of nested piezometers located on the north limb of an anticline in fractured sedimentary rocks in the Valley and Ridge geologic province of Pennsylvania. The fracture geometry of the gently east plunging fold is very regular and consists predominately of south dipping to subhorizontal to north dipping bedding-plane parting and east striking, steeply dipping axial-plane spaced cleavage. In the area of the piezometer arrays, which trend north-south on the north limb of the fold, north dipping bedding-plane parting is a more dominant fracture set than is steeply south dipping axial-plane cleavage. The dating of ground water from the piezometer arrays reveals that ground water traveling along paths parallel to the dip direction of bedding-plane parting has younger 3H/3He and CFC model ages, or a greater component of young water, than does ground water traveling along paths opposite to the dip direction. In predominantly unmixed samples there is a strong positive correlation between age of the young fraction of water and dissolved sodium concentration. The travel times inferred from the model ages are significantly longer than those previously calculated by a ground water flow model, which assumed isotropically fractured layers parallel to topography. A revised model factors in the directional anisotropy to produce longer travel times. Ground water travel times in the watershed therefore appear to be more influenced by anisotropic fracture geometry than previously realized. This could have significant implications for ground water models in other areas underlain by similarly tilted or folded sedimentary rock, such as elsewhere in the Valley and Ridge or the early Mesozoic basins.

  11. Development of a Miniature Snapshot Multispectral Imager

    DTIC Science & Technology

    2010-09-01

    ZnS ) and SiO2, however since ITC had no prior experience with ZnS , the next best choice of TiO2 and SiO2 was selected for fabrication of dielectric...Bass, S. J.; Apsley, N. High Quality InP /InGaAs Fabry-Perrot Etalons Grown by AP MOCVD. Semicon. Sci. Technol. 1987, 2, 466–467. 13. Szipocs, R

  12. Space Qualification of the Optical Filter Assemblies for the ICESat-2/ATLAS Instrument

    NASA Technical Reports Server (NTRS)

    Troupaki, Elisavet; Denny, Zachary; Wu, Stewart; Bradshaw, Heather; Smith, Kevin; Hults, Judy; Ramos-Izquierdo, Luis; Cook, William

    2015-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) will be the only instrument on the Ice, Cloud, and Land Elevation Satellite -2 (ICESat-2). ICESat-2 is the 2nd-generation of the orbiting laser altimeter ICESat, which will continue polar ice topography measurements with improved precision laser-ranging techniques. In contrast to the original ICESat design, ICESat-2 will use a micro-pulse, multi-beam approach that provides dense cross-track sampling to help scientists determine a surface's slope with each pass of the satellite. The ATLAS laser will emit visible, green laser pulses at a wavelength of 532 nm and a rate of 10 kHz and will be split into 6 beams. A set of six identical, thermally-tuned etalon filter assemblies will be used to remove background solar radiation from the collected signal while transmitting the laser light to the detectors. A seventh etalon assembly will be used to monitor the laser center wavelength during the mission. In this paper, we present the design and optical performance measurements of the ATLAS optical filter assemblies (OFA) in air and in vacuum before integration on the ATLAS instrument.

  13. Limb darkening in Venus night-side disk as viewed from Akatsuki IR2

    NASA Astrophysics Data System (ADS)

    Satoh, Takehiko; Nakakushi, Takashi; Sato, Takao M.; Hashimoto, George L.

    2017-10-01

    Night-side hemisphere of Venus exhibits dark and bright regions as a result of spatially inhomogeneous cloud opacity which is illuminated by infrared radiation from deeper atmosphere. The 2-μm camera (IR2) onboard Akatsuki, Japan's Venus Climate Orbiter, is equipped with three narrow-band filters (1.735, 2.26, and 2.32 μm) to image Venus night-side disk in well-known transparency windows of CO2 atmosphere (Allen and Crawford 1984). In general, a cloud feature appears brightest when it is in the disk center and becomes darker as the zenith angle of emergent light increases. Such limb darkening was observed with Galileo/NIMS and mathematically approximated (Carlson et al., 1993). Limb-darkening correction helps to identify branches, in a 1.74-μm vs. 2.3-μm radiances scatter plot, each of which corresponds to a group of aerosols with similar properties. We analyzed Akatsuki/IR2 images to characterize the limb darkening for three night-side filters.There is, however, contamination from the intense day-side disk blurred by IR2's point spread function (PSF). It is found that infrared light can be multiplly reflected within the Si substrate of IR2 detector (1024x1024 pixels PtSi array), causing elongated tail in the actual PSF. We treated this in two different ways. One is to mathematically approximate the PSF (with a combination of modified Lorentz functions) and another is to differentiate 2.26-μm image from 2.32-μm image so that the blurred light pattern can directly be obtained. By comparing results from these two methods, we are able to reasonablly clean up the night-side images and limb darkening is extracted. Physical interpretation of limb darkening, as well as "true" time variations of cloud brightness will be presented/discussed.

  14. The use of hydrogel as an electrode-skin interface for electrode array FES applications.

    PubMed

    Cooper, Glen; Barker, Anthony T; Heller, Ben W; Good, Tim; Kenney, Laurence P J; Howard, David

    2011-10-01

    Functional electrical stimulation is commonly used to restore function in post-stroke patients in upper and lower limb applications. Location of the electrodes can be a problem hence some research groups have begun to experiment with electrode arrays. Electrode arrays are interfaced with a thin continuous hydrogel sheet which is high resistivity to reduce transverse currents between electrodes in the array. Research using electrode arrays has all been conducted in a laboratory environment over short time periods but it is suspected that this approach will not be feasible over longer time periods due to changes in hydrogel resistivity. High resistivity hydrogel samples were tested by leaving them in contact with the skin over a seven day period. The samples became extremely conductive with resistivities reaching around 10-50 Ωm. The effect of these resistivity changes was studied using finite element analysis to solve for the stationary current quasi-static electric field gradient in the tissue. Electrical stimulation efficiency and focality were calculated for both a high and low resistivity electrode-skin interface layer at different tissue depths. The results showed that low resistivity hydrogel produced significant decreases in stimulation efficiency and focality compared to high resistivity hydrogel. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Interferometric radius and limb darkening of the asteroseismic red giant η Serpentis with the CHARA Array

    NASA Astrophysics Data System (ADS)

    Mérand, A.; Kervella, P.; Barban, C.; Josselin, E.; ten Brummelaar, T. A.; McAlister, H. A.; Coudé du Foresto, V.; Ridgway, S. T.; Turner, N.; Sturmann, J.; Sturmann, L.; Goldfinger, P. J.; Farrington, C.

    2010-07-01

    Context. The radius of a star is a very important constraint to evolutionary models, particularly when combined with asteroseismology. Diameters can now be measured interferometrically with great precision (better than 1%), but the center-to-limb darkening (CLD) remains a potential source of bias. Measuring this bias is possible by completely resolving the star using long-baseline interferometry, and has only been achieved for a handful of stars. Aims: The red giant η Ser (K0III-IV) is a particularly interesting target, as asteroseismic oscillations have recently been detected in this star by spectroscopy. We aim to measure its radius with high accuracy, debiased from limb darkening, in order to bring new constraints to its models. Methods: We obtained interferometric observations of η Ser in the near-infrared using the CHARA/FLUOR instrument, in particular in the so-called second lobe of visibility in order to constrain the CLD and debias our diameter estimation. Results: The limb darkened angular diameter of η Ser is 2.944 ± 0.010 mas (using spherical photosphere models PHOENIX and MARCS for the limb darkening), that converts into a radius of 5.897 ± 0.028 R_⊙ with the Hipparcos parallax. Thanks to a precise visibility measurement in the second lobe of the visibility function of η Ser and a one-parameter limb-darkened visibility profile, we were able to show that the photosphere models have the best agreement possible. Conclusions: Our limb darkening measurement of η Ser is in agreement with existing atmosphere models of this star, with a slightly better agreement for models using spherical geometry. This is a strong indication that interferometric angular diameter measurements for red giants, corrected for the CLD using models, are unbiased at a very small level (a fraction of 1%). In particular, this strengthens our confidence in the existing catalogues of calibrator stars for interferometry that are based on giant stars similar to η Ser. The high accuracy of our measurement brings a new and strong constraint for the asteroseismic modeling of this star.

  16. Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces

    PubMed Central

    Endlein, Thomas; Ji, Aihong; Samuel, Diana; Yao, Ning; Wang, Zhongyuan; Barnes, W. Jon P.; Federle, Walter; Kappl, Michael; Dai, Zhendong

    2013-01-01

    To live and clamber about in an arboreal habitat, tree frogs have evolved adhesive pads on their toes. In addition, they often have long and slender legs to facilitate not only long jumps, but also to bridge gaps between leaves when climbing. Both adhesive pads and long limbs are used in conjunction, as we will show in this study. Previous research has shown that tree frogs change from a crouched posture (where the limbs are close to the body) to a sprawled posture with extended limbs when clinging on to steeper inclines such as vertical or overhanging slopes. We investigated this change in posture in White's tree frogs (Litoria caerulea) by challenging the frogs to cling onto a tiltable platform. The platform consisted of an array of 24 three-dimensional force transducers, which allowed us to measure the ground reaction forces of the frogs during a tilt. Starting from a crouched resting position, the normal forces on the forelimbs changed sign and became increasingly negative with increasing slope angle of the platform. At about 106°±12°, tilt of the platform the frogs reacted by extending one or two of their limbs outwards. At a steeper angle (131°±11°), the frogs spread out all their limbs sideways, with the hindlimbs stretched out to their maximum reach. Although the extension was strongest in the lateral direction, limbs were significantly extended in the fore–aft direction as well. With the extension of the limbs, the lateral forces increased relative to the normal forces. The large contribution of the in-plane forces helped to keep the angle between the force vector and the platform small. The Kendall theory for the peeling of adhesive tape predicts that smaller peel angles lead to higher attachment forces. We compare our data with the predictions of the Kendall model and discuss possible implications of the sliding of the pads on the surface. The forces were indeed much larger for smaller angles and thus can be explained by peeling theory. PMID:23325755

  17. Large scale topography of Io

    NASA Technical Reports Server (NTRS)

    Gaskell, R. W.; Synnott, S. P.

    1987-01-01

    To investigate the large scale topography of the Jovian satellite Io, both limb observations and stereographic techniques applied to landmarks are used. The raw data for this study consists of Voyager 1 images of Io, 800x800 arrays of picture elements each of which can take on 256 possible brightness values. In analyzing this data it was necessary to identify and locate landmarks and limb points on the raw images, remove the image distortions caused by the camera electronics and translate the corrected locations into positions relative to a reference geoid. Minimizing the uncertainty in the corrected locations is crucial to the success of this project. In the highest resolution frames, an error of a tenth of a pixel in image space location can lead to a 300 m error in true location. In the lowest resolution frames, the same error can lead to an uncertainty of several km.

  18. Real-time control of walking using recordings from dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Holinski, B. J.; Everaert, D. G.; Mushahwar, V. K.; Stein, R. B.

    2013-10-01

    Objective. The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Main results. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.

  19. Real-time control of walking using recordings from dorsal root ganglia

    PubMed Central

    Holinski, B J; Everaert, D G; Mushahwar, V K; Stein, R B

    2013-01-01

    Objective The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the dorsal root ganglia. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modeled from recorded neural firing rates. These models were then used for closed-loop feedback. Main Results Overall, firing-rate based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48±13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development. PMID:23928579

  20. Multiple Beam Optical Processing

    DTIC Science & Technology

    1989-12-01

    the interference of multiple reflections between the two mirrors. The most promising optical bistable devices, at present, are very thin, solid Fabry...MEDIUM b) R - Ir ,, PMASE SHIFTr Figure 1.3 (a) Nonlinear Fabry-Perot etalon consisting of solid material with parallel surfaces with coatings of...instead of the solid planar structure [2.10]. Voids between columns cause an Inhomogeneous broadening and an exponential extension (Urbach tail) of the

  1. Method and apparatus for pulse stacking

    DOEpatents

    Harney, Robert C.

    1977-01-01

    An active pulse stacking system including an etalon and an electro-optical modulator apparatus combined with a pulse-forming network capable of forming and summing a sequence of time-delayed optical waveforms arising from, for example, a single laser pulse. The Pockels cell pulse stacker may attain an efficiency of about 2.6% while providing a controllable faster-than-exponential time rise in transmitted pulse intensity.

  2. Water Ice on Pluto

    NASA Image and Video Library

    2015-10-16

    The Ralph instrument on NASA's New Horizons spacecraft detected water ice on Pluto's surface, picking up on the ice's near-infrared spectral characteristics. (See featured image from Oct. 8, 2015.) The middle panel shows a region west of Pluto's "heart" feature -- which the mission team calls Tombaugh Regio -- about 280 miles (450 kilometers) across. It combines visible imagery from Ralph's Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). Areas with the strongest water ice spectral signature are highlighted in blue. Major outcrops of water ice occur in regions informally called Viking Terra, along Virgil Fossa west of Elliot crater, and in Baré Montes. Numerous smaller outcrops are associated with impact craters and valleys between mountains. In the lower left panel, LEISA spectra are shown for two regions indicated by cyan and magenta boxes. The white curve is a water ice model spectrum, showing similar features to the cyan spectrum. The magenta spectrum is dominated by methane ice absorptions. The lower right panel shows an MVIC enhanced color view of the region in the white box, with MVIC's blue, red and near-infrared filters displayed in blue, green and red channels, respectively. The regions showing the strongest water ice signature are associated with terrains that are actually a lighter shade of red. http://photojournal.jpl.nasa.gov/catalog/PIA20030

  3. An Integrated Imaging Detector of Polarization and Spectral Content

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Thompson, K. E.

    1993-01-01

    A new type of image detector has been designed to simultaneously analyze the polarization of light at all picture elements in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. It should be capable of 1:10(exp 4) polarization discrimination. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Innovations in the IDID include (1) two interleaved 512 x 1024-pixel imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 6) electrons per pixel); (3) simultaneous readout of both images at 10 million pixels per second each; (4) on-chip analog signal processing to produce polarization maps in real time; (5) on-chip 10-bit A/D conversion. When used with a lithium-niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can collect and analyze simultaneous images at two wavelengths. Precise photometric analysis of molecular or atomic concentrations in the atmosphere is one suggested application. When used in a solar telescope, the IDID will charge the polarization, which can then be converted to maps of the vector magnetic fields on the solar surface.

  4. [Cortical functional connectivity during retention of affective pictures in working memory: EEG-source theta coherence analysis].

    PubMed

    Machinskaya, R I; Rozovskaya, R I; Kurgansky, A V; Pechenkova, E V

    2016-01-01

    A pattern of cortical functional connectivity in the source space was studied in a group of right-handed adult participants (N = 44:17 women, 27 men, aged M = 29.61 ± 6.45 years) who retained in their working memory (WM) traces of realistic pictures of positive, neutral, and negative emotional valence while in their working memory (WM) while performing same different task in which participants had to compare an etalon picture against a target picture that followed after a specified delay. A coherence (COH) between pairs of cortical sources chosen in advance according to fMRI data was estimated in the theta frequency range for the period of time preceding the etalon stimulus, distinct sets of functional links are found. The links of the first type that presumably reflect the involvement of sustained attention were between the dorsal anterior cingulate cortex, the prefrontal areas, and temporal areas of the right hemispheres. When compared to the rest period, links of this type showed strengthening not only during the retention period but also during the period preceding the etalon picture. The links of the second type presumably reflecting a progressive neocortex-to-hippocampus functional integration with increasing memory load and strengthened exclusively during retention period. Those links were between parietal, temporal and prefrontal cortices in the lateral surface of both hemispheres with the additional inclusion of the posterior cingulate cortex and the medial parietal cortex in the left hemisphere. An impact of emotional valence onto the strength and topography of the functional links of the second type was found. In the left hemisphere, an increase in the strength of cortical interaction was more pronounced for pictures of positive valence than for pictures of either neutral or negative valences. When compared to the pictures of neutral valence, the retention of pictorial information of both positive and negative valence showed some extraneous integration of the cortical areas for the theta rhythm. This finding might be related to the additional load exerted by emotionally colored pictures onto the mechanisms of short-time retention of visual information.

  5. Arecibo Optical Laboratory Upgrade: imaging FPI first results

    NASA Astrophysics Data System (ADS)

    Noto, J.; Kerr, R. B.; Migliozzi, M. A.; Tepley, C. A.; Friedman, J.; Garcia, R.; Robles, E.; Waldrop, L. S.

    2006-05-01

    The Optical Laboratory at the Arecibo Observatory is being upgraded to permit remote operation, to improve Fabry-Perot Interferometer (FPI) sensitivity, and to permit FPI response in the near infrared. Integration of a 2048 x 2048 Andor CCD array into the existing low-resolution Fabry Perot Interferometer is complete. Remote operation and data acquisition for this FPI is accomplished by transition from the obsolete PDP-11 data acquisition system to PC-based, internet aware control. Another upgrade stage, adding a near-infrared focal plane array to a second FPI is scheduled for the fall of this year. Configured with a spectral resolution of 0.0086 nm at 656.3 nm, the low resolution FPI sampled the geocoronal Balmer-alpha emission during three new moon periods in November and December, 2005, and January, 2006. The latter two observation campaigns were conducted using the new remote control capability. The single etalon FPI produces three orders at the CCD plane corresponding to a full field-of-view of 0.92 degrees. The FPI Hadinger ring pattern is summed annularly, and the three orders are subsequently summed, producing an instrument sensitivity that is 43 times better than the previous single channel photomultiplier detection system. Raw detector response is corrected using both linear (chip bias) and non-linear techniques (flat-field) prior to ring-summing. A frequency stabilized HeNe laser at 632.8 nm is remotely operated to establish the FPI response function. Effective exospheric temperature and line profile asymmetries are determined after decomposition of the instrument response function from the measured airglow emission. Identification and climatological characterization of non-Maxwellian H distributions, with simultaneous quantification of H+ abundance and flow in the topside ionosphere by the Arecibo incoherent scatter radar, are measurements central to our goal of improved understanding of H on H+ charge exchange escape of H.

  6. High-Resolution Spectroscopic Observations of Potassium Emissions in the Lunar Exosphere

    NASA Astrophysics Data System (ADS)

    Robertson, S. D.; Oliversen, R. J.; Mierkiewicz, E. J.; Kuruppuaratchi, D. C. P.; Derr, N. J.; Gallant, M. A.; McFarland, C. G.; Sarantos, M.

    2017-12-01

    We investigate lunar exospheric potassium D1 emissions (7698.9646 Å) using a high-resolution (R = 180,000 or 1.7 km/s) spectroscopy with our dual-etalon Fabry-Perot instrument to measure line widths and radial velocities. The Field of View (FOV) is 2 arcmin ( 224 km at the mean lunar distance of 384,400 km) positioned tangent to the sunlit limb. The FOV placements are at cardinal directions from a variety of reference craters. All observations are collected at the National Solar Observatory McMath-Pierce Telescope in Kitt Peak, Arizona. The data are from monthly observing runs in 2017 from January to June excluding February. Results are produced via a newly created automated data reduction using Python. Python was chosen as an open-source alternative to the previously used IDL and MATLAB scripts to decrease the cost of software licenses and maintenance. The potassium spectral line profiles provide a direct method to track exospheric effective temperatures and velocities. By monitoring the state of the potassium emissions over different lunar phases, solar activity, and influx of meteor streams, we can constrain physical processes of sources and sinks at the lunar surface. Mechanisms that create the exosphere include photon-stimulated desorption, thermal evaporation, meteoroid impact vaporization, and ion sputtering via solar wind. Whereas the exosphere is diminished due to the low lunar escape velocity, solar radiation pressure, and neutral gas being ionized and swept away by the interplanetary and terrestrial magnetic field. Preliminary analysis indicates an average potassium temperature of 1140 K but varying over the range of 550 K to 2000 K. Further analysis is expected for data from 2014 to 2017 to make month to month, as well as annual, comparisons of potassium emissions.

  7. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Nonlinear optical devices: basic elements of a future optical digital computer?

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Müller, R.

    1989-08-01

    It is shown that nonlinear optical devices are the most promising elements for an optical digital supercomputer. The basic characteristics of various developed nonlinear elements are presented, including bistable Fabry-Perot etalons, interference filters, self-electrooptic effect devices, quantum-well devices utilizing transitions between the lowest electron states in the conduction band of GaAs, etc.

  8. Frequency tuning characteristics of a Q-switched Co:MgF2 laser

    NASA Technical Reports Server (NTRS)

    Lovold, S.; Moulton, P. F.; Killinger, D. K.; Menyuk, N.

    1985-01-01

    A tunable Q-switched Co:MgF2 laser has been developed for atmospheric remote sensing applications. Frequency tuning is provided by a quartz etalon and a specially designed three-element birefringent filter covering the whole gain bandwidth of the Co:MgF2 laser. The laser has good temporal and spectral characteristics, with an emission linewidth of approximately 3 GHz (0.1 per cm).

  9. Measurement of the line-of-sight velocity of high-altitude barium clouds A technique

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Harris, S. E.

    1982-01-01

    It is demonstrated that for maximizing the scientific output of future ionospheric and magnetospheric ion cloud release experiments a new type of instrument is required which will measure the line-of-sight velocity of the ion cloud by the Doppler technique. A simple instrument was constructed using a 5-cm diam solid Fabry-Perot etalon coupled to a low-light-level integrating TV camera. It was demonstrated that the system has both the sensitivity and spectral resolution for detection of ion clouds and measurement of their line-of-sight Doppler velocity. The tests consisted of (1) a field experiment using a rocket barium cloud release to check sensitivity, and (2) laboratory experiments to show the spectral resolving capabilities of the system. The instrument was found to be operational if the source was brighter than approximately 1 kR, and it had a wavelength resolution much better than 0.2 A, which corresponds to approximately 12 km/sec or in the case of barium ion an acceleration potential of 100 V. The instrument is rugged and, therefore, simple to use in field experiments or on flight instruments. The sensitivity limit of the instrument can be increased by increasing the size of the etalon.

  10. Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser.

    PubMed

    Zhao, Gang; Tan, Wei; Hou, Jiajia; Qiu, Xiaodong; Ma, Weiguang; Li, Zhixin; Dong, Lei; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-25

    A methodology for calibration-free wavelength modulation spectroscopy (CF-WMS) that is based upon an extensive empirical description of the wavelength-modulation frequency response (WMFR) of DFB laser is presented. An assessment of the WMFR of a DFB laser by the use of an etalon confirms that it consists of two parts: a 1st harmonic component with an amplitude that is linear with the sweep and a nonlinear 2nd harmonic component with a constant amplitude. Simulations show that, among the various factors that affect the line shape of a background-subtracted peak-normalized 2f signal, such as concentration, phase shifts between intensity modulation and frequency modulation, and WMFR, only the last factor has a decisive impact. Based on this and to avoid the impractical use of an etalon, a novel method to pre-determine the parameters of the WMFR by fitting to a background-subtracted peak-normalized 2f signal has been developed. The accuracy of the new scheme to determine the WMFR is demonstrated and compared with that of conventional methods in CF-WMS by detection of trace acetylene. The results show that the new method provides a four times smaller fitting error than the conventional methods and retrieves concentration more accurately.

  11. Near- infrared imager and slitless spectrograph (NIRISS): a new instrument on James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Maszkiewicz, Michael

    2017-11-01

    The James Webb Space Telescope (JWST) is a 6.5 m diameter deployable telescope that will orbit the L2 Earth-Sun point beginning in 2018. NASA is leading the development of the JWST mission with their partners, the European Space Agency and the Canadian Space Agency. The Canadian contribution to the mission is the Fine Guidance Sensor (FGS). Originally, the FGS incorporated a flexible narrow spectral band science imaging capability in the form of the Tunable Filter Imaging Module -TFI, based on a scanning Fabry-Perot etalon. In the course of building and testing of the TFI flight model, numerous technical issues arose with unforeseeable length of required mitigation effort. In addition to that, emerging new science priorities caused that in summer of 2011 a decision was taken to replace TFI with a new instrument called Near Infrared Imager and Slitless Spectrograph (NIRISS). NIRISS preserves most of the TFI opto-mechanical design: focusing mirror, collimator and camera TMA telescopes, dual filter and pupil wheel and detectors but, instead of a tunable etalon, uses set of filters and grisms for wavelength selection and dispersion. The FGS-Guider and NIRISS have completed their instrument-level cryogenic testing and were delivered to NASA Goddard in late July 2012 for incorporation into the Integrated Science Instrument Module (ISIM).

  12. Coronal Mass Ejections in September 2017 from Monitoring of Interplanetary Scintillations with the Large Phased Array of the Lebedev Institute of Physics

    NASA Astrophysics Data System (ADS)

    Chashei, I. V.; Tyul'bashev, S. A.; Shishov, V. I.; Subaev, I. A.

    2018-05-01

    Results of monitoring of interplanetary scintillations with the Large Phased Array of the Pushchino Radio AstronomyObservatory at 111 MHz during a period of flare activity of the Sun in the first ten days of September 2017 are presented. Enhancements of scintillations associated with interplanetary coronal mass ejections propagating after limb flares have been recorded. The propagation velocities are estimated to be about 2000 km/s for an ejection on September 7 and about 1000 km/s for an ejection on September 6. It is shown that, during the propagation from the Sun, the lateral part of the ejections decelerates faster than its leading part. Night-time enhancements of second-timescale scintillations during periods of high geomagnetic activity have an ionospheric origin.

  13. High-density force myography: A possible alternative for upper-limb prosthetic control.

    PubMed

    Radmand, Ashkan; Scheme, Erik; Englehart, Kevin

    2016-01-01

    Several multiple degree-of-freedom upper-limb prostheses that have the promise of highly dexterous control have recently been developed. Inadequate controllability, however, has limited adoption of these devices. Introducing more robust control methods will likely result in higher acceptance rates. This work investigates the suitability of using high-density force myography (HD-FMG) for prosthetic control. HD-FMG uses a high-density array of pressure sensors to detect changes in the pressure patterns between the residual limb and socket caused by the contraction of the forearm muscles. In this work, HD-FMG outperforms the standard electromyography (EMG)-based system in detecting different wrist and hand gestures. With the arm in a fixed, static position, eight hand and wrist motions were classified with 0.33% error using the HD-FMG technique. Comparatively, classification errors in the range of 2.2%-11.3% have been reported in the literature for multichannel EMG-based approaches. As with EMG, position variation in HD-FMG can introduce classification error, but incorporating position variation into the training protocol reduces this effect. Channel reduction was also applied to the HD-FMG technique to decrease the dimensionality of the problem as well as the size of the sensorized area. We found that with informed, symmetric channel reduction, classification error could be decreased to 0.02%.

  14. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  15. Frequency-Agile LIDAR Receiver for Chemical and Biological Agent Sensing

    DTIC Science & Technology

    2010-06-01

    transimpedance preamplifier architecture was optimized around the selected IR detector diode – Input-referenced noise density of 0.8 nV/ Hz0.5  A portion of...objectives: • Reduce baseline (background) photon flux on detector : Tunable Fabry-Perot etalon in optical train • Reduce input-referenced amplifier noise ...custom amplifier • Reduce detector dark current: High impedance detector  Performance Metrics: – Noise equivalent power of receiver system (NEP

  16. Heterodyne photomixer spectrometer with receiver photomixer driven at different frequency than source photomixer

    DOEpatents

    Wanke, Michael C; Fortier, Kevin; Shaner, Eric A; Barrick, Todd A

    2013-07-09

    A heterodyne photomixer spectrometer comprises a receiver photomixer that is driven at a different frequency than the source photomixer, thereby maintaining the coherent nature of the detection, eliminating etalon effects, and providing not only the amplitude but also the phase of the received signal. The heterodyne technique can be applied where the source and receiver elements are components of a waveguide thereby forming an on-chip heterodyne spectrometer.

  17. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    NASA Technical Reports Server (NTRS)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  18. Wavelet Packet Feature Assessment for High-Density Myoelectric Pattern Recognition and Channel Selection toward Stroke Rehabilitation.

    PubMed

    Wang, Dongqing; Zhang, Xu; Gao, Xiaoping; Chen, Xiang; Zhou, Ping

    2016-01-01

    This study presents wavelet packet feature assessment of neural control information in paretic upper limb muscles of stroke survivors for myoelectric pattern recognition, taking advantage of high-resolution time-frequency representations of surface electromyogram (EMG) signals. On this basis, a novel channel selection method was developed by combining the Fisher's class separability index and the sequential feedforward selection analyses, in order to determine a small number of appropriate EMG channels from original high-density EMG electrode array. The advantages of the wavelet packet features and the channel selection analyses were further illustrated by comparing with previous conventional approaches, in terms of classification performance when identifying 20 functional arm/hand movements implemented by 12 stroke survivors. This study offers a practical approach including paretic EMG feature extraction and channel selection that enables active myoelectric control of multiple degrees of freedom with paretic muscles. All these efforts will facilitate upper limb dexterity restoration and improved stroke rehabilitation.

  19. Contribution of the AN/TPS-3 Radar Antenna to Australian radio astronomy

    NASA Astrophysics Data System (ADS)

    Wendt, Harry; Orchiston, Wayne

    2018-04-01

    The CSIRO Division of Radiophysics used the WWII surplus AN/TPS-3 radar dishes for their early solar radio astronomy research and eclipse observations. These aerials were also used in a spaced (Michelson) interferometer configuration in the late 1940s to investigate solar limb brightening at 600 MHz. This work paralleled early solar observations at Cambridge. None of the Australian research results using the spaced interferometry technique appeared in publications, and the invention of the solar grating array in 1950 made further use of the method redundant.

  20. Big data challenges in decoding cortical activity in a human with quadriplegia to inform a brain computer interface.

    PubMed

    Friedenberg, David A; Bouton, Chad E; Annetta, Nicholas V; Skomrock, Nicholas; Mingming Zhang; Schwemmer, Michael; Bockbrader, Marcia A; Mysiw, W Jerry; Rezai, Ali R; Bresler, Herbert S; Sharma, Gaurav

    2016-08-01

    Recent advances in Brain Computer Interfaces (BCIs) have created hope that one day paralyzed patients will be able to regain control of their paralyzed limbs. As part of an ongoing clinical study, we have implanted a 96-electrode Utah array in the motor cortex of a paralyzed human. The array generates almost 3 million data points from the brain every second. This presents several big data challenges towards developing algorithms that should not only process the data in real-time (for the BCI to be responsive) but are also robust to temporal variations and non-stationarities in the sensor data. We demonstrate an algorithmic approach to analyze such data and present a novel method to evaluate such algorithms. We present our methodology with examples of decoding human brain data in real-time to inform a BCI.

  1. Improvement in Suppression of Pulsed Nd:YAG Laser Light With Iodine Absorption Cells for Filtered Rayleigh Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E

    1997-01-01

    Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature, and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine absorption model calculation is less than 10(exp -5) at the 18788.44/cm line using a 200 mm absorption cell containing iodine vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations. However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers only show minimum transmission of about 3 x 10(exp -3). This greatly reduces the applicability of the filtered Rayleigh scattering technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at 18788.44/cm are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in the transmitted laser light. This improvement allows the iodine cell to block significantly more of the stray laser light in filtered Rayleigh scattering experiments. Examples are given of filtered Rayleigh scattering measurements showing the effect of the etalon on measurements taken in a Mach 3 flow in the NASA Lewis 4 inch by 10 inch supersonic wind tunnel.

  2. Jupiter-Io Montage

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is a montage of New Horizons images of Jupiter and its volcanic moon Io, taken during the spacecraft's Jupiter flyby in early 2007. The Jupiter image is an infrared color composite taken by the spacecraft's near-infrared imaging spectrometer, the Linear Etalon Imaging Spectral Array (LEISA) at 1:40 UT on Feb. 28, 2007. The infrared wavelengths used (red: 1.59 um, green: 1.94 um, blue: 1.85 um) highlight variations in the altitude of the Jovian cloud tops, with blue denoting high-altitude clouds and hazes, and red indicating deeper clouds. The prominent bluish-white oval is the Great Red Spot. The observation was made at a solar phase angle of 75 degrees but has been projected onto a crescent to remove distortion caused by Jupiter's rotation during the scan. The Io image, taken at 00:25 UT on March 1st 2007, is an approximately true-color composite taken by the panchromatic Long-Range Reconnaissance Imager (LORRI), with color information provided by the 0.5 um ('blue') and 0.9 um ('methane') channels of the Multispectral Visible Imaging Camera (MVIC). The image shows a major eruption in progress on Io's night side, at the northern volcano Tvashtar. Incandescent lava glows red beneath a 330-kilometer high volcanic plume, whose uppermost portions are illuminated by sunlight. The plume appears blue due to scattering of light by small particles in the plume

    This montage appears on the cover of the Oct. 12, 2007, issue of Science magazine.

  3. Digital Optical Circuit Technology.

    DTIC Science & Technology

    1985-03-01

    ordinateurs ct des syst~mcs de diffusion de donn’es qui soient I la fois numcriques, entierement optiques. tres rapides etI I’abri des interferences et des...F.A.Hopf SESSION 11 - OPTICAL LOGIC PROSPECTS FOR PARALLEL NONLINEAR OPTICAL SIGNAL PROCESSING USING GaAs ETALONS AND ZnS INTERFERENCE FILTERS by...talks 1, 8, and 9) interference filters for room-temperature parallel processing. If one imposes a maximum heat load of 100 W/cm 2 , consistent with

  4. Characterizing the Effects of Low Order Perturbations on Geodetic Satellite Precision Orbit Determination

    DTIC Science & Technology

    2015-08-07

    Journal of Geodesy , Vol. 72, No. 6, 1998, pp. 333–342. [19] “Etalon-1, and -2,” http://ilrs.gsfc.nasa.gov/missions/satellite_missions...current_missions/g129_general.html, 2012. [24] L. Kanner and Associates, “Translation of ’Le satellite de geodesie ’Starlette’,’ Groupe de Recherches...de Geodesie Spatiale, Centre National d’Etudes Spatiales, Bretigny-sur-Orge, France, Report, 1974, 25 pp,” National Aeronautics and Space

  5. Ultranarrow bandwidth spectral filtering for long-range free-space quantum key distribution at daytime.

    PubMed

    Höckel, David; Koch, Lars; Martin, Eugen; Benson, Oliver

    2009-10-15

    We describe a Fabry-Perot-based spectral filter for free-space quantum key distribution (QKD). A multipass etalon filter was built, and its performance was studied. The whole filter setup was carefully optimized to add less than 2 dB attenuation to a signal beam but block stray light by 21 dB. Simulations show that such a filter might be sufficient to allow QKD satellite downlinks during daytime with the current technology.

  6. Fabry-Perot Based Radiometers for Precise Measurement of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Wilson, Emily L.; Georgieva, Elena

    2007-01-01

    Differential radiometers based upon the Fabry-Perot interferometer have been developed and demonstrated that exhibit very great sensitivity to changes in the atmospheric column of carbon dioxide, oxygen, and water vapor. These instruments employ a solid Fabry-Perot etalon that is tuned to the proper wavelength by changing the temperature. By choosing the thickness of the etalon its multiple pass bands can be made to align with regularly space absorption features of the molecule under investigation. Use of multiple absorption features improves the optical throughput of the instrument and improves the stability of the instrument response with respect to environmental changes. Efforts are underway at Goddard to extend this technique to the carbon 13 isotope of carbon dioxide and to methane. These instruments are intrinsically rugged and can be made rather small and inexpensively. They therefore hold promise for widespread use in ground based networks for calibration of satellite instruments such as OCO and GOSAT. Results will be presented for ground based and airborne operations for these systems. The effects of atmospheric scattering, pointing errors, pressure broadening and temperature effects will be discussed with regard to achieving precision better than .5% required for validation of carbon dioxide column measured from space. Designs permitting the extension of the technique to an even larger number of atmospheric species will be discussed along with theoretical analysis of potential system performance.

  7. A 3D metrology system for the GMT

    NASA Astrophysics Data System (ADS)

    Rakich, A.; Dettmann, Lee; Leveque, S.; Guisard, S.

    2016-08-01

    The Giant Magellan Telescope (GMT)1 is a 25 m telescope composed of seven 8.4 m "unit telescopes", on a common mount. Each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and co-phased. During telescope operation, the alignment of the optical components will deflect due to variations in thermal environment and gravity induced structural flexure of the mount. The ultimate co-alignment and co-phasing of the telescope is achieved by a combination of the Acquisition Guiding and Wavefront Sensing system and two segment edge-sensing systems2. An analysis of the capture range of the wavefront sensing system indicates that it is unlikely that that system will operate efficiently or reliably with initial mirror positions provided by open-loop corrections alone3. The project is developing a Telescope Metrology System (TMS) which incorporates a large number of absolute distance measuring interferometers. The system will align optical components of the telescope to the instrument interface to (well) within the capture range of the active optics wavefront sensing systems. The advantages offered by this technological approach to a TMS, over a network of laser trackers, are discussed. Initial investigations of the Etalon Absolute Multiline Technology™ by Etalon Ag4 show that a metrology network based on this product is capable of meeting requirements. A conceptual design of the system is presented and expected performance is discussed.

  8. Decoding bipedal locomotion from the rat sensorimotor cortex.

    PubMed

    Rigosa, J; Panarese, A; Dominici, N; Friedli, L; van den Brand, R; Carpaneto, J; DiGiovanna, J; Courtine, G; Micera, S

    2015-10-01

    Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds, are likely to provide more robust control strategies for the design of such neuroprostheses.

  9. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation.

    PubMed

    Normann, R A; Dowden, B R; Frankel, M A; Wilder, A M; Hiatt, S D; Ledbetter, N M; Warren, D A; Clark, G A

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  10. Atmospheric limb sounding with imaging FTS

    NASA Astrophysics Data System (ADS)

    Friedl-Vallon, Felix; Riese, Martin; Preusse, Peter; Oelhaf, Hermann; Fischer, Herbert

    Imaging Fourier transform spectrometers in the thermal infrared are a promising new class of sensors for atmospheric science. The availability of fast and sensitive large focal plane arrays with appropriate spectral coverage in the infrared region allows the conception and construction of innovative sensors for Nadir and Limb geometry. Instruments in Nadir geometry have already reached prototype status (e.g. Geostationary Imaging Fourier Transform Spectrometer / U. Wisconsin and NASA) or are in Phase A study (infrared sounding mission on Meteosat third generation / ESA and EUMETSAT). The first application of the new technical possibilities to atmospheric limb sounding from space, the Imaging Michelson Interferometer for Passive Atmospheric Sounding (IMIPAS), is currently studied by industry in the context of preparatory work for the next set of ESA earth explorers. The scientific focus of the instrument is on the processes controlling the composition of the mid/upper troposphere and lower stratosphere. The instrument concept of IMIPAS has been conceived at the research centres Karlsruhe and J¨lich. The development of a precursor instrument (GLORIA-AB) at these research institutions u started already in 2005. The instrument will be able to fly on board of various airborne platforms. First scientific missions are planned for the second half of the year 2009 on board the new German research aircraft HALO. This airborne sensor serves its own scientific purpose, but it also provides a test bed to learn about this new instrument class and its peculiarities and to learn to exploit and interpret the wealth of information provided by a limb imaging IR Fourier transform spectrometer. The presentation will discuss design considerations and challenges for GLORIA-AB and put them in the context of the planned satellite application. It will describe the solutions found, present first laboratory figures of merit for the prototype instrument and outline the new scientific possibilities.

  11. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation

    NASA Astrophysics Data System (ADS)

    Normann, R. A.; Dowden, B. R.; Frankel, M. A.; Wilder, A. M.; Hiatt, S. D.; Ledbetter, N. M.; Warren, D. A.; Clark, G. A.

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  12. Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control.

    PubMed

    Bercich, Rebecca A; Wang, Zhi; Mei, Henry; Hammer, Lauren H; Seburn, Kevin L; Hargrove, Levi J; Irazoqui, Pedro P

    2016-08-01

    A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject's forearm. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device's programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system's functional protocol for patient- or algorithm-specific needs.

  13. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing Determination of Various Atmospheric Trace Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.; Wilson, E. L.

    2007-01-01

    New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based, airborne and satellite s ensor for gases such as carbon dioxide (1570 nm), oxygen (762 nm and 768 nm lines sensitive to changes in oxygen pressure and oxygen temper ature) and water vapor (940 nm). Our current goal is to develop an ul tra precise, inexpensive, ground based device suitable for wide deplo yment as a validation instrument for the Orbiting Carbon Observatory (OCO) satellite. We show sensitivity measurements for CO2, 02, and H2 O, compare our measurements to those obtained using other types of sensors and discuss some of the peculiarities that must be addressed in order to provide the very high quality column detection required for solving problems about global distribution of greenhouse gases and cl imatological models. In another area of research we are interested in developing a small-size channel for CO2 capable of doing simultaneous measurements with the AERONET (Aerosol Robotic Network) at NASA, God dard to study the hypothesis that atmospheric aerosols affect the reg ional terrestrial carbon cycle. We present recent data from our groun d based measurements of O2, CO2, H2O and (13)CO2 and discuss extensio n of the technique to new species and applications.

  14. Lunar Sodium and Potassium Exosphere in May 2014

    NASA Astrophysics Data System (ADS)

    Oliversen, R. J.; Kuruppuaratchi, D. C. P.; Mierkiewicz, E. J.; Derr, N. J.; Rosborough, S.; Gallant, M. A.; Roesler, F. L.

    2015-12-01

    We apply high resolution spectroscopy to investigate the lunar exosphere by measuring sodium and potassium spectral line profiles to determine the variations in exospheric effective temperatures and velocities. Observations were made at the National Solar Observatory McMath-Pierce Telescope during May 2014. Data were collected over several nights, centered on full moon (May 14) and covering a waxing phase angle of 67° to a waning phase angle of 75°. We used a dual-etalon Fabry-Perot spectrometer with a resolving power of 184,000 (1.63 km s-1) to measure the line widths and radial velocity shifts of the sodium D2 (5889.951 Å) and potassium D1 (7698.965 Å) emission lines. The field of view was 3 arcmin (~330 km) and positioned at several locations, each centered at 1.5 arcmin (~165 km) off the East and West sunlit limbs. The deconvolved line widths indicate significant differences between the sodium and potassium temperatures. The sodium line widths were mostly symmetric as a function of phase for both the waxing and waning phases. At phase angles > 40º (outside of the magnetotail) the full width half maximum (FWHM) line widths are 1.5 - 2.0 km s-1 or ~1500 K for FWHM = 1.75 km s-1. Inside the magnetotail (phase angle < 40º) and near full moon (phase angle ~6°), the FWHM increased to ~4 km s-1. The implied line width temperature is 8000 K, although some of the observed line width may be due to a dispersion in velocities from many contribution along the extended sodium tail. Unlike sodium, the potassium line widths are wider by 50% during the waxing phase compared to the waning phase at phases > 40º. The potassium temperatures pre-magnetotail passage are ~1000 K while the temperatures post-magnetotail passage are ~2000K. At phase angles < 40º, the potassium intensities decreased dramatically; on consecutive days, when the phase angle changed from 44º to 31º to 20º, the relative intensities dropped by 1.0:0.6:0.15. The potassium intensity in the East and West equatorial regions (latitude < 10º) were similar; however, the potassium intensity was brightest off the limb near Aristarchus (latitude ~24º), which was the crater we observed nearest the KREEP region. This work was partially supported by the NASA Planetary Astronomy programs, NNX11AE38G and NNX13AL30G.

  15. Single-frequency oscillation of thin-disk lasers due to phase-matched pumping.

    PubMed

    Vorholt, Christian; Wittrock, Ulrich

    2017-09-04

    We present a novel pump concept that should lead to single-frequency operation of thin-disk lasers without the need for etalons or other spectral filters. The single-frequency operation is due to matching the standing wave pattern of partially coherent pump light to the standing wave pattern of the laser light inside the disk. The output power and the optical efficiency of our novel pump concept are compared with conventional pumping. The feasibility of our pump concept was shown in previous experiments.

  16. Intelligent optical fiber sensor system for measurement of gas concentration

    NASA Astrophysics Data System (ADS)

    Pan, Jingming; Yin, Zongmin

    1991-08-01

    A measuring, controlling, and alarming system for the concentration of a gas or transparent liquid is described. In this system, a Fabry-Perot etalon with an optical fiber is used as the sensor, a charge-coupled device (CCD) is used as the photoelectric converter, and a single- chip microcomputer 8031 along with an interface circuit is used to measure the interference ring signal. The system has such features as real-time and on-line operation, continuous dynamic handling, and intelligent control.

  17. Physics of Systematic Frequency Variations in Hydrogen Masers

    DTIC Science & Technology

    1990-12-01

    X expansivity a of the material of which the cavity is constructed (a-10-8 OC-1 for low-expansion materials like Cervit or Zerodur , L T ~ a...of the bulk cavity material itself. Such shrinkage has been observed in gauge-blocks of Zerodud and ULE9 and in Zerodur and ULE laser etalons8, and...repositioned or retuned after being moved. Material Zerodur 1 initial after 10 yrs Zerodur2 initial3 after 900 days U L E ~ initial after 20 days High

  18. Programmable Digital Controller

    NASA Technical Reports Server (NTRS)

    Wassick, Gregory J.

    2012-01-01

    An existing three-channel analog servo loop controller has been redesigned for piezoelectric-transducer-based (PZT-based) etalon control applications to a digital servo loop controller. This change offers several improvements over the previous analog controller, including software control over proportional-integral-derivative (PID) parameters, inclusion of other data of interest such as temperature and pressure in the control laws, improved ability to compensate for PZT hysteresis and mechanical mount fluctuations, ability to provide pre-programmed scanning and stepping routines, improved user interface, expanded data acquisition, and reduced size, weight, and power.

  19. Laser Gyro Theory Extension.

    DTIC Science & Technology

    1980-12-01

    A 60 Kiz. A scanning Fabry - Perot etalon was used to measure the frequency spectrum. I -.8 -.4 0 .4 .8 n(O/sec) a 4-mode (expt) / 2-mode(expt) / -- 4...light from one mode into the counter- rotating one is Doppler shifted. In summary, a two-mode ring laser gyro has two counter- Fig. 4. The demodulated ...input rate so that the locking Fig. 4 shows the demodulated beat note versus rotation rate region is avoided. The rotation rate measurement then depends

  20. Fourier transform spectrometry for fiber-optic sensor systems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Tuma, Margaret L.; Sotomayor, Jorge L.; Flatico, Joseph M.

    1993-01-01

    An integrated-optic Mach-Zehnder interferometer is used as a Fourier transform spectrometer to analyze the input and output spectra of a temperature-sensing thin-film etalon. This type of spectrometer has an advantage over conventional grating spectrometers because it is better suited for use with time-division-multiplexed sensor networks. In addition, this spectrometer has the potential for low cost due to its use of a component that could be manufactured in large quantities for the optical communications industry.

  1. Impacts of Mt Pinatubo volcanic aerosol on the tropical stratosphere in chemistry-climate model simulations using CCMI and CMIP6 stratospheric aerosol data

    NASA Astrophysics Data System (ADS)

    Revell, Laura E.; Stenke, Andrea; Luo, Beiping; Kremser, Stefanie; Rozanov, Eugene; Sukhodolov, Timofei; Peter, Thomas

    2017-11-01

    To simulate the impacts of volcanic eruptions on the stratosphere, chemistry-climate models that do not include an online aerosol module require temporally and spatially resolved aerosol size parameters for heterogeneous chemistry and aerosol radiative properties as a function of wavelength. For phase 1 of the Chemistry-Climate Model Initiative (CCMI-1) and, later, for phase 6 of the Coupled Model Intercomparison Project (CMIP6) two such stratospheric aerosol data sets were compiled, whose functional capability and representativeness are compared here. For CCMI-1, the SAGE-4λ data set was compiled, which hinges on the measurements at four wavelengths of the SAGE (Stratospheric Aerosol and Gas Experiment) II satellite instrument and uses ground-based lidar measurements for gap-filling immediately after the 1991 Mt Pinatubo eruption, when the stratosphere was too optically opaque for SAGE II. For CMIP6, the new SAGE-3λ data set was compiled, which excludes the least reliable SAGE II wavelength and uses measurements from CLAES (Cryogenic Limb Array Etalon Spectrometer) on UARS, the Upper Atmosphere Research Satellite, for gap-filling following the Mt Pinatubo eruption instead of ground-based lidars. Here, we performed SOCOLv3 (Solar Climate Ozone Links version 3) chemistry-climate model simulations of the recent past (1986-2005) to investigate the impact of the Mt Pinatubo eruption in 1991 on stratospheric temperature and ozone and how this response differs depending on which aerosol data set is applied. The use of SAGE-4λ results in heating and ozone loss being overestimated in the tropical lower stratosphere compared to observations in the post-eruption period by approximately 3 K and 0.2 ppmv, respectively. However, less heating occurs in the model simulations based on SAGE-3λ, because the improved gap-filling procedures after the eruption lead to less aerosol loading in the tropical lower stratosphere. As a result, simulated tropical temperature anomalies in the model simulations based on SAGE-3λ for CMIP6 are in excellent agreement with MERRA and ERA-Interim reanalyses in the post-eruption period. Less heating in the simulations with SAGE-3λ means that the rate of tropical upwelling does not strengthen as much as it does in the simulations with SAGE-4λ, which limits dynamical uplift of ozone and therefore provides more time for ozone to accumulate in tropical mid-stratospheric air. Ozone loss following the Mt Pinatubo eruption is overestimated by up to 0.1 ppmv in the model simulations based on SAGE-3λ, which is a better agreement with observations than in the simulations based on SAGE-4λ. Overall, the CMIP6 stratospheric aerosol data set, SAGE-3λ, allows SOCOLv3 to more accurately simulate the post-Pinatubo eruption period.

  2. Volcanic Signatures in Estimates of Stratospheric Aerosol Size, Distribution Width, Surface Area, and Volume Deduced from Global Satellite-Based Observations

    NASA Technical Reports Server (NTRS)

    Bauman, J. J.; Russell, P. B.

    2000-01-01

    Volcanic signatures in the stratospheric aerosol layer are revealed by two independent techniques which retrieve aerosol information from global satellite-based observations of particulate extinction. Both techniques combine the 4-wavelength Stratospheric Aerosol and Gas Experiment (SAGE) II extinction measurements (0.385 <= lambda <= 1.02 microns) with the 7.96 micron and 12.82 micron extinction measurements from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument. The algorithms use the SAGE II/CLAES composite extinction spectra in month-latitude-altitude bins to retrieve values and uncertainties of particle effective radius R(sub eff), surface area S, volume V and size distribution width sigma(sub R). The first technique is a multi-wavelength Look-Up-Table (LUT) algorithm which retrieves values and uncertainties of R(sub eff) by comparing ratios of extinctions from SAGE II and CLAES (e.g., E(sub lambda)/E(sub 1.02) to pre-computed extinction ratios which are based on a range of unimodal lognormal size distributions. The pre-computed ratios are presented as a function of R(sub eff) for a given sigma(sub g); thus the comparisons establish the range of R(sub eff) consistent with the measured spectra for that sigma(sub g). The fact that no solutions are found for certain sigma(sub g) values provides information on the acceptable range of sigma(sub g), which is found to evolve in response to volcanic injections and removal periods. Analogous comparisons using absolute extinction spectra and error bars establish the range of S and V. The second technique is a Parameter Search Technique (PST) which estimates R(sub eff) and sigma(sub g) within a month-latitude-altitude bin by minimizing the chi-squared values obtained by comparing the SAGE II/CLAES extinction spectra and error bars with spectra calculated by varying the lognormal fitting parameters: R(sub eff), sigma(sub g), and the total number of particles N(sub 0). For both techniques, possible biases in retrieved-parameters caused by assuming a unimodal functional form are removed using correction factors computed from representative in situ measurements of bimodal size distributions. Some interesting features revealed by the LUT and PST retrievals include: (1) Increases in S and V (but not R(sub eff)) after the Ruiz and Kelut injections, (2) Increases in S, V, R(sub eff) after Pinatubo, (3) Post-Pinatubo increases in S, V, and R(sub eff) that are more rapid in the tropics than elsewhere, (4) Mid-latitude post-Pinatubo increases in R(sub eff) that lag increases in S and V, (5) S and V returning to pre-Pinatubo values sooner than R(sub eff) does, (6) Sharp increases in sigma(sub g), after Pinatubo and slight increases in sigma(sub g) after Ruiz, Etna, Kelut, Spurr and Rabaul, and (7) Gradual declines in the heights at which R(sub eff), S and V peak after Pinatubo.

  3. Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope.

    PubMed

    Lee, Christopher M; Kafle, Kabindra; Huang, Shixin; Kim, Seong H

    2016-01-14

    A broadband sum frequency generation (BB-SFG) spectrometer with multimodal (MM) capabilities was constructed, which could be routinely reconfigured for tabletop experiments in reflection, transmission, and total internal reflection (TIR) geometries, as well as microscopic imaging. The system was constructed using a Ti:sapphire amplifier (800 nm, pulse width = 85 fs, repetition rate = 2 kHz), an optical parameter amplification (OPA) system for production of broadband IR pulses tunable between 1000 and 4000 cm(-1), and two Fabry-Pérot etalons arranged in series for production of narrowband 800 nm pulses. The key feature allowing the MM operation was the nearly collinear alignment of the visible (fixed, 800 nm) and infrared (tunable, 1000-4000 cm(-1)) pulses which were spatially separated. Physical insights discussed in this paper include the comparison of spectral bandwidth produced with 40 and 85 fs pump beams, the improvement of spectral resolution using etalons, the SFG probe volume in bulk analysis, the normalization of SFG signals, the stitching of multiple spectral segments, and the operation in different modes for air/liquid and adsorbate/solid interfaces, bulk samples, as well as spectral imaging combined with principle component analysis (PCA). The SFG spectral features obtained with the MM-BB-SFG system were compared with those obtained with picosecond-scanning-SFG system and high-resolution BB-SFG system (HR-BB-SFG) for dimethyl sulfoxide, α-pinene, and various samples containing cellulose (purified commercial products, Cladophora cell wall, cotton and flax fibers, and onion epidermis cell wall).

  4. Optical frequency stabilization in infrared region using improved dual feed-back loop

    NASA Astrophysics Data System (ADS)

    Ružička, B.; Číp, O.; Lazar, J.

    2007-03-01

    Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550 nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-IR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelengthmeters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.

  5. Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control

    NASA Astrophysics Data System (ADS)

    Bercich, Rebecca A.; Wang, Zhi; Mei, Henry; Hammer, Lauren H.; Seburn, Kevin L.; Hargrove, Levi J.; Irazoqui, Pedro P.

    2016-08-01

    Objective. A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. Approach. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. Main results. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject’s forearm. Significance. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device’s programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system’s functional protocol for patient- or algorithm-specific needs.

  6. The Search for Pluto Water

    NASA Astrophysics Data System (ADS)

    Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Ennico, Kimberly; Grundy, William M.; Olkin, Cathy B.; Protopapa, Silvia; Stern, S. Alan; Weaver, Harold A.; Young, Leslie A.

    2015-11-01

    On July 14, 2015, the New Horizons spacecraft made its closest approach to Pluto at about ~12,000 km from Pluto's surface. The LEISA (Linear Etalon Imaging Spectral Array) component of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Sci. Rev. 140, 129) obtained spatially resolved near infrared spectra at scales as small as 3 km/pix. LEISA covers the wavelength range 1.25 to 2.5 μm at a spectral resolution (λ/Δλ) of 240, and the 2.1 to 2.25 μm range at a resolution of 560. The observations from this instrument are being used to map the distribution of Pluto's known ices such as N2, CH4, CO and C2H6 as well as search for H2O-ice. To date, H2O-ice has evaded detection from Earth bound observatories. Observations based on LORRI, the LOng Range Reconnaissance Imager, suggest H2O-ice is a major component of several mountain ranges around the western perimeter of the landmass informally named Tombaugh Regio. If true, H2O-ice may be found in small isolated regions around Pluto. We will present our analysis of all LESIA data of Pluto in hand to search for and understand the distribution of H2O-ice. If found, we will also discuss limits on crystalline vs. amorphous H2O-ice and temperature measurements based on the 1.65 µm crystalline H2O-ice feature. This work was supported by NASA's New Horizons project.

  7. High-Resolution Spectroscopic Observations of Potassium Emissions in the Lunar Exosphere

    NASA Astrophysics Data System (ADS)

    Robertson, Sarena D.; Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Kuruppuaratchi, Dona Chathuni P.; Derr, Nicholas James; Gallant, Margaret A.; McFarland, Christina G.; Sarantos, Menelaos

    2018-01-01

    We investigate lunar exospheric potassium D1 emissions (7698.9646 Å) using high-resolution (R = 180,000 or 1.7 km/s) spectroscopy with our dual-etalon Fabry-Perot instrument to measure line widths and radial velocities. The Field of View (FOV) is 2 arcmins (~224 km at the mean lunar distance of 384,400 km) positioned tangent to the sunlit limb. The FOV placements are at cardinal directions from a variety of reference craters. All observations are collected at the National Solar Observatory McMath-Pierce Telescope in Kitt Peak, Arizona. The data are from several observations from 2014 through 2017 at various times of the year. Results are produced via a newly created automated data reduction using Python. Python was chosen as an open-source alternative to the previously used IDL and MATLAB scripts to decrease the cost of software licenses and maintenance. The potassium spectral line profiles provide a direct method to track exospheric effective temperatures and velocities. By monitoring the state of the potassium emissions over different lunar phases, solar activity, and the influx of meteor streams, we can constrain physical processes of sources and sinks at the lunar surface. Mechanisms that create the exosphere include photon-stimulated desorption, thermal evaporation, meteoroid impact vaporization, and ion sputtering via solar wind. In contrast, the exosphere is diminished due to the low lunar escape velocity, solar radiation pressure, and neutral gas being ionized and swept away by the interplanetary and terrestrial magnetic field. Preliminary analysis of 2017 data (January through June, excluding February) indicates an average potassium temperature of 1140 K but varying over the range of 550 K to 2000 K. Preliminary results from 2014 data depict a similar range of temperatures to that of 2017. Further analysis is expected for additional data from 2014 to later observations in 2017 that were not included in the initial set of models.

  8. Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Whalen

    The thermosphere is the region between approximately 80 km and 320 or more km above the earth's surface. While many people consider this elevation to be space rather than atmosphere, there is a small quantity of gasses in this region. The behavior of these gasses influences the orbits of satellites, including the International Space Station, causes space weather events, and influences the weather closer to the surface of the earth. Due to the location and characteristics of the thermosphere, even basic properties such as temperature are very difficult to measure. High spatial and temporal resolution data on temperatures and winds in the thermosphere are needed by both the space weather and earth climate modeling communities. To address this need, Space Dynamics Laboratory (SDL) started the Profiling Oxygen Emissions of the Thermosphere (POET) program. POET consists of a series of sensors designed to fly on sounding rockets, CubeSats, or larger platforms, such as IridiumNEXT SensorPODS. While each sensor design is different, they all use characteristics of oxygen optical emissions to measure space weather properties. The POET program builds upon the work of the RAIDS, Odin, and UARS programs. Our intention is to dramatically reduce the costs of building, launching, and operating spectrometers in space, thus allowing for more sensors to be in operation. Continuous long-term data from multiple sensors is necessary to understand the underlying physics required to accurately model and predict weather in the thermosphere. While previous spectrometers have been built to measure winds and temperatures in the thermosphere, they have all been large and expensive. The POET sensors use new focal plane technology and optical designs to overcome these obstacles. This thesis focuses on the testing and calibration of the two POET sensors: the Oxygen Profiling of the Atmospheric Limb (OPAL) temperature sensor and the Split-field Etalon Doppler Imager (SEDI) wind sensor.

  9. The high-resolution Doppler imager on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Abreu, Vincent J.; Dobbs, Michael E.; Gell, David A.; Grassl, Heinz J.; Skinner, Wilbert R.

    1993-01-01

    The high-resolution Doppler imager (HRDI) on the Upper Atmosphere Research Satellite is a triple-etalon Fabry-Perot interferometer designed to measure winds in the stratosphere, mesosphere, and lower thermosphere. Winds are determined by measuring the Doppler shifts of rotational lines of the O2 atmospheric band, which are observed in emission in the mesosphere and lower thermosphere and in absorption in the stratosphere. The interferometer has high resolution (0.05/cm), good offhand rejection, aud excellent stability. This paper provides details of the design and capabilities of the HRDI instrument.

  10. Proceedings of the 1996 Space Surveillance Workshop Held in Lexington, Massachusetts on 2-4 April 1996. Volume 1,

    DTIC Science & Technology

    1996-04-04

    of multi-spectral SOI data. These spectra are for blue (B), visible (V), red (R) and infrared (I). Broadband SOI can also be collected in the open...the etalon is of order 200nm with a finesse of order 20, three spectral channels in blue , red and near-IR can be created and separated using a low...References 1 Lincoln Labs. J. 5 (1992) Nol. 2 Laser Guide Star Adaptive Optics Workshop, Vols 1&2, R Q Fugate (Ed), SOR, Phillips Lab/LITE

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schearer, L.D.; Leduc, M.

    Over 250 mW of CW laser emission at 1084 nm is obtained from Nd:LiNbO{sub 3} when the rod is end-pumped along the crystalline {open quote}{ital y}{close quote} axis by 1 W from a Kr{sup +} laser at 752 nm. The laser can be tuned over 3 nm at the 1084 nm peak with a thin, uncoated etalon in the cavity. Thresholds of 30 mW of absorbed pump power were obtained with a weak output coupler, rising to 220 mW with a 35% transmitting output mirror. No pump-induced photorefractive effects were observed.

  12. Ocean array alters view of Atlantic conveyor

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine

    2018-02-01

    Oceanographers have put a stethoscope on the coursing circulatory system of the Atlantic Ocean, and they have found a skittish pulse that's surprisingly strong in the waters east of Greenland—discoveries that should improve climate models. The powerful currents known as the Atlantic meridional overturning circulation (AMOC) are an engine in Earth's climate. The AMOC's shallower limbs—which include the Gulf Stream—move warm water from the tropics northward, warming Western Europe. In the north, the waters cool and sink, forming deeper limbs that transport the cold water back south—and sequester anthropogenic carbon in the process. Last week, at the American Geophysical Union's Ocean Sciences meeting, scientists presented the first data from an array of instruments moored in the subpolar North Atlantic, a $35 million, seven-nation project known as the Overturning in the Subpolar North Atlantic Program (OSNAP). Since 2004, researchers have gathered data from another array, at 26°N, stretching from Florida to Africa. But OSNAP is the first to monitor the circulation farther north, where a critical aspect of the overturning occurs. The observations reveal unexpected eddies and strong variability in the AMOC currents. They also show that the currents east of Greenland contribute the most to the total AMOC flow. Climate models, on the other hand, have emphasized the currents west of Greenland in the Labrador Sea.

  13. Tactile surface classification for limbed robots using a pressure sensitive robot skin.

    PubMed

    Shill, Jacob J; Collins, Emmanuel G; Coyle, Eric; Clark, Jonathan

    2015-02-02

    This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies [Formula: see text]. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies [Formula: see text]. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains.

  14. STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment

    NASA Image and Video Library

    1988-09-29

    During STS-26, inertial upper stage (IUS) with the tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is raised into deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). ASE aft frame tilt actuator (AFTA) table supports the IUS as it is positioned in the PLB and the ASE umbilical boom drifts away from IUS toward ASE forward cradle. TDRS-C solar array panels (in stowed configuration) are visible on top of the IUS. In the background are the orbital maneuvering system (OMS) pods and the Earth's limb.

  15. Decoding bipedal locomotion from the rat sensorimotor cortex

    NASA Astrophysics Data System (ADS)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds, are likely to provide more robust control strategies for the design of such neuroprostheses.

  16. Near-IR laser frequency standard stabilized using FM-spectroscopy

    NASA Astrophysics Data System (ADS)

    Ružička, Bohdan; Číp, Ondřej; Lazar, Josef

    2006-02-01

    At the present time fiber-optics and optical communication are in rapid progress. Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-JR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelength-meters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.

  17. Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands

    PubMed Central

    Wakeling, James M.

    2015-01-01

    This study investigated the influence of cycle frequency and workload on muscle coordination and the ensuing relationship with mechanical efficiency and power output of human limb movement. Eleven trained cyclists completed an array of cycle frequency (cadence)-power output conditions while excitation from 10 leg muscles and power output were recorded. Mechanical efficiency was maximized at increasing cadences for increasing power outputs and corresponded to muscle coordination and muscle fiber type recruitment that minimized both the total muscle excitation across all muscles and the ineffective pedal forces. Also, maximum efficiency was characterized by muscle coordination at the top and bottom of the pedal cycle and progressive excitation through the uniarticulate knee, hip, and ankle muscles. Inefficiencies were characterized by excessive excitation of biarticulate muscles and larger duty cycles. Power output and efficiency were limited by the duration of muscle excitation beyond a critical cadence (120–140 rpm), with larger duty cycles and disproportionate increases in muscle excitation suggesting deteriorating muscle coordination and limitations of the activation-deactivation capabilities. Most muscles displayed systematic phase shifts of the muscle excitation relative to the pedal cycle that were dependent on cadence and, to a lesser extent, power output. Phase shifts were different for each muscle, thereby altering their mechanical contribution to the pedaling action. This study shows that muscle coordination is a key determinant of mechanical efficiency and power output of limb movement across a wide range of mechanical demands and that the excitation and coordination of the muscles is limited at very high cycle frequencies. PMID:26445873

  18. New Broadband LIDAR for Greenhouse Carbon Dioxide Gas Sensing in the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena; Heaps, William S.; Huang,Wen

    2011-01-01

    We present demonstration of a novel broadband lidar technique capable of dealing with the atmospherically induced variations in CO2 absorption using a Fabry-Perot based detector and a broadband laser. The Fabry-Perot solid etalon in the receiver part is tuned to match the wavelength of several CO2 absorption lines simultaneously. The broadband technique tremendously reduces the requirement for source wavelength stability, instead putting this responsibility on the Fabry- Perot based receiver. The instrument technology we are developing has a clear pathway to space and realistic potential to become a robust, low risk space measurement system.

  19. Tunable terahertz generation in the picosecond regime from the stimulated polariton scattering in a LiNbO3 crystal.

    PubMed

    Warrier, Aravindan M; Li, Ran; Lin, Jipeng; Lee, Andrew J; Pask, Helen M; Spence, David J

    2016-09-15

    We demonstrate narrowband tunable terahertz generation from a picosecond LiNbO3 polariton laser, pumped by a CW mode-locked Nd:YVO4 picosecond laser. We generated up to 5.4 μW of terahertz output in untuned mode. We tuned the terahertz output, using etalons in the cavity, from 0.51 to 2.12 THz. Terahertz output powers of 3.7 μW and 2.4 μW were achieved at terahertz frequencies of 1.6 THz and 0.9 THz, respectively.

  20. MBE growth of vertical-cavity surface-emitting laser structure without real-time monitoring

    NASA Astrophysics Data System (ADS)

    Wu, C. Z.; Tsou, Y.; Tsai, C. M.

    1999-05-01

    Evaluation of producing a vertical-cavity surface-emitting laser (VCSEL) epitaxial structure by molecular beam epitaxy (MBE) without resorting to any real-time monitoring technique is reported. Continuous grading of Al xGa 1- xAs between x=0.12 to x=0.92 was simply achieved by changing the Al and Ga cell temperatures in no more than three steps per DBR period. Highly uniform DBR and VCSEL structures were demonstrated with a multi-wafer MBE system. Run-to-run standard deviation of reflectance spectrum center wavelength was 0.5% and 1.4% for VCSEL etalon wavelength.

  1. A stable submillimeter laser local oscillator for heterodyne radiometry and spectroscopy

    NASA Technical Reports Server (NTRS)

    Koepf, G. A.; Fetterman, H. R.; Mcavoy, N.

    1980-01-01

    A submillimeter laser with off-axis pump beam injection is described. This design concept achieves complete isolation of the pump laser with respect to the pump radiation reflected from the submillimeter resonator. Active line independent stabilization of the pump laser is obtained by the use of an external tunable etalon as a frequency reference. The submillimeter output power is constant to within 4% over periods of hours. Mean frequency drifts of less than 2 parts in 100 million per minute were measured by mixing with very high harmonics of an X-band synthesizer in a planar Schottky diode.

  2. A compact lightweight Earth horizon sensor using an uncooled infrared bolometer

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Thomas, Paul; Pope, Timothy D.; Asselin, Daniel; Jerominek, Hubert

    2007-06-01

    A compact, lightweight Earth horizon sensor has been designed based on uncooled infrared microbolometer array technology developed at INO. The design has been optimized for use on small satellites in Low Earth Orbits. The sensor may be used either as an attitude sensor or as an atmospheric limb detector. Various configurations may be implemented for both spinning and 3-axis stabilized satellites. The core of the sensor is the microbolometer focal plane array equipped with 256 x 1 VO x thermistor pixels with a pitch of 52 μm. The optics consists of a single Zinc Selenide lens with a focal length of 39.7 mm. The system's F-number is 3.8 and the detector limited Noise Equivalent Temperature Difference is estimated to be 0.75 K at 300 K for the 14 - 16 μm wavelength range. A single-sensor configuration will have a mass of less than 300g, a volume of 125 cm 3 and a power consumption of 600 mW, making it well-suited for small satellite missions.

  3. NASA Tech Briefs, April 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The topics covered include: 1) Replaceable Sensor System for Bioreactor Monitoring; 2) Unitary Shaft-Angle and Shaft-Speed Sensor Assemblies; 3) Arrays of Nano Tunnel Junctions as Infrared Image Sensors; 4) Catalytic-Metal/PdO(sub x)/SiC Schottky-Diode Gas Sensors; 5) Compact, Precise Inertial Rotation Sensors for Spacecraft; 6) Universal Controller for Spacecraft Mechanisms; 7) The Flostation - an Immersive Cyberspace System; 8) Algorithm for Aligning an Array of Receiving Radio Antennas; 9) Single-Chip T/R Module for 1.2 GHz; 10) Quantum Entanglement Molecular Absorption Spectrum Simulator; 11) FuzzObserver; 12) Internet Distribution of Spacecraft Telemetry Data; 13) Semi-Automated Identification of Rocks in Images; 14) Pattern-Recognition Algorithm for Locking Laser Frequency; 15) Designing Cure Cycles for Matrix/Fiber Composite Parts; 16) Controlling Herds of Cooperative Robots; 17) Modification of a Limbed Robot to Favor Climbing; 18) Vacuum-Assisted, Constant-Force Exercise Device; 19) Production of Tuber-Inducing Factor; 20) Quantum-Dot Laser for Wavelengths of 1.8 to 2.3 micron; 21) Tunable Filter Made From Three Coupled WGM Resonators; and 22) Dynamic Pupil Masking for Phasing Telescope Mirror Segments.

  4. A miniaturized neuroprosthesis suitable for implantation into the brain

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Binkley, David; Blalock, Benjamin; Andersen, Richard; Ulshoefer, Norbert; Johnson, Travis; Del Castillo, Linda

    2003-01-01

    This paper presents current research on a miniaturized neuroprosthesis suitable for implantation into the brain. The prosthesis is a heterogeneous integration of a 100-element microelectromechanical system (MEMS) electrode array, front-end complementary metal-oxide-semiconductor (CMOS) integrated circuit for neural signal preamplification, filtering, multiplexing and analog-to-digital conversion, and a second CMOS integrated circuit for wireless transmission of neural data and conditioning of wireless power. The prosthesis is intended for applications where neural signals are processed and decoded to permit the control of artificial or paralyzed limbs. This research, if successful, will allow implantation of the electronics into the brain, or subcutaneously on the skull, and eliminate all external signal and power wiring. The neuroprosthetic system design has strict size and power constraints with each of the front-end preamplifier channels fitting within the 400 x 400-microm pitch of the 100-element MEMS electrode array and power dissipation resulting in less than a 1 degree C temperature rise for the surrounding brain tissue. We describe the measured performance of initial micropower low-noise CMOS preamplifiers for the neuroprosthetic.

  5. POEMMA (Probe Of Extreme Multi-Messenger Astrophysics) Science and Design

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.; Perkins, Jeremy S.; POEMMA Collaboration

    2018-01-01

    In this poster we describe the preliminary design of POEMMA (Probe Of Extreme Multi-Messenger Astrophysics). The two satellites flying in formation consists of an innovative Schmidt telescope design optimized for low energy threshold and large geometry factor for observations. The 4 meter mirror was designed to fit in a dual manifest launch vehicle. A novel corrector lens and fast optics are design to optimized the full field of view to 45 degrees. The large focal surface will be populated by two systems: a multi-anode PMT (MAPMT) array for fluorescence detection and a Silicon PM (SiPM) array for Cherenkov detection around the limb of the Earth. At an altitude of 525 km, the LEO orbit will have a 28.5o inclination the mission can be launched from KSC and have a mission life of 3 years with a 5 year goal. The mission will improve by orders of magnitude the observations of ultra-high energy cosmic rays above tens of EeV and search for neutrinos above tens of PeVs.

  6. Development of all-solid-state coherent 589 nm light source: toward the realization of sodium lidar and laser guide star adaptive optics

    NASA Astrophysics Data System (ADS)

    Saito, Norihito; Akagawa, Kazuyuki; Kato, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2006-12-01

    We report an all-solid-state coherent 589 nm light source in single-pass sum-frequency generation (SFG) with actively mode-locked Nd:YAG lasers for the realization of sodium lidar and laser guide star adaptive optics. The Nd:YAG lasers are constructed as a LD-side-pumped configuration and are operated at 1064 and 1319 nm for 589 nm light generation in SFG. Output powers of 16.5 and 5.3 W at 1064 and 1319 nm are obtained with two pumping chambers. Each chamber consisted of three 80-W-LD arrays. Single transverse mode TEM 00; M2 ~1.1 is achieved with adjustment of cavity length considering thermal lens effect with increase of input LD power. The cavity length is set to approximately 1 m. Accordingly the mode-locked lasers are operated at a repetition rate of approximately 150 MHz. Synchronization of two pulse trains at 1064 and 1319 nm is accomplished by control of phase difference between two radio frequencies input in acousto-optic mode-lockers. Then temporal delay is controlled with a resolution of 37 ps/degree. Pump beams are mixed in periodically poled stoichiometric lithium tantalate (PPSLT) without an antireflection coating. The effective aperture and length of the crystal are 0.5 × 2 mm2 and 15 mm. When input intensity is set at 5.6 MW/cm , an average output power of 4.6 W is obtained at 589.159 nm. Precise tuning to the sodium D II line is accomplished by thermal control of etalons set in the Nd:YAG lasers. The output power at 589.159 nm is stably maintained within +/-1.2% for 8 hours.

  7. Pluto: The Ice Plot Thickens

    NASA Image and Video Library

    2015-07-15

    The latest spectra from New Horizons Ralph instrument reveal an abundance of methane ice, but with striking differences from place to place across the frozen surface of Pluto. In the north polar cap, methane ice is diluted in a thick, transparent slab of nitrogen ice resulting in strong absorption of infrared light. In one of the visually dark equatorial patches, the methane ice has shallower infrared absorptions indicative of a very different texture. An Earthly example of different textures of a frozen substance: a fluffy bank of clean snow is bright white, but compacted polar ice looks blue. New Horizons' surface composition team has begun the intricate process of analyzing Ralph data to determine the detailed compositions of the distinct regions on Pluto. This is the first detailed image of Pluto from the Linear Etalon Imaging Spectral Array, part of the Ralph instrument on New Horizons. The observations were made at three wavelengths of infrared light, which are invisible to the human eye. In this picture, blue corresponds to light of wavelengths 1.62 to 1.70 micrometers, a channel covering a medium-strong absorption band of methane ice, green (1.97 to 2.05 micrometers) represents a channel where methane ice does not absorb light, and red (2.30 to 2.33 micrometers) is a channel where the light is very heavily absorbed by methane ice. The two areas outlined on Pluto show where Ralph observations obtained the spectral traces at the right. Note that the methane absorptions (notable dips) in the spectrum from the northern region are much deeper than the dips in the spectrum from the dark patch. The Ralph data were obtained by New Horizons on July 12, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19712

  8. The "+" for CRIRES: enabling better science at infrared wavelength and high spectral resolution at the ESO VLT

    NASA Astrophysics Data System (ADS)

    Dorn, Reinhold J.; Follert, Roman; Bristow, Paul; Cumani, Claudio; Eschbaumer, Siegfried; Grunhut, Jason; Haimerl, Andreas; Hatzes, Artie; Heiter, Ulrike; Hinterschuster, Renate; Ives, Derek J.; Jung, Yves; Kerber, Florian; Klein, Barbara; Lavaila, Alexis; Lizon, Jean Louis; Löwinger, Tom; Molina-Conde, Ignacio; Nicholson, Belinda; Marquart, Thomas; Oliva, Ernesto; Origlia, Livia; Pasquini, Luca; Paufique, Jérôme; Piskunov, Nikolai; Reiners, Ansgar; Seemann, Ulf; Stegmeier, Jörg; Stempels, Eric; Tordo, Sebastien

    2016-08-01

    The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory.

  9. Infliximab for reactive arthritis secondary to Chlamydia trachomatis infection.

    PubMed

    Schafranski, Marcelo Derbli

    2010-03-01

    Reactive arthritis is an autoimmune disease that develops 2-4 weeks after a triggering infection, resulting mainly in synovitis/enthesitis of the lower limbs, but with a wide array of possible extra-articular manifestations. Most of the cases are self-limited, lasting some weeks to months, and respond well to nonsteroidal anti-inflammatory drugs (NSAIDs), but a considerable number of cases (about 20%) run a chronic disabling course, requiring immunosuppressants (methotrexate, sulphasalazine) to adequate control of the inflammatory symptoms. We describe, for the first time to our knowledge, a case of a Chlamydia trachomatis-related reactive arthritis refractory to methotrexate and sulphasalazine that was successfully treated with the monoclonal antibody anti-TNF-alpha and infliximab.

  10. STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment

    NASA Image and Video Library

    1988-09-29

    During STS-26, inertial upper stage (IUS) with tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is positioned into its proper deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). In the foreground, the ASE forward cradle is visible. The IUS is mounted in the ASE aft frame tilt actuator (AFTA) table. TDRS-C components in stowed configuration include solar array panels, TDRS single access #1 and #2, TDRS SGL, and S-Band omni antenna. In the background are the orbital maneuvering system (OMS) pods, the Earth's cloud-covered surface, and the Earth's limb.

  11. Full-disk Solar H-alpha Images From GONG

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Bolding, J.; Clark, R.; Hauth, D.; Hill, F.; Kroll, R.; Luis, G.; Mills, N.; Purdy, T.; Henney, C.; Holland, D.; Winter, J.

    2011-05-01

    Since mid-2010 the Global Oscillation Network Group (GONG) has collected H-alpha images at six sites around the world. These images provide a near real-time solar activity patrol for use in space weather applications and also an archive for research purposes. Images are collected once per minute, dark, smear, and flat corrected, compressed and then sent via the Internet to a 'cloud' server where reduction is completed. Various reduced images are usually available within a minute after exposure. The H-alpha system is an add-on to the normal GONG helioseismology instrument and does not interfere with regular observations. A polarizing beamsplitter sends otherwise unused 656 nm light through two lenses to a Daystar 0.04 nm mica etalon filter. The filter is matched to an image of the GONG light feed entrance pupil and sees an image of the Sun at infinity. Two lenses behind the filter form the solar image on a DVC-4000 2k x 2k interline transfer CCD camera. Exposure times are automatically adjusted to maintain the quiet disk center at 20% of full dynamic range to avoid saturation by bright flares. Image resolution is limited by diffraction, seeing and some high-order wavefront errors in the filters. A unique dual-heater system was developed by Daystar to homogenize the passband characteristics of the mica etalons. The data are in regular use for space weather forecasting by the U.S. Air Force Weather Agency, which funded construction and installation of the instruments. Operational and reduction improvements are underway and archived data are already being used for research projects. The Web site URL is http://halpha.nso.edu.

  12. Monopole antenna in quantitative near-field microwave microscopy of planar structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reznik, Alexander N.; Korolyov, Sergey A.

    We have developed an analytical model of a near-field microwave microscope based on a coaxial resonator with a sharpened tip probe. The probe interacts with a layered sample that features an arbitrary depth distribution of permittivity. The microscopic tip end with the accumulated charge is regarded as a monopole antenna radiating an electric field in near zone. The impedance of such an antenna is determined within a quasi-static approximation. The proposed model is used for calculating the sample-sensitive parameters of the microscope, specifically, resonance frequency f{sub 0} and quality factor Q{sub 0}, as a function of probe-sample distance h. Themore » theory has been verified experimentally in studies of semiconductor structures, both bulk and thin films. For measurements, we built a ∼2.1 GHz microscope with an effective tip radius of about 100 μm. The theoretical and experimental dependences f{sub 0}(h) and Q{sub 0}(h) were found to be in a good agreement. The developed theory underlies the method for determining sheet resistance R{sub sh} of a semiconductor film on a dielectric substrate proposed in this article. Studies were performed on doped n-GaN films on an Al{sub 2}O{sub 3} substrate. The effective radius and height of the probe determined from calibration measurements of etalon samples were used as the model fitting parameters. For etalon samples, we employed homogeneous sapphire and doped silicon plates. We also performed four-probe dc measurements of R{sub sh}. The corresponding values for samples with R{sub sh} > 1 kΩ were found to be 50% to 100% higher than the microwave results, which are attributed to the presence of microdefects in semiconductor films.« less

  13. Quantitative characterization of semiconductor structures with a scanning microwave microscope.

    PubMed

    Korolyov, S A; Reznik, A N

    2018-02-01

    In this work, our earlier method for measuring resistance R sh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq < R sh < 15 kΩ/sq range. The method is based on a microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al 2 O 3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of R sh . With a coaxial probe, such accordance was observed only in high-ohmic samples with R sh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of R sh to a level of ∼10%.

  14. Interferometric visualization and demodulation method for measuring quasi-static strain in fiber Bragg grating sensors by a simple rotating etalon filter

    NASA Astrophysics Data System (ADS)

    Rocco, Alessandra S.; Coppola, Giuseppe; Ferraro, Pietro; Foti, Giuseppe; Iodice, Mario

    2004-09-01

    Optical fiber sensors are the ideal system to monitor "smart structures" and on-site/real time stress measurements: they can be in fact easily embedded or attached to the structures under test and are not affected by electro- magnetic noise. In particular a signal from a Fiber Bragg grating sensor (FBG) may be processed such that its information remains immune to optical power fluctuations. Different interrogation methods can be used for reading out Bragg wavelength shifts. In this paper we propose a very simple interferometric method for interrogating FBG sensors, based on bi-polished silicon sample acting like an etalon tuneable filter (ETF). The Bragg wavelength shift can be evaluated by analyzing the spectral response of signal reflected by the FBG sensor and filtered by the ETF that is continuously and rapidly tuned. Tuning was obtained by rotating the ETF. Variation in the strain at the FBG causes a phase shift in the analyzed signal. The overall spectral signal, collected with time, consists in an interferometric figure which finesse and fringe contrast depending on the geometrical sizes and facets reflectivity of the silicon sample. The fringe pattern, expressed by the Airy's formula, depends on the wavelength l of the incident radiation and on the angle of incidence. The phase of fringe pattern can be retrieved by a standard FFT method giving quantitative measurements of the quasi-static strain variation sensed by the FBG. In this way, the method allows a valuable visualization of the time-evolution of the incremental strain applied to the FBG. Principle of functioning of this method is described and first results obtained employing such configuration, are reported.

  15. Cavity-Enhanced Spectroscopy of Molecular Ions in the Mid-Infrared with Up-Conversion Detection and Brewster-Plate Spoilers

    NASA Astrophysics Data System (ADS)

    Markus, Charles R.; McCollum, Jefferson E.; Hodges, James Neil; Perry, Adam J.; McCall, Benjamin J.

    2017-06-01

    Molecular ions are challenging to study with conventional spectroscopic methods. Laboratory discharges produce ions in trace quantities which can be obscured by the abundant neutral molecules present. The technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS) overcomes these challenges by combining the ion-neutral discrimination of velocity modulation spectroscopy with the sensitivity of Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy (NICE-OHMS), and has been able to determine transition frequencies of molecular ions in the mid-infrared (mid-IR) with sub-MHz uncertainties when calibrated with an optical frequency comb. However, the extent of these studies was limited by the presence of fringes due to parasitic etalons and the speed and noise characteristics of mid-IR detectors. Recently, we have overcome these limitations by implementing up-conversion detection and dithered optics. We performed up-conversion using periodically poled lithium niobate to convert light from the mid-IR to the visible to be within the coverage of sensitive and fast silicon detectors while maintaining our heterodyne and velocity modulation signals. The parasitic etalons were removed by rapidly rotating CaF_2 windows with galvanometers, which is known as a Brewster-plate spoiler, which averaged out the fringes in detection. Together, these improved the sensitivity by more than an order of magnitude and have enabled extended spectroscopic surveys of molecular ions in the mid-IR. J. N. Hodges, A. J. Perry, P. A. Jenkins II, B. M. Siller, and B. J. McCall, J. Chem. Phys. (2013), 139, 164201. C. R. Webster, J. Opt. Soc. Am. B (1985), 2, 1464. C. R. Markus, A. J. Perry, J. N. Hodges, and B. J. McCall, Opt. Express (2017), 25, 3709-3721.

  16. Quantitative characterization of semiconductor structures with a scanning microwave microscope

    NASA Astrophysics Data System (ADS)

    Korolyov, S. A.; Reznik, A. N.

    2018-02-01

    In this work, our earlier method for measuring resistance Rsh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq < Rsh < 15 kΩ/sq range. The method is based on a microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al2O3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of Rsh. With a coaxial probe, such accordance was observed only in high-ohmic samples with Rsh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of Rsh to a level of ˜10%.

  17. Gene Expression Profiling in Limb-Girdle Muscular Dystrophy 2A

    PubMed Central

    Sáenz, Amets; Azpitarte, Margarita; Armañanzas, Rubén; Leturcq, France; Alzualde, Ainhoa; Inza, Iñaki; García-Bragado, Federico; De la Herran, Gaspar; Corcuera, Julián; Cabello, Ana; Navarro, Carmen; De la Torre, Carolina; Gallardo, Eduard; Illa, Isabel; de Munain, Adolfo López

    2008-01-01

    Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that β-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies. PMID:19015733

  18. Expression of a hindlimb-determining factor Pitx1 in the forelimb of the lizard Pogona vitticeps during morphogenesis.

    PubMed

    Melville, Jane; Hunjan, Sumitha; McLean, Felicity; Mantziou, Georgia; Boysen, Katja; Parry, Laura J

    2016-10-01

    With over 9000 species, squamates, which include lizards and snakes, are the largest group of reptiles and second-largest order of vertebrates, spanning a vast array of appendicular skeletal morphology. As such, they provide a promising system for examining developmental and molecular processes underlying limb morphology. Using the central bearded dragon (Pogona vitticeps) as the primary study model, we examined limb morphometry throughout embryonic development and characterized the expression of three known developmental genes (GHR, Pitx1 and Shh) from early embryonic stage through to hatchling stage via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). In this study, all genes were found to be transcribed in both the forelimbs and hindlimbs of P. vitticeps. While the highest level of GHR expression occurred at the hatchling stage, Pitx1 and Shh expression was greatest earlier during embryogenesis, which coincides with the onset of the differentiation between forelimb and hindlimb length. We compared our finding of Pitx1 expression-a hindlimb-determining gene-in the forelimbs of P. vitticeps to that in a closely related Australian agamid lizard, Ctenophorus pictus, where we found Pitx1 expression to be more highly expressed in the hindlimb compared with the forelimb during early and late morphogenesis-a result consistent with that found across other tetrapods. Expression of Pitx1 in forelimbs has only rarely been documented, including via in situ hybridization in a chicken and a frog. Our findings from both RT-qPCR and IHC indicate that further research across a wider range of tetrapods is needed to more fully understand evolutionary variation in molecular processes underlying limb morphology. © 2016 The Authors.

  19. Microstimulation of the lumbar DRG recruits primary afferent neurons in localized regions of lower limb.

    PubMed

    Ayers, Christopher A; Fisher, Lee E; Gaunt, Robert A; Weber, Douglas J

    2016-07-01

    Patterned microstimulation of the dorsal root ganglion (DRG) has been proposed as a method for delivering tactile and proprioceptive feedback to amputees. Previous studies demonstrated that large- and medium-diameter afferent neurons could be recruited separately, even several months after implantation. However, those studies did not examine the anatomical localization of sensory fibers recruited by microstimulation in the DRG. Achieving precise recruitment with respect to both modality and receptive field locations will likely be crucial to create a viable sensory neuroprosthesis. In this study, penetrating microelectrode arrays were implanted in the L5, L6, and L7 DRG of four isoflurane-anesthetized cats instrumented with nerve cuff electrodes around the proximal and distal branches of the sciatic and femoral nerves. A binary search was used to find the recruitment threshold for evoking a response in each nerve cuff. The selectivity of DRG stimulation was characterized by the ability to recruit individual distal branches to the exclusion of all others at threshold; 84.7% (n = 201) of the stimulation electrodes recruited a single nerve branch, with 9 of the 15 instrumented nerves recruited selectively. The median stimulation threshold was 0.68 nC/phase, and the median dynamic range (increase in charge while stimulation remained selective) was 0.36 nC/phase. These results demonstrate the ability of DRG microstimulation to achieve selective recruitment of the major nerve branches of the hindlimb, suggesting that this approach could be used to drive sensory input from localized regions of the limb. This sensory input might be useful for restoring tactile and proprioceptive feedback to a lower-limb amputee. Copyright © 2016 the American Physiological Society.

  20. Decameter Type IV Burst Associated with a Behind-the-limb CME Observed on 7 November 2013

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Brazhenko, A. I.; Konovalenko, A. A.; Dorovskyy, V. V.; Rucker, H. O.; Panchenko, M.; Frantsuzenko, A. V.; Shevchuk, M. V.

    2018-03-01

    We report on the results of observations of a type IV burst made by the Ukrainian Radio interferometer of the Academy of Sciences (URAN-2) in the frequency range 22 - 33 MHz. The burst is associated with a coronal mass ejection (CME) initiated by a behind-the-limb active region (N05E151) and was also observed by the Nançay Decameter Array (NDA) radio telescope in the frequency band 30 - 60 MHz. The purpose of the article is the determination of the source of this type IV burst. After analysis of the observational data obtained with the URAN-2, the NDA, the Solar-Terrestrial Relations Observatory (STEREO) A and B spacecraft, and the Solar and Heliospheric Observatory (SOHO) spacecraft, we come to the conclusion that the source of the burst is the core of a behind-the-limb CME. We conclude that the radio emission can escape the center of the CME core at a frequency of 60 MHz and originates from the periphery of the core at a frequency of 30 MHz that is due to occultation by the solar corona at the corresponding frequencies. We find plasma densities in these regions assuming the plasma mechanism of radio emission. We show that the frequency drift of the start of the type IV burst is governed by an expansion of the CME core. The type III bursts that were observed against this type IV burst are shown to be generated by fast electrons propagating through the CME core plasma. A type II burst was registered at frequencies of 44 - 64 MHz and 3 - 16 MHz and was radiated by a shock with velocities of about 1000 km s^{-1} and 800 km s^{-1}, respectively.

  1. A Surgical Model of Posttraumatic Osteoarthritis With Histological and Gait Validation.

    PubMed

    Zahoor, Talal; Mitchell, Reed; Bhasin, Priya; Schon, Lew; Zhang, Zijun

    2016-07-01

    Posttraumatic osteoarthritis (PTOA) is secondary to an array of joint injuries. Animal models are useful tools for addressing the uniqueness of PTOA progression in each type of joint injury and developing strategies for PTOA prevention and treatment. Intra-articular fracture induces PTOA pathology. Descriptive laboratory study. Through a parapatellar incision, the medial tibial plateau was exposed in the left knees of 8 Sprague-Dawley rats. Osteotomy at the midpoint between the tibial crest and the outermost portion of the medial tibial plateau, including the covering articular cartilage, was performed using a surgical blade. The fractured medial tibial plateau was fixed with 2 needles transversely. The fractured knees were not immobilized. Before and after surgery, rat gait was recorded. Rats were sacrificed at week 8, and their knees were harvested for histology. After intra-articular fracture, the affected limbs altered gait from baseline (week 0). In the first 2 weeks, the gait of the operated limbs featured a reduced paw print intensity and stride length but increased maximal contact and stance time. Reduction of maximal and mean print area and duty cycle (the percentage of stance phase in a step) was present from week 1 to week 5. Only print length was reduced in weeks 7 and 8. At week 8, histology of the operated knees demonstrated osteoarthritic pathology. The severity of the PTOA pathology did not correlate with the changes of print length at week 8. Intra-articular fracture of the medial tibial plateau effectively induced PTOA in rat knees. During PTOA development, the injured limbs demonstrated characteristic gait. Intra-articular fracture represents severe joint injury and associates with a high rate of PTOA. This animal model, with histologic and gait validations, can be useful for future studies of PTOA prevention and early diagnosis.

  2. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Liu, Jing

    2017-10-01

    With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µm in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1-1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time.

  3. Microwave imaging of a solar limb flare - Comparison of spectra and spatial geometry with hard X-rays

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1985-01-01

    A solar limb flare was mapped using the Very Large Array (VLA) together with hard X-ray (HXR) spectral and spatial observations of the Solar Maximum Mission satellite. Microwave flux records from 2.8 to 19.6 GHz were instrumental in determining the burst spectrum, which has a maximum at 10 GHz. The flux spectrum and area of the burst sources were used to determine the number of electrons producing gyrosynchrotron emission, magnetic field strength, and the energy distribution of gyrosynchrotron-emitting electrons. Applying the thick target model to the HXR spectrum, the number of high energy electrons responsible for the X-ray bursts was found to be 10 to the 36th, and the electron energy distribution was approximately E exp -5, significantly different from the parameters derived from the microwave observations. The HXR imaging observations exhibit some similiarities in size and structure o the first two burst sources mapped with the VLA. However, during the initial burst, the HXR source was single and lower in the corona than the double 6 cm source. The observations are explained in terms of a single loop with an isotropic high-energy electron distribution which produced the microwaves, and a larger beamed component which produced the HXR at the feet of the loop.

  4. A 590 kb deletion caused by non-allelic homologous recombination between two LINE-1 elements in a patient with mesomelia-synostosis syndrome.

    PubMed

    Kohmoto, Tomohiro; Naruto, Takuya; Watanabe, Miki; Fujita, Yuji; Ujiro, Sae; Okamoto, Nana; Horikawa, Hideaki; Masuda, Kiyoshi; Imoto, Issei

    2017-04-01

    Mesomelia-synostoses syndrome (MSS) is a rare, autosomal-dominant, syndromal osteochondrodysplasia characterized by mesomelic limb shortening, acral synostoses, and multiple congenital malformations due to a non-recurrent deletion at 8q13 that always encompasses two coding-genes, SULF1 and SLCO5A1. To date, five unrelated patients have been reported worldwide, and MMS was previously proposed to not be a genomic disorder associated with deletions recurring from non-allelic homologous recombination (NAHR) in at least two analyzed cases. We conducted targeted gene panel sequencing and subsequent array-based copy number analysis in an 11-year-old undiagnosed Japanese female patient with multiple congenital anomalies that included mesomelic limb shortening and detected a novel 590 Kb deletion at 8q13 encompassing the same gene set as reported previously, resulting in the diagnosis of MSS. Breakpoint sequences of the deleted region in our case demonstrated the first LINE-1s (L1s)-mediated unequal NAHR event utilizing two distant L1 elements as homology substrates in this disease, which may represent a novel causative mechanism of the 8q13 deletion, expanding the range of mechanisms involved in the chromosomal rearrangements responsible for MSS. © 2017 Wiley Periodicals, Inc.

  5. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    NASA Astrophysics Data System (ADS)

    Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.

    2013-04-01

    Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.

  6. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    PubMed Central

    Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J

    2013-01-01

    Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062

  7. Vibrotactile stimulation promotes embodiment of an alien hand in amputees with phantom sensations.

    PubMed

    D'Alonzo, Marco; Clemente, Francesco; Cipriani, Christian

    2015-05-01

    Tactile feedback is essential to intuitive control and to promote the sense of self-attribution of a prosthetic limb. Recent findings showed that amputees can be tricked to experience this embodiment, when synchronous and modality-matched stimuli are delivered to biological afferent structures and to an alien rubber hand. Hence, it was suggested to exploit this effect by coupling touch sensors in a prosthesis to an array of haptic tactile stimulators in the prosthetic socket. However, this approach is not clinically viable due to physical limits of current haptic devices. To address this issue we have proposed modality-mismatched stimulation and demonstrated that this promotes self-attribution of an alien hand on normally limbed subjects. In this work we investigated whether similar effects could be induced in transradial amputees with referred phantom sensations in a series of experiments fashioned after the Rubber Hand Illusion using vibrotactile stimulators. Results from three independent measures of embodiment demonstrated that vibrotactile sensory substitution elicits body-ownership of a rubber hand in transradial amputees. These results open up promising possibilities in this field; indeed miniature, safe and inexpensive vibrators could be fitted into commercially available prostheses and sockets to induce the illusion every time the prosthesis manipulates an object.

  8. Enhanced second-harmonic generation from resonant GaAs gratings.

    PubMed

    de Ceglia, D; D'Aguanno, G; Mattiucci, N; Vincenti, M A; Scalora, M

    2011-03-01

    We theoretically study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength displays sharp resonances characterized by dramatic enhancements of local fields and favorable conditions for second-harmonic generation, even in regimes of strong linear absorption at the harmonic wavelength. In particular, in a GaAs grating pumped at 1064 nm, we predict second-harmonic conversion efficiencies approximately 5 orders of magnitude larger than conversion rates achievable in either bulk or etalon structures of the same material.

  9. Solar vector magnetograph for Max 1991 programs

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Obyrne, J. W.; Harris, T. J.

    1988-01-01

    An instrument for measuring solar magnetic fields is under construction. Key requirements for any solar vector magnetograph are high spatial resolution, high optical throughput, fine spectral selectivity, and ultralow instrumental polarization. An available 25 cm Cassegrain telescope will provide 0.5 arcsec spatial resolution. Spectral selection will be accomplished with a 150 mA filter based on electrically tunable solid Fabry-Perot etalon. Filter and polarization analyzer design concepts for the magnetograph are described in detail. The instrument will be tested at JHU/APL, and then moved to the National Solar Observatory in late 1988. It will be available to support the Max 1991 program.

  10. Ion irradiation effects on lithium niobate etalons for tunable spectral filters

    NASA Astrophysics Data System (ADS)

    Garranzo, D.; Ibarmia, S.; Alvarez-Herrero, A.; Olivares, J.; Crespillo, M.; Díaz, M.

    2017-11-01

    Solar Orbiter is a mission dedicated to solar and heliospheric physics. It was selected as the first mediumclass mission of ESA's Cosmic Vision 2015-2025 Programme. Solar Orbiter will be used to examine how the Sun creates and controls the heliosphere, the vast bubble of charged particles blown by the solar wind into the interstellar medium. One of the scientific payload elements of Solar Orbiter is the Polarimetric and Helioseismic Imager (PHI). The PHI instrument consists of two telescopes, a High Resolution Telescope (HRT) that will image a fraction of the solar disk at a resolution reaching {150 km at perihelion, and a Full Disk Telescope (FDT) to image the full solar disk during all phases of the orbit. PHI is a diffraction limited, wavelength tunable, quasi-monochromatic, polarisation sensitive imager. These capabilities are needed to infer the magnetic field and line-of-sight (LOS) velocity of the region targeted by the spacecraft. For the spectral analysis, PHI will use an order-sorting filter to isolate a bandpass of the order of 100 mÅ . The FilterGraph (FG) contains an etalon in single pass configuration as tunable spectral filter located inside a temperature stabilized oven. This filter will be made by means of a z-cut LiNbO3 crystal (about 300 microns thick) and multilayer coatings including a conductive one in order to apply a high voltage (up to 5 kV) and induce the required electric field to tune the filter. Solar Orbiter observing mission around the Sun will expose the PHI instrument to extreme radiation conditions, mainly dominated by solar high-energy particles released during severe solar events (protons with energies typically ranging from few keV up to several GeV) and the continuous isotropic background flux of galactic cosmic rays (heavy ions, from Z=1 to Z=92). The main concerns are whether the cumulated radiation damage can degrade the functionality of the filter or, in the worst case, the impact of a single highly ionizing particle, coupled with the HV field, could trigger a dielectric breakdown in the Lithium Niobate. In this paper we present the electro-optical results obtained when exposing a set of LN samples and a lowquality full size etalon to different radiation conditions. In a first irradiation campaign, performed at the Centre for Micro Analysis of Materials (CMAM-Madrid) facilities, we were mainly focused on the long-term degradation effects with a series of high flux (109 cm-2 s-1) proton tests at an energy of 10 MeV. In order to study the possibility of a single ion breakdown, a second campaign was carried out, at the Texas A&M University (TAMU), exposing Lithium Niobate to high LET ion species (78Kr, 40Ar, 129Xe, 197Au) accelerated to the GeV energy range to penetrate or even pass through the entire Lithium Niobate thickness.

  11. A New Era in Solar Thermal-IR Astronomy: the NSO Array Camera (NAC) on the McMath-Pierce Telescope

    NASA Astrophysics Data System (ADS)

    Ayres, T.; Penn, M.; Plymate, C.; Keller, C.

    2008-09-01

    The U.S. National Solar Observatory Array Camera (NAC) is a cryogenically cooled 1Kx1K InSb ``Aladdin" array that recently became operational at the McMath-Pierce facility on Kitt Peak, a high dry site in the southwest U.S. (Arizona). The new camera is similar to those already incorporated into instruments on nighttime telescopes, and has unprecedented sensitivity, low noise, and excellent cosmetics compared with the Amber Engineering (AE) device it replaces. (The latter was scavenged from a commercial surveillance camera in the 1990's: only 256X256 format, high noise, and annoying flatfield structure). The NAC focal plane is maintained at 30 K by a mechanical closed-cycle helium cooler, dispensing with the cumbersome pumped--solid-N2 40 K system used previously with the AE camera. The NAC linearity has been verified for exposures as short as 1 ms, although latency in the data recording holds the maximum frame rate to about 8 Hz (in "streaming mode"). The camera is run in tandem with the Infrared Adaptive Optics (IRAO) system. Utilizing a 37-actuator deformable mirror, IRAO can--under moderate seeing conditions--correct the telescope image to the diffraction limit longward of 2.3 mu (if a suitable high contrast target is available: the IR granulation has proven too bland to reliably track). IRAO also provides fine control over the solar image for spatial scanning in long-slit mode with the 14 m vertical "Main" spectrograph (MS). A 1'X1' area scan, with 0.5" steps orthogonal to the slit direction, requires less than half a minute, much shorter than p-mode and granulation evolution time scales. A recent engineering test run, in April 2008, utilized NAC/IRAO/MS to capture the fundamental (4.6 mu) and first-overtone (2.3 mu) rovibrational bands of CO, including maps of quiet regions, drift scans along the equatorial limbs (to measure the off-limb molecular emissions), and imaging of a fortuitous small sunspot pair, a final gasp, perhaps, of Cycle 23. Future work with the NAC will emphasize pathfinding toward the next generation of IR imaging spectrometers for the Advanced Technology Solar Telescope, whose 4 m aperture finally will bring sorely needed high spatial resolution to daytime infrared astronomy. In the meantime, the NAC is available to qualified solar physicists from around the world to conduct forefront research in the 1-5 mu region, on the venerable--but infrared friendly--McMath-Pierce telescope.

  12. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser.

    PubMed

    Kim, D J; Kim, J W

    2015-02-01

    A simple method for generating a Laguerre-Gaussian (LG) mode optical vortex beam with well-determined handedness in a single-frequency solid state laser end-pumped by a ring-shaped pump beam is reported. After investigating the intensity profile and the wavefront helicity of each longitudinal mode output to understand generation of the LG mode in a Nd:YVO4 laser resonator, selection of the wavefront handedness has been achieved simply by inserting and tilting an etalon in the resonator, which breaks the propagation symmetry of the Poynting vectors with opposite helicity. Simple calculation and the experimental results are discussed for supporting this selection mechanism.

  13. High resolution Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.

    1989-01-01

    A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.

  14. Simulation and visualization of fundamental optics phenomenon by LabVIEW

    NASA Astrophysics Data System (ADS)

    Lyu, Bohan

    2017-08-01

    Most instructors teach complex phenomenon by equation and static illustration without interactive multimedia. Students usually memorize phenomenon by taking note. However, only note or complex formula can not make user visualize the phenomenon of the photonics system. LabVIEW is a good tool for in automatic measurement. However, the simplicity of coding in LabVIEW makes it not only suit for automatic measurement, but also suitable for simulation and visualization of fundamental optics phenomenon. In this paper, five simple optics phenomenon will be discuss and simulation with LabVIEW. They are Snell's Law, Hermite-Gaussian beam transverse mode, square and circular aperture diffraction, polarization wave and Poincare sphere, and finally Fabry-Perrot etalon in spectrum domain.

  15. Modern methods and systems for precise control of the quality of agricultural and food production

    NASA Astrophysics Data System (ADS)

    Bednarjevsky, Sergey S.; Veryasov, Yuri V.; Akinina, Evgeniya V.; Smirnov, Gennady I.

    1999-01-01

    The results on the modeling of non-linear dynamics of strong continuous and impulse radiation in the laser nephelometry of polydisperse biological systems, important from the viewpoint of applications in biotechnologies, are presented. The processes of nonlinear self-action of the laser radiation by the multiple scattering in the disperse biological agro-media are considered. The simplified algorithms of the calculation of the parameters of the biological media under investigation are indicated and the estimates of the errors of the laser-nephelometric measurements are given. The universal high-informative optical analyzers and the standard etalon specimens of agro- objects make the technological foundation of the considered methods and systems.

  16. Development of High-Resolution UV-VIS Diagnostics for Space Plasma Simulation

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew; Batishchev, Oleg

    2012-10-01

    Non-invasive far-UV-VIS plasma emission allows remote diagnostics of plasma, which is particularly important for space application. Accurate vacuum tank space plasma simulations require monochromators with high spectral resolution (better than 0.01A) to capture important details of atomic and ionic lines, such as Ly-alpha, etc. We are building a new system based on the previous work [1], and will discuss the development of a spectrometry system that combines a single-pass vacuum far-UV-NIR spectrometer and a tunable Fabry-Perot etalon. [4pt] [1] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  17. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  18. VizieR Online Data Catalog: HD147379 b velocity curve (Reiners+, 2018)

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Ribas, I.; Zechmeister, M.; Caballero, J. A.; Trifonov, T.; Dreizler, S.; Morales, J. C.; Tal-Or, L.; Lafarga, M.; Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Jeffers, S. V.; Aceituno, J.; Bejar, V. J. S.; Guardia, J.; Guenther, E. W.; Hagen, H.-J.; Montes, D.; Passegger, V. M.; Seifert, W.; Schweitzer, A.; Cortes-Contreras, M.; Abril, M.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona, R.; Anglada-Escude, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F. F.; Becerril, S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Bluemcke, M.; Brinkmoeller, M.; Del Burgo, C.; Cano, J.; Cardenas Vazquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Czesla, S.; Diez-Alonso, E.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi-Enriquez, D.; Garcia-Piquer, A.; Garcia Vargas, M. L.; Gesa, L.; Gomez Galera, V.; Gonzalez Hernandez, J. I.; Gonzalez-Peinado, R.; Groezinger, U.; Grohnert, S.; Guijarro, A.; de Guindos, E.; Gutierrez-Soto, J.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helml!, Ing J.; H Enning, Th.; Hermelo, I.; Hernandez Arabi, R.; Hernandez Castano, L.; Hernandez Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kim, M.; Klein, R.; Klueter, J.; Klutsch, A.; Kuerster, M.; Labarga, F.; Lamert, A.; Lampon, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Launhardt, R.; Lopez Del Fresno, M.; Lopez-Gonzalez, M. J.; Lopez-Puertas, M.; Lopez Salas, J. F.; Lopez-Santiago, J.; Luque, R.; Magan Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.; Martin, E. L.; Martin-Ruiz, S.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir, A.; Oreiro, R.; Palle, E.; Panduro, J.; Pascual, J.; Pavlov, A.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodriguez, E.; Rodriguez-Lopez, C.; Rodriguez Trinidad, A.; Rohloff, R.-R.; Rosich, A.; ! Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schaefer, S.; Schmitt, J. H. M. M.; Schiller, J.; Schoefer, P.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Stuermer, J.; Suarez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Ulbrich, R.-G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.

    2017-11-01

    We analyzed data from the CARMENES VIS channel and HIRES/Keck. The CARMENES measurements were taken in the context of the CARMENES search for exoplanets around M dwarfs. The CARMENES instrument consists of two channels: the VIS channel obtains spectra at a resolution of R=94600 in the wavelength range 520-960nm, while the NIR channel yields spectra of R=80400 covering 960-1710nm. Both channels are calibrated in wavelength with hollow-cathode lamps and use temperature- and pressure-stabilized Fabry-Perot etalons to interpolate the wavelength solution and simultaneously monitor the spectrograph drift during nightly operations (Bauer et al., 2015A&A...581A.117B). (1 data file).

  19. A frequency doubled pressure-tunable oscillator-amplifier dye laser system

    NASA Technical Reports Server (NTRS)

    Moriarty, A.; Heaps, W.; Davis, D. D.

    1976-01-01

    A tunable high-repetition-rate oscillator-amplifier dye-laser system is reported. The dye laser described was longitudinally pumped with the second harmonic of a Nd-YAG laser operating at 10 Hz. Using three Faraday-Perot etalons and pressure tuning, a maximum fundamental output power of the order of 6 MW with a corresponding spectral width of less than 0.003 nm at 564 nm was obtained. The fundamental at 564 nm was frequency doubled to give a maximum power level of 0.6 MW of second-harmonic output power with a spectral width less than 0.0015 nm at 282 nm. Frequency stability could be maintained to within approximately 15% of the line-width.

  20. Venus mesospheric winds and the carbon monoxide bulge

    NASA Technical Reports Server (NTRS)

    Gurwell, Mark A.; Muhleman, Duane O.; Shah, Kathryn Pierce

    1992-01-01

    Recently, our group mapped the CO absorption lines on the disk of Venus in 1988 using the synthetic aperture array at the Owens Valley Radio Observatory. Observations were make in the (0-1) rotational transition of CO at 115 GHz, or a wavelength of 2.6 mm. Systematic variations in the Doppler shifts of the lines (particularly near the limbs) enable the group to directly map the wind field at 100 plus or minus 10 km, the peak altitude for the experimental weighting functions used. These measurements show that the winds are indeed of the order of a 100 m/s at this altitude. Previously, many had assumed that the vertical wind profile would quickly fall to zero above the cloud tops, due to cyclostrophic breakdown. This work is reviewed.

  1. Study of exoplanets host stars with VEGA/CHARA

    NASA Astrophysics Data System (ADS)

    Ligi, R.; Mourard, D.; Lagrange, Anne-Marie; Perraut, Karine; Tallon-Bosc, I.

    2012-07-01

    In the framework of the understanding of extrasolar systems, the study of host stars is a fundamental point. We need to understand the link between them and the presence of companions, i.e. what makes a star becoming a host star. In this perspective, we used the instrument called VEGA, situated at Mount Wilson (California) on the CHARA array to perform optical interferometric measurements. Interferometry at visible wavelengths allows reaching very high spatial frequencies well adapted for very small (less than 1 millisecond of arc) angular diameters. Therefore, we can access limb darkening measurements which is one of the very few directly measurable constraints on the structure of the atmosphere of a star. From this we can derive stars fundamental parameters. A precise measurement within spectral lines is also a very powerful tool to study the temperature and density structure of the atmosphere of distant stars. Besides, the detection of exoplanets is also related to this method. Combined with the radial velocity method and the transit method, one can study the atmosphere of exoplanets and learn more about their internal structure. We started a large program of observations made of 40 stars hosting exoplanets and observable by VEGA/CHARA. We will measure their limb darkened diameters and derive their parameters. We also aim at better understanding stellar noise sources like spots, and study surface brightness relationships.

  2. Engaging Cervical Spinal Cord Networks to Reenable Volitional Control of Hand Function in Tetraplegic Patients.

    PubMed

    Lu, Daniel C; Edgerton, V Reggie; Modaber, Morteza; AuYong, Nicholas; Morikawa, Erika; Zdunowski, Sharon; Sarino, Melanie E; Sarrafzadeh, Majid; Nuwer, Marc R; Roy, Roland R; Gerasimenko, Yury

    2016-11-01

    Paralysis of the upper limbs from spinal cord injury results in an enormous loss of independence in an individual's daily life. Meaningful improvement in hand function is rare after 1 year of tetraparesis. Therapeutic developments that result in even modest gains in hand volitional function will significantly affect the quality of life for patients afflicted with high cervical injury. The ability to neuromodulate the lumbosacral spinal circuitry via epidural stimulation in regaining postural function and volitional control of the legs has been recently shown. A key question is whether a similar neuromodulatory strategy can be used to improve volitional motor control of the upper limbs, that is, performance of motor tasks considered to be less "automatic" than posture and locomotion. In this study, the effects of cervical epidural stimulation on hand function are characterized in subjects with chronic cervical cord injury. Herein we show that epidural stimulation can be applied to the chronic injured human cervical spinal cord to promote volitional hand function. Two subjects implanted with a cervical epidural electrode array demonstrated improved hand strength (approximately 3-fold) and volitional hand control in the presence of epidural stimulation. The present data are sufficient to suggest that hand motor function in individuals with chronic tetraplegia can be improved with cervical cord neuromodulation and thus should be comprehensively explored as a possible clinical intervention. © The Author(s) 2016.

  3. Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Fujita, Y.; Nakamura, M.; Orienti, M.; Kino, M.; Asada, K.; Giovannini, G.

    2017-11-01

    We present Very Long Baseline Array polarimetric observations of the innermost jet of 3C 84 (NGC 1275) at 43 GHz. A significant polarized emission is detected at the hotspot of the innermost restarted jet, which is located 1 pc south from the radio core. While the previous report presented a hotspot at the southern end of the western limb, the hotspot location has been moved to the southern end of the eastern limb. Faraday rotation is detected within an entire bandwidth of the 43 GHz band. The measured rotation measure (RM) is at most (6.3 ± 1.9) × 105 rad m-2 and might be slightly time variable on the timescale of a month by a factor of a few. Our measured RM and the RM previously reported by the CARMA and SMA observations cannot be consistently explained by the spherical accretion flow with a power-law profile. We propose that a clumpy/inhomogeneous ambient medium is responsible for the observed RM. Using an equipartition magnetic field, we derive the electron density of 2 × 104 cm-3. Such an electron density is consistent with the cloud of the narrow line emission region around the central engine. We also discuss the magnetic field configuration from the black hole scale to the parsec scale and the origin of low polarization.

  4. A review of supernumerary and absent limbs and digits of the upper limb.

    PubMed

    Klaassen, Zachary; Choi, Monica; Musselman, Ruth; Eapen, Deborah; Tubbs, R Shane; Loukas, Marios

    2012-03-01

    For years people have been enamored by anomalies of the human limbs, particularly supernumerary and absent limbs and digits. Historically, there are a number of examples of such anomalies, including royal families of ancient Chaldea, tribes from Arabia, and examples from across nineteenth century Europe. The development of the upper limbs in a growing embryo is still being elucidated with the recent advent of homeobox genes, but researchers agree that upper limbs develop between stages 12-23 through a complex embryological process. Maternal thalidomide intake during limb development is known to cause limb reduction and subsequent amelia or phocomelia. Additionally, a number of clinical reports have illustrated different limb anomaly cases, with each situation unique in phenotype and developmental abnormality. Supernumerary and absent limbs and digits are not unique to humans, and a number of animal cases have also been reported. This review of the literature illustrates the historical, anatomical, and clinical aspects of supernumerary and absent limbs and digits for the upper limb.

  5. Prevalence and Characteristics of Phantom Limb Pain and Residual Limb Pain in the Long Term after Upper Limb Amputation

    ERIC Educational Resources Information Center

    Desmond, Deirdre M.; MacLachlan, Malcolm

    2010-01-01

    This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence…

  6. Standardized Approach to Quantitatively Measure Residual Limb Skin Health in Individuals with Lower Limb Amputation.

    PubMed

    Rink, Cameron L; Wernke, Matthew M; Powell, Heather M; Tornero, Mark; Gnyawali, Surya C; Schroeder, Ryan M; Kim, Jayne Y; Denune, Jeffrey A; Albury, Alexander W; Gordillo, Gayle M; Colvin, James M; Sen, Chandan K

    2017-07-01

    Objective: (1) Develop a standardized approach to quantitatively measure residual limb skin health. (2) Report reference residual limb skin health values in people with transtibial and transfemoral amputation. Approach: Residual limb health outcomes in individuals with transtibial ( n  = 5) and transfemoral ( n  = 5) amputation were compared to able-limb controls ( n  = 4) using noninvasive imaging (hyperspectral imaging and laser speckle flowmetry) and probe-based approaches (laser doppler flowmetry, transcutaneous oxygen, transepidermal water loss, surface electrical capacitance). Results: A standardized methodology that employs noninvasive imaging and probe-based approaches to measure residual limb skin health are described. Compared to able-limb controls, individuals with transtibial and transfemoral amputation have significantly lower transcutaneous oxygen tension, higher transepidermal water loss, and higher surface electrical capacitance in the residual limb. Innovation: Residual limb health as a critical component of prosthesis rehabilitation for individuals with lower limb amputation is understudied in part due to a lack of clinical measures. Here, we present a standardized approach to measure residual limb health in people with transtibial and transfemoral amputation. Conclusion: Technology advances in noninvasive imaging and probe-based measures are leveraged to develop a standardized approach to quantitatively measure residual limb health in individuals with lower limb loss. Compared to able-limb controls, resting residual limb physiology in people that have had transfemoral or transtibial amputation is characterized by lower transcutaneous oxygen tension and poorer skin barrier function.

  7. Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation

    NASA Astrophysics Data System (ADS)

    Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi

    2018-06-01

    Objective. Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. Approach. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Main results. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Significance. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.

  8. Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation.

    PubMed

    Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi

    2018-06-01

    Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.

  9. Anthropometric correlations between parts of the upper and lower limb: models for personal identification in a Sudanese population.

    PubMed

    Ahmed, Altayeb Abdalla

    2016-09-01

    Identification of a deceased individual is an essential component of medicolegal practice. However, personal identification based on commingled limbs or parts of limbs, necessary in investigations of mass disasters or some crimes, is a difficult task. Limb measurements have been utilized in the development of biological parameters for personal identification, but the possibility to estimate the dimensions of parts of limbs other than hands and feet has not been assessed. The present study proposes an approach to estimate the dimensions of various parts of limbs based on other limb measurements. The study included 320 Sudanese adults, with equal representation of men and women. Nine limb dimensions were measured (five based on the upper limb, four based on the lower limb), and extensive statistical analysis of the distribution of values was performed. The results showed that all of the measured dimensions were sexually dimorphic and that there was a significant positive correlation between the dimensions of various parts of limbs. Regression models (direct and stepwise) were developed to estimate the dimensions of parts of limbs based on measurements pertaining to one or more other parts of limbs. The study revealed that the dimensions of parts of the upper and lower limb can be estimated from one another. These findings can be used in medicolegal practice and extended to constructive surgery, orthopedics, and prosthesis design for lost limbs.

  10. Developmental Design of Synthetic Bacterial Architectures by Morphogenetic Engineering.

    PubMed

    Pascalie, Jonathan; Potier, Martin; Kowaliw, Taras; Giavitto, Jean-Louis; Michel, Olivier; Spicher, Antoine; Doursat, René

    2016-08-19

    Synthetic biology is an emerging scientific field that promotes the standardized manufacturing of biological components without natural equivalents. Its goal is to create artificial living systems that can meet various needs in health care or energy domains. While most works are focused on the individual bacterium as a chemical reactor, our project, SynBioTIC, addresses a novel and more complex challenge: shape engineering; that is, the redesign of natural morphogenesis toward a new kind of developmental 3D printing. Potential applications include organ growth, natural computing in biocircuits, or future vegetal houses. To create in silico multicellular organisms that exhibit specific shapes, we construe their development as an iterative process combining fundamental collective phenomena such as homeostasis, patterning, segmentation, and limb growth. Our numerical experiments rely on the existing Escherichia coli simulator Gro, a physicochemical computation platform offering reaction-diffusion and collision dynamics solvers. The synthetic bioware of our model executes a set of rules, or genome, in each cell. Cells can differentiate into several predefined types associated with specific actions (divide, emit signal, detect signal, die). Transitions between types are triggered by conditions involving internal and external sensors that detect various protein levels inside and around the cell. Indirect communication between bacteria is relayed by morphogen diffusion and the mechanical constraints of 2D packing. Starting from a single bacterium, the overall architecture emerges in a purely endogenous fashion through a series of developmental stages, inlcuding proliferation, differentiation, morphogen diffusion, and synchronization. The genome can be parametrized to control the growth and features of appendages individually. As exemplified by the L and T shapes that we obtain, certain precursor cells can be inhibited while others can create limbs of varying size (divergence of the homology). Such morphogenetic phenotypes open the way to more complex shapes made of a recursive array of core bodies and limbs and, most importantly, to an evolutionary developmental exploration of unplanned functional forms.

  11. Detection of a de novo Y278C mutation in FGFR3 in a pregnancy with severe fetal hypochondroplasia: prenatal diagnosis and literature review.

    PubMed

    Chen, Chih-Ping; Su, Yi-Ning; Lin, Tzu-Hung; Chang, Tung-Yao; Su, Jun-Wei; Wang, Wayseen

    2013-12-01

    We describe a prenatal molecular diagnosis of hypochondroplasia (HCH) in a pregnancy not at risk of HCH and review the literature on prenatal diagnosis of HCH. A 28-year-old primigravid woman was referred for genetic counseling at 30 weeks of gestation because of short-limbed dwarfism in the fetus. The woman had a body height of 152 cm. Her husband had a body height of 180 cm. Level II ultrasound showed a normal amount of amniotic fluid and a singleton fetus with fetal biometry equivalent to 30 weeks except for short limbs. Fetal biometry measurements were as follows: biparietal diameter = 7.38 cm (30 weeks); head circumference = 28.14 cm (30 weeks); abdominal circumference (AC) = 24.64 cm (30 weeks); femur length (FL) = 3.97 cm (<5th centile); FL/AC ratio = 0.161 (normal > 0.18); humerus = 3.64 cm (<5th centile); radius = 3.49 cm (30 weeks); ulna = 3.76 cm (<5(th) centile); tibia = 3.67 cm (<5th centile); and fibula = 3.72 cm (<5th centile). The digits and craniofacial appearance were normal. A tentative diagnosis of achondroplasia (ACH) was made. DNA testing for the FGFR3 gene and whole-genome array comparative genomic hybridization (aCGH) analysis were performed using cord blood DNA obtained by cordocentesis. FGFR3 mutation analysis revealed a de novo heterozygous c.833A > G, TAC > TGC transversion in exon 7 leading to a p.Tyr278Cys (Y278C) mutation in the FGFR3 protein. aCGH analysis revealed no genomic imbalance in cord blood. After delivery, the fetus had short limbs, a narrow thorax, brachydactyly, and relative macrocephaly. Cytogenetic analysis of cultured placental cells revealed a karyotype of 46,XX. Prenatal diagnosis of abnormal ultrasound findings suspicious of ACH should include a differential diagnosis of HCH by molecular analysis of FGFR3. Copyright © 2013. Published by Elsevier B.V.

  12. Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy

    PubMed Central

    2014-01-01

    Background Fibrosis, an excessive collagen accumulation, results in scar formation, impairing function of vital organs and tissues. Fibrosis is a hallmark of muscular dystrophies, including the lethal Duchenne muscular dystrophy (DMD), which remains incurable. Substitution of muscle by fibrotic tissue also complicates gene/cell therapies for DMD. Yet, no optimal models to study muscle fibrosis are available. In the widely used mdx mouse model for DMD, extensive fibrosis develops in the diaphragm only at advanced adulthood, and at about two years of age in the ‘easy-to-access’ limb muscles, thus precluding fibrosis research and the testing of novel therapies. Methods We developed distinct experimental strategies, ranging from chronic exercise to increasing muscle damage on limb muscles of young mdx mice, by myotoxin injection, surgically induced trauma (laceration or denervation) or intramuscular delivery of profibrotic growth factors (such as TGFβ). We also extended these approaches to muscle of normal non-dystrophic mice. Results These strategies resulted in advanced and enhanced muscle fibrosis in young mdx mice, which persisted over time, and correlated with reduced muscle force, thus mimicking the severe DMD phenotype. Furthermore, increased fibrosis was also obtained by combining these procedures in muscles of normal mice, mirroring aberrant repair after severe trauma. Conclusions We have developed new and improved experimental strategies to accelerate and enhance muscle fibrosis in vivo. These strategies will allow rapidly assessing fibrosis in the easily accessible limb muscles of young mdx mice, without necessarily having to use old animals. The extension of these fibrogenic regimes to the muscle of non-dystrophic wild-type mice will allow fibrosis assessment in a wide array of pre-existing transgenic mouse lines, which in turn will facilitate understanding the mechanisms of fibrogenesis. These strategies should improve our ability to combat fibrosis-driven dystrophy progression and aberrant regeneration. PMID:25157321

  13. Limb Viewing Hyper Spectral Imager (LiVHySI) for airglow measurements onboard YOUTHSAT-1

    NASA Astrophysics Data System (ADS)

    Bisht, R. S.; Hait, A. K.; Babu, P. N.; Sarkar, S. S.; Benerji, A.; Biswas, A.; Saji, A. K.; Samudraiah, D. R. M.; Kirankumar, A. S.; Pant, T. K.; Parimalarangan, T.

    2014-08-01

    The Limb Viewing Hyper Spectral Imager (LiVHySI) is one of the Indian payloads onboard YOUTHSAT (inclination 98.73°, apogee 817 km) launched in April, 2011. The Hyper-spectral imager has been operated in Earth’s limb viewing mode to measure airglow emissions in the spectral range 550-900 nm, from terrestrial upper atmosphere (i.e. 80 km altitude and above) with a line-of-sight range of about 3200 km. The altitude coverage is about 500 km with command selectable lowest altitude. This imaging spectrometer employs a Linearly Variable Filter (LVF) to generate the spectrum and an Active Pixel Sensor (APS) area array of 256 × 512 pixels, placed in close proximity of the LVF as detector. The spectral sampling is done at 1.06 nm interval. The optics used is an eight element f/2 telecentric lens system with 80 mm effective focal length. The detector is aligned with respect to the LVF such that its 512 pixel dimension covers the spectral range. The radiometric sensitivity of the imager is about 20 Rayleigh at noise floor through the signal integration for 10 s at wavelength 630 nm. The imager is being operated during the eclipsed portion of satellite orbits. The integration in the time/spatial domain could be chosen depending upon the season, solar and geomagnetic activity and/or specific target area. This paper primarily aims at describing LiVHySI, its in-orbit operations, quality, potential of the data and its first observations. The images reveal the thermospheric airglow at 630 nm to be the most prominent. These first LiVHySI observations carried out on the night of 21st April, 2011 are presented here, while the variability exhibited by the thermospheric nightglow at O(1D) 630 nm has been described in detail.

  14. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Kuiken, T. A.; Hargrove, L. J.

    2014-10-01

    Objective. The purpose of this study was to determine the contribution of electromyography (EMG) data, in combination with a diverse array of mechanical sensors, to locomotion mode intent recognition in transfemoral amputees using powered prostheses. Additionally, we determined the effect of adding time history information using a dynamic Bayesian network (DBN) for both the mechanical and EMG sensors. Approach. EMG signals from the residual limbs of amputees have been proposed to enhance pattern recognition-based intent recognition systems for powered lower limb prostheses, but mechanical sensors on the prosthesis—such as inertial measurement units, position and velocity sensors, and load cells—may be just as useful. EMG and mechanical sensor data were collected from 8 transfemoral amputees using a powered knee/ankle prosthesis over basic locomotion modes such as walking, slopes and stairs. An offline study was conducted to determine the benefit of different sensor sets for predicting intent. Main results. EMG information was not as accurate alone as mechanical sensor information (p < 0.05) for any classification strategy. However, EMG in combination with the mechanical sensor data did significantly reduce intent recognition errors (p < 0.05) both for transitions between locomotion modes and steady-state locomotion. The sensor time history (DBN) classifier significantly reduced error rates compared to a linear discriminant classifier for steady-state steps, without increasing the transitional error, for both EMG and mechanical sensors. Combining EMG and mechanical sensor data with sensor time history reduced the average transitional error from 18.4% to 12.2% and the average steady-state error from 3.8% to 1.0% when classifying level-ground walking, ramps, and stairs in eight transfemoral amputee subjects. Significance. These results suggest that a neural interface in combination with time history methods for locomotion mode classification can enhance intent recognition performance; this strategy should be considered for future real-time experiments.

  15. CO2 Ice Formation and CO2 Gas Depletion in the Polar Winter Atmosphere of Mars from Mars Climate Sounder Measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Patel, P. K.; Schofield, J. T.; Kass, D. M.; Hayne, P. O.; McCleese, D. J.

    2016-12-01

    Temperatures in the martian lower atmosphere commonly reach the frost point of CO2 in the polar winter vortices over an extended vertical range. New retrievals from the Mars Climate Sounder (MCS) instrument on Mars Reconnaissance Orbiter allow the characterization of the winter polar regions with improved accuracy. MCS is a passive infrared sounder with 5 mid-infrared, 3 far infrared, and one broadband visible/near-infrared channels. Each spectral channel uses a linear detector array consisting of 21 elements, which provides -10 to 90 km altitude coverage when pointed at the Mars limb. From the infrared measurements, vertical profiles of temperature and aerosols are retrieved with an altitude resolution of about 5 km. Due to their long optical path through the atmosphere, limb measurements are susceptible to horizontal gradients in temperature or absorber amount in their line-of-sight, an effect that is particularly important in polar winter regions due to strong latitudinal temperature gradients in the atmosphere. The new retrievals take horizontal gradients in temperature and aerosols into account by means of a two-dimensional radiative transfer scheme. The resulting temperature profiles reveal that temperatures in the south winter polar region repeatedly drop several degrees below the frost point of CO2. This behavior is consistent with the removal of CO2 from the atmosphere through condensation, resulting in an atmosphere that is depleted in gaseous CO2 and enhanced in non-condensable gases like N2 and Ar. In these regions emission features at 22 μm are often found in MCS limb measurements, consistent with the presence of CO2 ice in the polar vortex. We will map these depletions of CO2 gas and show correlations with the occurrence of CO2 ice. We will provide comparisons of these effects between the southern and the northern polar winter vortices.

  16. Chronic pain associated with upper-limb loss.

    PubMed

    Hanley, Marisol A; Ehde, Dawn M; Jensen, Mark; Czerniecki, Joseph; Smith, Douglas G; Robinson, Lawrence R

    2009-09-01

    To describe the prevalence, intensity, and functional impact of the following types of pain associated with upper-limb loss: phantom limb, residual limb, back, neck, and nonamputated-limb pain. Cross-sectional survey; 104 respondents with upper-limb loss at least 6 months postamputation completed measures of pain intensity, interference, disability, and health-related quality-of-life. Nearly all (90%) of the respondents reported pain, with 76% reporting more than one pain type. Phantom-limb pain and residual-limb pain were the most prevalent (79% and 71%, respectively), followed by back (52%), neck (43%), and nonamputated-limb pain (33%). Although nonamputated-limb pain was least prevalent, it was reported to cause the highest levels of interference and pain-related disability days. Self-reported quality-of-life was significantly lower for individuals with each type of pain compared with those without any pain. Age, time since amputation, and cause of amputation were not associated with pain. In addition to pain in the phantom and residual limb, back, neck, and nonamputated-limb pain are also common after upper-limb loss. All of these pain types are associated with significant disability and activity interference for some individuals, suggesting that assessment of multiple pain types in persons with upper-limb amputation may be important.

  17. Thoracic limb alignment in healthy labrador retrievers: evaluation of standing versus recumbent frontal plane radiography.

    PubMed

    Goodrich, Zachary J; Norby, Bo; Eichelberger, Bunita M; Friedeck, Wade O; Callis, Hollye N; Hulse, Don A; Kerwin, Sharon C; Fox, Derek B; Saunders, W Brian

    2014-10-01

    To report thoracic limb alignment values in healthy dogs; to determine if limb alignment values are significantly different when obtained from standing versus recumbent radiographic projections. Prospective cross-sectional study. Labrador Retrievers (n = 45) >15 months of age. Standing and recumbent radiographs were obtained and limb montages were randomized before analysis by a single investigator blinded to dog, limb, and limb position. Twelve limb alignment values were determined using the CORA methodology. Measurements were performed in triplicate and intra-observer variability was evaluated by intra-class correlation coefficient (ICC). Limb alignment values were reported as mean ± SD and 95% confidence intervals. Linear mixed models were used to determine if significant associations existed between limb alignment values and limb, limb position, gender, age, weight, and body condition score. There were significant differences in standing and recumbent limb alignment values for all values except elbow mechanical axis deviation (eMAD). Limb, gender, age, body weight, and body condition score had no effect. ICC values ranged from 0.522 to 0.758, indicating moderate to substantial agreement for repeated measurements by a single investigator. Limb alignment values are significantly different when determined from standing versus recumbent radiographs in healthy Labrador Retrievers. © Copyright 2014 by The American College of Veterinary Surgeons.

  18. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and almost completely restored iBCI decoding performance (>90% recovery for surface stimulation and full recovery for intramuscular stimulation). The results demonstrate that FES-induced artifacts can be easily mitigated in FES  +  iBCI systems by using LRR for artifact reduction, and suggest that the LRR method may also be useful in other noise reduction applications.

  19. Mobile-bearing medial unicompartmental knee arthroplasty restores limb alignment comparable to that of the unaffected contralateral limb

    PubMed Central

    Mullaji, Arun B; Shah, Siddharth; Shetty, Gautam M

    2017-01-01

    Background and purpose — Medial unicompartmental knee arthroplasty (UKA) is undertaken in patients with a passively correctable varus deformity. We investigated whether restoration of natural soft tissue tension would result in a lower limb alignment similar to that of the contralateral unaffected lower limb after mobile-bearing medial UKA. Patients and methods — In this retrospective study, hip-knee-ankle (HKA) angle, position of the weight-bearing axis (WBA), and knee joint line obliquity (KJLO) after mobile-bearing medial UKA was compared with that of the unaffected (clinically and radiologically) contralateral lower limb in 123 patients. Results — Postoperatively, HKA angle was restored to within ±3° of the contralateral lower limb in 87% of the patients and the WBA passed within ±1 Kennedy and White’s tibial zone of the unaffected contralateral lower limb in 95% of the patients. The mean KJLO in the operated limbs was not significantly different from that in the unaffected lower limbs (p = 0.07) and the KJLO in the operated limb was restored to within ±3° of that in the contralateral lower limb in 96% of the patients. Interpretation — Lower limb alignment and knee joint line obliquity after mobile-bearing medial UKA were comparable to that of the unaffected contralateral limb in most patients. Comparison with the contralateral unaffected lower limb is a reliable method for evaluation and validation of limb mechanical alignment after mobile-bearing medial UKA. PMID:27794622

  20. Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy

    PubMed Central

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2017-01-01

    Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by “mirror therapy.” Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one’s own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one’s own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain. PMID:29046630

  1. Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy.

    PubMed

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2017-01-01

    Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by "mirror therapy." Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one's own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one's own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain.

  2. Position Sense in Chronic Pain: Separating Peripheral and Central Mechanisms in Proprioception in Unilateral Limb Pain.

    PubMed

    Tsay, Anthony J; Giummarra, Melita J

    2016-07-01

    Awareness of limb position is derived primarily from muscle spindles and higher-order body representations. Although chronic pain appears to be associated with motor and proprioceptive disturbances, it is not clear if this is due to disturbances in position sense, muscle spindle function, or central representations of the body. This study examined position sense errors, as an indicator of spindle function, in participants with unilateral chronic limb pain. The sample included 15 individuals with upper limb pain, 15 with lower limb pain, and 15 sex- and age-matched pain-free control participants. A 2-limb forearm matching task in blindfolded participants, and a single-limb pointer task, with the reference limb hidden from view, was used to assess forearm position sense. Position sense was determined after muscle contraction or stretch, intended to induce a high or low spindle activity in the painful and nonpainful limbs, respectively. Unilateral upper and lower limb chronic pain groups produced position errors comparable with healthy control participants for position matching and pointer tasks. The results indicate that the painful and nonpainful limb are involved in limb-matching. Lateralized pain, whether in the arm or leg, does not influence forearm position sense. Painful and nonpainful limbs are involved in bilateral limb-matching. Muscle spindle function appears to be preserved in the presence of chronic pain. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  3. Io Eclipse Montage

    NASA Technical Reports Server (NTRS)

    2007-01-01

    New Horizons took this montage of images of Jupiter's volcanic moon Io, glowing in the dark of Jupiter's shadow, as the Pluto-bound spacecraft sped through the Jupiter system on Feb. 27, 2007.

    (A): In this picture from the Long-Range Reconnaissance Imager (LORRI), dark blotches and straight lines are artifacts. The brightest spots (including the volcanoes Pele [P] and East Girru [EG]) are incandescent lava from active volcanoes. The more diffuse glows, and the many faint spots, are from gas in the plumes and atmosphere, glowing due to bombardment by plasma in Jupiter's magnetosphere, in a display similar to the Earth's aurorae. (B): The same image with a latitude/longitude grid, showing that the cluster of faint spots is centered near longitude 0 degrees, the point on Io that faces Jupiter. The image also shows the locations of the plumes seen in sunlit images (indicated by red diamonds), which glow with auroral emission in eclipse. (C): Simulated sunlit view of Io with the same geometry, based on sunlit LORRI images. (D): A combination of the sunlit image (in cyan) and the eclipse image (in red), showing that all point-like glows in the eclipse image arise from dark volcanoes in the eclipse image. (E): This infrared image, at a wavelength of 2.3 microns, obtained by New Horizons Linear Etalon Spectral Imaging Array (LEISA) an hour after the LORRI image, showing thermal emission from active volcanoes. Elongation of the hot spots is an artifact. (F): Combined visible albedo (cyan) and LEISA thermal emission (red) image, showing the sources of the volcanic emission. That most of the faint point-like glows near longitude zero, seen in visible light in images A, B, and D, do not appear in the infrared view of volcanic heat radiation, is one reason scientists believe that these glows are due to auroral emission, not heat radiation.

    This image appears in the Oct. 12, 2007, issue of Science magazine, in a paper by John Spencer, et al.

  4. Hyperinnervation improves Xenopus laevis limb regeneration.

    PubMed

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Akira

    2018-01-15

    Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Part per trillion nitric oxide measurement by optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Ventrillard, Irène; Gorrotxategi-Carbajo, Paula; Romanini, Daniele

    2017-06-01

    While nitric oxide (NO) is being monitored in various fields of application, there is still a lack of available instruments at a sub-ppb level of sensitivity. We report on the first application of Optical Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) to NO trace gas analysis, with a room-temperature quantum-cascade laser at 5.26 µm (1900.5 cm^{-1}). A detection limit of 60 ppt is reached in a single measurement performed in 140 ms. The stability of the instrument allows to average for 10 s down to 8.3 ppt, limited by drift of etalon fringes in the spectra. This work opens the path towards new applications notably in breath analysis and environment sciences.

  6. Experimental study of a VBG-based Tm : YLF slab laser at different output coupler parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, X M; Ding, Y; Dai, T Y

    2015-04-30

    The performance of a Tm : YLF slab laser is studied at different output coupler parameters. Use is made of a 20-mm-long a-cut slab crystal doped with 2.5 at. % thulium ions. With a volume Bragg grating and a Fabry – Perot etalon, the selected output wavelength of this Tm : YLF slab laser is 1908 nm. For the optimised output coupler with a transmission of 20% and a radius of curvature of 300 mm, the output power exceeds 74.1 W and the slope efficiency with respect to the absorbed pump power reaches 48.4%. In addition, the beam quality ofmore » the Tm : YLF slab laser is improved. (lasers)« less

  7. Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber.

    PubMed

    Zhou, Rong; Tang, Pinghua; Chen, Yu; Chen, Shuqing; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2014-01-10

    Nonlinear transmission parameters of monolayer graphene at 1645 nm were obtained. Based on the monolayer graphene saturable absorber, a 1532 nm LD pumped 1645 nm passively Q-switched Er:YAG laser was demonstrated. Under the pump power of 20.8 W, a 1645 nm Q-switched pulse with FWHM of 0.13 nm (without the use of etalon) and energy of 13.5 μJ per pulse can be obtained. To the best of our knowledge, this is the highest pulse energy for graphene-based passively Q-switched Er:YAG laseroperating at 1645 nm, suggesting the potentials of graphene materials for high-energy solid-state laser applications.

  8. Q-switched Nd:YAG optical vortex lasers.

    PubMed

    Kim, D J; Kim, J W; Clarkson, W A

    2013-12-02

    Q-switched operation of a high-quality Nd:YAG optical vortex laser with the first order Laguerre-Gaussian mode and well-determined helical wavefronts using a fiber-based pump beam conditioning scheme is reported. A simple two-mirror resonator incorporating an acousto-optic Q-switch was employed, along with an etalon and a Brewster plate to enforce the particular helicity of the output. The laser yielded Q-switched pulses with ~250 μJ pulse energy and ~33 ns pulse duration (FWHM) at a 0.1 kHz repetition rate for 5.1 W of absorbed pump power. The handedness of the helical wavefronts was preserved regardless of the repetition rates. The prospects of further power scaling and improved laser performance are discussed.

  9. Ground-to-air flow visualization using Solar Calcium-K line Background-Oriented Schlieren

    NASA Astrophysics Data System (ADS)

    Hill, Michael A.; Haering, Edward A.

    2017-01-01

    The Calcium-K Eclipse Background-Oriented Schlieren experiment was performed as a proof of concept test to evaluate the effectiveness of using the solar disk as a background to perform the Background-Oriented Schlieren (BOS) method of flow visualization. A ground-based imaging system was equipped with a Calcium-K line optical etalon filter to enable the use of the chromosphere of the sun as the irregular background to be used for BOS. A US Air Force T-38 aircraft performed three supersonic runs which eclipsed the sun as viewed from the imaging system. The images were successfully post-processed using optical flow methods to qualitatively reveal the density gradients in the flow around the aircraft.

  10. Development and operation of a high-throughput accurate-wavelength lens-based spectrometer a)

    DOE PAGES

    Bell, Ronald E.

    2014-07-11

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm -1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤ 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. The computer-controlled hardware allows automated control of wavelength, timing, f-number, automated datamore » collection, and wavelength calibration.« less

  11. Master dye laser oscillator including a specific grating assembly for use therein

    DOEpatents

    Davin, James M.

    1992-01-01

    A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam.

  12. Master dye laser oscillator including a specific grating assembly for use therein

    DOEpatents

    Davin, J.M.

    1992-09-01

    A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam. 5 figs.

  13. Yellow light generation by frequency doubling of a diode-pumped Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Jia, Fu-qiang; Zheng, Quan; Xue, Qing-hua; Bu, Yi-kun; Qian, Long-sheng

    2006-03-01

    We demonstrate the generation of TEM00 mode yellow light in critically type II phase-matched KTiOPO4 (KTP) with intracavity frequency doubling of a diode-pumped Nd:YAG laser at room temperature. After a 150 μm thick etalon have been inserted into the cavity, the stability and beam quality of the second harmonic generation (SHG) is enhanced. A continuous wave (CW) TEM00 mode output power of 1.67 W at 556 nm is obtained at a pump level of 16 W. The total optical to optical conversion efficiency is about 10.44%. To the best of our knowledge, this is the first Watt-level yellow light generation by frequency doubling of Nd:YAG laser.

  14. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  15. Advancement of Optical Component Control for an Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.

    2009-01-01

    Risk mitigation activities associated with a prototype imaging Fabry-Perot Interferometer (FPI) system are continuing at the NASA Langley Research Center. The system concept and technology center about enabling and improving future space-based atmospheric composition missions, with a current focus on observing tropospheric ozone around 9.6 micron, while having applicability toward measurement in different spectral regions and other applications. Recent activities have focused on improving an optical element control subsystem to enable precise and accurate positioning and control of etalon plates; this is needed to provide high system spectral fidelity critical for enabling the required ability to spectrally-resolve atmospheric line structure. The latest results pertaining to methodology enhancements, system implementation, and laboratory characterization testing will be reported

  16. Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes

    NASA Technical Reports Server (NTRS)

    Hochen, R.; Justie, B.

    1976-01-01

    The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.

  17. Microwave limb sounder, graphite epoxy support structure

    NASA Technical Reports Server (NTRS)

    Pynchon, G.

    1980-01-01

    The manufacturing and processing procedures which were used to fabricate a precision graphite/epoxy support structure for a spherical microwave reflecting surface are described. The structure was made fromm GY-70/930 ultra high modulus graphite prepreg, laminated to achieve an isotropic in plane thermal expansion of less than + or - 0.1 PPM/F. The structure was hand assembled to match the interface of the reflective surface, which was an array of 18 flexure supported, aluminum, spherically contoured tiles. Structural adhesives were used in the final assembly to bond the elements into their final configuration. A eutectic metal coating was applied to the composite surface to reduce dimensional instabilities arising from changes in the composite epoxy moisture content due to environmental effects. Basic materials properties data are reported and the results of a finite element structural analysis are referenced.

  18. Getting around when you're round: quantitative analysis of the locomotion of the blunt-spined brittle star, Ophiocoma echinata.

    PubMed

    Astley, Henry C

    2012-06-01

    Brittle stars (Ophiuroidea, Echinodermata) are pentaradially symmetrical echinoderms that use five multi-jointed limbs to locomote along the seafloor. Prior qualitative descriptions have claimed coordinated movements of the limbs in a manner similar to tetrapod vertebrates, but this has not been evaluated quantitatively. It is uncertain whether the ring-shaped nervous system, which lacks an anatomically defined anterior, is capable of generating rhythmic coordinated movements of multiple limbs. This study tested whether brittle stars possess distinct locomotor modes with strong inter-limb coordination as seen in limbed animals in other phyla (e.g. tetrapods and arthropods), or instead move each limb independently according to local sensory feedback. Limb tips and the body disk were digitized for 56 cycles from 13 individuals moving across sand. Despite their pentaradial anatomy, all individuals were functionally bilateral, moving along the axis of a central limb via synchronous motions of contralateral limbs (±~13% phase lag). Two locomotor modes were observed, distinguishable mainly by whether the central limb was directed forwards or backwards. Turning was accomplished without rotation of the body disk by defining a different limb as the center limb and shifting other limb identities correspondingly, and then continuing locomotion in the direction of the newly defined anterior. These observations support the hypothesis that, in spite of their radial body plan, brittle stars employ coordinated, bilaterally symmetrical locomotion.

  19. Management of the multiple limb amputee.

    PubMed

    Davidson, J H; Jones, L E; Cornet, J; Cittarelli, T

    2002-09-10

    Multiple limb amputations involving at least one upper extremity are very uncommon. The amputation of both an upper and lower limb is even more uncommon. Due to the rarity of these amputations therapists are uncertain regarding the most appropriate treatment methods. While the majority of the protocols used for single limb amputations are appropriate for these multiple limb amputees, there are differences. Loss of multiple limbs creates a problem of overheating for the individual. Loss of an arm and leg results in difficulty donning the prostheses and difficulty using crutches and parallel bars during mobilization. A review is given of 16 multiple limb amputees seen in our rehabilitation centre in the last 15 years. Return to work was seen in one third and was not related to the number of the amputations. A higher proportion of these multiple limb amputations occur through alcoholism or attempted suicide behaviour than occurs with either single upper limb amputations or lower limb amputations. This existing behaviour can create a management problem for the rehabilitation team during rehabilitation. Guidelines as to appropriate prosthetic and preprosthetic care are provided to assist the practitioner who has the acute and long term care of these patients. All multiple limb amputees should be referred to a specialized rehabilitation centre to discuss prosthetic options and long term rehabilitation requirements. This paper does not discuss bilateral lower limb amputations when not combined with an upper limb amputation.

  20. Collagen reconstitution is inversely correlated with induction of limb regeneration in Ambystoma mexicanum.

    PubMed

    Satoh, Akira; Hirata, Ayako; Makanae, Aki

    2012-03-01

    Amphibians can regenerate missing body parts, including limbs. The regulation of collagen has been considered to be important in limb regeneration. Collagen deposition is suppressed during limb regeneration, so we investigated collagen deposition and apical epithelial cap (AEC) formation during axolotl limb regeneration. The accessory limb model (ALM) has been developed as an alternative model for studying limb regeneration. Using this model, we investigated the relationship between nerves, epidermis, and collagen deposition. We found that Sp-9, an AEC marker gene, was upregulated by direct interaction between nerves and epidermis. However, collagen deposition hindered this interaction, and resulted in the failure of limb regeneration. During wound healing, an increase in deposition of collagen caused a decrease in the blastema induction rate in ALM. Wound healing and limb regeneration are alternate processes.

  1. Vertical head and pelvic movement symmetry at the trot in dogs with induced supporting limb lameness.

    PubMed

    Gómez Álvarez, C B; Gustås, P; Bergh, A; Rhodin, M

    2017-11-01

    Compensatory limb loading has been studied in lame dogs; however, little is known about how these compensations relate to motion of the head and pelvis, assessment of which is an important component of lameness examinations. The aim of this study was to describe the patterns of vertical head and pelvic motion symmetry at the trot in dogs with induced supporting limb lameness in the forelimbs or hind limbs. Ten sound dogs were trotted on a treadmill before and after temporary induction of moderate lameness (grade 2/5) in each limb. Reflective markers were located on the head, pelvis and right forelimb, and kinematic data were captured with a motion capture system. Upper body symmetry parameters were calculated, including differences in the highest (HDmax) and in the lowest (HDmin) positions of the head, and in the highest (PDmax) and in the lowest (PDmin) positions of the mid-pelvis, with a value of zero indicating symmetry. The head was lowered more during the sound limb stance phase and lowered less during the lame limb stance phase in supporting forelimb lameness (HDmin: 4.6mm in dogs when sound, -18.3mm when left limb lameness was induced and 20.5mm when right limb lameness was induced). The mid-pelvis was lowered more during the sound limb stance phase and lowered and lifted less during the lame limb stance phase in supporting hind limb lameness (PDmin: 1mm in dogs when sound, -10.1mm in left limb lameness and 8.4mm in right limb lameness). The hip of the lame side, measured at the level of the greater trochanter, had an increased downwards displacement during the lame limb swing phase (-21mm in left hind limb lameness, P=0.005; 23.4mm in right hind limb lameness, P=0.007). Asymmetry in the lowering of the head or mid-pelvis is a more sensitive indicator of supporting forelimb and hind limb lameness, respectively, than asymmetry in the raising of the head. Increased displacement of the hip ('hip drop' of the lame side during its swing phase) is a good indicator of hind limb lameness in dogs. Copyright © 2017. Published by Elsevier Ltd.

  2. RESIDUAL LIMB VOLUME CHANGE: SYSTEMATIC REVIEW OF MEASUREMENT AND MANAGEMENT

    PubMed Central

    Sanders, JE; Fatone, S

    2014-01-01

    Management of residual limb volume affects decisions regarding timing of fit of the first prosthesis, when a new prosthetic socket is needed, design of a prosthetic socket, and prescription of accommodation strategies for daily volume fluctuations. The purpose of this systematic review was to assess what is known about measurement and management of residual limb volume change in persons with lower-limb amputation. Publications that met inclusion criteria were grouped into three categories: (I) descriptions of residual limb volume measurement techniques; (II) studies on people with lower-limb amputation investigating the effect of residual limb volume change on clinical care; and (III) studies of residual limb volume management techniques or descriptions of techniques for accommodating or controlling residual limb volume. The review showed that many techniques for the measurement of residual limb volume have been described but clinical use is limited largely because current techniques lack adequate resolution and in-socket measurement capability. Overall, there is limited evidence regarding the management of residual limb volume, and the evidence available focuses primarily on adults with trans-tibial amputation in the early post-operative phase. While we can draw some insights from the available research about residual limb volume measurement and management, further research is required. PMID:22068373

  3. [Venous tone of the limbs. Methods and comparison of 2 areas].

    PubMed

    Journo, H; London, G; Pannier, B; Safar, M

    1989-07-01

    The limb venous tone, index of local venous compliance, was studied with mercury strain gauge plethysmography on 28 male normal subjects (40 +/- 17 years, +/- SD) simultaneously on upper and lower limbs. Measurements were done after 20 mn rest in supine position. Venous tone (VT) equals the slope of the pressure-volume curve established by simultaneous recording of the forearm and calf relative volumes for successive steps of pressure lower than or equal to 30 mmHg. Limb venous capacitance was expressed by means of the maximal limb relative volume (V30) reached for a pressure of 30 mmHg applied through cuffs in standardized conditions. The upper limb venous tone was greater than the lower limb venous tone: 24.3 +/- 8.2 mmHg/ml/100 vs 17.5 +/- 7.9 mmHg/ml/100, p = 0.001. V30 was greater in lower limb than in upper limb: 1.5 +/- 0.5 ml/100 vs 1.1 +/- 0.4 ml/100, p = 0.001. In conclusion, it appears that upper and lower limbs venous distensibility and capacitance are different. They are greater in the lower limb in baseline conditions. Thus simultaneous studies of both these limb venous systems seems important for physiological experiments because of their baseline differences.

  4. Upper limb injury in rugby union football: results of a cohort study.

    PubMed

    Usman, Juliana; McIntosh, Andrew Stuart

    2013-04-01

    There have been few in-depth studies of upper limb injury epidemiology in rugby union football, despite reports that they accounted for between 14% and 28% of all rugby injuries. To report on upper limb injury incidence, injury severity and to identify the risk factors associated with upper limb injuries, for example, level of play, season (years) and playing position. Prospective cohort study across five rugby seasons from 2004 to 2008. Formal rugby competitions-suburban, provincial and international. 1475 adult male rugby players in Colts, Grade and Elite competitions. An upper limb injury resulting in a missed game and its characteristics. A total of 61 598 athletic exposures (AE) and 606 upper limb injuries were recorded. About 66% of the injuries were to the shoulder. The overall upper limb injury incidence rate (IIR) was 9.84 injuries/1000 AE (95% CI 9.06 to 10.62). Statistically significant associations were found between upper limb injuries and level of play; and between shoulder injuries and playing position (p<0.05). No association was found between upper limb and shoulder injuries and study year. The overall upper limb IIR decreased as the level of play increased; 10.74 upper limb injuries/1000 AE (95% CI 9.93 to 11.56) in Colts to 6.07 upper limb injuries/1000 AE (95% CI 5.46 to 6.69) in Elite. The upper limb IIR decreased as the level of play increased indicating that age, level of skill and playing experience may be risk factors for upper limb injury.

  5. The Effect of Sliding Humeral Osteotomy (SHO) on Frontal Plane Thoracic Limb Alignment: An Ex Vivo Canine Cadaveric Study.

    PubMed

    Breiteneicher, Adam H; Norby, Bo; Schulz, Kurt S; Kerwin, Sharon C; Hulse, Don A; Fox, Derek B; Saunders, W Brian

    2016-11-01

    To determine the effect of sliding humeral osteotomy (SHO) on frontal plane thoracic limb alignment in standing and recumbent limb positions. Canine cadaveric study. Canine thoracic limbs (n=15 limb pairs). Limbs acquired from healthy Labrador Retrievers euthanatized for reasons unrelated to this study were mounted in a limb press and aligned in a standing position followed by axial loading at 30% body weight. Frontal plane radiography was performed in standing and recumbent positions pre- and post-SHO. In the standing position, lateralization of the foot was measured pre- and post-SHO using a textured grid secured to the limb press base plate. Twelve thoracic limb alignment values (mean ± SD and 95% CI) were determined using the center of rotation of angulation (CORA) method were compared using linear mixed models to determine if significant differences existed between limb alignment values pre- or post-SHO, controlling for dog, limb, and limb position. Six of 12 standing or recumbent alignment values were significantly different pre- and post-SHO. SHO resulted in decreased mechanical lateral distal humeral angle and movement of the mechanical humeral radio-ulnar angle, radio-ulnar metacarpal angle, thoracic humeral angle, and elbow mechanical axis deviation toward coaxial limb alignment. In the standing position, the foot underwent significant lateralization post-SHO. SHO resulted in significant alteration in frontal plane thoracic limb alignment. Additional studies are necessary to determine if the changes reported using our ex vivo model occur following SHO in vivo. © Copyright 2016 by The American College of Veterinary Surgeons.

  6. Phosphorylation of Lbx1 controls lateral myoblast migration into the limb.

    PubMed

    Masselink, Wouter; Masaki, Megumi; Sieiro, Daniel; Marcelle, Christophe; Currie, Peter D

    2017-10-15

    The migration of limb myogenic precursors from limb level somites to their ultimate site of differentiation in the limb is a paradigmatic example of a set of dynamic and orchestrated migratory cell behaviours. The homeobox containing transcription factor ladybird homeobox 1 (Lbx1) is a central regulator of limb myoblast migration, null mutations of Lbx1 result in severe disruptions to limb muscle formation, particularly in the distal region of the limb in mice (Gross et al., 2000). As such Lbx1 has been hypothesized to control lateral migration of myoblasts into the distal limb anlage. It acts as a core regulator of the limb myoblast migration machinery, controlled by Pax3. A secondary role for Lbx1 in the differentiation and commitment of limb musculature has also been proposed (Brohmann et al., 2000; Uchiyama et al., 2000). Here we show that lateral migration, but not differentiation or commitment of limb myoblasts, is controlled by the phosphorylation of three adjacent serine residues of LBX1. Electroporation of limb level somites in the chick embryo with a dephosphomimetic form of Lbx1 results in a specific defect in the lateral migration of limb myoblasts. Although the initial delamination and migration of myoblasts is unaffected, migration into the distal limb bud is severely disrupted. Interestingly, myoblasts undergo normal differentiation independent of their migratory status, suggesting that the differentiation potential of hypaxial muscle is not regulated by the phosphorylation state of LBX1. Furthermore, we show that FGF8 and ERK mediated signal transduction, both critical regulators of the developing limb bud, have the capacity to induce the phosphorylation of LBX1 at these residues. Overall, this suggests a mechanism whereby the phosphorylation of LBX1, potentially through FGF8 and ERK signalling, controls the lateral migration of myoblasts into the distal limb bud. Copyright © 2017. Published by Elsevier Inc.

  7. Is Atherectomy the Best First-Line Therapy for Limb Salvage in Patients With Critical Limb Ischemia?

    PubMed Central

    Loor, Gabriel; Skelly, Christopher L.; Wahlgren, Carl-Magnus; Bassiouny, Hisham S.; Piano, Giancarlo; Shaalan, Wael

    2010-01-01

    Objective To determine the efficacy of atherectomy for limb salvage compared with open bypass in patients with critical limb ischemia. Methods Ninety-nine consecutive bypass and atherectomy procedures performed for critical limb ischemia between January 2003 and October 2006 were reviewed. Results A total of 99 cases involving TASC C (n = 43, 44%) and D (n = 56, 56%) lesions were treated with surgical bypass in 59 patients and atherectomy in 33 patients. Bypass and atherectomy achieved similar 1-year primary patency (64% vs 63%; P = .2). However, the 1-year limb salvage rate was greater in the bypass group (87% vs 69%; P = .004). In the tissue loss subgroup, there was a greater limb salvage rate for bypass patients versus atherectomy (79% vs 60%; P = .04). Conclusions Patients with critical limb ischemia may do better with open bypass compared with atherectomy as first-line therapy for limb salvage. PMID:19640919

  8. Functional specialisation of pelvic limb anatomy in horses (Equus caballus)

    PubMed Central

    Payne, RC; Hutchinson, JR; Robilliard, JJ; Smith, NC; Wilson, AM

    2005-01-01

    We provide quantitative anatomical data on the muscle–tendon units of the equine pelvic limb. Specifically, we recorded muscle mass, fascicle length, pennation angle, tendon mass and tendon rest length. Physiological cross sectional area was then determined and maximum isometric force estimated. There was proximal-to-distal reduction in muscle volume and fascicle length. Proximal limb tendons were few and, where present, were relatively short. By contrast, distal limb tendons were numerous and long in comparison to mean muscle fascicle length, increasing potential for elastic energy storage. When compared with published data on thoracic limb muscles, proximal pelvic limb muscles were larger in volume and had shorter fascicles. Distal limb muscle architecture was similar in thoracic and pelvic limbs with the exception of flexor digitorum lateralis (lateral head of the deep digital flexor), the architecture of which was similar to that of the pelvic and thoracic limb superficial digital flexors, suggesting a functional similarity. PMID:15960766

  9. Developmental origin of limb size variation in lizards.

    PubMed

    Andrews, Robin M; Skewes, Sable A

    2017-05-01

    In many respects, reptile hatchlings are fully functional, albeit miniature, adults. This means that the adult morphology must emerge during embryonic development. This insight emphasizes the connection between the mechanisms that generate phenotypic variation during embryonic development and the action of selection on post-hatching individuals. To determine when species-specific differences in limb and tail lengths emerge during embryonic development, we compared allometric patterns of early limb growth of four distantly related species of lizards. The major questions addressed were whether early embryonic limb and tail growth is characterized by the gradual (continuous allometry) or by the abrupt emergence (transpositional allometry) of size differences among species. Our observations supported transpositional allometry of both limbs and tails. Species-specific differences in limb and tail length were exhibited when limb and tail buds first protruded from the body wall. Genes known to be associated with early limb development of tetrapods are obvious targets for studies on the genetic mechanisms that determine interspecific differences in relative limb length. Broadly comparative studies of gene regulation would facilitate understanding of the mechanisms underlying adaptive variation in limb size, including limb reduction and loss, of squamate reptiles. © 2017 Wiley Periodicals, Inc.

  10. An attempt to detect lameness in galloping horses by use of body-mounted inertial sensors.

    PubMed

    Lopes, Marco A F; Dearo, Antonio C O; Lee, Allen; Reed, Shannon K; Kramer, Joanne; Pai, P Frank; Yonezawa, Yoshiharu; Maki, Hiromitchi; Morgan, Terry L; Wilson, David A; Keegan, Kevin G

    2016-10-01

    OBJECTIVE To evaluate head, pelvic, and limb movement to detect lameness in galloping horses. ANIMALS 12 Thoroughbreds. PROCEDURES Movement data were collected with inertial sensors mounted on the head, pelvis, and limbs of horses trotting and galloping in a straight line before and after induction of forelimb and hind limb lameness by use of sole pressure. Successful induction of lameness was determined by measurement of asymmetric vertical head and pelvic movement during trotting. Differences in gallop strides before and after induction of lameness were evaluated with paired-sample statistical analysis and neural network training and testing. Variables included maximum, minimum, range, and time indices of vertical head and pelvic acceleration, head rotation in the sagittal plane, pelvic rotation in the frontal plane, limb contact intervals, stride durations, and limb lead preference. Difference between median standardized gallop strides for each limb lead before and after induction of lameness was calculated as the sum of squared differences at each time index and assessed with a 2-way ANOVA. RESULTS Head and pelvic acceleration and rotation, limb timing, stride duration measurements, and limb lead preference during galloping were not significantly different before and after induction of lameness in the forelimb or hind limb. Differences between limb leads before induction of lameness were similar to or greater than differences within limb leads before and after lameness induction. CONCLUSIONS AND CLINICAL RELEVANCE Galloping horses maintained asymmetry of head, pelvic, and limb motion between limb leads that was unrelated to lameness.

  11. Does a balance deficit persist in Australian Football players with previous lower limb ligament injury?

    PubMed

    Hrysomallis, C; McLaughlin, P; Goodman, C

    2005-03-01

    A history of lower limb ligament injury is a commonly-cited risk factor for another similar injury. During the acute phase of injury, there is a balancing skill deficit in the injured limb. It has been unclear as to whether this deficit persists in the medium-to-long term for previously injured Australian footballers, contributing to the risk of re-injury. This study compared the balance ability of footballers with and without previous lower limb ligament injury and, for previously injured players, the balance ability of the previously injured limb to the opposite uninjured limb. A total of 216 players from 6 teams from the Australian Football League were tested. The balance task comprised stepping on to a foam mat on top of a force plate and maintaining one-legged balance. The subjects were divided into 4 groups based on their injury history: all ankle injuries to only one limb, recent ankle injuries to only one limb (within the last 12 months), knee ligament injury only to one limb, and no previous ankle or knee ligament injury. Statistical analysis revealed that there was no significant difference between the balance scores of any of the previously injured players and those with no previous lower limb ligament injury. There was no significant difference between the balance score of the previously injured limb with the opposite uninjured limb. It appears that a balance deficit does not persist in Australian Football players with previous lower limb ligament injury.

  12. Long-term outcome of dogs treated with ulnar rollover transposition for limb-sparing of distal radial osteosarcoma: 27 limbs in 26 dogs.

    PubMed

    Séguin, Bernard; O'Donnell, Matthew D; Walsh, Peter J; Selmic, Laura E

    2017-10-01

    To determine outcomes in dogs with distal radial osteosarcoma treated with ulnar rollover transposition (URT) limb-sparing surgery including: viability of the ulnar graft, complications, subjective limb function, disease-free interval (DFI), and survival time (ST). Retrospective case series. Twenty-six client-owned dogs with distal radial osteosarcoma and no involvement of the ulna. Data of dogs treated with URT were collected at the time of surgery and retrospectively from medical records and by contacting owners and referring veterinarians. URT technique was performed on 27 limbs in 26 dogs. The ulnar graft was determined to be viable in 17 limbs, nonviable in 3, and unknown in 7. Complications occurred in 20 limbs. Infection was diagnosed in 12 limbs. Biomechanical complications occurred in 15 and local recurrence in 2 limbs. Limb function graded by veterinarians or owners was poor in 2 limbs, fair in 4, good in 14, excellent in 3, and unknown in 4. Median DFI was 245 days and median ST was 277 days. The URT technique maintained the viability of the ulnar graft. The complication rate was high but limb function appeared acceptable. Although sufficient length of the distal aspect of the ulna must be preserved to perform this technique, local recurrence was not increased compared to other limb-sparing techniques when cases were appropriately selected. © 2017 The American College of Veterinary Surgeons.

  13. Engaging cervical spinal cord networks to re-enable volitional control of hand function in tetraplegic patients

    PubMed Central

    Lu, Daniel C.; Edgerton, V. Reggie; Modaber, Morteza; AuYong, Nicholas; Morikawa, Erika; Zdunowski, Sharon; Sarino, Melanie E.; Nuwer, Marc R.; Roy, Roland R.; Gerasimenko, Yury

    2016-01-01

    Background Paralysis of the upper-limbs from spinal cord injury results in an enormous loss of independence in an individual’s daily life. Meaningful improvement in hand function is rare after one year of tetraparesis. Therapeutic developments that result in even modest gains in hand volitional function will significantly impact the quality of life for patients afflicted with high cervical injury. The ability to neuromodulate the lumbosacral spinal circuitry via epidural stimulation in regaining postural function and volitional control of the legs has been recently shown. A key question is whether a similar neuromodulatory strategy can be used to improve volitional motor control of the upper-limbs, i.e., performance of motor tasks considered to be less “automatic” than posture and locomotion. In this study, the effects of cervical epidural stimulation on hand function are characterized in subjects with chronic cervical cord injury. Objective Herein we show that epidural stimulation can be applied to the chronic injured human cervical spinal cord to promote volitional hand function. Methods and results Two subjects implanted with an cervical epidural electrode array demonstrated improved hand strength (approximately three-fold) and volitional hand control in the presence of epidural stimulation. Conclusions The present data are sufficient to suggest that hand motor function in individuals with chronic tetraplegia can be improved with cervical cord neuromodulation and thus should be comprehensively explored as a possible clinical intervention. PMID:27198185

  14. Tomographic sensing and localization of fluorescently labeled circulating cells in mice in vivo

    NASA Astrophysics Data System (ADS)

    Zettergren, Eric; Swamy, Tushar; Runnels, Judith; Lin, Charles P.; Niedre, Mark

    2012-07-01

    Sensing and enumeration of specific types of circulating cells in small animals is an important problem in many areas of biomedical research. Microscopy-based fluorescence in vivo flow cytometry methods have been developed previously, but these are typically limited to sampling of very small blood volumes, so that very rare circulating cells may escape detection. Recently, we described the development of a ‘diffuse fluorescence flow cytometer’ (DFFC) that allows sampling of much larger blood vessels and therefore circulating blood volumes in the hindlimb, forelimb or tail of a mouse. In this work, we extend this concept by developing and validating a method to tomographically localize circulating fluorescently labeled cells in the cross section of a tissue simulating optical flow phantom and mouse limb. This was achieved using two modulated light sources and an array of six fiber-coupled detectors that allowed rapid, high-sensitivity acquisition of full tomographic data sets at 10 Hz. These were reconstructed into two-dimensional cross-sectional images using Monte Carlo models of light propagation and the randomized algebraic reconstruction technique. We were able to obtain continuous images of moving cells in the sample cross section with 0.5 mm accuracy or better. We first demonstrated this concept in limb-mimicking optical flow photons with up to four flow channels, and then in the tails of mice with fluorescently labeled multiple myeloma cells. This approach increases the overall diagnostic utility of our DFFC instrument.

  15. Familial Isolated Clubfoot Is Associated with Recurrent Chromosome 17q23.1q23.2 Microduplications Containing TBX4

    PubMed Central

    Alvarado, David M.; Aferol, Hyuliya; McCall, Kevin; Huang, Jason B.; Techy, Matthew; Buchan, Jillian; Cady, Janet; Gonzales, Patrick R.; Dobbs, Matthew B.; Gurnett, Christina A.

    2010-01-01

    Clubfoot is a common musculoskeletal birth defect for which few causative genes have been identified. To identify the genes responsible for isolated clubfoot, we screened for genomic copy-number variants with the Affymetrix Genome-wide Human SNP Array 6.0. A recurrent chromosome 17q23.1q23.2 microduplication was identified in 3 of 66 probands with familial isolated clubfoot. The chromosome 17q23.1q23.2 microduplication segregated with autosomal-dominant clubfoot in all three families but with reduced penetrance. Mild short stature was common and one female had developmental hip dysplasia. Subtle skeletal abnormalities consisted of broad and shortened metatarsals and calcanei, small distal tibial epiphyses, and thickened ischia. Several skeletal features were opposite to those described in the reciprocal chromosome 17q23.1q23.2 microdeletion syndrome associated with developmental delay and cardiac and limb abnormalities. Of note, during our study, we also identified a microdeletion at the locus in a sibling pair with isolated clubfoot. The chromosome 17q23.1q23.2 region contains the T-box transcription factor TBX4, a likely target of the bicoid-related transcription factor PITX1 previously implicated in clubfoot etiology. Our result suggests that this chromosome 17q23.1q23.2 microduplication is a relatively common cause of familial isolated clubfoot and provides strong evidence linking clubfoot etiology to abnormal early limb development. PMID:20598276

  16. An Advanced SAGE III Instrument on the International Space Station

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.; Zawodny, J. M.

    2016-12-01

    An improved and more capable SAGE III instrument is scheduled to be launched in November 2016 to the International Space Station. It will combine the experience and capabilities of its successful predecessor satellite instruments SAM II, SAGE, SAGE II, and SAGE III-Meteor to measure aerosol, cloud, O3, H2O, and NO2 profiles from the upper troposphere through the stratosphere. In addition to solar and lunar occultation with vertical resolutions of about 1.0 km, SAGE III-ISS will make limb scattering measurements on the solar side of each orbit greatly expanding the measurement coverage per spacecraft orbit, and tying in the very high resolution and precise solar occultation measurements with the limb scattering measurements. The new design incorporates an array detector that enhances its measurement capability and should allow for experimental data products like BrO, and IO, and along with a single photodiode detector the measurement of larger aerosols. The wavelengths covered by SAGE III-ISS range from 280 to 1040 nm with 1 to 2 mm spectral resolution using a grating spectrometer. The single photodiode extends measurements to 1550 nm. This talk will describe the measurement capabilities of SAGE III, its additional modes and increased geographical coverage, its calibration and characterization, and data archival and validation approach. In addition, examples of past data products important to climate, and ozone recovery, will be discussed as will the expanded contributions from SAGE III-ISS.

  17. Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, H.; Kino, M.; Fujita, Y.

    2017-11-01

    We present Very Long Baseline Array polarimetric observations of the innermost jet of 3C 84 (NGC 1275) at 43 GHz. A significant polarized emission is detected at the hotspot of the innermost restarted jet, which is located 1 pc south from the radio core. While the previous report presented a hotspot at the southern end of the western limb, the hotspot location has been moved to the southern end of the eastern limb. Faraday rotation is detected within an entire bandwidth of the 43 GHz band. The measured rotation measure (RM) is at most (6.3 ± 1.9) × 10{sup 5}more » rad m{sup −2} and might be slightly time variable on the timescale of a month by a factor of a few. Our measured RM and the RM previously reported by the CARMA and SMA observations cannot be consistently explained by the spherical accretion flow with a power-law profile. We propose that a clumpy/inhomogeneous ambient medium is responsible for the observed RM. Using an equipartition magnetic field, we derive the electron density of 2 × 10{sup 4} cm{sup −3}. Such an electron density is consistent with the cloud of the narrow line emission region around the central engine. We also discuss the magnetic field configuration from the black hole scale to the parsec scale and the origin of low polarization.« less

  18. SAGE III on the International Space Station

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.; Damadeo, R. P.; Hill, C. A.

    2017-12-01

    A much-improved Stratospheric Aerosol and Gas Experiment (SAGE III) instrument was launched on February 19, 2017 from NASA's Kennedy Space Center aboard the SpaceX CRS-10 Dragon Spacecraft. It subsequently docked with the International Space Station (ISS), completed commissioning on July 1, 2017, and is now in its Mission Operations phase. SAGE III-ISS will combine the experience and capabilities of its successful predecessor satellite instruments SAM II, SAGE, SAGE II, and SAGE III-Meteor-3M to measure aerosol, cloud, O3, H2O, and NO2 profiles from the upper troposphere through the stratosphere. In addition to solar and lunar occultation with vertical resolutions of about 1.0 km, SAGE III-ISS will make limb scattering measurements on the solar side of each orbit greatly expanding the measurement coverage per spacecraft orbit, and tie the very high resolution and precise solar occultation measurements with the limb scattering measurements. The programmable readout array detector enhances its measurement capability and should allow for experimental data products like BrO, and IO, and along with a single photodiode detector, the measurement of larger aerosols. The wavelengths covered by SAGE III-ISS range from 280 to 1050 nm with 1 to 2 nm spectral resolution using a grating spectrometer. The single photodiode extends measurements to 1550 nm. This talk will describe the measurement capabilities of SAGE III, and include early data and validation examples, its additional modes and increased geographical coverage, its calibration and characterization, and data archival and validation approach.

  19. Trunk and Shank Position Influences Patellofemoral Joint Stress in the Lead and Trail Limbs During the Forward Lunge Exercise.

    PubMed

    Hofmann, Cory L; Holyoak, Derek T; Juris, Paul M

    2017-01-01

    Study Design Controlled laboratory study, repeated-measures design. Background The effects of trunk and shank position on patellofemoral joint stress of the lead limb have been well studied; however, the effects on the trail limb are not well understood. Objectives To test the hypothesis that trunk and shank position may influence patellofemoral joint stress in both limbs during the forward lunge exercise. Methods Patellofemoral kinetics were quantified from 18 healthy participants performing the lunge exercise with different combinations of trunk and shank positions (vertical or forward). A 2-by-3 (limb-by-lunge variation) repeated-measures analysis of variance was performed, using paired t tests for post hoc comparisons. Results The trail limb experienced greater total patellofemoral joint stress relative to the lead limb, regardless of trunk and shank position (P<.0001). The lunge variation with a vertical shank position resulted in significantly greater peak patellofemoral joint stress in the trail limb relative to the lead limb (P<.0001). A forward trunk and shank position resulted in the highest patellofemoral stress in the lead limb (P<.0001). Conclusion Trunk and shank positions have a significant influence on patellofemoral joint loading of both limbs during the forward lunge, with the trail limb generally experiencing greater total joint stress. Restricting forward translation of the lead-limb shank may reduce patellofemoral joint stress at the expense of increased stress in the trail limb. Technique recommendations should consider the demands imposed on both knees during this exercise. J Orthop Sports Phys Ther 2017;47(1):31-40. Epub 4 Nov 2016. doi:10.2519/jospt.2017.6336.

  20. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.

    PubMed

    Abdulhasan, Zahraa M; Scally, Andy J; Buckley, John G

    2018-05-30

    Walking down ramps is a demanding task for transfemoral-amputees and terminating gait on ramps is even more challenging because of the requirement to maintain a stable limb so that it can do the necessary negative mechanical work on the centre-of-mass in order to arrest (dissipate) forward/downward velocity. We determined how the use of a microprocessor-controlled limb system (simultaneous control over hydraulic resistances at ankle and knee) affected the negative mechanical work done by each limb when transfemoral-amputees terminated gait during ramp descent. Eight transfemoral-amputees completed planned gait terminations (stopping on prosthesis) on a 5-degree ramp from slow and customary walking speeds, with the limb's microprocessor active or inactive. When active the limb operated in its 'ramp-descent' mode and when inactive the knee and ankle devices functioned at constant default levels. Negative limb work, determined as the integral of the negative mechanical (external) limb power during the braking phase, was compared across speeds and microprocessor conditions. Negative work done by each limb increased with speed (p < 0.001), and on the prosthetic limb it was greater when the microprocessor was active compared to inactive (p = 0.004). There was no change in work done across microprocessor conditions on the intact limb (p = 0.35). Greater involvement of the prosthetic limb when the limb system was active indicates its ramp-descent mode effectively altered the hydraulic resistances at the ankle and knee. Findings highlight participants became more assured using their prosthetic limb to arrest centre-of-mass velocity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Surgical Tourniquets in Orthopaedics

    DTIC Science & Technology

    2009-12-01

    occlusion pressure and the ratio of the cuff width to the limb circumference23. This relationship is shown in Figure 4, indicating that, for a given limb...measured limb occlusion pressure to account for physiologic Fig. 3 a: A normal node of Ranvier of a nerve in a limb, showing a nodal gap 1 to 2 mm in ...limb occlusion pressure an additional pressure safety margin that is selected to be greater than the magnitude of any increase in limb occlusion

  2. Energetic benefits and adaptations in mammalian limbs: Scale effects and selective pressures.

    PubMed

    Kilbourne, Brandon M; Hoffman, Louwrens C

    2015-06-01

    Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomotor costs with increasing limb length. Whole fore- and hindlimb inertial properties reflecting limb size and shape-moment of inertia (MOI), mass, mass distribution, and natural frequency-were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass-specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  3. Assessment of copy number variations in 120 patients with Poland syndrome.

    PubMed

    Vaccari, Carlotta Maria; Tassano, Elisa; Torre, Michele; Gimelli, Stefania; Divizia, Maria Teresa; Romanini, Maria Victoria; Bossi, Simone; Musante, Ilaria; Valle, Maura; Senes, Filippo; Catena, Nunzio; Bedeschi, Maria Francesca; Baban, Anwar; Calevo, Maria Grazia; Acquaviva, Massimo; Lerone, Margherita; Ravazzolo, Roberto; Puliti, Aldamaria

    2016-11-25

    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown. To investigate the prevalence of chromosomal imbalances in PS, standard cytogenetic and array-CGH analyses were performed in 120 PS patients. Following the application of stringent filter criteria, 14 rare copy number variations (CNVs) were identified in 14 PS patients in different regions outside known common copy number variations: seven genomic duplications and seven genomic deletions, enclosing the two previously reported PS associated chromosomal deletions. These CNVs ranged from 0.04 to 4.71 Mb in size. Bioinformatic analysis of array-CGH data indicated gene enrichment in pathways involved in cell-cell adhesion, DNA binding and apoptosis processes. The analysis also provided a number of candidate genes possibly causing the developmental defects observed in PS patients, among others REV3L, a gene coding for an error-prone DNA polymerase previously associated with Möbius Syndrome with variable phenotypes including pectoralis muscle agenesis. A number of rare CNVs were identified in PS patients, and these involve genes that represent candidates for further evaluation. Rare inherited CNVs may contribute to, or represent risk factors of PS in a multifactorial mode of inheritance.

  4. Gender differences in asymmetrical limb support patterns between subjects with and without recurrent low back pain.

    PubMed

    Sung, Paul S; Zipple, J Tim; Danial, Pamela

    2017-04-01

    New insight regarding limb-dominance effects on temporal-spatial gait parameters is needed to further investigate subjects with recurrent low back pain (LBP). Although an asymmetrical gait pattern was found to reflect natural functional differences, there is a lack of information regarding gender differences on dominant limb support patterns in subjects with LBP. The purpose of this study was to investigate temporal-spatial gait parameters based on limb dominance and gender between subjects with and without LBP. One hundred and ten right limb dominant older adults (51 subjects with LBP and 59 control subjects) participated in the study. A three-dimensional motion capture system was utilized to measure temporal-spatial gait parameters, including initial double, single, and terminal double limb support times and walking speed. The gender differences between subjects with and without LBP were analyzed based on dominance for those parameters. Overall, limb dominance demonstrated significant differences on single and terminal double limb support times as well as walking speed. Limb dominance also demonstrated interactions on group x gender for single limb support time and walking speed. The male subjects with LBP demonstrated significantly increased single limb support times on the non-dominant limb. The significant gender and group interactions based on limb dominance account for a possible pain avoidance, asymmetrical limb support pattern. The causal pathway in dominance dependency gait by unweighted ambulation might be considered as an intervention for correcting these gait deviations in subjects with LBP. The specific modification recovery profiles of the subjects with LBP could shed light on variability of current LBP experiences of the subjects and reasons for gait deviations. Clinicians need to consider the mechanism of dominant limb dependency, which requires postural control strategies in male subjects with recurrent LBP. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Customization of biliopancreatic limb length to modulate and sustain antidiabetic effect of gastric bypass surgery.

    PubMed

    Pal, A; Rhoads, D B; Tavakkoli, A

    2018-02-01

    Although Roux-en-Y Gastric Bypass (RYGB) remains the most effective treatment for obesity and type 2 diabetes (T2D), many patients fail to achieve remission, or relapse. Increasing intestinal limb lengths of RYGB may improve outcomes, but the mechanistic basis for this remains unclear. We hypothesize biliopancreatic (BP) limb length modulates the antidiabetic effect of RYGB. Rats underwent RYGB with a 20-cm (RYGB-20cm) or 40-cm (RYGB-40cm) BP limb and were compared with control animals. After 2 and 4 wk, portal and systemic blood was sampled during intestinal glucose infusion. Portosystemic gradient was used to calculate intestinal glucose utilization (G util ), absorption (G absorp ), and hormone secretion. Intestinal morphology and gene expression were assessed. At 2 wk, G absorp progressively decreased with increasing BP limb length; this pattern persisted at 4 wk. G util increased ≈70% in both RYGB-20cm and -40cm groups at 2 wk. At 4 wk, G util progressively increased with limb length. Furthermore, Roux limb weight, and expression of hexokinase and preproglucagon, exhibited a similar progressive increase. At 4 wk, glucagon-like peptide-1 and -2 levels were higher after RYGB-40cm, with associated increased secretion. We conclude that BP limb length modulates multiple antidiabetic mechanisms, analogous to the dose-response relationship of a drug. Early postoperatively, a longer BP limb reduces G absorp . Later, G util , Roux limb hypertrophy, hormone secretion, and hormone levels are increased with longer BP limb. Sustained high incretin levels may prevent weight regain and T2D relapse. These data provide the basis for customizing BP limb length according to patient characteristics and desired metabolic effect. NEW & NOTEWORTHY Biliopancreatic limb length in gastric bypass modulates multiple antidiabetic mechanisms, analogous to the dose-response relationship of a drug. With a longer biliopancreatic limb, Roux limb hypertrophy, increased glucose utilization, reduced glucose absorption, and sustained high incretin levels may prevent weight regain and diabetes relapse.

  6. Apparatus for determining changes in limb volume

    NASA Technical Reports Server (NTRS)

    Bhagat, P. K.; Wu, V. C. (Inventor)

    1981-01-01

    Measuring apparatus for determining changes in the volume of limbs or other boty extremities by determining the cross-sectional area of such limbs many comprise a transmitter including first and second transducers for positioning on the surface of the limb at a predetermined distance there between, and a receiver including a receiver crystal for positioning on the surface of the limb. The distance between the receiver crystal and the first and second transducers are represented by respective first and second chords of the cross-section of the limb and the predetermined distance between the first and second transducers is represented by a third chord of the limb cross section.

  7. The Floating Upper Limb: Multiple Injuries Involving Ipsilateral, Proximal, Humeral, Supracondylar, and Distal Radial Limb

    PubMed Central

    Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A.

    2016-01-01

    Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation. PMID:27583121

  8. The Floating Upper Limb: Multiple Injuries Involving Ipsilateral, Proximal, Humeral, Supracondylar, and Distal Radial Limb.

    PubMed

    Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A; Danish, Qazi

    2016-09-01

    Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation.

  9. Suppression of morphogenesis in embryonic mouse limbs exposed in vitro to excess gravity

    NASA Technical Reports Server (NTRS)

    Duke, Jackie C.

    1983-01-01

    The effect of excess gravity on in vitro mammalian limb chondrogenesis is studied. Limb buds from mice of various gestational stages were exposed to excess gravity (2.6G) using a culture centrifuge. Both forelimbs and hind limbs were cultured, and the development of various limb elements was scored after four to six days. The 2.6G force significantly depressed the development of limb elements when applied during the teratogen-sensitive period of chondrogenesis.

  10. Limb length inequality: clinical implications for assessment and intervention.

    PubMed

    Brady, Rebecca J; Dean, John B; Skinner, T Marc; Gross, Michael T

    2003-05-01

    The purpose of this paper is to review relevant literature concerning limb length inequalities in adults and to make recommendations for assessment and intervention based on the literature and our own clinical experience. Literature searches were conducted in the MEDLINE, PubMed, and CINAHL databases. Limb length inequality and common classification criteria are defined and etiological factors are presented. Common methods of detecting limb length inequality include direct (tape measure methods), indirect (pelvic leveling), and radiological techniques. Interventions include shoe inserts or external shoe lift therapy for mild cases. Surgery may be appropriate in severe cases. Little agreement exists regarding the prevalence of limb length inequality, the degree of limb length inequality that is considered clinically significant, and the reliability and validity of assessment methods. Based on correlational studies, the relationship between limb length inequality and orthopaedic pathologies is questionable. Stronger support for the link between low back pain (LBP) and limb length inequality is provided by intervention studies. Methods involving palpation of pelvic landmarks with block correction have the most support for clinical assessment of limb length inequality. Standing radiographs are suggested when clinical assessment methods are unsatisfactory. Clinicians should exercise caution when undertaking intervention strategies for limb length inequality of less than 5 mm when limb length inequality has been identified with clinical techniques. Recommendations are provided regarding intervention strategies.

  11. Electromyographic analysis of trunk and hip muscles during resisted lateral band walking.

    PubMed

    Youdas, James W; Foley, Brooke M; Kruger, BreAnna L; Mangus, Jessica M; Tortorelli, Alis M; Madson, Timothy J; Hollman, John H

    2013-02-01

    The purpose of this study was to simultaneously quantify bilateral activation/recruitment levels (% maximum voluntary isometric contraction [MVIC]) for trunk and hip musculature on both moving and stance lower limbs during resisted lateral band walking. Differential electromyographic (EMG) activity was recorded in neutral, internal, and external hip rotation in 21 healthy participants. EMG signals were collected with DE-3.1 double-differential surface electrodes at a sampling frequency of 1,000 Hz during three consecutive lateral steps. Gluteus medius average EMG activation was greater (p = 0.001) for the stance limb (52 SD 18% MVIC) than moving limb (35 SD 16% MVIC). Gluteus maximus EMG activation was greater (p = 0.002) for the stance limb (19 SD 13% MVIC) than moving limb (13 SD 9% MVIC). Erector spinae activation was greater (p = 0.007) in hip internal rotation (30 SD 13% MVIC) than neutral rotation (26 SD 10% MVIC) and the moving limb (31 SD 15% MVIC) was greater (p = 0.039) than the stance limb (23 SD 11% MVIC). Gluteus medius and maximus muscle activation were greater on the stance limb than moving limb during resisted lateral band walking. Therefore, clinicians may wish to consider using the involved limb as the stance limb during resisted lateral band walking exercise.

  12. Society for Vascular Surgery Wound, Ischemia, foot Infection (WIfI) score correlates with the intensity of multimodal limb treatment and patient-centered outcomes in patients with threatened limbs managed in a limb preservation center.

    PubMed

    Robinson, William P; Loretz, Lorraine; Hanesian, Colleen; Flahive, Julie; Bostrom, John; Lunig, Nicholas; Schanzer, Andres; Messina, Louis

    2017-08-01

    The Society for Vascular Surgery Wound, Ischemia, foot Infection (WIfI) system aims to stratify threatened limbs according to their anticipated natural history and estimate the likelihood of benefit from revascularization, but whether it accurately stratifies outcomes in limbs undergoing aggressive treatment for limb salvage is unknown. We investigated whether the WIfI stage correlated with the intensity of limb treatment required and patient-centered outcomes. We stratified limbs from a prospectively maintained database of consecutive patients referred to a limb preservation center according to WIfI stage (October 2013-May 2015). Comorbidities, multimodal limb treatment, including foot operations and revascularization, and patient-centered outcomes (wound healing, limb salvage, amputation-free survival, maintenance of ambulatory and independent living status, and mortality) were compared among WIfI stages. Multivariate analysis was performed to identify predictors of wound healing and limb salvage. We identified 280 threatened limbs encompassing all WIfI stages in 257 consecutive patients: stage 1, 48 (17%); stage 2, 67 (24%); stage 3, 64 (23%); stage 4, 83 (30%); and stage 5 (unsalvageable), 18 (6%). Operative foot débridement, minor amputation, and use of revascularization increased with increasing WIfI stage (P ≤ .04). Revascularization was performed in 106 limbs (39%), with equal use of open and endovascular procedures. Over a median follow-up of 209 days (interquartile range, 95, 340) days, 1-year Kaplan-Meier wound healing cumulative incidence was 71%, and the proportion with complete wound healing decreased with increasing WIfI stage. Major amputation was required in 26 stage 1 to 4 limbs (10%). Increasing WIfI stage was associated with decreased 1-year Kaplan-Meier limb salvage (stage 1: 96%, stage 2: 84%, stage 3: 90%, and stage 4: 78%; P = .003) and amputation-free survival (P = .006). Stage 4 WIfI independently predicted amputation (hazard ratio, 12; 95% confidence interval, 1.6-94). Amputation rates in patients with severe Ischemia grade 3 were lower in those who underwent revascularization than in those who did not (14% vs 41%; P = .01) Ambulatory and independent living status at follow-up deteriorated significantly from baseline in stage 4 but not stage 1 to 3 patients. Mortality was not different between WIfI stages. In patients treated aggressively for limb salvage, WIfI stage correlated with intensity of multimodal limb treatment and with limb salvage and patient-centered outcomes at 1 year. Revascularization improved limb salvage in severe ischemia. These data support the Society for Vascular Surgery WIfI system as a powerful tool to risk-stratify patients with threatened limbs and guide treatment. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  13. Spatial Coupling Affects Both Homologous and Non-Homologous Limbs

    ERIC Educational Resources Information Center

    Huh, Carey Y.

    2004-01-01

    The present study examined the interaction between limb movements in space. The amount of interaction was measured by how much moving one limb affected the movement of another limb. Participants were 24 right-handed university students (19 female, mean AGE=19 years). The task was to draw lines with the right hand while moving another limb in lines…

  14. Isolated primary lymphedema tarda of the upper limb.

    PubMed

    Shariati, Farzaneh; Ravari, Hasan; Kazemzadeh, Gholamhossein; Sadeghi, Ramin

    2013-03-01

    Primary lymphedema tarda is considered as a congenital disease with late presentation. Primary lymphedema tarda usually affects lower limbs, and primary lymphedema tarda of the upper limbs usually accompanies lower limb lymphedema. In the current case report, we present an 80-year-old male patient with isolated left upper limb swelling that lymphoscintigraphy imaging proved to be lymphedema.

  15. Evaluation of Limb-Girdle Muscular Dystrophy

    ClinicalTrials.gov

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  16. Probability of Regenerating a Normal Limb After Bite Injury in the Mexican Axolotl (Ambystoma mexicanum).

    PubMed

    Thompson, Sierra; Muzinic, Laura; Muzinic, Christopher; Niemiller, Matthew L; Voss, S Randal

    2014-06-01

    Multiple factors are thought to cause limb abnormalities in amphibian populations by altering processes of limb development and regeneration. We examined adult and juvenile axolotls ( Ambystoma mexicanum ) in the Ambystoma Genetic Stock Center (AGSC) for limb and digit abnormalities to investigate the probability of normal regeneration after bite injury. We observed that 80% of larval salamanders show evidence of bite injury at the time of transition from group housing to solitary housing. Among 717 adult axolotls that were surveyed, which included solitary-housed males and group-housed females, approximately half presented abnormalities, including examples of extra or missing digits and limbs, fused digits, and digits growing from atypical anatomical positions. Bite injury likely explains these limb defects, and not abnormal development, because limbs with normal anatomy regenerated after performing rostral amputations. We infer that only 43% of AGSC larvae will present four anatomically normal looking adult limbs after incurring a bite injury. Our results show regeneration of normal limb anatomy to be less than perfect after bite injury.

  17. Limb Dominance and Its Effects on the Benefits of Intralimb Transfer of Learning: A Visuomotor Aiming Task.

    PubMed

    Aiken, Christopher A; Pan, Zhujun; Van Gemmert, Arend W A

    2015-01-01

    Research has attempted to address what characteristics benefit from transfer of learning; however, it is still unclear which characteristics are effector dependent or independent. Furthermore, it is not clear if intralimb transfer shows, similarly to interlimb transfer, an asymmetry of benefits between the upper limbs. The purpose of the current study is to examine if effector independence effects emerge, as observed in interlimb transfer studies, when transfer to new effector group within the same limb occurs, and whether the pattern of intralimb transfer benefits differ between the limbs. Our results suggest that a visuomotor task transfers within both limbs, even though the transfer benefits within the limbs seem to differ. This was supported by more transfer occurring in the dominant limb than the nondominant limb. Potential control mechanisms used for intralimb transfer are discussed.

  18. Movement patterns of limb coordination in infant rolling.

    PubMed

    Kobayashi, Yoshio; Watanabe, Hama; Taga, Gentaro

    2016-12-01

    Infants must perform dynamic whole-body movements to initiate rolling, a key motor skill. However, little is known regarding limb coordination and postural control in infant rolling. To address this lack of knowledge, we examined movement patterns and limb coordination during rolling in younger infants (aged 5-7 months) that had just begun to roll and in older infants (aged 8-10 months) with greater rolling experience. Due to anticipated difficulty in obtaining measurements over the second half of the rolling sequence, we limited our analysis to the first half. Ipsilateral and contralateral limbs were identified on the basis of rolling direction and were classified as either a stationary limb used for postural stability or a moving limb used for controlled movement. We classified the observed movement patterns by identifying the number of stationary limbs and the serial order of combinational limb movement patterns. Notably, older infants performed more movement patterns that involved a lower number of stationary limbs than younger infants. Despite the wide range of possible movement patterns, a small group of basic patterns dominated in both age groups. Our results suggest that the fundamental structure of limb coordination during rolling in the early acquisition stages remains unchanged until at least 8-10 months of age. However, compared to younger infants, older infants exhibited a greater ability to select an effective rotational movement by positioning themselves with fewer stationary limbs and performing faster limb movements.

  19. Limb deficiency and prosthetic management. 2. Aging with limb loss.

    PubMed

    Flood, Katherine M; Huang, Mark E; Roberts, Toni L; Pasquina, Paul F; Nelson, Virginia S; Bryant, Phillip R

    2006-03-01

    This self-directed learning module highlights the issues faced by people aging with limb loss. It is part of the study guide on limb deficiency and vascular rehabilitation in the Self-Directed Physiatric Education Program for practitioners and trainees in physical medicine and rehabilitation. This article specifically focuses on the impact that limb loss has on health and physical function throughout the life span. Case examples are used to illustrate what effect limb loss in childhood or young adulthood has on the incidence and management of new impairments or disease processes commonly associated with aging. To discuss the impact of early-life limb loss on the incidence and management of physiologic and functional changes associated with aging.

  20. Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation

    PubMed Central

    Cortés, Camilo; Ardanza, Aitor; Molina-Rueda, F.; Cuesta-Gómez, A.; Ruiz, Oscar E.

    2014-01-01

    New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation. PMID:25110698

  1. Effects of varying inter-limb spacing to limb length ratio in metachronal swimming

    NASA Astrophysics Data System (ADS)

    Lai, Hong Kuan; Merkel, Rachael; Santhanakrishnan, Arvind

    2016-11-01

    Crustaceans such as shrimp, krill and crayfish swim by rhythmic paddling of four to five pairs of closely spaced limbs. Each pair is phase-shifted in time relative to the neighboring pair, resulting in a metachronal wave that travels in the direction of animal motion. The broad goal of this study is to investigate how the mechanical design of the swimming limbs affect scalability of metachronal swimming in terms of limb-based Reynolds number (Re). A scaled robotic model of metachronal paddling was developed, consisting of four pairs of hinged acrylic plates actuated using stepper motors that were immersed in a rectangular tank containing water-glycerin fluid medium. 2D PIV measurements show that the propulsive jets transition from being primarily horizontal (thrust-producing direction) at Re of order 10 to angled vertically at Re of order 100. The ratio of inter-limb spacing to limb length among metachronal swimming organisms ranges between 0.2 to 0.65. 2D PIV will be used to examine the jets generated between adjacent limbs for varying inter-limb spacing to limb length ratios. The effect of increasing this ratio to beyond the biologically observed range will be discussed.

  2. Neural Adaptations Associated with Interlimb Transfer in a Ballistic Wrist Flexion Task

    PubMed Central

    Ruddy, Kathy L.; Rudolf, Anne K.; Kalkman, Barbara; King, Maedbh; Daffertshofer, Andreas; Carroll, Timothy J.; Carson, Richard G.

    2016-01-01

    Cross education is the process whereby training of one limb gives rise to increases in the subsequent performance of its opposite counterpart. The execution of many unilateral tasks is associated with increased excitability of corticospinal projections from primary motor cortex (M1) to the opposite limb. It has been proposed that these effects are causally related. Our aim was to establish whether changes in corticospinal excitability (CSE) arising from prior training of the opposite limb determine levels of interlimb transfer. We used three vision conditions shown previously to modulate the excitability of corticospinal projections to the inactive (right) limb during wrist flexion movements performed by the training (left) limb. These were: (1) mirrored visual feedback of the training limb; (2) no visual feedback of either limb; and (3) visual feedback of the inactive limb. Training comprised 300 discrete, ballistic wrist flexion movements executed as rapidly as possible. Performance of the right limb on the same task was assessed prior to, at the mid point of, and following left limb training. There was no evidence that variations in the excitability of corticospinal projections (assessed by transcranial magnetic stimulation (TMS)) to the inactive limb were associated with, or predictive of, the extent of interlimb transfer that was expressed. There were however associations between alterations in muscle activation dynamics observed for the untrained limb, and the degree of positive transfer that arose from training of the opposite limb. The results suggest that the acute adaptations that mediate the bilateral performance gains realized through unilateral practice of this ballistic wrist flexion task are mediated by neural elements other than those within M1 that are recruited at rest by single-pulse TMS. PMID:27199722

  3. First 3D measurements of temperature fluctuations induced by gravity wave with the infrared limb imager GLORIA

    NASA Astrophysics Data System (ADS)

    Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Friedl-Vallon, Felix; Riese, Martin

    2017-04-01

    Gravity waves (GWs) are one of the most important coupling mechanisms in the atmosphere. They couple different compartments of the atmosphere. The GW-LCYCLE (Gravity Wave Life Cycle) project aims on studying the excitation, propagation, and dissipation of gravity waves. An aircraft campaign has been performed in winter 2015/2016, during which the first 3D tomographic measurements of GWs were performed with the infrared limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere). GLORIA combines a classical Fourier Transform Spectrometer with a 2D detector array. The capability to image the atmosphere and thereby take several thousand spectra simultaneously improves the spatial sampling compared to conventional limb sounders by an order of magnitude. Furthermore GLORIA is able to pan the horizontal viewing direction and therefore measure the same volume of air under different angles. Due to these properties tomographic methods can be used to derive 3D temperature and tracer fields with spatial resolutions of better than 30km x 30km x 250m from measurements taken during circular flight patterns. Temperature distributions measured during a strong GW event on the 25.01.2016 during the GW-LCycle campaign over Iceland will be presented and analyzed for gravity waves. The three dimensional nature of the GLORIA measurements allows for the determination of the gravity wave momentum flux, including its horizontal direction. The calculated momentum fluxes rank this event under one of the strongest 1% observed in that latitude range in January 2016. The three dimensional wave vectors determined from the GLORIA measurements can be used for a ray tracing study with the Gravity wave Regional Or Global RAy Tracer (GROGRAT). Here 1D ray tracing, meaning solely vertical column propagation, as used by standard parameterizations in numerical weather prediction and climate models is compared to 4D ray tracing (spatially three dimensional with time varying background) for the presented event on the 25.01.2016. Here it is shown, that in the 1D case the GWs are filtered at lower altitudes, whereas in the 4D case the rays were able to propagate to altitudes of above 30km. Besides the forward propagation up to higher altitudes, also the backward propagation to the source region can be study with GROGRAT. Here the mountains of Iceland could be clearly identified as the source region of the measured GWs.

  4. Minor Morbidity with Emergency Tourniquet Use to Stop Bleeding in Severe Limb Trauma: Research, History, and Reconciling Advocates and Abolitionists

    DTIC Science & Technology

    2011-07-01

    unknown. If we say these 13 limbs had only one tourniquet per limb, then the total number of tourniquets was 875. The body regions ( forearm , arm ...leg, thigh) where the tourniquets were applied to the 651 limbs included 436 thighs, 162 arms , 46 legs, 13 forearms , 8 limbs where the tourniquets...I body region ( forearm 0113, thigh 2/436, leg, 1146, and arm : 6/162). The overall rate of side-by-side use was 20% (93 • of 461 limbs). There

  5. Managing residual limb hyperhidrosis in wounded warriors.

    PubMed

    Pace, Sarah; Kentosh, Joshua

    2016-06-01

    Residual limb dermatologic problems are a common concern among young active traumatic amputee patients who strive to maintain an active lifestyle. Hyperhidrosis of residual limbs is a recognized inciting factor that often contributes to residual limb dermatoses and is driven by the design of the prosthetic liner covering the residual limb. Treatment of hyperhidrosis in this population presents a unique challenge. Several accepted treatments of hyperhidrosis can offer some relief but have been limited by lack of results or side-effect profiles. Microwave thermal ablation has presented an enticing potential for residual limb hyperhidrosis.

  6. Honeywell's Compact, Wide-angle Uv-visible Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Pledger, D.; Billing-Ross, J.

    1993-01-01

    Honeywell is currently developing the Earth Reference Attitude Determination System (ERADS). ERADS determines attitude by imaging the entire Earth's limb and a ring of the adjacent star field in the 2800-3000 A band of the ultraviolet. This is achieved through the use of a highly nonconventional optical system, an intensifier tube, and a mega-element CCD array. The optics image a 30 degree region in the center of the field, and an outer region typically from 128 to 148 degrees, which can be adjusted up to 180 degrees. Because of the design employed, the illumination at the outer edge of the field is only some 15 percent below that at the center, in contrast to the drastic rolloffs encountered in conventional wide-angle sensors. The outer diameter of the sensor is only 3 in; the volume and weight of the entire system, including processor, are 1000 cc and 6 kg, respectively.

  7. ARC-1979-A79-7088

    NASA Image and Video Library

    1979-07-10

    P-21760 BW This color image of the Jovian moon Europa, which is the size of our moon, is thought to have a crust of ice perhaps 100 kilometers thick which overlies the silicate crust. The complex array of streaks indicate that the crust has been fractured and filled by materials from the interior. The lack of relief, any visible mountains or craters, on its bright limb is consistent with a thick ice crust. In contrast to its icy neighbors, Ganymede and Callisto, Europa has very few impact craters. One possible candidate is the small feature near the center of this image with radiating rays and a bright circular interior. The relative absence of features and low topography suggests the crust is young and warm a few kilometers below the surface. The tidal heating process suggested for Io also may be heating Europa's interior at a lower rate.

  8. ARC-1979-AC79-7088

    NASA Image and Video Library

    1979-07-10

    P-21760 C This color image of the Jovian moon Europa, which is the size of our moon, is thought to have a crust of ice perhaps 100 kilometers thick which overlies the silicate crust. The complex array of streaks indicate that the crust has been fractured and filled by materials from the interior. The lack of relief, any visible mountains or craters, on its bright limb is consistent with a thick ice crust. In contrast to its icy neighbors, Ganymede and Callisto, Europa has very few impact craters. One possible candidate is the small feature near the center of this image with radiating rays and a bright circular interior. The relative absence of features and low topography suggests the crust is young and warm a few kilometers below the surface. The tidal heating process suggested for Io also may be heating Europa's interior at a lower rate.

  9. Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 microns

    NASA Technical Reports Server (NTRS)

    Mcguckin, B. T.; Menzies, Robert T.

    1992-01-01

    A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to absorbed pump power are reported from a continuous wave diode-pumped Tm, Ho:YLF laser at 2 microns with output power of 84 mW at sub-ambient temperatures. The emission spectrum is etalon tunable over a range of 16/cm centered on 2.067 microns, with fine tuning capability of the transition frequency with crystal temperature at a measured rate of about -0.03/cm-K. The effective emission cross section is measured to be 5 x 10 exp -21 sq cm. These and other aspects of the laser performance are discussed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications.

  10. Holographic rugate structures for x-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannson, T.; Savant, G.

    1990-03-19

    Physical Optics Corporation (POC) has proposed and investigated a novel approach to x-ray optics during this DOE-sponsored three-year program, based on our well-established technologies in volume holography and holographic materials. With these technologies, a majority of conventional XUV optical elements, such as uniform and nonuniform gratings/multilayers, lenses, slanted (non-Snellian) mirrors, Fresnel zone-plates, concentrators/collimators, beam splitters, Fabry-Perot etalons, and binary optical elements, can be fabricated using a unified, low cost process. Furthermore, volume holography offer nonconventional optical elements, such as x-ray holographic optical elements (HOEs) with any desirable wavefront formation characteristics and multiple gratings multiplexed in the same volume to performmore » different operations for different wavelengths, that are difficult or even impossible to produce with the existing technologies.« less

  11. Diode-pumped continuous-wave Nd:Gd3Ga5O12 lasers at 1406, 1415 and 1423 nm

    NASA Astrophysics Data System (ADS)

    Lin, Haifeng; Zhu, Wenzhang; Xiong, Feibing; Ruan, Jianjian

    2018-05-01

    We report a diode-pumped continuous-wave Nd:Gd3Ga5O12 (GGG) laser operating at 1.4 μm spectral region. A dual-wavelength laser at 1423 and 1406 nm is achieved with output power of about 2.59 W at absorbed pump power of 13.4 W. Further increasing the pump power, simultaneous tri-wavelength laser at 1423, 1415 and 1406 nm is also obtained with a maximum output power of 3.96 W at absorbed pump power of 18.9 W. Single-wavelength lasing is also realized at the three emission lines using an intracavity etalon. The laser result is believed to be the highest output power achieved in Nd:GGG crystal, at present, to the best of our knowledge.

  12. Wavelength metrology with a color sensor integrated chip

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Jones, Tyler; Otterstrom, Nils; Archibald, James; Durfee, Dallin

    2016-03-01

    We have developed a method of wavelength sensing using the TCS3414 from AMS, a color sensor developed for use in cell phones and consumer electronics. The sensor datasheet specifies 16 bits of precision and 200ppm/C° temperature dependence, which preliminary calculations showed might be sufficient for picometer level wavelength discrimination of narrow linewidth sources. We have successfully shown that this is possible by using internal etalon effects in addition to the filters' wavelength responses, and recently published our findings in OpticsExpress. Our device demonstrates sub picometer precision over short time periods, with about 10pm drift over a one month period. This method requires no moving or delicate optics, and has the potential to produce inexpensive and mechanically robust devices. Funded by Brigham Young University and NSF Grant Number PHY-1205736.

  13. High-resolution optical measurements of atmospheric winds from space. I - Lower atmosphere molecular absorption

    NASA Technical Reports Server (NTRS)

    Hays, P. B.

    1982-01-01

    A high-resolution spectroscopic technique, analogous to that used in the thermosphere to measure the vector wind fields in the upper troposphere and stratosphere, is described which uses narrow features in the spectrum of light scattered from the earth's lower atmosphere to provide Doppler information on atmospheric scattering and absorption. It is demonstrated that vector winds can be measured from a satellite throughout the lower atmosphere, using a multiple-etalon Fabry-Perot interferometer of modest aperture. It is found that molecular oxygen and water vapor absorption lines in the spectrum of sunlight scattered by the atmosphere are Doppler-shifted by the line of sight wind, so that they may be used to monitor the global wind systems in the upper troposphere and stratosphere.

  14. Observations of comet Levy 1990c in the (OI) 6300-A line with an imaging Fabry-Perot

    NASA Technical Reports Server (NTRS)

    Prasad, C. Debi; Jockers, Klaus; Rauer, H.; Geyer, E. H.

    1992-01-01

    We have observed the comet Levy 1990c during 16-25 August 1990 using the MPAE focal reducer system based Fabry-Perot etalon coupled with the 1 meter telescope of the Observatory of Hoher List. The free spectral range and resolution limit of the interferometer was approximately 2.18 A and approximately 0.171 A respectively. Classical Fabry-Perot fringes were recorded on a CCD in the cometary (OI) 6300 A line. They are well resolved from telluric air glow and cometary NH2 emission. Our observations indicate that the (OI) is distributed asymmetrically with respect to the center of the comet. In this paper we report the spatial distribution of (OI) emission and its line width in the coma of comet Levy.

  15. A pulsed single-frequency Nd:GGG/BaWO4 Raman laser

    NASA Astrophysics Data System (ADS)

    Liu, Zhaojun; Men, Shaojie; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Zhang, Huaijin

    2018-04-01

    A single-frequency pulsed laser at 1178.3 nm was demonstrated in a crystalline Raman laser. A crystal combination of Nd:GGG and BaWO4 was selected to realize Raman conversion from a 1062.5 nm fundamental wave to a 1178.3 nm Stokes wave. An entangled cavity was specially designed to form an intracavity Raman configuration. Single-longitudinal-mode operation was realized by introducing two Fabry-Perot etalons into the Raman laser cavity. This laser operated at a pulse repetition rate of 50 Hz with 2 ms long envelopes containing micro pulses at a 30 kHz repetition rate. The highest output power was 41 mW with the micro pulse duration of 15 ns. The linewidth was measured to be less than 130 MHz.

  16. Faraday anomalous dispersion optical tuners

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.

  17. In vivo locomotor strain in the hindlimb bones of alligator mississippiensis and iguana iguana: implications for the evolution of limb bone safety factor and non-sprawling limb posture

    PubMed

    Blob; Biewener

    1999-05-01

    Limb postures of terrestrial tetrapods span a continuum from sprawling to fully upright; however, most experimental investigations of locomotor mechanics have focused on mammals and ground-dwelling birds that employ parasagittal limb kinematics, leaving much of the diversity of tetrapod locomotor mechanics unexplored. This study reports measurements of in vivo locomotor strain from the limb bones of lizard (Iguana iguana) and crocodilian (Alligator mississippiensis) species, animals from previously unsampled phylogenetic lineages with non-parasagittal limb posture and kinematics. Principal strain orientations and shear strain magnitudes indicate that the limb bones of these species experience considerable torsion during locomotion. This contrasts with patterns commonly observed in mammals, but matches predictions from kinematic observations of axial rotation in lizard and crocodilian limbs. Comparisons of locomotor load magnitudes with the mechanical properties of limb bones in Alligator and Iguana indicate that limb bone safety factors in bending for these species range from 5.5 to 10.8, as much as twice as high as safety factors previously calculated for mammals and birds. Limb bone safety factors in shear (3.9-5.4) for Alligator and Iguana are also moderately higher than safety factors to yield in bending for birds and mammals. Finally, correlations between limb posture and strain magnitudes in Alligator show that at some recording locations limb bone strains can increase during upright locomotion, in contrast to expectations based on size-correlated changes in posture among mammals that limb bone strains should decrease with the use of an upright posture. These data suggest that, in some lineages, strain magnitudes may not have been maintained at constant levels through the evolution of a non-sprawling posture unless the postural change was accompanied by a shift to parasagittal kinematics or by an evolutionary decrease in body size.

  18. Interlimb coordination during the stance phase of gait in subjects with stroke.

    PubMed

    Sousa, Andreia S P; Silva, Augusta; Santos, Rubim; Sousa, Filipa; Tavares, João Manuel R S

    2013-12-01

    To analyze the relation between contralesional and ipsilesional limbs in subjects with stroke during step-to-step transition of walking. Observational, transversal, analytical study with a convenience sample. Physical medicine and rehabilitation clinic. Subjects (n=16) with poststroke hemiparesis with the ability to walk independently and healthy controls (n=22). Not applicable. Bilateral lower limbs electromyographic activity of the soleus (SOL), gastrocnemius medialis, tibialis anterior, biceps femoris, rectus femoris, and vastus medialis (VM) muscles and the ground reaction force were analyzed during double-support and terminal stance phases of gait. The propulsive impulse of the contralesional trailing limb was negatively correlated with the braking impulse of the leading limb during double support (r=-.639, P=.01). A moderate functional relation was observed between thigh muscles (r=-.529, P=.035), and a strong and moderate dysfunctional relation was found between the plantar flexors of the ipsilesional limb and the vastus medialis of the contralesional limb, respectively (SOL-VM, r=-.80, P<.001; gastrocnemius medialis-VM, r=-.655, P=.002). Also, a functional moderate negative correlation was found between the SOL and rectus femoris muscles of the ipsilesional limb during terminal stance and between the SOL (r=-.506, P=.046) and VM (r=-.518, P=.04) muscles of the contralesional limb during loading response, respectively. The trailing limb relative impulse contribution of the contralesional limb was lower than the ipsilesional limb of subjects with stroke (P=.02) and lower than the relative impulse contribution of the healthy limb (P=.008) during double support. The findings obtained suggest that the lower performance of the contralesional limb in forward propulsion during gait is related not only to contralateral supraspinal damage but also to a dysfunctional influence of the ipsilesional limb. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Cryopreservation and replantation of amputated rat hind limbs

    PubMed Central

    2014-01-01

    Background In spite of the relatively high success rate of limb replantation, many patients cannot undergo replantation surgery because the preservation time of an amputated limb is only about six hours. In addition, although allotransplantation of composite tissues is being performed more commonly with increasingly greater success rates, the shortage of donors limits the number of patients that can be treated. So the purpose of this study is to examine the feasibility of cryopreservation and replantation of limbs in a rat model. Methods Twelve five-month-old Sprague-Dawley rats were divided evenly into group A (above-knee amputation) and group B (Syme’s amputation). One hind limb was amputated from each rat. The limbs were irrigated with cryoprotectant, cooled in a controlled manner to -140°C, and placed in liquid nitrogen. Thawing and replantation were performed 14 days later. Results In group A, the limbs became swollen after restoration of blood flow resulting in blood vessel compression and all replantations failed. In group B, restoration of blood flow was noted in all limbs after replantation. In one case, the rat chewed the replanted limb and replantation failed. The other five rats were followed for three months with no abnormalities noted in the replanted limbs. Conclusions Limbs with a minimal amount of muscle tissue can be successfully cryopreserved and replanted. PMID:24886622

  20. Suppression of morphogenesis in embryonic mouse limbs exposed in vitro to excess gravity.

    PubMed

    Duke, J C

    1983-06-01

    This paper is a report of the first investigation of the effect of excess gravity on in vitro mammalian limb chondrogenesis. Limb buds from mice of various gestational stages were exposed to excess gravity (2.6G) using a culture centrifuge. Both forelimbs and hind limbs were cultured and the development of various limb elements was scored after four to six days. The 2.6G force significantly depressed the development of limb elements when applied during the teratogen-sensitive period of chondrogenesis. There was a proximodistal gradient of sensitivity to excess gravity in the limb with proximal structures being less susceptible than distal ones. In some cases, proximal limb elements present prior to explantation disappeared upon exposure to excess gravity. Hypergravity's teratogenic effect is assumed to operate via changes in tension and/or pressure on the cells, accompanied by alterations in cell morphometry and membrane properties.

  1. Automatic limb identification and sleeping parameters assessment for pressure ulcer prevention.

    PubMed

    Baran Pouyan, Maziyar; Birjandtalab, Javad; Nourani, Mehrdad; Matthew Pompeo, M D

    2016-08-01

    Pressure ulcers (PUs) are common among vulnerable patients such as elderly, bedridden and diabetic. PUs are very painful for patients and costly for hospitals and nursing homes. Assessment of sleeping parameters on at-risk limbs is critical for ulcer prevention. An effective assessment depends on automatic identification and tracking of at-risk limbs. An accurate limb identification can be used to analyze the pressure distribution and assess risk for each limb. In this paper, we propose a graph-based clustering approach to extract the body limbs from the pressure data collected by a commercial pressure map system. A robust signature-based technique is employed to automatically label each limb. Finally, an assessment technique is applied to evaluate the experienced stress by each limb over time. The experimental results indicate high performance and more than 94% average accuracy of the proposed approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Successful limb salvage through staged bypass combined with free gracilis muscle transfer for critical limb ischemia with osteomyelitis after failed endovascular therapy.

    PubMed

    Miyake, Keisuke; Kikuchi, Shinsuke; Okuda, Hiroko; Koya, Atsuhiro; Abe, Satomi; Sawa, Yoshiki; Ota, Tetsuo; Azuma, Nobuyoshi

    2018-05-02

    Critical limb ischemia with osteomyelitis is so difficult to treat that even appropriate revascularization and wound therapy cannot achieve limb salvage because of uncontrollable infection. It is still difficult to judge the possibility of limb salvage before revascularization. A 73-year-old male complained of a small ulcer on his left toe, which was treated with multiple endovascular therapy. After failed endovascular therapy, he suffered extensive tissue loss with tibial osteomyelitis. We carried out staged surgery that was composed of dual bypass to the sural artery and posterior tibial artery. After intensive debridement and wound care, insertion of a subsequent free gracilis muscle flap to cover the exposed tibial bone was performed, achieving functional limb salvage. Even in the threatened limb with extensive tissue loss and osteomyelitis, intensive and multidisciplinary treatment with staged revascularization, muscle transfer, and appropriate wound care achieved functional limb salvage.

  3. Effect of Upper Limb Deformities on Gross Motor and Upper Limb Functions in Children with Spastic Cerebral Palsy

    ERIC Educational Resources Information Center

    Park, Eun Sook; Sim, Eun Geol; Rha, Dong-wook

    2011-01-01

    The aims of this study were to investigate the nature and extent of upper limb deformities via the use of various classifications, and to analyze the relationship between upper limb deformities and gross motor or upper limb functionality levels. Upper extremity data were collected from 234 children with spastic cerebral palsy (CP) who were…

  4. Epidemiology of race-day distal limb fracture in flat racing Thoroughbreds in Great Britain (2000 to 2013).

    PubMed

    Rosanowski, S M; Chang, Y M; Stirk, A J; Verheyen, K L P

    2018-05-28

    A key focus of the racing industry is to minimise the number of race-day distal limb fractures, although no studies have identified risk factors for both fatal and non-fatal distal limb fractures. To determine risk factors for race-day distal limb fractures experienced by Thoroughbred racehorses participating in flat racing in Great Britain (GB). Retrospective cohort. Information was collected from all flat racing starts occurring on GB racecourses between 2000 and 2013, including horse, race, course, trainer and jockey data for each horse start and race-day injury data as reported by on-course veterinarians. Associations between exposure variables and cases of distal limb fracture were assessed using mixed effects logistic regression analyses using data from all starts, and turf starts only. A total of 806,764 starts and 624 cases of distal limb fracture were included, of which 548,571 starts and 379 cases of distal limb fracture occurred on turf surfaces. In both models, increasing firmness of the going, increasing racing distance and horses in their first year of racing were at a higher risk of distal limb fracture, while increasing number of previous race starts were protective. Trainer performance was associated with distal limb fracture. Generally, the risk of distal limb fracture increased with increasing horse age. Starts in selling or claiming races or Group 1, Group 3 or claiming races were at higher odds of distal limb fracture in the all starts and turf models, respectively. Clinical diagnosis of distal limb fracture and all types of distal limb fracture considered as one outcome. This study confirmed previously identified risk factors for distal limb fracture including going, race distance and number of horse starts. Novel risk factors were related to trainer and horse performance, and race type. Identification of at risk groups will help inform interventions to reduce distal limb fracture occurrence in flat racing horses. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Scale effects between body size and limb design in quadrupedal mammals.

    PubMed

    Kilbourne, Brandon M; Hoffman, Louwrens C

    2013-01-01

    Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties--limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency--were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass(0.40)); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass(1.0)), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry.

  6. Transcriptomic insights into the genetic basis of mammalian limb diversity.

    PubMed

    Maier, Jennifer A; Rivas-Astroza, Marcelo; Deng, Jenny; Dowling, Anna; Oboikovitz, Paige; Cao, Xiaoyi; Behringer, Richard R; Cretekos, Chris J; Rasweiler, John J; Zhong, Sheng; Sears, Karen E

    2017-03-23

    From bat wings to whale flippers, limb diversification has been crucial to the evolutionary success of mammals. We performed the first transcriptome-wide study of limb development in multiple species to explore the hypothesis that mammalian limb diversification has proceeded through the differential expression of conserved shared genes, rather than by major changes to limb patterning. Specifically, we investigated the manner in which the expression of shared genes has evolved within and among mammalian species. We assembled and compared transcriptomes of bat, mouse, opossum, and pig fore- and hind limbs at the ridge, bud, and paddle stages of development. Results suggest that gene expression patterns exhibit larger variation among species during later than earlier stages of limb development, while within species results are more mixed. Consistent with the former, results also suggest that genes expressed at later developmental stages tend to have a younger evolutionary age than genes expressed at earlier stages. A suite of key limb-patterning genes was identified as being differentially expressed among the homologous limbs of all species. However, only a small subset of shared genes is differentially expressed in the fore- and hind limbs of all examined species. Similarly, a small subset of shared genes is differentially expressed within the fore- and hind limb of a single species and among the forelimbs of different species. Taken together, results of this study do not support the existence of a phylotypic period of limb development ending at chondrogenesis, but do support the hypothesis that the hierarchical nature of development translates into increasing variation among species as development progresses.

  7. Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development.

    PubMed

    Fröbisch, Nadia B; Bickelmann, Constanze; Olori, Jennifer C; Witzmann, Florian

    2015-11-12

    Among extant tetrapods, salamanders are unique in showing a reversed preaxial polarity in patterning of the skeletal elements of the limbs, and in displaying the highest capacity for regeneration, including full limb and tail regeneration. These features are particularly striking as tetrapod limb development has otherwise been shown to be a highly conserved process. It remains elusive whether the capacity to regenerate limbs in salamanders is mechanistically and evolutionarily linked to the aberrant pattern of limb development; both are features classically regarded as unique to urodeles. New molecular data suggest that salamander-specific orphan genes play a central role in limb regeneration and may also be involved in the preaxial patterning during limb development. Here we show that preaxial polarity in limb development was present in various groups of temnospondyl amphibians of the Carboniferous and Permian periods, including the dissorophoids Apateon and Micromelerpeton, as well as the stereospondylomorph Sclerocephalus. Limb regeneration has also been reported in Micromelerpeton, demonstrating that both features were already present together in antecedents of modern salamanders 290 million years ago. Furthermore, data from lepospondyl 'microsaurs' on the amniote stem indicate that these taxa may have shown some capacity for limb regeneration and were capable of tail regeneration, including re-patterning of the caudal vertebral column that is otherwise only seen in salamander tail regeneration. The data from fossils suggest that salamander-like regeneration is an ancient feature of tetrapods that was subsequently lost at least once in the lineage leading to amniotes. Salamanders are the only modern tetrapods that retained regenerative capacities as well as preaxial polarity in limb development.

  8. Scale Effects between Body Size and Limb Design in Quadrupedal Mammals

    PubMed Central

    Kilbourne, Brandon M.; Hoffman, Louwrens C.

    2013-01-01

    Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties – limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency – were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass0.40); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass1.0), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry. PMID:24260117

  9. The effects of laterality on obstacle crossing performance in unilateral trans-tibial amputees.

    PubMed

    De Asha, Alan R; Buckley, John G

    2015-05-01

    Unilateral trans-tibial amputees have bilaterally reduced toe clearance, and an increased risk of foot contact, while crossing obstacles compared to the able-bodied. While the able-bodied tend to lead with a 'preferred' limb it is equivocal whether amputees prefer to lead with the intact or prosthetic limb. This study determined the effects of laterality, compared to side of amputation, on amputees' obstacle crossing performance. To help understand why laterality could affect performance we also assessed knee proprioception for both limbs. Foot placement and toe clearance parameters were recorded while nine amputees crossed obstacles of varying heights leading with both their intact and prosthetic limbs. Joint-position sense was also assessed. Participants self-reported which limb was their preferred (dominant) limb. There were no significant differences in foot placements or toe clearance variability across lead-limb conditions. There were no significant differences in toe clearance between intact and prosthetic lead-limbs (p=0.28) but toe clearance was significantly higher when amputees led with their preferred compared to non-preferred limb (p=0.025). There was no difference in joint-position sense between the intact and residual knees (p=0.34) but joint-position sense tended to be more accurate for the preferred, compared to non-preferred limb (p=0.08). Findings suggest that, despite the mechanical constraints imposed by use of a prosthesis, laterality may be as important in lower-limb amputees as it is in the able bodied. This suggests that amputees should be encouraged to cross obstacles leading with their preferred limb. Copyright © 2015. Published by Elsevier Ltd.

  10. Hind limb malformations in free-living northern leopard frogs (Rana pipiens) from Maine, Minnesota, and Vermont suggest multiple etiologies

    USGS Publications Warehouse

    Meteyer, C.U.; Loeffler, I.K.; Fallon, J.F.; Converse, K.A.; Green, E.; Helgen, J.C.; Kersten, S.; Levey, R.; Eaton-Poole, L.; Burkhart, J.G.

    2000-01-01

    Background Reports of malformed frogs have increased throughout the North American continent in recent years. Most of the observed malformations have involved the hind limbs. The goal of this study was to accurately characterize the hind limb malformations in wild frogs as an important step toward understanding the possible etiologies. Methods During 1997 and 1998, 182 recently metamorphosed northern leopard frogs (Rana pipiens) were collected from Minnesota, Vermont, and Maine. Malformed hind limbs were present in 157 (86%) of these frogs, which underwent necropsy and radiographic evaluation at the National Wildlife Health Center. These malformations are described in detail and classified into four major categories: (1) no limb (amelia); (2) multiple limbs or limb elements (polymelia, polydactyly, polyphalangy); (3) reduced limb segments or elements (phocomelia, ectromelia, ectrodactyly, and brachydactyly; and (4) distally complete but malformed limb (bone rotations, bridging, skin webbing, and micromelia). Results Amelia and reduced segments and/or elements were the most common finding. Frogs with bilateral hind limb malformations were not common, and in only eight of these 22 frogs were the malformations symmetrical. Malformations of a given type tended to occur in frogs collected from the same site, but the types of malformations varied widely among all three states, and between study sites within Minnesota. Conclusions Clustering of malformation type suggests that developmental events may produce a variety of phenotypes depending on the timing, sequence, and severity of the environmental insult. Hind limb malformations in free-living frogs transcend current mechanistic explanations of tetrapod limb development.

  11. Genetics Home Reference: limb-girdle muscular dystrophy

    MedlinePlus

    ... age of onset, and features of limb-girdle muscle dystrophy vary among the many subtypes of this condition ... occurs in some people with limb-girdle muscular dystrophy . Weakening of the heart muscle (cardiomyopathy) occurs in some forms of limb-girdle ...

  12. Postoperative limb alignment and its determinants after minimally invasive Oxford medial unicompartmental knee arthroplasty.

    PubMed

    Mullaji, Arun B; Shetty, Gautam M; Kanna, Raj

    2011-09-01

    One hundred twenty-two consecutive minimally invasive Oxford phase 3 medial unicompartmental knee arthroplasties in 109 patients were evaluated for postoperative limb alignment and the influence of factors such as preoperative limb alignment, age, body mass index, sex, insert thickness, and surgeon's experience. The mean mechanical preoperative hip-knee-ankle (HKA) angle of 172.2° ± 3.1° improved to 177.1° ± 2.9° postoperatively. In 75% of the limbs, the HKA angle was restored to within an acceptable alignment of 177° ± 3°, 14% of the limbs were in excessive varus (<174°), and 11% were in valgus (>180°). Only preoperative HKA angle was predictive of postoperative HKA angle. Although most of the limbs had acceptable limb alignment after unicompartmental knee arthroplasty, limbs with more severe preoperative varus deformity had a tendency to remain in excessive varus, and limbs with lesser preoperative varus deformity had a greater tendency to go into valgus postoperatively. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Probability of regenerating a normal limb after bite injury in the Mexican axolotl (Ambystoma mexicanum)

    PubMed Central

    Thompson, Sierra; Muzinic, Laura; Muzinic, Christopher; Niemiller, Matthew L.

    2014-01-01

    Abstract Multiple factors are thought to cause limb abnormalities in amphibian populations by altering processes of limb development and regeneration. We examined adult and juvenile axolotls (Ambystoma mexicanum) in the Ambystoma Genetic Stock Center (AGSC) for limb and digit abnormalities to investigate the probability of normal regeneration after bite injury. We observed that 80% of larval salamanders show evidence of bite injury at the time of transition from group housing to solitary housing. Among 717 adult axolotls that were surveyed, which included solitary‐housed males and group‐housed females, approximately half presented abnormalities, including examples of extra or missing digits and limbs, fused digits, and digits growing from atypical anatomical positions. Bite injury probably explains these limb defects, and not abnormal development, because limbs with normal anatomy regenerated after performing rostral amputations. We infer that only 43% of AGSC larvae will present four anatomically normal looking adult limbs after incurring a bite injury. Our results show regeneration of normal limb anatomy to be less than perfect after bite injury. PMID:25745564

  14. Comparison of 2-limb versus 3-limb electrodiagnostic studies in the evaluation of chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Vo, Mary L; Hanineva, Aneliya; Chin, Russell L; Carey, Bridget T; Latov, Norman; Langsdorf, Jennifer A

    2015-04-01

    European Federation of Neurological Societies/Peripheral Nerve Society electrodiagnostic (EDx) criteria for the definite diagnosis of chronic inflammatory demyelinating polyneuropathy (CIDP) require the presence of demyelinating findings (DF) in at least 2 nerves. Data are lacking, however, regarding the optimal number of nerves to test. We retrospectively reviewed EDx data from 53 patients with CIDP and compared the number of DF found on 2- and 3-limb testing. A median of 3 (range 2-5) DF were found on 2-limb testing compared with 5 (range 4-7) DF when 3 limbs were evaluated. Two-limb EDx studies were sufficient to diagnose definite CIDP in 92.3% of typical, 84.2% of asymmetric, and 66.7% of distal phenotypes. Testing a third limb increased diagnostic certainty in 11 patients (20.8%) to definite CIDP. Three-limb testing may increase diagnostic sensitivity of definite CIDP, especially in patients with atypical phenotypes. Larger prospective studies are needed to better assess the benefit of performing 3-limb EDx studies. © 2014 Wiley Periodicals, Inc.

  15. Regeneration and repair of human digits and limbs: fact and fiction

    PubMed Central

    Cheng, Tsun‐Chih

    2015-01-01

    Abstract A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's “wish list.” Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit‐ and limb‐building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations. PMID:27499873

  16. The effect of limb amputation on standing weight distribution in the remaining three limbs in dogs.

    PubMed

    Cole, Grayson Lee; Millis, Darryl

    2017-01-16

    Despite the fact that limb amputation is a commonly performed procedure in veterinary medicine, quantitative data regarding outcomes are lacking. The intention of this study was to evaluate the effect of limb amputation on weight distribution to the remaining three limbs at a stance in dogs. Ten dogs with a prior forelimb amputation and ten dogs with a prior hindlimb amputation; all of which had no history of orthopaedic or neural disease in the remaining three limbs were included in the study. Standing weight bearing was evaluated with a commercial stance analyzer in all dogs. Five valid trials were obtained and a mean percentage of weight bearing was calculated for each remaining limb. The dogs with a previous forelimb amputation, and also those with a previous hindlimb amputation, had the largest mean increase in weight bearing in the contralateral forelimb. In conclusion, proactive monitoring of orthopaedic disease in the contralateral forelimb may be advisable in dogs with a previous limb amputation. In addition, when determining candidacy for a limb amputation, disease of the contralateral forelimb should be thoroughly evaluated.

  17. Shared Enhancer Activity in the Limbs and Phallus and Functional Divergence of a Limb-Genital cis-Regulatory Element in Snakes.

    PubMed

    Infante, Carlos R; Mihala, Alexandra G; Park, Sungdae; Wang, Jialiang S; Johnson, Kenji K; Lauderdale, James D; Menke, Douglas B

    2015-10-12

    The amniote phallus and limbs differ dramatically in their morphologies but share patterns of signaling and gene expression in early development. Thus far, the extent to which genital and limb transcriptional networks also share cis-regulatory elements has remained unexplored. We show that many limb enhancers are retained in snake genomes, suggesting that these elements may function in non-limb tissues. Consistent with this, our analysis of cis-regulatory activity in mice and Anolis lizards reveals that patterns of enhancer activity in embryonic limbs and genitalia overlap heavily. In mice, deletion of HLEB, an enhancer of Tbx4, produces defects in hindlimbs and genitalia, establishing the importance of this limb-genital enhancer for development of these different appendages. Further analyses demonstrate that the HLEB of snakes has lost hindlimb enhancer function while retaining genital activity. Our findings identify roles for Tbx4 in genital development and highlight deep similarities in cis-regulatory activity between limbs and genitalia. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Interferometric capability for the Magellan Project

    NASA Astrophysics Data System (ADS)

    Carleton, Nathaniel P.; Traub, Wesley A.; Angel, J. Roger P.

    1998-07-01

    The Magellan Project is building two 6.5-m telescopes, 60 m apart, at the Las Campanas Observatory in Chile. There are on-going plans to combine the beams of the two main telescopes, and of smaller auxiliary telescopes, for interferometric measurements. In this paper we consider the array of auxiliary telescopes as a stand-alone instrument, recognizing that it will operate as such for some large fraction of the time. Our interest is sharpened by the availability of six 1.8-m optical systems, retired from the Smithsonian-Arizona Multiple-Mirror Telescope in preparation for the installation of a single-mirror 6.5-m system. We have completed a design for a 1.8-m telescope, in which the MMT components are supported on a proven tripod mount. The optics-support uses steel for stiffness, and low-thermal- expansion rods for passive stability. This array will be a powerful tool for the investigation of stellar limb darkening, surface features, and changes of diameter in pulsations, as well as dust disks, shells, and binary companions. The 1.8-m telescopes on good sites such as Magellan's should be able to operate at full aperture for interferometry at 2.2 micrometers . They should therefore be able to reach to magnitude K equals 10 or so, and thus to cover substantial samples of both main-sequence and pre-main- sequence stars, and of fully evolved stars as well.

  19. A Limb Action Detector Enabling People with Multiple Disabilities to Control Environmental Stimulation through Limb Action with a Nintendo Wii Remote Controller

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb action with a Nintendo Wii Remote Controller and a newly developed limb action detection program (LADP, i.e., a new software program that turns a Wii Remote Controller into a precise limb action detector). This study was…

  20. Visual Feedback of the Non-Moving Limb Improves Active Joint-Position Sense of the Impaired Limb in Spastic Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Smorenburg, Ana R. P.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.

    2011-01-01

    This study examined the active joint-position sense in children with Spastic Hemiparetic Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual feedback, of the non-moving limb, on the joint-position sense. Participants were asked to match the position of one upper limb with that of the contralateral limb. The task…

  1. A New Limb Movement Detector Enabling People with Multiple Disabilities to Control Environmental Stimulation through Limb Swing with a Gyration Air Mouse

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb swing with a gyration air mouse and a newly developed limb movement detection program (LMDP, i.e., a new software program that turns a gyration air mouse into a precise limb movement detector). The study was performed…

  2. Elevated vacuum suspension preserves residual-limb skin health in people with lower-limb amputation: Randomized clinical trial.

    PubMed

    Rink, Cameron; Wernke, Matthew M; Powell, Heather M; Gynawali, Surya; Schroeder, Ryan M; Kim, Jayne Y; Denune, Jeffrey A; Gordillo, Gayle M; Colvin, James M; Sen, Chandan K

    2016-01-01

    A growing number of clinical trials and case reports support qualitative claims that use of an elevated vacuum suspension (EVS) prosthesis improves residual-limb health on the basis of self-reported questionnaires, clinical outcomes scales, and wound closure studies. Here, we report first efforts to quantitatively assess residual-limb circulation in response to EVS. Residual-limb skin health and perfusion of people with lower-limb amputation (N = 10) were assessed during a randomized crossover study comparing EVS with nonelevated vacuum suspension (control) over a 32 wk period using noninvasive probes (transepidermal water loss, laser speckle imaging, transcutaneous oxygen measurement) and functional hyperspectral imaging approaches. Regardless of the suspension system, prosthesis donning decreased perfusion in the residual limb under resting conditions. After 16 wk of use, EVS improved residual-limb oxygenation during treadmill walking. Likewise, prosthesis-induced reactive hyperemia was attenuated with EVS following 16 wk of use. Skin barrier function was preserved with EVS but disrupted after control socket use. Taken together, outcomes suggest chronic EVS use improves perfusion and preserves skin barrier function in people with lower-limb amputation. ClinicalTrials.gov; "Evaluation of limb health associated with a prosthetic vacuum socket system": NCT01839123; https://clinicaltrials.gov/ct2/show/NCT01839123?term=NCT01839123&rank=1.

  3. ATHLETE: A Limbed Vehicle for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    As part of the Human-Robot Systems project funded by NASA, the Jet Propulsion Laboratory has developed a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. Each vehicle is based on six wheels at the ends of six multi-degree-of-freedom limbs. Because each limb has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as feet to walk out of excessively soft or other extreme terrain. Since the vehicle has this alternative mode of traversing through or at least out of extreme terrain, the wheels and wheel actuators can be sized for nominal terrain. There are substantial mass savings in the wheel and wheel actuators associated with designing for nominal instead of extreme terrain. These mass savings are comparable-to or larger-than the extra mass associated with the articulated limbs. As a result, the entire mobility system, including wheels and limbs, can be about 25% lighter than a conventional mobility chassis. A side benefit of this approach is that each limb has sufficient degrees-of-freedom to use as a general-purpose manipulator (hence the name "limb" instead of "leg"). Our prototype ATHLETE vehicles have quick-disconnect tool adapters on the limbs that allow tools to be drawn out of a "tool belt" and maneuvered by the limb.

  4. Leaping lopsided: a review of the current hypotheses regarding etiologies of limb malformations in frogs.

    PubMed

    Loeffler, I K; Stocum, D L; Fallon, J F; Meteyer, C U

    2001-10-15

    Recent progress in the investigation of limb malformations in free-living frogs has underlined the wide range in the types of limb malformations and the apparent spatiotemporal clustering of their occurrence. Here, we review the current understanding of normal and abnormal vertebrate limb development and regeneration and discuss some of the molecular events that may bring about limb malformation. Consideration of the differences between limb development and regeneration in amphibians has led us to the hypothesis that some of the observed limb malformations come about through misdirected regeneration. We report the results of a pilot study that supports this hypothesis. In this study, the distal aspect of the right hindlimb buds of X. laevis tadpoles was amputated at the pre-foot paddle stage. The tadpoles were raised in water from a pond in Minnesota at which 7% of surveyed newly metamorphosed feral frogs had malformations. Six percent (6 of 100) of the right limbs of the tadpoles raised in pond water developed abnormally. One truncated right limb was the only malformation in the control group, which was raised in dechlorinated municipal water. All unamputated limbs developed normally in both groups. Three major factors under consideration for effecting the limb malformations are discussed. These factors include environmental chemicals (primarily agrichemicals), encysted larvae (metacercariae) of trematode parasites, and increased levels of ultraviolet light. Emphasis is placed on the necessary intersection of environmental stressors and developmental events to bring about the specific malformations that are observed in free-living frog populations.

  5. Kinematic adaptations to tripedal locomotion in dogs.

    PubMed

    Goldner, B; Fuchs, A; Nolte, I; Schilling, N

    2015-05-01

    Limb amputation often represents the only treatment option for canine patients with certain diseases or injuries of the appendicular system. Previous studies have investigated adaptations to tripedal locomotion in dogs but there is a lack of understanding of biomechanical compensatory mechanisms. This study evaluated the kinematic differences between quadrupedal and tripedal locomotion in nine healthy dogs running on a treadmill. The loss of the right pelvic limb was simulated using an Ehmer sling. Kinematic gait analysis included spatio-temporal comparisons of limb, joint and segment angles of the remaining pelvic and both thoracic limbs. The following key parameters were compared between quadrupedal and tripedal conditions: angles at touch-down and lift-off, minimum and maximum joint angles, plus range of motion. Significant differences in angular excursion were identified in several joints of each limb during both stance and swing phases. The most pronounced differences concerned the remaining pelvic limb, followed by the contralateral thoracic limb and, to a lesser degree, the ipsilateral thoracic limb. The thoracic limbs were, in general, more retracted, consistent with pelvic limb unloading and previous observations of bodyweight re-distribution in amputees. Proximal limb segments showed more distinct changes than distal ones. Particularly, the persistently greater anteversion of the pelvis probably affects the axial system. Overall, tripedal locomotion requires concerted kinematic adjustments of both the appendicular and axial systems, and consequently preventive, therapeutic and rehabilitative care of canine amputees should involve the whole musculoskeletal apparatus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Leaping lopsided: a review of the current hypotheses regarding etiologies of limb malformations in frogs

    USGS Publications Warehouse

    Loeffler, I.K.; Stocum, D.L.; Fallon, J.F.; Meteyer, C.U.

    2001-01-01

    Recent progress in the investigation of limb malformations in free-living frogs has underlined the wide range in the types of limb malformations and the apparent spatiotemporal clustering of their occurrence. Here, we review the current understanding of normal and abnormal vertebrate limb development and regeneration and discuss some of the molecular events that may bring about limb malformation. Consideration of the differences between limb development and regeneration in amphibians has led us to the hypothesis that some of the observed limb malformations come about through misdirected regeneration. We report the results of a pilot study that supports this hypothesis. In this study, the distal aspect of the right hindlimb buds of X. laevis tadpoles was amputated at the pre-foot paddle stage. The tadpoles were raised in water from a pond in Minnesota at which 7% of surveyed newly metamorphosed feral frogs had malformations. Six percent (6 of 100) of the right limbs of the tadpoles raised in pond water developed abnormally. One truncated right limb was the only malformation in the control group, which was raised in dechlorinated municipal water. All unamputated limbs developed normally in both groups. Three major factors under consideration for effecting the limb malformations are discussed. These factors include environmental chemicals (primarily agrichemicals), encysted larvae (metacercariae) of trematode parasites, and increased levels of ultraviolet light. Emphasis is placed on the necessary intersection of environmental stressors and developmental events to bring about the specific malformations that are observed in free-living frog populations.

  7. Society for Vascular Surgery limb stage and patient risk correlate with outcomes in an amputation prevention program.

    PubMed

    Causey, Marlin W; Ahmed, Ayman; Wu, Bian; Gasper, Warren J; Reyzelman, Alex; Vartanian, Shant M; Hiramoto, Jade S; Conte, Michael S

    2016-06-01

    Clinical decision making and accurate outcomes comparisons in advanced limb ischemia require improved staging systems. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System (Wound extent, Ischemia, and foot Infection [WIfI]) was designed to stratify limb outcomes based on three major factors-wound extent, ischemia, and foot infection. The Project or Ex-Vivo vein graft Engineering via Transfection III (PREVENT) III (PIII) risk score was developed to stratify patients by expected amputation-free survival (AFS) after surgical revascularization. This study was designed to prospectively assess limb and patient-based staging for predicting outcomes of hospitalized patients in an amputation prevention program. This study undertook a retrospective analysis of prospectively gathered registry data of consecutive patients with limb-threatening conditions admitted to a fully integrated vascular/podiatry service over a 16-month period. Upon admission, limb risk was stratified using the WIfI system and patient risk was categorized using PIII classification. Patients were assessed for perioperative and postdischarge outcomes, and their relationship to staging at admission was analyzed. There were 174 threatened limbs (143 hospitalized patients) stratified by WIfI stage (1%-12%, 2%-28%, 3%-24%, 4%-28%, 5%-3%, unstaged-5%) and PIII risk (34% low, 49% moderate, and 17% high risk). Diabetes and end-stage renal disease were associated with WIfI stage (P = .006 and P = .018) and PIII risk (P = .003 and P < .001). Perioperative (30-day) events included 3% mortality, 8% major adverse cardiovascular events and 2.4% major amputation. There were 119 limbs (71%) that underwent revascularization, including 108 infrainguinal reconstructions (endovascular or open revascularization). Rate of revascularization increased with WIfI stage (P < .001), concomitant with the number of podiatric procedures, minor amputations, and initial hospital duration of stay (all P < .001). Increased WIfI stage was associated with major adverse limb events (P = .018), reduced limb salvage (P = .037), and decreased AFS (P = .048). In contrast, PIII risk category was associated with mortality (P < .001) and AFS (P < .001). Among infrainguinal reconstruction procedures, there was a similar distribution of endovascular (46%) and surgical (54%) interventions. Freedom from major adverse limb events was best for autogenous vein bypass (P = .025), and surgical revascularization was associated with improved limb salvage among the most severely threatened limbs (WIfI stage 4: 95% limb salvage for open bypass vs 68% limb salvage for endovascular; P = .026). Among patients hospitalized with limb-threatening conditions and treated by a multidisciplinary amputation prevention team, PIII risk correlates with mortality whereas WIfI stage strongly predicts initial hospital duration of stay, and key mid-term limb outcomes. Surgical revascularization performed best in the limbs at greatest risk (WIfI stage 4), and autogenous vein bypass was the preferred conduit for open bypass. These data support the use of WIfI and PIII as complementary staging tools in the management of chronic limb-threatening ischemia. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  8. The Effect of Prosthetic Foot Push-off on Mechanical Loading Associated with Knee Osteoarthritis in Lower Extremity Amputees

    PubMed Central

    Morgenroth, David C.; Segal, Ava D.; Zelik, Karl E.; Czerniecki, Joseph M.; Klute, Glenn K.; Adamczyk, Peter G.; Orendurff, Michael S.; Hahn, Michael E.; Collins, Steven H.; Kuo, Art D.

    2011-01-01

    Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope = −0.72 +/− 0.22; p=0.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope = −0.34 +/− 0.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. PMID:21803584

  9. The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees.

    PubMed

    Morgenroth, David C; Segal, Ava D; Zelik, Karl E; Czerniecki, Joseph M; Klute, Glenn K; Adamczyk, Peter G; Orendurff, Michael S; Hahn, Michael E; Collins, Steven H; Kuo, Art D

    2011-10-01

    Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope=-.72±.22; p=.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope=-.34±.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. Published by Elsevier B.V.

  10. The effects of body proportions on thermoregulation: an experimental assessment of Allen's rule.

    PubMed

    Tilkens, Michael J; Wall-Scheffler, Cara; Weaver, Timothy D; Steudel-Numbers, Karen

    2007-09-01

    Numerous studies have discussed the influence of thermoregulation on hominin body shape concluding, in accordance with Allen's rule, that the presence of relatively short limbs on both extant as well as extinct hominin populations offers an advantage for survival in cold climates by reducing the limb's surface area to volume ratio. Moreover, it has been suggested that shortening the distal limb segment compared to the proximal limb segment may play a larger role in thermoregulation due to a greater relative surface area of the shank. If longer limbs result in greater heat dissipation, we should see higher resting metabolic rates (RMR) in longer-limbed individuals when temperature conditions fall, since the resting rate will need to replace the lost heat. We collected resting oxygen consumption on volunteer human subjects to assess the correlation between RMR and lower limb length in human subjects, as well as to reexamine the prediction that shortening the distal segment would have a larger effect on heat loss and, thus, RMR than the shortening of the proximal segment. Total lower limb length exhibits a statistically significant relationship with resting metabolic rate (p<0.001; R(2)=0.794). While this supports the hypothesis that as limb length increases, resting metabolic rate increases, it also appears that thigh length, rather than the length of the shank, drives this relationship. The results of the present study confirm the widely-held expectation of Allen's rule, that short limbs reduce the metabolic cost of maintaining body temperature, while long limbs result in greater heat dissipation regardless of the effect of mass. The present results suggest that the shorter limbs of Neandertals, despite being energetically disadvantageous while walking, would indeed have been advantageous for thermoregulation.

  11. The influence of asymmetric force requirements on a multi-frequency bimanual coordination task.

    PubMed

    Kennedy, Deanna M; Rhee, Joohyun; Jimenez, Judith; Shea, Charles H

    2017-01-01

    An experiment was designed to determine the impact of the force requirements on the production of bimanual 1:2 coordination patterns requiring the same (symmetric) or different (asymmetric) forces when Lissajous displays and goal templates are provided. The Lissajous displays have been shown to minimize the influence of attentional and perceptual constraints allowing constraints related to neural crosstalk to be more clearly observed. Participants (N=20) were randomly assigned to a force condition in which the left or right limb was required to produce more force than the contralateral limb. In each condition participants were required to rhythmically coordinate the pattern of isometric forces in a 1:2 coordination pattern. Participant performed 13 practice trials and 1 test trial per force level. The results indicated that participants were able to effectively coordinate the 1:2 multi-frequency goal patterns under both symmetric and asymmetric force requirements. However, consistent distortions in the force and force velocity time series were observed for one limb that appeared to be associated with the production of force in the contralateral limb. Distortions in the force produced by the left limb occurred regardless of the force requirements of the task (symmetric, asymmetric) or whether the left or right limb had to produce more force than the contralateral limb. However, distinct distortions in the right limb occurred only when the left limb was required to produce 5 times more force than the right limb. These results are consistent with the notion that neural crosstalk can influence both limbs, but may manifest differently for each limb depending on the force requirements of the task. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ertl and Non-Ertl amputees exhibit functional biomechanical differences during the sit-to-stand task.

    PubMed

    Ferris, Abbie E; Christiansen, Cory L; Heise, Gary D; Hahn, David; Smith, Jeremy D

    2017-05-01

    People with transtibial amputation stand ~50times/day. There are two general approaches to transtibial amputation: 1) distal tibia and fibula union using a "bone-bridge" (Ertl), 2) non-union of the tibia and fibula (Non-Ertl). The Ertl technique may improve functional outcomes by increasing the end-bearing ability of the residual limb. We hypothesized individuals with an Ertl would perform a five-time sit-to-stand task faster through greater involvement/end-bearing of the affected limb. Ertl (n=11) and Non-Ertl (n=7) participants sat on a chair with each foot on separate force plates and performed the five-time sit-to-stand task. A symmetry index (intact vs affected limbs) was calculated using peak ground reaction forces. The Ertl group performed the task significantly faster (9.33s (2.66) vs 13.27 (2.83)s). Symmetry index (23.33 (23.83)% Ertl, 36.53 (13.51)% Non-Ertl) indicated the intact limb for both groups produced more force than the affected limb. Ertl affected limb peak ground reaction forces were significantly larger than the Non-Ertl affected limb. Peak knee power and net work of the affected limb were smaller than their respective intact limb for both groups. The Ertl intact limb produced significantly greater peak knee power and net work than the Non-Ertl intact knee. Although loading asymmetries existed between the intact and affected limb of both groups, the Ertl group performed the task ~30% faster. This was driven by greater power and work production of the Ertl intact limb knee. Our results suggest that functional differences exist between the procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Postural control strategies during single limb stance following acute lateral ankle sprain.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2014-06-01

    Single-limb stance is maintained via the integration of visual, vestibular and somatosensory afferents. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. This investigation supplements kinetic analysis of eyes-open and eyes-closed single-limb stance tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain group to assess the adaptive capacity of the sensorimotor system to injury. Sixty-six participants with first-time acute lateral ankle sprain completed a 20-second eyes-open single-limb stance task on their injured and non-injured limbs (task 1). Twenty-three of these participants successfully completed the same 20-second single-limb stance task with their eyes closed (task 2). A non-injured control group of 19 participants completed task 1, with 16 completing task 2. 3-dimensional kinematics of the hip, knee and ankle joints, as well as associated fractal dimension of the center-of-pressure path were determined for each limb during these tasks. Between trial analyses revealed significant differences in stance limb kinematics and fractal dimension of the center-of-pressure path for task 2 only. The control group bilaterally assumed a position of greater hip flexion compared to injured participants on their side-matched "involved"(7.41 [6.1°] vs 1.44 [4.8]°; η(2)=.34) and "uninvolved" (9.59 [8.5°] vs 2.16 [5.6°]; η(2)=.31) limbs, with a greater fractal dimension of the center-of-pressure path (involved limb=1.39 [0.16°] vs 1.25 [0.14°]; uninvolved limb=1.37 [0.21°] vs 1.23 [0.14°]). Bilateral impairment in postural control strategies present following a first time acute lateral ankle sprain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-02-01

    The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

  15. Tissue dielectric constant and circumference measurement in the follow-up of treatment-related changes in lower-limb lymphedema.

    PubMed

    Tugral, Alper; Viren, Tuomas; Bakar, Yesim

    2018-02-01

    Lymphedema of lower limbs is a chronic condition that requires life-long management. Therapeutic effect of complex decongestive physiotherapy (CDP) is most often followed by circumference measurements (CM). However, the CM measurements are not specific to interstitial tissue fluid and have problems in sensitivity and objectivity. The aim of present study was to evaluate the therapeutic effect of CDP with a new tissue water specific measurement technique, in patients with lower limb lymphedema (LLL). A total of 17 patients with unilateral LLL (11 primary, 6 secondary lymphedema) were recruited in this study. CDP was applied for 5 days a week for 4 weeks. CM measurement of both limbs was performed at nine sites along limb by tape measure. Percentage skin water content (PWC) of thigh, calf and ankle was measured in affected lymphedema limb and contralateral limb with MoistureMeterD Compact (MMDC) device. Inter-limb PWC ratio was calculated by dividing affected side's PWC value with PWC of contralateral limb. Patients were asked to fullfill the Lymph Quality of Life Questionnaire. Significant reduction of circumference after CDP was detected at all nine measurement sites along lower limb (P<0.01). PWC measurements showed a significant decrease of skin tissue water at thigh, calf and ankle measurement sites after CDP (P<0.001). Inter-limb PWC ratios demonstrated significant reduction of edema between affected and contraletral limbs post-treatment (P<0.003). CDP also increased the quality of life (P=0.006). CM and PWC measurements reflected a positive effect of CDP in patients with LLL. Both absolute PWC values and inter-limb PWC ratios were meaningful tools to follow the effect of therapautic intervention. Compared with CM measurements the TDC technique offered easier, quicker, objective and more practical measurements for routine assessments of LLL.

  16. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system.

    PubMed

    Osumi, M; Ichinose, A; Sumitani, M; Wake, N; Sano, Y; Yozu, A; Kumagaya, S; Kuniyoshi, Y; Morioka, S

    2017-01-01

    We developed a quantitative method to measure movement representations of a phantom upper limb using a bimanual circle-line coordination task (BCT). We investigated whether short-term neurorehabilitation with a virtual reality (VR) system would restore voluntary movement representations and alleviate phantom limb pain (PLP). Eight PLP patients were enrolled. In the BCT, they repeatedly drew vertical lines using the intact hand and intended to draw circles using the phantom limb. Drawing circles mentally using the phantom limb led to the emergence of an oval transfiguration of the vertical lines ('bimanual-coupling' effect). We quantitatively measured the degree of this bimanual-coupling effect as movement representations of the phantom limb before and immediately after short-term VR neurorehabilitation. This was achieved using an 11-point numerical rating scale (NRS) for PLP intensity and the Short-Form McGill Pain Questionnaire (SF-MPQ). During VR neurorehabilitation, patients wore a head-mounted display that showed a mirror-reversed computer graphic image of an intact arm (the virtual phantom limb). By intending to move both limbs simultaneously and similarly, the patients perceived voluntary execution of movement in their phantom limb. Short-term VR neurorehabilitation promptly restored voluntary movement representations in the BCT and alleviated PLP (NRS: p = 0.015; 39.1 ± 28.4% relief, SF-MPQ: p = 0.015; 61.5 ± 48.5% relief). Restoration of phantom limb movement representations and reduced PLP intensity were linearly correlated (p < 0.05). VR rehabilitation may encourage patient's motivation and multimodal sensorimotor re-integration of a phantom limb and subsequently have a potent analgesic effect. There was no objective evidence that restoring movement representation by neurorehabilitation with virtual reality alleviated phantom limb pain. This study revealed quantitatively that restoring movement representation with virtual reality rehabilitation using a bimanual coordination task correlated with alleviation of phantom limb pain. © 2016 European Pain Federation - EFIC®.

  17. Apparent motion perception in lower limb amputees with phantom sensations: "obstacle shunning" and "obstacle tolerance".

    PubMed

    Saetta, Gianluca; Grond, Ilva; Brugger, Peter; Lenggenhager, Bigna; Tsay, Anthony J; Giummarra, Melita J

    2018-03-21

    Phantom limbs are the phenomenal persistence of postural and sensorimotor features of an amputated limb. Although immaterial, their characteristics can be modulated by the presence of physical matter. For instance, the phantom may disappear when its phenomenal space is invaded by objects ("obstacle shunning"). Alternatively, "obstacle tolerance" occurs when the phantom is not limited by the law of impenetrability and co-exists with physical objects. Here we examined the link between this under-investigated aspect of phantom limbs and apparent motion perception. The illusion of apparent motion of human limbs involves the perception that a limb moves through or around an object, depending on the stimulus onset asynchrony (SOA) for the two images. Participants included 12 unilateral lower limb amputees matched for obstacle shunning (n = 6) and obstacle tolerance (n = 6) experiences, and 14 non-amputees. Using multilevel linear models, we replicated robust biases for short perceived trajectories for short SOA (moving through the object), and long trajectories (circumventing the object) for long SOAs in both groups. Importantly, however, amputees with obstacle shunning perceived leg stimuli to predominantly move through the object, whereas amputees with obstacle tolerance perceived leg stimuli to predominantly move around the object. That is, in people who experience obstacle shunning, apparent motion perception of lower limbs was not constrained to the laws of impenetrability (as the phantom disappears when invaded by objects), and legs can therefore move through physical objects. Amputees who experience obstacle tolerance, however, had stronger solidity constraints for lower limb apparent motion, perhaps because they must avoid co-location of the phantom with physical objects. Phantom limb experience does, therefore, appear to be modulated by intuitive physics, but not in the same way for everyone. This may have important implications for limb experience post-amputation (e.g., improving prosthesis embodiment when limb representation is constrained by the same limits as an intact limb). Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Medial knee joint contact force in the intact limb during walking in recently ambulatory service members with unilateral limb loss: a cross-sectional study

    PubMed Central

    Krupenevich, Rebecca L.; Pruziner, Alison L.; Wolf, Erik J.; Schnall, Barri L.

    2017-01-01

    Background Individuals with unilateral lower limb amputation have a high risk of developing knee osteoarthritis (OA) in their intact limb as they age. This risk may be related to joint loading experienced earlier in life. We hypothesized that loading during walking would be greater in the intact limb of young US military service members with limb loss than in controls with no limb loss. Methods Cross-sectional instrumented gait analysis at self-selected walking speeds with a limb loss group (N = 10, age 27 ± 5 years, 170 ± 36 days since last surgery) including five service members with transtibial limb loss and five with transfemoral limb loss, all walking independently with their first prosthesis for approximately two months. Controls (N = 10, age 30 ± 4 years) were service members with no overt demographical risk factors for knee OA. 3D inverse dynamics modeling was performed to calculate joint moments and medial knee joint contact forces (JCF) were calculated using a reduction-based musculoskeletal modeling method and expressed relative to body weight (BW). Results Peak JCF and maximum JCF loading rate were significantly greater in limb loss (184% BW, 2,469% BW/s) vs. controls (157% BW, 1,985% BW/s), with large effect sizes. Results were robust to probabilistic perturbations to the knee model parameters. Discussion Assuming these data are reflective of joint loading experienced in daily life, they support a “mechanical overloading” hypothesis for the risk of developing knee OA in the intact limb of limb loss subjects. Examination of the evolution of gait mechanics, joint loading, and joint health over time, as well as interventions to reduce load or strengthen the ability of the joint to withstand loads, is warranted. PMID:28168120

  19. Imparting regenerative capacity to limbs by progenitor cell transplantation

    PubMed Central

    Lin, Gufa; Chen, Ying; Slack, Jonathan M.W.

    2012-01-01

    Summary The frog Xenopus can normally regenerate its limbs at early developmental stages but loses the ability during metamorphosis. This behavior provides a potential gain-of-function model for measures that can enhance limb regeneration. Here we show that frog limbs can be caused to form multidigit regenerates after receiving transplants of larval limb progenitor cells. It is necessary to activate Wnt/β -catenin signaling in the cells, and to add Sonic hedgehog, FGF10 and thymosin β4. These factors promote survival and growth of the grafted cells and also provide pattern information. The eventual regenerates are not composed solely of donor tissue; the host cells also make a substantial contribution despite their lack of regeneration-competence. Cells from adult frog legs or from regenerating tadpole tails do not promote limb regeneration, demonstrating the necessity for limb progenitor cells. These findings have obvious implications for the development of a technology to promote limb regeneration in mammals. PMID:23273877

  20. The Dependence of Solar Flare Limb Darkening on Emission Peak Formation Temperature

    NASA Astrophysics Data System (ADS)

    Thiemann, Edward; Epp, Luke; Eparvier, Francis; Chamberlin, Phillip C.

    2017-08-01

    Solar limb effects are local brightening or darkening of an emission that depend on where in the Sun's atmosphere it forms. Near the solar limb, optically thick (thin) emissions will darken (brighten) as the column of absorbers (emitters) along the line-of-sight increases. Note that in limb brightening, emission sources are re-arranged whereas in limb darkening they are obscured. Thus, only limb darkening is expected to occur in disk integrated observations. Limb darkening also results in center-to-limb variations of disk-integrated solar flare spectra, with important consequences for how planetary atmospheres are affected by flares. Flares are typically characterized by their flux in the optically thin 0.1-0.8 nm band measured by the X-ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES). On the other hand, Extreme Ultraviolet (EUV) line emissions can limb darken because they are sensitive to resonant scattering, resulting in a flare's location on the solar disk controlling the amount of ionizing radiation that reaches a planet. For example, an X-class flare originating from disk center may significantly heat a planet's thermosphere, whereas the same flare originating near the limb may have no effect because much of the effective emissions are scattered in the solar corona.To advance the relatively poor understanding of flare limb darkening, we use over 300 M-class or larger flares observed by the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO) to characterize limb darkening as a function of emission peak formation temperature, Tf. For hot coronal emissions (Tf>2 MK), these results show a linear relationship between the degree of limb darkening and Tf where lines with Tf=2 MK darken approximately 7 times more than lines with Tf=16 MK. Because the extent of limb darkening is dependent on the height of the source plasma, we use simple Beer-Lambert radiative transfer analysis to interpret these results and characterize the average thermal structure of the flares considered. As such, these results can be used to constrain both empirical flare irradiance models and more sophisticated flare loop hydrodynamic models.

  1. Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame

    NASA Astrophysics Data System (ADS)

    Sośnica, Krzysztof; Jäggi, Adrian; Thaller, Daniela; Beutler, Gerhard; Dach, Rolf

    2014-08-01

    The contribution of Starlette, Stella, and AJISAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station-dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended. This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking, is very important and needs to be implemented in the SLR data analysis.

  2. The solar XUV He I and He II emission lines. I - Intensities and gross center-to-limb behavior

    NASA Technical Reports Server (NTRS)

    Mango, S. A.; Bohlin, J. D.; Glackin, D. L.; Linsky, J. L.

    1978-01-01

    The center-to-limb variation of the He II 304- and 256-A lines and He I 584- and 537-A lines is derived for different solar features, but averaged over the chromospheric supergranulation structure. The general trend is for limb brightening in quiet-sun regions, limb neutrality in unipolar magnetic regions (UMR), and limb darkening in polar coronal holes. The center-to-limb behavior in these optically thick emission lines indicates collisional excitation and decreasing transition-region temperature gradients with respect to optical depth in the sequence quiet sun to UMR to coronal hole.

  3. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M

    2015-08-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals.

  4. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum)

    PubMed Central

    Phan, Anne Q.; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V.

    2015-01-01

    Abstract Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain‐of‐function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position‐specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position‐specific, developmental‐stage‐specific, and heparan sulfate‐dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals. PMID:27499874

  5. HOW DOES ADDING AND REMOVING LIQUID FROM SOCKET BLADDERS AFFECT RESIDUAL LIMB FLUID VOLUME?

    PubMed Central

    Sanders, JE; Cagle, JC; Harrison, DS; Myers, TR; Allyn, KJ

    2015-01-01

    Adding and removing liquid from socket bladders is a means for people with limb loss to accommodate residual limb volume change. Nineteen people with trans-tibial amputation using their regular prosthetic socket fitted with fluid bladders on the inside socket surface underwent cycles of bladder liquid addition and removal. In each cycle, subjects sat, stood, and walked for 90s with bladder liquid added and then sat, stood, and walking for 90s again with the bladder liquid removed. The amount of bladder liquid added was increased in each cycle. Bioimpedance analysis was implemented to measure residual limb fluid volume. Results showed that the preferred bladder liquid volume was 16.8 mL (s.d.8.4), corresponding to 1.7% (s.d.0.8%) of the average socket volume between the bioimpedance voltage-sensing electrodes. Limb fluid volume driven out of the residual limb when bladder liquid was added was typically not recovered upon subsequent bladder liquid removal. Fifteen of nineteen subjects experienced a gradual limb fluid volume loss over the test session. Care should be taken when implementing adjustable socket technologies in people with limb amputation. Reducing socket volume may accentuate limb fluid volume loss. PMID:24203546

  6. Limb Correction of Polar-Orbiting Imagery for the Improved Interpretation of RGB Composites

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Elmer, Nicholas

    2016-01-01

    Red-Green-Blue (RGB) composite imagery combines information from several spectral channels into one image to aid in the operational analysis of atmospheric processes. However, infrared channels are adversely affected by the limb effect, the result of an increase in optical path length of the absorbing atmosphere between the satellite and the earth as viewing zenith angle increases. This paper reviews a newly developed technique to quickly correct for limb effects in both clear and cloudy regions using latitudinally and seasonally varying limb correction coefficients for real-time applications. These limb correction coefficients account for the increase in optical path length in order to produce limb-corrected RGB composites. The improved utility of a limb-corrected Air Mass RGB composite from the application of this approach is demonstrated using Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, the limb correction can be applied to any polar-orbiting sensor infrared channels, provided the proper limb correction coefficients are calculated. Corrected RGB composites provide multiple advantages over uncorrected RGB composites, including increased confidence in the interpretation of RGB features, improved situational awareness for operational forecasters, and the ability to use RGB composites from multiple sensors jointly to increase the temporal frequency of observations.

  7. Chemical activation of Wnt/β-catenin signalling inhibits innervation and causes skeletal tissue malformations during axolotl limb regeneration.

    PubMed

    Wischin, Sabina; Castañeda-Patlán, Cristina; Robles-Flores, Martha; Chimal-Monroy, Jesús

    2017-04-01

    Limb regeneration involves several interrelated physiological processes in which a particular signalling pathway may play a variety of functions. Blocking the function of Wnt/β-catenin signalling during limb regeneration inhibits regeneration in axolotls (Ambystoma mexicanum). Limb development shares many features with limb regeneration, and Wnt/β-catenin activation has different effects depending on the developmental stage. The aim of this study was to evaluate whether Wnt/β-catenin signalling activation during axolotl limb regeneration has different effects when activated at different stages of regeneration. To evaluate this hypothesis, we treated amputated axolotls with a Wnt agonist chemical at different stages of limb regeneration. The results showed that limb regeneration was inhibited when the treatment began before blastema formation. Under these conditions, blastema formation was hindered, possibly due to the lack of innervation. On the other hand, when axolotls were treated after blastema formation and immediately before the onset of morphogenesis, we observed structural disorganization in skeletal formation. In conclusion, we found that limb regeneration was differentially affected depending on the stage at which the Wnt signalling pathway was activated. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. CRISM Limb Observations of Aerosols and Water Vapor

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, M.J.; Clancy, R.T.; Seelos, F.; Murchie, S.L.

    2009-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.

  9. Neural mechanisms of limb position estimation in the primate brain.

    PubMed

    Shi, Ying; Buneo, Christopher A

    2011-01-01

    Understanding the neural mechanisms of limb position estimation is important both for comprehending the neural control of goal directed arm movements and for developing neuroprosthetic systems designed to replace lost limb function. Here we examined the role of area 5 of the posterior parietal cortex in estimating limb position based on visual and somatic (proprioceptive, efference copy) signals. Single unit recordings were obtained as monkeys reached to visual targets presented in a semi-immersive virtual reality environment. On half of the trials animals were required to maintain their limb position at these targets while receiving both visual and non-visual feedback of their arm position, while on the other trials visual feedback was withheld. When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons modulated their firing rates based on the presence/absence of visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level.

  10. Intralimb and Interlimb Cutaneous Reflexes during Locomotion in the Intact Cat.

    PubMed

    Hurteau, Marie-France; Thibaudier, Yann; Dambreville, Charline; Danner, Simon M; Rybak, Ilya A; Frigon, Alain

    2018-04-25

    When the foot contacts an obstacle during locomotion, cutaneous inputs activate spinal circuits to ensure dynamic balance and forward progression. In quadrupeds, this requires coordinated reflex responses between the four limbs. Here, we investigated the patterns and phasic modulation of cutaneous reflexes in forelimb and hindlimb muscles evoked by inputs from all four limbs. Five female cats were implanted to record muscle activity and to stimulate the superficial peroneal and superficial radial nerves during locomotion. Stimulating these nerves evoked short-, mid-, and longer-latency excitatory and/or inhibitory responses in all four limbs that were phase-dependent. The largest responses were generally observed during the peak activity of the muscle. Cutaneous reflexes during mid-swing were consistent with flexion of the homonymous limb and accompanied by modification of the stance phases of the other three limbs, by coactivating flexors and extensors and/or by delaying push-off. Cutaneous reflexes during mid-stance were consistent with stabilizing the homonymous limb by delaying and then facilitating its push-off and modifying the support phases of the homolateral and diagonal limbs, characterized by coactivating flexors and extensors, reinforcing extensor activity and/or delaying push-off. The shortest latencies of homolateral and diagonal responses were consistent with fast-conducting disynaptic or trisynaptic pathways. Descending homolateral and diagonal pathways from the forelimbs to the hindlimbs had a higher probability of eliciting responses compared with ascending pathways from the hindlimbs to the forelimbs. Thus, in quadrupeds, intralimb and interlimb reflexes activated by cutaneous inputs ensure dynamic coordination of the four limbs, producing a whole-body response. SIGNIFICANCE STATEMENT The skin contains receptors that, when activated, send inputs to spinal circuits, signaling a perturbation. Rapid responses, or reflexes, in muscles of the contacted limb and opposite homologous limb help maintain balance and forward progression. Here, we investigated reflexes during quadrupedal locomotion in the cat by electrically stimulating cutaneous nerves in each of the four limbs. Functionally, responses appear to modify the trajectory or stabilize the movement of the stimulated limb while modifying the support phase of the other limbs. Reflexes between limbs are mediated by fast-conducting pathways that involve excitatory and inhibitory circuits controlling each limb. The comparatively stronger descending pathways from cervical to lumbar circuits controlling the forelimbs and hindlimbs, respectively, could serve a protective function. Copyright © 2018 the authors 0270-6474/18/384104-19$15.00/0.

  11. Muscular and functional effects of partitioning exercising muscle mass in patients with chronic obstructive pulmonary disease - a study protocol for a randomized controlled trial.

    PubMed

    Nyberg, Andrè; Saey, Didier; Martin, Mickaël; Maltais, François

    2015-04-27

    Low-load, high-repetitive single-limb resistance training may increase limb muscle function and functional exercise capacity in patients with chronic obstructive pulmonary disease (COPD) while minimizing the occurrence of limiting exertional symptoms. Whether high-repetitive single-limb resistance training would perform better than high-repetitive two-limb resistance training is unknown. In addition, the mechanisms underlying possible benefits of high-repetitive resistance training has not been investigated. The aims of this study are to compare single versus two-limb high-repetitive resistance training in patients with COPD and to investigate mechanisms of action of these training modalities. This trial is a prospective, assessor-blind, randomized controlled trial. The participants are patients with stable severe to very severe COPD who are older than 40 years of age and healthy controls. The intervention is single-limb, high-repetitive, resistance training with elastic bands, three times/week for 8 weeks. The control is two-limb high-repetitive resistance training with elastic bands, three times/week for 8 weeks. The primary outcomes is change in the 6-min walking distance after 8 weeks of single-limb or two-limb high-repetitive resistance training. The secondary outcomes are changes in limb muscle strength and endurance capacity, key protein involved in quadriceps anabolic/catabolic signalization, fiber-type distribution and capillarization, subjective dyspnea and muscle fatigue, muscle oxygenation, cardiorespiratory demand and health-related quality-of-life after 8 weeks of single-limb or two-limb high-repetitive resistance training. The acute effects of single-limb versus two-limb high-repetitive resistance training on contractile fatigue, exercise stimulus (the product of number of repetition and load), subjective dyspnea and muscle fatigue, muscle oxygenation, and cardiorespiratory demand during upper and lower limb exercises will also be investigated in patients with COPD and healthy controls. Randomization will be performed using a random number generator by a person independent of the recruitment process, using 1:1 allocation to the intervention and the control group using random block sizes. All outcome assessors will be blinded to group assignment. The results of this project will provide important information to help developing and implementing customized exercise training programs for patients with COPD. ClinicalTrials.gov Identifier NCT02283580 Registration date: 4 November 2014. First participant randomized: 10 November 2014.

  12. Functional anatomy and muscle moment arms of the thoracic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris)

    PubMed Central

    Williams, S B; Wilson, A M; Daynes, J; Peckham, K; Payne, R C

    2008-01-01

    We provide quantitative muscle–tendon architecture and geometry data for the racing greyhound thoracic limb. Muscle mass, belly length, fascicle lengths, pennation angles and moment arms were measured, as were tendon masses and lengths. Maximum isometric force and maximum power were estimated for muscles, and maximum stress and strain were estimated for tendons. Results are compared with other fast quadrupedal runners, and to previously published data in mixed-breed dogs. The implications of the functional adaptations of the greyhound thoracic limb for sprinting performance are discussed. The thoracic limb was found to benefit from a similar proportion of locomotor muscle mass to the pelvic limb, suggesting that it may be used to some extent in propulsion, or alternatively that stabilisation is very important in this animal. Extrinsic muscles, especially latissimus dorsi and pectoralis profundus, were predicted to be powerful and important for generating net positive work during accelerations. Proximal biarticular muscles show specialisation toward preventing collapse of the shoulder and elbow joints to enable strut-like limb function, or some form of dynamic control. Distal muscles did not appear specialised for elastic energy storage, a functional difference to pelvic limb muscles, and the equivalents in horse thoracic limbs. The greyhound thoracic limb appears to possess substantial differences from both that of more ‘sub-maximal specialist’ quadrupeds, and from the greyhound pelvic limb. PMID:19034998

  13. Functional anatomy and muscle moment arms of the thoracic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).

    PubMed

    Williams, S B; Wilson, A M; Daynes, J; Peckham, K; Payne, R C

    2008-10-01

    We provide quantitative muscle-tendon architecture and geometry data for the racing greyhound thoracic limb. Muscle mass, belly length, fascicle lengths, pennation angles and moment arms were measured, as were tendon masses and lengths. Maximum isometric force and maximum power were estimated for muscles, and maximum stress and strain were estimated for tendons. Results are compared with other fast quadrupedal runners, and to previously published data in mixed-breed dogs. The implications of the functional adaptations of the greyhound thoracic limb for sprinting performance are discussed. The thoracic limb was found to benefit from a similar proportion of locomotor muscle mass to the pelvic limb, suggesting that it may be used to some extent in propulsion, or alternatively that stabilisation is very important in this animal. Extrinsic muscles, especially latissimus dorsi and pectoralis profundus, were predicted to be powerful and important for generating net positive work during accelerations. Proximal biarticular muscles show specialisation toward preventing collapse of the shoulder and elbow joints to enable strut-like limb function, or some form of dynamic control. Distal muscles did not appear specialised for elastic energy storage, a functional difference to pelvic limb muscles, and the equivalents in horse thoracic limbs. The greyhound thoracic limb appears to possess substantial differences from both that of more 'sub-maximal specialist' quadrupeds, and from the greyhound pelvic limb.

  14. Allometry and apparent paradoxes in human limb proportions: Implications for scaling factors.

    PubMed

    Auerbach, Benjamin M; Sylvester, Adam D

    2011-03-01

    It has been consistently demonstrated that human proximal limb elements exhibit negative allometry, while distal elements scale with positive allometry. Such scaling implies that longer limbs will have higher intralimb indices, a phenomenon not borne out by empirical analyses. This, therefore, creates a paradox within the limb allometry literature. This study shows that these apparently conflicting results are the product of two separate phenomena. First, the use of the geometric mean of limb elements produces allometry coefficients that are not independent, and that when using ordinary least squares regression must yield an average slope of one. This phenomenon argues against using the geometric mean as a size variable when examining limb allometry. While the employment of relevant dimensions independent of those under analysis to calculate the geometric mean--as suggested by Coleman (Am J Phys Anthropol 135 (2008) 404-415)--may be a partial method for resolving the problem, an empirically determined, independent and biologically relevant size variable is advocated. If stature is used instead of the geometric mean as an independent size variable, all major limb elements scale with positive allometry. Second, while limb allometry coefficients do indicate differential allometry in limb elements, and thus should lead to some intralimb index allometry, this pattern appears to be attenuated by other sources of limb element length variation. Copyright © 2010 Wiley-Liss, Inc.

  15. Experimental evaluation of rigor mortis. III. Comparative study of the evolution of rigor mortis in different sized muscle groups in rats.

    PubMed

    Krompecher, T; Fryc, O

    1978-01-01

    The use of new methods and an appropriate apparatus has allowed us to make successive measurements of rigor mortis and a study of its evolution in the rat. By a comparative examination on the front and hind limbs, we have determined the following: (1) The muscular mass of the hind limbs is 2.89 times greater than that of the front limbs. (2) In the initial phase rigor mortis is more pronounced in the front limbs. (3) The front and hind limbs reach maximum rigor mortis at the same time and this state is maintained for 2 hours. (4) Resolution of rigor mortis is accelerated in the front limbs during the initial phase, but both front and hind limbs reach complete resolution at the same time.

  16. Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs.

    PubMed

    Carlson, M R; Bryant, S V; Gardiner, D M

    1998-12-15

    Msx genes are transcription factors that are expressed during embryogenesis of developing appendages in regions of epithelial-mesenchymal interactions. Various lines of evidence indicate that these genes function to maintain embryonic tissues in an undifferentiated, proliferative state. We have identified the axolotl homolog of Msx-2, and investigated its expression during limb development, limb regeneration, and wound healing. As in limb buds of higher vertebrates, axolotl Msx-2 is expressed in the apical epidermis and mesenchyme; however, its expression domain is more extensive, reflecting the broader region of the apical epidermal cap in amphibians. Msx-2 expression is downregulated at late stages of limb development, but is reexpressed within one hour after limb amputation. Msx-2 is also reexpressed during wound healing, and may be essential in the early stages of initiation of the limb regeneration cascade.

  17. Phantom Limbs, Neuroprosthetics, and the Developmental Origins of Embodiment.

    PubMed

    Blumberg, Mark S; Dooley, James C

    2017-10-01

    Amputees who wish to rid themselves of a phantom limb must weaken the neural representation of the absent limb. Conversely, amputees who wish to replace a lost limb must assimilate a neuroprosthetic with the existing neural representation. Whether we wish to remove a phantom limb or assimilate a synthetic one, we will benefit from knowing more about the developmental process that enables embodiment. A potentially critical contributor to that process is the spontaneous activity - in the form of limb twitches - that occurs exclusively and abundantly during active (REM) sleep, a particularly prominent state in early development. The sensorimotor circuits activated by twitching limbs, and the developmental context in which activation occurs, could provide a roadmap for creating neuroprosthetics that feel as if they are part of the body. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Growth characteristics of fibroblasts isolated from the trunk and distal aspect of the limb of horses and ponies.

    PubMed

    Miller, C B; Wilson, D A; Keegan, K G; Kreeger, J M; Adelstein, E H; Ganjam, V K

    2000-01-01

    To determine if there is a difference in in vitro growth of fibroblasts isolated from the trunk and distal aspect of the limb of horses and ponies. To determine the effects of a corticosteroid and monokine on in vitro growth of fibroblasts isolated from the trunk and distal aspect of the limb of horses and ponies. Growth of fibroblasts from tissues harvested from the trunk and limb were compared from horse and pony samples grown in control media and control media with triamcinolone or monokine added. Dermal and subcutaneous tissue from 22 horses and 17 ponies of various ages and breeds. Fibroblast growth was assessed by tritiated thymidine uptake using standard cell culture techniques. The effect of a monokine or triamcinolone plus control media were compared with control media for fibroblast growth. Fibroblast growth from tissues isolated from the horse limb was significantly less than growth from the horse trunk and the limb and trunk of ponies. Monokine was more effective than triamcinolone in suppressing fibroblast growth from tissues isolated from the trunk and limb in both horses and ponies. There are growth differences in fibroblasts isolated from the limb of horses compared with those isolated from the trunk and from the limb and trunk of ponies. The difference in fibroblast growth from tissues isolated from the trunk and limb of horses and ponies may provide evidence for the difference reported in the healing characteristics of limb wounds in horses and ponies. Influencing fibroblast growth may provide a key to controlling the development of exuberant granulation tissue in horses and ponies.

  19. The Differential Effect of Arm Movements during Gait on the Forward Acceleration of the Centre of Mass in Children with Cerebral Palsy and Typically Developing Children.

    PubMed

    Meyns, Pieter; Molenaers, Guy; Duysens, Jacques; Jonkers, Ilse

    2017-01-01

    Background: We aimed to study the contribution of upper limb movements to propulsion during walking in typically developing (TD) children ( n = 5) and children with hemiplegic and diplegic cerebral palsy (CP; n = 5 and n = 4, respectively). Methods: Using integrated three-dimensional motion capture data and a scaled generic musculoskeletal model that included upper limbs, we generated torque driven simulations of gait in OpenSim. Induced acceleration analyses were then used to determine the contributions of the individual actuators located at the relevant degrees of freedoms of the upper and lower limb joints to the forward acceleration of the COM at each time point of the gait simulation. The mean values of the contribution of the actuators of upper limbs, lower limbs, and gravity in different phases of the gait cycle were compared between the three groups. Findings: The results indicated a limited contribution of the upper limb actuators to COM forward acceleration compared to the contribution of lower limbs and gravity, in the three groups. In diplegic CP, the contribution of the upper limbs seemed larger compared to TD during the preswing and swing phases of gait. In hemiplegic CP, the unaffected arm seemed to contribute more to COM deceleration during (pre)swing, while the affected side contributed to COM acceleration. Interpretation: These findings suggest that in the presence of lower limb dysfunction, the contribution of the upper limbs to forward propulsion is altered, although they remain negligible compared to the lower limbs and gravity.

  20. Comparison of transtibial amputee and non-amputee biomechanics during a common turning task.

    PubMed

    Segal, Ava D; Orendurff, Michael S; Czerniecki, Joseph M; Schoen, Jason; Klute, Glenn K

    2011-01-01

    The biomechanics of amputee turning gait has been minimally studied, in spite of its integral relationship with the more complex gait required for household or community ambulation. This study compares the biomechanics of unilateral transtibial amputees and non-amputees completing a common turning task. Full body gait analysis was completed for subjects walking at comparable self-selected speeds around a 1m radius circular path. Peak internal and external rotation moments of the hip, knee and ankle, mediolateral ground reaction impulse (ML GRI), peak effective limb length, and stride length were compared across conditions (non-amputee, amputee prosthetic limb, amputee sound limb). Amputees showed decreased internal rotation moments at the prosthetic limb hip and knee compared to non-amputees, perhaps as a protective mechanism to minimize stress on the residual limb. There was also an increase in amputee sound limb hip external rotation moment in early stance compared to non-amputees, which may be a compensation for the decrease in prosthetic limb internal rotation moment during late stance of the prior step. ML GRI was decreased for the amputee inside limb compared to non-amputee, possibly to minimize the body's acceleration in the direction of the turn. Amputees also exhibited a shorter inside limb stride length compared to non-amputees. Both decreased ML GRI and stride length indicate a COM that is more centered over the base of support, which may minimize the risk of falling. Finally, a longer effective limb length was found for the amputee inside limb turning, possibly due to excessive trunk shift. Published by Elsevier B.V.

  1. Objective assessment of the compensatory effect of clinical hind limb lameness in horses: 37 cases (2011-2014).

    PubMed

    Maliye, Sylvia; Marshall, John F

    2016-10-15

    OBJECTIVE To characterize and describe the compensatory load redistribution that results from unilateral hind limb lameness in horses. DESIGN Retrospective case series. ANIMALS 37 client-owned horses. PROCEDURES Medical records were reviewed to identify horses with unilateral hind limb lameness that responded positively (by objective assessment) to diagnostic local anesthesia during lameness evaluation and that were evaluated before and after diagnostic local anesthesia with an inertial sensor-based lameness diagnosis system. Horses were grouped as having hind limb lameness only, hind limb and ipsilateral forelimb lameness, or hind limb and contralateral forelimb lameness. Measures of head and pelvic movement asymmetry before (baseline) and after diagnostic local anesthesia were compared. The effect of group on baseline pelvic movement asymmetry variables was analyzed statistically. RESULTS Maximum pelvic height significantly decreased from the baseline value after diagnostic local anesthesia in each of the 3 lameness groups and in all horses combined. Minimum pelvic height significantly decreased after the procedure in all groups except the hind limb and contralateral forelimb lameness group. Head movement asymmetry was significantly decreased after diagnostic local anesthesia for horses with hind limb and ipsilateral forelimb lameness and for all horses combined, but not for those with hind limb lameness only or those with hind limb and contralateral forelimb lameness. CONCLUSIONS AND CLINICAL RELEVANCE Results supported that hind limb lameness can cause compensatory load redistribution evidenced as ipsilateral forelimb lameness. In this population of horses, contralateral forelimb lameness was not compensatory and likely reflected true lameness. Further studies are needed to investigate the source of the contralateral forelimb lameness in such horses.

  2. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury.

    PubMed

    Sen, Chandan K; Khanna, Savita; Harris, Hallie; Stewart, Richard; Balch, Maria; Heigel, Mallory; Teplitsky, Seth; Gnyawali, Surya; Rink, Cameron

    2017-03-01

    The efficacy and optimization of poststroke physical therapy paradigms is challenged in part by a lack of objective tools available to researchers for systematic preclinical testing. This work represents a maiden effort to develop a robot-assisted mechanical therapy (RAMT) device to objectively address the significance of mechanical physiotherapy on poststroke outcomes. Wistar rats were subjected to right hemisphere middle-cerebral artery occlusion and reperfusion. After 24 h, rats were split into control (RAMT - ) or RAMT + groups (30 min daily RAMT over the stroke-affected gastrocnemius) and were followed up to poststroke d 14. RAMT + increased perfusion 1.5-fold in stroke-affected gastrocnemius as compared to RAMT - controls. Furthermore, RAMT + rats demonstrated improved poststroke track width (11% wider), stride length (21% longer), and travel distance (61% greater), as objectively measured using software-automated testing platforms. Stroke injury acutely increased myostatin (3-fold) and lowered brain-derived neurotrophic factor (BDNF) expression (0.6-fold) in the stroke-affected gastrocnemius, as compared to the contralateral one. RAMT attenuated the stroke-induced increase in myostatin and increased BDNF expression in skeletal muscle. Additional RAMT-sensitive myokine targets in skeletal muscle (IL-1ra and IP-10/CXCL10) were identified from a cytokine array. Taken together, outcomes suggest stroke acutely influences signal transduction in hindlimb skeletal muscle. Regimens based on mechanical therapy have the clear potential to protect hindlimb function from such adverse influence.-Sen, C. K., Khanna, S., Harris, H., Stewart, R., Balch, M., Heigel, M., Teplitsky, S., Gnyawali, S., Rink, C. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury. © FASEB.

  3. Individual Finger Control of the Modular Prosthetic Limb using High-Density Electrocorticography in a Human Subject

    PubMed Central

    Fifer, Matthew S.; Johannes, Matthew S.; Katyal, Kapil D.; Para, Matthew P.; Armiger, Robert; Anderson, William S.; Thakor, Nitish V.; Wester, Brock A.; Crone, Nathan E.

    2016-01-01

    Objective We used native sensorimotor representations of fingers in a brain-machine interface to achieve immediate online control of individual prosthetic fingers. Approach Using high gamma responses recorded with a high-density ECoG array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: 1) if any finger was moving, and, if so, 2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory (JHU/APL) Modular Prosthetic Limb (MPL). Main Results The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time. PMID:26863276

  4. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury

    PubMed Central

    Sen, Chandan K.; Khanna, Savita; Harris, Hallie; Stewart, Richard; Balch, Maria; Heigel, Mallory; Teplitsky, Seth; Gnyawali, Surya; Rink, Cameron

    2017-01-01

    The efficacy and optimization of poststroke physical therapy paradigms is challenged in part by a lack of objective tools available to researchers for systematic preclinical testing. This work represents a maiden effort to develop a robot-assisted mechanical therapy (RAMT) device to objectively address the significance of mechanical physiotherapy on poststroke outcomes. Wistar rats were subjected to right hemisphere middle-cerebral artery occlusion and reperfusion. After 24 h, rats were split into control (RAMT−) or RAMT+ groups (30 min daily RAMT over the stroke-affected gastrocnemius) and were followed up to poststroke d 14. RAMT+ increased perfusion 1.5-fold in stroke-affected gastrocnemius as compared to RAMT− controls. Furthermore, RAMT+ rats demonstrated improved poststroke track width (11% wider), stride length (21% longer), and travel distance (61% greater), as objectively measured using software-automated testing platforms. Stroke injury acutely increased myostatin (3-fold) and lowered brain-derived neurotrophic factor (BDNF) expression (0.6-fold) in the stroke-affected gastrocnemius, as compared to the contralateral one. RAMT attenuated the stroke-induced increase in myostatin and increased BDNF expression in skeletal muscle. Additional RAMT-sensitive myokine targets in skeletal muscle (IL-1ra and IP-10/CXCL10) were identified from a cytokine array. Taken together, outcomes suggest stroke acutely influences signal transduction in hindlimb skeletal muscle. Regimens based on mechanical therapy have the clear potential to protect hindlimb function from such adverse influence.—Sen, C. K., Khanna, S., Harris, H., Stewart, R., Balch, M., Heigel, M., Teplitsky, S., Gnyawali, S., Rink, C. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury. PMID:27895105

  5. Familial isolated clubfoot is associated with recurrent chromosome 17q23.1q23.2 microduplications containing TBX4.

    PubMed

    Alvarado, David M; Aferol, Hyuliya; McCall, Kevin; Huang, Jason B; Techy, Matthew; Buchan, Jillian; Cady, Janet; Gonzales, Patrick R; Dobbs, Matthew B; Gurnett, Christina A

    2010-07-09

    Clubfoot is a common musculoskeletal birth defect for which few causative genes have been identified. To identify the genes responsible for isolated clubfoot, we screened for genomic copy-number variants with the Affymetrix Genome-wide Human SNP Array 6.0. A recurrent chromosome 17q23.1q23.2 microduplication was identified in 3 of 66 probands with familial isolated clubfoot. The chromosome 17q23.1q23.2 microduplication segregated with autosomal-dominant clubfoot in all three families but with reduced penetrance. Mild short stature was common and one female had developmental hip dysplasia. Subtle skeletal abnormalities consisted of broad and shortened metatarsals and calcanei, small distal tibial epiphyses, and thickened ischia. Several skeletal features were opposite to those described in the reciprocal chromosome 17q23.1q23.2 microdeletion syndrome associated with developmental delay and cardiac and limb abnormalities. Of note, during our study, we also identified a microdeletion at the locus in a sibling pair with isolated clubfoot. The chromosome 17q23.1q23.2 region contains the T-box transcription factor TBX4, a likely target of the bicoid-related transcription factor PITX1 previously implicated in clubfoot etiology. Our result suggests that this chromosome 17q23.1q23.2 microduplication is a relatively common cause of familial isolated clubfoot and provides strong evidence linking clubfoot etiology to abnormal early limb development. Copyright 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject

    NASA Astrophysics Data System (ADS)

    Hotson, Guy; McMullen, David P.; Fifer, Matthew S.; Johannes, Matthew S.; Katyal, Kapil D.; Para, Matthew P.; Armiger, Robert; Anderson, William S.; Thakor, Nitish V.; Wester, Brock A.; Crone, Nathan E.

    2016-04-01

    Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. Main results. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time.

  7. Lower-Limb Amputation and Effect of Posttraumatic Stress Disorder on Department of Veterans Affairs Outpatient Cost Trends

    DTIC Science & Technology

    2015-07-01

    JRRD Volume 52, Number 7, 2015Pages 827–838Lower-limb amputation and effect of posttraumatic stress disorder on Department of Veterans Affairs...lower- limb amputations and limb injuries. We evaluated the effect of lower-limb injury, amputation(s), and PTSD on outpatient costs, adjusting for...amputation status and significant parameters were tested (p  0.05) and models stratified by significant effect modi- fiers (p  0.05). For cost categories

  8. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Quarterly report for the period of February, March and April 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-02-01

    The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

  9. Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration.

    PubMed

    Flowers, Grant Parker; Sanor, Lucas D; Crews, Craig M

    2017-09-16

    Salamanders are unparalleled among tetrapods in their ability to regenerate many structures, including entire limbs, and the study of this ability may provide insights into human regenerative therapies. The complex structure of the limb poses challenges to the investigation of the cellular and molecular basis of its regeneration. Using CRISPR/Cas, we genetically labelled unique cell lineages within the developing axolotl embryo and tracked the frequency of each lineage within amputated and fully regenerated limbs. This allowed us, for the first time, to assess the contributions of multiple low frequency cell lineages to the regenerating limb at once. Our comparisons reveal that regenerated limbs are high fidelity replicas of the originals even after repeated amputations.

  10. Disappearance of "phantom limb" and amputated arm usage during dreaming in REM sleep behaviour disorder.

    PubMed

    Vetrugno, Roberto; Arnulf, Isabelle; Montagna, Pasquale

    2009-01-01

    Limb amputation is followed, in approximately 90% of patients, by "phantom limb" sensations during wakefulness. When amputated patients dream, however, the phantom limb may be present all the time, part of the time, intermittently or not at all. Such dreaming experiences in amputees have usually been obtained only retrospectively in the morning and, moreover, dreaming is normally associated with muscular atonia so the motor counterpart of the phantom limb experience cannot be observed directly. REM sleep behaviour disorder (RBD), in which muscle atonia is absent during REM sleep and patients act out their dreams, allows a more direct analysis of the "phantom limb" phenomena and their modifications during sleep.

  11. Robotics in Lower-Limb Rehabilitation after Stroke

    PubMed Central

    2017-01-01

    With the increase in the elderly, stroke has become a common disease, often leading to motor dysfunction and even permanent disability. Lower-limb rehabilitation robots can help patients to carry out reasonable and effective training to improve the motor function of paralyzed extremity. In this paper, the developments of lower-limb rehabilitation robots in the past decades are reviewed. Specifically, we provide a classification, a comparison, and a design overview of the driving modes, training paradigm, and control strategy of the lower-limb rehabilitation robots in the reviewed literature. A brief review on the gait detection technology of lower-limb rehabilitation robots is also presented. Finally, we discuss the future directions of the lower-limb rehabilitation robots. PMID:28659660

  12. Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report

    PubMed Central

    2011-01-01

    Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees. PMID:21272334

  13. Robotics in Lower-Limb Rehabilitation after Stroke.

    PubMed

    Zhang, Xue; Yue, Zan; Wang, Jing

    2017-01-01

    With the increase in the elderly, stroke has become a common disease, often leading to motor dysfunction and even permanent disability. Lower-limb rehabilitation robots can help patients to carry out reasonable and effective training to improve the motor function of paralyzed extremity. In this paper, the developments of lower-limb rehabilitation robots in the past decades are reviewed. Specifically, we provide a classification, a comparison, and a design overview of the driving modes, training paradigm, and control strategy of the lower-limb rehabilitation robots in the reviewed literature. A brief review on the gait detection technology of lower-limb rehabilitation robots is also presented. Finally, we discuss the future directions of the lower-limb rehabilitation robots.

  14. Exploring the fine structure at the limb in coronal holes

    NASA Technical Reports Server (NTRS)

    Karovska, Magarita; Blundell, Solon F.; Habbal, Shadia Rifai

    1994-01-01

    The fine structure of the solar limb in coronal holes is explored at temperatures ranging from 10(exp 4) to 10(exp 6) K. An image enhancement algorithm orignally developed for solar eclipse observations is applied to a number of simultaneous multiwavelength observations made with the Harvard Extreme Ultraviolet Spectrometer experiment on Skylab. The enhanced images reveal the presence of filamentary structures above the limb with a characteristic separation of approximately 10 to 15 sec . Some of the structures extend from the solar limb into the corona to at least 4 min above the solar limb. The brightness of these structures changes as a function of height above the limb. The brightest emission is associated with spiculelike structures in the proximity of the limb. The emission characteristic of high-temperature plasma is not cospatial with the emission at lower temperatures, indicating the presence of different temperature plasmas in the field of view.

  15. Limb immobilization and corticobasal syndrome.

    PubMed

    Graff-Radford, Jonathan; Boeve, Bradley F; Drubach, Daniel A; Knopman, David S; Ahlskog, J Eric; Golden, Erin C; Drubach, Dina I; Petersen, Ronald C; Josephs, Keith A

    2012-12-01

    Recently, we evaluated two patients with corticobasal syndrome (CBS) who reported symptom onset after limb immobilization. Our objective was to investigate the association between trauma, immobilization and CBS. The charts of forty-four consecutive CBS patients seen in the Mayo Clinic Alzheimer Disease Research Center were reviewed with attention to trauma and limb immobilization. 10 CBS patients (23%) had immobilization or trauma on the most affected limb preceding the onset or acceleration of symptoms. The median age at onset was 61. Six patients manifested their first symptoms after immobilization from surgery or fracture with one after leg trauma. Four patients had pre-existing symptoms of limb dysfunction but significantly worsened after immobilization or surgery. 23 percent of patients had immobilization or trauma of the affected limb. This might have implications for management of CBS, for avoiding injury, limiting immobilization and increasing movement in the affected limb. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Cross-education of wrist extensor strength is not influenced by non-dominant training in right-handers.

    PubMed

    Coombs, Timothy A; Frazer, Ashlyn K; Horvath, Deanna M; Pearce, Alan J; Howatson, Glyn; Kidgell, Dawson J

    2016-09-01

    Cross-education of strength has been proposed to be greater when completed by the dominant limb in right handed humans. We investigated whether the direction of cross-education of strength and corticospinal plasticity are different following right or left limb strength training in right-handed participants. Changes in strength, muscle thickness and indices of corticospinal plasticity were analyzed in 23 adults who were exposed to 3-weeks of either right-hand strength training (RHT) or left-hand strength training (LHT). Maximum voluntary wrist extensor strength in both the trained and untrained limb increased, irrespective of which limb was trained, with TMS revealing reduced corticospinal inhibition. Cross-education of strength was not limited by which limb was trained and reduced corticospinal inhibition was not just confined to the trained limb. Critically, from a behavioral perspective, the magnitude of cross-education was not limited by which limb was trained.

  17. Surrogate: A Body-Dexterous Mobile Manipulation Robot with a Tracked Base

    NASA Technical Reports Server (NTRS)

    Hebert, Paul (Inventor); Borders, James W. (Inventor); Hudson, Nicolas H. (Inventor); Kennedy, Brett A. (Inventor); Ma, Jeremy C. (Inventor); Bergh, Charles F. (Inventor)

    2018-01-01

    Robotics platforms in accordance with various embodiments of the invention can be utilized to implement highly dexterous robots capable of whole body motion. Robotics platforms in accordance with one embodiment of the invention include: a memory containing a whole body motion application; a spine, where the spine has seven degrees of freedom and comprises a spine actuator and three spine elbow joints that each include two spine joint actuators; at least one limb, where the at least one limb comprises a limb actuator and three limb elbow joints that each include two limb joint actuators; a tracked base; a connecting structure that connects the at least one limb to the spine; a second connecting structure that connects the spine to the tracked base; wherein the processor is configured by the whole body motion application to move the at least one limb and the spine to perform whole body motion.

  18. Pre- and Postoperative Evaluation by Photoplethysmography in Patients Receiving Surgery for Lower-Limb Varicose Veins

    PubMed Central

    Saliba Júnior, Orlando Adas; Giannini, Mariangela; Mórbio, Ana Paula; Saliba, Orlando; Rollo, Hamilton Almeida

    2014-01-01

    Objective. To evaluate the effectiveness of surgery in treating primary varicose veins in the lower limbs by photoplethysmography (PPG) and duplex mapping (DM). Method. Forty-eight lower limbs were clinically evaluated according to the CEAP classification system and subjected to PPG and DM exams. Each limb had a venous refill time (VRT) of <20 seconds and a normal deep vein system (DVS) by DM. Results. The mean pre- and postoperative VRTs were 13.79 and 26.43 seconds, respectively (P < 0.0001). After surgery, 42 limbs (87.50%) had normal results by PPG (VRT > 20 seconds). Four limbs (8.33%) showed improved VRTs, but the VRTs did not reach 20 seconds. In the 2 limbs (4.17%) that maintained their original VRTs, the DM exams showed the presence of insufficient perforating veins. Conclusion. In most cases, PPG allows for a satisfactory evaluation of the outcome of varicose vein surgery. PMID:24696783

  19. Normal body scheme and absent phantom limb experience in amputees while dreaming.

    PubMed

    Alessandria, Maria; Vetrugno, Roberto; Cortelli, Pietro; Montagna, Pasquale

    2011-12-01

    While dreaming amputees often experience a normal body image and the phantom limb may not be present. However, dreaming experiences in amputees have mainly been collected by questionnaires. We analysed the dream reports of amputated patients with phantom limb collected after awakening from REM sleep during overnight videopolysomnography (VPSG). Six amputated patients underwent overnight VPSG study. Patients were awakened during REM sleep and asked to report their dreams. Three patients were able to deliver an account of a dream. In all dreaming recalls, patients reported that the amputated limbs were intact and completely functional and they no longer experienced phantom limb sensations. Phantom limb experiences, that during wake result from a conflict between a pre-existing body scheme and the sensory information on the missing limb, were suppressed during sleep in our patients in favour of the image of an intact body accessed during dream. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Age-Related Differences in Bilateral Asymmetry in Cycling Performance

    ERIC Educational Resources Information Center

    Liu, Ting; Jensen, Jody L.

    2012-01-01

    Bilateral asymmetry, a form of limb laterality in the context of moving two limbs, emerges in childhood. Children and adults show lateral preference in tasks that involve the upper and lower limbs. The importance of research in limb laterality is the insight it could provide about lateralized functions of the cerebral hemispheres. Analyzing…

Top