Sample records for limb locomotor function

  1. Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids

    NASA Astrophysics Data System (ADS)

    Iijima, Masaya; Kubo, Tai; Kobayashi, Yoshitsugu

    2018-03-01

    Although two major clades of crocodylians (Alligatoroidea and Crocodyloidea) were split during the Cretaceous period, relatively few morphological and functional differences between them have been known. In addition, interaction of multiple morphofunctional systems that differentiated their ecology has barely been assessed. In this study, we examined the limb proportions of crocodylians to infer the differences of locomotor functions between alligatoroids and crocodyloids, and tested the correlation of locomotor and feeding morphofunctions. Our analyses revealed crocodyloids including Gavialis have longer stylopodia (humerus and femur) than alligatoroids, indicating that two groups may differ in locomotor functions. Fossil evidence suggested that alligatoroids have retained short stylopodia since the early stage of their evolution. Furthermore, rostral shape, an indicator of trophic function, is correlated with limb proportions, where slender-snouted piscivorous taxa have relatively long stylopodia and short overall limbs. In combination, trophic and locomotor functions might differently delimit the ecological opportunity of alligatoroids and crocodyloids in the evolution of crocodylians.

  2. Alternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards.

    PubMed

    Bergmann, Philip J; Irschick, Duncan J

    2010-06-01

    Body shape has a fundamental impact on organismal function, but it is unknown how functional morphology and locomotor performance and kinematics relate across a diverse array of body shapes. We showed that although patterns of body shape evolution differed considerably between lizards of the Phrynosomatinae and Lerista, patterns of locomotor evolution coincided between clades. Specifically, we found that the phrynosomatines evolved a stocky phenotype through body widening and limb shortening, whereas Lerista evolved elongation through body lengthening and limb shortening. In both clades, relative limb length played a key role in locomotor evolution and kinematic strategies, with long-limbed species moving faster and taking longer strides. In Lerista, the body axis also influenced locomotor evolution. Similar patterns of locomotor evolution were likely due to constraints on how the body can move. However, these common patterns of locomotor evolution between the two clades resulted in different kinematic strategies and levels of performance among species because of their morphological differences. Furthermore, we found no evidence that distinct body shapes are adaptations to different substrates, as locomotor kinematics did not change on loose or solid substrates. Our findings illustrate the importance of studying kinematics to understand the mechanisms of locomotor evolution and phenotype-function relationships.

  3. Relating ranging ecology, limb length, and locomotor economy in terrestrial animals.

    PubMed

    Pontzer, Herman

    2012-03-07

    Ecomorphological analyses have identified a number of important evolutionary trends in vertebrate limb design, but the relationships between daily travel distance, locomotor ecology, and limb length in terrestrial animals remain poorly understood. In this paper I model the net rate of energy intake as a function of foraging efficiency, and thus of locomotor economy; improved economy leads to greater net energy intake. However, the relationship between locomotor economy and net intake is highly dependent on foraging efficiency; only species with low foraging efficiencies experience strong selection pressure for improved locomotor economy and increased limb length. Examining 237 terrestrial species, I find that nearly all taxa obtain sufficiently high foraging efficiencies that selection for further increases in economy is weak. Thus selection pressures for increased economy and limb length among living terrestrial animals may be relatively weak and similar in magnitude across ecologically diverse species. The Economy Selection Pressure model for locomotor economy may be useful in investigating the evolution of limb design in early terrestrial taxa and the coevolution of foraging ecology and locomotor anatomy in lineages with low foraging efficiencies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Energetic benefits and adaptations in mammalian limbs: Scale effects and selective pressures.

    PubMed

    Kilbourne, Brandon M; Hoffman, Louwrens C

    2015-06-01

    Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomotor costs with increasing limb length. Whole fore- and hindlimb inertial properties reflecting limb size and shape-moment of inertia (MOI), mass, mass distribution, and natural frequency-were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass-specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  5. Relationships between Lower Limb Muscle Strength and Locomotor Capacity in Children and Adolescents with Cerebral Palsy Who Walk Independently

    ERIC Educational Resources Information Center

    Ferland, Chantale; Lepage, Celine; Moffet, Helene; Maltais, Desiree B.

    2012-01-01

    This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip…

  6. The kinematic recovery process of rhesus monkeys after spinal cord injury.

    PubMed

    Wei, Rui-Han; Zhao, Can; Rao, Jia-Sheng; Zhao, Wen; Zhou, Xia; Tian, Peng-Yu; Song, Wei; Ji, Run; Zhang, Ai-Feng; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-05-16

    After incomplete spinal cord injury (SCI), neural circuits may be plastically reconstructed to some degree, resulting in extensive functional locomotor recovery. The present study aimed to observe the post-SCI locomotor recovery of rhesus monkey hindlimbs and compare the recovery degrees of different hindlimb parts, thus revealing the recovery process of locomotor function. Four rhesus monkeys were chosen for thoracic hemisection injury. The hindlimb locomotor performance of these animals was recorded before surgery, as well as 6 and 12 weeks post-lesion. Via principal component analysis, the relevant parameters of the limb endpoint, pelvis, hindlimb segments, and joints were processed and analyzed. Twelve weeks after surgery, partial kinematic recovery was observed at the limb endpoint, shank, foot, and knee joints, and the locomotor performance of the ankle joint even recovered to the pre-lesion level; the elevation angle of the thigh and hip joints showed no obvious recovery. Generally, different parts of a monkey hindlimb had different spontaneous recovery processes; specifically, the closer the part was to the distal end, the more extensive was the locomotor function recovery. Therefore, we speculate that locomotor recovery may be attributed to plastic reconstruction of the motor circuits that are mainly composed of corticospinal tract. This would help to further understand the plasticity of motor circuits after spinal cord injury.

  7. Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion

    PubMed Central

    Hayes, Heather Brant; Chang, Young-Hui

    2012-01-01

    Presynaptic inhibition is a powerful mechanism for selectively and dynamically gating sensory inputs entering the spinal cord. We investigated how hindlimb mechanics influence presynaptic inhibition during locomotion using pioneering approaches in an in vitro spinal cord–hindlimb preparation. We recorded lumbar dorsal root potentials to measure primary afferent depolarization-mediated presynaptic inhibition and compared their dependence on hindlimb endpoint forces, motor output, and joint kinematics. We found that stance-phase force on the opposite limb, particularly at toe contact, strongly influenced the magnitude and timing of afferent presynaptic inhibition in the swinging limb. Presynaptic inhibition increased in proportion to opposite limb force, as well as locomotor frequency. This form of presynaptic inhibition binds the sensorimotor states of the two limbs, adjusting sensory inflow to the swing limb based on forces generated by the stance limb. Functionally, it may serve to adjust swing-phase sensory transmission based on locomotor task, speed, and step-to-step environmental perturbations. PMID:22442562

  8. The Development of an Accelerometer System for Measuring Pelvic Motion During Walking.

    DTIC Science & Technology

    1979-01-01

    9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, T ASK AFIT STUDENT AT: University of Oxford CONTROLLING OFFICE NAME AND...bones, joints or muscles and physiotherapy to improve the functioning of impaired lower limbs. When irreparable damage occurs, the normal locomotor system...restoring near normal functioning of the locomotor system. Any improvement in surgical procedures, physiotherapy techniques, orthoses or prostheses

  9. Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land.

    PubMed

    Kawano, Sandy M; Blob, Richard W

    2013-08-01

    The invasion of land was a pivotal event in vertebrate evolution that was associated with major appendicular modifications. Although fossils indicate that the evolution of fundamentally limb-like appendages likely occurred in aquatic environments, the functional consequences of using early digited limbs, rather than fins, for terrestrial propulsion have had little empirical investigation. Paleontological and experimental analyses both have led to the proposal of an early origin of "hind limb-driven" locomotion among tetrapods or their ancestors. However, the retention of a pectoral appendage that had already developed terrestrial adaptations has been proposed for some taxa, and few data are available from extant functional models that can provide a foundation for evaluating the relative contributions of pectoral and pelvic appendages to terrestrial support among early stem tetrapods. To examine these aspects of vertebrate locomotor evolution during the invasion of land, we measured three-dimensional ground reaction forces (GRFs) produced by isolated pectoral fins of mudskipper fishes (Periophthalmus barbarus) during terrestrial crutching, and compared these to isolated walking footfalls by the forelimbs and hind limbs of tiger salamanders (Ambystoma tigrinum), a species with subequally-sized limbs that facilitate comparisons to early tetrapods. Pectoral appendages of salamanders and mudskippers exhibited numerous differences in GRFs. Compared with salamander forelimbs, isolated fins of mudskippers bear lower vertical magnitudes of GRFs (as a proportion of body weight), and had GRFs that were oriented more medially. Comparing the salamanders' forelimbs and hind limbs, although the peak net GRF occurs later in stance for the forelimb, both limbs experience nearly identical mediolateral and vertical components of GRF, suggesting comparable contributions to support. Thus, forelimbs could also have played a significant locomotor role among basal tetrapods that had limbs of sub-equal size. However, the salamander hind limb and mudskipper pectoral fin had a greater acceleratory role than did the salamander forelimb. Together, data from these extant taxa help to clarify how structural change may have influenced locomotor function through the evolutionary invasion of land by vertebrates.

  10. Powered lower limb orthoses for gait rehabilitation

    PubMed Central

    Ferris, Daniel P.; Sawicki, Gregory S.; Domingo, Antoinette

    2006-01-01

    Bodyweight supported treadmill training has become a prominent gait rehabilitation method in leading rehabilitation centers. This type of locomotor training has many functional benefits but the labor costs are considerable. To reduce therapist effort, several groups have developed large robotic devices for assisting treadmill stepping. A complementary approach that has not been adequately explored is to use powered lower limb orthoses for locomotor training. Recent advances in robotic technology have made lightweight powered orthoses feasible and practical. An advantage to using powered orthoses as rehabilitation aids is they allow practice starting, turning, stopping, and avoiding obstacles during overground walking. PMID:16568153

  11. In vivo locomotor strain in the hindlimb bones of alligator mississippiensis and iguana iguana: implications for the evolution of limb bone safety factor and non-sprawling limb posture

    PubMed

    Blob; Biewener

    1999-05-01

    Limb postures of terrestrial tetrapods span a continuum from sprawling to fully upright; however, most experimental investigations of locomotor mechanics have focused on mammals and ground-dwelling birds that employ parasagittal limb kinematics, leaving much of the diversity of tetrapod locomotor mechanics unexplored. This study reports measurements of in vivo locomotor strain from the limb bones of lizard (Iguana iguana) and crocodilian (Alligator mississippiensis) species, animals from previously unsampled phylogenetic lineages with non-parasagittal limb posture and kinematics. Principal strain orientations and shear strain magnitudes indicate that the limb bones of these species experience considerable torsion during locomotion. This contrasts with patterns commonly observed in mammals, but matches predictions from kinematic observations of axial rotation in lizard and crocodilian limbs. Comparisons of locomotor load magnitudes with the mechanical properties of limb bones in Alligator and Iguana indicate that limb bone safety factors in bending for these species range from 5.5 to 10.8, as much as twice as high as safety factors previously calculated for mammals and birds. Limb bone safety factors in shear (3.9-5.4) for Alligator and Iguana are also moderately higher than safety factors to yield in bending for birds and mammals. Finally, correlations between limb posture and strain magnitudes in Alligator show that at some recording locations limb bone strains can increase during upright locomotion, in contrast to expectations based on size-correlated changes in posture among mammals that limb bone strains should decrease with the use of an upright posture. These data suggest that, in some lineages, strain magnitudes may not have been maintained at constant levels through the evolution of a non-sprawling posture unless the postural change was accompanied by a shift to parasagittal kinematics or by an evolutionary decrease in body size.

  12. Getting around when you're round: quantitative analysis of the locomotion of the blunt-spined brittle star, Ophiocoma echinata.

    PubMed

    Astley, Henry C

    2012-06-01

    Brittle stars (Ophiuroidea, Echinodermata) are pentaradially symmetrical echinoderms that use five multi-jointed limbs to locomote along the seafloor. Prior qualitative descriptions have claimed coordinated movements of the limbs in a manner similar to tetrapod vertebrates, but this has not been evaluated quantitatively. It is uncertain whether the ring-shaped nervous system, which lacks an anatomically defined anterior, is capable of generating rhythmic coordinated movements of multiple limbs. This study tested whether brittle stars possess distinct locomotor modes with strong inter-limb coordination as seen in limbed animals in other phyla (e.g. tetrapods and arthropods), or instead move each limb independently according to local sensory feedback. Limb tips and the body disk were digitized for 56 cycles from 13 individuals moving across sand. Despite their pentaradial anatomy, all individuals were functionally bilateral, moving along the axis of a central limb via synchronous motions of contralateral limbs (±~13% phase lag). Two locomotor modes were observed, distinguishable mainly by whether the central limb was directed forwards or backwards. Turning was accomplished without rotation of the body disk by defining a different limb as the center limb and shifting other limb identities correspondingly, and then continuing locomotion in the direction of the newly defined anterior. These observations support the hypothesis that, in spite of their radial body plan, brittle stars employ coordinated, bilaterally symmetrical locomotion.

  13. Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury

    PubMed Central

    Chang, Young-Hui; Auyang, Arick G.; Scholz, John P.; Nichols, T. Richard

    2009-01-01

    Summary Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function. PMID:19837893

  14. Locomotor-Like Leg Movements Evoked by Rhythmic Arm Movements in Humans

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.; MacLellan, Michael J.; Cappellini, Germana; Poppele, Richard E.; Lacquaniti, Francesco

    2014-01-01

    Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG) activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs. PMID:24608249

  15. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.

    PubMed

    Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D

    2010-09-01

    Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.

  16. Decoding bipedal locomotion from the rat sensorimotor cortex.

    PubMed

    Rigosa, J; Panarese, A; Dominici, N; Friedli, L; van den Brand, R; Carpaneto, J; DiGiovanna, J; Courtine, G; Micera, S

    2015-10-01

    Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds, are likely to provide more robust control strategies for the design of such neuroprostheses.

  17. Influence of basal ganglia on upper limb locomotor synergies. Evidence from deep brain stimulation and L-DOPA treatment in Parkinson's disease.

    PubMed

    Crenna, P; Carpinella, I; Lopiano, L; Marzegan, A; Rabuffetti, M; Rizzone, M; Lanotte, M; Ferrarin, M

    2008-12-01

    Clinical evidence of impaired arm swing while walking in patients with Parkinson's disease suggests that basal ganglia and related systems play an important part in the control of upper limb locomotor automatism. To gain more information on this supraspinal influence, we measured arm and thigh kinematics during walking in 10 Parkinson's disease patients, under four conditions: (i) baseline (no treatment), (ii) therapeutic stimulation of the subthalamic nucleus (STN), (iii)L-DOPA medication and (iv) combined STN stimulation and L-DOPA. Ten age-matched controls provided reference data. Under baseline conditions the range of patients' arm motion was severely restricted, with no correlation with the excursion of the thigh. In addition, the arm swing was abnormally coupled in time with oscillation of the ipsilateral thigh. STN stimulation significantly increased the gait speed and improved the spatio-temporal parameters of arm and thigh motion. The kinematic changes as a function of gait speed changes, however, were significantly smaller for the upper than the lower limb, in contrast to healthy controls. Arm motion was also less responsive after L-DOPA. Simultaneous deep brain stimulation and L-DOPA had additive effects on thigh motion, but not on arm motion and arm-thigh coupling. The evidence that locomotor automatisms of the upper and lower limbs display uncorrelated impairment upon dysfunction of the basal ganglia, as well as different susceptibility to electrophysiological and pharmacological interventions, points to the presence of heterogeneously distributed, possibly partially independent, supraspinal control channels, whereby STN and dopaminergic systems have relatively weaker influence on the executive structures involved in the arm swing and preferential action on those for lower limb movements. These findings might be considered in the light of phylogenetic changes in supraspinal control of limb motion related to primate bipedalism.

  18. Executive function moderates the role of muscular fitness in determining functional mobility in older adults.

    PubMed

    Forte, Roberta; Pesce, Caterina; Leite, Joao Costa; De Vito, Giuseppe; Gibney, Eileen R; Tomporowski, Phillip D; Boreham, Colin A G

    2013-06-01

    Both physical and cognitive factors are known to independently predict functional mobility in older people. However, the combined predictive value of both physical fitness and cognitive factors on functional mobility has been less investigated. The aim of the present study was to assess if cognitive executive functions moderate the role of physical fitness in determining functional mobility of older individuals. Fifty-seven 65- to 75-year-old healthy participants performed tests of functional mobility (habitual and maximal walking speed, maximal walking speed while picking up objects/stepping over obstacles), physical fitness (peak power, knee extensors torque, back/lower limb flexibility, aerobic fitness), and executive function (inhibition and cognitive flexibility). Maximal walking speeds were predicted by physical fitness parameters and their interaction with cognitive factors. Knee extensor torque emerged as the main predictor of all tested locomotor performances at maximal speed. The effect of peak power and back/lower limb flexibility was moderated by executive functions. In particular, inhibition and cognitive flexibility differed in the way in which they moderate the role of fitness. High levels of cognitive flexibility seem necessary to take advantage of leg power for walking at maximal speed. In contrast, high levels of inhibitory capacity seem to compensate for low levels of back/lower limb flexibility when picking up movements are added to a locomotor task. These findings may have important practical implications for the design and implementation of multi-component training programs aimed at optimizing functional abilities in older adults.

  19. Pelvic girdle mobility of cryptodire and pleurodire turtles during walking and swimming.

    PubMed

    Mayerl, Christopher J; Brainerd, Elizabeth L; Blob, Richard W

    2016-09-01

    Movements of the pelvic girdle facilitate terrestrial locomotor performance in a wide range of vertebrates by increasing hind limb excursion and stride length. The extent to which pelvic movements contribute to limb excursion in turtles is unclear because the bony shell surrounding the body presents a major obstacle to their visualization. In the Cryptodira, which are one of the two major lineages of turtles, pelvic anatomy indicates the potential for rotation inside the shell. However, in the Pleurodira, the other major suborder, the pelvis shows a derived fusion to the shell, preventing pelvic motion. In addition, most turtles use their hind limbs for propulsion during swimming as well as walking, and the different locomotor demands between water and land could lead to differences in the contributions of pelvic rotation to limb excursion in each habitat. To test these possibilities, we used X-ray reconstruction of moving morphology (XROMM) to compare pelvic mobility and femoral motion during walking and swimming between representative species of cryptodire (Pseudemys concinna) and pleurodire (Emydura subglobosa) turtles. We found that the pelvis yawed substantially in cryptodires during walking and, to a lesser extent, during swimming. These movements contributed to greater femoral protraction during both walking and swimming in cryptodires when compared with pleurodires. Although factors related to the origin of pelvic-shell fusion in pleurodires are debated, its implications for their locomotor function may contribute to the restriction of this group to primarily aquatic habits. © 2016. Published by The Company of Biologists Ltd.

  20. Locomotor function of forelimb protractor and retractor muscles of dogs: evidence of strut-like behavior at the shoulder.

    PubMed

    Carrier, David R; Deban, Stephen M; Fischbein, Timna

    2008-01-01

    The limbs of running mammals are thought to function as inverted struts. When mammals run at constant speed, the ground reaction force vector appears to be directed near the point of rotation of the limb on the body such that there is little or no moment at the joint. If this is true, little or no external work is done at the proximal joints during constant-speed running. This possibility has important implications to the energetics of running and to the coupling of lung ventilation to the locomotor cycle. To test if the forelimb functions as an inverted strut at the shoulder during constant-speed running and to characterize the locomotor function of extrinsic muscles of the forelimb, we monitored changes in the recruitment of six muscles that span the shoulder (the m. pectoralis superficialis descendens, m. pectoralis profundus, m. latissimus dorsi, m. omotransversarius, m. cleidobrachialis and m. trapezius) to controlled manipulations of locomotor forces and moments in trotting dogs (Canis lupus familiaris Linnaeus 1753). Muscle activity was monitored while the dogs trotted at moderate speed (approximately 2 m s(-1)) on a motorized treadmill. Locomotor forces were modified by (1) adding mass to the trunk, (2) inclining the treadmill so that the dogs ran up- and downhill (3) adding mass to the wrists or (4) applying horizontally directed force to the trunk through a leash. When the dogs trotted at constant speed on a level treadmill, the primary protractor muscles of the forelimb exhibited activity during the last part of the ipsilateral support phase and the beginning of swing phase, a pattern that is consistent with the initiation of swing phase but not with active protraction of the limb during the beginning of support phase. Results of the force manipulations were also consistent with the protractor muscles initiating swing phase and contributing to active braking via production of a protractor moment on the forelimb when the dogs decelerate. A similar situation appears to be true for the major retractor muscles of the forelimb. The m. pectoralis profundus and the m. latissimus dorsi were completely silent during the support phase of the ipsilateral limb when the dogs ran unencumbered and exhibited little or no increase in activity when the dogs carried added mass on their backs to increase any retraction torque during the support phase of constant-speed running. The most likely explanation for these observations is that the ground force reaction vector is oriented very close to the fulcrum of the forelimb such that the forelimb functions as a compliant strut at the shoulder when dogs trot at constant speed on level surfaces. Because the moments at the fulcrum of the pectoral girdle appear to be small during the support phase of a trotting step, a case can be made that it is the activity of the extrinsic appendicular muscles that produce the swing phase of the forelimb that explain the coupled phase relationship between ventilatory airflow and the locomotor cycle in trotting dogs.

  1. Longitudinal kinematic and kinetic adaptations to obstacle crossing in recent lower limb amputees.

    PubMed

    Barnett, Cleveland T; Polman, Remco C J; Vanicek, Natalie

    2014-12-01

    Obstacle crossing is an important activity of daily living, necessary to avoid tripping or falling, although it is not fully understood how transtibial amputees adapt to performing this activity of daily living following discharge from rehabilitation. The objective of this study was to investigate the longitudinal adaptations in obstacle crossing in transtibial amputees post-discharge from rehabilitation. Longitudinal repeated measures. Seven unilateral transtibial amputees crossed an obstacle 0.1m high positioned along a walkway while kinematic and kinetic data were recorded at 1, 3 and 6 months post-discharge. At 6 months post-discharge, walking velocity had increased (0.17 m.s(-1)) with most participants self-selecting an intact lead limb preference. During swing phase, peak knee flexion (p = 0.03) and peak knee power absorption (K4; p = 0.01) were greater with an intact versus affected lead limb preference. Having crossed the obstacle, intact limb peak ankle power generation in pre-swing (A2; p = 0.01) and knee power absorption (K3; p = 0.05) during stance phase were greater when compared to the affected limb. Obstacle crossing improved, although a greater reliance on intact limb function was highlighted. Results suggested that further improvements to locomotor performance may be obtained by increasing affected limb knee range of motion and concentric and eccentric strength of the knee extensors and flexors. The novel objective data from this study establish an understanding of how recent transtibial amputees adapt to performing obstacle crossing following discharge from rehabilitation. This allows for evidence-based clinical interventions to be developed, aimed at optimising biomechanical function, thus improving overall locomotor performance and perhaps subsequent quality of life. © The International Society for Prosthetics and Orthotics 2013.

  2. Limb-bone scaling indicates diverse stance and gait in quadrupedal ornithischian dinosaurs.

    PubMed

    Maidment, Susannah C R; Linton, Deborah H; Upchurch, Paul; Barrett, Paul M

    2012-01-01

    The most primitive ornithischian dinosaurs were small bipeds, but quadrupedality evolved three times independently in the clade. The transition to quadrupedality from bipedal ancestors is rare in the history of terrestrial vertebrate evolution, and extant analogues do not exist. Constraints imposed on quadrupedal ornithischians by their ancestral bipedal bauplan remain unexplored, and consequently, debate continues about their stance and gait. For example, it has been proposed that some ornithischians could run, while others consider that none were cursorial. Drawing on biomechanical concepts of limb bone scaling and locomotor theory developed for extant taxa, we use the largest dataset of ornithischian postcranial measurements so far compiled to examine stance and gait in quadrupedal ornithischians. Differences in femoral midshaft eccentricity in hadrosaurs and ceratopsids may indicate that hadrosaurs placed their feet on the midline during locomotion, while ceratopsids placed their feet more laterally, under the hips. More robust humeri in the largest ceratopsids relative to smaller taxa may be due to positive allometry in skull size with body mass in ceratopsids, while slender humeri in the largest stegosaurs may be the result of differences in dermal armor distribution within the clade. Hadrosaurs are found to display the most cursorial morphologies of the quadrupedal ornithischian cades, indicating higher locomotor performance than in ceratopsids and thyreophorans. Limb bone scaling indicates that a previously unrealised diversity of stances and gaits were employed by quadrupedal ornithischians despite apparent convergence in limb morphology. Grouping quadrupedal ornithischians together as a single functional group hides this disparity. Differences in limb proportions and scaling are likely due to the possession of display structures such as horns, frills and dermal armor that may have affected the center of mass of the animal, and differences in locomotor behaviour such as migration, predator escape or home range size.

  3. A three-dimensional morphometric analysis of upper forelimb morphology in the enigmatic tapir (Perissodactyla: Tapirus) hints at subtle variations in locomotor ecology.

    PubMed

    MacLaren, Jamie A; Nauwelaerts, Sandra

    2016-11-01

    Forelimb morphology is an indicator for terrestrial locomotor ecology. The limb morphology of the enigmatic tapir (Perissodactyla: Tapirus) has often been compared to that of basal perissodactyls, despite the lack of quantitative studies comparing forelimb variation in modern tapirs. Here, we present a quantitative assessment of tapir upper forelimb osteology using three-dimensional geometric morphometrics to test whether the four modern tapir species are monomorphic in their forelimb skeleton. The shape of the upper forelimb bones across four species (T. indicus; T. bairdii; T. terrestris; T. pinchaque) was investigated. Bones were laser scanned to capture surface morphology and 3D landmark analysis was used to quantify shape. Discriminant function analyses were performed to reveal features which could be used for interspecific discrimination. Overall our results show that the appendicular skeleton contains notable interspecific differences. We demonstrate that upper forelimb bones can be used to discriminate between species (>91% accuracy), with the scapula proving the most diagnostic bone (100% accuracy). Features that most successfully discriminate between the four species include the placement of the cranial angle of the scapula, depth of the humeral condyle, and the caudal deflection of the olecranon. Previous studies comparing the limbs of T. indicus and T. terrestris are corroborated by our quantitative findings. Moreover, the mountain tapir T. pinchaque consistently exhibited the greatest divergence in morphology from the other three species. Despite previous studies describing tapirs as functionally mediportal in their locomotor style, we find osteological evidence suggesting a spectrum of locomotor adaptations in the tapirs. We conclude that modern tapir forelimbs are neither monomorphic nor are tapirs as conserved in their locomotor habits as previously described. J. Morphol. 277:1469-1485, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury.

    PubMed

    Shah, Prithvi K; Garcia-Alias, Guillermo; Choe, Jaehoon; Gad, Parag; Gerasimenko, Yury; Tillakaratne, Niranjala; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie

    2013-11-01

    Can lower limb motor function be improved after a spinal cord lesion by re-engaging functional activity of the upper limbs? We addressed this issue by training the forelimbs in conjunction with the hindlimbs after a thoracic spinal cord hemisection in adult rats. The spinal circuitries were more excitable, and behavioural and electrophysiological analyses showed improved hindlimb function when the forelimbs were engaged simultaneously with the hindlimbs during treadmill step-training as opposed to training only the hindlimbs. Neuronal retrograde labelling demonstrated a greater number of propriospinal labelled neurons above and below the thoracic lesion site in quadrupedally versus bipedally trained rats. The results provide strong evidence that actively engaging the forelimbs improves hindlimb function and that one likely mechanism underlying these effects is the reorganization and re-engagement of rostrocaudal spinal interneuronal networks. For the first time, we provide evidence that the spinal interneuronal networks linking the forelimbs and hindlimbs are amenable to a rehabilitation training paradigm. Identification of this phenomenon provides a strong rationale for proceeding toward preclinical studies for determining whether training paradigms involving upper arm training in concert with lower extremity training can enhance locomotor recovery after neurological damage.

  5. Decoding bipedal locomotion from the rat sensorimotor cortex

    NASA Astrophysics Data System (ADS)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds, are likely to provide more robust control strategies for the design of such neuroprostheses.

  6. Functional anatomy and muscle moment arms of the thoracic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris)

    PubMed Central

    Williams, S B; Wilson, A M; Daynes, J; Peckham, K; Payne, R C

    2008-01-01

    We provide quantitative muscle–tendon architecture and geometry data for the racing greyhound thoracic limb. Muscle mass, belly length, fascicle lengths, pennation angles and moment arms were measured, as were tendon masses and lengths. Maximum isometric force and maximum power were estimated for muscles, and maximum stress and strain were estimated for tendons. Results are compared with other fast quadrupedal runners, and to previously published data in mixed-breed dogs. The implications of the functional adaptations of the greyhound thoracic limb for sprinting performance are discussed. The thoracic limb was found to benefit from a similar proportion of locomotor muscle mass to the pelvic limb, suggesting that it may be used to some extent in propulsion, or alternatively that stabilisation is very important in this animal. Extrinsic muscles, especially latissimus dorsi and pectoralis profundus, were predicted to be powerful and important for generating net positive work during accelerations. Proximal biarticular muscles show specialisation toward preventing collapse of the shoulder and elbow joints to enable strut-like limb function, or some form of dynamic control. Distal muscles did not appear specialised for elastic energy storage, a functional difference to pelvic limb muscles, and the equivalents in horse thoracic limbs. The greyhound thoracic limb appears to possess substantial differences from both that of more ‘sub-maximal specialist’ quadrupeds, and from the greyhound pelvic limb. PMID:19034998

  7. Functional anatomy and muscle moment arms of the thoracic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).

    PubMed

    Williams, S B; Wilson, A M; Daynes, J; Peckham, K; Payne, R C

    2008-10-01

    We provide quantitative muscle-tendon architecture and geometry data for the racing greyhound thoracic limb. Muscle mass, belly length, fascicle lengths, pennation angles and moment arms were measured, as were tendon masses and lengths. Maximum isometric force and maximum power were estimated for muscles, and maximum stress and strain were estimated for tendons. Results are compared with other fast quadrupedal runners, and to previously published data in mixed-breed dogs. The implications of the functional adaptations of the greyhound thoracic limb for sprinting performance are discussed. The thoracic limb was found to benefit from a similar proportion of locomotor muscle mass to the pelvic limb, suggesting that it may be used to some extent in propulsion, or alternatively that stabilisation is very important in this animal. Extrinsic muscles, especially latissimus dorsi and pectoralis profundus, were predicted to be powerful and important for generating net positive work during accelerations. Proximal biarticular muscles show specialisation toward preventing collapse of the shoulder and elbow joints to enable strut-like limb function, or some form of dynamic control. Distal muscles did not appear specialised for elastic energy storage, a functional difference to pelvic limb muscles, and the equivalents in horse thoracic limbs. The greyhound thoracic limb appears to possess substantial differences from both that of more 'sub-maximal specialist' quadrupeds, and from the greyhound pelvic limb.

  8. A new model of the spinal locomotor networks of a salamander and its properties.

    PubMed

    Liu, Qiang; Yang, Huizhen; Zhang, Jinxue; Wang, Jingzhuo

    2018-05-22

    A salamander is an ideal animal for studying the spinal locomotor network mechanism of vertebrates from an evolutionary perspective since it represents the transition from an aquatic to a terrestrial animal. However, little is known about the spinal locomotor network of a salamander. A spinal locomotor network model is a useful tool for exploring the working mechanism of the spinal networks of salamanders. A new spinal locomotor network model for a salamander is built for a three-dimensional (3D) biomechanical model of the salamander using a novel locomotion-controlled neural network model. Based on recent experimental data on the spinal circuitry and observational results of gaits of vertebrates, we assume that different interneuron sets recruited for mediating the frequency of spinal circuits are also related to the generation of different gaits. The spinal locomotor networks of salamanders are divided into low-frequency networks for walking and high-frequency networks for swimming. Additionally, a new topological structure between the body networks and limb networks is built, which only uses the body networks to coordinate the motion of limbs. There are no direct synaptic connections among limb networks. These techniques differ from existing salamander spinal locomotor network models. A simulation is performed and analyzed to validate the properties of the new spinal locomotor networks of salamanders. The simulation results show that the new spinal locomotor networks can generate a forward walking gait, a backward walking gait, a swimming gait, and a turning gait during swimming and walking. These gaits can be switched smoothly by changing external inputs from the brainstem. These properties are consistent with those of a real salamander. However, it is still difficult for the new spinal locomotor networks to generate highly efficient turning during walking, 3D swimming, nonrhythmic movements, and so on. New experimental data are required for further validation.

  9. A simple behavioral test for locomotor function after brain injury in mice.

    PubMed

    Tabuse, Masanao; Yaguchi, Masae; Ohta, Shigeki; Kawase, Takeshi; Toda, Masahiro

    2010-11-01

    To establish a simple and reliable test for assessing locomotor function in mice with brain injury, we developed a new method, the rotarod slip test, in which the number of slips of the paralytic hind limb from a rotarod is counted. Brain injuries of different severity were created in adult C57BL/6 mice, by inflicting 1-point, 2-point and 4-point cryo-injuries. These mice were subjected to the rotarod slip test, the accelerating rotarod test and the elevated body swing test (EBST). Histological analyses were performed to assess the severity of the brain damage. Significant and consistent correlations between test scores and severity were observed for the rotarod slip test and the EBST. Only the rotarod slip test detected the mild hindlimb paresis in the acute and sub-acute phase after injury. Our results suggest that the rotarod slip test is the most sensitive and reliable method for assessing locomotor function after brain damage in mice. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies

    PubMed Central

    Isaias, Ioannis U.; Volkmann, Jens; Marzegan, Alberto; Marotta, Giorgio; Cavallari, Paolo; Pezzoli, Gianni

    2012-01-01

    To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of reduced arm ROM when putaminal dopamine content loss was >47%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation (at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities. PMID:23236504

  11. Disruption of Locomotion in Response to Hindlimb Muscle Stretch at Acute and Chronic Time Points after a Spinal Cord Injury in Rats.

    PubMed

    Keller, Anastasia V P; Wainwright, Grace; Shum-Siu, Alice; Prince, Daniella; Hoeper, Alyssa; Martin, Emily; Magnuson, David S K

    2017-02-01

    After spinal cord injury (SCI) muscle contractures develop in the plegic limbs of many patients. Physical therapists commonly use stretching as an approach to avoid contractures and to maintain the extensibility of soft tissues. We found previously that a daily stretching protocol has a negative effect on locomotor recovery in rats with mild thoracic SCI. The purpose of the current study was to determine the effects of stretching on locomotor function at acute and chronic time points after moderately severe contusive SCI. Female Sprague-Dawley rats with 25 g-cm T10 contusion injuries received our standard 24-min stretching protocol starting 4 days (acutely) or 10 weeks (chronically) post-injury (5 days/week for 5 or 4 weeks, respectively). Locomotor function was assessed using the BBB (Basso, Beattie, and Bresnahan) Open Field Locomotor Scale, video-based kinematics, and gait analysis. Locomotor deficits were evident in the acute animals after only 5 days of stretching and increasing the perceived intensity of stretching at week 4 resulted in greater impairment. Stretching initiated chronically resulted in dramatic decrements in locomotor function because most animals had BBB scores of 0-3 for weeks 2, 3, and 4 of stretching. Locomotor function recovered to control levels for both groups within 2 weeks once daily stretching ceased. Histological analysis revealed no apparent signs of overt and persistent damage to muscles undergoing stretching. The current study extends our observations of the stretching phenomenon to a more clinically relevant moderately severe SCI animal model. The results are in agreement with our previous findings and further demonstrate that spinal cord locomotor circuitry is especially vulnerable to the negative effects of stretching at chronic time points. While the clinical relevance of this phenomenon remains unknown, we speculate that stretching may contribute to the lack of locomotor recovery in some patients.

  12. Bipedal locomotion of bonnet macaques after spinal cord injury.

    PubMed

    Babu, Rangasamy Suresh; Anand, P; Jeraud, Mathew; Periasamy, P; Namasivayam, A

    2007-10-01

    Experimental studies concerning the analysis of locomotor behavior in spinal cord injury research are widely performed in rodent models. The purpose of this study was to quantitatively evaluate the degree of functional recovery in reflex components and bipedal locomotor behavior of bonnet macaques (Macaca radiata) after spinal contusive injury. Six monkeys were tested for various reflex components (grasping, righting, hopping, extension withdrawal) and were trained preoperatively to walk in bipedal fashion on the simple and complex locomotor runways (narrow beam, grid, inclined plane, treadmill) of this investigation. The overall performance of the animals'motor behavior and the functional status of limb movements during bipedal locomotion were graded by the Combined Behavioral Score (CBS) system. Using the simple Allen weight-drop technique, a contusive injury was produced by dropping a 13-g weight from a height of 30 cm to the exposed spinal cord at the T12-L1 vertebral level of the trained monkeys. All the monkeys showed significant impairments in every reflex activity and in walking behavior during the early part of the postoperative period. In subsequent periods, the animals displayed mild alterations in certain reflex responses, such as grasping, extension withdrawal, and placing reflexes, which persisted through a 1-year follow-up. The contused animals traversed locomotor runways--narrow beam, incline plane, and grid runways--with more steps and few errors, as evaluated with the CBS system. Eventually, the behavioral performance of all spinal-contused monkeys recovered to near-preoperative level by the fifth postoperative month. The findings of this study reveal the recovery time course of various reflex components and bipedal locomotor behavior of spinal-contused macaques on runways for a postoperative period of up to 1 year. Our spinal cord research in primates is advantageous in understanding the characteristics of hind limb functions only, which possibly mimic the human motor behavior. This study may be also useful in detecting the beneficial effect of various donor tissue-neuroprotective drugs on the repair of impaired functions in a bipedal primate model of spinal injury.

  13. Fore-Aft Ground Force Adaptations to Induced Forelimb Lameness in Walking and Trotting Dogs

    PubMed Central

    Abdelhadi, Jalal; Wefstaedt, Patrick; Nolte, Ingo; Schilling, Nadja

    2012-01-01

    Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles. PMID:23300614

  14. Locomotor Performance During Rehabilitation of People With Lower Limb Amputation and Prosthetic Nonuse 12 Months After Discharge.

    PubMed

    Roffman, Caroline E; Buchanan, John; Allison, Garry T

    2016-07-01

    It is recognized that multifactorial assessments are needed to evaluate balance and locomotor function in people with lower limb amputation. There is no consensus on whether a single screening tool could be used to identify future issues with locomotion or prosthetic use. The purpose of this study was to determine whether different tests of locomotor performance during rehabilitation were associated with significantly greater risk of prosthetic abandonment at 12 months postdischarge. This was a retrospective cohort study. Data for descriptive variables and locomotor tests (ie, 10-Meter Walk Test [10MWT], Timed "Up & Go" Test [TUGT], Six-Minute Walk Test [6MWT], and Four Square Step Test [FSST]) were abstracted from the medical records of 201 consecutive participants with lower limb amputation. Participants were interviewed and classified as prosthetic users or nonusers at 12 months postdischarge. The Mann-Whitney U test was used to analyze whether there were differences in locomotor performance. Receiver operating characteristic curves were generated to determine performance thresholds, and relative risk (RR) was calculated for nonuse. At 12 months postdischarge, 18% (n=36) of the participants had become prosthetic nonusers. Performance thresholds, area under the curve (AUC), and RR of nonuse (95% confidence intervals [CI]) were: for the 10MWT, if walking speed was ≤0.44 ms(-1) (AUC=0.743), RR of nonuse=2.76 (95% CI=1.83, 3.79; P<.0001); for the TUGT, if time was ≥21.4 seconds (AUC=0.796), RR of nonuse=3.17 (95% CI=2.17, 4.14; P<.0001); for the 6MWT, if distance was ≤191 m (AUC=0.788), RR of nonuse=2.84, (95% CI=2.05, 3.48; P<.0001); and for the FSST, if time was ≥36.6 seconds (AUC=0.762), RR of nonuse=2.76 (95% CI=1.99, 3.39; P<.0001). Missing data, potential recall bias, and assessment times that varied were limitations of the study. Locomotor performance during rehabilitation may predict future risk of prosthetic nonuse. It may be implied that the 10MWT has the greatest clinical utility as a single screening tool for prosthetic nonuse, given the highest proportion of participants were able to perform this test early in rehabilitation. However, as locomotor skills improve, other tests (in particular, the 6MWT) have specific clinical utility. To fully enable implementation of these locomotor criteria for prosthetic nonuse into clinical practice, validation is warranted. © 2016 American Physical Therapy Association.

  15. Functional morphology and comparative anatomy of appendicular musculature in Cuban Anolis lizards with different locomotor habits.

    PubMed

    Anzai, Wataru; Omura, Ayano; Diaz, Antonio Cadiz; Kawata, Masakado; Endo, Hideki

    2014-07-01

    We examined the diversity of the musculoskeletal morphology in the limbs of Anolis lizards with different habitats and identified variations in functional and morphological adaptations to different ecologies or behaviors. Dissection and isolation of 40 muscles from the fore- and hindlimbs of five species of Anolis were performed, and the muscle mass and length of the moment arm were compared after body size effects were removed. Ecologically and behaviorally characteristic morphological differences were observed in several muscles. Well-developed hindlimb extensors were observed in ground-dwelling species, A. sagrei and A. bremeri, and were considered advantageous for running, whereas adept climber species possessed expanded femoral retractors for weight-bearing during climbing. Moreover, morphological variations were observed among arboreal species. Wider excursions of the forelimb joint characterized A. porcatus, presumably enabling branch-to-branch locomotion, while A. equestris and A. angusticeps possessed highly developed adductor muscles for grasping thick branches or twigs. These findings suggest divergent evolution of musculoskeletal characteristic in the limbs within the genus Anolis, with correlations observed among morphological traits, locomotor performance, and habitat uses.

  16. Phenotypic Characterization of Speed-Associated Gait Changes in Mice Reveals Modular Organization of Locomotor Networks

    PubMed Central

    Bellardita, Carmelo; Kiehn, Ole

    2015-01-01

    SUMMARY Studies of locomotion in mice suggest that circuits controlling the alternating between left and right limbs may have a modular organization with distinct locomotor circuits being recruited at different speeds. It is not clear, however, whether such a modular organization reflects specific behavioral outcomes expressed at different speeds of locomotion. Here, we use detailed kinematic analyses to search for signatures of a modular organization of locomotor circuits in intact and genetically modified mice moving at different speeds of locomotion. We show that wild-type mice display three distinct gaits: two alternating, walk and trot, and one synchronous, bound. Each gait is expressed in distinct ranges of speed with phenotypic inter-limb and intra-limb coordination. A fourth gait, gallop, closely resembled bound in most of the locomotor parameters but expressed diverse inter-limb coordination. Genetic ablation of commissural V0V neurons completely removed the expression of one alternating gait, trot, but left intact walk, gallop, and bound. Ablation of commissural V0V and V0D neurons led to a loss of walk, trot, and gallop, leaving bound as the default gait. Our study provides a benchmark for studies of the neuronal control of locomotion in the full range of speeds. It provides evidence that gait expression depends upon selection of different modules of neuronal ensembles. PMID:25959968

  17. Forelimb kinematics and motor patterns of the slider turtle (Trachemys scripta) during swimming and walking: shared and novel strategies for meeting locomotor demands of water and land

    PubMed Central

    Rivera, Angela R. V.; W. Blob, Richard

    2010-01-01

    Turtles use their limbs during both aquatic and terrestrial locomotion, but water and land impose dramatically different physical requirements. How must musculoskeletal function be adjusted to produce locomotion through such physically disparate habitats? We addressed this question by quantifying forelimb kinematics and muscle activity during aquatic and terrestrial locomotion in a generalized freshwater turtle, the red-eared slider (Trachemys scripta), using digital high-speed video and electromyography (EMG). Comparisons of our forelimb data to previously collected data from the slider hindlimb allow us to test whether limb muscles with similar functional roles show qualitatively similar modulations of activity across habitats. The different functional demands of water and air lead to a prediction that muscle activity for limb protractors (e.g. latissimus dorsi and deltoid for the forelimb) should be greater during swimming than during walking, and activity in retractors (e.g. coracobrachialis and pectoralis for the forelimb) should be greater during walking than during swimming. Differences between aquatic and terrestrial forelimb movements are reflected in temporal modulation of muscle activity bursts between environments, and in some cases the number of EMG bursts as well. Although patterns of modulation between water and land are similar between the fore- and hindlimb in T. scripta for propulsive phase muscles (retractors), we did not find support for the predicted pattern of intensity modulation, suggesting that the functional demands of the locomotor medium alone do not dictate differences in intensity of muscle activity across habitats. PMID:20889832

  18. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    PubMed

    Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.

  19. Investigating the form-function interface in African apes: Relationships between principal moments of area and positional behaviors in femoral and humeral diaphyses.

    PubMed

    Carlson, Kristian J

    2005-07-01

    Investigations of cross-sectional geometry in nonhuman primate limb bones typically attribute shape ratios to qualitative behavioral characterizations, e.g., leaper, slow climber, brachiator, or terrestrial vs. arboreal quadruped. Quantitative positional behavioral data, however, have yet to be used in a rigorous evaluation of such shape-behavior connections. African apes represent an ideal population for such an investigation because their relatedness minimizes phylogenetic inertia, they exhibit diverse behavioral repertoires, and their locomotor behaviors are known from multiple studies. Cross-sectional data from femoral and humeral diaphyses were collected for 222 wild-shot specimens, encompassing Pan paniscus and all commonly recognized African ape subspecies. Digital representations of diaphyseal cross sections were acquired via computed tomography at three locations per diaphysis. Locomotor behaviors were pooled broadly into arboreal and terrestrial categories, then partitioned into quadrupedal walking, quadrumanous climbing, scrambling, and suspensory categories. Sex-specific taxonomic differences in ratios of principal moments of area (PMA) were statistically significant more often in the femoral diaphysis than the humeral diaphysis. While it appears difficult to relate a measure of shape (e.g., PMA ratio) to individual locomotor modes, general locomotor differences (e.g., percentage arboreal vs. terrestrial locomotion) are discerned more easily. As percentage of arboreal locomotion for a group increases, average cross sections appear more circular. Associations between PMA ratio and specific locomotor behaviors are less straightforward. Individual behaviors that integrate eccentric limb positions (e.g., arboreal scrambling) may not engender more circular cross sections than behaviors that incorporate repetitive sagittal movements (e.g., quadrupedal walking) in a straightforward manner. (c) 2004 Wiley-Liss, Inc

  20. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans

    PubMed Central

    Fabre, Anne-Claire; Cornette, Raphael; Goswami, Anjali; Peigné, Stéphane

    2015-01-01

    Convergence in morphology can result from evolutionary adaptations in species living in environments with similar selective pressures. Here, we investigate whether the shape of the forelimb long bones has converged in environments imposing similar functional constraints, using musteloid carnivores as a model. The limbs of quadrupeds are subjected to many factors that may influence their shape. They need to support body mass without collapsing or breaking, yet at the same time resist the stresses and strains induced by locomotion. This likely imposes strong constraints on their morphology. Our geometric morphometric analyses show that locomotion, body mass and phylogeny all influence the shape of the forelimb. Furthermore, we find a remarkable convergence between: (i) aquatic and semi-fossorial species, both displaying a robust forelimb, with a shape that improves stability and load transfer in response to the physical resistance imposed by the locomotor environment; and (ii) aquatic and arboreal/semi-arboreal species, with both groups displaying a broad capitulum. This augments the degree of pronation/supination, an important feature for climbing as well as grasping and manipulation ability, behaviors common to aquatic and arboreal species. In summary, our results highlight how musteloids with different locomotor ecologies show differences in the anatomy of their forelimb bones. Yet, functional demands for limb movement through dense media also result in convergence in forelimb long-bone shape between diverse groups, for example, otters and badgers. PMID:25994128

  1. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans.

    PubMed

    Fabre, Anne-Claire; Cornette, Raphael; Goswami, Anjali; Peigné, Stéphane

    2015-06-01

    Convergence in morphology can result from evolutionary adaptations in species living in environments with similar selective pressures. Here, we investigate whether the shape of the forelimb long bones has converged in environments imposing similar functional constraints, using musteloid carnivores as a model. The limbs of quadrupeds are subjected to many factors that may influence their shape. They need to support body mass without collapsing or breaking, yet at the same time resist the stresses and strains induced by locomotion. This likely imposes strong constraints on their morphology. Our geometric morphometric analyses show that locomotion, body mass and phylogeny all influence the shape of the forelimb. Furthermore, we find a remarkable convergence between: (i) aquatic and semi-fossorial species, both displaying a robust forelimb, with a shape that improves stability and load transfer in response to the physical resistance imposed by the locomotor environment; and (ii) aquatic and arboreal/semi-arboreal species, with both groups displaying a broad capitulum. This augments the degree of pronation/supination, an important feature for climbing as well as grasping and manipulation ability, behaviors common to aquatic and arboreal species. In summary, our results highlight how musteloids with different locomotor ecologies show differences in the anatomy of their forelimb bones. Yet, functional demands for limb movement through dense media also result in convergence in forelimb long-bone shape between diverse groups, for example, otters and badgers. © 2015 Anatomical Society.

  2. Limb bone morphology, bone strength, and cursoriality in lagomorphs

    PubMed Central

    Young, Jesse W; Danczak, Robert; Russo, Gabrielle A; Fellmann, Connie D

    2014-01-01

    The primary aim of this study is to broadly evaluate the relationship between cursoriality (i.e. anatomical and physiological specialization for running) and limb bone morphology in lagomorphs. Relative to most previous studies of cursoriality, our focus on a size-restricted, taxonomically narrow group of mammals permits us to evaluate the degree to which ‘cursorial specialization’ affects locomotor anatomy independently of broader allometric and phylogenetic trends that might obscure such a relationship. We collected linear morphometrics and μCT data on 737 limb bones covering three lagomorph species that differ in degree of cursoriality: pikas (Ochotona princeps, non-cursorial), jackrabbits (Lepus californicus, highly cursorial), and rabbits (Sylvilagus bachmani, level of cursoriality intermediate between pikas and jackrabbits). We evaluated two hypotheses: cursoriality should be associated with (i) lower limb joint mechanical advantage (i.e. high ‘displacement advantage’, permitting more cursorial species to cycle their limbs more quickly) and (ii) longer, more gracile limb bones, particularly at the distal segments (as a means of decreasing rotational inertia). As predicted, highly cursorial jackrabbits are typically marked by the lowest mechanical advantage and the longest distal segments, non-cursorial pikas display the highest mechanical advantage and the shortest distal segments, and rabbits generally display intermediate values for these variables. Variation in long bone robusticity followed a proximodistal gradient. Whereas proximal limb bone robusticity declined with cursoriality, distal limb bone robusticity generally remained constant across the three species. The association between long, structurally gracile limb bones and decreased maximal bending strength suggests that the more cursorial lagomorphs compromise proximal limb bone integrity to improve locomotor economy. In contrast, the integrity of distal limb bones is maintained with increasing cursoriality, suggesting that the safety factor takes priority over locomotor economy in those regions of the postcranial skeleton that experience higher loading during locomotion. Overall, these findings support the hypothesis that cursoriality is associated with a common suite of morphological adaptations across a range of body sizes and radiations. PMID:25046350

  3. Locomotion in ornithischian dinosaurs: an assessment using three-dimensional computational modelling.

    PubMed

    Maidment, Susannah C R; Bates, Karl T; Falkingham, Peter L; VanBuren, Collin; Arbour, Victoria; Barrett, Paul M

    2014-08-01

    Ornithischian dinosaurs were primitively bipedal with forelimbs modified for grasping, but quadrupedalism evolved in the clade on at least three occasions independently. Outside of Ornithischia, quadrupedality from bipedal ancestors has only evolved on two other occasions, making this one of the rarest locomotory transitions in tetrapod evolutionary history. The osteological and myological changes associated with these transitions have only recently been documented, and the biomechanical consequences of these changes remain to be examined. Here, we review previous approaches to understanding locomotion in extinct animals, which can be broadly split into form-function approaches using analogy based on extant animals, limb-bone scaling, and computational approaches. We then carry out the first systematic attempt to quantify changes in locomotor muscle function in bipedal and quadrupedal ornithischian dinosaurs. Using three-dimensional computational modelling of the major pelvic locomotor muscle moment arms, we examine similarities and differences among individual taxa, between quadrupedal and bipedal taxa, and among taxa representing the three major ornithischian lineages (Thyreophora, Ornithopoda, Marginocephalia). Our results suggest that the ceratopsid Chasmosaurus and the ornithopod Hypsilophodon have relatively low moment arms for most muscles and most functions, perhaps suggesting poor locomotor performance in these taxa. Quadrupeds have higher abductor moment arms than bipeds, which we suggest is due to the overall wider bodies of the quadrupeds modelled. A peak in extensor moment arms at more extended hip angles and lower medial rotator moment arms in quadrupeds than in bipeds may be due to a more columnar hindlimb and loss of medial rotation as a form of lateral limb support in quadrupeds. We are not able to identify trends in moment arm evolution across Ornithischia as a whole, suggesting that the bipedal ancestry of ornithischians did not constrain the development of quadrupedal locomotion via a limited number of functional pathways. Functional anatomy appears to have had a greater effect on moment arms than phylogeny, and the differences identified between individual taxa and individual clades may relate to differences in locomotor performance required for living in different environments or for clade-specific behaviours. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  4. Size-Related Changes in Foot Impact Mechanics in Hoofed Mammals

    PubMed Central

    Warner, Sharon Elaine; Pickering, Phillip; Panagiotopoulou, Olga; Pfau, Thilo; Ren, Lei; Hutchinson, John Richard

    2013-01-01

    Foot-ground impact is mechanically challenging for all animals, but how do large animals mitigate increased mass during foot impact? We hypothesized that impact force amplitude scales according to isometry in animals of increasing size through allometric scaling of related impact parameters. To test this, we measured limb kinetics and kinematics in 11 species of hoofed mammals ranging from 18–3157 kg body mass. We found impact force amplitude to be maintained proportional to size in hoofed mammals, but that other features of foot impact exhibit differential scaling patterns depending on the limb; forelimb parameters typically exhibit higher intercepts with lower scaling exponents than hind limb parameters. Our explorations of the size-related consequences of foot impact advance understanding of how body size influences limb morphology and function, foot design and locomotor behaviour. PMID:23382967

  5. Evolution of the axial system in craniates: morphology and function of the perivertebral musculature

    PubMed Central

    2011-01-01

    The axial musculoskeletal system represents the plesiomorphic locomotor engine of the vertebrate body, playing a central role in locomotion. In craniates, the evolution of the postcranial skeleton is characterized by two major transformations. First, the axial skeleton became increasingly functionally and morphologically regionalized. Second, the axial-based locomotion plesiomorphic for craniates became progressively appendage-based with the evolution of extremities in tetrapods. These changes, together with the transition to land, caused increased complexity in the planes in which axial movements occur and moments act on the body and were accompanied by profound changes in axial muscle function. To increase our understanding of the evolutionary transformations of the structure and function of the perivertebral musculature, this review integrates recent anatomical and physiological data (e.g., muscle fiber types, activation patterns) with gross-anatomical and kinematic findings for pivotal craniate taxa. This information is mapped onto a phylogenetic hypothesis to infer the putative character set of the last common ancestor of the respective taxa and to conjecture patterns of locomotor and muscular evolution. The increasing anatomical and functional complexity in the muscular arrangement during craniate evolution is associated with changes in fiber angulation and fiber-type distribution, i.e., increasing obliqueness in fiber orientation and segregation of fatigue-resistant fibers in deeper muscle regions. The loss of superficial fatigue-resistant fibers may be related to the profound gross anatomical reorganization of the axial musculature during the tetrapod evolution. The plesiomorphic function of the axial musculature -mobilization- is retained in all craniates. Along with the evolution of limbs and the subsequent transition to land, axial muscles additionally function to globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as gravitational forces. Associated with the evolution of sagittal mobility and a parasagittal limb posture, axial muscles in mammals also stabilize the trunk against sagittal components of extrinsic limb muscle action as well as the inertia of the body's center of mass. Thus, the axial system is central to the static and dynamic control of the body posture in all craniates and, in gnathostomes, additionally provides the foundation for the mechanical work of the appendicular system. PMID:21306656

  6. Forelimb kinematics and motor patterns of swimming loggerhead sea turtles (Caretta caretta): are motor patterns conserved in the evolution of new locomotor strategies?

    PubMed

    Rivera, Angela R V; Wyneken, Jeanette; Blob, Richard W

    2011-10-01

    Novel functions in animals may evolve through changes in morphology, muscle activity or a combination of both. The idea that new functions or behavior can arise solely through changes in structure, without concurrent changes in the patterns of muscle activity that control movement of those structures, has been formalized as the neuromotor conservation hypothesis. In vertebrate locomotor systems, evidence for neuromotor conservation is found across evolutionary transitions in the behavior of terrestrial species, and in evolutionary transitions from terrestrial species to flying species. However, evolutionary transitions in the locomotion of aquatic species have received little comparable study to determine whether changes in morphology and muscle function were coordinated through the evolution of new locomotor behavior. To evaluate the potential for neuromotor conservation in an ancient aquatic system, we quantified forelimb kinematics and muscle activity during swimming in the loggerhead sea turtle, Caretta caretta. Loggerhead forelimbs are hypertrophied into wing-like flippers that produce thrust via dorsoventral forelimb flapping. We compared kinematic and motor patterns from loggerheads with previous data from the red-eared slider, Trachemys scripta, a generalized freshwater species exhibiting unspecialized forelimb morphology and anteroposterior rowing motions during swimming. For some forelimb muscles, comparisons between C. caretta and T. scripta support neuromotor conservation; for example, the coracobrachialis and the latissimus dorsi show similar activation patterns. However, other muscles (deltoideus, pectoralis and triceps) do not show neuromotor conservation; for example, the deltoideus changes dramatically from a limb protractor/elevator in sliders to a joint stabilizer in loggerheads. Thus, during the evolution of flapping in sea turtles, drastic restructuring of the forelimb was accompanied by both conservation and evolutionary novelty in limb motor patterns.

  7. Novel multi-system functional gains via task specific training in spinal cord injured male rats.

    PubMed

    Ward, Patricia J; Herrity, April N; Smith, Rebecca R; Willhite, Andrea; Harrison, Benjamin J; Petruska, Jeffrey C; Harkema, Susan J; Hubscher, Charles H

    2014-05-01

    Locomotor training (LT) after spinal cord injury (SCI) is a rehabilitative therapy used to enhance locomotor recovery. There is evidence, primarily anecdotal, also associating LT with improvements in bladder function and reduction in some types of SCI-related pain. In the present study, we determined if a step training paradigm could improve outcome measures of locomotion, bladder function, and pain/allodynia. After a T10 contusive SCI trained animals (adult male Wistar rats), trained animals began quadrupedal step training beginning 2 weeks post-SCI for 1 h/day. End of study experiments (3 months of training) revealed significant changes in limb kinematics, gait, and hindlimb flexor-extensor bursting patterns relative to non-trained controls. Importantly, micturition function, evaluated with terminal transvesical cystometry, was significantly improved in the step trained group (increased voiding efficiency, intercontraction interval, and contraction amplitude). Because both SCI and LT affect neurotrophin signaling, and neurotrophins are involved with post-SCI plasticity in micturition pathways, we measured bladder neurotrophin mRNA. Training regulated the expression of nerve growth factor (NGF) but not BDNF or NT3. Bladder NGF mRNA levels were inversely related to bladder function in the trained group. Monitoring of overground locomotion and neuropathic pain throughout the study revealed significant improvements, beginning after 3 weeks of training, which in both cases remained consistent for the study duration. These novel findings, improving non-locomotor in addition to locomotor functions, demonstrate that step training post-SCI could contribute to multiple quality of life gains, targeting patient-centered high priority deficits.

  8. Locomotor variation and bending regimes of capuchin limb bones.

    PubMed

    Demes, Brigitte; Carlson, Kristian J

    2009-08-01

    Primates are very versatile in their modes of progression, yet laboratory studies typically capture only a small segment of this variation. In vivo bone strain studies in particular have been commonly constrained to linear locomotion on flat substrates, conveying the potentially biased impression of stereotypic long bone loading patterns. We here present substrate reaction forces (SRF) and limb postures for capuchin monkeys moving on a flat substrate ("terrestrial"), on an elevated pole ("arboreal"), and performing turns. The angle between the SRF vector and longitudinal axes of the forearm or leg is taken as a proxy for the bending moment experienced by these limb segments. In both frontal and sagittal planes, SRF vectors and distal limb segments are not aligned, but form discrepant angles; that is, forces act on lever arms and exert bending moments. The positions of the SRF vectors suggest bending around oblique axes of these limb segments. Overall, the leg is exposed to greater moments than the forearm. Simulated arboreal locomotion and turns introduce variation in the discrepancy angles, thus confirming that expanding the range of locomotor behaviors studied will reveal variation in long bone loading patterns that is likely characteristic of natural locomotor repertoires. "Arboreal" locomotion, even on a linear noncompliant branch, is characterized by greater variability of force directions and discrepancy angles than "terrestrial" locomotion (significant for the forearm only), partially confirming the notion that life in trees is associated with greater variation in long bone loading. Directional changes broaden the range of external bending moments even further.

  9. Lumbar muscle inflammation alters spinally mediated locomotor recovery induced by training in a mouse model of complete spinal cord injury.

    PubMed

    Jeffrey-Gauthier, Renaud; Piché, Mathieu; Leblond, Hugues

    2017-09-17

    Locomotor networks after spinal cord injury (SCI) are shaped by training-activated proprioceptive and cutaneous inputs. Nociception from injured tissues may alter these changes but has largely been overlooked. The objective of the present study was to ascertain whether lumbar muscle inflammation hinders locomotion recovery in a mouse model of complete SCI. Lower limb kinematics during treadmill training was assessed before and after complete SCI at T8 (2, 7, 14, 21 and 28days post-injury). Locomotor recovery was compared in 4 groups of CD1 mice: control spinal mice; spinal mice with daily locomotor training; spinal mice with lumbar muscle inflammation (Complete Freund's Adjuvant (CFA) injection); and spinal mice with locomotor training and CFA. On day 28, H-reflex excitability and its inhibition at high-frequency stimulation (frequency-dependent depression: FDD) were compared between groups, all of which showed locomotor recovery. Recovery was enhanced by training, whereas lumbar muscle inflammation hindered these effects (knee angular excursion and paw drag: p's<0.05). In addition, lumbar muscle inflammation impaired hind limb coupling during locomotion (p<0.05) throughout recovery. Also, H-reflex disinhibition was prevented by training, with or without CFA injection (p's<0.05). Altogether, these results indicate that back muscle inflammation modulates spinally mediated locomotor recovery in mice with complete SCI, in part, by reducing adaptive changes induced by training. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Comparative limb bone loading in the humerus and femur of the tiger salamander: testing the 'mixed-chain' hypothesis for skeletal safety factors.

    PubMed

    Kawano, Sandy M; Economy, D Ross; Kennedy, Marian S; Dean, Delphine; Blob, Richard W

    2016-02-01

    Locomotion imposes some of the highest loads upon the skeleton, and diverse bone designs have evolved to withstand these demands. Excessive loads can fatally injure organisms; however, bones have a margin of extra protection, called a 'safety factor' (SF), to accommodate loads that are higher than normal. The extent to which SFs might vary amongst an animal's limb bones is unclear. If the limbs are likened to a chain composed of bones as 'links', then similar SFs might be expected for all limb bones because failure of the system would be determined by the weakest link, and extra protection in other links could waste energetic resources. However, Alexander proposed that a 'mixed-chain' of SFs might be found amongst bones if: (1) their energetic costs differ, (2) some elements face variable demands, or (3) SFs are generally high. To test whether such conditions contribute to diversity in limb bone SFs, we compared the biomechanical properties and locomotor loading of the humerus and femur in the tiger salamander (Ambystoma tigrinum). Despite high SFs in salamanders and similar sizes of the humerus and femur that would suggest similar energetic costs, the humerus had lower bone stresses, higher mechanical hardness and larger SFs. SFs were greatest in the anatomical regions where yield stresses were highest in the humerus and lowest in the femur. Such intraspecific variation between and within bones may relate to their different biomechanical functions, providing insight into the emergence of novel locomotor capabilities during the invasion of land by tetrapods. © 2016. Published by The Company of Biologists Ltd.

  11. Planar Covariation of Hindlimb and Forelimb Elevation Angles during Terrestrial and Aquatic Locomotion of Dogs

    PubMed Central

    Catavitello, Giovanna; Ivanenko, Yuri P.; Lacquaniti, Francesco

    2015-01-01

    The rich repertoire of locomotor behaviors in quadrupedal animals requires flexible inter-limb and inter-segmental coordination. Here we studied the kinematic coordination of different gaits (walk, trot, gallop, and swim) of six dogs (Canis lupus familiaris) and, in particular, the planar covariation of limb segment elevation angles. The results showed significant variations in the relative duration of rearward limb movement, amplitude of angular motion, and inter-limb coordination, with gait patterns ranging from a lateral sequence of footfalls during walking to a diagonal sequence in swimming. Despite these differences, the planar law of inter-segmental coordination was maintained across different gaits in both forelimbs and hindlimbs. Notably, phase relationships and orientation of the covariation plane were highly limb specific, consistent with the functional differences in their neural control. Factor analysis of published muscle activity data also demonstrated differences in the characteristic timing of basic activation patterns of the forelimbs and hindlimbs. Overall, the results demonstrate that the planar covariation of inter-segmental coordination has emerged for both fore- and hindlimbs and all gaits, although in a limb-specific manner. PMID:26218076

  12. Scale effects between body size and limb design in quadrupedal mammals.

    PubMed

    Kilbourne, Brandon M; Hoffman, Louwrens C

    2013-01-01

    Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties--limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency--were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass(0.40)); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass(1.0)), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry.

  13. Scale Effects between Body Size and Limb Design in Quadrupedal Mammals

    PubMed Central

    Kilbourne, Brandon M.; Hoffman, Louwrens C.

    2013-01-01

    Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties – limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency – were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass0.40); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass1.0), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry. PMID:24260117

  14. Locomotor adaptability in persons with unilateral transtibial amputation.

    PubMed

    Darter, Benjamin J; Bastian, Amy J; Wolf, Erik J; Husson, Elizabeth M; Labrecque, Bethany A; Hendershot, Brad D

    2017-01-01

    Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb.

  15. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus.

    PubMed

    Low, Aloysius Y T; Thanawalla, Ayesha R; Yip, Alaric K K; Kim, Jinsook; Wong, Kelly L L; Tantra, Martesa; Augustine, George J; Chen, Albert I

    2018-02-27

    The deep cerebellar nuclei (DCN) represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA). We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology.

    PubMed

    Manzano, Adriana S; Herrel, Anthony; Fabre, Anne-Claire; Abdala, Virginia

    2017-07-01

    Despite the long-standing interest in the evolution of the brain, relatively little is known about variation in brain anatomy in frogs. Yet, frogs are ecologically diverse and, as such, variation in brain anatomy linked to differences in lifestyle or locomotor behavior can be expected. Here we present a comparative morphological study focusing on the macro- and micro-anatomy of the six regions of the brain and its choroid plexus: the olfactory bulbs, the telencephalon, the diencephalon, the mesencephalon, the rhombencephalon, and the cerebellum. We also report on the comparative anatomy of the plexus brachialis responsible for the innervation of the forelimbs. It is commonly thought that amphibians have a simplified brain organization, associated with their supposedly limited behavioral complexity and reduced motor skills. We compare frogs with different ecologies that also use their limbs in different contexts and for other functions. Our results show that brain morphology is more complex and more variable than typically assumed. Moreover, variation in brain morphology among species appears related to locomotor behavior as suggested by our quantitative analyses. Thus we propose that brain morphology may be related to the locomotor mode, at least in the frogs included in our analysis. © 2017 Anatomical Society.

  17. Comparative architectural properties of limb muscles in Crocodylidae and Alligatoridae and their relevance to divergent use of asymmetrical gaits in extant Crocodylia.

    PubMed

    Allen, Vivian; Molnar, Julia; Parker, William; Pollard, Andrea; Nolan, Grant; Hutchinson, John R

    2014-12-01

    Crocodiles and their kin (Crocodylidae) use asymmetrical (bounding and galloping) gaits when moving rapidly. Despite being morphologically and ecologically similar, it seems alligators and their kin (Alligatoridae) do not. To investigate a possible anatomical basis for this apparent major difference in locomotor capabilities, we measured relative masses and internal architecture (fascicle lengths and physiological cross-sectional areas) of muscles of the pectoral and pelvic limbs of 40 individuals from six representative species of Crocodylidae and Alligatoridae. We found that, relative to body mass, Crocodylidae have significantly longer muscle fascicles (increased working range), particularly in the pectoral limb, and generally smaller muscle physiological cross-sectional areas (decreased force-exerting capability) than Alligatoridae. We therefore hypothesise that the ability of some crocodylians to use asymmetrical gaits may be limited more by the ability to make large, rapid limb motions (especially in the pectoral limb) than the ability to exert large limb forces. Furthermore, analysis of scaling patterns in muscle properties shows that limb anatomy in the two clades becomes more divergent during ontogeny. Limb muscle masses, fascicle lengths and physiological cross-sectional areas scale with significantly larger coefficients in Crocodylidae than Alligatoridae. This combination of factors suggests that inter-clade disparity in maximal limb power is highest in adult animals. Therefore, despite their apparent morphological similarities, both mean values and scaling patterns suggest that considerable diversity exists in the locomotor apparatus of extant Crocodylia. © 2014 Anatomical Society.

  18. Sexual Dimorphisms of Appendicular Musculoskeletal Morphology Related to Social Display in Cuban Anolis Lizards.

    PubMed

    Anzai, Wataru; Cádiz, Antonio; Endo, Hideki

    2015-10-01

    In Anolis lizards, sexual dimorphism has been reported in morphological and ecological traits. Males show larger body size and longer limbs related to territorial combat and courtship display with the dewlap. Although functional-anatomical traits are closely related to locomotor behaviors, differences between sexes in musculoskeletal traits on limbs remain unclear. We explored the relationships among sexual dimorphisms in musculoskeletal morphology, habitat, and locomotor traits in Anolis lizards. Specifically, we examined appendicular musculoskeletal morphology in three species of Cuban Anolis by measuring muscle mass and lengths of moment arms. Through comparisons of crossing locomotion, we found that the runner species possessed larger extensors in hindlimbs, which are advantageous for running, whereas the masses of the humeral and femoral retractors were larger in climber species, allowing these lizards to hold up their bodies and occupy tree substrates. Comparisons between the sexes showed different trends among the three species. Males of A. porcatus, which inhabit narrow branches or leaves, had stronger elbow extensors that maintain the display posture. In contrast, males of A. sagrei, which occupy broad surfaces, did not show sexual differences that affected social display. Moreover, A. bartschi indicated sexual differences despite the absence of dewlapping behavior. Our findings suggest that both sexes show fundamentally similar relationships between muscular morphology and locomotor habits to adapt arboreal or terrestrial substrates, and yet sexual dimorphism in forelimb muscles may additionally affected by male specific display with the dewlap.

  19. A cable-driven locomotor training system for restoration of gait in human SCI.

    PubMed

    Wu, Ming; Hornby, T George; Landry, Jill M; Roth, Heidi; Schmit, Brian D

    2011-02-01

    A novel cable-driven robotic locomotor training system was developed to provide compliant assistance/resistance forces to the legs during treadmill training in patients with incomplete spinal cord injury (SCI). Eleven subjects with incomplete SCI were recruited to participate in two experiments to test the feasibility of the robotic gait training system. Specifically, 10 subjects participated in one experimental session to test the characteristics of the robotic gait training system and one subject participated in repeated testing sessions over 8 weeks with the robotic device to test improvements in locomotor function. Limb kinematics were recorded in one experiment to evaluate the system characteristics of the cable-driven locomotor trainer and the overground gait speed and 6 min walking distance were evaluated at pre, 4 and 8 weeks post treadmill training of a single subject as well. The results indicated that the cable driven robotic gait training system improved the kinematic performance of the leg during treadmill walking and had no significant impact on the variability of lower leg trajectory, suggesting a high backdrivability of the cable system. In addition, results from a patient with incomplete SCI indicated that prolonged robotic gait training using the cable robot improved overground gait speed. Results from this study suggested that a cable driven robotic gait training system is effective in improving leg kinematic performance, yet allows variability of gait kinematics. Thus, it seems feasible to improve the locomotor function in human SCI using this cable driven robotic system, warranting testing with a larger group of patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. V1 and V2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion

    PubMed Central

    Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn

    2014-01-01

    SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273

  1. Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy").

    PubMed

    Ruff, Christopher B; Burgess, M Loring; Ketcham, Richard A; Kappelman, John

    2016-01-01

    While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs) of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288-1 ("Lucy", 3.2 Myr) that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288-1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288-1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply significant differences in both locomotor behavior and ecology between australopiths and later Homo.

  2. Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy")

    PubMed Central

    Ruff, Christopher B.; Burgess, M. Loring; Ketcham, Richard A.; Kappelman, John

    2016-01-01

    While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs) of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288–1 ("Lucy", 3.2 Myr) that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288–1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288–1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply significant differences in both locomotor behavior and ecology between australopiths and later Homo. PMID:27902687

  3. The Effect of Inspiratory Muscle Training on Respiratory and Limb Locomotor Muscle Deoxygenation During Exercise with Resistive Inspiratory Loading.

    PubMed

    Turner, L A; Tecklenburg-Lund, S L; Chapman, R; Shei, R-J; Wilhite, D P; Mickleborough, T

    2016-07-01

    We investigated how inspiratory muscle training impacted respiratory and locomotor muscle deoxygenation during submaximal exercise with resistive inspiratory loading. 16 male cyclists completed 6 weeks of either true (n=8) or sham (n=8) inspiratory muscle training. Pre- and post-training, subjects completed 3, 6-min experimental trials performed at ~80%  ˙VO2peak with interventions of either moderate inspiratory loading, heavy inspiratory loading, or maximal exercise imposed in the final 3 min. Locomotor and respiratory muscle oxy-, deoxy-, and total-haemoglobin and myoglobin concentration was continuously monitored using near-infrared spectroscopy. Locomotor muscle deoxygenation changes from 80%  ˙VO2peak to heavy inspiratory loading were significantly reduced pre- to post-training from 4.3±5.6 µM to 2.7±4.7 µM. Respiratory muscle deoxygenation was also significantly reduced during the heavy inspiratory loading trial (4.6±3.5 µM to 1.9±1.5 µM) post-training. There was no significant difference in oxy-, deoxy-, or total-haemoglobin and myoglobin during any of the other loading trials, from pre- to post-training, in either group. After inspiratory muscle training, highly-trained cyclists exhibited decreased locomotor and respiratory muscle deoxygenation during exercise with heavy inspiratory loading. These data suggest that inspiratory muscle training reduces oxygen extraction by the active respiratory and limb muscles, which may reflect changes in respiratory and locomotor muscle oxygen delivery. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Lower extremity sagittal joint moment production during split-belt treadmill walking

    PubMed Central

    Roemmich, Ryan T.; Stegemöller, Elizabeth L.; Hass, Chris J.

    2012-01-01

    The split-belt treadmill (SBT) has recently been used to rehabilitate locomotor asymmetries in clinical populations. However, the joint mechanics produced while walking on a SBT are not well-understood. The purpose of this study was to investigate the lower extremity sagittal joint moments produced by each limb during SBT walking and provide insight as to how these joint moment patterns may be useful in rehabilitating unilateral gait deficits. Thirteen healthy young volunteers walked on the SBT with the belts tied and in a “SPLIT” session in which one belt moved twice as fast as the other. Sagittal lower extremity joint moment and ground reaction force impulses were then calculated over the braking and propulsive phases of the gait cycle. Paired t-tests were performed to analyze magnitude differences between conditions (i.e. the fast and slow limbs during SPLIT vs. the same limb during tied-belt walking) and between the fast and slow limbs during SPLIT. During the SPLIT session, the fast limb produced higher ground reaction force and ankle moment impulses during the propulsive and braking phases, and lower knee moment impulses during the propulsive phase when compared to the slow limb. The knee moment impulse was also significantly higher during braking in the slow limb than in the fast limb. The mechanics of each limb during the SPLIT session also differed from the mechanics observed when the belt speeds were tied. Based on these findings, we suggest that each belt may have intrinsic value in rehabilitating specific unilateral locomotor deficits. PMID:22985473

  5. Megachiropteran bats profoundly unique from microchiropterans in climbing and walking locomotion: Evolutionary implications

    PubMed Central

    Carter, Richard T.

    2017-01-01

    Understandably, most locomotor analyses of bats have focused on flight mechanics and behaviors. However, we investigated nonflight locomotion in an effort to glean deeper insights into the evolutionary history of bats. We used high-speed video (300 Hz) to film and compare walking and climbing mechanics and kinematics between several species of the suborders Megachiroptera (Pteropodidae) versus Microchiroptera (Vespertilionidae and Phyllostomatidae). We found fundamentally distinctive behaviors, functional abilities, and performance outcomes between groups, but nearly homogeneous outcomes within groups. Megachiropterans exhibited climbing techniques and skills not found in microchiropterans and which aligned with other fully arboreal mammals. Megachiropterans climbed readily when placed in a head-up posture on a vertical surface, showed significantly greater ability than microchiropterans to abduct and extend the reach of their limbs, and climbed at a greater pace by using a more aggressive ipsilateral gait, at times being supported by only a single contact point. In addition, megachiropterans showed little ability to employ basic walking mechanics when placed on the ground, also a pattern observed in some highly adapted arboreal mammals. Conversely, microchiropterans resisted climbing vertical surfaces in a head-up posture, showed significantly less extension of their limbs, and employed a less-aggressive, slower contralateral gait with three points of contact. When walking, microchiropterans used the same gait they did when climbing which is representative of basic tetrapod terrestrial mechanics. Curiously, megachiropterans cycled their limbs significantly faster when climbing than when attempting to walk, whereas microchiropterans cycled their limbs at significantly faster rates when walking than when climbing. We contend that nonflight locomotion mechanics give a deep evolutionary view into the ancestral es locomotor platform on which flight was built in each of these groups. PMID:28957404

  6. "On the Fence" versus "All in": Insights from Turtles for the Evolution of Aquatic Locomotor Specializations and Habitat Transitions in Tetrapod Vertebrates.

    PubMed

    Blob, Richard W; Mayerl, Christopher J; Rivera, Angela R V; Rivera, Gabriel; Young, Vanessa K H

    2016-12-01

    Though ultimately descended from terrestrial amniotes, turtles have deep roots as an aquatic lineage and are quite diverse in the extent of their aquatic specializations. Many taxa can be viewed as "on the fence" between aquatic and terrestrial realms, whereas others have independently hyperspecialized and moved "all in" to aquatic habitats. Such differences in specialization are reflected strongly in the locomotor system. We have conducted several studies to evaluate the performance consequences of such variation in design, as well as the mechanisms through which specialization for aquatic locomotion is facilitated in turtles. One path to aquatic hyperspecialization has involved the evolutionary transformation of the forelimbs from rowing, tubular limbs with distal paddles into flapping, flattened flippers, as in sea turtles. Prior to the advent of any hydrodynamic advantages, the evolution of such flippers may have been enabled by a reduction in twisting loads on proximal limb bones that accompanied swimming in rowing ancestors, facilitating a shift from tubular to flattened limbs. Moreover, the control of flapping movements appears related primarily to shifts in the activity of a single forelimb muscle, the deltoid. Despite some performance advantages, flapping may entail a locomotor cost in terms of decreased locomotor stability. However, other morphological specializations among rowing species may enhance swimming stability. For example, among highly aquatic pleurodiran turtles, fusion of the pelvis to the shell appears to dramatically reduce motions of the pelvis compared to freshwater cryptodiran species. This could contribute to advantageous increases in aquatic stability among predominantly aquatic pleurodires. Thus, even within the potential constraints of a body plan in which the body is encased by a shell, turtles exhibit diverse locomotor capacities that have enabled diversification into a wide range of aquatic habitats. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. “On the Fence” versus “All in”: Insights from Turtles for the Evolution of Aquatic Locomotor Specializations and Habitat Transitions in Tetrapod Vertebrates

    PubMed Central

    Blob, Richard W.; Mayerl, Christopher J.; Rivera, Angela R. V.; Rivera, Gabriel; Young, Vanessa K. H.

    2016-01-01

    Though ultimately descended from terrestrial amniotes, turtles have deep roots as an aquatic lineage and are quite diverse in the extent of their aquatic specializations. Many taxa can be viewed as “on the fence” between aquatic and terrestrial realms, whereas others have independently hyperspecialized and moved “all in” to aquatic habitats. Such differences in specialization are reflected strongly in the locomotor system. We have conducted several studies to evaluate the performance consequences of such variation in design, as well as the mechanisms through which specialization for aquatic locomotion is facilitated in turtles. One path to aquatic hyperspecialization has involved the evolutionary transformation of the forelimbs from rowing, tubular limbs with distal paddles into flapping, flattened flippers, as in sea turtles. Prior to the advent of any hydrodynamic advantages, the evolution of such flippers may have been enabled by a reduction in twisting loads on proximal limb bones that accompanied swimming in rowing ancestors, facilitating a shift from tubular to flattened limbs. Moreover, the control of flapping movements appears related primarily to shifts in the activity of a single forelimb muscle, the deltoid. Despite some performance advantages, flapping may entail a locomotor cost in terms of decreased locomotor stability. However, other morphological specializations among rowing species may enhance swimming stability. For example, among highly aquatic pleurodiran turtles, fusion of the pelvis to the shell appears to dramatically reduce motions of the pelvis compared to freshwater cryptodiran species. This could contribute to advantageous increases in aquatic stability among predominantly aquatic pleurodires. Thus, even within the potential constraints of a body plan in which the body is encased by a shell, turtles exhibit diverse locomotor capacities that have enabled diversification into a wide range of aquatic habitats. PMID:27940619

  8. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    PubMed

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just working regimes of a general spinal motor optimal control system containing the intrinsic model of limb movement dynamics. The consequences of this concept and ways of further research are discussed.

  9. A Posteriori Comparison of Natural and Surgical Destabilization Models of Canine Osteoarthritis

    PubMed Central

    Pelletier, Jean-Pierre; d'Anjou, Marc-André; Blond, Laurent; Pelletier, Johanne-Martel; del Castillo, Jérôme R. E.

    2013-01-01

    For many years Canis familiaris, the domestic dog, has drawn particular interest as a model of osteoarthritis (OA). Here, we optimized the dog model of experimental OA induced by cranial cruciate ligament sectioning. The usefulness of noninvasive complementary outcome measures, such as gait analysis for the limb function and magnetic resonance imaging for structural changes, was demonstrated in this model. Relationships were established between the functional impairment and the severity of structural changes including the measurement of cartilage thinning. In the dog model of naturally occurring OA, excellent test-retest reliability was denoted for the measurement of the limb function. A criterion to identify clinically meaningful responders to therapy was determined for privately owned dogs undergoing clinical trials. In addition, the recording of accelerometer-based duration of locomotor activity showed strong and complementary agreement with the biomechanical limb function. The translation potential of these models to the human OA condition is underlined. A preclinical testing protocol which combines the dog model of experimental OA induced by cranial cruciate ligament transection and the Dog model of naturally occurring OA offers the opportunity to further investigate the structural and functional benefits of disease-modifying strategies. Ultimately, a better prediction of outcomes for human clinical trials would be brought. PMID:24288664

  10. Neuromodulation of lower limb motor control in restorative neurology.

    PubMed

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-06-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Neuromodulation of lower limb motor control in restorative neurology

    PubMed Central

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-01-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657

  12. A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements

    PubMed Central

    Britz, Olivier; Zhang, Jingming; Grossmann, Katja S; Dyck, Jason; Kim, Jun C; Dymecki, Susan; Gosgnach, Simon; Goulding, Martyn

    2015-01-01

    V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI: http://dx.doi.org/10.7554/eLife.04718.001 PMID:26465208

  13. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.

    PubMed

    Allen, Vivian; Bates, Karl T; Li, Zhiheng; Hutchinson, John R

    2013-05-02

    Locomotion in living birds (Neornithes) has two remarkable features: feather-assisted flight, and the use of unusually crouched hindlimbs for bipedal support and movement. When and how these defining functional traits evolved remains controversial. However, the advent of computer modelling approaches and the discoveries of exceptionally preserved key specimens now make it possible to use quantitative data on whole-body morphology to address the biomechanics underlying this issue. Here we use digital body reconstructions to quantify evolutionary trends in locomotor biomechanics (whole-body proportions and centre-of-mass position) across the clade Archosauria. We use three-dimensional digital reconstruction to estimate body shape from skeletal dimensions for 17 archosaurs along the ancestral bird line, including the exceptionally preserved, feathered taxa Microraptor, Archaeopteryx, Pengornis and Yixianornis, which represent key stages in the evolution of the avian body plan. Rather than a discrete transition from more-upright postures in the basal-most birds (Avialae) and their immediate outgroup deinonychosauria, our results support hypotheses of a gradual, stepwise acquisition of more-crouched limb postures across much of theropod evolution, although we find evidence of an accelerated change within the clade Maniraptora (birds and their closest relatives, such as deinonychosaurs). In addition, whereas reduction of the tail is widely accepted to be the primary morphological factor correlated with centre-of-mass position and, hence, evolution of hindlimb posture, we instead find that enlargement of the pectoral limb and several associated trends have a much stronger influence. Intriguingly, our support for the onset of accelerated morpho-functional trends within Maniraptora is closely correlated with the evolution of flight. Because we find that the evolution of enlarged forelimbs is strongly linked, via whole-body centre of mass, to hindlimb function during terrestrial locomotion, we suggest that the evolution of avian flight is linked to anatomical novelties in the pelvic limb as well as the pectoral.

  14. Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats.

    PubMed

    Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim

    2002-07-01

    This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.

  15. Feasibility of Synergy-Based Exoskeleton Robot Control in Hemiplegia.

    PubMed

    Hassan, Modar; Kadone, Hideki; Ueno, Tomoyuki; Hada, Yasushi; Sankai, Yoshiyuki; Suzuki, Kenji

    2018-06-01

    Here, we present a study on exoskeleton robot control based on inter-limb locomotor synergies using a robot control method developed to target hemiparesis. The robot control is based on inter-limb locomotor synergies and kinesiological information from the non-paretic leg and a walking aid cane to generate motion patterns for the assisted leg. The developed synergy-based system was tested against an autonomous robot control system in five patients with hemiparesis and varying locomotor abilities. Three of the participants were able to walk using the robot. Results from these participants showed an improved spatial symmetry ratio and more consistent step length with the synergy-based method compared with that for the autonomous method, while the increase in the range of motion for the assisted joints was larger with the autonomous system. The kinematic synergy distribution of the participants walking without the robot suggests a relationship between each participant's synergy distribution and his/her ability to control the robot: participants with two independent synergies accounting for approximately 80% of the data variability were able to walk with the robot. This observation was not consistently apparent with conventional clinical measures such as the Brunnstrom stages. This paper contributes to the field of robot-assisted locomotion therapy by introducing the concept of inter-limb synergies, demonstrating performance differences between synergy-based and autonomous robot control, and investigating the range of disability in which the system is usable.

  16. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion.

    PubMed

    Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier; Wang, Zhi; Siembab, Valerie C; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J; Frank, Eric; Goulding, Martyn

    2014-04-02

    Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Not letting the left leg know what the right leg is doing: limb-specific locomotor adaptation to sensory-cue conflict.

    PubMed

    Durgin, Frank H; Fox, Laura F; Hoon Kim, Dong

    2003-11-01

    We investigated the phenomenon of limb-specific locomotor adaptation in order to adjudicate between sensory-cue-conflict theory and motor-adaptation theory. The results were consistent with cue-conflict theory in demonstrating that two different leg-specific hopping aftereffects are modulated by the presence of conflicting estimates of self-motion from visual and nonvisual sources. Experiment 1 shows that leg-specific increases in forward drift during attempts to hop in place on one leg while blindfolded vary according to the relationship between visual information and motor activity during an adaptation to outdoor forward hopping. Experiment 2 shows that leg-specific changes in performance on a blindfolded hopping-to-target task are similarly modulated by the presence of cue conflict during adaptation to hopping on a treadmill. Experiment 3 shows that leg-specific aftereffects from hopping additionally produce inadvertent turning during running in place while blindfolded. The results of these experiments suggest that these leg-specific locomotor aftereffects are produced by sensory-cue conflict rather than simple motor adaptation.

  18. Functional Locomotor Consequences of Uneven Forefeet for Trot Symmetry in Individual Riding Horses

    PubMed Central

    Wiggers, Nathan; Nauwelaerts, Sandra L. P.; Hobbs, Sarah Jane; Bool, Sophie; Wolschrijn, Claudia F.; Back, Willem

    2015-01-01

    Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet. Hoof kinetics and distal limb kinematics were collected from horses (n = 34) at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (<1.5 and >1.5° difference between forefeet respectively) and individual feet as flat (<50°), medium (between 50° and 55°) or upright (>55°). Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05). In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot. PMID:25646752

  19. Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion

    PubMed Central

    Rankin, Jeffery W.; Rubenson, Jonas; Rosenbluth, Kate H.; Siston, Robert A.; Delp, Scott L.

    2015-01-01

    We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa. PMID:26082859

  20. The Role of Adaptation in Body Load-Regulating Mechanisms During Locomotion

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara; Holt, Christopher; Mulavara, Ajitkumar; Bloomberg, Jacob

    2010-01-01

    Body loading is a fundamental parameter that modulates motor output during locomotion, and is especially important for controlling the generation of stepping patterns, dynamic balance, and termination of locomotion. Load receptors that regulate and control posture and stance in locomotion include the Golgi tendon organs and muscle spindles at the hip, knee, and ankle joints, and the Ruffini endings and the Pacinian corpuscles in the soles of the feet. Increased body weight support (BWS) during locomotion results in an immediate reorganization of locomotor control, such as a reduction in stance and double support duration and decreased hip, ankle, and knee angles during the gait cycle. Previous studies on the effect during exposure to increased BWS while walking showed a reduction in lower limb joint angles and gait cycle timing that represents a reorganization of locomotor control. Until now, no studies have investigated how locomotor control responds after a period of exposure to adaptive modification in the body load sensing system. The goal of this research was to determine the adaptive properties of body load-regulating mechanisms in locomotor control during locomotion. We hypothesized that body load-regulating mechanisms contribute to locomotor control, and adaptive changes in these load-regulating mechanisms require reorganization to maintain forward locomotion. Head-torso coordination, lower limb movement patterns, and gait cycle timing were evaluated before and after a 30-minute adaptation session during which subjects walked on a treadmill at 5.4 km/hr with 40% body weight support (BWS). Before and after the adaptation period, head-torso and lower limb 3D kinematic data were obtained while performing a goal directed task during locomotion with 0% BWS using a video-based motion analysis system, and gait cycle timing parameters were collected by foot switches positioned under the heel and toe of the subjects shoes. Subjects showed adaptive modification in the body load-regulating mechanisms that included increased head movement amplitude, increased knee and ankle flexion, and increased stance, stride, and double support time, with no change in the performance of the task with respect to that measured before exposure to BWS. These changes in locomotor control are opposite to that reported during 40% BWS exposure and indicative of an after-effect after removal of the adaptive stimulus. Therefore, it is evident that just 30 minutes of 40% BWS during locomotion was sufficient to induce adaptive modifications in the body load sensing systems that contribute to reorganization of sensory contributions to stable locomotor control.

  1. Adaptation to suspensory locomotion in Australopithecus sediba.

    PubMed

    Rein, Thomas R; Harrison, Terry; Carlson, Kristian J; Harvati, Katerina

    2017-03-01

    Australopithecus sediba is represented by well-preserved fossilized remains from the locality of Malapa, South Africa. Recent work has shown that the combination of features in the limb skeleton of A. sediba was distinct from that of earlier species of Australopithecus, perhaps indicating that this species moved differently. The bones of the arm and forearm indicate that A. sediba was adapted to suspensory and climbing behaviors. We used a geometric morphometric approach to examine ulnar shape, potentially identifying adaptations to forelimb suspensory locomotion in A. sediba. Results indicated suspensory capabilities in this species and a stronger forelimb suspensory signal than has been documented in Australopithecus afarensis. Our study confirms the adaptive significance of functional morphological traits for arboreal movements in the locomotor repertoire of A. sediba and provides important insight into the diversity and mosaic nature of locomotor adaptations among early hominins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait.

    PubMed

    Daley, Monica A; Birn-Jeffery, Aleksandra

    2018-05-22

    Birds provide an interesting opportunity to study the relationships between body size, limb morphology and bipedal locomotor function. Birds are ecologically diverse and span a large range of body size and limb proportions, yet all use their hindlimbs for bipedal terrestrial locomotion, for at least some part of their life history. Here, we review the scaling of avian striding bipedal gaits to explore how body mass and leg morphology influence walking and running. We collate literature data from 21 species, spanning a 2500× range in body mass from painted quail to ostriches. Using dynamic similarity theory to interpret scaling trends, we find evidence for independent effects of body mass, leg length and leg posture on gait. We find no evidence for scaling of duty factor with body size, suggesting that vertical forces scale with dynamic similarity. However, at dynamically similar speeds, large birds use relatively shorter stride lengths and higher stride frequencies compared with small birds. We also find that birds with long legs for their mass, such as the white stork and red-legged seriema, use longer strides and lower swing frequencies, consistent with the influence of high limb inertia on gait. We discuss the observed scaling of avian bipedal gait in relation to mechanical demands for force, work and power relative to muscle actuator capacity, muscle activation costs related to leg cycling frequency, and considerations of stability and agility. Many opportunities remain for future work to investigate how morphology influences gait dynamics among birds specialized for different habitats and locomotor behaviors. © 2018. Published by The Company of Biologists Ltd.

  3. Evolution of morphology and locomotor performance in anurans: relationships with microhabitat diversification.

    PubMed

    Citadini, J M; Brandt, R; Williams, C R; Gomes, F R

    2018-03-01

    The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post-cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi-aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein-Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi-aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi-aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  4. Cartilaginous Epiphyses in Extant Archosaurs and Their Implications for Reconstructing Limb Function in Dinosaurs

    PubMed Central

    Holliday, Casey M.; Ridgely, Ryan C.; Sedlmayr, Jayc C.; Witmer, Lawrence M.

    2010-01-01

    Extinct archosaurs, including many non-avian dinosaurs, exhibit relatively simply shaped condylar regions in their appendicular bones, suggesting potentially large amounts of unpreserved epiphyseal (articular) cartilage. This “lost anatomy” is often underappreciated such that the ends of bones are typically considered to be the joint surfaces, potentially having a major impact on functional interpretation. Extant alligators and birds were used to establish an objective basis for inferences about cartilaginous articular structures in such extinct archosaur clades as non-avian dinosaurs. Limb elements of alligators, ostriches, and other birds were dissected, disarticulated, and defleshed. Lengths and condylar shapes of elements with intact epiphyses were measured. Limbs were subsequently completely skeletonized and the measurements repeated. Removal of cartilaginous condylar regions resulted in statistically significant changes in element length and condylar breadth. Moreover, there was marked loss of those cartilaginous structures responsible for joint architecture and congruence. Compared to alligators, birds showed less dramatic, but still significant changes. Condylar morphologies of dinosaur limb bones suggest that most non-coelurosaurian clades possessed large cartilaginous epiphyses that relied on the maintenance of vascular channels that are otherwise eliminated early in ontogeny in smaller-bodied tetrapods. A sensitivity analysis using cartilage correction factors (CCFs) obtained from extant taxa indicates that whereas the presence of cartilaginous epiphyses only moderately increases estimates of dinosaur height and speed, it has important implications for our ability to infer joint morphology, posture, and the complicated functional movements in the limbs of many extinct archosaurs. Evidence suggests that the sizes of sauropod epiphyseal cartilages surpassed those of alligators, which account for at least 10% of hindlimb length. These data suggest that large cartilaginous epiphyses were widely distributed among non-avian archosaurs and must be considered when making inferences about locomotor functional morphology in fossil taxa. PMID:20927347

  5. Cartilaginous epiphyses in extant archosaurs and their implications for reconstructing limb function in dinosaurs.

    PubMed

    Holliday, Casey M; Ridgely, Ryan C; Sedlmayr, Jayc C; Witmer, Lawrence M

    2010-09-30

    Extinct archosaurs, including many non-avian dinosaurs, exhibit relatively simply shaped condylar regions in their appendicular bones, suggesting potentially large amounts of unpreserved epiphyseal (articular) cartilage. This "lost anatomy" is often underappreciated such that the ends of bones are typically considered to be the joint surfaces, potentially having a major impact on functional interpretation. Extant alligators and birds were used to establish an objective basis for inferences about cartilaginous articular structures in such extinct archosaur clades as non-avian dinosaurs. Limb elements of alligators, ostriches, and other birds were dissected, disarticulated, and defleshed. Lengths and condylar shapes of elements with intact epiphyses were measured. Limbs were subsequently completely skeletonized and the measurements repeated. Removal of cartilaginous condylar regions resulted in statistically significant changes in element length and condylar breadth. Moreover, there was marked loss of those cartilaginous structures responsible for joint architecture and congruence. Compared to alligators, birds showed less dramatic, but still significant changes. Condylar morphologies of dinosaur limb bones suggest that most non-coelurosaurian clades possessed large cartilaginous epiphyses that relied on the maintenance of vascular channels that are otherwise eliminated early in ontogeny in smaller-bodied tetrapods. A sensitivity analysis using cartilage correction factors (CCFs) obtained from extant taxa indicates that whereas the presence of cartilaginous epiphyses only moderately increases estimates of dinosaur height and speed, it has important implications for our ability to infer joint morphology, posture, and the complicated functional movements in the limbs of many extinct archosaurs. Evidence suggests that the sizes of sauropod epiphyseal cartilages surpassed those of alligators, which account for at least 10% of hindlimb length. These data suggest that large cartilaginous epiphyses were widely distributed among non-avian archosaurs and must be considered when making inferences about locomotor functional morphology in fossil taxa.

  6. Dynamic locomotor capabilities revealed by early dinosaur trackmakers from southern Africa.

    PubMed

    Wilson, Jeffrey A; Marsicano, Claudia A; Smith, Roger M H

    2009-10-06

    A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees ), and plantigrade and digitigrade foot posture. The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors.

  7. Gait ataxia in humans: vestibular and cerebellar control of dynamic stability.

    PubMed

    Schniepp, Roman; Möhwald, Ken; Wuehr, Max

    2017-10-01

    During human locomotion, vestibular feedback control is fundamental for maintaining dynamic stability and adapting the gait pattern to external circumstances. Within the supraspinal locomotor network, the cerebellum represents the key site for the integration of vestibular feedback information. The cerebellum is further important for the fine-tuning and coordination of limb movements during walking. The aim of this review article is to highlight the shared structural and functional sensorimotor principles in vestibular and cerebellar locomotion control. Vestibular feedback for the maintenance of dynamic stability is integrated into the locomotor pattern via midline, caudal cerebellar structures (vermis, flocculonodular lobe). Hemispheric regions of the cerebellum facilitate feed-forward control of multi-joint coordination and higher locomotor functions. Characteristic features of the gait disorder in patients with vestibular deficits or cerebellar ataxia are increased levels of spatiotemporal gait variability in the fore-aft and the medio-lateral gait dimension. In the fore-aft dimension, pathologic increases of gait fluctuations critically depend on the locomotion speed and predominantly manifest during slow walking velocities. This feature is associated with an increased risk of falls in both patients with vestibular hypofunction as well as patients with cerebellar ataxia. Pharmacological approaches for the treatment of vestibular or cerebellar gait ataxia are currently not available. However, new promising options are currently tested in randomized, controlled trials (fampridine/FACEG; acetyl-DL-leucine/ALCAT).

  8. Human spinal locomotor control is based on flexibly organized burst generators.

    PubMed

    Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-03-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Human spinal locomotor control is based on flexibly organized burst generators

    PubMed Central

    Danner, Simon M.; Hofstoetter, Ursula S.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank

    2015-01-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. PMID:25582580

  10. FES-assisted Cycling Improves Aerobic Capacity and Locomotor Function Postcerebrovascular Accident.

    PubMed

    Aaron, Stacey E; Vanderwerker, Catherine J; Embry, Aaron E; Newton, Jennifer H; Lee, Samuel C K; Gregory, Chris M

    2018-03-01

    After a cerebrovascular accident (CVA) aerobic deconditioning contributes to diminished physical function. Functional electrical stimulation (FES)-assisted cycling is a promising exercise paradigm designed to target both aerobic capacity and locomotor function. This pilot study aimed to evaluate the effects of an FES-assisted cycling intervention on aerobic capacity and locomotor function in individuals post-CVA. Eleven individuals with chronic (>6 months) post-CVA hemiparesis completed an 8-wk (three times per week; 24 sessions) progressive FES-assisted cycling intervention. V˙O2peak, self-selected, and fastest comfortable walking speeds, gait, and pedaling symmetry, 6-min walk test (6MWT), balance, dynamic gait movements, and health status were measured at baseline and posttraining. Functional electrical stimulation-assisted cycling significantly improved V˙O2peak (12%, P = 0.006), self-selected walking speed (SSWS, 0.05 ± 0.1 m·s, P = 0.04), Activities-specific Balance Confidence scale score (12.75 ± 17.4, P = 0.04), Berg Balance Scale score (3.91 ± 4.2, P = 0.016), Dynamic Gait Index score (1.64 ± 1.4, P = 0.016), and Stroke Impact Scale participation/role domain score (12.74 ± 16.7, P = 0.027). Additionally, pedal symmetry, represented by the paretic limb contribution to pedaling (paretic pedaling ratio [PPR]) significantly improved (10.09% ± 9.0%, P = 0.016). Although step length symmetry (paretic step ratio [PSR]) did improve, these changes were not statistically significant (-0.05% ± 0.1%, P = 0.09). Exploratory correlations showed moderate association between change in SSWS and 6-min walk test (r = 0.74), and moderate/strong negative association between change in PPR and PSR. These results support FES-assisted cycling as a means to improve both aerobic capacity and locomotor function. Improvements in SSWS, balance, dynamic walking movements, and participation in familial and societal roles are important targets for rehabilitation of individuals after CVA. Interestingly, the correlation between PSR and PPR suggests that improvements in pedaling symmetry may translate to a more symmetric gait pattern.

  11. Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke.

    PubMed

    Kim, Jin-Seop; Oh, Duck-Won; Kim, Suhn-Yeop; Choi, Jong-Duk

    2011-02-01

    To compare the effect of visual and kinesthetic locomotor imagery training on walking performance and to determine the clinical feasibility of incorporating auditory step rhythm into the training. Randomized crossover trial. Laboratory of a Department of Physical Therapy. Fifteen subjects with post-stroke hemiparesis. Four locomotor imagery trainings on walking performance: visual locomotor imagery training, kinesthetic locomotor imagery training, visual locomotor imagery training with auditory step rhythm and kinesthetic locomotor imagery training with auditory step rhythm. The timed up-and-go test and electromyographic and kinematic analyses of the affected lower limb during one gait cycle. After the interventions, significant differences were found in the timed up-and-go test results between the visual locomotor imagery training (25.69 ± 16.16 to 23.97 ± 14.30) and the kinesthetic locomotor imagery training with auditory step rhythm (22.68 ± 12.35 to 15.77 ± 8.58) (P < 0.05). During the swing and stance phases, the kinesthetic locomotor imagery training exhibited significantly increased activation in a greater number of muscles and increased angular displacement of the knee and ankle joints compared with the visual locomotor imagery training, and these effects were more prominent when auditory step rhythm was integrated into each form of locomotor imagery training. The activation of the hamstring during the swing phase and the gastrocnemius during the stance phase, as well as kinematic data of the knee joint, were significantly different for posttest values between the visual locomotor imagery training and the kinesthetic locomotor imagery training with auditory step rhythm (P < 0.05). The therapeutic effect may be further enhanced in the kinesthetic locomotor imagery training than in the visual locomotor imagery training. The auditory step rhythm together with the locomotor imagery training produces a greater positive effect in improving the walking performance of patients with post-stroke hemiparesis.

  12. Conditional Sox9 ablation improves locomotor recovery after spinal cord injury by increasing reactive sprouting.

    PubMed

    McKillop, William M; York, Elisa M; Rubinger, Luc; Liu, Tony; Ossowski, Natalie M; Xu, Kathy; Hryciw, Todd; Brown, Arthur

    2016-09-01

    The absence of axonal regeneration after spinal cord injury (SCI) has been attributed to the up-regulation of axon-repelling molecules, such as chondroitin sulfate proteoglycans (CSPGs) present in the glial scar that forms post-SCI. We previously identified the transcription factor SOX9 as a key up-regulator of CSPG production and also demonstrated that conditional Sox9 ablation leads to decreased CSPG levels and improved recovery of hind limb function after SCI. We herein demonstrate increased neural input onto spinal neurons caudal to the lesion in spinal cord injured Sox9 conditional knock out mice as indicated by increased levels of the presynaptic markers synaptophysin and vesicular glutamate transporter 1 (VGLUT1) compared to controls. Axonal sparing, long-range axonal regeneration and reactive sprouting were investigated as possible explanations for the increase in neural inputs caudal to the lesion and for the improved locomotor outcomes in spinal cord-injured Sox9 conditional knock out mice. Whereas retrograde tract-tracing studies failed to reveal any evidence for increased axonal sparing or for long-range regeneration in the Sox9 conditional knock out mice, anterograde tract-tracing experiments demonstrated increased reactive sprouting caudal to the lesion after SCI. Finally we demonstrate that application of a broad spectrum MMP inhibitor to reduce CSPG degradation in Sox9 conditional knock out mice prevents the improvements in locomotor recovery observed in untreated Sox9 conditional knock out mice. These results suggest that improved recovery of locomotor function in Sox9 conditional knock out mice after SCI is due to increased reactive sprouting secondary to reduced CSPG levels distal to the lesion. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance.

    PubMed

    Dempsey, Jerome A

    2012-09-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward 'central command' mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal 'tonic' activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O(2) transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes - probably acting in concert with feedforward central command - contribute significantly to preserving O(2) transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development.

  14. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians

    PubMed Central

    Bates, Karl T; Maidment, Susannah C R; Allen, Vivian; Barrett, Paul M

    2012-01-01

    Ornithischia (the ‘bird-hipped’ dinosaurs) encompasses bipedal, facultative quadrupedal and quadrupedal taxa. Primitive ornithischians were small bipeds, but large body size and obligate quadrupedality evolved independently in all major ornithischian lineages. Numerous pelvic and hind limb features distinguish ornithischians from the majority of other non-avian dinosaurs. However, some of these features, notably a retroverted pubis and elongate iliac preacetabular process, appeared convergently in maniraptoran theropods, and were inherited by their avian descendants. During maniraptoran/avian evolution these pelvic modifications led to significant changes in the functions of associated muscles, involving alterations to the moment arms and the activation patterns of pelvic musculature. However, the functions of these features in ornithischians and their influence on locomotion have not been tested and remain poorly understood. Here, we provide quantitative tests of bipedal ornithischian muscle function using computational modelling to estimate 3D hind limb moment arms for the most complete basal ornithischian, Lesothosaurus diagnosticus. This approach enables sensitivity analyses to be carried out to explore the effects of uncertainties in muscle reconstructions of extinct taxa, and allows direct comparisons to be made with similarly constructed models of other bipedal dinosaurs. This analysis supports some previously proposed qualitative inferences of muscle function in basal ornithischians. However, more importantly, this work highlights ambiguities in the roles of certain muscles, notably those inserting close to the hip joint. Comparative analysis reveals that moment arm polarities and magnitudes in Lesothosaurus, basal tetanuran theropods and the extant ostrich are generally similar. However, several key differences are identified, most significantly in comparisons between the moment arms of muscles associated with convergent osteological features in ornithischians and birds. Craniad migration of the iliofemoralis group muscles in birds correlates with increased leverage and use of medial femoral rotation to counter stance phase adduction moments at the hip. In Lesothosaurus the iliofemoralis group maintains significantly higher moment arms for abduction, consistent with the hip abduction mode of lateral limb support hypothesized for basal dinosaurs. Sensitivity analysis highlights ambiguity in the role of musculature associated with the retroverted pubis (puboischiofemoralis externus group) in ornithischians. However, it seems likely that this musculature may have predominantly functioned similarly to homologous muscles in extant birds, activating during the swing phase to adduct the lower limb through lateral rotation of the femur. Overall the results suggest that locomotor muscle leverage in Lesothosaurus (and by inference basal ornithischians in general) was more similar to that of other non-avian dinosaurs than the ostrich, representing what was probably the basal dinosaur condition. This work thereby contradicts previous hypotheses of ornithischian–bird functional convergence. PMID:22211275

  15. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians.

    PubMed

    Bates, Karl T; Maidment, Susannah C R; Allen, Vivian; Barrett, Paul M

    2012-03-01

    Ornithischia (the 'bird-hipped' dinosaurs) encompasses bipedal, facultative quadrupedal and quadrupedal taxa. Primitive ornithischians were small bipeds, but large body size and obligate quadrupedality evolved independently in all major ornithischian lineages. Numerous pelvic and hind limb features distinguish ornithischians from the majority of other non-avian dinosaurs. However, some of these features, notably a retroverted pubis and elongate iliac preacetabular process, appeared convergently in maniraptoran theropods, and were inherited by their avian descendants. During maniraptoran/avian evolution these pelvic modifications led to significant changes in the functions of associated muscles, involving alterations to the moment arms and the activation patterns of pelvic musculature. However, the functions of these features in ornithischians and their influence on locomotion have not been tested and remain poorly understood. Here, we provide quantitative tests of bipedal ornithischian muscle function using computational modelling to estimate 3D hind limb moment arms for the most complete basal ornithischian, Lesothosaurus diagnosticus. This approach enables sensitivity analyses to be carried out to explore the effects of uncertainties in muscle reconstructions of extinct taxa, and allows direct comparisons to be made with similarly constructed models of other bipedal dinosaurs. This analysis supports some previously proposed qualitative inferences of muscle function in basal ornithischians. However, more importantly, this work highlights ambiguities in the roles of certain muscles, notably those inserting close to the hip joint. Comparative analysis reveals that moment arm polarities and magnitudes in Lesothosaurus, basal tetanuran theropods and the extant ostrich are generally similar. However, several key differences are identified, most significantly in comparisons between the moment arms of muscles associated with convergent osteological features in ornithischians and birds. Craniad migration of the iliofemoralis group muscles in birds correlates with increased leverage and use of medial femoral rotation to counter stance phase adduction moments at the hip. In Lesothosaurus the iliofemoralis group maintains significantly higher moment arms for abduction, consistent with the hip abduction mode of lateral limb support hypothesized for basal dinosaurs. Sensitivity analysis highlights ambiguity in the role of musculature associated with the retroverted pubis (puboischiofemoralis externus group) in ornithischians. However, it seems likely that this musculature may have predominantly functioned similarly to homologous muscles in extant birds, activating during the swing phase to adduct the lower limb through lateral rotation of the femur. Overall the results suggest that locomotor muscle leverage in Lesothosaurus (and by inference basal ornithischians in general) was more similar to that of other non-avian dinosaurs than the ostrich, representing what was probably the basal dinosaur condition. This work thereby contradicts previous hypotheses of ornithischian-bird functional convergence. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  16. Objective measures of motor dysfunction after compression spinal cord injury in adult rats: correlations with locomotor rating scores.

    PubMed

    Semler, Joerg; Wellmann, Katharina; Wirth, Felicitas; Stein, Gregor; Angelova, Srebrina; Ashrafi, Mahak; Schempf, Greta; Ankerne, Janina; Ozsoy, Ozlem; Ozsoy, Umut; Schönau, Eckhard; Angelov, Doychin N; Irintchev, Andrey

    2011-07-01

    Precise assessment of motor deficits after traumatic spinal cord injury (SCI) in rodents is crucial for understanding the mechanisms of functional recovery and testing therapeutic approaches. Here we analyzed the applicability to a rat SCI model of an objective approach, the single-frame motion analysis, created and used for functional analysis in mice. Adult female Wistar rats were subjected to graded compression of the spinal cord. Recovery of locomotion was analyzed using video recordings of beam walking and inclined ladder climbing. Three out of four parameters used in mice appeared suitable: the foot-stepping angle (FSA) and the rump-height index (RHI), measured during beam walking, and for estimating paw placement and body weight support, respectively, and the number of correct ladder steps (CLS), assessing skilled limb movements. These parameters, similar to the Basso, Beattie, and Bresnahan (BBB) locomotor rating scores, correlated with lesion volume and showed significant differences between moderately and severely injured rats at 1-9 weeks after SCI. The beam parameters, but not CLS, correlated well with the BBB scores within ranges of poor and good locomotor abilities. FSA co-varied with RHI only in the severely impaired rats, while RHI and CLS were barely correlated. Our findings suggest that the numerical parameters estimate, as intended by design, predominantly different aspects of locomotion. The use of these objective measures combined with BBB rating provides a time- and cost-efficient opportunity for versatile and reliable functional evaluations in both severely and moderately impaired rats, combining clinical assessment with precise numerical measures.

  17. Dynamic Locomotor Capabilities Revealed by Early Dinosaur Trackmakers from Southern Africa

    PubMed Central

    Wilson, Jeffrey A.; Marsicano, Claudia A.; Smith, Roger M. H.

    2009-01-01

    Background A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. Methodology/Principal Findings The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31°), and plantigrade and digitigrade foot posture. Conclusions/Significance The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect ‘real time’ responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors. PMID:19806213

  18. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    PubMed

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.

    PubMed

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.

  20. Locomotor loading mechanics in the hindlimbs of tegu lizards (Tupinambis merianae): comparative and evolutionary implications.

    PubMed

    Sheffield, K Megan; Butcher, Michael T; Shugart, S Katherine; Gander, Jennifer C; Blob, Richard W

    2011-08-01

    Skeletal elements are usually able to withstand several times their usual load before they yield, and this ratio is known as the bone's safety factor. Limited studies on amphibians and non-avian reptiles have shown that they have much higher limb bone safety factors than birds and mammals. It has been hypothesized that this difference is related to the difference in posture between upright birds and mammals and sprawling ectotherms; however, limb bone loading data from a wider range of sprawling species are needed in order to determine whether the higher safety factors seen in amphibians and non-avian reptiles are ancestral or derived conditions. Tegus (family Teiidae) are an ideal lineage with which to expand sampling of limb bone loading mechanics for sprawling taxa, particularly for lizards, because they are from a different clade than previously sampled iguanas and exhibit different foraging and locomotor habits (actively foraging carnivore versus burst-activity herbivore). We evaluated the mechanics of locomotor loading for the femur of the Argentine black and white tegu (Tupinambus merianae) using three-dimensional measurements of the ground reaction force and hindlimb kinematics, in vivo bone strains and femoral mechanical properties. Peak bending stresses experienced by the femur were low (tensile: 10.4 ± 1.1 MPa; compressive: -17.4 ± 0.9 MPa) and comparable to those in other reptiles, with moderate shear stresses and strains also present. Analyses of peak femoral stresses and strains led to estimated safety factor ranges of 8.8-18.6 in bending and 7.8-17.5 in torsion, both substantially higher than typical for birds and mammals but similar to other sprawling tetrapods. These results broaden the range of reptilian and amphibian taxa in which high femoral safety factors have been evaluated and further indicate a trend for the independent evolution of lower limb bone safety factors in endothermic taxa.

  1. Changes in the limb kinematics and walking-distance estimation after shank elongation: evidence for a locomotor body schema?

    PubMed

    Dominici, Nadia; Daprati, Elena; Nico, Daniele; Cappellini, Germana; Ivanenko, Yuri P; Lacquaniti, Francesco

    2009-03-01

    When walking, step length provides critical information on traveled distance along the ongoing path [corrected] Little is known on the role that knowledge about body dimensions plays within this process. Here we directly addressed this question by evaluating whether changes in body proportions interfere with computation of traveled distance for targets located outside the reaching space. We studied locomotion and distance estimation in an achondroplastic child (ACH, 11 yr) before and after surgical elongation of the shank segments of both lower limbs and in healthy adults walking on stilts, designed to mimic shank-segment elongation. Kinematic analysis of gait revealed that dynamic coupling of the thigh, shank, and foot segments changed substantially as a result of elongation. Step length remained unvaried, in spite of the significant increase in total limb length ( approximately 1.5-fold). These relatively shorter strides resulted from smaller oscillations of the shank segment, as would be predicted by proportional increments in limb size and not by asymmetrical segmental increment as in the present case (length of thighs was not modified). Distance estimation was measured by walking with eyes closed toward a memorized target. Before surgery, the behavior of ACH was comparable to that of typically developing participants. In contrast, following shank elongation, the ACH walked significantly shorter distances when aiming at the same targets. Comparable changes in limb kinematics, stride length, and estimation of traveled distance were found in adults wearing on stilts, suggesting that path integration errors in both cases were related to alterations in the intersegmental coordination of the walking limbs. The results are consistent with a dynamic locomotor body schema used for controlling step length and path estimation, based on inherent relationships between gait parameters and body proportions.

  2. Treadmill Training with HAL Exoskeleton-A Novel Approach for Symptomatic Therapy in Patients with Limb-Girdle Muscular Dystrophy-Preliminary Study.

    PubMed

    Sczesny-Kaiser, Matthias; Kowalewski, Rebecca; Schildhauer, Thomas A; Aach, Mirko; Jansen, Oliver; Grasmücke, Dennis; Güttsches, Anne-Katrin; Vorgerd, Matthias; Tegenthoff, Martin

    2017-01-01

    Purpose: Exoskeletons have been developed for rehabilitation of patients with walking impairment due to neurological disorders. Recent studies have shown that the voluntary-driven exoskeleton HAL® (hybrid assistive limb) can improve walking functions in spinal cord injury and stroke. The aim of this study was to assess safety and effects on walking function of HAL® supported treadmill therapy in patients with limb-girdle muscular dystrophy (LGMD). Materials and Methods: Three LGMD patients received 8 weeks of treadmill training with HAL® 3 times a week. Outcome parameters were 10-meter walk test (10 MWT), 6-minute walk test, and timed-up-and-go test (TUG). Parameters were assessed pre and post training and 6 weeks later (follow-up). Results: All patients completed the therapy without adverse reactions and reported about improvement in endurance. Improvements in outcome parameters after 8 weeks could be demonstrated. Persisting effects were observed after 6 weeks for the 10 MWT and TUG test (follow-up). Conclusions: HAL® treadmill training in LGMD patients can be performed safely and enables an intensive highly repetitive locomotor training. All patients benefitted from this innovative method. Upcoming controlled studies with larger cohorts should prove its effects in different types of LGMD and other myopathies.

  3. Treadmill Training with HAL Exoskeleton—A Novel Approach for Symptomatic Therapy in Patients with Limb-Girdle Muscular Dystrophy—Preliminary Study

    PubMed Central

    Sczesny-Kaiser, Matthias; Kowalewski, Rebecca; Schildhauer, Thomas A.; Aach, Mirko; Jansen, Oliver; Grasmücke, Dennis; Güttsches, Anne-Katrin; Vorgerd, Matthias; Tegenthoff, Martin

    2017-01-01

    Purpose: Exoskeletons have been developed for rehabilitation of patients with walking impairment due to neurological disorders. Recent studies have shown that the voluntary-driven exoskeleton HAL® (hybrid assistive limb) can improve walking functions in spinal cord injury and stroke. The aim of this study was to assess safety and effects on walking function of HAL® supported treadmill therapy in patients with limb-girdle muscular dystrophy (LGMD). Materials and Methods: Three LGMD patients received 8 weeks of treadmill training with HAL® 3 times a week. Outcome parameters were 10-meter walk test (10 MWT), 6-minute walk test, and timed-up-and-go test (TUG). Parameters were assessed pre and post training and 6 weeks later (follow-up). Results: All patients completed the therapy without adverse reactions and reported about improvement in endurance. Improvements in outcome parameters after 8 weeks could be demonstrated. Persisting effects were observed after 6 weeks for the 10 MWT and TUG test (follow-up). Conclusions: HAL® treadmill training in LGMD patients can be performed safely and enables an intensive highly repetitive locomotor training. All patients benefitted from this innovative method. Upcoming controlled studies with larger cohorts should prove its effects in different types of LGMD and other myopathies. PMID:28848377

  4. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance

    PubMed Central

    Dempsey, Jerome A

    2012-01-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward ‘central command’ mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal ‘tonic’ activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O2 transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes – probably acting in concert with feedforward central command – contribute significantly to preserving O2 transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development. PMID:22826128

  5. Poststroke Hemiparesis Impairs the Rate but not Magnitude of Adaptation of Spatial and Temporal Locomotor Features

    PubMed Central

    Savin, Douglas N.; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M.

    2015-01-01

    Background Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Objective Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Methods Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of “initial” and “late” locomotor adaptation rates were determined. Results All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Conclusions Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which “late” adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population. PMID:22367915

  6. Forelimb muscle function in pig-nosed turtles, Carettochelys insculpta: testing neuromotor conservation between rowing and flapping in swimming turtles

    PubMed Central

    Rivera, Angela R. V.; Blob, Richard W.

    2013-01-01

    Changes in muscle activation patterns can lead to new locomotor modes; however, neuromotor conservation—the evolution of new forms of locomotion through changes in structure without concurrent changes to underlying motor patterns—has been documented across diverse styles of locomotion. Animals that swim using appendages do so via rowing (anteroposterior oscilations) or flapping (dorsoventral oscilations). Yet few studies have compared motor patterns between these swimming modes. In swimming turtles, propulsion is generated exclusively by limbs. Kinematically, turtles swim using multiple styles of rowing (freshwater species), flapping (sea turtles) and a unique hybrid style with superficial similarity to flapping by sea turtles and characterized by increased dorsoventral motions of synchronously oscillated forelimbs that have been modified into flippers (Carettochelys insculpta). We compared forelimb motor patterns in four species of turtle (two rowers, Apalone ferox and Trachemys scripta; one flapper, Caretta caretta; and Carettochelys) and found that, despite kinematic differences, motor patterns were generally similar among species with a few notable exceptions: specifically, presence of variable bursts for pectoralis and triceps in Trachemys (though timing of the non-variable pectoralis burst was similar), and the timing of deltoideus activity in Carettochelys and Caretta compared with other taxa. The similarities in motor patterns we find for several muscles provide partial support for neuromotor conservation among turtles using diverse locomotor styles, but the differences implicate deltoideus as a prime contributor to flapping limb motions. PMID:23966596

  7. Functional anatomy and adaptation of male gorillas (Gorilla gorilla gorilla) with comparison to male orangutans (Pongo pygmaeus).

    PubMed

    Zihlman, Adrienne L; McFarland, Robin K; Underwood, Carol E

    2011-11-01

    Great apes diversified during the Miocene in Old World forests. Two lineages, gorillas in Africa and orangutans in Asia, have sexual dimorphisms of super-sized males, though they presumably diverged from a smaller common ancestor. We test the hypothesis that they increased in body mass independently and convergently, and that their many postcranial differences reflect locomotor differences. Whole body dissections of five adult male gorillas and four adult male orangutans allowed quantification of body mass distribution to limb segments, of body composition (muscle, bone, skin, and fat relative to total body mass), and of muscle distribution and proportions. Results demonstrate that gorilla forelimb anatomy accommodates shoulder joint mobility for vertical climbing and reaching while maintaining joint stability during quadrupedal locomotion. The heavily muscled hind limbs are equipped for propulsion and weight-bearing over relatively stable substrates on the forest floor. In contrast, orangutan forelimb length, muscle mass, and joint construction are modified for strength and mobility in climbing, bridging, and traveling over flexible supports through the forest canopy. Muscles of hip, knee, and ankle joints provide rotational and prehensile strength essential for moving on unstable and discontinuous branches. We conclude that anatomical similarities are due to common ancestry and that differences in postcranial anatomy reflect powerful selection for divergent locomotor adaptations. These data further support the evolutionary conclusion that gorillas fall with chimpanzees and humans as part of the African hominoid radiation; orangutans are a specialized outlier. Copyright © 2011 Wiley-Liss, Inc.

  8. Distributed plasticity of locomotor pattern generators in spinal cord injured patients.

    PubMed

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2004-05-01

    Recent progress with spinal cord injured (SCI) patients indicates that with training they can recover some locomotor ability. Here we addressed the question of whether locomotor responses developed with training depend on re-activation of the normal motor patterns or whether they depend on learning new motor patterns. To this end we recorded detailed kinematic and EMG data in SCI patients trained to step on a treadmill with body-weight support (BWST), and in healthy subjects. We found that all patients could be trained to step with BWST in the laboratory conditions, but they used new coordinative strategies. Patients with more severe lesions used their arms and body to assist the leg movements via the biomechanical coupling of limb and body segments. In all patients, the phase-relationship of the angular motion of the different lower limb segments was very different from the control, as was the pattern of activity of most recorded muscles. Surprisingly, however, the new motor strategies were quite effective in generating foot motion that closely matched the normal in the laboratory conditions. With training, foot motion recovered the shape, the step-by-step reproducibility, and the two-thirds power relationship between curvature and velocity that characterize normal gait. We mapped the recorded patterns of muscle activity onto the approximate rostrocaudal location of motor neuron pools in the human spinal cord. The reconstructed spatiotemporal maps of motor neuron activity in SCI patients were quite different from those of healthy subjects. At the end of training, the locomotor network reorganized at both supralesional and sublesional levels, from the cervical to the sacral cord segments. We conclude that locomotor responses in SCI patients may not be subserved by changes localized to limited regions of the spinal cord, but may depend on a plastic redistribution of activity across most of the rostrocaudal extent of the spinal cord. Distributed plasticity underlies recovery of foot kinematics by generating new patterns of muscle activity that are motor equivalents of the normal ones.

  9. Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.

    2007-01-01

    Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001; Cohen et al. 2005). Importantly, this increased adaptability is retained even one month after completion of the training period. Our laboratory is currently developing adaptive generalization training procedures and the associated flight hardware to implement such a training program, using variations of visual flow, subject loading, and treadmill speed; during regular in-flight treadmill operations.

  10. Effects from fine muscle and cutaneous afferents on spinal locomotion in cats

    PubMed Central

    Kniffki, K.-D.; Schomburg, E. D.; Steffens, H.

    1981-01-01

    1. The effects of chemically activated fine muscle afferents (groups III and IV) and electrically activated cutaneous afferents on motoneuronal discharges were studied before and during fictive locomotion induced pharmacologically by i.v. administration of nialamide and l-DOPA in high spinal cats. Efferent activity was recorded simultaneously from nerve filaments to ipsi- and contralateral extensor and flexor muscles. In addition, intracellular recordings were made from lumbar α-motoneurones. 2. After nialamide but before treatment with l-DOPA, in some cases, transient locomotor-like discharges were induced by an increased activity in fine muscle afferents. The response pattern in nerves to both hind limbs could be different showing e.g. only transient alternating activity between knee flexor and extensor of one limb but not of the other one. 3. Treatment with l-DOPA did not always cause fictive locomotion. Often not all motoneurone pools showed rhythmic activity. In these cases stimulation of group III and IV muscle afferents usually caused transient periodic activity. In cases with apparent rhythmic activity, algesic stimulation of the gastrocnemius—soleus muscle caused an accentuation of the rhythm by a more abrupt transition from the active phase to the non-active interval. Again, the response patterns on both sides were not uniform in all cases. 4. A second type of response to activation of fine muscle afferents had a quite different character: the rhythmic activity was more or less completely overridden by a strong transient tonic hyperactivity or the rhythm was transiently blocked. These phenomena did not occur in the same way in all nerves. 5. Electrical stimulation of cutaneous nerves of the hind limb generally induced the same response pattern as chemical stimulation of the group III and IV muscle afferents. The effects varied depending on the stimulus strength and the nerve. 6. The results revealed that cutaneous and fine muscle afferents not only have similar functions in the reflex control of a limb but also in evocation and modulation of locomotion. Therefore, it is assumed that both types of afferents may serve together as a peripheral feed-back to the spinal locomotor centre. PMID:7320927

  11. Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion

    PubMed Central

    Hägglund, Martin; Dougherty, Kimberly J.; Borgius, Lotta; Itohara, Shigeyoshi; Iwasato, Takuji; Kiehn, Ole

    2013-01-01

    Neural networks in the spinal cord known as central pattern generators produce the sequential activation of muscles needed for locomotion. The overall locomotor network architectures in limbed vertebrates have been much debated, and no consensus exists as to how they are structured. Here, we use optogenetics to dissect the excitatory and inhibitory neuronal populations and probe the organization of the mammalian central pattern generator. We find that locomotor-like rhythmic bursting can be induced unilaterally or independently in flexor or extensor networks. Furthermore, we show that individual flexor motor neuron pools can be recruited into bursting without any activity in other nearby flexor motor neuron pools. Our experiments differentiate among several proposed models for rhythm generation in the vertebrates and show that the basic structure underlying the locomotor network has a distributed organization with many intrinsically rhythmogenic modules. PMID:23798384

  12. Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings

    PubMed Central

    McGowan, C P; Skinner, J; Biewener, A A

    2008-01-01

    The aim of this study was to examine hind limb scaling of the musculoskeletal system in the Macropodoidea, the superfamily containing wallabies and kangaroos, to re-examine the effect of size on the locomotor mechanics and physiology of marsupial hopping. Morphometric musculoskeletal analyses were conducted of 15 species and skeletal specimens of 21 species spanning a size range from 0.8 to 80 kg that included representatives of 12 of the 16 extant genera of macropodoids. We found that unlike other groups, macropodoids are able to match force demands associated with increasing body size primarily through a combination of positive allometry in muscle area and muscle moment arms. Isometric scaling of primary hind limb bones suggests, however, that larger species experience relatively greater bone stresses. Muscle to tendon area ratios of the ankle extensors scale with strong positive allometry, indicating that peak tendon stresses also increase with increasing body size but to a lesser degree than previously reported. Consistent with previous morphological and experimental studies, large macropodoids are therefore better suited for elastic strain energy recovery but operate at lower safety factors, which likely poses an upper limit to body size. Scaling patterns for extant macropodoids suggest that extinct giant kangaroos (∼250 kg) were likely limited in locomotor capacity. PMID:18086129

  13. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.

    PubMed

    Houldin, Adina; Chua, Romeo; Carpenter, Mark G; Lam, Tania

    2012-08-01

    Several studies have demonstrated that motor adaptations to a novel task environment can be transferred between limbs. Such interlimb transfer of motor commands is consistent with the notion of centrally driven strategies that can be generalized across different frames of reference. So far, studies of interlimb transfer of locomotor adaptations have yielded disparate results. Here we sought to determine whether locomotor adaptations in one (trained) leg show transfer to the other (test) leg during a unipedal walking task. We hypothesized that adaptation in the test leg to a velocity-dependent force field previously experienced by the trained leg will be faster, as revealed by faster recovery of kinematic errors and earlier onset of aftereffects. Twenty able-bodied adults walked unipedally in the Lokomat robotic gait orthosis, which applied velocity-dependent resistance to the legs. The amount of resistance was scaled to 10% of each individual's maximum voluntary contraction of the hip flexors. Electromyography and kinematics of the lower limb were recorded. All subjects were right-leg dominant and were tested for transfer of motor adaptations from the right leg to the left leg. Catch trials, consisting of unexpected removal of resistance, were presented after the first step with resistance and after a period of adaptation to test for aftereffects. We found no significant differences in the sizes of the aftereffects between the two legs, except for peak hip flexion during swing, or in the rate at which peak hip flexion adapted during steps against resistance between the two legs. Our results indicate that interlimb transfer of these types of locomotor adaptation is not a robust phenomenon. These findings add to our current understanding of motor adaptations and provide further evidence that generalization of adaptations may be dependent on the movement task.

  14. Differences in mobility at the range edge of an expanding invasive population of Xenopus laevis in the west of France.

    PubMed

    Louppe, Vivien; Courant, Julien; Herrel, Anthony

    2017-01-15

    Theoretical models predict that spatial sorting at the range edge of expanding populations should favor individuals with increased mobility relative to individuals at the center of the range. Despite the fact that empirical evidence for the evolution of locomotor performance at the range edge is rare, data on cane toads support this model. However, whether this can be generalized to other species remains largely unknown. Here, we provide data on locomotor stamina and limb morphology in individuals from two sites: one from the center and one from the periphery of an expanding population of the clawed frog Xenopus laevis in France where it was introduced about 30 years ago. Additionally, we provide data on the morphology of frogs from two additional sites to test whether the observed differences can be generalized across the range of this species in France. Given the known sexual size dimorphism in this species, we also test for differences between the sexes in locomotor performance and morphology. Our results show significant sexual dimorphism in stamina and morphology, with males having longer legs and greater stamina than females. Moreover, in accordance with the predictions from theoretical models, individuals from the range edge had a greater stamina. This difference in locomotor performance is likely to be driven by the significantly longer limb segments observed in animals in both sites sampled in different areas along the range edge. Our data have implications for conservation because spatial sorting on the range edge may lead to an accelerated increase in the spread of this invasive species in France. © 2017. Published by The Company of Biologists Ltd.

  15. Enhanced locomotor adaptation aftereffect in the “broken escalator” phenomenon using anodal tDCS

    PubMed Central

    Kaski, D.; Quadir, S.; Patel, M.; Yousif, N.

    2012-01-01

    The everyday experience of stepping onto a stationary escalator causes a stumble, despite our full awareness that the escalator is broken. In the laboratory, this “broken escalator” phenomenon is reproduced when subjects step onto an obviously stationary platform (AFTER trials) that was previously experienced as moving (MOVING trials) and attests to a process of motor adaptation. Given the critical role of M1 in upper limb motor adaptation and the potential for transcranial direct current stimulation (tDCS) to increase cortical excitability, we hypothesized that anodal tDCS over leg M1 and premotor cortices would increase the size and duration of the locomotor aftereffect. Thirty healthy volunteers received either sham or real tDCS (anodal bihemispheric tDCS; 2 mA for 15 min at rest) to induce excitatory effects over the primary motor and premotor cortex before walking onto the moving platform. The real tDCS group, compared with sham, displayed larger trunk sway and increased gait velocity in the first AFTER trial and a persistence of the trunk sway aftereffect into the second AFTER trial. We also used transcranial magnetic stimulation to probe changes in cortical leg excitability using different electrode montages and eyeblink conditioning, before and after tDCS, as well as simulating the current flow of tDCS on the human brain using a computational model of these different tDCS montages. Our data show that anodal tDCS induces excitability changes in lower limb motor cortex with resultant enhancement of locomotor adaptation aftereffects. These findings might encourage the use of tDCS over leg motor and premotor regions to improve locomotor control in patients with neurological gait disorders. PMID:22323638

  16. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    PubMed Central

    2010-01-01

    Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32%. Enhancement observed in experimental data exceeded 32%. Enhancement within this symmetrical four-CPG neural architecture was more sensitive to relatively small interlimb coupling gains. Excitatory sensory feedback gains could produce greater output amplitudes, but larger gains were required for entrainment compared to inhibitory sensory feedback gains. Conclusions Based on these simulations, symmetrical interlimb coupling can account for much, but not all of the excitatory neural coupling between upper and lower limbs during rhythmic locomotor-like movements. PMID:21143960

  17. Mechanosensation is evolutionarily tuned to locomotor mechanics

    PubMed Central

    Aiello, Brett R.; Westneat, Mark W.; Hale, Melina E.

    2017-01-01

    The biomechanics of animal limbs has evolved to meet the functional demands for movement associated with different behaviors and environments. Effective movement relies not only on limb mechanics but also on appropriate mechanosensory feedback. By comparing sensory ability and mechanics within a phylogenetic framework, we show that peripheral mechanosensation has evolved with limb biomechanics, evolutionarily tuning the neuromechanical system to its functional demands. We examined sensory physiology and mechanics of the pectoral fins, forelimb homologs, in the fish family Labridae. Labrid fishes exhibit extraordinary morphological and behavioral diversity and use pectoral fin-based propulsion with fins ranging in shape from high aspect ratio (AR) wing-like fins to low AR paddle-like fins. Phylogenetic character analysis demonstrates that high AR fins evolved independently multiple times in this group. Four pairs of species were examined; each included a plesiomorphic low AR and a high AR species. Within each species pair, the high AR species demonstrated significantly stiffer fin rays in comparison with the low AR species. Afferent sensory nerve activity was recorded during fin ray bending. In all cases, afferents of stiffer fins were more sensitive at lower displacement amplitudes, demonstrating mechanosensory tuning to fin mechanics and a consistent pattern of correlated evolution. We suggest that these data provide a clear example of parallel evolution in a complex neuromechanical system, with a strong link between multiple phenotypic characters: pectoral fin shape, swimming behavior, fin ray stiffness, and mechanosensory sensitivity. PMID:28396411

  18. The evolution of vertical climbing in primates: evidence from reaction forces.

    PubMed

    Hanna, Jandy B; Granatosky, Michael C; Rana, Pooja; Schmitt, Daniel

    2017-09-01

    Vertical climbing is an essential behavior for arboreal animals, yet limb mechanics during climbing are poorly understood and rarely compared with those observed during horizontal walking. Primates commonly engage in both arboreal walking and vertical climbing, and this makes them an ideal taxa in which to compare these locomotor forms. Additionally, primates exhibit unusual limb mechanics compared with most other quadrupeds, with weight distribution biased towards the hindlimbs, a pattern that is argued to have evolved in response to the challenges of arboreal walking. Here we test an alternative hypothesis that functional differentiation between the limbs evolved initially as a response to climbing. Eight primate species were recorded locomoting on instrumented vertical and horizontal simulated arboreal runways. Forces along the axis of, and normal to, the support were recorded. During walking, all primates displayed forelimbs that were net braking, and hindlimbs that were net propulsive. In contrast, both limbs served a propulsive role during climbing. In all species, except the lorisids, the hindlimbs produced greater propulsive forces than the forelimbs during climbing. During climbing, the hindlimbs tends to support compressive loads, while the forelimb forces tend to be primarily tensile. This functional disparity appears to be body-size dependent. The tensile loading of the forelimbs versus the compressive loading of the hindlimbs observed during climbing may have important evolutionary implications for primates, and it may be the case that hindlimb-biased weight support exhibited during quadrupedal walking in primates may be derived from their basal condition of climbing thin branches. © 2017. Published by The Company of Biologists Ltd.

  19. Modelling and Control of Robotic Leg as Assistive Device

    NASA Astrophysics Data System (ADS)

    Jingye, Yee; Zain, Badrul Aisham bin Md

    2017-10-01

    The ageing population (people older than 60 years old) is expected to constitute 21.8% of global population by year 2050. When human ages, bodily function including locomotors will deteriorate. Besides, there are hundreds of thousands of victims who suffer from multiple health conditions worldwide that leads to gait impairment. A promising solution will be the lower limb powered-exoskeleton. This study is to be a start-up platform to design a lower limb powered-exoskeleton for a normal Malaysian male, by designing and simulating the dynamic model of a 2-link robotic leg to observe its behaviour under different input conditions with and without a PID controller. Simulink in MATLAB software is used as the dynamic modelling and simulation software for this study. It is observed that the 2-links robotic leg behaved differently under different input conditions, and perform the best when it is constrained and controlled by PID controller. Simulink model is formed as a foundation for the upcoming researches and can be modified and utilised by the future researchers.

  20. Integrated Locomotor Function Tests for Countermeasure Evaluation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the adaptive remodeling of the full-body gaze control systems following exposure to visual-vestibular conflict. Subjects walked on a treadmill before and after a 30- minute exposure to 0.5X minifying during which self-generated sinusoidal vertical head rotations were performed while seated. Following exposure to visual-vestibular conflict subjects showed a restriction in compensatory head movements, increased knee and ankle flexion after heel-strike and a decrease in the rate of body loading during the rapid weight transfer phase after the heel strike event. Taken together, results from both studies provide evidence that the full body contributes to gaze stabilization during locomotion, and that different functional elements are responsive to changes in visual task constraints and are subject to adaptive alterations following exposure to visual-vestibular conflict. This information provides the basis for the design of a new generation of integrative tests that incorporate the evaluation of multiple neural control systems relevant to astronaut operational performance.

  1. Numb rats walk - a behavioural and fMRI comparison of mild and moderate spinal cord injury.

    PubMed

    Hofstetter, Christoph P; Schweinhardt, Petra; Klason, Tomas; Olson, Lars; Spenger, Christian

    2003-12-01

    Assessment of sensory function serves as a sensitive measure for predicting the functional outcome following spinal cord injury in patients. However, little is known about loss and recovery of sensory function in rodent spinal cord injury models as most tests of sensory functions rely on behaviour and thus motor function. We used functional magnetic resonance imaging (fMRI) to investigate cortical and thalamic BOLD-signal changes in response to limb stimulation following mild or moderate thoracic spinal cord weight drop injury in Sprague-Dawley rats. While there was recovery of close to normal hindlimb motor function as determined by open field locomotor testing following both degrees of injury, recovery of hindlimb sensory function as determined by fMRI and hot plate testing was only seen following mild injury and not following moderate injury. Thus, moderate injury can lead to near normal hindlimb motor function in animals with major sensory deficits. Recovered fMRI signals following mild injury had a partly altered cortical distribution engaging also ipsilateral somatosensory cortex and the cingulate gyrus. Importantly, thoracic spinal cord injury also affected sensory representation of the upper nonaffected limbs. Thus, cortical and thalamic activation in response to forelimb stimulation was significantly increased 16 weeks after spinal cord injury compared to control animals. We conclude that both forelimb and hindlimb cortical sensory representation is altered following thoracic spinal cord injury. Furthermore tests of sensory function that are independent of motor behaviour are needed in rodent spinal cord injury research.

  2. DEVELOPMENT OF AN INFLIGHT COUNTERMEASURE TO MITIGATE POSTFLIGHT GAIT DYSFUNCTION

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Cohen, H. S.; Richards, J. T.; Miller, C. A.

    2005-01-01

    Following spaceflight crewmembers experience gait and postural instabilities due to inflight adaptive alterations in sensorimotor function. These changes can pose a risk to crew safety if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate postflight locomotor disturbances. Therefore, the goal of this study is to develop an inflight training regimen that facilitates the recovery of locomotor function after long-duration spaceflight. The countermeasure we are developing is based on the concept of variable practice. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. This countermeasure is built around current ISS treadmill exercise activities. Crewmembers will conduct their nominal inflight treadmill exercise while being exposed to variations in visual flow patterns. These variations will challenge the postural and locomotor systems repeatedly, thereby promoting adaptive reorganization in locomotor behavior. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, Le., the subject learns response generalizability or the ability to "learn to learn" under a variety of environmental constraints. We anticipate that this training will accelerate recovery of postural and locomotor function during readaptation to gravitational environments following spaceflight facilitating neural adaptation to unit (Earth) and partial (Mars) gravity after long-duration spaceflight. The study calls for one group of subjects to perform the inflight treadmill training regimen while a control group of subjects performs only the nominal exercise procedures. Locomotor function in both groups is assessed before and after spaceflight using two tests of gait function: The Integrated Treadmill Locomotion Test (ITLT) and the Functional Mobility Test (FMT). The ITLT characterizes alterations in the integrated function of multiple sensorimotor subsystems responsible for the control of locomotion. This test calls for subjects to walk on a motorized treadmill while we assess changes in dynamic postural stability, head-trunk coordination, short-latency head stabilization responses, dynamic visual acuity, lower limb coordination strategies and gait cycle timing. To make these assessments we measure the following parameters while subjects walk on the treadmill: 1) full body 3-dimensional kinematics using a motion capture system (Motion Analysis Corp., Santa Rosa, CA); 2) the shock-wave transmitted from heel-strike to the head using triaxial accelerometers placed on the tibia and head (Entran, Fairfield, NJ); 3) vertical forces using an instrumented treadmill (Kistler Instrument Corp., Amherst, NY); 4) Dynamic visual acuity using Landolt Cs presented on a laptop computer located 4m from the eyes and 5) Gait cycle timing using foot-switches (Motion Lab Systems, Inc., Baton Rouge, LA) attached to the plantar surface of each shoe at the heel and toe. The FMT evaluates a subject's ability to perform challenging locomotor maneuvers similar to those encountered during an egress from a space vehicle. Subjects step over and duck under obstacles along with negotiating a series of pylons set up on a base of 10 cm thick medium density foam. The dependent measures for the FMT are time to complete the course and the number of obstacles touched. To date, we have collected pre and postflight locomotion data from Expeditions 5-9 who will serve as part of the control group for this study. Preliminary results comparing the recovery rates in gait control sub-systems obtained from the ITLT and FMT performance showed two recovery patterns: 1) a concordant recovery trend between gait control parameters and FMT performance indicating a restitution pattern of recovery and 2) gait controecovery that lagged recovery in FMT performance suggesting that improvement in locomotor function was attained through a pattern of substitution. These data suggest that recovery of postflight locomotor function may occur through adaptive mechanisms that lead to either restitution or substitution of function. Understanding the modes of postflight readaptation has implications for countermeasure development and testing and in astronaut postflight rehabilitation.

  3. Development of an Inflight Countermeasure to Mitigate Postflight Gait Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.

    2005-01-01

    Following spaceflight crewmembers experience gait and postural instabilities due to inflight adaptive alterations in sensorimotor function. These changes can pose a risk to crew safety if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate postflight locomotor disturbances. Therefore, the goal of this study is to develop an inflight training regimen that facilitates the recovery of locomotor function after long-duration spaceflight. The countermeasure we are developing is based on the concept of variable practice. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. This countermeasure is built around current ISS treadmill exercise activities. Crewmembers will conduct their nominal inflight treadmill exercise while being exposed to variations in visual flow patterns. These variations will challenge the postural and locomotor systems repeatedly, thereby promoting adaptive reorganization in locomotor behavior. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, Le., the subject learns response generalizability or the ability to "learn to learn" under a variety of environmental constraints. We anticipate that this training will accelerate recovery of postural and locomotor function during readaptation to gravitational environments following spaceflight facilitating neural adaptation to unit (Earth) and partial (Mars) gravity after long-duration spaceflight. The study calls for one group of subjects to perform the inflight treadmill training regimen while a control group of subjects performs only the nominal exercise procedures. Locomotor function in both groups is assessed before and after spaceflight using two tests of gait function: The Integrated Treadmill Locomotion Test (ITLT) and the Functional Mobility Test (FMT). The ITLT characterizes alterations in the integrated function of multiple sensorimotor subsystems responsible for the control of locomotion. This test calls for subjects to walk on a motorized treadmill while we assess changes in dynamic postural stability, head-trunk coordination, short-latency head stabilization responses, dynamic visual acuity, lower limb coordination strategies and gait cycle timing. To make these assessments we measure the following parameters while subjects walk on the treadmill: 1) full body 3-dimensional kinematics using a motion capture system (Motion Analysis Corp., Santa Rosa, CA); 2) the shock-wave transmitted from heel-strike to the head using triaxial accelerometers placed on the tibia and head (Entran, Fairfield, NJ); 3) vertical forces using an instumented treadmill (Kistler Instrument Corp., Amherst, NY); 4) Dynamic visual acuity using Landolt Cs presented on a laptop computer located 4m from the eyes and 5) Gait cycle timing using foot-switches (Motion Lab Systems, Inc., Baton Rouge, LA) attached to the plantar surface of each shoe at the heel and toe. The FMT evaluates s. subject's ability to perform challenging locomotor maneuvers similar to those encountered during an egress from a space vehicle. Subjects step over and duck under obstacles along with negotiating a series of pylons set up on a base of 10 cm thick medium density foam. The dependent measures for the FMT are time to complete the course and the number of obstacles touched. To date, we have collected pre and postflight locomotion data from Expeditions 5-9 who will serve as part of the control group for this study. Preliminary results comparing the recovery rates in gait control sub-systems obtained from the ITLT and FMT performance showed two recovery patterns: 1) a concordant recovery trend between gait control parameters and FMT performance indicating a restitution pattern of recovery and 2) gait controecovery that lagged recovery in FMT performance suggesting that improvement in locomotor function was attained through a pattern of substitution. These data suggest that recovery of postflight locomotor function may occur through adaptive mechanisms that lead to either restitution or substitution of function. Understanding the modes of postflight readaptation has implications for countermeasure development and testing and in astronaut postflight rehabilitation.

  4. Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris)

    PubMed Central

    Williams, S. B.; Usherwood, J. R.; Jespers, K.; Channon, A. J.; Wilson, A. M.

    2009-01-01

    Summary Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleration in galloping quadrupeds. In addition, we considered what, if any, biomechanical strategies exist to enable effective acceleration to be achieved. Simultaneous kinematic and kinetic data were collected for racing greyhounds undergoing a range of low to high accelerations. From these data, joint moments and joint powers were calculated for individual hindlimb joints. In addition, the mean effective mechanical advantage (EMA) of the limb and the `gear ratio' of each joint throughout stance were calculated. Greatest increases in joint work and power with acceleration appeared at the hip and hock joints, particularly in the lead limb. Largest increases in absolute positive joint work occurred at the hip, consistent with the hypothesis that quadrupeds power locomotion by torque about the hip. In addition, hindlimb EMA decreased substantially with increased acceleration – a potential strategy to increase stance time and thus ground impulses for a given peak force. This mechanism may also increase the mechanical advantage for applying the horizontal forces necessary for acceleration. PMID:19181903

  5. Reactions of the rat musculoskeletal system to compressive spinal cord injury (SCI) and whole body vibration (WBV) therapy

    PubMed Central

    Schwarz, A.; Pick, C.; Harrach, R.; Stein, G.; Bendella, H.; Ozsoy, O.; Ozsoy, U.; Schoenau, E.; Jaminet, P.; Sarikcioglu, L.; Dunlop, S.; Angelov, D.N.

    2015-01-01

    Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system. PMID:26032204

  6. Reactions of the rat musculoskeletal system to compressive spinal cord injury (SCI) and whole body vibration (WBV) therapy.

    PubMed

    Schwarz, A; Pick, C; Harrach, R; Stein, G; Bendella, H; Ozsoy, O; Ozsoy, U; Schoenau, E; Jaminet, P; Sarikcioglu, L; Dunlop, S; Angelov, D N

    2015-06-01

    Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system.

  7. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study.

    PubMed

    Del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-01-01

    Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance.

  8. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study

    PubMed Central

    del-Ama, Antonio J.; Gil-Agudo, Ángel; Pons, José L.; Moreno, Juan C.

    2014-01-01

    Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance. PMID:24860478

  9. A simplified method of walking track analysis to assess short-term locomotor recovery after acute spinal cord injury caused by thoracolumbar intervertebral disc extrusion in dogs.

    PubMed

    Song, R B; Oldach, M S; Basso, D M; da Costa, R C; Fisher, L C; Mo, X; Moore, S A

    2016-04-01

    The purpose of this study was to evaluate a simplified method of walking track analysis to assess treatment outcome in canine spinal cord injury. Measurements of stride length (SL) and base of support (BS) were made using a 'finger painting' technique for footprint analysis in all limbs of 20 normal dogs and 27 dogs with 28 episodes of acute thoracolumbar spinal cord injury (SCI) caused by spontaneous intervertebral disc extrusion. Measurements were determined at three separate time points in normal dogs and on days 3, 10 and 30 following decompressive surgery in dogs with SCI. Values for SL, BS and coefficient of variance (COV) for each parameter were compared between groups at each time point. Mean SL was significantly shorter in all four limbs of SCI-affected dogs at days 3, 10, and 30 compared to normal dogs. SL gradually increased toward normal in the 30 days following surgery. As measured by this technique, the COV-SL was significantly higher in SCI-affected dogs than normal dogs in both thoracic limbs (TL) and pelvic limbs (PL) only at day 3 after surgery. BS-TL was significantly wider in SCI-affected dogs at days 3, 10 and 30 following surgery compared to normal dogs. These findings support the use of footprint parameters to compare locomotor differences between normal and SCI-affected dogs, and to assess recovery from SCI. Additionally, our results underscore important changes in TL locomotion in thoracolumbar SCI-affected dogs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Spinal and pontine relay pathways mediating respiratory rhythm entrainment by limb proprioceptive inputs in the neonatal rat.

    PubMed

    Giraudin, Aurore; Le Bon-Jégo, Morgane; Cabirol, Marie-Jeanne; Simmers, John; Morin, Didier

    2012-08-22

    The coordination of locomotion and respiration is widespread among mammals, although the underlying neural mechanisms are still only partially understood. It was previously found in neonatal rat that cyclic electrical stimulation of spinal cervical and lumbar dorsal roots (DRs) can fully entrain (1:1 coupling) spontaneous respiratory activity expressed by the isolated brainstem/spinal cord. Here, we used a variety of preparations to determine the type of spinal sensory inputs responsible for this respiratory rhythm entrainment, and to establish the extent to which limb movement-activated feedback influences the medullary respiratory networks via direct or relayed ascending pathways. During in vivo overground locomotion, respiratory rhythm slowed and became coupled 1:1 with locomotion. In hindlimb-attached semi-isolated preparations, passive flexion-extension movements applied to a single hindlimb led to entrainment of fictive respiratory rhythmicity recorded in phrenic motoneurons, indicating that the recruitment of limb proprioceptive afferents could participate in the locomotor-respiratory coupling. Furthermore, in correspondence with the regionalization of spinal locomotor rhythm-generating circuitry, the stimulation of DRs at different segmental levels in isolated preparations revealed that cervical and lumbosacral proprioceptive inputs are more effective in this entraining influence than thoracic afferent pathways. Finally, blocking spinal synaptic transmission and using a combination of electrophysiology, calcium imaging and specific brainstem lesioning indicated that the ascending entraining signals from the cervical or lumbar limb afferents are transmitted across first-order synapses, probably monosynaptic, in the spinal cord. They are then conveyed to the brainstem respiratory centers via a brainstem pontine relay located in the parabrachial/Kölliker-Fuse nuclear complex.

  11. CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet

    USDA-ARS?s Scientific Manuscript database

    Introduction: The success of obesity therapy is dependent on the genetic background of the patient. Circadian Locomotor Output Cycles Kaput (CLOCK), one of the transcription factors from the positive limb of the molecular clock, is involved in metabolic alterations. Objective: To investigate whethe...

  12. Locomotor Adaptation to an Asymmetric Force on the Human Pelvis Directed Along the Right Leg.

    PubMed

    Vashista, Vineet; Martelli, Dario; Agrawal, Sunil

    2015-09-11

    In this work, we study locomotor adaptation in healthy adults when an asymmetric force vector is applied to the pelvis directed along the right leg. A cable-driven Active Tethered Pelvic Assist Device (A-TPAD) is used to apply an external force on the pelvis, specific to a subject's gait pattern. The force vector is intended to provide external weight bearing during walking and modify the durations of limb supports. The motivation is to use this paradigm to improve weight bearing and stance phase symmetry in individuals with hemiparesis. An experiment with nine healthy subjects was conducted. The results show significant changes in the gait kinematics and kinetics while the healthy subjects developed temporal and spatial asymmetry in gait pattern in response to the applied force vector. This was followed by aftereffects once the applied force vector was removed. The adaptation to the applied force resulted in asymmetry in stance phase timing and lower limb muscle activity. We believe this paradigm, when extended to individuals with hemiparesis, can show improvements in weight bearing capability with positive effects on gait symmetry and walking speed.

  13. Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control

    PubMed Central

    Biewener, Andrew A.; Daley, Monica A.

    2009-01-01

    Summary By integrating studies of muscle function with analysis of whole body and limb dynamics, broader appreciation of neuromuscular function can be achieved. Ultimately, such studies need to address non-steady locomotor behaviors relevant to animals in their natural environments. When animals move slowly they likely rely on voluntary coordination of movement involving higher brain centers. However, when moving fast, their movements depend more strongly on responses controlled at more local levels. Our focus here is on control of fast-running locomotion. A key observation emerging from studies of steady level locomotion is that simple spring-mass dynamics, which help to economize energy expenditure, also apply to stabilization of unsteady running. Spring-mass dynamics apply to conditions that involve lateral impulsive perturbations, sudden changes in terrain height, and sudden changes in substrate stiffness or damping. Experimental investigation of unsteady locomotion is challenging, however, due to the variability inherent in such behaviors. Another emerging principle is that initial conditions associated with postural changes following a perturbation define different context-dependent stabilization responses. Distinct stabilization modes following a perturbation likely result from proximo-distal differences in limb muscle architecture, function and control strategy. Proximal muscles may be less sensitive to sudden perturbations and appear to operate, in such circumstances, under feed-forward control. In contrast, multiarticular distal muscles operate, via their tendons, to distribute energy among limb joints in a manner that also depends on the initial conditions of limb contact with the ground. Intrinsic properties of these distal muscle–tendon elements, in combination with limb and body dynamics, appear to provide rapid initial stabilizing mechanisms that are often consistent with spring-mass dynamics. These intrinsic mechanisms likely help to simplify the neural control task, in addition to compensating for delays inherent to subsequent force- and length-dependent neural feedback. Future work will benefit from integrative biomechanical approaches that employ a combination of modeling and experimental techniques to understand how the elegant interplay of intrinsic muscle properties, body dynamics and neural control allows animals to achieve stability and agility over a variety of conditions. PMID:17704070

  14. Early manifestation of arm-leg coordination during stepping on a surface in human neonates.

    PubMed

    La Scaleia, Valentina; Ivanenko, Y; Fabiano, A; Sylos-Labini, F; Cappellini, G; Picone, S; Paolillo, P; Di Paolo, A; Lacquaniti, F

    2018-04-01

    The accomplishment of mature locomotor movements relies upon the integrated coordination of the lower and upper limbs and the trunk. Human adults normally swing their arms and a quadrupedal limb coordination persists during bipedal walking despite a strong corticospinal control of the upper extremities that allows to uncouple this connection during voluntary activities. Here we investigated arm-leg coordination during stepping responses on a surface in human neonates. In eight neonates, we found the overt presence of alternating arm-leg oscillations, the arms moving up and down in alternation with ipsilateral lower limb movements. These neonates moved the diagonal limbs together, and the peak of the arm-to-trunk angle (i.e., maximum vertical excursion of the arm) occurred around the end of the ipsilateral stance phase, as it occurs during typical adult walking. Although episodes of arm-leg coordination were sporadic in our sample of neonates, their presence provides significant evidence for a neural coupling between the upper and lower limbs during early ontogenesis of locomotion in humans.

  15. Task-Specific and Functional Effects of Speed-Focused Elliptical or Motor-Assisted Cycle Training in Children With Bilateral Cerebral Palsy: Randomized Clinical Trial.

    PubMed

    Damiano, Diane L; Stanley, Christopher J; Ohlrich, Laurie; Alter, Katharine E

    2017-08-01

    Locomotor training using treadmills or robotic devices is commonly utilized to improve gait in cerebral palsy (CP); however, effects are inconsistent and fail to exceed those of equally intense alternatives. Possible limitations of existing devices include fixed nonvariable rhythm and too much limb or body weight assistance. To quantify and compare effectiveness of a motor-assisted cycle and a novel alternative, an elliptical, in CP to improve interlimb reciprocal coordination through intensive speed-focused leg training. A total of 27 children with bilateral CP, 5 to 17 years old, were randomized to 12 weeks of 20 minutes, 5 days per week home-based training (elliptical = 14; cycle = 13) at a minimum of 40 revolutions per minute, with resistance added when speed target was achieved. Primary outcomes were self-selected and fastest voluntary cadence on the devices and gait speed. Secondary outcomes included knee muscle strength, and selective control and functional mobility measures. Cadence on trained but not nontrained devices increased, demonstrating task specificity of training and increased exercise capability. Mean gait speed did not increase in either group, nor did parent-reported functional mobility. Knee extensor strength increased in both. An interaction between group and time was seen in selective control with scores slightly increasing for the elliptical and decreasing for the cycle, possibly related to tighter limb coupling with cycling. Task-specific effects were similarly positive across groups, but no transfer was seen to gait or function. Training dose was low (≤20 hours) compared with intensive upper-limb training recommendations and may be insufficient to produce appreciable clinical change.

  16. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse.

    PubMed

    Jean-Xavier, Céline; Perreault, Marie-Claude

    2018-01-01

    The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor.

  17. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse

    PubMed Central

    Jean-Xavier, Céline; Perreault, Marie-Claude

    2018-01-01

    The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor. PMID:29479302

  18. Comparative anatomy of the arm muscles of the Japanese monkey (Macaca fuscata) with some comments on locomotor mechanics and behavior.

    PubMed

    Aversi-Ferreira, Tales Alexandre; Aversi-Ferreira, Roqueline A G M F; Bretas, Rafael Vieira; Nishimaru, Hiroshi; Nishijo, Hisao

    2016-08-01

    The anatomical literature on the genus Macaca has focused mainly on the rhesus monkey. However, some aspects in the positional behaviors of the Japanese monkey may be different from those in rhesus monkey, suggesting that the anatomical details of these species are divergent. Four thoracic limbs of Macaca fuscata adults were dissected. The arm muscles in Japanese macaques are more similar to rhesus monkeys and Papio; these characteristics are closer to those of bearded capuchins than apes, indicating more proximity of this genus to New World primates. The anatomical features observed favor quadrupedal locomotor behaviors on the ground and in arboreal environments. Japanese monkeys, rhesus monkeys, and bearded capuchins, which share more primitive characteristics in their arm muscles, present features that favor both arboreal and quadrupedal locomotor behaviors, whereas apes, mainly Pan and Gorilla, which spend more time on the ground, present more quadrupedal specializations. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Recovery of gait and other motor functions after stroke: novel physical and pharmacological treatment strategies.

    PubMed

    Hesse, S

    2004-01-01

    The gait-lab at Klinik Berlin developed and evaluated novel physical and pharmacological strategies promoting the repetitive practise of hemiparetic gait in line with the slogan: who wants to relearn walking, has to walk. Areas of research are treadmill training with partial body weight support, enabling wheelchair-bound subjects to repetitively practice gait, the electromechanical gait trainer GT I reducing the effort on the therapists as compared to the manually assisted locomotor therapy, and the future HapticWalker which will allow the additional practise of stair climbing up and down and of perturbations. Further means to promote gait practice after stroke was the application of botulinum toxin A for the treatment of lower limb spasticity and the early use of walking aids. New areas of research are also the study of D-Amphetamine, which failed to promote motor recovery in acute stroke patients as compared to placebo, and the development of a computerized arm trainer, Bi-Manu-T rack, for the bilateral treatment of patients with a severe upper limb paresis.

  20. Scaling and mechanics of carnivoran footpads reveal the principles of footpad design

    PubMed Central

    Chi, Kai-Jung; Louise Roth, V.

    2010-01-01

    In most mammals, footpads are what first strike ground with each stride. Their mechanical properties therefore inevitably affect functioning of the legs; yet interspecific studies of the scaling of locomotor mechanics have all but neglected the feet and their soft tissues. Here we determine how contact area and stiffness of footpads in digitigrade carnivorans scale with body mass in order to show how footpads’ mechanical properties and size covary to maintain their functional integrity. As body mass increases across several orders of magnitude, we find the following: (i) foot contact area does not keep pace with increasing body mass; therefore pressure increases, placing footpad tissue of larger animals potentially at greater risk of damage; (ii) but stiffness of the pads also increases, so the tissues of larger animals must experience less strain; and (iii) total energy stored in hindpads increases slightly more than that in the forepads, allowing additional elastic energy to be returned for greater propulsive efficiency. Moreover, pad stiffness appears to be tuned across the size range to maintain loading regimes in the limbs that are favourable for long-bone remodelling. Thus, the structural properties of footpads, unlike other biological support-structures, scale interspecifically through changes in both geometry and material properties, rather than geometric proportions alone, and do so with consequences for both maintenance and operation of other components of the locomotor system. PMID:20181559

  1. Whole-bone scaling of the avian pelvic limb.

    PubMed

    Doube, Michael; Yen, Stephanie C W; Kłosowski, Michał M; Farke, Andrew A; Hutchinson, John R; Shefelbine, Sandra J

    2012-07-01

    Birds form the largest extant group of bipedal animals and occupy a broad range of body masses, from grams to hundreds of kilograms. Additionally, birds occupy distinct niches of locomotor behaviour, from totally flightless strong runners such as the ratites (moa, kiwi, ostrich) to birds that may walk, dabble on water or fly. We apply a whole-bone approach to investigate allometric scaling trends in the pelvic limb bones (femur, tibiotarsus, tarsometatarsus) from extant and recently extinct birds of greatly different size, and compare scaling between birds in four locomotor groups; flightless, burst-flying, dabbling and flying. We also compare scaling of birds' femoral cross-sectional properties to data previously collected from cats. Scaling exponents were not significantly different between the different locomotor style groups, but elevations of the scaling relationships revealed that dabblers (ducks, geese, swans) have particularly short and slender femora compared with other birds of similar body mass. In common with cats, but less pronounced in birds, the proximal and distal extrema of the bones scaled more strongly than the diaphysis, and in larger birds the diaphysis occupied a smaller proportion of bone length than in smaller birds. Cats and birds have similar femoral cross-sectional area (CSA) for the same body mass, yet birds' bone material is located further from the bone's long axis, leading to higher second and polar moments of area and a greater inferred resistance to bending and twisting. The discrepancy in the relationship between outer diameter to CSA may underlie birds' reputation for having 'light' bones. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  2. Whole-bone scaling of the avian pelvic limb

    PubMed Central

    Doube, Michael; Yen, Stephanie C W; Kłosowski, Michał M; Farke, Andrew A; Hutchinson, John R; Shefelbine, Sandra J

    2012-01-01

    Birds form the largest extant group of bipedal animals and occupy a broad range of body masses, from grams to hundreds of kilograms. Additionally, birds occupy distinct niches of locomotor behaviour, from totally flightless strong runners such as the ratites (moa, kiwi, ostrich) to birds that may walk, dabble on water or fly. We apply a whole-bone approach to investigate allometric scaling trends in the pelvic limb bones (femur, tibiotarsus, tarsometatarsus) from extant and recently extinct birds of greatly different size, and compare scaling between birds in four locomotor groups; flightless, burst-flying, dabbling and flying. We also compare scaling of birds’ femoral cross-sectional properties to data previously collected from cats. Scaling exponents were not significantly different between the different locomotor style groups, but elevations of the scaling relationships revealed that dabblers (ducks, geese, swans) have particularly short and slender femora compared with other birds of similar body mass. In common with cats, but less pronounced in birds, the proximal and distal extrema of the bones scaled more strongly than the diaphysis, and in larger birds the diaphysis occupied a smaller proportion of bone length than in smaller birds. Cats and birds have similar femoral cross-sectional area (CSA) for the same body mass, yet birds’ bone material is located further from the bone’s long axis, leading to higher second and polar moments of area and a greater inferred resistance to bending and twisting. The discrepancy in the relationship between outer diameter to CSA may underlie birds’ reputation for having ‘light’ bones. PMID:22606941

  3. Upslope treadmill exercise enhances motor axon regeneration but not functional recovery following peripheral nerve injury

    PubMed Central

    Cannoy, Jill; Crowley, Sam; Jarratt, Allen; Werts, Kelly LeFevere; Osborne, Krista; Park, Sohee

    2016-01-01

    Following peripheral nerve injury, moderate daily exercise conducted on a level treadmill results in enhanced axon regeneration and modest improvements in functional recovery. If the exercise is conducted on an upwardly inclined treadmill, even more motor axons regenerate successfully and reinnervate muscle targets. Whether this increased motor axon regeneration also results in greater improvement in functional recovery from sciatic nerve injury was studied. Axon regeneration and muscle reinnervation were studied in Lewis rats over an 11 wk postinjury period using stimulus evoked electromyographic (EMG) responses in the soleus muscle of awake animals. Motor axon regeneration and muscle reinnervation were enhanced in slope-trained rats. Direct muscle (M) responses reappeared faster in slope-trained animals than in other groups and ultimately were larger than untreated animals. The amplitude of monosynaptic H reflexes recorded from slope-trained rats remained significantly smaller than all other groups of animals for the duration of the study. The restoration of the amplitude and pattern of locomotor EMG activity in soleus and tibialis anterior and of hindblimb kinematics was studied during treadmill walking on different slopes. Slope-trained rats did not recover the ability to modulate the intensity of locomotor EMG activity with slope. Patterned EMG activity in flexor and extensor muscles was not noted in slope-trained rats. Neither hindblimb length nor limb orientation during level, upslope, or downslope walking was restored in slope-trained rats. Slope training enhanced motor axon regeneration but did not improve functional recovery following sciatic nerve transection and repair. PMID:27466130

  4. The effects of a skeletal muscle titin mutation on walking in mice.

    PubMed

    Pace, Cinnamon M; Mortimer, Sarah; Monroy, Jenna A; Nishikawa, Kiisa C

    2017-01-01

    Titin contributes to sarcomere assembly, muscle signaling, and mechanical properties of muscle. The mdm mouse exhibits a small deletion in the titin gene resulting in dystrophic mutants and phenotypically normal heterozygotes. We examined the effects of this mutation on locomotion to assess how, and if, changes to muscle phenotype explain observed locomotor differences. Mutant mice are much smaller in size than their siblings and gait abnormalities may be driven by differences in limb proportions and/or by changes to muscle phenotype caused by the titin mutation. We quantified differences in walking gait among mdm genotypes and also determined whether genotypes vary in limb morphometrics. Mice were filmed walking, and kinematic and morphological variables were measured. Mutant mice had a smaller range of motion at the ankle, shorter stride lengths, and shorter stance duration, but walked at the same relative speeds as the other genotypes. Although phenotypically similar to wildtype mice, heterozygous mice frequently exhibited intermediate gait mechanics. Morphological differences among genotypes in hindlimb proportions were small and do not explain the locomotor differences. We suggest that differences in locomotion among mdm genotypes are due to changes in muscle phenotype caused by the titin mutation.

  5. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds.

    PubMed

    Kilbourne, Brandon M

    2014-01-01

    In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses - thigh, shank, pes, tarsometatarsal segment, and digits - from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel's λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel's λ) and increasing or decreasing rates of trait change over time (i.e., Pagel's δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may underlie scale effects in stride frequency and length between smaller and larger neognaths. While variation in linear proportions of limbs appear to be governed by developmental mechanisms, variation in mass proportions does not appear to be constrained so.

  6. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds

    PubMed Central

    2014-01-01

    Introduction In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses – thigh, shank, pes, tarsometatarsal segment, and digits – from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel’s λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. Results All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel’s λ) and increasing or decreasing rates of trait change over time (i.e., Pagel’s δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. Conclusions The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may underlie scale effects in stride frequency and length between smaller and larger neognaths. While variation in linear proportions of limbs appear to be governed by developmental mechanisms, variation in mass proportions does not appear to be constrained so. PMID:24876886

  7. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation

    PubMed Central

    Mukherjee, Mukul; Eikema, Diderik Jan A.; Chien, Jung Hung; Myers, Sara A.; Scott-Pandorf, Melissa; Bloomberg, Jacob J.; Stergiou, Nicholas

    2015-01-01

    Patterns of human locomotion are highly adaptive and flexible, and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 minutes of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant groups differences were observed overground. Step and swing time asymmetries learned on the split belt treadmill, were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after-effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern. PMID:26169104

  8. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.

    PubMed

    Mukherjee, Mukul; Eikema, Diderik Jan A; Chien, Jung Hung; Myers, Sara A; Scott-Pandorf, Melissa; Bloomberg, Jacob J; Stergiou, Nicholas

    2015-10-01

    Patterns of human locomotion are highly adaptive and flexible and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 min of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated-measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant group differences were observed overground. Step and swing time asymmetries learned on the split-belt treadmill were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern.

  9. Targeting L-Selectin to Improve Neurologic and Urologic Function After Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    demonstrated locomotor recovery in mice receiving 40mg/kg DFA up to 3 hours following spinal cord injury -We demonstrated improved locomotor recovery...health, as evaluated by body weight -We identified no added locomotor recovery due to multiple, successive doses of DFA. Moreover, additional doses...bladder function Significance: We have identified robust locomotor recovery in both mild and severe spinal cord injured mice that received DFA up

  10. Clavicular curvature and locomotion in anthropoid primates: A 3D geometric morphometric analysis.

    PubMed

    Squyres, Nicole; DeLeon, Valerie Burke

    2015-08-04

    As a component of the primate shoulder, the clavicle is expected to reflect locomotor adaptations. Whereas previous work has generally focused on clavicular length and torsion, the shape of clavicular curvature may better distinguish taxa and provide additional information about upper limb use in locomotion. This study uses three-dimensional geometric morphometrics to analyze shape differences in the curvatures of the clavicle in different locomotor groups of anthropoid primates. Sliding semi-landmarks were placed on clavicles of 10 Anthropoid primate species (total n = 85) that display a range of locomotor behaviors. Landmarks (k = 39) were chosen to capture the overall curvature of the clavicle in three dimensions. The degree of ventral curvature in the clavicle represents a gradient from most-curved in suspensory genera (e.g., Ateles, Hylobates, and Pongo) to least-curved in genera that are rarely suspensory (e.g., Papio and Gorilla). This curvature may allow an increased range of craniodorsal movement without the clavicle impinging on the thoracic outlet. An inferior curvature of the medial clavicle is found in hominoids and brachiators. This curvature could help stabilize the shoulder and prevent superior dislocation of the clavicle in suspension. Finally, a superior curvature in the lateral part of the clavicle, most pronounced in quadrupedal monkeys, may be related to the relative position of the scapula and sternum. Patterns of clavicular curvature in anthropoid primates reflect locomotor behavior and successfully distinguished among taxonomic and locomotor groups. In the future, this method could be used to assess locomotor behavior in fossil primates. Am J Phys Anthropol, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics.

    PubMed

    Rubenson, Jonas; Lloyd, David G; Besier, Thor F; Heliams, Denham B; Fournier, Paul A

    2007-07-01

    Although locomotor kinematics in walking and running birds have been examined in studies exploring many biological aspects of bipedalism, these studies have been largely limited to two-dimensional analyses. Incorporating a five-segment, 17 degree-of-freedom (d.f.) kinematic model of the ostrich hind limb developed from anatomical specimens, we quantified the three-dimensional (3-D) joint axis alignment and joint kinematics during running (at approximately 3.3 m s(-1)) in the largest avian biped, the ostrich. Our analysis revealed that the majority of the segment motion during running in the ostrich occurs in flexion/extension. Importantly, however, the alignment of the average flexion/extension helical axes of the knee and ankle are rotated externally to the direction of travel (37 degrees and 21 degrees , respectively) so that pure flexion and extension at the knee will act to adduct and adbuct the tibiotarsus relative to the plane of movement, and pure flexion and extension at the ankle will act to abduct and adduct the tarsometatarsus relative to the plane of movement. This feature of the limb anatomy appears to provide the major lateral (non-sagittal) displacement of the lower limb necessary for steering the swinging limb clear of the stance limb and replaces what would otherwise require greater adduction/abduction and/or internal/external rotation, allowing for less complex joints, musculoskeletal geometry and neuromuscular control. Significant rotation about the joints' non-flexion/extension axes nevertheless occurs over the running stride. In particular, hip abduction and knee internal/external and varus/valgus motion may further facilitate limb clearance during the swing phase, and substantial non-flexion/extension movement at the knee is also observed during stance. Measurement of 3-D segment and joint motion in birds will be aided by the use of functionally determined axes of rotation rather than assumed axes, proving important when interpreting the biomechanics and motor control of avian bipedalism.

  12. A novel, bounding gait in swimming turtles: implications for aquatic locomotor diversity.

    PubMed

    Mayerl, Christopher J; Blob, Richard W

    2017-10-15

    Turtles are an iconic lineage in studies of animal locomotion, typifying the use of slow, alternating footfalls during walking. Alternating movements of contralateral limbs are also typical during swimming gaits for most freshwater turtles. Here, we report a novel gait in turtles, in which the pleurodire Emydura subglobosa swims using a bounding gait that coordinates bilateral protraction of both forelimbs with bilateral retraction of both hindlimbs. Use of this bounding gait is correlated with increased limb excursion and decreased stride frequency, but not increased velocity when compared with standard swimming strokes. Bounding by E. subglobosa provides a second example of a non-mammalian lineage that can use bounding gaits, and may give insight into the evolution of aquatic flapping. Parallels in limb muscle fascicle properties between bounding turtles and crocodylids suggest a possible musculoskeletal mechanism underlying the use of bounding gaits in particular lineages. © 2017. Published by The Company of Biologists Ltd.

  13. Decrease of spasticity after hybrid assistive limb® training for a patient with C4 quadriplegia due to chronic SCI.

    PubMed

    Ikumi, Akira; Kubota, Shigeki; Shimizu, Yukiyo; Kadone, Hideki; Marushima, Aiki; Ueno, Tomoyuki; Kawamoto, Hiroaki; Hada, Yasushi; Matsumura, Akira; Sankai, Yoshiyuki; Yamazaki, Masashi

    2017-09-01

    Recently, locomotor training with robotic assistance has been found effective in treating spinal cord injury (SCI). Our case report examined locomotor training using the robotic suit hybrid assistive limb (HAL) in a patient with complete C4 quadriplegia due to chronic SCI. This is the first report examining HAL in complete C4 quadriplegia. The patient was a 19-year-old man who dislocated C3/4 during judo 4 years previously. Following the injury, he underwent C3/4 posterior spinal fusion but remained paralyzed despite rehabilitation. There was muscle atrophy under C5 level and no sensation around the anus, but partial sensation of pressure remained in the limbs. The American Spinal Injury Association impairment scale was Grade A (complete motor C4 lesion). HAL training was administered in 10 sessions (twice per week). The training sessions consisted of treadmill walking with HAL. For safety, 2 physicians and 1 therapist supported the subject for balance and weight-bearing. The device's cybernic autonomous control mode provides autonomic physical support based on predefined walking patterns. We evaluated the adverse events, walking time and distance, and the difference in muscle spasticity before and after HAL-training using a modified Ashworth scale (mAs). No adverse events were observed that required discontinuation of rehabilitation. Walking distance and time increased from 25.2 meters/7.6 minutes to 148.3 meter/15 minutes. The mAs score decreased after HAL training. Our case report indicates that HAL training is feasible and effective for complete C4 quadriplegia in chronic SCI.

  14. Neurologic music therapy in upper-limb rehabilitation in children with severe bilateral cerebral palsy: a randomized controlled trial.

    PubMed

    Marrades-Caballero, Eugenio; Santonja-Medina, Clara S; Sanz-Mengibar, Jose M; Santonja-Medina, Fernando

    2018-02-26

    After receiving neurologic music therapy, functional improvements in children with severe bilateral cerebral palsy have not been found in the literature. Musical training with instruments allows interrelationships between movement, emotions and cognition for task-based learning, in order to improve motor control. To understand whether neurologic music therapy has an impact on the functionality of children with severe cerebral palsy. A randomized controlled assessor-blind trial was carried out. Children were recruited and treated in their own community center. Eighteen children with severe bilateral cerebral palsy between 4 and 16 years old were studied. The intervention group (n=18) received music therapy for 16 weeks, in addition to its usual physiotherapy input. Two music therapists implemented a neurologic music therapy program of therapeutic instrumental music performance. The control group (n=9) received its usual therapeutic input, similar to the intervention group, but not neurologic music therapy. Overall and specific "Chailey levels of Ability" were quantified, as well as the Locomotor Stages. Significant improvements in the overall and specific "arm and hand position" as well as "activities" from the Chailey Levels of Ability and the Locomotor Stages were observed (p<.05) in the group which received the music therapy (corregir si se acepta en la editing proofs). All these improvements persisted after 4 months. The control group showed no improvements after a four-month follow-up. Optimized intervention of neurologic music therapy can improve the functionality of children with severe bilateral cerebral palsy. Music therapy is a useful tool in rehabilitation and its positive effects remain four months after completing the treatment.

  15. Ontogenetic Development of Vestibulo-Ocular Reflexes in Amphibians

    PubMed Central

    Branoner, Francisco; Chagnaud, Boris P.; Straka, Hans

    2016-01-01

    Vestibulo-ocular reflexes (VOR) ensure gaze stability during locomotion and passively induced head/body movements. In precocial vertebrates such as amphibians, vestibular reflexes are required very early at the onset of locomotor activity. While the formation of inner ears and the assembly of sensory-motor pathways is largely completed soon after hatching, angular and translational/tilt VOR display differential functional onsets and mature with different time courses. Otolith-derived eye movements appear immediately after hatching, whereas the appearance and progressive amelioration of semicircular canal-evoked eye movements is delayed and dependent on the acquisition of sufficiently large semicircular canal diameters. Moreover, semicircular canal functionality is also required to tune the initially omnidirectional otolith-derived VOR. The tuning is due to a reinforcement of those vestibulo-ocular connections that are co-activated by semicircular canal and otolith inputs during natural head/body motion. This suggests that molecular mechanisms initially guide the basic ontogenetic wiring, whereas semicircular canal-dependent activity is required to establish the spatio-temporal specificity of the reflex. While a robust VOR is activated during passive head/body movements, locomotor efference copies provide the major source for compensatory eye movements during tail- and limb-based swimming of larval and adult frogs. The integration of active/passive motion-related signals for gaze stabilization occurs in central vestibular neurons that are arranged as segmentally iterated functional groups along rhombomere 1–8. However, at variance with the topographic maps of most other sensory systems, the sensory-motor transformation of motion-related signals occurs in segmentally specific neuronal groups defined by the extraocular motor output targets. PMID:27877114

  16. Running and Breathing in Mammals

    NASA Astrophysics Data System (ADS)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  17. Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles.

    PubMed

    Kulmala, Juha-Pekka; Korhonen, Marko T; Ruggiero, Luca; Kuitunen, Sami; Suominen, Harri; Heinonen, Ari; Mikkola, Aki; Avela, Janne

    2016-11-01

    The knee and ankle extensors as human primary antigravity muscle groups are of utmost importance in a wide range of locomotor activities. Yet, we know surprisingly little about how these muscle groups work, and specifically, how close to their maximal capacities they function across different modes and intensity of locomotion. Therefore, to advance our understanding of locomotor constraints, we determined and compared relative operating efforts of the knee and ankle extensors during walking, running, and sprinting. Using an inverse dynamics biomechanical analysis, the muscle forces of the knee and ankle extensors during walking (1.6 m·s), running (4.1 m·s), and sprinting (9.3 m·s) were quantified and then related to maximum forces of the same muscle groups obtained from a reference hopping test that permitted natural elastic limb behavior. During walking, the relative effort of the ankle extensors was almost two times greater compared with the knee extensors (35% ± 6% vs 19% ± 5%, P < 0.001). Changing walking to running decreased the difference in the relative effort between the extensor muscle groups, but still, the ankle extensors operated at a 25% greater level than the knee extensors (84% ± 12% vs 63% ± 17%, P < 0.05). At top speed sprinting, the ankle extensors reached their maximum operating level, whereas the knee extensors still worked well below their limits, showing a 25% lower relative effort compared with the ankle extensors (96% ± 11% vs 72% ± 19%, P < 0.01). Regardless of the mode of locomotion, humans operate at a much greater relative effort at the ankle than knee extensor muscles. As a consequence, the great demand on ankle extensors may be a key biomechanical factor limiting our locomotor ability and influencing the way we locomote and adapt to accommodate compromised neuromuscular system function.

  18. Development of Testing Methodologies to Evaluate Postflight Locomotor Performance

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    Crewmembers experience locomotor and postural instabilities during ambulation on Earth following their return from space flight. Gait training programs designed to facilitate recovery of locomotor function following a transition to a gravitational environment need to be accompanied by relevant assessment methodologies to evaluate their efficacy. The goal of this paper is to demonstrate the operational validity of two tests of locomotor function that were used to evaluate performance after long duration space flight missions on the International Space Station (ISS).

  19. Do all frogs swim alike? The effect of ecological specialization on swimming kinematics in frogs.

    PubMed

    Robovska-Havelkova, Pavla; Aerts, Peter; Rocek, Zbynek; Prikryl, Tomas; Fabre, Anne-Claire; Herrel, Anthony

    2014-10-15

    Frog locomotion has attracted wide scientific interest because of the unusual and derived morphology of the frog pelvic girdle and hind limb. Previous authors have suggested that the design of the frog locomotor system evolved towards a specialized jumping morphology early in the radiation of the group. However, data on locomotion in frogs are biased towards a few groups and most of the ecological and functional diversity remains unexplored. Here, we examine the kinematics of swimming in eight species of frog with different ecologies. We use cineradiography to quantify movements of skeletal elements from the entire appendicular skeleton. Our results show that species with different ecologies do differ in the kinematics of swimming, with the speed of limb extension and especially the kinematics of the midfoot being different. Our results moreover suggest that this is not a phylogenetic effect because species from different clades with similar ecologies converge on the same swimming kinematics. We conclude that it is important to analyze frog locomotion in a broader ecological and evolutionary context if one is to understand the evolutionary origins of this behavior. © 2014. Published by The Company of Biologists Ltd.

  20. Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking

    PubMed Central

    Chvatal, Stacie A.; Ting, Lena H.

    2012-01-01

    The modular control of muscles in groups, often referred to as muscle synergies, has been proposed to provide a motor repertoire of actions for the robust control of movement. However it is not clear whether muscle synergies identified in one task are also recruited by different neural pathways subserving other motor behaviors. We tested the hypothesis that voluntary and reactive modifications to walking in humans result from the recruitment of locomotor muscle synergies. We recorded the activity of 16 muscles in the right leg as subjects walked a 7.5 m path at two different speeds. To elicit a second motor behavior, midway through the path we imposed ramp and hold translation perturbations of the support surface in each of four cardinal directions. Variations in the temporal recruitment of locomotor muscle synergies could account for cycle-by-cycle variations in muscle activity across strides. Locomotor muscle synergies were also recruited in atypical phases of gait, accounting for both anticipatory gait modifications prior to perturbations and reactive feedback responses to perturbations. Our findings are consistent with the idea that a common pool of spatially-fixed locomotor muscle synergies can be recruited by different neural pathways, including the central pattern generator for walking, brainstem pathways for balance control, and cortical pathways mediating voluntary gait modifications. Together with electrophysiological studies, our work suggests that muscle synergies may provide a library of motor subtasks that can be flexibly recruited by parallel descending pathways to generate a variety of complex natural movements in the upper and lower limbs. PMID:22933805

  1. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients

    PubMed Central

    2014-01-01

    Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs—from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS) networks that are involved in the control of ambulation and other stereotyped motor patterns—specifically Central Pattern Generators (CPGs) that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of spinal cord-injured (SCI) should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic SCI patients. PMID:24910602

  2. Novel Kinetic Strategies Adopted in Asymmetric Split-Belt Treadmill Walking.

    PubMed

    Hinkel-Lipsker, Jacob W; Hahn, Michael E

    2016-01-01

    The hip and ankle strategies that affect learning of a novel gait have not been fully determined, and could be of importance in design of clinical gait interventions. The authors' purpose was to determine the effects of asymmetric split-belt treadmill walking on ankle and hip work during propulsion. Participants were randomized into either a gradual training group or a sudden training group and later returned for a retention test. The gradual training group performed significantly more work at the hip joint of the slow limb during acquisition, and decreased the hip joint work performed during retention. These findings reveal the hip joint on the slow limb during initial swing as a possible site of adaptation to a novel locomotor pattern.

  3. Assessing forelimb function after unilateral cervical spinal cord injury: novel forelimb tasks predict lesion severity and recovery.

    PubMed

    Khaing, Zin Z; Geissler, Sydney A; Jiang, Shan; Milman, Brian D; Aguilar, Sandra V; Schmidt, Christine E; Schallert, Timothy

    2012-02-10

    Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. Recently there has been increasing interest in cervical spinal cord injury models because the majority of spinal cord injuries are at cervical levels. Here we examined spontaneous functional recovery of adult rats with either laminectomy or lateral hemisection of the cervical spinal cord at C3-C4. Behavioral tests were carried out, including the forelimb locomotor scale (FLS), a postural instability test (PIT), a pasta-handling test that has been used to assess forepaw digit function and latency to eat, forelimb use during vertical-lateral wall exploration in a cylindrical enclosure, and vibrissae-elicited forelimb placing tests. In addition, a forelimb step-alternation test was developed to assess functional recovery at 12 weeks post-injury. All tests detected cSCI-induced deficits relative to laminectomy. Interestingly, the severity of deficits in the forelimb step-alternation test was associated with more extensive spinal damage, greater impairment, and less recovery in the FLS and other tests. For the pasta-handling test we found that rats with a milder cervical injury (alternators) were more likely to use both forepaws together compared to rats with a more severe injury (non-alternators). In addition, using the PIT, we detected enhanced function of the good limb, suggesting that neural plasticity on the unaffected side of the spinal cord may have occurred to compensate for deficits in the impaired forelimb. These outcome measures should be useful for investigating neural events associated with cSCI, and for developing novel treatment strategies.

  4. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor to bone marrow stromal cells promotes axonal regeneration after transplantation in completely transected adult rat spinal cord

    PubMed Central

    Kamada, Takahito; Hashimoto, Masayuki; Murakami, Masazumi; Shirasawa, Hiroshi; Sakao, Seiichiro; Ino, Hidetoshi; Yoshinaga, Katsunori; Koshizuka, Shuhei; Moriya, Hideshige; Yamazaki, Masashi

    2007-01-01

    The aim of this study was to evaluate the efficacy in adult rat completely transected spinal cord of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to bone marrow stromal cells (BMSC). BMSC were infected with adenovirus vectors carrying β-galactosidase (AxCALacZ) or BDNF (AxCABDNF) genes. The T8 segment of spinal cord was removed and replaced by graft containing Matrigel alone (MG group) or Matrigel and BMSC infected by AxCALacZ (BMSC-LacZ group) or AxCABDNF (BMSC-BDNF group). Axons in the graft were evaluated by immunohistochemistry and functional recovery was assessed with BBB locomotor scale. In the BMSC-BDNF group, the number of fibers positive for growth associated protein-43, tyrosine hydroxylase, and calcitonin gene-related peptide was significantly larger than numbers found for the MG and BMSC-LacZ groups. Rats from BMSC-BDNF and BMSC-LacZ groups showed significant recovery of hind limb function compared with MG rats; however, there was no significant difference between groups in degree of functional recovery. These findings demonstrate that adenovirus vector-mediated ex vivo gene transfer of BDNF enhances the capacity of BMSC to promote axonal regeneration in this completely transected spinal cord model; however, BDNF failed to enhance hind limb functional recovery. Further investigation is needed to establish an optimal combination of cell therapy and neurotrophin gene transfer for cases of spinal cord injury. PMID:17885772

  5. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.

    PubMed

    Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A

    2018-04-01

    Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking speed, fractal dynamics increased closer to 1/f when participants were exposed to asymmetric walking. These findings suggest there may not be a relationship between unperturbed preferred or slow speed walking fractal dynamics and gait adaptability. However, the emergent relationship between asymmetric walking fractal dynamics and limb phase adaptation may represent a functional reorganization of the locomotor system (i.e., improved interactivity between degrees of freedom within the system) to be better suited to attenuate externally generated perturbations at various spatiotemporal scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.

    PubMed

    Ferrarin, Maurizio; Rabuffetti, Marco; Geda, Elisabetta; Sirolli, Silvia; Marzegan, Alberto; Bruno, Valentina; Sacco, Katiuscia

    2018-06-01

    Several robotic devices have been developed for the rehabilitation of treadmill walking in patients with movement disorders due to injuries or diseases of the central nervous system. These robots induce coordinated multi-joint movements aimed at reproducing the physiological walking or stepping patterns. Control strategies developed for robotic locomotor training need a set of predefined lower limb joint angular trajectories as reference input for the control algorithm. Such trajectories are typically taken from normative database of overground unassisted walking. However, it has been demonstrated that gait speed and the amount of body weight support significantly influence joint trajectories during walking. Moreover, both the speed and the level of body weight support must be individually adjusted according to the rehabilitation phase and the residual locomotor abilities of the patient. In this work, 10 healthy participants (age range: 23-48 years) were asked to walk in movement analysis laboratory on a treadmill at five different speeds and four different levels of body weight support; besides, a trial with full body weight support, that is, with the subject suspended on air, was performed at two different cadences. The results confirm that lower limb kinematics during walking is affected by gait speed and by the amount of body weight support, and that on-air stepping is radically different from treadmill walking. Importantly, the results provide normative data in a numerical form to be used as reference trajectories for controlling robot-assisted body weight support walking training. An electronic addendum is provided to easily access to such reference data for different combinations of gait speeds and body weight support levels.

  7. Anticipatory changes in control of swing foot and lower limb joints when walking onto a moving surface traveling at constant speed.

    PubMed

    Hsu, Wei-Chun; Wang, Ting-Ming; Lu, Hsuan-Lun; Lu, Tung-Wu

    2015-01-01

    Adapting to a predictable moving surface such as an escalator is a crucial part of daily locomotor tasks in modern cities. However, the associated biomechanics have remained unexplored. In a gait laboratory, fifteen young adults walked from the ground onto a moving or a static surface while their kinematic and kinetic data were obtained for calculating foot and pelvis motions, as well as the angles and moments of the lower limb joints. Between-surface-condition comparisons were performed using a paired t-test (α = 0.05). The results showed that anticipatory locomotor adjustments occurred at least a stride before successfully walking onto the moving surface, including increasing step length and speed in the trailing step (p < 0.05), but the opposite in the leading step (p < 0.05). These modifications reduced the plantarflexor moment of the trailing ankle needed for stabilizing the body, while placing increased demand on the knee extensors of the trailing stance limb. For a smooth landing and to reduce the risk of instability, the subjects adopted a flat foot contact pattern with reduced leading toe-clearance (p < 0.05) at an instantaneous speed matching that of the moving surface (p > 0.05), mainly through reduced extension of the trailing hip but increased pelvic anterior tilt and leading swing ankle plantarflexion (p < 0.05). The current results provide baseline data for future studies on other populations, which will contribute to the design and development of strategies to address falls while transferring onto moving surfaces such as escalators. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion.

    PubMed

    Karakasiliotis, K; Thandiackal, R; Melo, K; Horvat, T; Mahabadi, N K; Tsitkov, S; Cabelguen, J M; Ijspeert, A J

    2016-06-01

    Robots are increasingly used as scientific tools to investigate animal locomotion. However, designing a robot that properly emulates the kinematic and dynamic properties of an animal is difficult because of the complexity of musculoskeletal systems and the limitations of current robotics technology. Here, we propose a design process that combines high-speed cineradiography, optimization, dynamic scaling, three-dimensional printing, high-end servomotors and a tailored dry-suit to construct Pleurobot: a salamander-like robot that closely mimics its biological counterpart, Pleurodeles waltl Our previous robots helped us test and confirm hypotheses on the interaction between the locomotor neuronal networks of the limbs and the spine to generate basic swimming and walking gaits. With Pleurobot, we demonstrate a design process that will enable studies of richer motor skills in salamanders. In particular, we are interested in how these richer motor skills can be obtained by extending our spinal cord models with the addition of more descending pathways and more detailed limb central pattern generator networks. Pleurobot is a dynamically scaled amphibious salamander robot with a large number of actuated degrees of freedom (DOFs: 27 in total). Because of our design process, the robot can capture most of the animal's DOFs and range of motion, especially at the limbs. We demonstrate the robot's abilities by imposing raw kinematic data, extracted from X-ray videos, to the robot's joints for basic locomotor behaviours in water and on land. The robot closely matches the behaviour of the animal in terms of relative forward speeds and lateral displacements. Ground reaction forces during walking also resemble those of the animal. Based on our results, we anticipate that future studies on richer motor skills in salamanders will highly benefit from Pleurobot's design. © 2016 The Author(s).

  9. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion

    PubMed Central

    Karakasiliotis, K.; Thandiackal, R.; Melo, K.; Horvat, T.; Mahabadi, N. K.; Tsitkov, S.; Cabelguen, J. M.; Ijspeert, A. J.

    2016-01-01

    Robots are increasingly used as scientific tools to investigate animal locomotion. However, designing a robot that properly emulates the kinematic and dynamic properties of an animal is difficult because of the complexity of musculoskeletal systems and the limitations of current robotics technology. Here, we propose a design process that combines high-speed cineradiography, optimization, dynamic scaling, three-dimensional printing, high-end servomotors and a tailored dry-suit to construct Pleurobot: a salamander-like robot that closely mimics its biological counterpart, Pleurodeles waltl. Our previous robots helped us test and confirm hypotheses on the interaction between the locomotor neuronal networks of the limbs and the spine to generate basic swimming and walking gaits. With Pleurobot, we demonstrate a design process that will enable studies of richer motor skills in salamanders. In particular, we are interested in how these richer motor skills can be obtained by extending our spinal cord models with the addition of more descending pathways and more detailed limb central pattern generator networks. Pleurobot is a dynamically scaled amphibious salamander robot with a large number of actuated degrees of freedom (DOFs: 27 in total). Because of our design process, the robot can capture most of the animal's DOFs and range of motion, especially at the limbs. We demonstrate the robot's abilities by imposing raw kinematic data, extracted from X-ray videos, to the robot's joints for basic locomotor behaviours in water and on land. The robot closely matches the behaviour of the animal in terms of relative forward speeds and lateral displacements. Ground reaction forces during walking also resemble those of the animal. Based on our results, we anticipate that future studies on richer motor skills in salamanders will highly benefit from Pleurobot's design. PMID:27358276

  10. Forelimb muscle and joint actions in Archosauria: insights from Crocodylus johnstoni (Pseudosuchia) and Mussaurus patagonicus (Sauropodomorpha)

    PubMed Central

    Allen, Vivian

    2017-01-01

    Many of the major locomotor transitions during the evolution of Archosauria, the lineage including crocodiles and birds as well as extinct Dinosauria, were shifts from quadrupedalism to bipedalism (and vice versa). Those occurred within a continuum between more sprawling and erect modes of locomotion and involved drastic changes of limb anatomy and function in several lineages, including sauropodomorph dinosaurs. We present biomechanical computer models of two locomotor extremes within Archosauria in an analysis of joint ranges of motion and the moment arms of the major forelimb muscles in order to quantify biomechanical differences between more sprawling, pseudosuchian (represented the crocodile Crocodylus johnstoni) and more erect, dinosaurian (represented by the sauropodomorph Mussaurus patagonicus) modes of forelimb function. We compare these two locomotor extremes in terms of the reconstructed musculoskeletal anatomy, ranges of motion of the forelimb joints and the moment arm patterns of muscles across those ranges of joint motion. We reconstructed the three-dimensional paths of 30 muscles acting around the shoulder, elbow and wrist joints. We explicitly evaluate how forelimb joint mobility and muscle actions may have changed with postural and anatomical alterations from basal archosaurs to early sauropodomorphs. We thus evaluate in which ways forelimb posture was correlated with muscle leverage, and how such differences fit into a broader evolutionary context (i.e. transition from sprawling quadrupedalism to erect bipedalism and then shifting to graviportal quadrupedalism). Our analysis reveals major differences of muscle actions between the more sprawling and erect models at the shoulder joint. These differences are related not only to the articular surfaces but also to the orientation of the scapula, in which extension/flexion movements in Crocodylus (e.g. protraction of the humerus) correspond to elevation/depression in Mussaurus. Muscle action is highly influenced by limb posture, more so than morphology. Habitual quadrupedalism in Mussaurus is not supported by our analysis of joint range of motion, which indicates that glenohumeral protraction was severely restricted. Additionally, some active pronation of the manus may have been possible in Mussaurus, allowing semi-pronation by a rearranging of the whole antebrachium (not the radius against the ulna, as previously thought) via long-axis rotation at the elbow joint. However, the muscles acting around this joint to actively pronate it may have been too weak to drive or maintain such orientations as opposed to a neutral position in between pronation and supination. Regardless, the origin of quadrupedalism in Sauropoda is not only linked to manus pronation but also to multiple shifts of forelimb morphology, allowing greater flexion movements of the glenohumeral joint and a more columnar forelimb posture. PMID:29188140

  11. Mechanisms of motor recovery after subtotal spinal cord injury: insights from the study of mice carrying a mutation (WldS) that delays cellular responses to injury.

    PubMed

    Zhang, Z; Guth, L; Steward, O

    1998-01-01

    Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.

  12. Activation of respiratory muscles does not occur during cold-submergence in bullfrogs, Lithobates catesbeianus.

    PubMed

    Santin, Joseph M; Hartzler, Lynn K

    2017-04-01

    Semiaquatic frogs may not breathe air for several months because they overwinter in ice-covered ponds. In contrast to many vertebrates that experience decreased motor performance after inactivity, bullfrogs, Lithobates catesbeianus , retain functional respiratory motor processes following cold-submergence. Unlike mammalian hibernators with unloaded limb muscles and inactive locomotor systems, respiratory mechanics of frogs counterintuitively allow for ventilatory maneuvers when submerged. Thus, we hypothesized that bullfrogs generate respiratory motor patterns during cold-submergence to avoid disuse and preserve motor performance. Accordingly, we measured activity of respiratory muscles (buccal floor compressor and glottal dilator) via electromyography in freely behaving bullfrogs at 20 and 2°C. Although we confirm that ventilation cycles occur underwater at 20°C, bullfrogs did not activate either respiratory muscle when submerged acutely or chronically at 2°C. We conclude that cold-submerged bullfrogs endure respiratory motor inactivity, implying that other mechanisms, excluding underwater muscle activation, maintain a functional respiratory motor system throughout overwintering. © 2017. Published by The Company of Biologists Ltd.

  13. Human Locomotion under Reduced Gravity Conditions: Biomechanical and Neurophysiological Considerations

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.

    2014-01-01

    Reduced gravity offers unique opportunities to study motor behavior. This paper aims at providing a review on current issues of the known tools and techniques used for hypogravity simulation and their effects on human locomotion. Walking and running rely on the limb oscillatory mechanics, and one way to change its dynamic properties is to modify the level of gravity. Gravity has a strong effect on the optimal rate of limb oscillations, optimal walking speed, and muscle activity patterns, and gait transitions occur smoothly and at slower speeds at lower gravity levels. Altered center of mass movements and interplay between stance and swing leg dynamics may challenge new forms of locomotion in a heterogravity environment. Furthermore, observations in the lack of gravity effects help to reveal the intrinsic properties of locomotor pattern generators and make evident facilitation of nonvoluntary limb stepping. In view of that, space neurosciences research has participated in the development of new technologies that can be used as an effective tool for gait rehabilitation. PMID:25247179

  14. There's more than one way to climb a tree: Limb length and microhabitat use in lizards with toe pads.

    PubMed

    Hagey, Travis J; Harte, Scott; Vickers, Mathew; Harmon, Luke J; Schwarzkopf, Lin

    2017-01-01

    Ecomorphology links microhabitat and morphology. By comparing ecomorphological associations across clades, we can investigate the extent to which evolution can produce similar solutions in response to similar challenges. While Anolis lizards represent a well-studied example of repeated convergent evolution, very few studies have investigated the ecomorphology of geckos. Similar to anoles, gekkonid lizards have independently evolved adhesive toe pads and many species are scansorial. We quantified gecko and anole limb length and microhabitat use, finding that geckos tend to have shorter limbs than anoles. Combining these measurements with microhabitat observations of geckos in Queensland, Australia, we observed geckos using similar microhabitats as reported for anoles, but geckos with relatively longer limbs were using narrower perches, differing from patterns observed in anoles and other lizards. We also observed arboreal geckos with relatively shorter proximal limb segments as compared to rock-dwelling and terrestrial geckos, similar to patterns observed for other lizards. We conclude that although both geckos and anoles have adhesive pads and use similar microhabitats, their locomotor systems likely complement their adhesive pads in unique ways and result in different ecomorphological patterns, reinforcing the idea that species with convergent morphologies still have idiosyncratic characteristics due to their own separate evolutionary histories.

  15. There’s more than one way to climb a tree: Limb length and microhabitat use in lizards with toe pads

    PubMed Central

    Harte, Scott; Vickers, Mathew; Harmon, Luke J.; Schwarzkopf, Lin

    2017-01-01

    Ecomorphology links microhabitat and morphology. By comparing ecomorphological associations across clades, we can investigate the extent to which evolution can produce similar solutions in response to similar challenges. While Anolis lizards represent a well-studied example of repeated convergent evolution, very few studies have investigated the ecomorphology of geckos. Similar to anoles, gekkonid lizards have independently evolved adhesive toe pads and many species are scansorial. We quantified gecko and anole limb length and microhabitat use, finding that geckos tend to have shorter limbs than anoles. Combining these measurements with microhabitat observations of geckos in Queensland, Australia, we observed geckos using similar microhabitats as reported for anoles, but geckos with relatively longer limbs were using narrower perches, differing from patterns observed in anoles and other lizards. We also observed arboreal geckos with relatively shorter proximal limb segments as compared to rock-dwelling and terrestrial geckos, similar to patterns observed for other lizards. We conclude that although both geckos and anoles have adhesive pads and use similar microhabitats, their locomotor systems likely complement their adhesive pads in unique ways and result in different ecomorphological patterns, reinforcing the idea that species with convergent morphologies still have idiosyncratic characteristics due to their own separate evolutionary histories. PMID:28953920

  16. Body size and lower limb posture during walking in humans.

    PubMed

    Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír

    2017-01-01

    We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints.

  17. Influence of inclination angles on intra- and inter-limb load-sharing during uphill walking.

    PubMed

    Hong, Shih-Wun; Leu, Tsai-Hsueh; Li, Jia-Da; Wang, Ting-Ming; Ho, Wei-Ping; Lu, Tung-Wu

    2014-01-01

    Uphill walking is an inevitable part of daily living, placing more challenges on the locomotor system with greater risk of falls than level walking does. The current study aimed to investigate the effects of inclination angles on the inter-joint and inter-limb load-sharing during uphill walking in terms of total support moment and contributions of individual joint moments to the total support moment. Fifteen young adults walked up walkways with 0°, 5°, 10° and 15° of slope while kinematic and kinetic data were collected and analyzed. With increasing inclination angles, the first peak of the total support moment was increased with unaltered individual joint contributions, suggesting an unaltered inter-joint control pattern in the leading limb to meet the increased demands. The second peak of the total support moment remained unchanged with increasing inclination angles primarily through a compensatory redistribution of the hip and knee moments. During DLS, the leading limb shared the majority of the whole body support moments. The current results reveal basic intra- and inter-limb load-sharing patterns of uphill walking, which will be helpful for a better understanding of the control strategies adopted and for subsequent clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A new look at the Dynamic Similarity Hypothesis: the importance of swing phase.

    PubMed

    Raichlen, David A; Pontzer, Herman; Shapiro, Liza J

    2013-01-01

    The Dynamic Similarity Hypothesis (DSH) suggests that when animals of different size walk at similar Froude numbers (equal ratios of inertial and gravitational forces) they will use similar size-corrected gaits. This application of similarity theory to animal biomechanics has contributed to fundamental insights in the mechanics and evolution of a diverse set of locomotor systems. However, despite its popularity, many mammals fail to walk with dynamically similar stride lengths, a key element of gait that determines spontaneous speed and energy costs. Here, we show that the applicability of the DSH is dependent on the inertial forces examined. In general, the inertial forces are thought to be the centripetal force of the inverted pendulum model of stance phase, determined by the length of the limb. If instead we model inertial forces as the centripetal force of the limb acting as a suspended pendulum during swing phase (determined by limb center of mass position), the DSH for stride length variation is fully supported. Thus, the DSH shows that inter-specific differences in spatial kinematics are tied to the evolution of limb mass distribution patterns. Selection may act on morphology to produce a given stride length, or alternatively, stride length may be a "spandrel" of selection acting on limb mass distribution.

  19. Locomotor Sub-functions for Control of Assistive Wearable Robots.

    PubMed

    Sharbafi, Maziar A; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance : redirecting the center of mass by exerting forces on the ground. Swing : cycling the legs between ground contacts. Balance : maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  20. Locomotor Sub-functions for Control of Assistive Wearable Robots

    PubMed Central

    Sharbafi, Maziar A.; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance: redirecting the center of mass by exerting forces on the ground. Swing: cycling the legs between ground contacts. Balance: maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies. PMID:28928650

  1. Flexibility in the patterning and control of axial locomotor networks in lamprey.

    PubMed

    Buchanan, James T

    2011-12-01

    In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.

  2. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion.

    PubMed

    Sławińska, Urszula; Miazga, Krzysztof; Cabaj, Anna M; Leszczyńska, Anna N; Majczyński, Henryk; Nagy, James I; Jordan, Larry M

    2013-09-01

    In rodent models of spinal cord injury, there is increasing evidence that activation of the locomotor central pattern generator (CPG) below the site of injury with 5-hydroxytryptamine (5-HT) agonists improves locomotor recovery and restores coordination. A promising means of replacing 5-HT control of locomotion is to graft brainstem 5-HT neurons into the spinal cord below the level of the spinal cord injury. However, it is not known whether this approach improves limb coordination because recovery of coordinated stepping has not been documented in detail in previous studies employing this transplantation strategy. Here, adult rats with complete spinal cord transections at the T9/10 level were grafted with E14 fetal neurons from the medulla at the T10/11 vertebra level one month after injury. The B1, B2 and B3 fetal anlagen of brainstem 5-HT neurons, a grouping that included the presumed precursors of recently described 5-HT locomotor command neurons, were used in these grafts. EMG and video recordings of treadmill locomotion evoked by tail stimulation showed full recovery of inter- and intralimb coordination in the grafted rats. We showed, using systemically applied antagonists, that 5-HT₂ and 5-HT₇ receptors mediate the improved locomotion after grafting, but through actions on different populations of spinal locomotor neurons. Specifically, 5-HT₂ receptors control CPG activation as well as motoneuron output, while 5-HT₇ receptors contribute primarily to activity of the locomotor CPG. These results are consistent with the roles for these receptors during locomotion in intact rodents and in rodent brainstem-spinal cord in vitro preparations. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Ontogeny of sex differences in the energetics and kinematics of terrestrial locomotion in leghorn chickens (Gallus gallus domesticus)

    PubMed Central

    Rose, K. A.; Bates, K. T.; Nudds, R. L.; Codd, J. R.

    2016-01-01

    Sex differences in locomotor performance may precede the onset of sexual maturity and/or arise concomitantly with secondary sex characteristics. Here, we present the first study to quantify the terrestrial locomotor morphology, energetics and kinematics in a species, either side of sexual maturation. In domestic leghorn chickens (Gallus gallus domesticus) sexual maturation brings about permanent female gravidity and increased male hind limb muscle mass. We found that the sexes of a juvenile cohort of leghorns shared similar maximum sustainable speeds, while in a sexually mature cohort maximum sustainable speeds were greater by 67% (males) and 34% (females). Furthermore, relative to that in juveniles of the same sex, the absolute duration of leg swing was longer in mature males and shorter in mature females. Consequently, the proportion of a stride that each limb was in contact with the ground (duty factor) was higher in sexually mature females compared to males. Modulation of the duty factor with the development of secondary sex characteristics may act to minimize mechanical work in males; and minimise mechanical power and/or peak force in females. A greater incremental response of mass-specific metabolic power to speed in males compared to females was common to both age cohorts and, therefore, likely results from physiological sexual dimorphisms that precede sexual maturation. PMID:27068682

  4. Development and Evolution of the Muscles of the Pelvic Fin

    PubMed Central

    Cole, Nicholas J.; Hall, Thomas E.; Don, Emily K.; Berger, Silke; Boisvert, Catherine A.; Neyt, Christine; Ericsson, Rolf; Joss, Jean; Gurevich, David B.; Currie, Peter D.

    2011-01-01

    Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition. PMID:21990962

  5. Mechanical performance of aquatic rowing and flying.

    PubMed

    Walker, J A; Westneat, M W

    2000-09-22

    Aquatic flight, performed by rowing or flapping fins, wings or limbs, is a primary locomotor mechanism for many animals. We used a computer simulation to compare the mechanical performance of rowing and flapping appendages across a range of speeds. Flapping appendages proved to be more mechanically efficient than rowing appendages at all swimming speeds, suggesting that animals that frequently engage in locomotor behaviours that require energy conservation should employ a flapping stroke. The lower efficiency of rowing appendages across all speeds begs the question of why rowing occurs at all. One answer lies in the ability of rowing fins to generate more thrust than flapping fins during the power stroke. Large forces are necessary for manoeuvring behaviours such as accelerations, turning and braking, which suggests that rowing should be found in slow-swimming animals that frequently manoeuvre. The predictions of the model are supported by observed patterns of behavioural variation among rowing and flapping vertebrates.

  6. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function

    PubMed Central

    2016-01-01

    Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI. PMID:27293901

  7. Modulation of phase durations, phase variations, and temporal coordination of the four limbs during quadrupedal split-belt locomotion in intact adult cats

    PubMed Central

    D'Angelo, Giuseppe; Thibaudier, Yann; Telonio, Alessandro; Hurteau, Marie-France; Kuczynski, Victoria; Dambreville, Charline

    2014-01-01

    Stepping along curvilinear paths produces speed differences between the inner and outer limb(s). This can be reproduced experimentally by independently controlling left and right speeds with split-belt locomotion. Here we provide additional details on the pattern of the four limbs during quadrupedal split-belt locomotion in intact cats. Six cats performed tied-belt locomotion (same speed bilaterally) and split-belt locomotion where one side (constant side) stepped at constant treadmill speed while the other side (varying side) stepped at several speeds. Cycle, stance, and swing durations changed in parallel in homolateral limbs with shorter and longer stance and swing durations on the fast side, respectively, compared with the slow side. Phase variations were quantified in all four limbs by measuring the slopes of the regressions between stance and cycle durations (rSTA) and between swing and cycle durations (rSW). For a given limb, rSTA and rSW were not significantly different from one another on the constant side whereas on the varying side rSTA increased relative to tied-belt locomotion while rSW became more negative. Phase variations were similar for homolateral limbs. Increasing left-right speed differences produced a large increase in homolateral double support on the slow side, while triple-support periods decreased. Increasing left-right speed differences altered homologous coupling, homolateral coupling on the fast side, and coupling between the fast hindlimb and slow forelimb. Results indicate that homolateral limbs share similar control strategies, only certain features of the interlimb pattern adjust, and spinal locomotor networks of the left and right sides are organized symmetrically. PMID:25031257

  8. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury.

    PubMed

    Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia

    2014-12-18

    Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster.

    PubMed

    Filošević, Ana; Al-Samarai, Sabina; Andretić Waldowski, Rozi

    2018-01-01

    Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila . We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per) , Clock (Clk) , and cycle (cyc) . The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization to cocaine in individual Drosophila . Because of its high-throughput nature, FlyBong can be used in genetic screens or in selection experiments aimed at the unbiased identification of functional genes involved in acute or chronic effects of volatilized psychoactive substances.

  10. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster

    PubMed Central

    Filošević, Ana; Al-samarai, Sabina; Andretić Waldowski, Rozi

    2018-01-01

    Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila. We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per), Clock (Clk), and cycle (cyc). The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization to cocaine in individual Drosophila. Because of its high-throughput nature, FlyBong can be used in genetic screens or in selection experiments aimed at the unbiased identification of functional genes involved in acute or chronic effects of volatilized psychoactive substances. PMID:29459820

  11. Prism adaptation and generalization during visually guided locomotor tasks.

    PubMed

    Alexander, M Scott; Flodin, Brent W G; Marigold, Daniel S

    2011-08-01

    The ability of individuals to adapt locomotion to constraints associated with the complex environments normally encountered in everyday life is paramount for survival. Here, we tested the ability of 24 healthy young adults to adapt to a rightward prism shift (∼11.3°) while either walking and stepping to targets (i.e., precision stepping task) or stepping over an obstacle (i.e., obstacle avoidance task). We subsequently tested for generalization to the other locomotor task. In the precision stepping task, we determined the lateral end-point error of foot placement from the targets. In the obstacle avoidance task, we determined toe clearance and lateral foot placement distance from the obstacle before and after stepping over the obstacle. We found large, rightward deviations in foot placement on initial exposure to prisms in both tasks. The majority of measures demonstrated adaptation over repeated trials, and adaptation rates were dependent mainly on the task. On removal of the prisms, we observed negative aftereffects for measures of both tasks. Additionally, we found a unilateral symmetric generalization pattern in that the left, but not the right, lower limb indicated generalization across the 2 locomotor tasks. These results indicate that the nervous system is capable of rapidly adapting to a visuomotor mismatch during visually demanding locomotor tasks and that the prism-induced adaptation can, at least partially, generalize across these tasks. The results also support the notion that the nervous system utilizes an internal model for the control of visually guided locomotion.

  12. Human spinal cord injury: motor unit properties and behaviour.

    PubMed

    Thomas, C K; Bakels, R; Klein, C S; Zijdewind, I

    2014-01-01

    Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when SCI leaves few units under voluntary control, the force contribution from recruitment increases due to elevation of twitch/tetanic force ratios. Force gradation and precision are also coarser with reduced unit numbers. Maximal unit firing rates are low in hand muscles, limiting voluntary strength, but are low, normal or high in limb muscles. Unit firing rates during spasms can exceed voluntary rates, emphasizing that deficits in descending drive limit force production. SCI also changes muscle properties. Motor unit weakness and fatigability seem universal across muscles and species, increasing the muscle weakness that arises from paralysis of units, motoneuron death and sensory impairment. Motor axon conduction velocity decreases after human SCI. Muscle contractile speed is also reduced, which lowers the stimulation frequencies needed to grade force when paralysed muscles are activated with patterned electrical stimulation. This slowing does not necessarily occur in hind limb muscles after cord transection in cats and rats. The nature, duration and level of SCI underlie some of these species differences, as do variations in muscle function, daily usage, tract control and fibre-type composition. Exploring this diversity is important to promote recovery of the hand, bowel, bladder and locomotor function most wanted by people with SCI. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Cerebellar contribution to locomotor behavior: A neurodevelopmental perspective.

    PubMed

    Sathyanesan, Aaron; Gallo, Vittorio

    2018-04-30

    The developmental trajectory of the formation of cerebellar circuitry has significant implications for locomotor plasticity and adaptive learning at later stages. While there is a wealth of knowledge on the development of locomotor behavior in human infants, children, and adolescents, pre-clinical animal models have fallen behind on the study of the emergence of behavioral motifs in locomotor function across postnatal development. Since cerebellar development is protracted, it is subject to higher risk of genetic or environmental disruption, potentially leading to abnormal behavioral development. This highlights the need for more sophisticated and specific functional analyses of adaptive cerebellar behavior within the context of whole-body locomotion across the entire span of postnatal development. Here we review evidence on cerebellar contribution to adaptive locomotor behavior, highlighting methodologies employed to quantify and categorize behavior at different developmental stages, with the ultimate goal of following the course of early behavioral alterations in neurodevelopmental disorders. Since experimental paradigms used to study cerebellar behavior are lacking in both specificity and applicability to locomotor contexts, we highlight the use of the Erasmus Ladder - an advanced, computerized, fully automated system to quantify adaptive cerebellar learning in conjunction with locomotor function. Finally, we emphasize the need to develop objective, quantitative, behavioral tasks which can track changes in developmental trajectories rather than endpoint measurement at the adult stage of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Abnormal turning behaviour, GABAergic inhibition and the degeneration of astrocytes in ovine Tribulus terrestris motor neuron disease.

    PubMed

    Bourke, C A

    2006-01-01

    To observe the clinical signs of sheep affected by Tribulus terrestris motor neuron disease, to ascertain their response to striatal dopamine reducing drugs, and to examine their brains and spinal cords for microscopic changes. Twenty-eight sheep displaying well developed clinical signs of the disorder were observed. Twenty-two of these and 22 normal sheep were then randomly allocated to three groups and treated with diazepam, chlorpromazine, or xylazine. The time that it took an animal to return to a standing position following drug administration was recorded. The brain and complete spinal cord were removed from each of the other six affected sheep and fixed in formalin. Brains were sectioned throughout at 5 mm intervals and spinal cords at 10 mm intervals. All tissues were paraffin embedded and examined by light microscopy. A few samples were examined by electron microscopy. Clinical signs included postural asymmetry with a right:left body-side dominance within the group of 50:50, unequal flaccid paresis in the pelvic limbs, extensor muscle atrophy and adduction of the weaker pelvic limb, and concurrent abduction of the stronger. Forward motion followed either a fixed left or right hand curved trajectory, the sheep no longer being able to choose which. Twelve animals intermittently displayed rotational behaviour that involved loss of postural balance without locomotor activation. The administration of diazepam, chlorpromazine, or xylazine caused limb paresis and sedation, with affected sheep being slower than normal sheep by factors of 8, 3 and 2 respectively, to return to a standing position. There were scattered areas of mild Wallerian degeneration throughout the spinal cord, and in both the brain and the cord there were small numbers of degenerate astrocytes containing novel cytoplasmic pigment granules. Affected sheep had a dysfunction in the control of directional change and this provides a new insight into the normal mechanism for 'turning' in quadrupeds. Directional change requires a functional asymmetry or lateralisation within the upper motor neuron to accommodate a difference in the rate of forward progression of each body side and, simultaneously, a lateral shift of the centre of gravity. The sensitivity of affected sheep to diazepam is consistent with a pre-existing elevation in GABAergic neuronal inhibition, probably as a result of a reduction in glutamatergic neuronal excitation. The cytoplasmic pigment found in degenerate astrocytes was novel and its presence in the brain nuclei known to contribute to turning behaviour could have aetiological significance. The motor output of the basal ganglia in Tribulus neurotoxicity appeared to be excessively inhibitory to the pelvic limb extensor muscles and was asymmetric, causing fixation of the turning posture but not locomotor activation. An intoxication of specific purine sensitive, glutamate releasing astrocytes, located in nuclei controlling turning, was suspected.

  15. Selective Breeding and Short-Term Access to a Running Wheel Alter Stride Characteristics in House Mice.

    PubMed

    Claghorn, Gerald C; Thompson, Zoe; Kay, Jarren C; Ordonez, Genesis; Hampton, Thomas G; Garland, Theodore

    Postural and kinematic aspects of running may have evolved to support high runner (HR) mice to run approximately threefold farther than control mice. Mice from four replicate HR lines selectively bred for high levels of voluntary wheel running show many differences in locomotor behavior and morphology as compared with four nonselected control (C) lines. We hypothesized that HR mice would show stride alterations that have coadapted with locomotor behavior, morphology, and physiology. More specifically, we predicted that HR mice would have stride characteristics that differed from those of C mice in ways that parallel some of the adaptations seen in highly cursorial animals. For example, we predicted that limbs of HR mice would swing closer to the parasagittal plane, resulting in a two-dimensional measurement of narrowed stance width. We also expected that some differences between HR and C mice might be amplified by 6 d of wheel access, as is used to select breeders each generation. We used the DigiGait Imaging System (Mouse Specifics) to capture high-speed videos in ventral view as mice ran on a motorized treadmill across a range of speeds and then to automatically calculate several aspects of strides. Young adults of both sexes were tested both before and after 6 d of wheel access. Stride length, stride frequency, stance width, stance time, brake time, propel time, swing time, duty factor, and paw contact area were analyzed using a nested analysis of covariance, with body mass as a covariate. As expected, body mass and treadmill speed affected nearly every analyzed metric. Six days of wheel access also affected nearly every measure, indicating pervasive training effects, in both HR and C mice. As predicted, stance width was significantly narrower in HR than C mice. Paw contact area and duty factor were significantly greater in minimuscle individuals (subset of HR mice with 50%-reduced hind limb muscle mass) than in normal-muscled HR or C mice. We conclude that stride characteristics of house mice are adaptable in response to both selective breeding and changes in daily locomotor behavior (activity levels) that occur during as few as 6 d. These results have important implications for understanding the evolution and coadaptation of locomotor behavior and performance.

  16. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    PubMed Central

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  17. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles.

    PubMed

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3-5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human-machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons.

  18. Stabilization of cat paw trajectory during locomotion

    PubMed Central

    Klishko, Alexander N.; Farrell, Bradley J.; Beloozerova, Irina N.; Latash, Mark L.

    2014-01-01

    We investigated which of cat limb kinematic variables during swing of regular walking and accurate stepping along a horizontal ladder are stabilized by coordinated changes of limb segment angles. Three hypotheses were tested: 1) animals stabilize the entire swing trajectory of specific kinematic variables (performance variables); and 2) the level of trajectory stabilization is similar between regular and ladder walking and 3) is higher for forelimbs compared with hindlimbs. We used the framework of the uncontrolled manifold (UCM) hypothesis to quantify the structure of variance of limb kinematics in the limb segment orientation space across steps. Two components of variance were quantified for each potential performance variable, one of which affected it (“bad variance,” variance orthogonal to the UCM, VORT) while the other one did not (“good variance,” variance within the UCM, VUCM). The analysis of five candidate performance variables revealed that cats during both locomotor behaviors stabilize 1) paw vertical position during the entire swing (VUCM > VORT, except in mid-hindpaw swing of ladder walking) and 2) horizontal paw position in initial and terminal swing (except for the entire forepaw swing of regular walking). We also found that the limb length was typically stabilized in midswing, whereas limb orientation was not (VUCM ≤ VORT) for both limbs and behaviors during entire swing. We conclude that stabilization of paw position in early and terminal swing enables accurate and stable locomotion, while stabilization of vertical paw position in midswing helps paw clearance. This study is the first to demonstrate the applicability of the UCM-based analysis to nonhuman movement. PMID:24899676

  19. Lower limb entheseal morphology in the Neandertal Krapina population (Croatia, 130,000 BP).

    PubMed

    Mariotti, Valentina; Belcastro, Maria Giovanna

    2011-06-01

    Although the Neandertal locomotor system has been shown to differ from Homo sapiens, characteristics of Neandertal entheses, the skeletal attachments for muscles, tendons, ligaments and joint capsules, have never been specifically investigated. Here, we analyse lower limb entheses of the Krapina Neandertal bones (Croatia, 130,000 BP) with the aim of determining how they compare with modern humans, using a standard developed by our research group for describing modern human entheseal variability. The entheses examined are those of the gluteus maximus, iliopsoas and vastus medialis on the femur, the quadriceps tendon on the patella, and soleus on the tibia. For the entheses showing a different morphological pattern from H. sapiens, we discuss the possibility of recognising genetic versus environmental causes. Our results indicate that only the gluteus maximus enthesis (the gluteal tuberosity), falls out of the modern human range of variation. It displays morphological features that could imply histological differences from modern humans, in particular the presence of fibrocartilage. In both H. sapiens and the Krapina Neandertals, the morphological pattern of this enthesis is the same in adult and immature femurs. These results can be interpreted in light of genetic differences between the two hominins. The possibility of functional adaptations to higher levels of mechanical load during life in the Neandertals seems less likely. The particular morphology and large dimensions of the Krapina enthesis, and perhaps its fibrocartilaginous nature, could have been selected for in association with other pelvic and lower limb characteristics, even if genetic drift cannot be ruled out. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A pressure plate study on fore and hindlimb loading and the association with hoof contact area in sound ponies at the walk and trot.

    PubMed

    Oosterlinck, M; Pille, F; Back, W; Dewulf, J; Gasthuys, F

    2011-10-01

    The aim of this study was to evaluate the association between fore- and hind-hoof contact area and limb loading. Data from a previous study on forelimb loading and symmetry were compared with data on hindlimb kinetics, and the fore- and hind-hoof contact area at the walk and trot was evaluated. Five sound ponies, selected for symmetrical feet, were walked and trotted over a pressure plate embedded in a custom-made runway. The hindlimb peak vertical force (PVF) and vertical impulse (VI) were found to be significantly lower than in the forelimb, whereas their high symmetry ratios (>95%) did not show a significant difference from forelimb data. Hindlimb PVF in ponies was found to be slightly higher when compared to data reported for horses even though the ponies moved at a similar or lower relative velocity. The contact area had low intra-individual variability and was significantly smaller in the hind- than in the fore-hooves. A larger contact area was significantly associated with lower peak vertical pressure (PVP) but higher PVF and VI. No significant differences between left and right sides were found for contact area or loading variables. Pressure plate measurements demonstrated a significant association between hoof contact area and limb loading, in addition to intrinsic differences between fore and hindlimb locomotor function. The pressure plate provides the clinician with a tool to quantify simultaneously contralateral differences in hoof contact area and limb loading. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Body size and lower limb posture during walking in humans

    PubMed Central

    Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír

    2017-01-01

    We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints. PMID:28192522

  2. Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized controlled trial.

    PubMed

    Fowler, Eileen G; Knutson, Loretta M; Demuth, Sharon K; Siebert, Kara L; Simms, Victoria D; Sugi, Mia H; Souza, Richard B; Karim, Roksana; Azen, Stanley P

    2010-03-01

    Effective interventions to improve and maintain strength (force-generating capacity) and endurance are needed for children with cerebral palsy (CP). This study was performed to examine the effects of a stationary cycling intervention on muscle strength, locomotor endurance, preferred walking speed, and gross motor function in children with spastic diplegic CP. This was a phase I randomized controlled trial with single blinding. The interventions were performed in community-based outpatient physical therapy clinics. Outcome assessments were performed in university laboratories. Sixty-two ambulatory children aged 7 to 18 years with spastic diplegic CP and Gross Motor Function Classification System levels I to III participated in this study. Participants were randomly assigned to cycling or control (no-intervention) groups. Thirty intervention sessions occurred over 12 weeks. Primary outcomes were peak knee extensor and flexor moments, the 600-Yard Walk-Run Test, the Thirty-Second Walk Test, and the Gross Motor Function Measure sections D and E (GMFM-66). Significant baseline-postintervention improvements were found for the 600-Yard Walk-Run Test, the GMFM-66, peak knee extensor moments at 120 degrees /s, and peak knee flexor moments at 30 degrees /s for the cycling group. Improved peak knee flexor moments at 120 degrees/s were found for the control group only, although not all participants could complete this speed of testing. Significant differences between the cycling and control groups based on change scores were not found for any outcomes. Limitations Heterogeneity of the patient population and intrasubject variability were limitations of the study. Significant improvements in locomotor endurance, gross motor function, and some measures of strength were found for the cycling group but not the control group, providing preliminary support for this intervention. As statistical differences were not found in baseline-postintervention change scores between the 2 groups; the results did not demonstrate that stationary cycling was more effective than no intervention. The results of this phase I study provide guidance for future research.

  3. Mouse shoulder morphology responds to locomotor activity and the kinematic differences of climbing and running.

    PubMed

    Green, David J; Richmond, Brian G; Miran, Sara L

    2012-12-01

    Mechanical loads play a significant role in determining long bone shape and strength, but less work has explored how these loads influence flat bones like the scapula, which has been shown to vary with locomotor preference among primate taxa. Here, we tested the effects of voluntary running and climbing exercise in mice to examine how the mechanical loads borne from different locomotor patterns influence shoulder morphological development. Ninety-nine female wild-type mice were distributed equally among sedentary control, activity-wheel running, and vertical climbing experimental conditions. Running mice had the lowest body masses, larger intrinsic shoulder muscles, and the most pronounced differences in scapular size and shape relative to the other groups. Climbing mouse scapular morphology also differed significantly from the control individuals, but these differences were not as marked as those between the running and control mice. This might be attributable in part to greater levels of activity in the wheel-runners relative to the climbers. Additionally, climbing mice held their bodies closer to the substrate and maintained more flexed limbs and posterior hand positions compared with the kinematics of running. As a result, climbers differed significantly from both the running and control mice in developing a relatively broader infraspinous region, which is likely related to preferential recruitment of the infraspinatus and teres minor muscles to maintain flexed shoulder postures. The results of this study demonstrate that variation in activity level and type of locomotor regime over a significant portion of the life history influences muscle and bone development in the shoulder. Copyright © 2012 Wiley Periodicals, Inc.

  4. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.

    PubMed

    Aach, Mirko; Cruciger, Oliver; Sczesny-Kaiser, Matthias; Höffken, Oliver; Meindl, Renate Ch; Tegenthoff, Martin; Schwenkreis, Peter; Sankai, Yoshiyuki; Schildhauer, Thomas A

    2014-12-01

    Treadmill training after traumatic spinal cord injury (SCI) has become an established therapy to improve walking capabilities. The hybrid assistive limb (HAL) exoskeleton has been developed to support motor function and is tailored to the patients' voluntary drive. To determine whether locomotor training with the exoskeleton HAL is safe and can increase functional mobility in chronic paraplegic patients after SCI. A single case experimental A-B (pre-post) design study by repeated assessments of the same patients. The subjects performed 90 days (five times per week) of HAL exoskeleton body weight supported treadmill training with variable gait speed and body weight support. Eight patients with chronic SCI classified by the American Spinal Injury Association (ASIA) Impairment Scale (AIS) consisting of ASIA A (zones of partial preservation [ZPP] L3-S1), n=4; ASIA B (with motor ZPP L3-S1), n=1; and ASIA C/D, n=3, who received full rehabilitation in the acute and subacute phases of SCI. Functional measures included treadmill-associated walking distance, speed, and time, with additional analysis of functional improvements using the 10-m walk test (10MWT), timed-up and go test (TUG test), 6-minute walk test (6MWT), and the walking index for SCI II (WISCI II) score. Secondary physiologic measures including the AIS with the lower extremity motor score (LEMS), the spinal spasticity (Ashworth scale), and the lower extremity circumferences. Subjects performed standardized functional testing before and after the 90 days of intervention. Highly significant improvements of HAL-associated walking time, distance, and speed were noticed. Furthermore, significant improvements have been especially shown in the functional abilities without the exoskeleton for over-ground walking obtained in the 6MWT, TUG test, and the 10MWT, including an increase in the WISCI II score of three patients. Muscle strength (LEMS) increased in all patients accompanied by a gain of the lower limb circumferences. A conversion in the AIS was ascertained in one patient (ASIA B to ASIA C). One patient reported a decrease of spinal spasticity. Hybrid assistive limb exoskeleton training results in improved over-ground walking and leads to the assumption of a beneficial effect on ambulatory mobility. However, evaluation in larger clinical trials is required. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Aspects of respiratory muscle fatigue in a mountain ultramarathon race.

    PubMed

    Wüthrich, Thomas U; Marty, Julia; Kerherve, Hugo; Millet, Guillaume Y; Verges, Samuel; Spengler, Christina M

    2015-03-01

    Ultramarathon running offers a unique possibility to investigate the mechanisms contributing to the limitation of endurance performance. Investigations of locomotor muscle fatigue show that central fatigue is a major contributor to the loss of strength in the lower limbs after an ultramarathon. In addition, respiratory muscle fatigue is known to limit exercise performance, but only limited data are available on changes in respiratory muscle function after ultramarathon running and it is not known whether the observed impairment is caused by peripheral and/or central fatigue. In 22 experienced ultra-trail runners, we assessed respiratory muscle strength, i.e., maximal voluntary inspiratory and expiratory pressures, mouth twitch pressure (n = 16), and voluntary activation (n = 16) using cervical magnetic stimulation, lung function, and maximal voluntary ventilation before and after a 110-km mountain ultramarathon with 5862 m of positive elevation gain. Both maximal voluntary inspiratory (-16% ± 13%) and expiratory pressures (-21% ± 14%) were significantly reduced after the race. Fatigue of inspiratory muscles likely resulted from substantial peripheral fatigue (reduction in mouth twitch pressure, -19% ± 15%; P < 0.01), as voluntary activation (-3% ± 6%, P = 0.09) only tended to be decreased, suggesting negligible or only mild levels of central fatigue. Forced vital capacity remained unchanged, whereas forced expiratory volume in 1 s, peak inspiratory and expiratory flow rates, and maximal voluntary ventilation were significantly reduced (P < 0.05). Ultraendurance running reduces respiratory muscle strength for inspiratory muscles shown to result from significant peripheral muscle fatigue with only little contribution of central fatigue. This is in contrast to findings in locomotor muscles. Whether this difference between muscle groups results from inherent neuromuscular differences, their specific pattern of loading or other reasons remain to be clarified.

  6. Central control of interlimb coordination and speed‐dependent gait expression in quadrupeds

    PubMed Central

    Danner, Simon M.; Wilshin, Simon D.; Shevtsova, Natalia A.

    2016-01-01

    Key points Quadrupeds express different gaits depending on speed of locomotion.Central pattern generators (one per limb) within the spinal cord generate locomotor oscillations and control limb movements. Neural interactions between these generators define interlimb coordination and gait.We present a computational model of spinal circuits representing four rhythm generators with left–right excitatory and inhibitory commissural and fore–hind inhibitory interactions within the cord.Increasing brainstem drive to all rhythm generators and excitatory commissural interneurons induces an increasing frequency of locomotor oscillations accompanied by speed‐dependent gait changes from walk to trot and to gallop and bound.The model closely reproduces and suggests explanations for multiple experimental data, including speed‐dependent gait transitions in intact mice and changes in gait expression in mutants lacking certain types of commissural interneurons. The model suggests the possible circuit organization in the spinal cord and proposes predictions that can be tested experimentally. Abstract As speed of locomotion is increasing, most quadrupeds, including mice, demonstrate sequential gait transitions from walk to trot and to gallop and bound. The neural mechanisms underlying these transitions are poorly understood. We propose that the speed‐dependent expression of different gaits results from speed‐dependent changes in the interactions between spinal circuits controlling different limbs and interlimb coordination. As a result, the expression of each gait depends on (1) left–right interactions within the spinal cord mediated by different commissural interneurons (CINs), (2) fore–hind interactions on each side of the spinal cord and (3) brainstem drives to rhythm‐generating circuits and CIN pathways. We developed a computational model of spinal circuits consisting of four rhythm generators (RGs) with bilateral left–right interactions mediated by V0 CINs (V0D and V0V sub‐types) providing left–right alternation, and conditional V3 CINs promoting left–right synchronization. Fore and hind RGs mutually inhibited each other. We demonstrate that linearly increasing excitatory drives to the RGs and V3 CINs can produce a progressive increase in the locomotor speed accompanied by sequential changes of gaits from walk to trot and to gallop and bound. The model closely reproduces and suggests explanations for the speed‐dependent gait expression observed in vivo in intact mice and in mutants lacking V0V or all V0 CINs. Specifically, trot is not expressed after removal of V0V CINs, and only bound is expressed after removal of all V0 CINs. The model provides important insights into the organization of spinal circuits and neural control of locomotion. PMID:27633893

  7. Mechanisms of Left-Right Coordination in Mammalian Locomotor Pattern Generation Circuits: A Mathematical Modeling View

    PubMed Central

    Talpalar, Adolfo E.; Rybak, Ilya A.

    2015-01-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model reproduced, and suggested explanation for, a series of experimental phenomena and generated predictions available for experimental testing. PMID:25970489

  8. Symmetrical kinematics does not imply symmetrical kinetics in people with transtibial amputation using cycling model.

    PubMed

    Childers, W Lee; Kogler, Géza F

    2014-01-01

    People with amputation move asymmetrically with regard to kinematics (joint angles) and kinetics (joint forces and moments). Clinicians have traditionally sought to minimize kinematic asymmetries, assuming kinetic asymmetries would also be minimized. A cycling model evaluated locomotor asymmetries. Eight individuals with unilateral transtibial amputation pedaled with 172 mm-length crank arms on both sides (control condition) and with the crank arm length shortened to 162 mm on the amputated side (CRANK condition). Pedaling kinetics and limb kinematics were recorded. Joint kinetics, joint angles (mean and range of motion [ROM]), and pedaling asymmetries were calculated from force pedals and with a motion capture system. A one-way analysis of variance with tukey post hoc compared kinetics and kinematics across limbs. Statistical significance was set to p

  9. Lower limb kinematics during treadmill walking after space flight: implications for gaze stabilization

    NASA Technical Reports Server (NTRS)

    McDonald, P. V.; Basdogan, C.; Bloomberg, J. J.; Layne, C. S.

    1996-01-01

    We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.

  10. Lower limb kinematics during treadmill walking after space flight: implications for gaze stabilization.

    PubMed

    McDonald, P V; Basdogan, C; Bloomberg, J J; Layne, C S

    1996-11-01

    We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.

  11. Life on the rocks: habitat use drives morphological and performance evolution in lizards.

    PubMed

    Goodman, Brett A; Miles, Donald B; Schwarzkopf, Lin

    2008-12-01

    As a group, lizards occupy a vast array of habitats worldwide, yet there remain relatively few cases where habitat use (ecology), morphology, and thus, performance, are clearly related. The best known examples include: increased limb length in response to increased arboreal perch diameter in anoles and increased limb length in response to increased habitat openness for some skinks. Rocky habitats impose strong natural selection on specific morphological characteristics, which differs from that imposed on terrestrial species, because moving about on inclined substrates of irregular sizes and shapes constrains locomotor performance in predictable ways. We quantified habitat use, morphology, and performance of 19 species of lizards (family Scincidae, subfamily Lygosominae) from 23 populations in tropical Australia. These species use habitats with considerable variation in rock availability. Comparative phylogenetic analyses revealed that occupation of rock-dominated habitats correlated with the evolution of increased limb length, compared to species from forest habitats that predominantly occupied leaf litter. Moreover, increased limb length directly affected performance, with species from rocky habitats having greater sprinting, climbing, and clinging ability than their relatives from less rocky habitats. Thus, we found that the degree of rock use is correlated with both morphological and performance evolution in this group of tropical lizards.

  12. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    PubMed Central

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID:23087647

  13. Were early pterosaurs inept terrestrial locomotors?

    PubMed Central

    2015-01-01

    Pterodactyloid pterosaurs are widely interpreted as terrestrially competent, erect-limbed quadrupeds, but the terrestrial capabilities of non-pterodactyloids are largely thought to have been poor. This is commonly justified by the absence of a non-pterodactyloid footprint record, suggestions that the expansive uropatagia common to early pterosaurs would restrict hindlimb motion in walking or running, and the presence of sprawling forelimbs in some species. Here, these arguments are re-visited and mostly found problematic. Restriction of limb mobility is not a problem faced by extant animals with extensive fight membranes, including species which routinely utilise terrestrial locomotion. The absence of non-pterodactyloid footprints is not necessarily tied to functional or biomechanical constraints. As with other fully terrestrial clades with poor ichnological records, biases in behaviour, preservation, sampling and interpretation likely contribute to the deficit of early pterosaur ichnites. Suggestions that non-pterodactyloids have slender, mechanically weak limbs are demonstrably countered by the proportionally long and robust limbs of many Triassic and Jurassic species. Novel assessments of pterosaur forelimb anatomies conflict with notions that all non-pterodactyloids were obligated to sprawling forelimb postures. Sprawling forelimbs seem appropriate for species with ventrally-restricted glenoid articulations (seemingly occurring in rhamphorhynchines and campylognathoidids). However, some early pterosaurs, such as Dimorphodon macronyx and wukongopterids, have glenoid arthrologies which are not ventrally restricted, and their distal humeri resemble those of pterodactyloids. It seems fully erect forelimb stances were possible in these pterosaurs, and may be probable given proposed correlation between pterodactyloid-like distal humeral morphology and forces incurred through erect forelimb postures. Further indications of terrestrial habits include antungual sesamoids, which occur in the manus and pes anatomy of many early pterosaur species, and only occur elsewhere in terrestrial reptiles, possibly developing through frequent interactions of large claws with firm substrates. It is argued that characteristics possibly associated with terrestriality are deeply nested within Pterosauria and not restricted to Pterodactyloidea as previously thought, and that pterodactyloid-like levels of terrestrial competency may have been possible in at least some early pterosaurs. PMID:26157605

  14. Npn-1 Contributes to Axon-Axon Interactions That Differentially Control Sensory and Motor Innervation of the Limb

    PubMed Central

    Bianchi, Elisa; Novitch, Bennett G.; Huber, Andrea B.

    2011-01-01

    The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs. PMID:21364975

  15. Functional Reorganization of the Locomotor Network in Parkinson Patients with Freezing of Gait

    PubMed Central

    Fling, Brett W.; Cohen, Rajal G.; Mancini, Martina; Carpenter, Samuel D.; Fair, Damien A.; Nutt, John G.; Horak, Fay B.

    2014-01-01

    Freezing of gait (FoG) is a transient inability to initiate or maintain stepping that often accompanies advanced Parkinson’s disease (PD) and significantly impairs mobility. The current study uses a multimodal neuroimaging approach to assess differences in the functional and structural locomotor neural network in PD patients with and without FoG and relates these findings to measures of FoG severity. Twenty-six PD patients and fifteen age-matched controls underwent resting-state functional magnetic resonance imaging and diffusion tensor imaging along with self-reported and clinical assessments of FoG. After stringent movement correction, fifteen PD patients and fourteen control participants were available for analysis. We assessed functional connectivity strength between the supplementary motor area (SMA) and the following locomotor hubs: 1) subthalamic nucleus (STN), 2) mesencephalic and 3) cerebellar locomotor region (MLR and CLR, respectively) within each hemisphere. Additionally, we quantified structural connectivity strength between locomotor hubs and assessed relationships with metrics of FoG. FoG+ patients showed greater functional connectivity between the SMA and bilateral MLR and between the SMA and left CLR compared to both FoG− and controls. Importantly, greater functional connectivity between the SMA and MLR was positively correlated with i) clinical, ii) self-reported and iii) objective ratings of freezing severity in FoG+, potentially reflecting a maladaptive neural compensation. The current findings demonstrate a re-organization of functional communication within the locomotor network in FoG+ patients whereby the higher-order motor cortex (SMA) responsible for gait initiation communicates with the MLR and CLR to a greater extent than in FoG− patients and controls. The observed pattern of altered connectivity in FoG+ may indicate a failed attempt by the CNS to compensate for the loss of connectivity between the STN and SMA and may reflect a loss of lower-order, automatic control of gait by the basal ganglia. PMID:24937008

  16. Tyrannosaurus en pointe: allometry minimized rotational inertia of large carnivorous dinosaurs.

    PubMed Central

    Henderson, Donald M; Snively, Eric

    2004-01-01

    Theropod dinosaurs attained the largest body sizes among terrestrial predators, and were also unique in being exclusively bipedal. With only two limbs for propulsion and balance, theropods would have been greatly constrained in their locomotor performance at large body size. Using three-dimensional restorations of the axial bodies and limbs of 12 theropod dinosaurs, and determining their rotational inertias (RIs) about a vertical axis, we show that these animals expressed a pattern of phyletic size increase that minimized the increase in RI associated with increases in body size. By contrast, the RI of six quadrupedal, carnivorous archosaurs exhibited changes in body proportions that were closer to those predicted by isometry. Correlations of low RI with high agility in lizards suggest that large theropods, with low relative RI, could engage in activities requiring higher agility than would be possible with isometric scaling. PMID:15101419

  17. A unified perspective on ankle push-off in human walking

    PubMed Central

    Adamczyk, Peter G.

    2016-01-01

    ABSTRACT Muscle–tendon units about the ankle joint generate a burst of positive power during the step-to-step transition in human walking, termed ankle push-off, but there is no scientific consensus on its functional role. A central question embodied in the biomechanics literature is: does ankle push-off primarily contribute to leg swing, or to center of mass (COM) acceleration? This question has been debated in various forms for decades. However, it actually presents a false dichotomy, as these two possibilities are not mutually exclusive. If we ask either question independently, the answer is the same: yes! (1) Does ankle push-off primarily contribute to leg swing acceleration? Yes. (2) Does ankle push-off primarily contribute to COM acceleration? Yes. Here, we summarize the historical debate, then synthesize the seemingly polarized perspectives and demonstrate that both descriptions are valid. The principal means by which ankle push-off affects COM mechanics is by a localized action that increases the speed and kinetic energy of the trailing push-off limb. Because the limb is included in body COM computations, this localized segmental acceleration also accelerates the COM, and most of the segmental energy change also appears as COM energy change. Interpretation of ankle mechanics should abandon an either/or contrast of leg swing versus COM acceleration. Instead, ankle push-off should be interpreted in light of both mutually consistent effects. This unified perspective informs our fundamental understanding of the role of ankle push-off, and has important implications for the design of clinical interventions (e.g. prostheses, orthoses) intended to restore locomotor function to individuals with disabilities. PMID:27903626

  18. Robot-Applied Resistance Augments the Effects of Body Weight-Supported Treadmill Training on Stepping and Synaptic Plasticity in a Rodent Model of Spinal Cord Injury.

    PubMed

    Hinahon, Erika; Estrada, Christina; Tong, Lin; Won, Deborah S; de Leon, Ray D

    2017-08-01

    The application of resistive forces has been used during body weight-supported treadmill training (BWSTT) to improve walking function after spinal cord injury (SCI). Whether this form of training actually augments the effects of BWSTT is not yet known. To determine if robotic-applied resistance augments the effects of BWSTT using a controlled experimental design in a rodent model of SCI. Spinally contused rats were treadmill trained using robotic resistance against horizontal (n = 9) or vertical (n = 8) hind limb movements. Hind limb stepping was tested before and after 6 weeks of training. Two control groups, one receiving standard training (ie, without resistance; n = 9) and one untrained (n = 8), were also tested. At the terminal experiment, the spinal cords were prepared for immunohistochemical analysis of synaptophysin. Six weeks of training with horizontal resistance increased step length, whereas training with vertical resistance enhanced step height and movement velocity. None of these changes occurred in the group that received standard (ie, no resistance) training or in the untrained group. Only standard training increased the number of step cycles and shortened cycle period toward normal values. Synaptophysin expression in the ventral horn was highest in rats trained with horizontal resistance and in untrained rats and was positively correlated with step length. Adding robotic-applied resistance to BWSTT produced gains in locomotor function over BWSTT alone. The impact of resistive forces on spinal connections may depend on the nature of the resistive forces and the synaptic milieu that is present after SCI.

  19. Timing of Locomotor Recovery from Anoxia Modulated by the white Gene in Drosophila

    PubMed Central

    Xiao, Chengfeng; Robertson, R. Meldrum

    2016-01-01

    Locomotor recovery from anoxia follows the restoration of disordered ion distributions and neuronal excitability. The time taken for locomotor recovery after 30 sec anoxia (around 10 min) is longer than the time for the propagation of action potentials to be restored (<1 min) in Drosophila wild type. We report here that the white (w) gene modulates the timing of locomotor recovery. Wild-type flies displayed fast and consistent recovery of locomotion from anoxia, whereas mutants of w showed significantly delayed and more variable recovery. Genetic analysis including serial backcrossing revealed a strong association between the w locus and the timing of locomotor recovery, and haplo-insufficient function of w+ in promoting fast recovery. The locomotor recovery phenotype was independent of classic eye pigmentation, although both are associated with the w gene. Introducing up to four copies of mini-white (mw+) into w1118 was insufficient to promote fast and consistent locomotor recovery. However, flies carrying w+ duplicated to the Y chromosome showed wild-type-like fast locomotor recovery. Furthermore, Knockdown of w by RNA interference (RNAi) in neurons but not glia delayed locomotor recovery, and specifically, knockdown of w in subsets of serotonin neurons was sufficient to delay the locomotor recovery. These data reveal an additional role for w in modulating the timing of locomotor recovery from anoxia. PMID:27029736

  20. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: A case study.

    PubMed

    Tanabe, Shigeo; Koyama, Soichiro; Saitoh, Eiichi; Hirano, Satoshi; Yatsuya, Kanan; Tsunoda, Tetsuya; Katoh, Masaki; Gotoh, Takeshi; Furumoto, Ayako

    2017-01-01

    Patients with tetraplegia can achieve independent gait with lateral-type powered exoskeletons; it is unclear whether medial-type powered exoskeletons allow for this. To investigate gait training with a medial-type powered exoskeleton wearable power-assist locomotor (WPAL) in an individual with incomplete cervical (C5) and complete thoracic (T12) spinal cord injury (SCI). The 60-session program was investigated retrospectively using medical records. Upon completion, gait performance was examined using three-dimensional motion analyses and surface electromyography (EMG) of the upper limbs. The subject achieved independent gait with WPAL and a walker in 12 sessions. He continuously extended his right elbow; his left elbow periodically flexed/extended. His pelvic inclination was larger than the trunk inclination during single-leg stance. EMG activity was increased in the left deltoid muscles during ipsilateral foot-contact. The right anterior and medial deltoid muscle EMG activity increased just after foot-off for each leg, as did the right biceps activity. Continuous activity was observed in the left triceps throughout the gait cycle; activity was unclear in the right triceps. These results suggest the importance of upper limb residual motor function, and may be useful in extending the range of clinical applications for robotic gait rehabilitation in patients with SCI.

  1. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    PubMed

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  2. An animal model to evaluate skin-implant-bone integration and gait with a prosthesis directly attached to the residual limb

    PubMed Central

    Farrell, Brad J; Prilutsky, Boris I; Kistenberg, Robert S; Dalton, John F; Pitkin, Mark

    2014-01-01

    Background Despite the number of advantages of bone-anchored prostheses, their use in patients is limited due to the lack of complete skin-implant integration. The objective of the present study was to develop an animal model that would permit both detailed investigations of gait with a bone-anchored limb prosthesis and histological analysis of the skin-implant-bone interface after physiological loading of the implant during standing and walking. Methods Full-body mechanics of walking in two cats was recorded and analyzed before and after implantation of a percutaneous porous titanium pylon into the right tibia and attachment of a prosthesis. The rehabilitation procedures included initial limb casting, progressively increasing loading of implant, and standing and locomotor training. Detailed histological analysis of bone and skin ingrowth into implant was performed at the end of the study. Findings The two animals adopted the bone-anchored prosthesis for standing and locomotion, although loads on the prosthetic limb during walking decreased by 22% and 62%, respectively, 4 months after implantation. The animals shifted body weight to the contralateral side and increased propulsion forces by the contralateral hindlimb. Histological analysis of the limb implants demonstrated bone and skin ingrowth. Interpretation The developed animal model to study prosthetic gait and tissue integration with the implant demonstrated that porous titanium implants may permit bone and skin integration and prosthetic gait with a prosthesis. Future studies with this model will help optimize the implant and prosthesis properties. PMID:24405567

  3. The impact of exercise and vitamin D supplementation on physical function in community-dwelling elderly individuals: A randomized trial.

    PubMed

    Aoki, Kana; Sakuma, Mayumi; Endo, Naoto

    2018-04-25

    We investigated the impact of exercise and vitamin D supplementation on physical function and locomotor dysfunction in community-dwelling elderly individuals. In total, 148 community-dwelling elderly individuals (aged ≥60 years) who were not taking osteoporosis medications participated in a 24-week intervention. The participants were randomly divided into an exercise group, vitamin D group, and exercise and vitamin D group. The participants and outcome-assessing staff were not blinded to group assignment. Exercise comprised three daily sets each of single-leg standing (1 min/leg/set) and squatting (5-6 repetitions/set); vitamin D supplementation was 1000 IU/day. Participants were contacted every 2 weeks to check on their condition and encourage continued participation. The primary outcome was lower limb muscle strength and mass; secondary outcomes were several physical function measurements, serum 25-hydroxyvitamin D levels, and results of a self-assessment questionnaire completed pre- and post-intervention. We analyzed data from 45, 42, and 43 participants in the exercise, vitamin D, and exercise and vitamin D groups, respectively, who completed the intervention. Locomotive syndrome, which involves reduced mobility due to locomotive organ impairment, was diagnosed in 99 participants (76.2%). Many physical function measurements improved in all groups. Lower limb muscle mass increased significantly in all three groups, with no significant differences between the groups in the degree of change. The average serum 25-hydroxyvitamin D of all vitamin D-supplemented participants increased from 28.1 ng/ml to 47.3 ng/ml after vitamin D supplementation. Both exercise and vitamin D supplementation independently improved physical function and increased muscle mass in community-dwelling elderly individuals. Moreover, the combination of exercise and vitamin D supplementation might further enhance these positive effects. UMIN Clinical Trial, UMIN000028229. Copyright © 2018. Published by Elsevier B.V.

  4. Cholinergic mechanisms in spinal locomotion—potential target for rehabilitation approaches

    PubMed Central

    Jordan, Larry M.; McVagh, J. R.; Noga, B. R.; Cabaj, A. M.; Majczyński, H.; Sławińska, Urszula; Provencher, J.; Leblond, H.; Rossignol, Serge

    2014-01-01

    Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a “hyper-cholinergic” state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in suppressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our experiments. PMID:25414645

  5. The origin of bipedality as the result of a developmental by-product: The case study of the olive baboon (Papio anubis).

    PubMed

    Druelle, François; Aerts, Peter; Berillon, Gilles

    2017-12-01

    In this paper, we point to the importance of considering infancy in the emergence of new locomotor modes during evolution, and particularly when considering bipedal walking. Indeed, because infant primates commonly exhibit a more diverse posturo-locomotor repertoire than adults, the developmental processes of locomotion represent an important source of variation upon which natural selection may act. We have had the opportunity to follow the development of locomotion in captive individuals of a committed quadrupedal primate, the olive baboon (Papio anubis). We observed six infants at two different stages of their development. In total, we were able to analyze the temporal parameters of 65 bipedal steps, as well as their behavioral components. Our results show that while the basic temporal aspects of the bipedal walking gait (i.e., duty factor, dimensionless frequency, and hind lag) do not change during development, the baboon is able to significantly improve the coordination pattern between hind limbs. This probably influences the bout duration of spontaneous bipedal walking. During the same developmental stage, the interlimb coordination in quadrupedal walking is improved and the proportion of quadrupedal behaviors increases significantly. Therefore, the quadrupedal pattern of primates does not impede the developmental acquisition of bipedal behaviors. This may suggest that the same basic mechanism is responsible for controlling bipedal and quadrupedal locomotion, i.e., that in non-human primates, the neural networks for quadrupedal locomotion are also employed to perform (occasional) bipedal walking. In this context, a secondary locomotor mode (e.g., bipedalism) experienced during infancy as a by-product of locomotor development may lead to evolutionary novelties when under appropriate selective pressures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dynamic "Range of Motion" Hindlimb Stretching Disrupts Locomotor Function in Rats with Moderate Subacute Spinal Cord Injuries.

    PubMed

    Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice; Magnuson, David

    2017-06-15

    Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague-Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery.

  7. Dynamic “Range of Motion” Hindlimb Stretching Disrupts Locomotor Function in Rats with Moderate Subacute Spinal Cord Injuries

    PubMed Central

    Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice

    2017-01-01

    Abstract Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague–Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery. PMID:28288544

  8. Exogenous melatonin in periodic limb movement disorder: an open clinical trial and a hypothesis.

    PubMed

    Kunz, D; Bes, F

    2001-03-15

    The etiology of Periodic Limb Movement Disorder (PLMD) as well as the precise role of melatonin in human physiology remains poorly understood. Inspired by a single case observation we performed the presented study in order to obtain first evidence for the hypothesis that exogenous melatonin would decrease PLM's and thereby improves symptoms of PLMD patients. N/A. N/A. Nine patients with first time diagnosis of PLMD without RLS were treated over a six-week period with 3 mg melatonin, taken between 10 and 11 p.m. N/A. Melatonin improved well-being in 7 of the 9 patients. Polysomnography, performed prior and at the end of melatonin treatment, demonstrated a significant reduction of investigated movement parameters, such as PLMs, PLM index, PLMs with arousals and PLM-arousal index. Actigraphy, measured over 14 nights prior and during the last 14 days of melatonin treatment, showed a significant reduction in movement rate and minutes with movements during Time in Bed. The temporal distribution of PLMs, as well as the coupling of PLMs with the phase position of circadian temperature curve, suggest an involvement of the circadian timing system in the pathophysiology of PLMD. Locomotor activity in animals clearly exhibits a circadian pattern and can be strongly influenced by exogenous melatonin. Results suggest a chronobiotic effect of exogenous melatonin in PLMD. More specifically, we hypothesize that the mode of action of melatonin in the presented PLMD patients might have been an increase of output-amplitude of the circadian timing system, thereby enhancing the circadian rhythmicity of locomotor activity with a reduction of sleep motor activity.

  9. White - cGMP Interaction Promotes Fast Locomotor Recovery from Anoxia in Adult Drosophila

    PubMed Central

    2017-01-01

    Increasing evidence indicates that the white (w) gene in Drosophila possesses extra-retinal functions in addition to its classical role in eye pigmentation. We have previously shown that w+ promotes fast and consistent locomotor recovery from anoxia, but how w+ modulates locomotor recovery is largely unknown. Here we show that in the absence of w+, several PDE mutants, especially cyclic guanosine monophosphate (cGMP)-specific PDE mutants, display wildtype-like fast locomotor recovery from anoxia, and that during the night time, locomotor recovery was light-sensitive in white-eyed mutant w1118, and light-insensitive in PDE mutants under w1118 background. Data indicate the involvement of cGMP in the modulation of recovery timing and presumably, light-evoked cGMP fluctuation is associated with light sensitivity of locomotor recovery. This was further supported by the observations that w-RNAi-induced delay of locomotor recovery was completely eliminated by upregulation of cGMP through multiple approaches, including PDE mutation, simultaneous overexpression of an atypical soluble guanylyl cyclase Gyc88E, or sildenafil feeding. Lastly, prolonged sildenafil feeding promoted fast locomotor recovery from anoxia in w1118. Taken together, these data suggest that a White-cGMP interaction modulates the timing of locomotor recovery from anoxia. PMID:28060942

  10. Neuromodulation of the lumbar spinal locomotor circuit.

    PubMed

    AuYong, Nicholas; Lu, Daniel C

    2014-01-01

    The lumbar spinal cord contains the necessary circuitry to independently drive locomotor behaviors. This function is retained following spinal cord injury (SCI) and is amenable to rehabilitation. Although the effectiveness of task-specific training and pharmacologic modulation has been repeatedly demonstrated in animal studies, results from human studies are less striking. Recently, lumbar epidural stimulation (EDS) along with locomotor training was shown to restore weight-bearing function and lower-extremity voluntary control in a chronic, motor-complete human SCI subject. Related animal studies incorporating EDS as part of the therapeutic regiment are also encouraging. EDS is emerging as a promising neuromodulatory tool for SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Mechanical and energetic scaling relationships of running gait through ontogeny in the ostrich (Struthio camelus).

    PubMed

    Smith, Nicola C; Wilson, Alan M

    2013-03-01

    It is unclear whether small animals, with their high stride frequency and crouched posture, or large animals, with more tendinous limbs, are more reliant on storage and return of elastic energy during locomotion. The ostrich has a limb structure that appears to be adapted for high-speed running with long tendons and short muscle fibres. Here we investigate biomechanics of ostrich gait through growth and, with consideration of anatomical data, identify scaling relationships with increasing body size, relating to forces acting on the musculoskeletal structures, effective mechanical advantage (EMA) and mechanical work. Kinematic and kinetic data were collected through growth from running ostriches. Joint moments scaled in a similar way to the pelvic limb segments as a result of consistent posture through growth, such that EMA was independent of body mass. Because no postural change was observed, relative loads applied to musculoskeletal tissues would be predicted to increase during growth, with greater muscle, and hence tendon, load allowing increased potential for elastic energy storage with increasing size. Mass-specific mechanical work per unit distance was independent of body mass, resulting in a small but significant increase in the contribution of elastic energy storage to locomotor economy in larger ostriches.

  12. Limb movements during embryonic development in the chick: evidence for a continuum in limb motor control antecedent to locomotion.

    PubMed

    Bradley, Nina S; Solanki, Dhara; Zhao, Dawn

    2005-12-01

    New imaging technologies are revealing ever-greater details of motor behavior in fetuses for clinical diagnosis and treatment. Understanding the form, mechanisms, and significance of fetal behavior will maximize imaging applications. The chick is readily available for experimentation throughout embryogenesis, making it an excellent model for this purpose. Yet in 40 yr since Hamburger and colleagues described chick embryonic behavior, we have not determined if motility belongs to a developmental continuum fundamental to posthatching behavior. This study examined kinematics and synchronized electromyography (EMG) during spontaneous limb movements in chicks at four time points between embryonic days (E) 9-18. We report that coordinated kinematic and/or EMG patterns were expressed at each time point. Variability observed in knee and ankle excursions at E15-E18 sorted into distinct in-phase and out-of-phase patterns. EMG patterns did not directly account for out-of-phase patterns, indicating study of movement biomechanics will be critical to fully understand motor control in the embryo. We also provide the first descriptions of 2- to 10-Hz limb movements emerging E15-E18 and a shift from in-phase to out-of-phase interlimb coordination E9-E18. Our findings revealed that coordinated limb movements persist across development and suggest they belong to a developmental continuum for locomotion. Limb patterns were consistent with the half center model for a locomotor pattern generator. Achievement of these patterns by E9 may thus indicate the embryo has completed a critical phase beyond which developmental progression may be less vulnerable to experimental perturbations or prenatal events.

  13. Cardiac cycle-synchronized electrical muscle stimulator for lower limb training with the potential to reduce the heart's pumping workload

    PubMed Central

    Matsuse, Hiroo; Akimoto, Ryuji; Kamiya, Shiro; Moritani, Toshio; Sasaki, Motoki; Ishizaki, Yuta; Ohtsuka, Masanori; Nakayoshi, Takaharu; Ueno, Takafumi; Shiba, Naoto; Fukumoto, Yoshihiro

    2017-01-01

    Background The lower limb muscle may play an important role in decreasing the heart’s pumping workload. Aging and inactivity cause atrophy and weakness of the muscle, leading to a loss of the heart-assisting role. An electrical lower limb muscle stimulator can prevent atrophy and weakness more effectively than conventional resistance training; however, it has been reported to increase the heart’s pumping workload in some situations. Therefore, more effective tools should be developed. Methods We newly developed a cardiac cycle-synchronized electrical lower limb muscle stimulator by combining a commercially available electrocardiogram monitor and belt electrode skeletal muscle electrical stimulator, making it possible to achieve strong and wide but not painful muscle contractions. Then, we tested the stimulator in 11 healthy volunteers to determine whether the special equipment enabled lower limb muscle training without harming the hemodynamics using plethysmography and a percutaneous cardiac output analyzer. Results In 9 of 11 subjects, the stimulator generated diastolic augmentation waves on the dicrotic notches and end-diastolic pressure reduction waves on the plethysmogram waveforms of the brachial artery, showing analogous waveforms in the intra-aortic balloon pumping heart-assisting therapy. The heart rate, stroke volume, and cardiac output significantly increased during the stimulation. There was no change in the systolic or diastolic blood pressure during the stimulation. Conclusion Cardiac cycle-synchronized electrical muscle stimulation for the lower limbs may enable muscle training without harmfully influencing the hemodynamics and with a potential to reduce the heart’s pumping workload, suggesting a promising tool for effectively treating both locomotor and cardiovascular disorders. PMID:29117189

  14. Ontogenetic changes in limb bone structural proportions in mountain gorillas (Gorilla beringei beringei).

    PubMed

    Ruff, Christopher B; Burgess, M Loring; Bromage, Timothy G; Mudakikwa, Antoine; McFarlin, Shannon C

    2013-12-01

    Behavioral studies indicate that adult mountain gorillas (Gorilla beringei) are the most terrestrial of all nonhuman hominoids, but that infant mountain gorillas are much more arboreal. Here we examine ontogenetic changes in diaphyseal strength and length of the femur, tibia, humerus, radius, and ulna in 30 Virunga mountain gorillas, including 18 immature specimens and 12 adults. Comparisons are also made with 14 adult western lowland gorillas (Gorilla gorilla gorilla), which are known to be more arboreal than adult mountain gorillas. Infant mountain gorillas have significantly stronger forelimbs relative to hind limbs than older juveniles and adults, but are nonsignificantly different from western lowland gorilla adults. The change in inter-limb strength proportions is abrupt at about two years of age, corresponding to the documented transition to committed terrestrial quadrupedalism in mountain gorillas. The one exception is the ulna, which shows a gradual increase in strength relative to the radius and other long bones during development, possibly corresponding to the gradual adoption of stereotypical fully pronated knuckle-walking in older juvenile gorillas. Inter-limb bone length proportions show a contrasting developmental pattern, with hind limb/forelimb length declining rapidly from birth to five months of age, and then showing no consistent change through adulthood. The very early change in length proportions, prior to significant independent locomotion, may be related to the need for relatively long forelimbs for climbing in a large-bodied hominoid. Virunga mountain gorilla older juveniles and adults have equal or longer forelimb relative to hind limb bones than western lowland adults. These findings indicate that both ontogenetically and among closely related species of Gorilla, long bone strength proportions better reflect actual locomotor behavior than bone length proportions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (family: Balistidae).

    PubMed

    Dornburg, Alex; Sidlauskas, Brian; Santini, Francesco; Sorenson, Laurie; Near, Thomas J; Alfaro, Michael E

    2011-07-01

    Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins that triggerfish use to swim may have catalyzed the ecological diversification of the group. By adopting a comparative phylogenetic approach to quantify median fin and body shape integration and to assess the tempo of functional and morphological evolution in locomotor traits, we find that: (1) functional and morphological components of the locomotive system exhibit a strong signal of correlated evolution; (2) triggerfish partitioned locomotor morphological and functional spaces early in their history; and (3) there is no strong evidence that a pulse of lineage diversification accompanied the major episode of phenotypic diversification. Together these findings suggest that the acquisition of a distinctive mode of locomotion drove an early radiation of shape and function in triggerfish, but not an early radiation of species. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  16. The anatomy and physiology of the locomotor system.

    PubMed

    Farley, Alistair; McLafferty, Ella; Hendry, Charles

    Mobilisation is one of the activities of living. The term locomotor system refers to those body tissues and organs responsible for movement. Nurses and healthcare workers should be familiar with the body structures that enable mobilisation to assist those in their care with this activity. This article outlines the structure and function of the locomotor system, including the skeleton, joints, muscles and muscle attachments. Two common bone disorders, osteoporosis and osteoarthritis, are also considered.

  17. Intraspinal Microstimulation Produces Over-ground Walking in Anesthetized Cats

    PubMed Central

    Holinski, B.J.; Mazurek, K.A.; Everaert, D.G.; Toossi, A.; Lucas-Osma, A.M.; Troyk, P.; Etienne-Cummings, R.; Stein, R.B.; Mushahwar, V.K.

    2016-01-01

    Objective Spinal cord injury causes a drastic loss of motor, sensory and autonomic function. The goal of this project was to investigate the use of intraspinal microstimulation (ISMS) for producing long distances of walking over ground. ISMS is an electrical stimulation method developed for restoring motor function by activating spinal networks below the level of an injury. It produces movements of the legs by stimulating the ventral horn of the lumbar enlargement using fine penetrating electrodes (≤ 50µm diameter). Approach In each of five adult cats (4.2–5.5kg), ISMS was applied through 16 electrodes implanted with tips targeting lamina IX in the ventral horn bilaterally. A desktop system implemented a physiologically-based control strategy that delivered different stimulation patterns through groups of electrodes to evoke walking movements with appropriate limb kinematics and forces corresponding to swing and stance. Each cat walked over an instrumented 2.9m walkway and limb kinematics and forces were recorded. Main Results Both propulsive and supportive forces were required for over-ground walking. Cumulative walking distances ranging from 609m to 835m (longest tested) were achieved in three animals. In these three cats, the mean peak supportive force was 3.5±0.6N corresponding to full-weight-support of the hind legs, while the angular range of the hip, knee, and ankle joints were 23.1±2.0°, 29.1±0.2°, and 60.3±5.2°, respectively. To further demonstrate the viability of ISMS for future clinical use, a prototype implantable module was successfully implemented in a subset of trials and produced comparable walking performance. Significance By activating inherent locomotor networks within the lumbosacral spinal cord, ISMS was capable of producing bilaterally coordinated and functional over-ground walking with current amplitudes <100 µA. These exciting results suggest that ISMS may be an effective intervention for restoring functional walking after spinal cord injury. PMID:27619069

  18. Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection

    PubMed Central

    Bui, Tuan V; Stifani, Nicolas; Akay, Turgay; Brownstone, Robert M

    2016-01-01

    The spinal cord has the capacity to coordinate motor activities such as locomotion. Following spinal transection, functional activity can be regained, to a degree, following motor training. To identify microcircuits involved in this recovery, we studied a population of mouse spinal interneurons known to receive direct afferent inputs and project to intermediate and ventral regions of the spinal cord. We demonstrate that while dI3 interneurons are not necessary for normal locomotor activity, locomotor circuits rhythmically inhibit them and dI3 interneurons can activate these circuits. Removing dI3 interneurons from spinal microcircuits by eliminating their synaptic transmission left locomotion more or less unchanged, but abolished functional recovery, indicating that dI3 interneurons are a necessary cellular substrate for motor system plasticity following transection. We suggest that dI3 interneurons compare inputs from locomotor circuits with sensory afferent inputs to compute sensory prediction errors that then modify locomotor circuits to effect motor recovery. DOI: http://dx.doi.org/10.7554/eLife.21715.001 PMID:27977000

  19. The hippocampus participates in the control of locomotion speed.

    PubMed

    López Ruiz, J R; Osuna Carrasco, L P; López Valenzuela, C L; Franco Rodríguez, N E; de la Torre Valdovinos, B; Jiménez Estrada, I; Dueñas Jiménez, J M; Dueñas Jiménez, S H

    2015-12-17

    The hippocampus role in sensory-motor integration remains unclear. In these experiments we study its function in the locomotor control. To establish the connection between the hippocampus and the locomotor system, electrical stimulation in the CA1 region was applied and EMG recordings were obtained. We also evaluated the hindlimbs and forelimbs kinematic patterns in rats with a penetrating injury (PI) in the hippocampus as well as in a cortex-injured group (CI), which served as control. After the PI, tamoxifen a selective estrogen receptor modulator (SERM) that has been described as a neuroprotector and antiinflammatory drug, or vehicle was administered. Electrical stimulation in the hippocampus produces muscle contractions in the contralateral triceps, when 6 Hz or 8 Hz pulse trains were applied. The penetrating injury in the hippocampus reduced the EMG amplitude after the electrical stimulation. At 7 DPI (days post-injury) we observed an increase in the strides speed in all four limbs of the non-treated group, decreasing the correlation percentage of the studied joints. After 15 DPI the strides speed in the non-treated returned to normal. These changes did not occur in the tamoxifen group nor in cortex-injured group. After 30 days, the nontreated group presented a reduction in the number of pyramidal cell layer neurons at the injury site, in comparison to the tam-treated group. The loss of neurons, may cause the interruption of the trisynaptic circuit and changes in the locomotion speed. Tamoxifen preserves the pyramidal neurons after the injury, probably resulting in the strides speed recovery. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. A novel mouse running wheel that senses individual limb forces: biomechanical validation and in vivo testing

    PubMed Central

    Roach, Grahm C.; Edke, Mangesh

    2012-01-01

    Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion. PMID:22723628

  1. Body-weight-supported treadmill rehabilitation after stroke.

    PubMed

    Duncan, Pamela W; Sullivan, Katherine J; Behrman, Andrea L; Azen, Stanley P; Wu, Samuel S; Nadeau, Stephen E; Dobkin, Bruce H; Rose, Dorian K; Tilson, Julie K; Cen, Steven; Hayden, Sarah K

    2011-05-26

    Locomotor training, including the use of body-weight support in treadmill stepping, is a physical therapy intervention used to improve recovery of the ability to walk after stroke. The effectiveness and appropriate timing of this intervention have not been established. We stratified 408 participants who had had a stroke 2 months earlier according to the extent of walking impairment--moderate (able to walk 0.4 to <0.8 m per second) or severe (able to walk <0.4 m per second)--and randomly assigned them to one of three training groups. One group received training on a treadmill with the use of body-weight support 2 months after the stroke had occurred (early locomotor training), the second group received this training 6 months after the stroke had occurred (late locomotor training), and the third group participated in an exercise program at home managed by a physical therapist 2 months after the stroke (home-exercise program). Each intervention included 36 sessions of 90 minutes each for 12 to 16 weeks. The primary outcome was the proportion of participants in each group who had an improvement in functional walking ability 1 year after the stroke. At 1 year, 52.0% of all participants had increased functional walking ability. No significant differences in improvement were found between early locomotor training and home exercise (adjusted odds ratio for the primary outcome, 0.83; 95% confidence interval [CI], 0.50 to 1.39) or between late locomotor training and home exercise (adjusted odds ratio, 1.19; 95% CI, 0.72 to 1.99). All groups had similar improvements in walking speed, motor recovery, balance, functional status, and quality of life. Neither the delay in initiating the late locomotor training nor the severity of the initial impairment affected the outcome at 1 year. Ten related serious adverse events were reported (occurring in 2.2% of participants undergoing early locomotor training, 3.5% of those undergoing late locomotor training, and 1.6% of those engaging in home exercise). As compared with the home-exercise group, each of the groups receiving locomotor training had a higher frequency of dizziness or faintness during treatment (P=0.008). Among patients with severe walking impairment, multiple falls were more common in the group receiving early locomotor training than in the other two groups (P=0.02). Locomotor training, including the use of body-weight support in stepping on a treadmill, was not shown to be superior to progressive exercise at home managed by a physical therapist. (Funded by the National Institute of Neurological Disorders and Stroke and the National Center for Medical Rehabilitation Research; LEAPS ClinicalTrials.gov number, NCT00243919.).

  2. Biomechanical risk factors for tripping during obstacle--Crossing with the trailing limb in patients with type II diabetes mellitus.

    PubMed

    Hsu, Wei-Chun; Liu, Ming-Wei; Lu, Tung-Wu

    2016-03-01

    People with type II diabetes mellitus (DM) are at a high risk of falling especially during more challenging locomotor tasks such as obstacle-crossing. The current study aimed to identify the risk factors for tripping in these patients during trailing-limb obstacle-crossing. Fourteen patients with type II DM with or without mild peripheral neuropathy (PN) and 14 healthy controls walked and crossed obstacles of three different heights while their motion data were measured using a motion capture system and two forceplates. The DM group was found to cross obstacles with significantly reduced trailing toe clearance (p<0.05), increasing the probability of the foot hitting the obstacle, and thus the risk of tripping. This altered end-point control was associated with significantly reduced knee flexion and hip adduction of the trailing swing limb (p<0.05), as well as significantly increased ankle plantarflexor moments in the leading stance limb (p<0.05). Therefore, reduced knee flexion and hip adduction of the swing limb are identified as risk factors for tripping during obstacle-crossing. Increased mechanical demands on the ankle plantarflexors suggest that weakness of these muscles may further reduce the already compromised performance of obstacle-crossing in these patients. The current results showed that obstacle-crossing can be used to detect gait deviations and to identify the associated risk of tripping in patients with type II DM without or at an early stage of PN. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.

    PubMed

    Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn

    2008-10-09

    A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.

  4. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.

    PubMed

    Zhang, C; Zhang, G; Rong, W; Wang, A; Wu, C; Huo, X

    2015-04-16

    Injury potential, which refers to a direct current voltage between intact and injured nerve ends, is mainly caused by injury-induced Ca2+ influx. Our previous studies revealed that injury potential increased with the onset and severity of spinal cord injury (SCI), and an application of applied electric field stimulation (EFS) with the cathode distal to the lesion could delay and attenuate injury potential formation. As Ca2+ influx is also considered as a major trigger for secondary injury after SCI, we hypothesize that EFS would protect an injured spinal cord from secondary injury and consequently improve functional and pathological outcomes. In this study, rats were divided into three groups: (1) sham group, laminectomy only; (2) control group, subjected to SCI only; and (3) EFS group, received EFS immediately post-injury with the injury potential modulated to 0±0.5 mV by EFS. Functional recovery of the hind limbs was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results revealed that EFS-treated rats exhibited significantly better locomotor function recovery. Luxol fast blue staining was performed to assess the spared myelin area. Immunofluorescence was used to observe the number of myelinated nerve fibers. Ultrastructural analysis was performed to evaluate the size of myelinated nerve fibers. Findings showed that the EFS group rats exhibited significantly less myelin loss and had larger and more myelinated nerve fibers than the control group rats in dorsal corticospinal tract (dCST) 8 weeks after SCI. Furthermore, we found that EFS inhibited the activation of calpain and caspase-3, as well as the expression of Bax, as detected by Western blot analysis. Moreover, EFS decreased cellular apoptosis, as measured by TUNEL, within 4 weeks post-injury. Results suggest that early EFS could significantly reduce spinal cord degeneration and improve functional and historical recovery. Furthermore, these neuroprotective effects may be related to the inhibition of secondary apoptotic responses after SCI. These findings support further investigation of the future clinical application of EFS after SCI. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. A unified perspective on ankle push-off in human walking.

    PubMed

    Zelik, Karl E; Adamczyk, Peter G

    2016-12-01

    Muscle-tendon units about the ankle joint generate a burst of positive power during the step-to-step transition in human walking, termed ankle push-off, but there is no scientific consensus on its functional role. A central question embodied in the biomechanics literature is: does ankle push-off primarily contribute to leg swing, or to center of mass (COM) acceleration? This question has been debated in various forms for decades. However, it actually presents a false dichotomy, as these two possibilities are not mutually exclusive. If we ask either question independently, the answer is the same: yes! (1) Does ankle push-off primarily contribute to leg swing acceleration? Yes. (2) Does ankle push-off primarily contribute to COM acceleration? Yes. Here, we summarize the historical debate, then synthesize the seemingly polarized perspectives and demonstrate that both descriptions are valid. The principal means by which ankle push-off affects COM mechanics is by a localized action that increases the speed and kinetic energy of the trailing push-off limb. Because the limb is included in body COM computations, this localized segmental acceleration also accelerates the COM, and most of the segmental energy change also appears as COM energy change. Interpretation of ankle mechanics should abandon an either/or contrast of leg swing versus COM acceleration. Instead, ankle push-off should be interpreted in light of both mutually consistent effects. This unified perspective informs our fundamental understanding of the role of ankle push-off, and has important implications for the design of clinical interventions (e.g. prostheses, orthoses) intended to restore locomotor function to individuals with disabilities. © 2016. Published by The Company of Biologists Ltd.

  6. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation.

    PubMed

    Harkema, Susan J; Schmidt-Read, Mary; Lorenz, Douglas J; Edgerton, V Reggie; Behrman, Andrea L

    2012-09-01

    To evaluate the effects of intensive locomotor training on balance and ambulatory function at enrollment and discharge during outpatient rehabilitation after incomplete SCI. Prospective observational cohort. Seven outpatient rehabilitation centers from the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Patients (N=196) with American Spinal Injury Association Impairment Scale (AIS) grade C or D SCI who received at least 20 locomotor training treatment sessions in the NRN. Intensive locomotor training, including step training using body-weight support and manual facilitation on a treadmill followed by overground assessment and community integration. Berg Balance Scale; Six-Minute Walk Test; 10-Meter Walk Test. Outcome measures at enrollment showed high variability between patients with AIS grades C and D. Significant improvement from enrollment to final evaluation was observed in balance and walking measures for patients with AIS grades C and D. The magnitude of improvement significantly differed between AIS groups for all measures. Time since SCI was not associated significantly with outcome measures at enrollment, but was related inversely to levels of improvement. Significant variability in baseline values of functional outcome measures is evident after SCI in individuals with AIS grades C and D and significant functional recovery can continue to occur even years after injury when provided with locomotor training. These results indicate that rehabilitation, which provides intensive activity-based therapy, can result in functional improvements in individuals with chronic incomplete SCI. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.

  8. Obstacle stepping involves spinal anticipatory activity associated with quadrupedal limb coordination.

    PubMed

    Michel, J; van Hedel, H J A; Dietz, V

    2008-04-01

    Obstacle avoidance steps are associated with a facilitation of spinal reflexes in leg muscles. Here we have examined the involvement of both leg and arm muscles. Subjects walking with reduced vision on a treadmill were acoustically informed about an approaching obstacle and received feedback about task performance. Reflex responses evoked by tibial nerve stimulation were observed in all arm and leg muscles examined in this study. They were enhanced before the execution of obstacle avoidance compared with normal steps and showed an exponential adaptation in contralateral arm flexor muscles corresponding to the improvement of task performance. This enhancement was absent when the body was partially supported during the task. During the execution of obstacle steps, electromyographic activity in the arm muscles mimicked the preceding reflex behaviour with respect to enhancement and adaptation. Our results demonstrate an anticipatory quadrupedal limb coordination with an involvement of proximal arm muscles in the acquisition and performance of this precision locomotor task. This is presumably achieved by an up-regulated activity of coupled cervico-thoracal interneuronal circuits.

  9. Posture effects on spontaneous limb movements, alternated stepping, and the leg extension response in neonatal rats

    PubMed Central

    Mendez-Gallardo, Valerie; Roberto, Megan E.; Kauer, Sierra D.; Brumley, Michele R.

    2015-01-01

    The development of postural control is considered an important factor for the expression of coordinated behavior such as locomotion. In the natural setting of the nest, newborn rat pups adapt their posture to perform behaviors of ecological relevance such as those related to suckling. The current study explores the role of posture in the expression of three behaviors in the newborn rat: spontaneous limb activity, locomotor-like stepping behavior, and the leg extension response (LER). One-day-old rat pups were tested in one of two postures – prone or supine – on each of these behavioral measures. Results showed that pups expressed more spontaneous activity while supine, more stepping while prone, and no differences in LER expression between the two postures. Together these findings show that posture affects the expression of newborn behavior patterns in different ways, and suggest that posture may act as a facilitator or a limiting factor in the expression of different behaviors during early development. PMID:26655784

  10. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice

    PubMed Central

    Machado, Ana S; Darmohray, Dana M; Fayad, João; Marques, Hugo G; Carey, Megan R

    2015-01-01

    The coordination of movement across the body is a fundamental, yet poorly understood aspect of motor control. Mutant mice with cerebellar circuit defects exhibit characteristic impairments in locomotor coordination; however, the fundamental features of this gait ataxia have not been effectively isolated. Here we describe a novel system (LocoMouse) for analyzing limb, head, and tail kinematics of freely walking mice. Analysis of visibly ataxic Purkinje cell degeneration (pcd) mice reveals that while differences in the forward motion of individual paws are fully accounted for by changes in walking speed and body size, more complex 3D trajectories and, especially, inter-limb and whole-body coordination are specifically impaired. Moreover, the coordination deficits in pcd are consistent with a failure to predict and compensate for the consequences of movement across the body. These results isolate specific impairments in whole-body coordination in mice and provide a quantitative framework for understanding cerebellar contributions to coordinated locomotion. DOI: http://dx.doi.org/10.7554/eLife.07892.001 PMID:26433022

  11. Morphometrics and inertial properties in the body segments of chimpanzees (Pan troglodytes)

    PubMed Central

    Schoonaert, Kirsten; D’Août, Kristiaan; Aerts, Peter

    2007-01-01

    Inertial characteristics and dimensions of the body and body segments form an integral part of a biomechanical analysis of motion. In primate studies, however, segment inertial parameters of non-human hominoids are scarce and often obtained using varying techniques. Therefore, the principal aim of this study was to expand the existing chimpanzee inertial property data set using a non-invasive measuring technique. We also considered age- and sex-related differences within our sample. By means of a geometric model based on Crompton et al. (1996); Am J Phys Anthropol 99, 547–570) we generated inertial properties using external segment length and diameter measurements of 53 anaesthetized chimpanzees (Pan troglodytes). We report absolute inertial parameters for immature and mature subjects and for males and females separately. Proportional data were computed to allow the comparison between age classes and sex classes. In addition, we calculated whole limb inertial properties and we discuss their potential biomechanical consequences. We found no significant differences between the age classes in the proportional data except for hand and foot measures where juveniles exhibit relatively longer and heavier distal segments than adults. Furthermore, most sex-related differences can be directly attributed to the higher absolute segment masses in male chimpanzees resulting in higher moments of inertia. Additionally, males tend to have longer upper limbs than females. However, regarding proportional data we discuss the general inertial properties of the chimpanzee. The described segment inertial parameters of males and females, and of the two age classes, represent a valuable data set ready for use in a range of biomechanical locomotor models. These models offer great potential for improving our understanding of early hominin locomotor patterns. PMID:17451529

  12. Electrolytic lesions of the nucleus accumbens core (but not the medial shell) and the basolateral amygdala enhance context-specific locomotor sensitization to nicotine in rats.

    PubMed

    Kelsey, John E; Gerety, Lyle P; Guerriero, Rejean M

    2009-06-01

    We previously demonstrated that lesions of the nucleus accumbens (NAc) core enhanced locomotion and locomotor sensitization to repeated injections of nicotine in rats (Kelsey & Willmore, 2006). In this study, we compared the effects of separate lesions of the NAc core, NAc medial shell, and basolateral amygdala on context-specific locomotor sensitization to repeated injections of 0.4 mg/kg nicotine. Electrolytic lesions of the NAc core increased locomotion, and lesions of the core (but not the shell) and the basolateral amygdala enhanced context-specific locomotor sensitization by enhancing the development of sensitization in paired rats and decreasing expression in unpaired rats relative to sham-operated rats when challenged with an injection of 0.4 mg/kg nicotine in the locomotor chambers. These data are consistent with findings that the NAc core and the basolateral amygdala share a variety of behavioral functions and anatomical connections. The findings that lesions of these structures enhance context-specific locomotor sensitization while typically impairing other reward-related behaviors also indicate that the processes underlying locomotor sensitization and reward are not identical. Copyright (c) 2009 APA, all rights reserved.

  13. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    PubMed

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of LV dysfunction and higher mortality in Sgcd-/- mice. Treatment of Sgcd-/- mice with the angiotensin type 1 receptor blocker losartan for 8-9 weeks, beginning at 3 weeks of age, decreased fibrosis and oxidative stress in skeletal muscle, increased locomotor activity and prevented autonomic dysfunction. Chronic infusion of the counter-regulatory peptide angiotensin-(1-7) resulted in similar protection. We conclude that activation of the renin-angiotensin system, at a young age, contributes to skeletal muscle and autonomic dysfunction in muscular dystrophy. We speculate that the latter is mediated via abnormal sensory nerve and/or cytokine signalling from dystrophic skeletal muscle to the brain and contributes to age-related LV dysfunction, dilated cardiomyopathy, arrhythmias and premature death. Therefore, correcting the early autonomic dysregulation and renin-angiotensin system activation may provide a novel therapeutic approach in muscular dystrophy.

  14. Locomotor problems among rural elderly population in a District of Aligarh, North India.

    PubMed

    Maroof, Mohd; Ahmad, Anees; Khalique, Najam; Ansari, M Athar

    2017-01-01

    Locomotor functions decline with the age along with other physiological changes. This results in deterioration of the quality of life with decreased social and economic role in the society, as well as increased dependency, for the health care and other basic services. The demographic transition resulting in increased proportion of elderly may pose a burden to the health system. To find the prevalence of locomotor problems among the elderly population, and related sociodemographic factors. The study was a community-based cross-sectional study done at field practice area of Rural Health Training Centre, JN Medical College, AMU, Aligarh, Uttar Pradesh, India. A sample of 225 was drawn from 1018 elderly population aged 60 years and above using systematic random sampling with probability proportionate to size. Sociodemographic characteristics were obtained using pretested and predesigned questionnaire. Locomotor problems were assessed using the criteria used by National Sample Survey Organization. Data were analyzed using SPSS version 20. Chi-square test was used to test relationship of locomotor problems with sociodemographic factors. P <0.05 was considered statistically significant. The prevalence of locomotor problems among the elderly population was 25.8%. Locomotor problems were significantly associated with age, gender, and working status whereas no significant association with literacy status and marital status was observed. The study concluded that approximately one-fourth of the elderly population suffered from locomotor problems. The sociodemographic factors related to locomotor problems needs to be addressed properly to help them lead an independent and economically productive life.

  15. The relevance of morphology for habitat use and locomotion in two species of wall lizards

    NASA Astrophysics Data System (ADS)

    Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni

    2016-01-01

    Understanding if morphological differences between organisms that occupy different environments are associated to differences in functional performance can suggest a functional link between environmental and morphological variation. In this study we examined three components of the ecomorphological paradigm - morphology, locomotor performance and habitat use - using two syntopic wall lizards endemic to the Iberian Peninsula as a case study to establish whether morphological variation is associated with habitat use and determine the potential relevance of locomotor performance for such an association. Differences in habitat use between both lizards matched patterns of morphological variation. Indeed, individuals of Podarcis guadarramae lusitanicus, which are more flattened, used more rocky environments, whereas Podarcis bocagei, which have higher heads, used more vegetation than rocks. These patterns translated into a significant association between morphology and habitat use. Nevertheless, the two species were only differentiated in some of the functional traits quantified, and locomotor performance did not exhibit an association with morphological traits. Our results suggest that the link between morphology and habitat use is mediated by refuge use, rather than locomotor performance, in this system, and advise caution when extrapolating morphology-performance-environment associations across organisms.

  16. Gait-Related Brain Activity in People with Parkinson Disease with Freezing of Gait

    PubMed Central

    Peterson, Daniel S.; Pickett, Kristen A.; Duncan, Ryan; Perlmutter, Joel; Earhart, Gammon M.

    2014-01-01

    Approximately 50% of people with Parkinson disease experience freezing of gait, described as a transient inability to produce effective stepping. Complex gait tasks such as turning typically elicit freezing more commonly than simple gait tasks, such as forward walking. Despite the frequency of this debilitating and dangerous symptom, the brain mechanisms underlying freezing remain unclear. Gait imagery during functional magnetic resonance imaging permits investigation of brain activity associated with locomotion. We used this approach to better understand neural function during gait-like tasks in people with Parkinson disease who experience freezing- “FoG+” and people who do not experience freezing- ”FoG−“. Nine FoG+ and nine FoG− imagined complex gait tasks (turning, backward walking), simple gait tasks (forward walking), and quiet standing during measurements of blood oxygen level dependent (BOLD) signal. Changes in BOLD signal (i.e. beta weights) during imagined walking and imagined standing were analyzed across FoG+ and FoG− groups in locomotor brain regions including supplementary motor area, globus pallidus, putamen, mesencephalic locomotor region, and cerebellar locomotor region. Beta weights in locomotor regions did not differ for complex tasks compared to simple tasks in either group. Across imagined gait tasks, FoG+ demonstrated significantly lower beta weights in the right globus pallidus with respect to FoG−. FoG+ also showed trends toward lower beta weights in other right-hemisphere locomotor regions (supplementary motor area, mesencephalic locomotor region). Finally, during imagined stand, FoG+ exhibited lower beta weights in the cerebellar locomotor region with respect to FoG−. These data support previous results suggesting FoG+ exhibit dysfunction in a number of cortical and subcortical regions, possibly with asymmetric dysfunction towards the right hemisphere. PMID:24595265

  17. Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton.

    PubMed

    Salton, Justine A; Sargis, Eric J

    2009-03-01

    The tenrecs of Central Africa and Madagascar provide an excellent model for exploring adaptive radiation and functional aspects of mammalian hindlimb form. The pelvic girdle, femur, and crus of 13 tenrecoid species, and four species from the families Solenodontidae, Macroscelididae, and Erinaceidae, were examined and measured. Results from qualitative and quantitative analyses demonstrate remarkable diversity in several aspects of knee and hip joint skeletal form that are supportive of function-based hypotheses, and consistent with studies on nontenrecoid eutherian postcranial adaptation. Locomotor specialists within Tenrecoidea exhibit suites of characteristics that are widespread among eutherians with similar locomotor behaviors. Furthermore, several characters that are constrained at the subfamily level were identified. Such characters are more indicative of postural behavior than locomotor behavior. Copyright 2008 Wiley-Liss, Inc.

  18. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function

    PubMed Central

    Issa, Abdul-Raouf; Seugnet, Laurent; Klarsfeld, André

    2017-01-01

    Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila. PMID:28072817

  19. A Model of Locomotor-Respiratory Coupling in Quadrupeds

    ERIC Educational Resources Information Center

    Giuliodori,, Mauricio J.; Lujan, Heidi L.; Briggs, Whitney S.; DiCarlo, Stephen E.

    2009-01-01

    Locomotion and respiration are not independent phenomena in running mammals because locomotion and respiration both rely on cyclic movements of the ribs, sternum, and associated musculature. Thus, constraints are imposed on locomotor and respiratory function by virtue of their linkage. Specifically, locomotion imposes mechanical constraints on…

  20. Effects of cholestasis on learning and locomotor activity in bile duct ligated rats.

    PubMed

    Hosseini, Nasrin; Alaei, Hojjatallah; Nasehi, Mohammad; Radahmadi, Maryam; Mohammad Reza, Zarrindast

    2014-01-01

    Cognitive functions are impaired in patients with liver disease. Bile duct ligation causes cholestasis that impairs liver function. This study investigated the impact of cholestasis progression on the acquisition and retention times in the passive avoidance test and on the locomotor activity of rats. Cholestasis was induced in male Wistar rats by ligating the main bile duct. Locomotor activity, learning and memory were assessed by the passive avoidance learning test at day 7, day 14, and day 21 post-bile duct ligation. The serum levels of bilirubin, alanine aminotransferase, and alkaline phosphatase were measured. The results showed that acquisition time and locomotor activity were not affected at day 7 and day 14, but they were significantly (P < 0.05) impaired at day 21 post-bile duct ligation compared with the results for the control group. Additionally, memory was significantly impaired on day 7 (P < 0.01), day 14, and day 21 (P < 0.001) compared with the control groups. The levels of total bilirubin, direct bilirubin, indirect bilirubin, alanine aminotransferase, and alkaline phosphatase were significantly higher at day 7, day 14, and day 21 post-bile duct ligation compared with the levels in the sham group. Based on these findings, both liver and memory function were affected in the early stage of cholestasis (7 days after bile duct ligation), while learning and locomotor activity were impaired at 21 days after bile duct ligation following the progression of cholestasis.

  1. Early-life risperidone enhances locomotor responses to amphetamine during adulthood.

    PubMed

    Lee Stubbeman, Bobbie; Brown, Clifford J; Yates, Justin R; Bardgett, Mark E

    2017-10-05

    Antipsychotic drug prescriptions for pediatric populations have increased over the past 20 years, particularly the use of atypical antipsychotic drugs such as risperidone. Most antipsychotic drugs target forebrain dopamine systems, and early-life antipsychotic drug exposure could conceivably reset forebrain neurotransmitter function in a permanent manner that persists into adulthood. This study determined whether chronic risperidone administration during development modified locomotor responses to the dopamine/norepinephrine agonist, D-amphetamine, in adult rats. Thirty-five male Long-Evans rats received an injection of one of four doses of risperidone (vehicle, .3, 1.0, 3.0mg/kg) each day from postnatal day 14 through 42. Locomotor activity was measured for 1h on postnatal days 46 and 47, and then for 24h once a week over the next two weeks. Beginning on postnatal day 75, rats received one of four doses of amphetamine (saline, .3, 1.0, 3.0mg/kg) once a week for four weeks. Locomotor activity was measured for 27h after amphetamine injection. Rats administered risperidone early in life demonstrated increased activity during the 1 and 24h test sessions conducted prior to postnatal day 75. Taking into account baseline group differences, these same rats exhibited significantly more locomotor activity in response to the moderate dose of amphetamine relative to controls. These results suggest that early-life treatment with atypical antipsychotic drugs, like risperidone, permanently alters forebrain catecholamine function and increases sensitivity to drugs that target such function. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A CRPS-IgG-transfer-trauma model reproducing inflammatory and positive sensory signs associated with complex regional pain syndrome.

    PubMed

    Tékus, Valéria; Hajna, Zsófia; Borbély, Éva; Markovics, Adrienn; Bagoly, Teréz; Szolcsányi, János; Thompson, Victoria; Kemény, Ágnes; Helyes, Zsuzsanna; Goebel, Andreas

    2014-02-01

    The aetiology of complex regional pain syndrome (CRPS), a highly painful, usually post-traumatic condition affecting the limbs, is unknown, but recent results have suggested an autoimmune contribution. To confirm a role for pathogenic autoantibodies, we established a passive-transfer trauma model. Prior to undergoing incision of hind limb plantar skin and muscle, mice were injected either with serum IgG obtained from chronic CRPS patients or matched healthy volunteers, or with saline. Unilateral hind limb plantar skin and muscle incision was performed to induce typical, mild tissue injury. Mechanical hyperalgesia, paw swelling, heat and cold sensitivity, weight-bearing ability, locomotor activity, motor coordination, paw temperature, and body weight were investigated for 8days. After sacrifice, proinflammatory sensory neuropeptides and cytokines were measured in paw tissues. CRPS patient IgG treatment significantly increased hind limb mechanical hyperalgesia and oedema in the incised paw compared with IgG from healthy subjects or saline. Plantar incision induced a remarkable elevation of substance P immunoreactivity on day 8, which was significantly increased by CRPS-IgG. In this IgG-transfer-trauma model for CRPS, serum IgG from chronic CRPS patients induced clinical and laboratory features resembling the human disease. These results support the hypothesis that autoantibodies may contribute to the pathophysiology of CRPS, and that autoantibody-removing therapies may be effective treatments for long-standing CRPS. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  3. Adaptive functional specialisation of architectural design and fibre type characteristics in agonist shoulder flexor muscles of the llama, Lama glama.

    PubMed

    Graziotti, Guillermo H; Chamizo, Verónica E; Ríos, Clara; Acevedo, Luz M; Rodríguez-Menéndez, J M; Victorica, C; Rivero, José-Luis L

    2012-08-01

    Like other camelids, llamas (Lama glama) have the natural ability to pace (moving ipsilateral limbs in near synchronicity). But unlike the Old World camelids (bactrian and dromedary camels), they are well adapted for pacing at slower or moderate speeds in high-altitude habitats, having been described as good climbers and used as pack animals for centuries. In order to gain insight into skeletal muscle design and to ascertain its relationship with the llama's characteristic locomotor behaviour, this study examined the correspondence between architecture and fibre types in two agonist muscles involved in shoulder flexion (M. teres major - TM and M. deltoideus, pars scapularis - DS and pars acromialis - DA). Architectural properties were found to be correlated with fibre-type characteristics both in DS (long fibres, low pinnation angle, fast-glycolytic fibre phenotype with abundant IIB fibres, small fibre size, reduced number of capillaries per fibre and low oxidative capacity) and in DA (short fibres, high pinnation angle, slow-oxidative fibre phenotype with numerous type I fibres, very sparse IIB fibres, and larger fibre size, abundant capillaries and high oxidative capacity). This correlation suggests a clear division of labour within the M. deltoideus of the llama, DS being involved in rapid flexion of the shoulder joint during the swing phase of the gait, and DA in joint stabilisation during the stance phase. However, the architectural design of the TM muscle (longer fibres and lower fibre pinnation angle) was not strictly matched with its fibre-type characteristics (very similar to those of the postural DA muscle). This unusual design suggests a dual function of the TM muscle both in active flexion of the shoulder and in passive support of the limb during the stance phase, pulling the forelimb to the trunk. This functional specialisation seems to be well suited to a quadruped species that needs to increase ipsilateral stability of the limb during the support phase of the pacing gait. Compared with other species, llama skeletal muscles are well suited for greater force generation combined with higher fatigue resistance during exercise. These characteristics are interpreted as being of high adaptive value, given the llama's habitat and its use as a pack animal. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  4. Adaptive functional specialisation of architectural design and fibre type characteristics in agonist shoulder flexor muscles of the llama, Lama glama

    PubMed Central

    Graziotti, Guillermo H; Chamizo, Verónica E; Ríos, Clara; Acevedo, Luz M; Rodríguez-Menéndez, J M; Victorica, C; Rivero, José-Luis L

    2012-01-01

    Like other camelids, llamas (Lama glama) have the natural ability to pace (moving ipsilateral limbs in near synchronicity). But unlike the Old World camelids (bactrian and dromedary camels), they are well adapted for pacing at slower or moderate speeds in high-altitude habitats, having been described as good climbers and used as pack animals for centuries. In order to gain insight into skeletal muscle design and to ascertain its relationship with the llama’s characteristic locomotor behaviour, this study examined the correspondence between architecture and fibre types in two agonist muscles involved in shoulder flexion (M. teres major – TM and M. deltoideus, pars scapularis – DS and pars acromialis – DA). Architectural properties were found to be correlated with fibre-type characteristics both in DS (long fibres, low pinnation angle, fast-glycolytic fibre phenotype with abundant IIB fibres, small fibre size, reduced number of capillaries per fibre and low oxidative capacity) and in DA (short fibres, high pinnation angle, slow-oxidative fibre phenotype with numerous type I fibres, very sparse IIB fibres, and larger fibre size, abundant capillaries and high oxidative capacity). This correlation suggests a clear division of labour within the M. deltoideus of the llama, DS being involved in rapid flexion of the shoulder joint during the swing phase of the gait, and DA in joint stabilisation during the stance phase. However, the architectural design of the TM muscle (longer fibres and lower fibre pinnation angle) was not strictly matched with its fibre-type characteristics (very similar to those of the postural DA muscle). This unusual design suggests a dual function of the TM muscle both in active flexion of the shoulder and in passive support of the limb during the stance phase, pulling the forelimb to the trunk. This functional specialisation seems to be well suited to a quadruped species that needs to increase ipsilateral stability of the limb during the support phase of the pacing gait. Compared with other species, llama skeletal muscles are well suited for greater force generation combined with higher fatigue resistance during exercise. These characteristics are interpreted as being of high adaptive value, given the llama’s habitat and its use as a pack animal. PMID:22625659

  5. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha.

    PubMed

    Mosquera, Laurivette; Colón, Jennifer M; Santiago, José M; Torrado, Aranza I; Meléndez, Margarita; Segarra, Annabell C; Rodríguez-Orengo, José F; Miranda, Jorge D

    2014-05-02

    17β-Estradiol is a multi-active steroid that imparts neuroprotection via diverse mechanisms of action. However, its role as a neuroprotective agent after spinal cord injury (SCI), or the involvement of the estrogen receptor-alpha (ER-α) in locomotor recovery, is still a subject of much debate. In this study, we evaluated the effects of estradiol and of Tamoxifen (an estrogen receptor mixed agonist/antagonist) on locomotor recovery following SCI. To control estradiol cyclical variability, ovariectomized female rats received empty or estradiol filled implants, prior to a moderate contusion to the spinal cord. Estradiol improved locomotor function at 7, 14, 21, and 28 days post injury (DPI), when compared to control groups (measured with the BBB open field test). This effect was ER-α mediated, because functional recovery was blocked with an ER-α antagonist. We also observed that ER-α was up-regulated after SCI. Long-term treatment (28 DPI) with estradiol and Tamoxifen reduced the extent of the lesion cavity, an effect also mediated by ER-α. The antioxidant effects of estradiol were seen acutely at 2 DPI but not at 28 DPI, and this acute effect was not receptor mediated. Rats treated with Tamoxifen recovered some locomotor activity at 21 and 28 DPI, which could be related to the antioxidant protection seen at these time points. These results show that estradiol improves functional outcome, and these protective effects are mediated by the ER-α dependent and independent-mechanisms. Tamoxifen׳s effects during late stages of SCI support the use of this drug as a long-term alternative treatment for this condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Modelisation of an unspecialized quadruped walking mammal.

    PubMed

    Neveu, P; Villanova, J; Gasc, J P

    2001-12-01

    Kinematics and structural analyses were used as basic data to elaborate a dynamic quadruped model that may represent an unspecialized mammal. Hedgehogs were filmed on a treadmill with a cinefluorographic system providing trajectories of skeletal elements during locomotion. Body parameters such as limb segments mass and length, and segments centre of mass were checked from cadavers. These biological parameters were compiled in order to build a virtual quadruped robot. The robot locomotor behaviour was compared with the actual hedgehog to improve the model and to disclose the necessary changes. Apart from use in robotics, the resulting model may be useful to simulate the locomotion of extinct mammals.

  7. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats.

    PubMed

    Samantaray, Supriti; Das, Arabinda; Matzelle, Denise C; Yu, Shan P; Wei, Ling; Varma, Abhay; Ray, Swapan K; Banik, Naren L

    2016-05-01

    Spinal cord injury (SCI) causes loss of neurological function and, depending upon the severity of injury, may lead to paralysis. Currently, no FDA-approved pharmacotherapy is available for SCI. High-dose methylprednisolone is widely used, but this treatment is controversial. We have previously shown that low doses of estrogen reduces inflammation, attenuates cell death, and protects axon and myelin in SCI rats, but its effectiveness in recovery of function is not known. Therefore, the goal of this study was to investigate whether low doses of estrogen in post-SCI would reduce inflammation, protect cells and axons, and improve locomotor function during the chronic phase of injury. Injury (40 g.cm force) was induced at thoracic 10 in young adult male rats. Rats were treated with 10 or 100 μg 17β-estradiol (estrogen) for 7 days following SCI and compared with vehicle-treated injury and laminectomy (sham) controls. Histology (H&E staining), immunohistofluorescence, Doppler laser technique, and Western blotting were used to monitor tissue integrity, gliosis, blood flow, angiogenesis, the expression of angiogenic factors, axonal degeneration, and locomotor function (Basso, Beattie, and Bresnahan rating) following injury. To assess the progression of recovery, rats were sacrificed at 7, 14, or 42 days post injury. A reduction in glial reactivity, attenuation of axonal and myelin damage, protection of cells, increased expression of angiogenic factors and microvessel growth, and improved locomotor function were found following estrogen treatment compared with vehicle-treated SCI rats. These results suggest that treatment with a very low dose of estrogen has significant therapeutic implications for the improvement of locomotor function in chronic SCI. Experimental studies with low dose estrogen therapy in chronic spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes that could ameliorate the degenerative pathways in chronic SCI as shown in (a). Furthermore, the alterations in local spinal blood flow could be significantly alleviated with low dose estrogen therapy. This therapy led to the preservation of the structural integrity of the spinal cord (b), which in turn led to the improved functional recovery as shown (c). © 2016 International Society for Neurochemistry.

  8. Lower Limb Function in Elderly Korean Adults Is Related to Cognitive Function.

    PubMed

    Kim, A-Sol; Ko, Hae-Jin

    2018-05-01

    Patients with cognitive impairment have decreased lower limb function. Therefore, we aimed to investigate the relationship between lower limb function and cognitive disorders to determine whether lower limb function can be screened to identify cognitive decline. Using Korean National Health Insurance Service-National Sample Cohort database data, we assessed the cognitive and lower limb functioning of 66-year-olds who underwent national health screening between 2010 and 2014. Cognitive function was assessed via a questionnaire. Timed Up-and-Go (TUG) and one-leg-standing (OLS) tests were performed to evaluate lower limb function. Associations between cognitive and lower limb functions were analyzed, and optimal cut-off points for these tests to screen for cognitive decline, were determined. Cognitive function was significantly correlated with TUG interval ( r = 0.414, p < 0.001) and OLS duration ( r = −0.237, p < 0.001). Optimal cut-off points for screening cognitive disorders were >11 s and ≤12 s for TUG interval and OLS duration, respectively. Among 66-year-olds who underwent national health screening, a significant correlation between lower limb and cognitive function was demonstrated. The TUG and OLS tests are useful screening tools for cognitive disorders in elderly patients. A large-scale prospective cohort study should be conducted to investigate the causal relationship between cognitive and lower limb function.

  9. Oxytocin decreases cocaine taking, cocaine seeking, and locomotor activity in female rats

    PubMed Central

    Leong, Kah-Chung; Zhou, Luyi; Ghee, Shannon M.; See, Ronald E.; Reichel, Carmela M.

    2015-01-01

    Oxytocin has been shown to decrease cocaine taking and seeking in male rats, suggesting potential treatment efficacy for drug addiction. In the present study, we extended these findings to the assessment of cocaine seeking and taking in female rats. Further, we made direct comparisons of oxytocin’s impact on cocaine induced locomotor activity in both males and females. In females, systemic oxytocin (0.3, 1.0, 3.0 mg/kg) attenuated lever pressing for cocaine during self-administration and oxytocin (1.0 mg/kg) attenuated cue-induced cocaine seeking following extinction. Cocaine increased baseline locomotor activity to a greater degree in females relative to males. Oxytocin (0.1, 0.3, 1.0, and 3.0 mg/kg) reduced cocaine-induced locomotor activity in females, but not significantly in males. These data illustrate sex similarities in oxytocin’s attenuation of cocaine seeking, but sex differences in cocaine-induced locomotor effects. While reductions in cocaine seeking cannot be attributed to a reduction in locomotor activity in males, attenuation of locomotor function cannot be entirely ruled out as an explanation for a decrease in cocaine seeking in females suggesting that oxytocin’s effect on cocaine seeking may be mediated by different mechanisms in male and females. PMID:26523890

  10. The effects of self-directed home exercise with serial telephone contacts on physical functions and quality of life in elderly people at high risk of locomotor dysfunction.

    PubMed

    Aoki, Kana; Sakuma, Mayumi; Ogisho, Noriyuki; Nakamura, Kozo; Chosa, Etsuo; Endo, Naoto

    2015-01-01

    Exercise is essential for maintaining quality of life (QOL) in elderly individuals. However, adherence to exercise programs is low. Here, we assessed the effectiveness of a self-directed home exercise program with serial telephone contacts to encourage exercise adherence among elderly individuals at high risk of locomotor dysfunction. We recruited community-dwelling adults (ァ65 years) in Niigata, Japan, who were targets of the long-term care prevention project for locomotor dysfunction but did not participate in the government-sponsored prevention programs. The study was conducted from November 2011 to October 2012. Participants received exercise instruction and performed exercises independently for 3 months with serial telephone contacts. The single-leg stance and five-times sit-to-stand tests were used to assess physical function. The SF-8 was used to measure health-related QOL. Ninety-seven participants were enrolled in the study, representing 2.5% of eligible people;87 completed the intervention. Scores from physical function tests were significantly improved by the intervention, as were 7 of eight SF-8 subscales. Adherence was 85.4% for the single-leg standing exercise and 82.1% for squatting. Thus, self-directed home exercise with serial telephone contacts improved physical function and health-related QOL, representing a promising model for preventing the need for long-term care due to locomotor dysfunction.

  11. Upregulation of eIF-5A1 in the paralyzed muscle after spinal cord transection associates with spontaneous hindlimb locomotor recovery in rats by upregulation of the ErbB, MAPK and neurotrophin signal pathways.

    PubMed

    Shang, Fei-Fei; Zhao, Wei; Zhao, Qi; Liu, Jia; Li, Da-Wei; Zhang, Hua; Zhou, Xin-Fu; Li, Cheng-Yun; Wang, Ting-Hua

    2013-10-08

    It is well known that trauma is frequently accompanied by spontaneous functional recovery after spinal cord injury (SCI), but the underlying mechanisms remain elusive. In this study, BBB scores showed a gradual return of locomotor functions after SCT. Proteomics analysis revealed 16 differential protein spots in the gastrocnemius muscle between SCT and normal rats. Of these differential proteins, eukaryotic translation initiation factor 5A1 (elf-5A1), a highly conserved molecule throughout eukaryotes, exhibited marked upregulation in the gastrocnemius muscle after SCT. To study the role of eIF-5A1 in the restoration of hindlimb locomotor functions following SCT, we used siRNA to downregulate the mRNA level of eIF-5A1. Compared with untreated SCT control rats, those subjected to eIF-5A1 knockdown exhibited impaired functional recovery. Moreover, gene expression microarrays and bioinformatic analysis showed high correlation between three main signal pathways (ErbB, MAPK and neurotrophin signal pathways) and eIF-5A1. These signal pathways regulate cell proliferation, differentiation and neurocyte growth. Consequently, eIF-5A1 played a pivotal role via these signal pathways in hindlimb locomotor functional recovery after SCT, which could pave the way for the development of a new strategy for the treatment of spinal cord injury in clinical trials. Copyright © 2012. Published by Elsevier B.V.

  12. Upper-limb motor and sensory function in patients with hip fracture: Comparison with community-dwelling older adults.

    PubMed

    Hayashi, Hiroyuki; Nakashima, Daiki; Matsuoka, Hiroka; Iwai, Midori; Nakamura, Shugo; Kubo, Ayumi; Tomiyama, Naoki

    2017-11-06

    Upper-limb function is important in patients with hip fracture so they can perform activities of daily living and participate in leisure activities. Upper-limb function of these patients, however, has not been thoroughly investigated. The aim of this study was to evaluate the upper-limb motor and sensory functions in patients with hip fracture by comparing these functions with those of community-dwelling older adults (control group). We compared the results of motor and sensory function tests of upper-limb function - range of motion, strength, sensibility, finger dexterity, comprehensive hand function - between patients with hip fracture (n= 32) and the control group (n= 32). Patients with hip fracture had significantly reduced grip strength, pinch strength, finger dexterity, and comprehensive hand function compared with the control group. Most upper-limb functions are impaired in the patients with hip fracture. Thus, upper-limb function of patients with hip fracture should be considered during treatment.

  13. Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury.

    PubMed

    Hesse, S; Werner, C; Bardeleben, A

    2004-06-01

    Single case studies. To describe the technique of intensive locomotor training on an electromechanical gait trainer (GT) combined with functional electrical stimulation (FES). Neurological Rehabilitation Clinic, Berlin, Germany. Four spinal cord-injured (SCI) patients, one tetraparetic, two paraparetic, and one patient with an incomplete cauda syndrome, more than 3 months postinjury, who were unable to walk at all, or with two therapists. They received 25 min of locomotor training on the GT plus FES daily for 5 weeks in addition to the regular therapy. The patients tolerated the programme well, and therapists rated the programme less strenuous compared to manually assisted treadmill training. Gait ability improved in all four patients; three patients could walk independently on the floor with the help of technical aids, and one required the help of one therapist after therapy; gait speed and endurance more than doubled, and the gastrocnemius activity increased in the patients with a central paresis. This combined technique allows intensive locomotor therapy in SCI subjects with reduced effort from the therapists. The patients' improved walking ability confirmed the potential of locomotor therapy in SCI subjects.

  14. Quantitative inferences on the locomotor behaviour of extinct species applied to Simocyon batalleri (Ailuridae, Late Miocene, Spain)

    NASA Astrophysics Data System (ADS)

    Fabre, Anne-Claire; Salesa, Manuel J.; Cornette, Raphael; Antón, Mauricio; Morales, Jorge; Peigné, Stéphane

    2015-06-01

    Inferences of function and ecology in extinct taxa have long been a subject of interest because it is fundamental to understand the evolutionary history of species. In this study, we use a quantitative approach to investigate the locomotor behaviour of Simocyon batalleri, a key taxon related to the ailurid family. To do so, we use 3D surface geometric morphometric approaches on the three long bones of the forelimb of an extant reference sample. Next, we test the locomotor strategy of S. batalleri using a leave-one-out cross-validated linear discriminant analysis. Our results show that S. batalleri is included in the morphospace of the living species of musteloids. However, each bone of the forelimb appears to show a different functional signal suggesting that inferring the lifestyle or locomotor behaviour of fossils can be difficult and dependent on the bone investigated. This highlights the importance of studying, where possible, a maximum of skeletal elements to be able to make robust inferences on the lifestyle of extinct species. Finally, our results suggest that S. batalleri may be more arboreal than previously suggested.

  15. Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury.

    PubMed

    Zhang, S-X; Huang, F; Gates, M; Shen, X; Holmberg, E G

    2016-11-01

    This is a randomized controlled prospective trial with two parallel groups. The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. This study was conducted in SCS Research Center in Colorado, USA. A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long-Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.

  16. [Range of Hip Joint Motion and Weight of Lower Limb Function under 3D Dynamic Marker].

    PubMed

    Xia, Q; Zhang, M; Gao, D; Xia, W T

    2017-12-01

    To explore the range of reasonable weight coefficient of hip joint in lower limb function. When the hip joints of healthy volunteers under normal conditions or fixed at three different positions including functional, flexed and extension positions, the movements of lower limbs were recorded by LUKOtronic motion capture and analysis system. The degree of lower limb function loss was calculated using Fugl-Meyer lower limb function assessment form when the hip joints were fixed at the aforementioned positions. One-way analysis of variance and Tamhane's T2 method were used to proceed statistics analysis and calculate the range of reasonable weight coefficient of hip joint. There were significant differences between the degree of lower limb function loss when the hip joints fixed at flexed and extension positions and at functional position. While the differences between the degree of lower limb function loss when the hip joints fixed at flexed position and extension position had no statistical significance. In 95% confidence interval, the reasonable weight coefficient of hip joint in lower limb function was between 61.05% and 73.34%. Expect confirming the reasonable weight coefficient, the effects of functional and non-functional positions on the degree of lower limb function loss should also be considered for the assessment of hip joint function loss. Copyright© by the Editorial Department of Journal of Forensic Medicine

  17. Effects of optokinetic stimulation induced by virtual reality on locomotion: a preliminary study.

    PubMed

    Ohyama, Seizo; Nishiike, Suetaka; Watanabe, Hiroshi; Matsuoka, Katsunori; Takeda, Noriaki

    2008-11-01

    Exposure to a virtual environment for 20 min was sufficient to cause adaptive changes in locomotion in healthy subjects, suggesting that virtual environments might improve locomotor deviation in patients with unilateral labyrinthine defects. Postural and locomotor control in patients with unilateral labyrinthine defects deviates towards the lesion side. The aim of this study was to examine whether active locomotion within a virtual environment can increase the functionality of rehabilitation. We examined the effects of optokinetic stimulation produced by a virtual reality environment on ocular movement and locomotor tracks in 10 healthy subjects. During the 20 min experiment, the mean locomotor deviation and the mean frequency and mean amplitude of optokinetic nystagmus during the last period of the experiment were significantly higher than those during the initial period.

  18. Immature Spinal Locomotor Output in Children with Cerebral Palsy.

    PubMed

    Cappellini, Germana; Ivanenko, Yury P; Martino, Giovanni; MacLellan, Michael J; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco

    2016-01-01

    Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2-12 years) and 33 typically developing (TD) children (1-12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior.

  19. Immature Spinal Locomotor Output in Children with Cerebral Palsy

    PubMed Central

    Cappellini, Germana; Ivanenko, Yury P.; Martino, Giovanni; MacLellan, Michael J.; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco

    2016-01-01

    Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2–12 years) and 33 typically developing (TD) children (1–12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior. PMID:27826251

  20. Glucosamine-containing supplement improves locomotor functions in subjects with knee pain: a randomized, double-blind, placebo-controlled study

    PubMed Central

    Kanzaki, Noriyuki; Ono, Yoshiko; Shibata, Hiroshi; Moritani, Toshio

    2015-01-01

    Background The aim of this study was to investigate the ability of a glucosamine-containing supplement to improve locomotor functions in subjects with knee pain. Methods A randomized, double-blind, placebo-controlled, parallel-group comparative study was conducted for 16 weeks in 100 Japanese subjects (age, 51.8±0.8 years) with knee pain. Subjects were randomly assigned to one of the two supplements containing 1) 1,200 mg of glucosamine hydrochloride, 60 mg of chondroitin sulfate, 45 mg of type II collagen peptides, 90 mg of quercetin glycosides, 10 mg of imidazole peptides, and 5 μg of vitamin D per day (GCQID group, n=50) or 2) a placebo (placebo group, n=50). Japanese Knee Osteoarthritis Measure, visual analog scale score, normal walking speed, and knee-extensor strength were measured to evaluate the effects of the supplement on knee-joint functions and locomotor functions. Results In subjects eligible for efficacy assessment, there was no significant group × time interaction, and there were improvements in knee-joint functions and locomotor functions in both groups, but there was no significant difference between the groups. In subjects with mild-to-severe knee pain at baseline, knee-extensor strength at week 8 (104.6±5.0% body weight vs 92.3±5.5% body weight, P=0.030) and the change in normal walking speed at week 16 (0.11±0.03 m/s vs 0.05±0.02 m/s, P=0.038) were significantly greater in the GCQID group than in the placebo group. Further subgroup analysis based on Kellgren–Lawrence (K–L) grade showed that normal walking speed at week 16 (1.36±0.05 m/s vs 1.21±0.02 m/s, P<0.05) was significantly greater in the GCQID group than in the placebo group in subjects with K–L grade I. No adverse effect of treatment was identified in the safety assessment. Conclusion In subjects with knee pain, GCQID supplementation was effective for relieving knee pain and improving locomotor functions. PMID:26604721

  1. Glucosamine-containing supplement improves locomotor functions in subjects with knee pain: a randomized, double-blind, placebo-controlled study.

    PubMed

    Kanzaki, Noriyuki; Ono, Yoshiko; Shibata, Hiroshi; Moritani, Toshio

    2015-01-01

    The aim of this study was to investigate the ability of a glucosamine-containing supplement to improve locomotor functions in subjects with knee pain. A randomized, double-blind, placebo-controlled, parallel-group comparative study was conducted for 16 weeks in 100 Japanese subjects (age, 51.8±0.8 years) with knee pain. Subjects were randomly assigned to one of the two supplements containing 1) 1,200 mg of glucosamine hydrochloride, 60 mg of chondroitin sulfate, 45 mg of type II collagen peptides, 90 mg of quercetin glycosides, 10 mg of imidazole peptides, and 5 μg of vitamin D per day (GCQID group, n=50) or 2) a placebo (placebo group, n=50). Japanese Knee Osteoarthritis Measure, visual analog scale score, normal walking speed, and knee-extensor strength were measured to evaluate the effects of the supplement on knee-joint functions and locomotor functions. In subjects eligible for efficacy assessment, there was no significant group × time interaction, and there were improvements in knee-joint functions and locomotor functions in both groups, but there was no significant difference between the groups. In subjects with mild-to-severe knee pain at baseline, knee-extensor strength at week 8 (104.6±5.0% body weight vs 92.3±5.5% body weight, P=0.030) and the change in normal walking speed at week 16 (0.11±0.03 m/s vs 0.05±0.02 m/s, P=0.038) were significantly greater in the GCQID group than in the placebo group. Further subgroup analysis based on Kellgren-Lawrence (K-L) grade showed that normal walking speed at week 16 (1.36±0.05 m/s vs 1.21±0.02 m/s, P<0.05) was significantly greater in the GCQID group than in the placebo group in subjects with K-L grade I. No adverse effect of treatment was identified in the safety assessment. In subjects with knee pain, GCQID supplementation was effective for relieving knee pain and improving locomotor functions.

  2. The three-dimensional locomotor dynamics of African (Loxodonta africana) and Asian (Elephas maximus) elephants reveal a smooth gait transition at moderate speed

    PubMed Central

    Ren, Lei; Hutchinson, John R

    2007-01-01

    We examined whether elephants shift to using bouncing (i.e. running) mechanics at any speed. To do this, we measured the three-dimensional centre of mass (CM) motions and torso rotations of African and Asian elephants using a novel multisensor method. Hundreds of continuous stride cycles were recorded in the field. African and Asian elephants moved very similarly. Near the mechanically and metabolically optimal speed (a Froude number (Fr) of 0.09), an inverted pendulum mechanism predominated. With increasing speed, the locomotor dynamics quickly but continuously became less like vaulting and more like bouncing. Our mechanical energy analysis of the CM suggests that at a surprisingly slow speed (approx. 2.2 m s−1, Fr 0.25), the hindlimbs exhibited bouncing, not vaulting, mechanics during weight support. We infer that a gait transition happens at this relatively slow speed: elephants begin using their compliant hindlimbs like pogo sticks to some extent to drive the body, bouncing over their relatively stiff, vaulting forelimbs. Hence, they are not as rigid limbed as typically characterized for graviportal animals, and use regular walking as well as at least one form of running gait. PMID:17594960

  3. Crucial advantages of tail use in the evolution of vertebrate terrestrial locomotion

    NASA Astrophysics Data System (ADS)

    Astley, Henry; McInroe, Benjamin; Kawano, Sandy; Blob, Rick; Goldman, Daniel

    In the invasion of terrestrial environment, the first tetrapods faced the challenge of locomotion on flowable substrates (e.g. sand and mud), sometimes oriented at inclines. Although the morphology of many early tetrapods is known, robotic studies have revealed that effective locomotion on these substrates also depends strongly upon kinematics; slight differences in movements of the same appendage can lead to success or failure. Using a model organism (the mudskipper) and a robotic physical model, we demonstrate how muscular tails provided critical locomotor advantages on granular substrates that the first invaders of land likely encountered. Mudskippers use their tails for additional propulsion with increasing frequency as the slope of the granular material increases, and the decline in locomotor performance with slope is shallower when the tail is used. Experiments with a robotic model of the mudskipper showed that, while the tail did not always provide a benefit to locomotion, use of the tail made the robot's performance more robust, achieving effective locomotion on a wider range of slopes, limb postures and foot placements. These results suggest that, rather than simply being an inert appendage, the tails of early tetrapods were vital to their first forays into terrestrial habitats.

  4. Functional and physiological effects of treadmill training induced by buspirone, carbidopa, and L-DOPA in clenbuterol-treated paraplegic mice.

    PubMed

    Ung, Roth-Visal; Rouleau, Pascal; Guertin, Pierre A

    2012-05-01

    Chronic spinal cord injury may be complicated by weight loss, muscle atrophy, and bone loss. The authors identified a combination pharmacotherapy using buspirone, carbidopa, and L-DOPA (BCD) that elicits bouts of locomotor-like movements in spinal cord-transected (Tx) mice. They then evaluated the effects of 8 weeks of treadmill training in Tx mice that received BCD or BCD + clenbuterol, a monoaminergic agent with anabolic properties, on locomotor function, muscle atrophy, adipose tissue loss, and bone density measures. Induced locomotor movement, adipose tissue, skeletal muscle, and femoral bone properties were compared in unoperated control mice, operated controls (untreated, untrained Tx mice), and 2 groups of treated, trained Tx mice (Tx + BCD, Tx + BCD + clenbuterol) that also received training. BCD- and BCD + clenbuterol-treated mice showed comparable levels of locomotor movements that significantly improved over time. Soleus muscle mass and soleus and extensor digitorum longus cross-sectional area significantly increased in both groups of BCD-treated mice, with greater effects in BCD + clenbuterol-treated animals. Fiber type conversion, adipose tissues, bone mineral density, and content were reduced in all Tx groups compared with unoperated control mice. These findings suggest that locomotor movement and muscle properties can be restored to near-normal levels after several weeks of BCD treatment, regular training, and clenbuterol in completely paraplegic animals.

  5. Best facilitated cortical activation during different stepping, treadmill, and robot-assisted walking training paradigms and speeds: A functional near-infrared spectroscopy neuroimaging study.

    PubMed

    Kim, Ha Yeon; Yang, Sung Phil; Park, Gyu Lee; Kim, Eun Joo; You, Joshua Sung Hyun

    2016-01-01

    Robot-assisted and treadmill-gait training are promising neurorehabilitation techniques, with advantages over conventional gait training, but the neural substrates underpinning locomotor control remain unknown particularly during different gait training modes and speeds. The present optical imaging study compared cortical activities during conventional stepping walking (SW), treadmill walking (TW), and robot-assisted walking (RW) at different speeds. Fourteen healthy subjects (6 women, mean age 30.06, years ± 4.53) completed three walking training modes (SW, TW, and RW) at various speeds (self-selected, 1.5, 2.0, 2.5, and 3.0  km/h). A functional near-infrared spectroscopy (fNIRS) system determined cerebral hemodynamic changes associated with cortical locomotor network areas in the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), prefrontal cortex (PFC), and sensory association cortex (SAC). There was increased cortical activation in the SMC, PMC, and SMA during different walking training modes. More global locomotor network activation was observed during RW than TW or SW. As walking speed increased, multiple locomotor network activations were observed, and increased activation power spectrum. This is the first empirical evidence highlighting the neural substrates mediating dynamic locomotion for different gait training modes and speeds. Fast, robot-assisted gait training best facilitated cortical activation associated with locomotor control.

  6. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides).

    PubMed

    Li, Chen; Hsieh, S Tonia; Goldman, Daniel I

    2012-09-15

    A diversity of animals that run on solid, level, flat, non-slip surfaces appear to bounce on their legs; elastic elements in the limbs can store and return energy during each step. The mechanics and energetics of running in natural terrain, particularly on surfaces that can yield and flow under stress, is less understood. The zebra-tailed lizard (Callisaurus draconoides), a small desert generalist with a large, elongate, tendinous hind foot, runs rapidly across a variety of natural substrates. We use high-speed video to obtain detailed three-dimensional running kinematics on solid and granular surfaces to reveal how leg, foot and substrate mechanics contribute to its high locomotor performance. Running at ~10 body lengths s(-1) (~1 m s(-1)), the center of mass oscillates like a spring-mass system on both substrates, with only 15% reduction in stride length on the granular surface. On the solid surface, a strut-spring model of the hind limb reveals that the hind foot saves ~40% of the mechanical work needed per step, significant for the lizard's small size. On the granular surface, a penetration force model and hypothesized subsurface foot rotation indicates that the hind foot paddles through fluidized granular medium, and that the energy lost per step during irreversible deformation of the substrate does not differ from the reduction in the mechanical energy of the center of mass. The upper hind leg muscles must perform three times as much mechanical work on the granular surface as on the solid surface to compensate for the greater energy lost within the foot and to the substrate.

  7. Gait and functionality of individuals with visual impairment who participate in sports.

    PubMed

    da Silva, Edson Soares; Fischer, Gabriela; da Rosa, Rodrigo Gomes; Schons, Pedro; Teixeira, Luísa Beatriz Trevisan; Hoogkamer, Wouter; Peyré-Tartaruga, Leonardo Alexandre

    2018-05-01

    Individuals with visual impairment (VI) have often been observed to walk slower than individuals with unimpaired vision. These observations might be confounded by typical low levels of physical activity and greater sedentary behavior in individuals with VI than the overall population. Here, we compared gait and balance measures between individuals with VI who participate in disability sports, and activity level matched sighted individuals. We assessed static balance, anthropometry, self-selected walking speed, locomotion rehabilitation index, and lower limb muscular endurance; and applied physical activity level and fear of falling questionnaires. Individuals with VI who participate in disability sports, self-selected a similar walking speed (1.29 ± 0.26 m/s) as active sighted individuals (1.39 ± 0.21 m/s). Locomotor rehabilitation index and muscular endurance of lower limbs were also similar between groups. Individuals with VI presented lower static balance (42.0 ± 17.0s) than the sighted control group (45.0 ± 0s) when the controls were tested with their eyes open. However, no difference was found when the controls were tested with their eyes closed (30.3 ± 17.0s). Furthermore, individuals with VI showed a greater fear of falling. In conclusion, individuals with VI who participate in disability sports, as goalball and football, walk with similar self-selected walking speeds as active sighted individuals, but have slightly worse static balance and fear of falling. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Locomotor trade-offs in mice selectively bred for high voluntary wheel running.

    PubMed

    Dlugosz, Elizabeth M; Chappell, Mark A; McGillivray, David G; Syme, Douglas A; Garland, Theodore

    2009-08-01

    We investigated sprint performance and running economy of a unique ;mini-muscle' phenotype that evolved in response to selection for high voluntary wheel running in laboratory mice (Mus domesticus). Mice from four replicate selected (S) lines run nearly three times as far per day as four control lines. The mini-muscle phenotype, resulting from an initially rare autosomal recessive allele, has been favoured by the selection protocol, becoming fixed in one of the two S lines in which it occurred. In homozygotes, hindlimb muscle mass is halved, mass-specific muscle oxidative capacity is doubled, and the medial gastrocnemius exhibits about half the mass-specific isotonic power, less than half the mass-specific cyclic work and power, but doubled fatigue resistance. We hypothesized that mini-muscle mice would have a lower whole-animal energy cost of transport (COT), resulting from lower costs of cycling their lighter limbs, and reduced sprint speed, from reduced maximal force production. We measured sprint speed on a racetrack and slopes (incremental COT, or iCOT) and intercepts of the metabolic rate versus speed relationship during voluntary wheel running in 10 mini-muscle and 20 normal S-line females. Mini-muscle mice ran faster and farther on wheels, but for less time per day. Mini-muscle mice had significantly lower sprint speeds, indicating a functional trade-off. However, contrary to predictions, mini-muscle mice had higher COT, mainly because of higher zero-speed intercepts and postural costs (intercept-resting metabolic rate). Thus, mice with altered limb morphology after intense selection for running long distances do not necessarily run more economically.

  9. Recent origin of low trabecular bone density in modern humans

    PubMed Central

    Chirchir, Habiba; Kivell, Tracy L.; Ruff, Christopher B.; Hublin, Jean-Jacques; Carlson, Kristian J.; Zipfel, Bernhard; Richmond, Brian G.

    2015-01-01

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations. PMID:25535354

  10. Recent origin of low trabecular bone density in modern humans.

    PubMed

    Chirchir, Habiba; Kivell, Tracy L; Ruff, Christopher B; Hublin, Jean-Jacques; Carlson, Kristian J; Zipfel, Bernhard; Richmond, Brian G

    2015-01-13

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations.

  11. Strength deficit of knee flexors is dependent on hip position in adults with chronic hemiparesis.

    PubMed

    Michaelsen, Stella M; Ovando, Angélica C; Bortolotti, Adriano; Bandini, Bruno

    2013-01-01

    The extent to which muscle length affects force production in paretic lower limb muscles after stroke in comparison to controls has not been established. To investigate knee flexor strength deficits dependent on hip joint position in adults with hemiparesis and compare with healthy controls. a cross-sectional study with ten subjects with chronic (63±40 months) hemiparesis with mild to moderate lower limb paresis (Fugl-Meyer score 26±3) and 10 neurologically healthy controls. Isometric knee flexion strength with the hip positioned at 90° and 0° of flexion was assessed randomly on the paretic and non-paretic side of hemiparetic subjects and healthy controls. Subjects were asked to perform a maximal isometric contraction sustained for four seconds and measured by a dynamometer. The ratio of knee flexor strength between these two hip positions was calculated: Hip 0°/Hip 90°. Also, locomotor capacity was evaluated by the timed up and go test and by walking velocity over 10 meters. In subjects with hemiparesis, absolute knee flexion torque decreased (p<0.001) with the hip in extension (at 0°). The ratio of knee flexor torque Hip 0°/Hip 90° on the paretic side in hemiparetics was lower than in controls (p=0.02). Weakness dependent on joint position is more significant in the paretic lower limb of adults with hemiparesis when compared to controls. More attention should be given to lower limb muscle strengthening exercises in individuals with stroke, with emphasis on the strengthening exercises in positions in which the muscle is shortened.

  12. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.

    PubMed

    Gagnon, Dany H; Vermette, Martin; Duclos, Cyril; Aubertin-Leheudre, Mylène; Ahmed, Sara; Kairy, Dahlia

    2017-12-19

    The main objectives of this study were to quantify clients' satisfaction and perception upon completion of a locomotor training program with an overground robotic exoskeleton. A group of 14 wheelchair users with a spinal cord injury, who finished a 6-8-week locomotor training program with the robotic exoskeleton (18 training sessions), were invited to complete a web-based electronic questionnaire. This questionnaire encompassed 41 statements organized around seven key domains: overall satisfaction related to the training program, satisfaction related to the overground robotic exoskeleton, satisfaction related to the program attributes, perceived learnability, perceived health benefits and risks and perceived motivation to engage in physical activity. Each statement was rated using a visual analogue scale ranging from "0 = totally disagree" to "100 = completely agree". Overall, respondents unanimously considered themselves satisfied with the locomotor training program with the robotic exoskeleton (95.7 ± 0.7%) and provided positive feedback about the robotic exoskeleton itself (82.3 ± 6.9%), the attributes of the locomotor training program (84.5 ± 6.9%) and their ability to learn to perform sit-stand transfers and walk with the robotic exoskeleton (79.6 ± 17%). Respondents perceived some health benefits (67.9 ± 16.7%) and have reported no fear of developing secondary complications or of potential risk for themselves linked to the use of the robotic exoskeleton (16.7 ± 8.2%). At the end of the program, respondents felt motivated to engage in a regular physical activity program (91.3 ± 0.1%). This study provides new insights on satisfaction and perceptions of wheelchair users while also confirming the relevance to continue to improve such technologies, and informing the development of future clinical trials. Implications for Rehabilitation All long-term manual wheelchair users with a spinal cord injury who participated in the study are unanimously satisfied upon completion of a 6-8-week locomotor training program with the robotic exoskeleton and would recommend the program to their peers. All long-term manual wheelchair users with a spinal cord injury who participated in the study offered positive feedback about the robotic exoskeleton itself and feel it is easy to learn to perform sit-stand transfers and walk with the robotic exoskeleton. All long-term manual wheelchair users with a spinal cord injury who participated in the study predominantly perceived improvements in their overall health status, upper limb strength and endurance as well as in their sleep and psychological well-being upon completion of a 6-8-week locomotor training program with the robotic exoskeleton. All long-term manual wheelchair users with a spinal cord injury who participated in the study unanimously felt motivated to engage in a regular physical activity program adapted to their condition and most of them do plan to continue to participate in moderate-to-strenuous physical exercise. Additional research on clients' perspectives, especially satisfaction with the overground exoskeleton and locomotor training program attributes, is needed.

  13. Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice.

    PubMed

    Porter, David; Faivre, Emilie; Flatt, Peter R; Hölscher, Christian; Gault, Victor A

    2012-05-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity-diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O(2) consumption, CO(2) production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Effects of Locomotor Exercise Intensity on Gait Performance in Individuals With Incomplete Spinal Cord Injury

    PubMed Central

    Leech, Kristan A.; Kinnaird, Catherine R.; Holleran, Carey L.; Kahn, Jennifer

    2016-01-01

    Background High-intensity stepping practice may be a critical component to improve gait following motor incomplete spinal cord injury (iSCI). However, such practice is discouraged by traditional theories of rehabilitation that suggest high-intensity locomotor exercise degrades gait performance. Accordingly, such training is thought to reinforce abnormal movement patterns, although evidence to support this notion is limited. Objective The purposes of this study were: (1) to evaluate the effects of short-term manipulations in locomotor intensity on gait performance in people with iSCI and (2) to evaluate potential detrimental effects of high-intensity locomotor training on walking performance. Design A single-day, repeated-measures, pretraining-posttraining study design was used. Methods Nineteen individuals with chronic iSCI performed a graded-intensity locomotor exercise task with simultaneous collection of lower extremity kinematic and electromyographic data. Measures of interest were compared across intensity levels of 33%, 67%, and 100% of peak gait speed. A subset of 9 individuals participated in 12 weeks of high-intensity locomotor training. Similar measurements were collected and compared between pretraining and posttraining evaluations. Results The results indicate that short-term increases in intensity led to significant improvements in muscle activity, spatiotemporal metrics, and joint excursions, with selected improvements in measures of locomotor coordination. High-intensity locomotor training led to significant increases in peak gait speed (0.64–0.80 m/s), and spatiotemporal and kinematic metrics indicate a trend for improved coordination. Limitations Measures of gait performance were assessed during treadmill ambulation and not compared with a control group. Generalizability of these results to overground ambulation is unknown. Conclusions High-intensity locomotor exercise and training does not degrade, but rather improves, locomotor function and quality in individuals with iSCI, which contrasts with traditional theories of motor dysfunction following neurologic injury. PMID:27313241

  15. Thoracic Hemisection in Rats Results in Initial Recovery Followed by a Late Decrement in Locomotor Movements, with Changes in Coordination Correlated with Serotonergic Innervation of the Ventral Horn

    PubMed Central

    Leszczyńska, Anna N.; Majczyński, Henryk; Wilczyński, Grzegorz M.; Sławińska, Urszula; Cabaj, Anna M.

    2015-01-01

    Lateral thoracic hemisection of the rodent spinal cord is a popular model of spinal cord injury, in which the effects of various treatments, designed to encourage locomotor recovery, are tested. Nevertheless, there are still inconsistencies in the literature concerning the details of spontaneous locomotor recovery after such lesions, and there is a lack of data concerning the quality of locomotion over a long time span after the lesion. In this study, we aimed to address some of these issues. In our experiments, locomotor recovery was assessed using EMG and CatWalk recordings and analysis. Our results showed that after hemisection there was paralysis in both hindlimbs, followed by a substantial recovery of locomotor movements, but even at the peak of recovery, which occurred about 4 weeks after the lesion, some deficits of locomotion remained present. The parameters that were abnormal included abduction, interlimb coordination and speed of locomotion. Locomotor performance was stable for several weeks, but about 3–4 months after hemisection secondary locomotor impairment was observed with changes in parameters, such as speed of locomotion, interlimb coordination, base of hindlimb support, hindlimb abduction and relative foot print distance. Histological analysis of serotonergic innervation at the lumbar ventral horn below hemisection revealed a limited restoration of serotonergic fibers on the ipsilateral side of the spinal cord, while on the contralateral side of the spinal cord it returned to normal. In addition, the length of these fibers on both sides of the spinal cord correlated with inter- and intralimb coordination. In contrast to data reported in the literature, our results show there is not full locomotor recovery after spinal cord hemisection. Secondary deterioration of certain locomotor functions occurs with time in hemisected rats, and locomotor recovery appears partly associated with reinnervation of spinal circuitry by serotonergic fibers. PMID:26606275

  16. Dose-Response Outcomes Associated with Different Forms of Locomotor Training in Persons with Chronic Motor-Incomplete Spinal Cord Injury.

    PubMed

    Sandler, Evan B; Roach, Kathryn E; Field-Fote, Edelle C

    2017-05-15

    Outcomes of training are thought to be related to the amount of training (training dose). Although various approaches to locomotor training have been used to improve walking function in persons with spinal cord injury (SCI), little is known about the relationship between dose of locomotor training and walking outcomes. This secondary analysis aimed to identify the relationship between training dose and improvement in walking distance and speed associated with locomotor training in participants with chronic motor-incomplete spinal cord injury (MISCI). We compared the dose-response relationships associated with each of four different locomotor training approaches. Participants were randomized to either: treadmill-based training with manual assistance (TM = 17), treadmill-based training with stimulation (TS = 18), overground training with stimulation (OG = 15), and treadmill-based training with locomotor robotic device assistance (LR = 14). Subjects trained 5 days/week for 12 weeks, with a target of 60 training sessions. The distance-dose and time-dose were calculated based on the total distance and total time, respectively, participants engaged in walking over all sessions combined. Primary outcome measures included walking distance (traversed in 2 min) and walking speed (over 10 m). Only OG training showed a good correlation between distance-dose and change in walking distance and speed walked over ground (r = 0.61, p = 0.02; r = 0.62, p = 0.01). None of the treadmill-based training approaches were associated with significant correlations between training dose and improvement of functional walking outcome. The findings suggest that greater distance achieved over the course of OG training is associated with better walking outcomes in the studied population. Further investigation to identify the essential elements that determine outcomes would be valuable for guiding rehabilitation.

  17. Sodium Butyrate Improves Locomotor Impairment and Early Mortality in a Rotenone-Induced Drosophila Model of Parkinson’s Disease

    PubMed Central

    St. Laurent, Robyn; O’Brien, Liam M.; Ahmad, S. Tariq

    2013-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder primarily affecting the dopaminergic neurons in the nigrastriatal pathway resulting in debilitating motor impairment in both familial and sporadic cases. Histone deacetylase (HDAC) inhibitors have been recently implicated as a therapeutic candidate because of their ability to correct the disrupted HDAC activity in PD and other neurodegenerative diseases. Sodium butyrate (SB), an HDAC inhibitor, reduces degeneration of dopaminergic neurons in a mutant alpha-synuclein Drosophila transgenic model of familial PD. Chronic exposure to the pesticide rotenone also causes selective degeneration of dopaminergic neurons and causes locomotor impairment and early mortality in a Drosophila model of chemically-induced PD. This study investigated the effects of sodium butyrate on locomotor impairment and early mortality in a rotenone-induced PD model. We show that treatment with 10 mM SB-supplemented food rescued the rotenone-induced locomotor impairment and early mortality in flies. Additionally, flies with the genetic knockdown of HDAC activity through Sin3A loss-of-function mutation (Sin3Alof) were resistant to rotenone-induced locomotor impairment and early mortality. Furthermore, SB-supplemented Sin3Alof flies had a modest additive effect for improving locomotor impairment. We also show SB-mediated improvement of rotenone-induced locomotor impairment was associated with elevated dopamine levels in the brain. However, the possibility of SB-mediated protective role through mechanisms independent from dopamine system is also discussed. These findings demonstrate that HDAC inhibitors like SB can ameliorate locomotor impairment in a rotenone-induced PD model. PMID:23623990

  18. EXiO-A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques.

    PubMed

    Vouga, Tristan; Zhuang, Katie Z; Olivier, Jeremy; Lebedev, Mikhail A; Nicolelis, Miguel A L; Bouri, Mohamed; Bleuler, Hannes

    2017-02-01

    Recent advances in the field of brain-machine interfaces (BMIs) have demonstrated enormous potential to shape the future of rehabilitation and prosthetic devices. Here, a lower-limb exoskeleton controlled by the intracortical activity of an awake behaving rhesus macaque is presented as a proof-of-concept for a locomotorBMI. A detailed description of the mechanical device, including its innovative features and first experimental results, is provided. During operation, BMI-decoded position and velocity are directly mapped onto the bipedal exoskeleton's motions, which then move the monkey's legs as the monkey remains physicallypassive. To meet the unique requirements of such an application, the exoskeleton's features include: high output torque with backdrivable actuation, size adjustability, and safe user-robot interface. In addition, a novel rope transmission is introduced and implemented. To test the performance of the exoskeleton, a mechanical assessment was conducted, which yielded quantifiable results for transparency, efficiency, stiffness, and tracking performance. Usage under both brain control and automated actuation demonstrates the device's capability to fulfill the demanding needs of this application. These results lay the groundwork for further advancement in BMI-controlled devices for primates including humans.

  19. Laetoli footprints reveal bipedal gait biomechanics different from those of modern humans and chimpanzees

    PubMed Central

    Demes, Brigitte; Richmond, Brian G.

    2016-01-01

    Bipedalism is a key adaptation that shaped human evolution, yet the timing and nature of its evolution remain unclear. Here we use new experimentally based approaches to investigate the locomotor mechanics preserved by the famous Pliocene hominin footprints from Laetoli, Tanzania. We conducted footprint formation experiments with habitually barefoot humans and with chimpanzees to quantitatively compare their footprints to those preserved at Laetoli. Our results show that the Laetoli footprints are morphologically distinct from those of both chimpanzees and habitually barefoot modern humans. By analysing biomechanical data that were collected during the human experiments we, for the first time, directly link differences between the Laetoli and modern human footprints to specific biomechanical variables. We find that the Laetoli hominin probably used a more flexed limb posture at foot strike than modern humans when walking bipedally. The Laetoli footprints provide a clear snapshot of an early hominin bipedal gait that probably involved a limb posture that was slightly but significantly different from our own, and these data support the hypothesis that important evolutionary changes to hominin bipedalism occurred within the past 3.66 Myr. PMID:27488647

  20. Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and whole-body segmental inertial recording for multi-modal neural decoding.

    PubMed

    Bulea, Thomas C; Kilicarslan, Atilla; Ozdemir, Recep; Paloski, William H; Contreras-Vidal, Jose L

    2013-07-26

    Recent studies support the involvement of supraspinal networks in control of bipedal human walking. Part of this evidence encompasses studies, including our previous work, demonstrating that gait kinematics and limb coordination during treadmill walking can be inferred from the scalp electroencephalogram (EEG) with reasonably high decoding accuracies. These results provide impetus for development of non-invasive brain-machine-interface (BMI) systems for use in restoration and/or augmentation of gait- a primary goal of rehabilitation research. To date, studies examining EEG decoding of activity during gait have been limited to treadmill walking in a controlled environment. However, to be practically viable a BMI system must be applicable for use in everyday locomotor tasks such as over ground walking and turning. Here, we present a novel protocol for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)), and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and over ground walking tasks. By collecting these data in the uncontrolled environment insight can be gained regarding the feasibility of decoding unconstrained gait and surface EMG from scalp EEG.

  1. Menthol enhances nicotine-induced locomotor sensitization and in vivo functional connectivity in adolescence.

    PubMed

    Thompson, Matthew F; Poirier, Guillaume L; Dávila-García, Martha I; Huang, Wei; Tam, Kelly; Robidoux, Maxwell; Dubuke, Michelle L; Shaffer, Scott A; Colon-Perez, Luis; Febo, Marcelo; DiFranza, Joseph R; King, Jean A

    2018-03-01

    Mentholated cigarettes capture a quarter of the US market, and are disproportionately smoked by adolescents. Menthol allosterically modulates nicotinic acetylcholine receptor function, but its effects on the brain and nicotine addiction are unclear. To determine if menthol is psychoactive, we assessed locomotor sensitization and brain functional connectivity. Adolescent male Sprague Dawley rats were administered nicotine (0.4 mg/kg) daily with or without menthol (0.05 mg/kg or 5.38 mg/kg) for nine days. Following each injection, distance traveled in an open field was recorded. One day after the sensitization experiment, functional connectivity was assessed in awake animals before and after drug administration using magnetic resonance imaging. Menthol (5.38 mg/kg) augmented nicotine-induced locomotor sensitization. Functional connectivity was compared in animals that had received nicotine with or without the 5.38 mg/kg dosage of menthol. Twenty-four hours into withdrawal after the last drug administration, increased functional connectivity was observed for ventral tegmental area and retrosplenial cortex with nicotine+menthol compared to nicotine-only exposure. Upon drug re-administration, the nicotine-only, but not the menthol groups, exhibited altered functional connectivity of the dorsal striatum with the amygdala. Menthol, when administered with nicotine, showed evidence of psychoactive properties by affecting brain activity and behavior compared to nicotine administration alone.

  2. Diffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury and Recovery

    PubMed Central

    Kelley, Brian J.; Harel, Noam Y.; Kim, Chang-Yeon; Papademetris, Xenophon; Coman, Daniel; Wang, Xingxing; Hasan, Omar; Kaufman, Adam; Globinsky, Ronen; Staib, Lawrence H.; Cafferty, William B.J.; Hyder, Fahmeed

    2014-01-01

    Abstract Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases. PMID:24779685

  3. Foot Plantar Pressure Measurement System: A Review

    PubMed Central

    Razak, Abdul Hadi Abdul; Zayegh, Aladin; Begg, Rezaul K.; Wahab, Yufridin

    2012-01-01

    Foot plantar pressure is the pressure field that acts between the foot and the support surface during everyday locomotor activities. Information derived from such pressure measures is important in gait and posture research for diagnosing lower limb problems, footwear design, sport biomechanics, injury prevention and other applications. This paper reviews foot plantar sensors characteristics as reported in the literature in addition to foot plantar pressure measurement systems applied to a variety of research problems. Strengths and limitations of current systems are discussed and a wireless foot plantar pressure system is proposed suitable for measuring high pressure distributions under the foot with high accuracy and reliability. The novel system is based on highly linear pressure sensors with no hysteresis. PMID:23012576

  4. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.

    PubMed

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Cramer, Matthew N; Kouda, Ken; Crandall, Craig G

    2017-01-01

    Local heating of an extremity increases blood flow and vascular shear stress throughout the arterial tree. Local heating acutely improves macrovascular dilator function in the upper limbs of young healthy adults through a shear stress-dependent mechanism but has no such effect in the lower limbs of this age group. The effect of acute limb heating on dilator function within the atherosclerotic prone vasculature of the lower limbs of aged adults is unknown. Therefore, the purpose of this study was to test the hypothesis that acute lower limb heating improves macro- and microvascular dilator function within the leg vasculature of aged adults. Nine young and nine aged adults immersed their lower limbs at a depth of ~33 cm into a heated (~42°C) circulated water bath for 45 min. Before and 30 min after heating, macro (flow-mediated dilation)- and microvascular (reactive hyperemia) dilator functions were assessed in the lower limb, following 5 min of arterial occlusion, via Doppler ultrasound. Compared with preheat, macrovascular dilator function was unchanged following heating in young adults (P = 0.6) but was improved in aged adults (P = 0.04). Similarly, microvascular dilator function, as assessed by peak reactive hyperemia, was unchanged following heating in young adults (P = 0.1) but was improved in aged adults (P < 0.01). Taken together, these data suggest that acute lower limb heating improves both macro- and microvascular dilator function in an age dependent manner. We demonstrate that lower limb heating acutely improves macro- and microvascular dilator function within the atherosclerotic prone vasculature of the leg in aged adults. These findings provide evidence for a potential therapeutic use of chronic lower limb heating to improve vascular health in primary aging and various disease conditions. Copyright © 2017 the American Physiological Society.

  5. Secondary mediation and regression analyses of the PTClinResNet database: determining causal relationships among the International Classification of Functioning, Disability and Health levels for four physical therapy intervention trials.

    PubMed

    Mulroy, Sara J; Winstein, Carolee J; Kulig, Kornelia; Beneck, George J; Fowler, Eileen G; DeMuth, Sharon K; Sullivan, Katherine J; Brown, David A; Lane, Christianne J

    2011-12-01

    Each of the 4 randomized clinical trials (RCTs) hosted by the Physical Therapy Clinical Research Network (PTClinResNet) targeted a different disability group (low back disorder in the Muscle-Specific Strength Training Effectiveness After Lumbar Microdiskectomy [MUSSEL] trial, chronic spinal cord injury in the Strengthening and Optimal Movements for Painful Shoulders in Chronic Spinal Cord Injury [STOMPS] trial, adult stroke in the Strength Training Effectiveness Post-Stroke [STEPS] trial, and pediatric cerebral palsy in the Pediatric Endurance and Limb Strengthening [PEDALS] trial for children with spastic diplegic cerebral palsy) and tested the effectiveness of a muscle-specific or functional activity-based intervention on primary outcomes that captured pain (STOMPS, MUSSEL) or locomotor function (STEPS, PEDALS). The focus of these secondary analyses was to determine causal relationships among outcomes across levels of the International Classification of Functioning, Disability and Health (ICF) framework for the 4 RCTs. With the database from PTClinResNet, we used 2 separate secondary statistical approaches-mediation analysis for the MUSSEL and STOMPS trials and regression analysis for the STEPS and PEDALS trials-to test relationships among muscle performance, primary outcomes (pain related and locomotor related), activity and participation measures, and overall quality of life. Predictive models were stronger for the 2 studies with pain-related primary outcomes. Change in muscle performance mediated or predicted reductions in pain for the MUSSEL and STOMPS trials and, to some extent, walking speed for the STEPS trial. Changes in primary outcome variables were significantly related to changes in activity and participation variables for all 4 trials. Improvement in activity and participation outcomes mediated or predicted increases in overall quality of life for the 3 trials with adult populations. Variables included in the statistical models were limited to those measured in the 4 RCTs. It is possible that other variables also mediated or predicted the changes in outcomes. The relatively small sample size in the PEDALS trial limited statistical power for those analyses. Evaluating the mediators or predictors of change between each ICF level and for 2 fundamentally different outcome variables (pain versus walking) provided insights into the complexities inherent across 4 prevalent disability groups.

  6. The effects of prism glasses and intensive upper limb exercise on hemineglect, upper limb function, and activities of daily living in stroke patients: a case series.

    PubMed

    Oh, Se-Il; Kim, Jin-Kyung; Park, So-Yeon

    2015-12-01

    [Purpose] This study aimed to examine the effects of visual field with prism glasses, and intensive upper limb functional training on reduction of hemineglect and improvement in upper limb function and activities of daily living in three stroke patients with hemineglect. [Subjects] This study included three stroke patients hospitalized in a sanatorium. [Methods] Intervention treatment involving prism glass use for 12 hours and 30 minutes and paretic side upper limb training was conducted 5 days a week for 15 weeks. Three upper limb training tasks (hitting a balloon, passing through a ring, and reading a newspaper) were performed for 10 minutes each session, for a total of 30 minutes. Line by Section, Motor-Free Visual Perception Test-3 (MVPT-3), Manual Function Test (MFT), Box & Block Test (BBT), and Assessment of Motor and Process Skills (AMPS) were conducted before and after intervention. [Results] Subjects' hemineglect decreased and upper limb function on the paretic side improved after intervention, which enhanced activities of daily living. [Conclusion] Prism glass use and paretic upper limb functional training effectively ameliorated stroke patients' hemineglect and improved upper limb function. Future research should focus on prism glasses that provide a wide visual field for use in patients with different conditions.

  7. Development of a Countermeasure to Enhance Postflight Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. We have previously confirmed that subjects participating in adaptive generalization training programs using a variety of visuomotor distortions can enhance their ability to adapt to a novel sensorimotor environment. Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. Our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. Our laboratory is currently developing adaptive generalization training procedures and the associated flight hardware to implement such a training program during regular inflight treadmill operations. A visual display system will provide variation in visual flow patterns during treadmill exercise. Crewmembers will be exposed to a virtual scene that can translate and rotate in six-degrees-of freedom during their regular treadmill exercise period. Associated ground based studies are focused on determining optimal combinations of sensory manipulations (visual flow, body loading and support surface variation) and training schedules that will produce the greatest potential for adaptive flexibility in gait function during exposure to challenging and novel environments. An overview of our progress in these areas will be discussed during the presentation.

  8. Recovery of locomotion in the cat following spinal cord lesions.

    PubMed

    Rossignol, S; Bouyer, L; Barthélemy, D; Langlet, C; Leblond, H

    2002-10-01

    In most species, locomotor function beneath the level of a spinal cord lesion can be restored even if the cord is completely transected. This suggests that there is, within the spinal cord, an autonomous network of neurons capable of generating a locomotor pattern independently of supraspinal inputs. Recent studies suggest that several physiological and neurochemical changes have to occur in the neuronal networks located caudally to the lesion to allow the expression of spinal locomotion. Some evidence of this plasticity will be addressed in this review. In addition, original data on the functional organisation of the lumbar spinal cord will also be presented. Recent works in our lab show that segmental responsiveness of the spinal cord of the cat to locally micro-injected drugs in different lumbar segments, in combination with complete lesions at various level of the spinal cord, suggest a rostro-caudal organisation of spinal locomotor control. Moreover, the integrity of midlumbar segments seems to be crucial for the expression of spinal locomotion. These data suggest that the regions of critical importance for locomotion can be confined to a restricted portion of the spinal cord. Later, these midlumbar segments could be targeted by electrical stimulation or grafts to improve recovery of function. Understanding the changes in spinal cord neurophysiology and neurochemistry after a lesion is of critical importance to the improvement of treatments for locomotor rehabilitation in spinal-cord-injured patients.

  9. Tonic and Rhythmic Spinal Activity Underlying Locomotion.

    PubMed

    Ivanenko, Yury P; Gurfinkel, Victor S; Selionov, Victor A; Solopova, Irina A; Sylos-Labini, Francesca; Guertin, Pierre A; Lacquaniti, Francesco

    2017-05-12

    In recent years, many researches put significant efforts into understanding and assessing the functional state of the spinal locomotor circuits in humans. Various techniques have been developed to stimulate the spinal cord circuitries, which may include both diffuse and quite specific tuning effects. Overall, the findings indicate that tonic and rhythmic spinal activity control are not separate phenomena but are closely integrated to properly initiate and sustain stepping. The spinal cord does not simply transmit information to and from the brain. Its physiologic state determines reflex, postural and locomotor control and, therefore, may affect the recovery of the locomotor function in individuals with spinal cord and brain injuries. This review summarizes studies that examine the rhythmogenesis capacity of cervical and lumbosacral neuronal circuitries in humans and its importance in developing central pattern generator-modulating therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Effects of Symphytum ointment on muscular symptoms and functional locomotor disturbances.

    PubMed

    Kucera, M; Kálal, J; Polesná, Z

    2000-01-01

    In an open, uncontrolled study, 105 patients with locomotor system symptoms were treated twice daily with an ointment containing a Symphytum active substance complex. A clear therapeutic effect was noted on chronic and subacute symptoms that were accompanied mainly by functional disturbances and pain in the musculature. The preparation was most effective against muscle pain, swelling and overstrain, arthralgia/distortions, enthesopathy, and vertebral syndrome. Activity was weaker against degenerative conditions, for which the ointment may have an adjuvant role with the aim of improving muscular dysfunction and alleviating pain.

  11. Effect of physical exercise prelabyrinthectomy on locomotor balance compensation in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Igarashi, M.; Ohashi, K.; Yoshihara, T.; MacDonald, S.

    1989-01-01

    This study examines the effectiveness of physical exercise, during a prepathology state, on locomotor balance compensation after subsequent unilateral labyrinthectomy in squirrel monkeys. An experimental group underwent 3 hr. of daily running exercise on a treadmill for 3 mo. prior to the surgery, whereas a control group was not exercised. Postoperatively, the locomotor balance function of both groups was tested for 3 mo. There was no significant difference in gait deviation counts in the acute phase of compensation. However, in the chronic compensation maintenance phase, the number of gait deviation counts was fewer in the exercise group, which showed significantly better performance stability.

  12. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion

    PubMed Central

    Noga, Brian R.; Sanchez, Francisco J.; Villamil, Luz M.; O’Toole, Christopher; Kasicki, Stefan; Olszewski, Maciej; Cabaj, Anna M.; Majczyński, Henryk; Sławińska, Urszula; Jordan, Larry M.

    2017-01-01

    Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6–12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 μA). Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 μA), the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in vitro in the pedunculopontine nucleus (PPN), thought to be a part of the MLR) were relatively small. Controlled locomotion was best achieved at 10–20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites. PMID:28579945

  13. Locomotion in response to shifting climate zones: not so fast.

    PubMed

    Feder, Martin E; Garland, Theodore; Marden, James H; Zera, Anthony J

    2010-01-01

    Although a species' locomotor capacity is suggestive of its ability to escape global climate change, such a suggestion is not necessarily straightforward. Species vary substantially in locomotor capacity, both ontogenetically and within/among populations, and much of this variation has a genetic basis. Accordingly, locomotor capacity can and does evolve rapidly, as selection experiments demonstrate. Importantly, even though this evolution of locomotor capacity may be rapid enough to escape changing climate, genetic correlations among traits (often due to pleiotropy) are such that successful or rapid dispersers are often limited in colonization or reproductive ability, which may be viewed as a trade-off. The nuanced assessment of this variation and evolution is reviewed for well-studied models: salmon, flying versus flightless insects, rodents undergoing experimental evolution, and metapopulations of butterflies. This work reveals how integration of physiology with population biology and functional genomics can be especially informative.

  14. Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans

    PubMed Central

    Mangum, Tyler S.; Sidhu, Simranjit K.; Weavil, Joshua C.; Hureau, Thomas J.; Jessop, Jacob E.; Bledsoe, Amber D.; Richardson, Russell S.; Amann, Markus

    2016-01-01

    Key points The purpose of this study was to determine the role of group III/IV muscle afferents in limiting the endurance exercise‐induced metabolic perturbation assayed in muscle biopsy samples taken from locomotor muscle.Lumbar intrathecal fentanyl was used to attenuate the central projection of μ‐opioid receptor‐sensitive locomotor muscle afferents during a 5 km cycling time trial.The findings suggest that the central projection of group III/IV muscle afferent feedback constrains voluntary neural ‘drive’ to working locomotor muscle and limits the exercise‐induced intramuscular metabolic perturbation.Therefore, the CNS might regulate the degree of metabolic perturbation within locomotor muscle and thereby limit peripheral fatigue. It appears that the group III/IV muscle afferents are an important neural link in this regulatory mechanism, which probably serves to protect locomotor muscle from the potentially severe functional impairment as a consequence of severe intramuscular metabolic disturbance. Abstract To investigate the role of metabo‐ and mechanosensitive group III/IV muscle afferents in limiting the intramuscular metabolic perturbation during whole body endurance exercise, eight subjects performed 5 km cycling time trials under control conditions (CTRL) and with lumbar intrathecal fentanyl impairing lower limb muscle afferent feedback (FENT). Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Motoneuronal output was estimated through vastus lateralis surface electromyography (EMG). Exercise‐induced changes in intramuscular metabolites were determined using liquid and gas chromatography‐mass spectrometry. Quadriceps fatigue was quantified by pre‐ to post‐exercise changes in potentiated quadriceps twitch torque (ΔQTsingle) evoked by electrical femoral nerve stimulation. Although motoneuronal output was 21 ± 12% higher during FENT compared to CTRL (P < 0.05), time to complete the time trial was similar (∼8.8 min). Compared to CTRL, power output during FENT was 10 ± 4% higher in the first half of the time trial, but 11 ± 5% lower in the second half (both P < 0.01). The exercise‐induced increase in intramuscular inorganic phosphate, H+, adenosine diphosphate, lactate and phosphocreatine depletion was 55 ± 30, 62 ± 18, 129 ± 63, 47 ± 14 (P < 0.001) and 27 ± 14% (P < 0.01) greater in FENT than CTRL. ΔQTsingle was greater following FENT than CTRL (−52 ± 2 vs −31 ± 1%, P < 0.001) and this difference was positively correlated with the difference in inorganic phosphate (r 2 = 0.79; P < 0.01) and H+ (r 2 = 0.92; P < 0.01). In conclusion, during whole body exercise, group III/IV muscle afferents provide feedback to the CNS which, in turn, constrains motoneuronal output to the active skeletal muscle. This regulatory mechanism limits the exercise‐induced intramuscular metabolic perturbation, preventing an abnormal homeostatic challenge and excessive peripheral fatigue. PMID:27241818

  15. Locomotor activity and gait in aged mice deficient for type IX collagen

    PubMed Central

    Costello, Kerry E.; Guilak, Farshid; Griffin, Timothy M.

    2010-01-01

    Osteoarthritis (OA) is a risk factor for physical inactivity and impaired mobility, but it is not well understood how these locomotor behaviors are affected by the age of onset of OA and disease severity. Male mice homozygous for a Col9a1 gene inactivation (Col9a1−/−) develop early onset knee OA, increased tactile pain sensitivity, and gait alterations by 9 mo of age. We hypothesized that aged Col9a1−/− mice would reduce joint pain by adopting locomotor behaviors that reduce both the magnitude and daily frequency of joint loading. We tested this hypothesis by evaluating gait and spontaneous locomotor activity in 15- to 17-mo-old male Col9a1−/− (n = 5) and Col9a1+/+(WT) (n = 5) mice using well-controlled measures of voluntary activity in overground and running wheel conditions, as well as studies of gait in a velocity-controlled treadmill. We found no difference due to genotype in freely chosen locomotor velocity, stride frequency, hindfoot duty factor, dark phase activity time, or dark-phase travel distance during overground, running wheel, or speed-matched treadmill locomotion. Interpretation of these findings is potentially confounded by the observation that WT mice have greater knee OA than Col9a1−/− mice in the lateral tibial plateau by 17 mo of age. When accounting for individual differences in knee OA, functional locomotor impairments in aged Col9a1−/− and WT mice are manifested as reductions in total locomotor activity levels (e.g., both distance traveled and time active), particularly for wheel running. These results support the concept that current disease status, rather than age of disease onset, is the primary determinant of impaired locomotor activity with aging. PMID:20360435

  16. EEG during pedaling: Evidence for cortical control of locomotor tasks

    PubMed Central

    Jain, Sanket; Gourab, Krishnaj; Schindler-Ivens, Sheila; Schmit, Brian D.

    2014-01-01

    Objective This study characterized the brain electrical activity during pedaling, a locomotor-like task, in humans. We postulated that phasic brain activity would be associated with active pedaling, consistent with a cortical role in locomotor tasks. Methods Sixty four channels of electroencephalogram (EEG) and 10 channels of electromyogram (EMG) data were recorded from 10 neurologically-intact volunteers while they performed active and passive (no effort) pedaling on a custom-designed stationary bicycle. Ensemble averaged waveforms, 2 dimensional topographic maps and amplitude of the β (13–35 Hz) frequency band were analyzed and compared between active and passive trials. Results The peak-to-peak amplitude (peak positive–peak negative) of the EEG waveform recorded at the Cz electrode was higher in the passive than the active trials (p < 0.01). β-band oscillations in electrodes overlying the leg representation area of the cortex were significantly desynchronized during active compared to the passive pedaling (p < 0.01). A significant negative correlation was observed between the average EEG waveform for active trials and the composite EMG (summated EMG from both limbs for each muscle) of the rectus femoris (r = −0.77, p < 0.01) the medial hamstrings (r = −0.85, p < 0.01) and the tibialis anterior (r = −0.70, p < 0.01) muscles. Conclusions These results demonstrated that substantial sensorimotor processing occurs in the brain during pedaling in humans. Further, cortical activity seemed to be greatest during recruitment of the muscles critical for transitioning the legs from flexion to extension and vice versa. Significance This is the first study demonstrating the feasibility of EEG recording during pedaling, and owing to similarities between pedaling and bipedal walking, may provide valuable insight into brain activity during locomotion in humans. PMID:23036179

  17. Modality-specific, multitask locomotor deficits persist despite good recovery after a traumatic brain injury.

    PubMed

    McFadyen, Bradford J; Cantin, Jean-François; Swaine, Bonnie; Duchesneau, Guylaine; Doyon, Julien; Dumas, Denyse; Fait, Philippe

    2009-09-01

    To study the effects of sensory modality of simultaneous tasks during walking with and without obstacles after moderate to severe traumatic brain injury (TBI). Group comparison study. Gait analysis laboratory within a postacute rehabilitation facility. Volunteer sample (N=18). Persons with moderate to severe TBI (n=11) (9 men, 3 women; age, 37.56+/-13.79 y) and a comparison group (n=7) of subjects without neurologic problems matched on average for body mass index and age (4 men, 3 women; age, 39.19+/-17.35 y). Not applicable. Magnitudes and variability for walking speeds, foot clearance margins (ratio of foot clearance distance to obstacle height), and response reaction times (both direct and as a relative cost because of obstacle avoidance). The TBI group had well-recovered walking speeds and a general ability to avoid obstacles. However, these subjects did show lower trail limb toe clearances (P=.003) across all conditions. Response reaction times to the Stroop tasks were longer in general for the TBI group (P=.017), and this group showed significant increases in response reaction times for the visual modality within the more challenging obstacle avoidance task that was not observed for control subjects. A measure of multitask costs related to differences in response reaction times between obstructed and unobstructed trials also only showed increased attention costs for the visual over the auditory stimuli for the TBI group (P=.002). Mobility is a complex construct, and the present results provide preliminary findings that, even after good locomotor recovery, subjects with moderate to severe TBI show residual locomotor deficits in multitasking. Furthermore, our results suggest that sensory modality is important, and greater multitask costs occur during sensory competition (ie, visual interference).

  18. Serotonergic activation of locomotor behavior and posture in one-day old rats.

    PubMed

    Swann, Hillary E; Kempe, R Blaine; Van Orden, Ashley M; Brumley, Michele R

    2016-04-01

    The purpose of this study was to determine what dose of quipazine, a serotonergic agonist, facilitates air-stepping and induces postural control and patterns of locomotion in newborn rats. Subjects in both experiments were 1-day-old rat pups. In Experiment 1, pups were restrained and tested for air-stepping in a 35-min test session. Immediately following a 5-min baseline, pups were treated with quipazine (1.0, 3.0, or 10.0 mg/kg) or saline (vehicle control), administered intraperitoneally in a 50 μL injection. Bilateral alternating stepping occurred most frequently following treatment with 10.0 mg/kg quipazine, however the percentage of alternating steps, interlimb phase, and step period were very similar between the 3.0 and 10.0 mg/kg doses. For interlimb phase, the forelimbs and hindlimbs maintained a near perfect anti-phase pattern of coordination, with step period averaging about 1s. In Experiment 2, pups were treated with 3.0 or 10.0 mg/kg quipazine or saline, and then were placed on a surface (open field, unrestrained). Both doses of quipazine resulted in developmentally advanced postural control and locomotor patterns, including head elevation, postural stances, pivoting, crawling, and a few instances of quadrupedal walking. The 3.0 mg/kg dose of quipazine was the most effective at evoking sustained locomotion. Between the 2 experiments, behavior exhibited by the rat pup varied based on testing environment, emphasizing the role that environment and sensory cues exert over motor behavior. Overall, quipazine administered at a dose of 3.0 mg/kg was highly effective at promoting alternating limb coordination and inducing locomotor activity in both testing environments. Published by Elsevier B.V.

  19. Differential development of tolerance to the functional and behavioral effects of repeated baclofen treatment in rats

    PubMed Central

    Beveridge, T.J.R.; Smith, H.R.; Porrino, L.J.

    2013-01-01

    Baclofen, a gamma-aminobutyric acid (GABA)B receptor agonist, has been used clinically to treat muscle spasticity, rigidity and pain. More recently, interest in the use of baclofen as an addiction medicine has grown, with promising preclinical cocaine and amphetamine data and demonstrated clinical benefit from alcohol and nicotine studies. Few preclinical investigations, however, have utilized chronic dosing of baclofen, which is important given that tolerance can occur to many of its effects. Thus the question of whether chronic treatment of baclofen maintains the efficacy of acute doses is imperative. The neural substrates that underlie the effects of baclofen, particularly those after chronic treatment, are also not known. In the present study, therefore, rats were treated with either a) vehicle, b) acute baclofen (5 mg/kg) or c) chronic baclofen (5 mg/kg, t.i.d. for 5 days). The effects of acute and chronic baclofen administration, compared to vehicle, were assessed using locomotor activity and changes in brain glucose metabolism (a measure of functional brain activity). Acute baclofen significantly reduced locomotor activity (horizontal and total distance traveled), while chronic baclofen failed to affect locomotor activity. Acute baclofen resulted in significantly lower rates of local cerebral glucose utilization throughout many areas of the brain, including the prefrontal cortex, caudate putamen, septum and hippocampus. The majority of these functional effects, with the exception of the caudate putamen and septum, were absent in animals chronically treated with baclofen. Despite the tolerance to the locomotor and functional effects of baclofen following repeated treatment, these persistent effects on functional activity in the caudate putamen and septum may provide insights into the way in which baclofen alters the reinforcing effects of abused substances such as cocaine, alcohol, and methamphetamine both in humans and animal models. PMID:23500188

  20. Effect and reporting bias of RhoA/ROCK-blockade intervention on locomotor recovery after spinal cord injury: a systematic review and meta-analysis.

    PubMed

    Watzlawick, Ralf; Sena, Emily S; Dirnagl, Ulrich; Brommer, Benedikt; Kopp, Marcel A; Macleod, Malcolm R; Howells, David W; Schwab, Jan M

    2014-01-01

    Blockade of small GTPase-RhoA signaling pathway is considered a candidate translational strategy to improve functional outcome after spinal cord injury (SCI) in humans. Pooling preclinical evidence by orthodox meta-analysis is confounded by missing data (publication bias). To conduct a systematic review and meta-analysis of RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) blocking approaches to (1) analyze the impact of bias that may lead to inflated effect sizes and (2) determine the normalized effect size of functional locomotor recovery after experimental thoracic SCI. We conducted a systematic search of PubMed, EMBASE, and Web of Science and hand searched related references. Studies were selected if they reported the effect of RhoA/ROCK inhibitors (C3-exoenzmye, fasudil, Y-27632, ibuprofen, siRhoA, and p21) in experimental spinal cord hemisection, contusion, or transection on locomotor recovery measured by the Basso, Beattie, and Bresnahan score or the Basso Mouse Scale for Locomotion. Two investigators independently assessed the identified studies. Details of individual study characteristics from each publication were extracted and effect sizes pooled using a random effects model. We assessed risk for bias using a 9-point-item quality checklist and calculated publication bias with Egger regression and the trim and fill method. A stratified meta-analysis was used to assess the impact of study characteristics on locomotor recovery. Thirty studies (725 animals) were identified. RhoA/ROCK inhibition was found to improve locomotor outcome by 21% (95% CI, 16.0-26.6). Assessment of publication bias by the trim and fill method suggested that 30% of experiments remain unpublished. Inclusion of these theoretical missing studies suggested a 27% overestimation of efficacy, reducing the overall efficacy to a 15% improvement in locomotor recovery. Low study quality was associated with larger estimates of neurobehavioral outcome. Taking into account publication bias, RhoA/ROCK inhibition improves functional outcome in experimental SCI by 15%. This is a plausible strategy for the pharmacological augmentation of neurorehabilitation after human SCI. These findings support the necessity of a systematic analysis to identify preclinical bias before embarking on a clinical trial.

  1. The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning.

    PubMed

    Helm, Erin E; Matt, Kathleen S; Kirschner, Kenneth F; Pohlig, Ryan T; Kohl, Dave; Reisman, Darcy S

    2017-10-01

    Brain-derived neurotrophic factor (BDNF) has been directly related to exercise-enhanced motor performance in the neurologically injured animal model; however literature concerning the role of BDNF in the enhancement of motor learning in the human population is limited. Previous studies in healthy subjects have examined the relationship between intensity of an acute bout of exercise, increases in peripheral BDNF and motor learning of a simple isometric upper extremity task. The current study examined the role of high intensity exercise on upregulation of peripheral BDNF levels as well as the role of high intensity exercise in mediation of motor learning and retention of a novel locomotor task in neurologically intact adults. In addition, the impact of a single nucleotide polymorphism in the BDNF gene (Val66Met) in moderating the relationship between exercise and motor learning was explored. It was hypothesized that participation in high intensity exercise prior to practicing a novel walking task (split-belt treadmill walking) would elicit increases in peripheral BDNF as well as promote an increased rate and magnitude of within session learning and retention on a second day of exposure to the walking task. Within session learning and retention would be moderated by the presence or absence of Val66Met polymorphism. Fifty-four neurologically intact participants participated in two sessions of split-belt treadmill walking. Step length and limb phase were measured to assess learning of spatial and temporal parameters of walking. Serum BDNF was collected prior to and immediately following either high intensity exercise or 5min of quiet rest. The results demonstrated that high intensity exercise provides limited additional benefit to learning of a novel locomotor pattern in neurologically intact adults, despite increases in circulating BDNF. In addition, presence of a single nucleotide polymorphism on the BDNF gene did not moderate the magnitude of serum BDNF increases with high intensity exercise, nor did it moderate the relationship between high intensity exercise and locomotor learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A Computational Analysis of Limb and Body Dimensions in Tyrannosaurus rex with Implications for Locomotion, Ontogeny, and Growth

    PubMed Central

    Hutchinson, John R.; Bates, Karl T.; Molnar, Julia; Allen, Vivian; Makovicky, Peter J.

    2011-01-01

    The large theropod dinosaur Tyrannosaurus rex underwent remarkable changes during its growth from <10 kg hatchlings to >6000 kg adults in <20 years. These changes raise fascinating questions about the morphological transformations involved, peak growth rates, and scaling of limb muscle sizes as well as the body's centre of mass that could have influenced ontogenetic changes of locomotion in T. rex. Here we address these questions using three-dimensionally scanned computer models of four large, well-preserved fossil specimens as well as a putative juvenile individual. Furthermore we quantify the variations of estimated body mass, centre of mass and segment dimensions, to characterize inaccuracies in our reconstructions. These inaccuracies include not only subjectivity but also incomplete preservation and inconsistent articulations of museum skeletons. Although those problems cause ambiguity, we conclude that adult T. rex had body masses around 6000–8000 kg, with the largest known specimen (“Sue”) perhaps ∼9500 kg. Our results show that during T. rex ontogeny, the torso became longer and heavier whereas the limbs became proportionately shorter and lighter. Our estimates of peak growth rates are about twice as rapid as previous ones but generally support previous methods, despite biases caused by the usage of scale models and equations that underestimate body masses. We tentatively infer that the hindlimb extensor muscles masses, including the large tail muscle M. caudofemoralis longus, may have decreased in their relative size as the centre of mass shifted craniodorsally during T. rex ontogeny. Such ontogenetic changes would have worsened any relative or absolute decline of maximal locomotor performance. Regardless, T. rex probably had hip and thigh muscles relatively larger than any extant animal's. Overall, the limb “antigravity” muscles may have been as large as or even larger than those of ratite birds, which themselves have the most muscular limbs of any living animal. PMID:22022500

  3. A computational analysis of limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny, and growth.

    PubMed

    Hutchinson, John R; Bates, Karl T; Molnar, Julia; Allen, Vivian; Makovicky, Peter J

    2011-01-01

    The large theropod dinosaur Tyrannosaurus rex underwent remarkable changes during its growth from <10 kg hatchlings to >6000 kg adults in <20 years. These changes raise fascinating questions about the morphological transformations involved, peak growth rates, and scaling of limb muscle sizes as well as the body's centre of mass that could have influenced ontogenetic changes of locomotion in T. rex. Here we address these questions using three-dimensionally scanned computer models of four large, well-preserved fossil specimens as well as a putative juvenile individual. Furthermore we quantify the variations of estimated body mass, centre of mass and segment dimensions, to characterize inaccuracies in our reconstructions. These inaccuracies include not only subjectivity but also incomplete preservation and inconsistent articulations of museum skeletons. Although those problems cause ambiguity, we conclude that adult T. rex had body masses around 6000-8000 kg, with the largest known specimen ("Sue") perhaps ∼9500 kg. Our results show that during T. rex ontogeny, the torso became longer and heavier whereas the limbs became proportionately shorter and lighter. Our estimates of peak growth rates are about twice as rapid as previous ones but generally support previous methods, despite biases caused by the usage of scale models and equations that underestimate body masses. We tentatively infer that the hindlimb extensor muscles masses, including the large tail muscle M. caudofemoralis longus, may have decreased in their relative size as the centre of mass shifted craniodorsally during T. rex ontogeny. Such ontogenetic changes would have worsened any relative or absolute decline of maximal locomotor performance. Regardless, T. rex probably had hip and thigh muscles relatively larger than any extant animal's. Overall, the limb "antigravity" muscles may have been as large as or even larger than those of ratite birds, which themselves have the most muscular limbs of any living animal.

  4. A horse’s locomotor signature: COP path determined by the individual limb

    PubMed Central

    Hobbs, Sarah Jane; Back, Willem

    2017-01-01

    Introduction Ground reaction forces in sound horses with asymmetric hooves show systematic differences in the horizontal braking force and relative timing of break-over. The Center Of Pressure (COP) path quantifies the dynamic load distribution under the hoof in a moving horse. The objective was to test whether anatomical asymmetry, quantified by the difference in dorsal wall angle between the left and right forelimbs, correlates with asymmetry in the COP path between these limbs. In addition, repeatability of the COP path was investigated. Methods A larger group (n = 31) visually sound horses with various degree of dorsal hoof wall asymmetry trotted three times over a pressure mat. COP path was determined in a hoof-bound coordinate system. A relationship between correlations between left and right COP paths and degree of asymmetry was investigated. Results Using a hoof-bound coordinate system made the COP path highly repeatable and unique for each limb. The craniocaudal patterns are usually highly correlated between left and right, but the mediolateral patterns are not. Some patterns were found between COP path and dorsal wall angle but asymmetry in dorsal wall angle did not necessarily result in asymmetry in COP path and the same could be stated for symmetry. Conclusion This method is a highly sensitive method to quantify the net result of the interaction between all of the forces and torques that occur in the limb and its inertial properties. We argue that changes in motor control, muscle force, inertial properties, kinematics and kinetics can potentially be picked up at an early stage using this method and could therefore be used as an early detection method for changes in the musculoskeletal apparatus. PMID:28196073

  5. Limitations imposed by wearing armour on Medieval soldiers' locomotor performance.

    PubMed

    Askew, Graham N; Formenti, Federico; Minetti, Alberto E

    2012-02-22

    In Medieval Europe, soldiers wore steel plate armour for protection during warfare. Armour design reflected a trade-off between protection and mobility it offered the wearer. By the fifteenth century, a typical suit of field armour weighed between 30 and 50 kg and was distributed over the entire body. How much wearing armour affected Medieval soldiers' locomotor energetics and biomechanics is unknown. We investigated the mechanics and the energetic cost of locomotion in armour, and determined the effects on physical performance. We found that the net cost of locomotion (C(met)) during armoured walking and running is much more energetically expensive than unloaded locomotion. C(met) for locomotion in armour was 2.1-2.3 times higher for walking, and 1.9 times higher for running when compared with C(met) for unloaded locomotion at the same speed. An important component of the increased energy use results from the extra force that must be generated to support the additional mass. However, the energetic cost of locomotion in armour was also much higher than equivalent trunk loading. This additional cost is mostly explained by the increased energy required to swing the limbs and impaired breathing. Our findings can predict age-associated decline in Medieval soldiers' physical performance, and have potential implications in understanding the outcomes of past European military battles.

  6. Should Body Weight–Supported Treadmill Training and Robotic-Assistive Steppers for Locomotor Training Trot Back to the Starting Gate?

    PubMed Central

    Dobkin, Bruce H.; Duncan, Pamela W.

    2014-01-01

    Body weight–supported treadmill training (BWSTT) and robotic-assisted step training (RAST) have not, so far, led to better outcomes than a comparable dose of progressive over-ground training (OGT) for disabled persons with stroke, spinal cord injury, multiple sclerosis, Parkinson’s disease, or cerebral palsy. The conceptual bases for these promising rehabilitation interventions had once seemed quite plausible, but the results of well-designed, randomized clinical trials have been disappointing. The authors reassess the underpinning concepts for BWSTT and RAST, which were derived from mammalian studies of treadmill-induced hind-limb stepping associated with central pattern generation after low thoracic spinal cord transection, as well as human studies of the triple crown icons of task-oriented locomotor training, massed practice, and activity-induced neuroplasticity. The authors retrospectively consider where theory and practice may have fallen short in the pilot studies that aimed to produce thoroughbred interventions. Based on these shortcomings, the authors move forward with recommendations for the future development of workhorse interventions for walking. In the absence of evidence for physical therapists to employ these strategies, however, BWSTT and RAST should not be provided routinely to disabled, vulnerable persons in place of OGT outside of a scientifically conducted efficacy trial. PMID:22412172

  7. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate?

    PubMed

    Dobkin, Bruce H; Duncan, Pamela W

    2012-05-01

    Body weight-supported treadmill training (BWSTT) and robotic-assisted step training (RAST) have not, so far, led to better outcomes than a comparable dose of progressive over-ground training (OGT) for disabled persons with stroke, spinal cord injury, multiple sclerosis, Parkinson's disease, or cerebral palsy. The conceptual bases for these promising rehabilitation interventions had once seemed quite plausible, but the results of well-designed, randomized clinical trials have been disappointing. The authors reassess the underpinning concepts for BWSTT and RAST, which were derived from mammalian studies of treadmill-induced hind-limb stepping associated with central pattern generation after low thoracic spinal cord transection, as well as human studies of the triple crown icons of task-oriented locomotor training, massed practice, and activity-induced neuroplasticity. The authors retrospectively consider where theory and practice may have fallen short in the pilot studies that aimed to produce thoroughbred interventions. Based on these shortcomings, the authors move forward with recommendations for the future development of workhorse interventions for walking. In the absence of evidence for physical therapists to employ these strategies, however, BWSTT and RAST should not be provided routinely to disabled, vulnerable persons in place of OGT outside of a scientifically conducted efficacy trial.

  8. EMG patterns during assisted walking in the exoskeleton

    PubMed Central

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628

  9. EMG patterns during assisted walking in the exoskeleton.

    PubMed

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.

  10. Limitations imposed by wearing armour on Medieval soldiers' locomotor performance

    PubMed Central

    Askew, Graham N.; Formenti, Federico; Minetti, Alberto E.

    2012-01-01

    In Medieval Europe, soldiers wore steel plate armour for protection during warfare. Armour design reflected a trade-off between protection and mobility it offered the wearer. By the fifteenth century, a typical suit of field armour weighed between 30 and 50 kg and was distributed over the entire body. How much wearing armour affected Medieval soldiers' locomotor energetics and biomechanics is unknown. We investigated the mechanics and the energetic cost of locomotion in armour, and determined the effects on physical performance. We found that the net cost of locomotion (Cmet) during armoured walking and running is much more energetically expensive than unloaded locomotion. Cmet for locomotion in armour was 2.1–2.3 times higher for walking, and 1.9 times higher for running when compared with Cmet for unloaded locomotion at the same speed. An important component of the increased energy use results from the extra force that must be generated to support the additional mass. However, the energetic cost of locomotion in armour was also much higher than equivalent trunk loading. This additional cost is mostly explained by the increased energy required to swing the limbs and impaired breathing. Our findings can predict age-associated decline in Medieval soldiers' physical performance, and have potential implications in understanding the outcomes of past European military battles. PMID:21775328

  11. Effect of Upper Limb Deformities on Gross Motor and Upper Limb Functions in Children with Spastic Cerebral Palsy

    ERIC Educational Resources Information Center

    Park, Eun Sook; Sim, Eun Geol; Rha, Dong-wook

    2011-01-01

    The aims of this study were to investigate the nature and extent of upper limb deformities via the use of various classifications, and to analyze the relationship between upper limb deformities and gross motor or upper limb functionality levels. Upper extremity data were collected from 234 children with spastic cerebral palsy (CP) who were…

  12. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model

    PubMed Central

    Sershen, Henry; Hashim, Audrey; Dunlop, David S.; Suckow, Raymond F.; Cooper, Tom B.; Javitt, Daniel C.

    2016-01-01

    Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol®) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor sodium benzoate (NaB) (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level, arguing against a DAAO-mediated effect. However, NaB reduced plasma L-serine and based on reports that NaB also elevates various plasma metabolites, for example aminoisobutyric acid (AIB), a potential effect via the System A amino acid carrier may be involved in the regulation of synaptic glycine level to modulate NMDAR function needs to be investigated. Acute ascorbic acid (300 mg/kg) also inhibited PCP-induced locomotor activity, which was further attenuated in the presence of D-serine (600 mg/kg). Ascorbic acid may have an action at the dopamine membrane carrier and/or altering redox mechanisms that modulate NMDARs, but this needs to be further investigated. The findings support an effect of D-serine on PCP-induced hyperactivity. They also offer suggestions on an interaction of NaB via an unknown mechanism, other than DAAO inhibition, perhaps through metabolomic changes, and find unexpected synergy between D-serine and ascorbic acid that supports combined NMDA glycine- and redox-site intervention. Although mechanisms of these specific agents need to be determined, overall it supports continued glutamatergic drug development. PMID:26857796

  13. [Application of locomotor activity test to evaluate functional injury after global cerebral ischemia in C57BL/6 mice].

    PubMed

    Zhang, Li-quan; Xu, Jia-ni; Wang, Zhen-zhen; Zeng, Li-jun; Ye, Yi-lu; Zhang, Wei-ping; Wei, Er-qing; Zhang, Qi

    2014-05-01

    To evaluate the application of locomotor activity test in functional injury after global cerebral ischemia (GCI) in C57BL/6 mice. GCI was induced by bilateral carotid arteries occlusion for 30 min in C57BL/6 mice. Mice were divided into sham group, GCI group and minocycline group. Saline or minocycline (45 mg/kg) was i.p. injected once daily for 6 d after ischemia. At Day 6 after ischemia, locomotor activity was recorded for 1 h in open field test. Total distance, central distance, central distance ratio, periphery distance, periphery distance ratio, central time and periphery time were used to evaluate the behavior characteristics of locomotor activity in C57BL/6 mice after ischemia. The survival neuron density was detected by Nissl staining in hippocampus, cortex and striatum. Compared with sham group, total distance, central distance and central time increased and periphery time decreased in C57BL/6 mice after GCI (Ps<0.05). However, minocycline significantly reduced the central distance and central time and increased the periphery time (Ps<0.05). Neurons were damaged in hippocampus, cortex and striatum after GCI, which manifested by decreased neurons and the most serious damage in hippocampal CA1 region. Minocycline significantly improved the neuron appearance and increased the neuron number in hippocampus and striatum (P<0.001 or P<0.05). Locomotor activity in open field test can objectively evaluate the behavior injury after GCI in mice. Central distance and central time can be used as indexes of quantitative assessment.

  14. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial.

    PubMed

    Rodrigues, Thais Amanda; Goroso, Daniel Gustavo; Westgate, Philip M; Carrico, Cheryl; Batistella, Linamara R; Sawaki, Lumy

    2017-10-01

    Robot-assisted locomotor training on a bodyweight-supported treadmill is a rehabilitation intervention that compels repetitive practice of gait movements. Standard treadmill speed may elicit rhythmic movements generated primarily by spinal circuits. Slower-than-standard treadmill speed may elicit discrete movements, which are more complex than rhythmic movements and involve cortical areas. Compare effects of fast (i.e., rhythmic) versus slow (i.e., discrete) robot-assisted locomotor training on a bodyweight-supported treadmill in subjects with chronic, severe gait deficit after stroke. Subjects (N = 18) were randomized to receive 30 sessions (5 d/wk) of either fast or slow robot-assisted locomotor training on a bodyweight-supported treadmill in an inpatient setting. Functional ambulation category, time up and go, 6-min walk test, 10-m walk test, Berg Balance Scale, and Fugl-Meyer Assessment were administered at baseline and postintervention. The slow group had statistically significant improvement on functional ambulation category (first quartile-third quartile, P = 0.004), 6-min walk test (95% confidence interval [CI] = 1.8 to 49.0, P = 0.040), Berg Balance Scale (95% CI = 7.4 to 14.8, P < 0.0001), time up and go (95% CI = -79.1 to 5.0, P < 0.0030), and Fugl-Meyer Assessment (95% CI = 24.1 to 45.1, P < 0.0001). The fast group had statistically significant improvement on Berg Balance Scale (95% CI = 1.5 to 10.5, P = 0.02). In initial stages of robot-assisted locomotor training on a bodyweight-supported treadmill after severe stroke, slow training targeting discrete movement may yield greater benefit than fast training.

  15. Advancing Measurement of Locomotor Rehabilitation Outcomes to Optimize Interventions and Differentiate between Recovery versus Compensation

    PubMed Central

    Bowden, Mark G.; Behrman, Andrea L.; Woodbury, Michelle; Gregory, Chris M.; Velozo, Craig A.; Kautz, Steven A.

    2017-01-01

    Progress in locomotor rehabilitation has created an increasing need to understand the factors that contribute to motor behavior, to determine whether these factors are modifiable, and if so, to determine how best to modify them in a way that promotes improved function. Currently available measures do not have the capacity to distinguish between neuromotor recovery and compensation for impaired underlying body structure/functions. The purpose of this Special Interest article is to examine the state of outcomes measurement in physical therapy in regards outcomes to locomotor rehabilitation, and to suggest approaches that may improve assessment of recovery and clinical decision-making capabilities. We examine historical approaches to measurement of locomotor rehabilitation outcomes including rating scales, timed movement tasks, and laboratory-based outcome measures, and we discuss the emerging use of portable technology to assess walking in a free living environment. The ability to accurately measure outcomes of rehabilitation, both in and away from the laboratory setting, allows assessment of skill acquisition, retention, and long-term carryover in a variety of environments. Accurate measurement allows behavioral changes to be observed and assessments to be made, not only regarding an individual's ability to adapt during interventions, but also their ability to incorporate new skills into a real-world behavior. The result of such an approach to assessment may be that interventions truly translate from laboratory to real-world environments. Future locomotor measurement tools must be based on a theoretical framework that can guide their use to accurately quantify treatment effects and provide a basis upon which to develop and refine therapeutic interventions. PMID:22333921

  16. [A robotic system for gait re-education in patients with an incomplete spinal cord injury].

    PubMed

    Esclarín-De Ruz, A; Alcobendas-Maestro, M; Casado-López, R; Muñoz-Gonzalez, A; Florido-Sánchez, M A; González-Valdizán, E

    A spinal cord injury involves the loss or alteration of motor patterns in walking, the recovery of which depends partly on the rearrangement of the preserved neural circuits. AIM. To evaluate the changes that take place in the gait of patients with incomplete spinal cord injuries who were treated with a robotic walking system in association with conventional therapy. The study conducted was an open-label, prospective, descriptive trial with statistical inference in patients with C2-L3 spinal cord injuries that were classified as degrees C and D according to the American Spinal Injury Association (ASIA) scale. The variables that were analysed on the first and the last day of the study were: number of walkers, 10-m gait test, the Walking Index for Spinal Cord Injury scale revision, technical aids, muscle balance in the lower limbs, locomotor subscale of the measure of functional independence, modified Ashworth scale for spasticity and the visual analogue scale for pain. At the end, data were recorded from the impression of change scale. The analysis was conducted by means of Student's t, chi squared and Pearson's correlation; p < or = 0.05. Forty-five patients, with a mean age of 44 +/- 14.3 years, finished the study; 76% were males, injury was caused by trauma in 58% of cases, and the time of progression was 139 +/- 70 days. Statistically significant increases were observed in the number of subjects capable of walking, walking speed, less need for technical aids, strength in the lower limbs and independence in activities of daily living. Treatment using the robotic system in association with conventional therapy improves walking capacity in patients with incomplete spinal cord injuries.

  17. Effect of body mass distribution on the ontogeny of positional behaviors in non-human primates: Longitudinal follow-up of infant captive olive baboons (Papio anubis).

    PubMed

    Druelle, François; Aerts, Peter; Berillon, Gilles

    2016-11-01

    The diversity of primates' positional capabilities is unique among mammals. Indeed, they exhibit a daily repertoire composed of various locomotor and postural modes that may be linked to their particular morphological pattern. Because ontogeny undergoes parallel behavioral and morphological modifications, it may be useful to investigate the biomechanical consequences of the changing body shape. We, therefore, collected accurate quantitative and longitudinal data on positional behaviors, body mass distribution patterns, activities, and environment on a sample of six infant olive baboons, Papio anubis. These baboons are kept at the Primatology Station of the CNRS, France, where they live within the same social group. Individual behaviors were quantified using the focal sampling method. The body mass distribution was estimated according to a geometric model based on direct external measurements. Multivariate analysis enabled us to analyze the interactions between the data. Our results show that body mass distribution changes together with the ontogenetic changes in positional behaviors. At an early age, individuals have distally heavy segment masses in the limbs and an important fraction of the behavioral repertoire involves efficient grasping abilities. At the end of infancy, the same individuals have relatively more mass in proximal segments of the limbs and the proportion of quadrupedal walking is significantly higher while other climbing and suspensory behaviors decreased substantially. The present study experimentally confirms the association between body mass distribution and the positional repertoire of primates. These relationships, when interpreted in the context of basic biomechanical concepts, may improve our understanding of primate locomotion. We discuss further the implications of these functional relationships when modeling the evolutionary pathway of primates. Am. J. Primatol. 78:1201-1221, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson's disease: a [(15)O] H2O PET study.

    PubMed

    Ballanger, Benedicte; Lozano, Andres M; Moro, Elena; van Eimeren, Thilo; Hamani, Clement; Chen, Robert; Cilia, Roberto; Houle, Sylvain; Poon, Yu Yan; Lang, Anthony E; Strafella, Antonio P

    2009-12-01

    Patients with advanced Parkinson's disease (PD) develop disabling axial symptoms, including gait disturbances, freezing and postural instability poorly responsive to levodopa replacement therapy. The pedunculopontine nucleus (PPN) is involved in locomotion, control of posture, and behavioral states [i.e. wakefulness, rapid eye movement sleep]. Recent reports suggested that PPN modulation with deep brain stimulation (DBS) may be beneficial in the treatment of axial symptoms. However, the mechanisms underlying these effects are still unknown. We used [(15)O] H(2)O PET to investigate regional cerebral blood flow in three patients with advanced PD who underwent a new experimental surgical procedure with implantation of unilateral PPN-DBS. Patients were studied Off-medication with stimulator Off and On, both at rest and during a self-paced alternating motor task of the lower limbs. We used SPM2 for imaging data analysis, threshold P < 0.05 corrected at the cluster level. Stimulation induced significant regional cerebral blood flow increment in subcortical regions such as the thalamus (P < 0.006), cerebellum (P < 0.001), and midbrain region (P < 0.001) as well as different cortical areas involving medial sensorimotor cortex extending into caudal supplementary motor area (BA 4/6; P < 0.001). PPN-DBS in advanced PD resulted in blood flow and presumably neuronal activity changes in subcortical and cortical areas involved in balance and motor control, including the mesencephalic locomotor region (e.g. PPN) and closely interconnected structures within the cerebello-(rubro)-thalamo-cortical circuit. Whether these findings are associated with the DBS-PPN clinical effect remains to be proven. However, they suggest that PPN modulation may induce functional changes in neural networks associated with the control of lower limb movements. 2009 Wiley-Liss, Inc.

  19. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb

    PubMed Central

    Hudson, Penny E; Corr, Sandra A; Payne-Davis, Rachel C; Clancy, Sinead N; Lane, Emily; Wilson, Alan M

    2011-01-01

    The cheetah is capable of a top speed of 29 ms−1 compared to the maximum speed of 17 ms−1 achieved by the racing greyhound. In this study of the hindlimb and in the accompanying paper on the forelimb we have quantified the musculoskeletal anatomy of the cheetah and greyhound and compared them to identify any differences that may account for this variation in their locomotor abilities. Specifically, bone length, mass and mid-shaft diameter were measured, along with muscle mass, fascicle lengths, pennation angles and moment arms to enable estimates of maximal isometric force, joint torques and joint rotational velocities to be calculated. Surprisingly the cheetahs had a smaller volume of hip extensor musculature than the greyhounds, and we therefore propose that the cheetah powers acceleration using its extensive back musculature. The cheetahs also had an extremely powerful psoas muscle which could help to resist the pitching moments around the hip associated with fast accelerations. The hindlimb bones were proportionally longer and heavier, enabling the cheetah to take longer strides and potentially resist higher peak limb forces. The cheetah therefore possesses several unique adaptations for high-speed locomotion and fast accelerations, when compared to the racing greyhound. PMID:21062282

  20. Developmental constraints on behavioural flexibility.

    PubMed

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  1. Phenotypic disparity of the elbow joint in domestic dogs and wild carnivores.

    PubMed

    Figueirido, Borja

    2018-05-16

    In this article, I use geometric morphometrics in 2D from a sample of 366 elbow joints to quantify phenotypic disparity in domestic dog breeds, in wild canids, and across the order Carnivora. The elbow joint is a well-established morphological indicator of forearm motion and, by extension, of functional adaptations towards locomotor or predatory behavior in living carnivores. The study of the elbow joint in domestic dogs allows the exploration of potential convergences between (i) pursuit predators and fast-running dogs, and (ii) ambush predators and fighting breeds. The results indicate that elbow shape disparity among domestic dogs exceeds that in wolves; it is comparable to the disparity of wild Caninae, but is significantly lower than the one observed throughout Canidae and Carnivora. Moreover, fast-running and fighting breeds are not convergent in elbow joint shape with extreme pursuit and ambush wild carnivores, respectively. The role of artificial selection and developmental constraints in shaping limb phenotypic disparity through the extremely fast evolution of the domestic dog is discussed in the light of this new evidence. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Oral erlotinib, but not rapamycin, causes modest acceleration of bladder and hindlimb recovery from spinal cord injury in rats.

    PubMed

    Kjell, J; Pernold, K; Olson, L; Abrams, M B

    2014-03-01

    Erlotinib and Rapamycin are both in clinical use and experimental inhibition of their respective molecular targets, EGFR and mTORC1, has improved recovery from spinal cord injury. Our aim was to determine if daily Erlotinib or Rapamycin treatment started directly after spinal contusion injury in rats improves locomotion function or recovery of bladder function. Stockholm, Sweden. Rats were subjected to contusion injuries and treated during the acute phase with either Erlotinib or Rapamycin. Recovery of bladder function was monitored by measuring residual urine volume and hindlimb locomotion assessed by open-field observations using the BBB rating scale as well as by automated registration of gait parameters. Body weights were monitored. To determine whether Erlotinib and Rapamycin inhibit the same signaling pathway, a cell culture system and western blots were used. Erlotinib accelerated locomotor recovery and slightly improved bladder recovery; however, we found no long-term improvements of locomotor function. Rapamycin did neither improved locomotor function nor bladder recovery. In vitro studies confirmed that Erlotinib and Rapamycin both inhibit the EGFR-mTORC1 signaling pathway. We conclude that none of these two drug regimes improved long-term functional outcome in our current model of spinal cord injury. Nevertheless, oral treatment with Erlotinib may offer modest temporary advantages, whereas treatment with Rapamycin does not.

  3. Integrating gastrocnemius force-length properties, in vivo activation and operating lengths reveals how Anolis deal with ecological challenges.

    PubMed

    Foster, Kathleen L; Higham, Timothy E

    2017-03-01

    A central question in biology is how animals successfully behave under complex natural conditions. Although changes in locomotor behaviour, motor control and force production in relation to incline are commonly examined, a wide range of other factors, including a range of perch diameters, pervades arboreal habitats. Moving on different substrate diameters requires considerable alteration of body and limb posture, probably causing significant shifts in the lengths of the muscle-tendon units powering locomotion. Thus, how substrate shape impacts in vivo muscle function remains an important but neglected question in ecophysiology. Here, we used high-speed videography, electromyography, in situ contractile experiments and morphology to examine gastrocnemius muscle function during arboreal locomotion in the Cuban knight anole, Anolis equestris The gastrocnemius contributes more to the propulsive effort on broad surfaces than on narrow surfaces. Surprisingly, substrate inclination affected the relationship between the maximum potential force and fibre recruitment; the trade-off that was present between these variables on horizontal surfaces became a positive relationship on inclined surfaces. Finally, the biarticular nature of the gastrocnemius allows it to generate force isometrically, regardless of substrate diameter and incline, despite the fact that the tendons are incapable of stretching during cyclical locomotion. Our results emphasize the importance of considering ecology and muscle function together, and the necessity of examining both mechanical and physiological properties of muscles to understand how animals move in their environment. © 2017. Published by The Company of Biologists Ltd.

  4. Locomotor function after long-duration space flight: effects and motor learning during recovery.

    PubMed

    Mulavara, Ajitkumar P; Feiveson, Alan H; Fiedler, James; Cohen, Helen; Peters, Brian T; Miller, Chris; Brady, Rachel; Bloomberg, Jacob J

    2010-05-01

    Astronauts returning from space flight and performing Earth-bound activities must rapidly transition from the microgravity-adapted sensorimotor state to that of Earth's gravity. The goal of the current study was to assess locomotor dysfunction and recovery of function after long-duration space flight using a test of functional mobility. Eighteen International Space Station crewmembers experiencing an average flight duration of 185 days performed the functional mobility test (FMT) pre-flight and post-flight. To perform the FMT, subjects walked at a self selected pace through an obstacle course consisting of several pylons and obstacles set up on a base of 10-cm-thick, medium-density foam for a total of six trials per test session. The primary outcome measure was the time to complete the course (TCC, in seconds). To assess the long-term recovery trend of locomotor function after return from space flight, a multilevel exponential recovery model was fitted to the log-transformed TCC data. All crewmembers exhibited altered locomotor function after space flight, with a median 48% increase in the TCC. From the fitted model we calculated that a typical subject would recover to 95% of his/her pre-flight level at approximately 15 days post-flight. In addition, to assess the early motor learning responses after returning from space flight, we modeled performance over the six trials during the first post-flight session by a similar multilevel exponential relation. We found a significant positive correlation between measures of long-term recovery and early motor learning (P < 0.001) obtained from the respective models. We concluded that two types of recovery processes influence an astronaut's ability to re-adapt to Earth's gravity environment. Early motor learning helps astronauts make rapid modifications in their motor control strategies during the first hours after landing. Further, this early motor learning appears to reinforce the adaptive realignment, facilitating re-adaptation to Earth's 1-g environment on return from space flight.

  5. Influence of sensitization on the discriminative stimulus effects of methylphenidate in mice.

    PubMed

    McGovern, Robin; Luderman, Lauryn; Knecht, Kelly; Griffin, William C

    2014-12-01

    Methylphenidate (MPH) remains an important therapy for attention-deficit hyperactivity disorder, but aspects of its pharmacology remain unclear. In the present study, we used a regimen of MPH (8 mg/kg daily×14 days) in C57BL/6J mice to determine whether establishing locomotor sensitization to MPH influenced the acquisition and the dose-response function of MPH in a classic drug discrimination procedure. MPH-sensitized mice (SENS group) showed enhanced locomotor activity to the 8 mg/kg exposure dose as well as a 2 mg/kg dose before discrimination training. However, the SENS mice did not acquire discrimination of either a low dose (2 mg/kg) or a higher dose (4 mg/kg) of MPH any more rapidly than the CTRL mice. Further, during generalization testing, the dose-response functions for the SENS and CTRL mice were identical. Therefore, we did not find that previous exposure to MPH, which produced a sensitized locomotor response, facilitated MPH discrimination.

  6. Position Sense in Chronic Pain: Separating Peripheral and Central Mechanisms in Proprioception in Unilateral Limb Pain.

    PubMed

    Tsay, Anthony J; Giummarra, Melita J

    2016-07-01

    Awareness of limb position is derived primarily from muscle spindles and higher-order body representations. Although chronic pain appears to be associated with motor and proprioceptive disturbances, it is not clear if this is due to disturbances in position sense, muscle spindle function, or central representations of the body. This study examined position sense errors, as an indicator of spindle function, in participants with unilateral chronic limb pain. The sample included 15 individuals with upper limb pain, 15 with lower limb pain, and 15 sex- and age-matched pain-free control participants. A 2-limb forearm matching task in blindfolded participants, and a single-limb pointer task, with the reference limb hidden from view, was used to assess forearm position sense. Position sense was determined after muscle contraction or stretch, intended to induce a high or low spindle activity in the painful and nonpainful limbs, respectively. Unilateral upper and lower limb chronic pain groups produced position errors comparable with healthy control participants for position matching and pointer tasks. The results indicate that the painful and nonpainful limb are involved in limb-matching. Lateralized pain, whether in the arm or leg, does not influence forearm position sense. Painful and nonpainful limbs are involved in bilateral limb-matching. Muscle spindle function appears to be preserved in the presence of chronic pain. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  7. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord

    PubMed Central

    Gozal, Elizabeth A.; O'Neill, Brannan E.; Sawchuk, Michael A.; Zhu, Hong; Halder, Mallika; Chou, Ching-Chieh; Hochman, Shawn

    2014-01-01

    The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na+-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na+-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic function. PMID:25426030

  8. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord.

    PubMed

    Gozal, Elizabeth A; O'Neill, Brannan E; Sawchuk, Michael A; Zhu, Hong; Halder, Mallika; Chou, Ching-Chieh; Hochman, Shawn

    2014-01-01

    The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na(+)-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na(+)-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic function.

  9. Gender-related differences in recovery of locomotor function after spinal cord injury in mice.

    PubMed

    Farooque, M; Suo, Z; Arnold, P M; Wulser, M J; Chou, C-T; Vancura, R W; Fowler, S; Festoff, B W

    2006-03-01

    In order to study the role of gender in recovery, we induced a thoracic compression spinal cord injury (SCI) separately in 2-month-old male and female C57Bl/6 mice. We intended to assess effects of gender on recovery of hindlimb motor function and to correlate these with histomorphologic profiles of injured spinal cord tissue. Locomotor function was evaluated by three means: a modified locomotor scoring system for rodents, beam walking and computerized activity meter. Histology was analyzed by comparison of hematoxylin and eosin-stained perfused specimens. Locomotor scores were 2.2+/-0.9 on day 1 in male mice, while, in contrast, they were significantly higher, 7.3+/-1.7, in females (P<0.02). On day 14 Basso, Beattie and Bresnahan scores were 9.5+/-2.2 in male mice and 16.0+/-2.2 in females (P<0.03). Terminal histology showed that the spinal cord architecture was relatively better preserved in female mice and that the extent of necrosis and infiltration of inflammatory cells was less compared to males. Neurobiology Research Laboratory of University of Kansas Medical School in US Department of Veterans Affairs Medical Center, Kansas City, Missouri. We found that the severity of the initial injury as well as the ultimate recovery of motor function after SCI is significantly influenced by gender, being remarkably better in females. The mechanism(s) of neuroprotection in females, although not yet elucidated, may be associated with the effects of estrogen on pathophysiological processes (blood flow, leukocyte migration inhibition, antioxidant properties, and inhibition of apoptosis). Medical Research, US Department of Veterans Affairs, the Christopher Reeve Paralysis Foundation and NIH.

  10. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity.

    PubMed

    Oginsky, Max F; Maust, Joel D; Corthell, John T; Ferrario, Carrie R

    2016-03-01

    Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. We examined differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity and basal differences in striatal neuron function in adult and in adolescent obesity-prone and obesity-resistant rats. Susceptible and resistant outbred rats were identified based on "junk-food" diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine-induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). In rats that became obese after eating junk-food, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ∼60 % at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals, and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats.

  11. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    PubMed Central

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  12. Predictive Value of Upper Limb Muscles and Grasp Patterns on Functional Outcome in Cervical Spinal Cord Injury.

    PubMed

    Velstra, Inge-Marie; Bolliger, Marc; Krebs, Jörg; Rietman, Johan S; Curt, Armin

    2016-05-01

    To determine which single or combined upper limb muscles as defined by the International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI); upper extremity motor score (UEMS) and the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP), best predict upper limb function and independence in activities of daily living (ADLs) and to assess the predictive value of qualitative grasp movements (QlG) on upper limb function in individuals with acute tetraplegia. As part of a Europe-wide, prospective, longitudinal, multicenter study ISNCSCI, GRASSP, and Spinal Cord Independence Measure (SCIM III) scores were recorded at 1 and 6 months after SCI. For prediction of upper limb function and ADLs, a logistic regression model and unbiased recursive partitioning conditional inference tree (URP-CTREE) were used. Results: Logistic regression and URP-CTREE revealed that a combination of ISNCSCI and GRASSP muscles (to a maximum of 4) demonstrated the best prediction (specificity and sensitivity ranged from 81.8% to 96.0%) of upper limb function and identified homogenous outcome cohorts at 6 months. The URP-CTREE model with the QlG predictors for upper limb function showed similar results. Prediction of upper limb function can be achieved through a combination of defined, specific upper limb muscles assessed in the ISNCSCI and GRASSP. A combination of a limited number of proximal and distal muscles along with an assessment of grasping movements can be applied for clinical decision making for rehabilitation interventions and clinical trials. © The Author(s) 2015.

  13. [Comparative efficacy of different regimens of locomotor training in long-term space flights by the data of biomechanical and electromyographic parametrs of walking].

    PubMed

    Shpakov, A V; Voronov, A V; Fomina, E V; Lysova, N Iu; Chernova, M V; Kozlovskaia, I B

    2013-01-01

    Biomechanical and electromyographic characteristics of locomotion were investigated before and after space flight on the 3rd, 7th and 10th day after landing in 18 cosmonauts--crewmembers of long-term ISS space flights. It was shown that microgravity causes the development of significant changes in biomechanical and electromyographic characteristics of walking. Decrease of the angular displacement amplitude in leg joints, reduction of the length of the double step, increase of the electromyographic cost of locomotion were recorded after flight. It was also shown that interval locomotor physical training in long-term space flights in the regimen of alternation running and walking prevents physiological cost of locomotor movements increase after space flight and provides more effective maintenance of the neuromuscular system functions after flight. After flight smaller changes of biomechanical and electromyographic characteristics of walking were observed in cosmonauts who used locomotor training in interval regimen.

  14. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.

    PubMed

    Gosgnach, Simon; Bikoff, Jay B; Dougherty, Kimberly J; El Manira, Abdeljabbar; Lanuza, Guillermo M; Zhang, Ying

    2017-11-08

    Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion. Copyright © 2017 the authors 0270-6474/17/3710835-07$15.00/0.

  15. [The influence of non-invasive electrical stimulation of the spinal cord on the locomotor function of patients presenting with movement disorders of central genesis].

    PubMed

    Balykin, M V; Yakupov, R N; Mashin, V V; Kotova, E Yu; Balykin, Yu M; Gerasimenko, Yu P

    The objective of the present study was to evaluate the influence of non-invasive (transcutaneous) electrical spinal cord stimulation on the locomotor function of the patients suffering from movement disorders. The study involved 10 patients of both sexes at the age from 32 to 70 years (including 40% of men and 60% of women) presenting with the compromised locomotor function of varying severity associated with the disturbances of cerebral blood circulation caused either by an injury to the brain and spinal cord or by stroke. The transcutaneous electrical spinal cord stimulation was applied using different frequency regimes with the placement of the electrodes in the projection onto the region of TXI-TXII vertebrae. The active factors were bipolar electrical stimuli 0.5 ms in duration; the current strength was chosen for each patient on an individual basis taking into consideration its threshold level. Electromyograms and evoked motor responses of selected muscles, viz. m. rectus femoris, m.biceps femoris, m. tibialis anterior, and m.gastrocnemius were recorded with the use of the 'Neuro-MVP-8 eight-channel electromyography' ('Neurosoft', Russia). The data obtained give evidence that the stimulation of the spinal cord with a frequency of 1 Hz induces reflectory responses with monosynaptic and polysynaptic components in the muscles of the lower extremities, with the thresholds of these responses being significantly higher in the patients presenting with serious neurological problems. Stimulation with the frequencies of 5 and 30 Hz caused in the patients with paresis the involuntary movement of the legs the characteristics of which were similar to those of the locomotor movements. It has been demonstrated that the application of transcutaneous electrical spinal cord stimulation leads to increased excitability of the lumbar spinal neural structures of the patients. The study has shown the possibility of regulation of the locomotor functions in the patients presenting with movement disorders of central genesis by means of non-invasive electrical stimulation of the spinal cord.

  16. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population

    PubMed Central

    Gandolla, Marta; Guanziroli, Eleonora; D'Angelo, Andrea; Cannaviello, Giovanni; Molteni, Franco; Pedrocchi, Alessandra

    2018-01-01

    Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial—it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be robust, and to be in agreement with the current gold standard (i.e., manual calibration performed by an expert engineer). The use of a graphical user interface is a promising tool for the effective use of an automatic procedure in a clinical context. PMID:29615890

  17. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population.

    PubMed

    Gandolla, Marta; Guanziroli, Eleonora; D'Angelo, Andrea; Cannaviello, Giovanni; Molteni, Franco; Pedrocchi, Alessandra

    2018-01-01

    Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial-it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be robust, and to be in agreement with the current gold standard (i.e., manual calibration performed by an expert engineer). The use of a graphical user interface is a promising tool for the effective use of an automatic procedure in a clinical context.

  18. Three-dimensional skeletal kinematics of the shoulder girdle and forelimb in walking Alligator

    PubMed Central

    Baier, David B; Gatesy, Stephen M

    2013-01-01

    Crocodylians occupy a key phylogenetic position for investigations of archosaur locomotor evolution. Compared to the well-studied hindlimb, relatively little is known about the skeletal movements and mechanics of the forelimb. In this study, we employed manual markerless XROMM (X-ray Reconstruction Of Moving Morphology) to measure detailed 3-D kinematics of the shoulder girdle and forelimb bones of American alligators (Alligator mississippiensis) walking on a treadmill. Digital models of the interclavicle, scapulocoracoid, humerus, radius and ulna were created using a 3-D laser scanner. Models were articulated and aligned to simultaneously recorded frames of fluoroscopic and standard light video to reconstruct and measure joint motion. Joint coordinate systems were established for the coracosternal, glenohumeral and elbow joints. Our analysis revealed that the limb joints only account for about half of fore/aft limb excursion; the remaining excursion results from shoulder girdle movements and lateral bending of the vertebral column. Considerable motion of each scapulocoracoid relative to the vertebral column is consistent with coracosternal mobility. The hemisellar design of the glenohumeral joint permits some additional translation, or sliding in the fore-aft plane, but this movement does not have much of an effect on the distal excursion of the bone. PMID:24102540

  19. Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-body Segmental Inertial Recording for Multi-modal Neural Decoding

    PubMed Central

    Bulea, Thomas C.; Kilicarslan, Atilla; Ozdemir, Recep; Paloski, William H.; Contreras-Vidal, Jose L.

    2013-01-01

    Recent studies support the involvement of supraspinal networks in control of bipedal human walking. Part of this evidence encompasses studies, including our previous work, demonstrating that gait kinematics and limb coordination during treadmill walking can be inferred from the scalp electroencephalogram (EEG) with reasonably high decoding accuracies. These results provide impetus for development of non-invasive brain-machine-interface (BMI) systems for use in restoration and/or augmentation of gait- a primary goal of rehabilitation research. To date, studies examining EEG decoding of activity during gait have been limited to treadmill walking in a controlled environment. However, to be practically viable a BMI system must be applicable for use in everyday locomotor tasks such as over ground walking and turning. Here, we present a novel protocol for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)), and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and over ground walking tasks. By collecting these data in the uncontrolled environment insight can be gained regarding the feasibility of decoding unconstrained gait and surface EMG from scalp EEG. PMID:23912203

  20. Force wave transmission through the human locomotor system.

    PubMed

    Voloshin, A; Wosk, J; Brull, M

    1981-02-01

    A method to measure the capability of the human shock absorber system to attenuate input dynamic loading during the gait is presented. The experiments were carried out with two groups: healthy subjects and subjects with various pathological conditions. The results of the experiments show a considerable difference in the capability of each group's shock absorbers to attenuate force transmitted through the locomotor system. Comparison shows that healthy subjects definitely possess a more efficient shock-absorbing capacity than do those subjects with joint disorders. Presented results show that degenerative changes in joints reduce their shock absorbing capacity, which leads to overloading of the next shock absorber in the locomotor system. So, the development of osteoarthritis may be expected to result from overloading of a shock absorber's functional capacity.

  1. Recovery of peripheral muscle function from fatiguing exercise and daily physical activity level in patients with multiple sclerosis: a case-control study.

    PubMed

    Ickmans, Kelly; Simoens, Fauve; Nijs, Jo; Kos, Daphne; Cras, Patrick; Willekens, Barbara; Meeus, Mira

    2014-07-01

    Delayed recovery of muscle function following exercise has been demonstrated in the lower limbs of patients with multiple sclerosis (MS). However, studies examining this in the upper limbs are currently lacking. This study compared physical activity level (PAL) and recovery of upper limb muscle function following exercise between MS patients and healthy inactive controls. Furthermore, the relationship between PAL and muscle recovery was examined. PAL of 19 MS patients and 32 controls was measured using an accelerometer for 7 consecutive days. Afterwards, recovery of muscle function was assessed by performing a fatiguing upper limb exercise test with subsequent recovery measures. Muscle recovery of the upper limb muscles was similar in both groups. Average activity counts were significantly lower in MS patients than in the control group. MS patients spent significantly more time being sedentary and less time on activities of moderate intensity compared with the control group. No significant correlation between PAL and recovery of muscle function was found in MS patients. Recovery of upper limb muscle function following exercise is normal in MS patients. MS patients are less physically active than healthy inactive controls. PAL and recovery of upper limb muscle function appear unrelated in MS patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Behavioral Characterization of the Effects of Cannabis Smoke and Anandamide in Rats

    PubMed Central

    Bruijnzeel, Adriaan W.; Qi, Xiaoli; Guzhva, Lidia V.; Wall, Shannon; Deng, Jie V.; Gold, Mark S.; Febo, Marcelo; Setlow, Barry

    2016-01-01

    Cannabis is the most widely used illicit drug in the world. Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component of cannabis and its effects have been well-studied. However, cannabis contains many other cannabinoids that affect brain function. Therefore, these studies investigated the effect of cannabis smoke exposure on locomotor activity, rearing, anxiety-like behavior, and the development of dependence in rats. It was also investigated if cannabis smoke exposure leads to tolerance to the locomotor-suppressant effects of the endogenous cannabinoid anandamide. Cannabis smoke was generated by burning 5.7% Δ9-THC cannabis cigarettes in a smoking machine. The effect of cannabis smoke on the behavior of rats in a small and large open field and an elevated plus maze was evaluated. Cannabis smoke exposure induced a brief increase in locomotor activity followed by a prolonged decrease in locomotor activity and rearing in the 30-min small open field test. The cannabinoid receptor type 1 (CB1) receptor antagonist rimonabant increased locomotor activity and prevented the smoke-induced decrease in rearing. Smoke exposure also increased locomotor activity in the 5-min large open field test and the elevated plus maze test. The smoke exposed rats spent more time in the center zone of the large open field, which is indicative of a decrease in anxiety-like behavior. A high dose of anandamide decreased locomotor activity and rearing in the small open field and this was not prevented by rimonabant or pre-exposure to cannabis smoke. Serum Δ9-THC levels were 225 ng/ml after smoke exposure, which is similar to levels in humans after smoking cannabis. Exposure to cannabis smoke led to dependence as indicated by more rimonabant-precipitated somatic withdrawal signs in the cannabis smoke exposed rats than in the air-control rats. In conclusion, chronic cannabis smoke exposure in rats leads to clinically relevant Δ9-THC levels, dependence, and has a biphasic effect on locomotor activity. PMID:27065006

  3. Behavioral Characterization of the Effects of Cannabis Smoke and Anandamide in Rats.

    PubMed

    Bruijnzeel, Adriaan W; Qi, Xiaoli; Guzhva, Lidia V; Wall, Shannon; Deng, Jie V; Gold, Mark S; Febo, Marcelo; Setlow, Barry

    2016-01-01

    Cannabis is the most widely used illicit drug in the world. Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component of cannabis and its effects have been well-studied. However, cannabis contains many other cannabinoids that affect brain function. Therefore, these studies investigated the effect of cannabis smoke exposure on locomotor activity, rearing, anxiety-like behavior, and the development of dependence in rats. It was also investigated if cannabis smoke exposure leads to tolerance to the locomotor-suppressant effects of the endogenous cannabinoid anandamide. Cannabis smoke was generated by burning 5.7% Δ9-THC cannabis cigarettes in a smoking machine. The effect of cannabis smoke on the behavior of rats in a small and large open field and an elevated plus maze was evaluated. Cannabis smoke exposure induced a brief increase in locomotor activity followed by a prolonged decrease in locomotor activity and rearing in the 30-min small open field test. The cannabinoid receptor type 1 (CB1) receptor antagonist rimonabant increased locomotor activity and prevented the smoke-induced decrease in rearing. Smoke exposure also increased locomotor activity in the 5-min large open field test and the elevated plus maze test. The smoke exposed rats spent more time in the center zone of the large open field, which is indicative of a decrease in anxiety-like behavior. A high dose of anandamide decreased locomotor activity and rearing in the small open field and this was not prevented by rimonabant or pre-exposure to cannabis smoke. Serum Δ9-THC levels were 225 ng/ml after smoke exposure, which is similar to levels in humans after smoking cannabis. Exposure to cannabis smoke led to dependence as indicated by more rimonabant-precipitated somatic withdrawal signs in the cannabis smoke exposed rats than in the air-control rats. In conclusion, chronic cannabis smoke exposure in rats leads to clinically relevant Δ9-THC levels, dependence, and has a biphasic effect on locomotor activity.

  4. Locomotor Training and Factors Associated with Blood Glucose Regulation After Spinal Cord Injury.

    PubMed

    Chilibeck, Philip D; Guertin, Pierre A

    2017-01-01

    Individuals with spinal cord injury (SCI) have increased rates of glucose intolerance, insulin insensitivity, and type II diabetes caused mainly by the deconditioning of paralyzed muscle. The purpose of this systematic review was to determine the effectiveness of locomotor training in individuals with SCI on blood glucose control. We searched studies on locomotor training for individuals with SCI with outcomes of glucose, insulin, or outcomes that could change glucose handling (i.e. increases in muscle mass, shifts in muscle fiber type composition, changes in transport proteins, or enzymes involved in glucose metabolism) in PubMed and EMBASE. Eleven studies (10 with incomplete SCI; 1 with complete SCI) were included in our review. Locomotor training included body weight supported treadmill training (BWSTT) with manual or robotic assistance, with and without functional electrical stimulation (FES), or involved FES-assisted over ground training. Six months of locomotor training in individuals with SCI resulted in significant decreases in glucose (15%) and insulin (33%) areas under the curve during oral glucose tolerance tests. Two to twelve months of locomotor training reversed some of the muscle atrophy - with muscle being the site of most glucose consumption, this is important for glucose control. Training also increased capacity for glucose storage, enzymes involved in glucose phosphorylation (hexokinase) and oxidation (citrate synthase), and glucose transport proteins (GLUT-4). Fiber type composition shifted to a slower fiber type, which favors glucose handling. There were no effects on fat mass. Locomotor training in individuals with SCI (generally an incomplete injury) increases capacity to handle glucose and results in muscular changes that should reduce the risk of type II diabetes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Revised upper limb module for spinal muscular atrophy: Development of a new module.

    PubMed

    Mazzone, Elena S; Mayhew, Anna; Montes, Jacqueline; Ramsey, Danielle; Fanelli, Lavinia; Young, Sally Dunaway; Salazar, Rachel; De Sanctis, Roberto; Pasternak, Amy; Glanzman, Allan; Coratti, Giorgia; Civitello, Matthew; Forcina, Nicola; Gee, Richard; Duong, Tina; Pane, Marika; Scoto, Mariacristina; Pera, Maria Carmela; Messina, Sonia; Tennekoon, Gihan; Day, John W; Darras, Basil T; De Vivo, Darryl C; Finkel, Richard; Muntoni, Francesco; Mercuri, Eugenio

    2017-06-01

    There is a growing need for a robust clinical measure to assess upper limb motor function in spinal muscular atrophy (SMA), as the available scales lack sensitivity at the extremes of the clinical spectrum. We report the development of the Revised Upper Limb Module (RULM), an assessment specifically designed for upper limb function in SMA patients. An international panel with specific neuromuscular expertise performed a thorough review of scales currently available to assess upper limb function in SMA. This review facilitated a revision of the existing upper limb function scales to make a more robust clinical scale. Multiple revisions of the scale included statistical analysis and captured clinically relevant changes to fulfill requirements by regulators and advocacy groups. The resulting RULM scale shows good reliability and validity, making it a suitable tool to assess upper extremity function in the SMA population for multi-center clinical research. Muscle Nerve 55: 869-874, 2017. © 2016 Wiley Periodicals, Inc.

  6. Persistent Polyuria in a Rat Spinal Contusion Model

    PubMed Central

    Ward, Patricia J.

    2012-01-01

    Abstract Polyuria contributes to bladder overdistention, which confounds both lower and upper urinary tract management in individuals having a spinal cord injury (SCI). Bladder overdistention post-SCI is one of the most common triggers for autonomic dysreflexia, a potentially life-threatening condition. Post-SCI polyuria is thought to result from loss of vascular tone in the lower extremities, leading to edema and subsequent excess fluid, resulting in polyuria. Mild SCIs that have near complete recovery would therefore be expected to have little to no polyuria, while severe injuries resulting in flaccid limbs and lower extremity edema would be expected to exhibit severe polyuria. Since interventions that may decrease lower extremity edema are recommended to lessen the severity of polyuria, step training (which promotes vascular circulation) was evaluated as a therapy to reduce post-SCI polyuria. In the present study, polyuria was evaluated in mild, moderate, and severe contusive SCI in adult male rats. The animals were housed in metabolic cages for 24-hour periods pre- and post-SCI (to 6 weeks). Urine, feces, food, water, and body weights were collected. Other assessments included residual expressed urine volumes, locomotor scoring, in-cage activity, and lesion histology. SCI produced an immediate increase in 24-hour urine collection, as early as 3 days post-SCI. Approximately 2.6-fold increases in urine collection occurred from weeks 1–6 post-SCI for all injury severities. Even with substantial gains in locomotor and bladder function following a mild SCI, polyuria remained severe. Step training (30 min/day, 6 days/week) did not alleviate polyuria in the moderate SCI contusion group. These results indicate that (1) mild injuries retaining weight-bearing locomotion that should have mild, if any, edema/loss of vascular tone still exhibit severe polyuria, and (2) step training was unable to reduce post-SCI polyuria. Taken together, these results indicate that the current mechanistic hypothesis of post-SCI polyuria may be incomplete. PMID:22708983

  7. Persistent polyuria in a rat spinal contusion model.

    PubMed

    Ward, Patricia J; Hubscher, Charles H

    2012-10-10

    Polyuria contributes to bladder overdistention, which confounds both lower and upper urinary tract management in individuals having a spinal cord injury (SCI). Bladder overdistention post-SCI is one of the most common triggers for autonomic dysreflexia, a potentially life-threatening condition. Post-SCI polyuria is thought to result from loss of vascular tone in the lower extremities, leading to edema and subsequent excess fluid, resulting in polyuria. Mild SCIs that have near complete recovery would therefore be expected to have little to no polyuria, while severe injuries resulting in flaccid limbs and lower extremity edema would be expected to exhibit severe polyuria. Since interventions that may decrease lower extremity edema are recommended to lessen the severity of polyuria, step training (which promotes vascular circulation) was evaluated as a therapy to reduce post-SCI polyuria. In the present study, polyuria was evaluated in mild, moderate, and severe contusive SCI in adult male rats. The animals were housed in metabolic cages for 24-hour periods pre- and post-SCI (to 6 weeks). Urine, feces, food, water, and body weights were collected. Other assessments included residual expressed urine volumes, locomotor scoring, in-cage activity, and lesion histology. SCI produced an immediate increase in 24-hour urine collection, as early as 3 days post-SCI. Approximately 2.6-fold increases in urine collection occurred from weeks 1-6 post-SCI for all injury severities. Even with substantial gains in locomotor and bladder function following a mild SCI, polyuria remained severe. Step training (30 min/day, 6 days/week) did not alleviate polyuria in the moderate SCI contusion group. These results indicate that (1) mild injuries retaining weight-bearing locomotion that should have mild, if any, edema/loss of vascular tone still exhibit severe polyuria, and (2) step training was unable to reduce post-SCI polyuria. Taken together, these results indicate that the current mechanistic hypothesis of post-SCI polyuria may be incomplete.

  8. Physical Therapy Adjuvants to Promote Optimization of Walking Recovery after Stroke

    PubMed Central

    Bowden, Mark G.; Embry, Aaron E.; Gregory, Chris M.

    2011-01-01

    Stroke commonly results in substantial and persistent deficits in locomotor function. The majority of scientific inquiries have focused on singular intervention approaches, with recent attention given to task specific therapies. We propose that measurement should indicate the most critical limiting factor(s) to be addressed and that a combination of adjuvant treatments individualized to target accompanying impairment(s) will result in the greatest improvements in locomotor function. We explore training to improve walking performance by addressing a combination of: (1) walking specific motor control; (2) dynamic balance; (3) cardiorespiratory fitness and (4) muscle strength and put forward a theoretical framework to maximize the functional benefits of these strategies as physical adjuvants. The extent to which any of these impairments contribute to locomotor dysfunction is dependent on the individual and will undoubtedly change throughout the rehabilitation intervention. Thus, the ability to identify and measure the relative contributions of these elements will allow for identification of a primary intervention as well as prescription of additional adjuvant approaches. Importantly, we highlight the need for future studies as appropriate dosing of each of these elements is contingent on improving the capacity to measure each element and to titrate the contribution of each to optimal walking performance. PMID:22013549

  9. The tarsal-metatarsal complex of caviomorph rodents: Anatomy and functional-adaptive analysis.

    PubMed

    Candela, Adriana M; Muñoz, Nahuel A; García-Esponda, César M

    2017-06-01

    Caviomorph rodents represent a major adaptive radiation of Neotropical mammals. They occupy a variety of ecological niches, which is also reflected in their wide array of locomotor behaviors. It is expected that this radiation would be mirrored by an equivalent disparity of tarsal-metatarsal morphology. Here, the tarsal-metatarsal complex of Erethizontidae, Cuniculidae, Dasyproctidae, Caviidae, Chinchillidae, Octodontidae, Ctenomyidae, and Echimyidae was examined, in order to evaluate its anatomical variation and functional-adaptive relevance in relation to locomotor behaviors. A qualitative study in functional morphology and a geometric morphometric analysis were performed. We recognized two distinct tarsal-metatarsal patterns that represent the extremes of anatomical variation in the foot. The first, typically present in arboreal species, is characterized by features that facilitate movements at different levels of the tarsal-metatarsal complex. The second pattern, typically present in cursorial caviomorphs, has a set of features that act to stabilize the joints, improve the interlocking of the tarsal bones, and restrict movements to the parasagittal plane. The morphological disparity recognized in this study seems to result from specific locomotor adaptations to climb, dig, run, jump and swim, as well as phylogenetic effects within and among the groups studies. © 2017 Wiley Periodicals, Inc.

  10. Intraspinal serotonergic signaling suppresses locomotor activity in larval zebrafish.

    PubMed

    Montgomery, Jacob E; Wahlstrom-Helgren, Sarah; Wiggin, Timothy D; Corwin, Brittany M; Lillesaar, Christina; Masino, Mark A

    2018-06-19

    Serotonin (5HT) is a modulator of many vital processes in the spinal cord (SC), such as production of locomotion. In the larval zebrafish, intraspinal serotonergic neurons (ISNs) are a source of spinal 5HT that, despite the availability of numerous genetic and optical tools, has not yet been directly shown to affect the spinal locomotor network. In order to better understand the functions of ISNs, we used a combination of strategies to investigate ISN development, morphology, and function. ISNs were optically isolated from one another by photoconverting Kaede fluorescent protein in individual cells, permitting morphometric analysis as they developed in vivo. ISN neurite lengths and projection distances exhibited the greatest amount of change between 3 and 4 days post-fertilization (dpf) and appeared to stabilize by 5 dpf. Overall ISN innervation patterns were similar between cells and between SC regions. ISNs possessed rostrally-extending neurites resembling dendrites and a caudally-extending neurite resembling an axon, which terminated with an enlarged growth cone-like structure. Interestingly, these enlargements remained even after neurite extension had ceased. Functionally, application of exogenous 5HT reduced spinally-produced motor nerve bursting. A selective 5HT reuptake inhibitor and ISN activation with channelrhodopsin each produced similar effects to 5HT, indicating that spinally-intrinsic 5HT originating from the ISNs has an inhibitory effect on the spinal locomotor network. Taken together this suggests that the ISNs are morphologically mature by 5 dpf and supports their involvement in modulating the activity of the spinal locomotor network. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  11. Imaging: what can it tell us about parkinsonian gait?

    PubMed Central

    Bohnen, Nicolaas I.; Jahn, Klaus

    2013-01-01

    Functional neuroimaging has provided new tools to study cerebral gait control in Parkinson disease (PD). First, imaging of blood flow functions has identified a supraspinal locomotor network that includes the (frontal) cortex, basal ganglia, brainstem tegmentum and the cerebellum. These studies emphasize also the cognitive and attentional dependency of gait in PD. Furthermore, gait in PD and related syndromes like progressive supranuclear palsy may be associated with dysfunction of the indirect, modulatory prefrontal–subthalamic–pedunculopontine loop of locomotor control. The direct, stereotyped locomotor loop from the primary motor cortex to the spinal cord with rhythmic cerebellar input appears preserved and may contribute to the unflexible gait pattern in parkinsonian gait. Second, neurotransmitter and proteinopathy imaging studies are beginning to unravel novel mechanisms of parkinsonian gait and postural disturbances. Dopamine displacement imaging studies have shown evidence for a mesofrontal dopaminergic shift from a depleted striatum in parkinsonian gait. This may place additional burden on other brain systems mediating attention functions to perform previously automatic motor tasks. For example, our preliminary cholinergic imaging studies suggest significant slowing of gait speed when additional forebrain cholinergic denervation occurs in PD. Cholinergic denervation of the pedunculopontine nucleus and its thalamic projections have been associated with falls and impaired postural control. Deposition of β-amyloid may represent another non-dopaminergic correlate of gait disturbance in PD. These findings illustrate the emergence of dopamine non-responsive gait problems to reflect the transition from a predominantly hypodopaminergic disorder to a multisystem neurodegenerative disorder involving non-dopaminergic locomotor network structures and pathologies. PMID:24132837

  12. [Tests of hand functionality in upper limb amputation with prosthesis].

    PubMed

    Bazzini, G; Orlandini, D; Moscato, T A; Nicita, D; Panigazzi, M

    2007-01-01

    The need for standardized instruments for clinical measurements has become pressing in the fields of occupational rehabilitation and ergonomics. This is particularly the case for instruments that allow a quantitative evaluation of upper limb function, and especially hand function in patients who have undergone an amputation and then application of an upper limb prosthesis. This study presents a review of the main tests used to evaluate hand function, with a critical analysis of their use in subjects with an upper limb prosthesis. The tests are divided into: tests to evaluate strength, tests to evaluate co-ordination and dexterity, tests of global or overall function, and tests proposed specifically for subjects with an upper limb prosthesis. Of the various tests presented, the authors give their preference to the Bimanual Functional Assessment, Abilhand and/or the ADL Questionnaire, because of the practical usefulness, clinimetric features, simplicity and ease of administration of these tests.

  13. Shared Enhancer Activity in the Limbs and Phallus and Functional Divergence of a Limb-Genital cis-Regulatory Element in Snakes.

    PubMed

    Infante, Carlos R; Mihala, Alexandra G; Park, Sungdae; Wang, Jialiang S; Johnson, Kenji K; Lauderdale, James D; Menke, Douglas B

    2015-10-12

    The amniote phallus and limbs differ dramatically in their morphologies but share patterns of signaling and gene expression in early development. Thus far, the extent to which genital and limb transcriptional networks also share cis-regulatory elements has remained unexplored. We show that many limb enhancers are retained in snake genomes, suggesting that these elements may function in non-limb tissues. Consistent with this, our analysis of cis-regulatory activity in mice and Anolis lizards reveals that patterns of enhancer activity in embryonic limbs and genitalia overlap heavily. In mice, deletion of HLEB, an enhancer of Tbx4, produces defects in hindlimbs and genitalia, establishing the importance of this limb-genital enhancer for development of these different appendages. Further analyses demonstrate that the HLEB of snakes has lost hindlimb enhancer function while retaining genital activity. Our findings identify roles for Tbx4 in genital development and highlight deep similarities in cis-regulatory activity between limbs and genitalia. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice.

    PubMed

    Kuzmin, Alexander; Madjid, Nather; Terenius, Lars; Ogren, Sven Ove; Bakalkin, Georgy

    2006-09-01

    Effects of big dynorphin (Big Dyn), a prodynorphin-derived peptide consisting of dynorphin A (Dyn A) and dynorphin B (Dyn B) on memory function, anxiety, and locomotor activity were studied in mice and compared to those of Dyn A and Dyn B. All peptides administered i.c.v. increased step-through latency in the passive avoidance test with the maximum effective doses of 2.5, 0.005, and 0.7 nmol/animal, respectively. Effects of Big Dyn were inhibited by MK 801 (0.1 mg/kg), an NMDA ion-channel blocker whereas those of dynorphins A and B were blocked by the kappa-opioid antagonist nor-binaltorphimine (6 mg/kg). Big Dyn (2.5 nmol) enhanced locomotor activity in the open field test and induced anxiolytic-like behavior both effects blocked by MK 801. No changes in locomotor activity and no signs of anxiolytic-like behavior were produced by dynorphins A and B. Big Dyn (2.5 nmol) increased time spent in the open branches of the elevated plus maze apparatus with no changes in general locomotion. Whereas dynorphins A and B (i.c.v., 0.05 and 7 nmol/animal, respectively) produced analgesia in the hot-plate test Big Dyn did not. Thus, Big Dyn differs from its fragments dynorphins A and B in its unique pattern of memory enhancing, locomotor- and anxiolytic-like effects that are sensitive to the NMDA receptor blockade. The findings suggest that Big Dyn has its own function in the brain different from those of the prodynorphin-derived peptides acting through kappa-opioid receptors.

  15. Evaluation of a wireless activity monitoring system to quantify locomotor activity in horses in experimental settings.

    PubMed

    Fries, M; Montavon, S; Spadavecchia, C; Levionnois, O L

    2017-03-01

    Methods of evaluating locomotor activity can be useful in efforts to quantify behavioural activity in horses objectively. To evaluate whether an accelerometric device would be adequate to quantify locomotor activity and step frequency in horses, and to distinguish between different levels of activity and different gaits. Observational study in an experimental setting. Dual-mode (activity and step count) piezo-electric accelerometric devices were placed at each of 4 locations (head, withers, forelimb and hindlimb) in each of 6 horses performing different controlled activities including grazing, walking at different speeds, trotting and cantering. Both the activity count and step count were recorded and compared by the various activities. Statistical analyses included analysis of variance for repeated measures, receiver operating characteristic curves, Bland-Altman analysis and linear regression. The accelerometric device was able to quantify locomotor activity at each of the 4 locations investigated and to distinguish between gaits and speeds. The activity count recorded by the accelerometer placed on the hindlimb was the most accurate, displaying a clear discrimination between the different levels of activity and a linear correlation to speed. The accelerometer placed on the head was the only one to distinguish specifically grazing behaviour from standing. The accelerometer placed on the withers was unable to differentiate different gaits and activity levels. The step count function measured at the hindlimb was reliable but the count was doubled at the walk. The dual-mode accelerometric device was sufficiently accurate to quantify and compare locomotor activity in horses moving at different speeds and gaits. Positioning the device on the hindlimb allowed for the most accurate results. The step count function can be useful but must be manually corrected, especially at the walk. © 2016 EVJ Ltd.

  16. Modular control of varied locomotor tasks in children with incomplete spinal cord injuries

    PubMed Central

    Tester, Nicole J.; Kautz, Steven A.; Howland, Dena R.; Clark, David J.; Garvan, Cyndi; Behrman, Andrea L.

    2013-01-01

    A module is a functional unit of the nervous system that specifies functionally relevant patterns of muscle activation. In adults, four to five modules account for muscle activation during walking. Neurological injury alters modular control and is associated with walking impairments. The effect of neurological injury on modular control in children is unknown and may differ from adults due to their immature and developing nervous systems. We examined modular control of locomotor tasks in children with incomplete spinal cord injuries (ISCIs) and control children. Five controls (8.6 ± 2.7 yr of age) and five children with ISCIs (8.6 ± 3.7 yr of age performed treadmill walking, overground walking, pedaling, supine lower extremity flexion/extension, stair climbing, and crawling. Electromyograms (EMGs) were recorded in bilateral leg muscles. Nonnegative matrix factorization was applied, and the minimum number of modules required to achieve 90% of the “variance accounted for” (VAF) was calculated. On average, 3.5 modules explained muscle activation in the controls, whereas 2.4 modules were required in the children with ISCIs. To determine if control is similar across tasks, the module weightings identified from treadmill walking were used to reconstruct the EMGs from each of the other tasks. This resulted in VAF values exceeding 86% for each child and each locomotor task. Our results suggest that 1) modularity is constrained in children with ISCIs and 2) for each child, similar neural control mechanisms are used across locomotor tasks. These findings suggest that interventions that activate the neuromuscular system to enhance walking also may influence the control of other locomotor tasks. PMID:23761702

  17. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Arrestin-2 and arrestin-3 differentially modulate locomotor responses and sensitization to amphetamine.

    PubMed

    Zurkovsky, Lilia; Sedaghat, Katayoun; Ahmed, M Rafiuddin; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2017-07-15

    Arrestins play a prominent role in shutting down signaling via G protein-coupled receptors. In recent years, a signaling role for arrestins independent of their function in receptor desensitization has been discovered. Two ubiquitously expressed arrestin isoforms, arrestin-2 and arrestin-3, perform similarly in the desensitization process and share many signaling functions, enabling them to substitute for one another. However, signaling roles specific to each isoform have also been described. Mice lacking arrestin-3 (ARR3KO) were reported to show blunted acute responsiveness to the locomotor stimulatory effect of amphetamine (AMPH). It has been suggested that mice with deletion of arrestin-2 display a similar phenotype. Here we demonstrate that the AMPH-induced locomotion of male ARR3KO mice is reduced over the 7-day treatment period and during AMPH challenge after a 7-day withdrawal. The data are consistent with impaired locomotor sensitization to AMPH and suggest a role for arrestin-3-mediated signaling in the sensitization process. In contrast, male ARR2KO mice showed enhanced early responsiveness to AMPH and the lack of further sensitization, suggesting a role for impaired receptor desensitization. The comparison of mice possessing one allele of arrestin-3 and no arrestin-2 with ARR2KO littermates revealed reduced activity of the former line, consistent with a contribution of arrestin-3-mediated signaling to AMPH responses. Surprisingly, ARR3KO mice with one arrestin-2 allele showed significantly reduced locomotor responses to AMPH combined with lower novelty-induced locomotion, as compared to the ARR3KO line. These data suggest that one allele of arrestin-2 is unable to support normal locomotor behavior due to signaling and/or developmental defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of clozapine on locomotor activity and anxiety-related behavior in the neonatal mice administered MK-801.

    PubMed

    Pınar, Neslihan; Akillioglu, Kubra; Sefil, Fatih; Alp, Harun; Sagir, Mustafa; Acet, Ahmet

    2015-08-11

    Atypical antipsychotics have been used to treat fear and anxiety disturbance that are highly common in schizophrenic patients. It is suggested that disruptions of N-methyl-d-aspartate (NMDA)-mediated transmission of glutamate may underlie the pathophysiology of schizophrenia. The present study was conducted to analyze the effectiveness of clozapine on the anxiety-related behavior and locomotor function of the adult brain, which had previously undergone NMDA receptor blockade during a developmental period. In order to block the NMDA receptor, male mice were administered 0.25 mg/kg of MK-801 on days 7 to 10 postnatal. In adulthood, they were administered intraperitoneally 0.5 mg/kg of clozapine and tested with open-field and elevated plus maze test, to assess their emotional behavior and locomotor activity. In the group receiving MK-801 in the early developmental period the elevated plus maze test revealed a reduction in the anxiety-related behavior (p<0.05), while the open-field test indicated a decrease in locomotor activity (p<0.01). Despite these reductions, clozapine could not reverse the NMDA receptor blockade. Also, as an atypical antipsychotic agent, clozapine could not reverse impairment in the locomotor activity and anxiety-related behavior, induced by administration of the MK-801 in neonatal period.

  20. Effect of clozapine on locomotor activity and anxiety-related behavior in the neonatal mice administered MK-801

    PubMed Central

    Pinar, Neslihan; Akillioglu, Kubra; Sefil, Fatih; Alp, Harun; Sagir, Mustafa; Acet, Ahmet

    2015-01-01

    Atypical antipsychotics have been used to treat fear and anxiety disturbance that are highly common in schizophrenic patients. It is suggested that disruptions of N-methyl-d-aspartate (NMDA)-mediated transmission of glutamate may underlie the pathophysiology of schizophrenia. The present study was conducted to analyze the effectiveness of clozapine on the anxiety-related behavior and locomotor function of the adult brain, which had previously undergone NMDA receptor blockade during a developmental period. In order to block the NMDA receptor, male mice were administered 0.25 mg/kg of MK-801 on days 7 to 10 postnatal. In adulthood, they were administered intraperitoneally 0.5 mg/kg of clozapine and tested with open-field and elevated plus maze test, to assess their emotional behavior and locomotor activity. In the group receiving MK-801 in the early developmental period the elevated plus maze test revealed a reduction in the anxiety-related behavior (p<0.05), while the open-field test indicated a decrease in locomotor activity (p<0.01). Despite these reductions, clozapine could not reverse the NMDA receptor blockade. Also, as an atypical antipsychotic agent, clozapine could not reverse impairment in the locomotor activity and anxiety-related behavior, induced by administration of the MK-801 in neonatal period. PMID:26295298

  1. A 3D quantitative comparison of trapezium and trapezoid relative articular and nonarticular surface areas in modern humans and great apes.

    PubMed

    Tocheri, M W; Razdan, A; Williams, R C; Marzke, M W

    2005-11-01

    The structure and functions of the modern human hand are critical components of what distinguishes Homo sapiens from the great apes (Gorilla, Pan, and Pongo). In this study, attention is focused on the trapezium and trapezoid, the two most lateral bones of the distal carpal row, in the four extant hominid genera, representing the first time they have been quantified and analyzed together as a morphological-functional complex. Our objective is to quantify the relative articular and nonarticular surface areas of these two bones and to test whether modern humans exhibit significant shape differences from the great apes, as predicted by previous qualitative analyses and the functional demands of differing manipulative and locomotor strategies. Modern humans were predicted to show larger relative first metacarpal and scaphoid surfaces on the trapezium because of the regular recruitment of the thumb during manipulative behaviors; alternatively, great apes were predicted to show larger relative second metacarpal and scaphoid surfaces on the trapezoid because of the functional demands on the hands during locomotor behaviors. Modern humans were also expected to exhibit larger relative mutual joint surfaces between the trapezoid and adjacent carpals than do the great apes because of assumed transverse loads generated by the functional demands of the modern human power grip. Using 3D bone models acquired through laser digitizing, the relative articular and nonarticular areas on each bone are quantified and compared. Multivariate analyses of these data clearly distinguish modern humans from the great apes. In total, the observed differences between modern humans and the great apes support morphological predictions based on the fact that this region of the human wrist is no longer involved in weight-bearing during locomotor behavior and is instead recruited solely for manipulative behaviors. The results provide the beginnings of a 3D comparative standard against which further extant and fossil primate wrist bones can be compared within the contexts of manipulative and locomotor behaviors.

  2. Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury.

    PubMed

    Hubscher, Charles H; Herrity, April N; Williams, Carolyn S; Montgomery, Lynnette R; Willhite, Andrea M; Angeli, Claudia A; Harkema, Susan J

    2018-01-01

    Locomotor training (LT) as a therapeutic intervention following spinal cord injury (SCI) is an effective rehabilitation strategy for improving motor outcomes, but its impact on non-locomotor functions is unknown. Given recent results of our labs' pre-clinical animal SCI LT studies and existing overlap of lumbosacral spinal circuitries controlling pelvic-visceral and locomotor functions, we addressed whether LT can improve bladder, bowel and sexual function in humans at chronic SCI time-points (> two years post-injury). Prospective cohort study; pilot trial with small sample size. Eight SCI research participants who were undergoing 80 daily one-hour sessions of LT on a treadmill using body-weight support, or one-hour of LT and stand training on alternate days, as part of another research study conducted at the Kentucky Spinal Cord Injury Research Center, University of Louisville, were enrolled in this pilot trial. Urodynamic assessments were performed and International Data Set questionnaire forms completed for bladder, bowel and sexual functions at pre-and post-training time points. Four usual care (non-trained; regular at-home routine) research participants were also enrolled in this study and had the same assessments collected twice, at least 3 months apart. Filling cystometry documented significant increases in bladder capacity, voiding efficiency and detrusor contraction time as well as significant decreases in voiding pressure post-training relative to baseline. Questionnaires revealed a decrease in the frequency of nocturia and urinary incontinence for several research participants as well as a significant decrease in time required for defecation and a significant increase in sexual desire post-training. No significant differences were found for usual care research participants. These results suggest that an appropriate level of sensory information provided to the spinal cord, generated through task-specific stepping and/or loading, can positively benefit the neural circuitries controlling urogenital and bowel functions. ClinicalTrials.gov NCT03036527.

  3. Development of Training Programs to Optimize Planetary Ambulation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Miller, C. A.; Brady, R.; Warren, L. E.; Rutley, T. M.; Kozlovskaya, I. B.

    2007-01-01

    Astronauts experience disturbances in functional mobility following their return to Earth due to adaptive responses that occur during exposure to the microgravity conditions of space flight. Despite significant time spent performing in-flight exercise routines, these training programs have not been able to mitigate postflight alterations in postural and locomotor function. Therefore, the goal of our two inter-related projects (NSBRI-ground based and ISS flight study, "Mobility") is to develop and test gait training programs that will serve to optimize functional mobility during the adaptation period immediately following space flight, thereby improving the safety and efficiency of planetary ambulation. The gait training program entails manipulating the sensory conditions of treadmill exercise to systematically challenge the balance and gait control system. This enhances the overall adaptability of locomotor function enabling rapid reorganization of gait control to respond to ambulation in different gravitational environments. To develop the training program, we are conducting a series of ground-based studies evaluating the training efficacy associated with variation in visual flow, body loading, and support surface stability during treadmill walking. We will also determine the optimal method to present training stimuli within and across training sessions to maximize both the efficacy and efficiency of the training procedure. Results indicate that variations in both visual flow and body unloading during treadmill walking leads to modification in locomotor control and can be used as effective training modalities. Additionally, the composition and timing of sensory challenges experienced during each training session has significant impact on the ability to rapidly reorganize locomotor function when exposed to a novel sensory environment. We have developed the capability of producing support surface variation during gait training by mounting a treadmill on a six-degree-of-freedom motion device. This hardware development will allow us to evaluate the efficacy of this type of training in conjunction with variation in visual flow and body unloading.

  4. Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury

    PubMed Central

    Williams, Carolyn S.; Montgomery, Lynnette R.; Willhite, Andrea M.; Angeli, Claudia A.; Harkema, Susan J.

    2018-01-01

    Objective Locomotor training (LT) as a therapeutic intervention following spinal cord injury (SCI) is an effective rehabilitation strategy for improving motor outcomes, but its impact on non-locomotor functions is unknown. Given recent results of our labs’ pre-clinical animal SCI LT studies and existing overlap of lumbosacral spinal circuitries controlling pelvic-visceral and locomotor functions, we addressed whether LT can improve bladder, bowel and sexual function in humans at chronic SCI time-points (> two years post-injury). Study design Prospective cohort study; pilot trial with small sample size. Methods Eight SCI research participants who were undergoing 80 daily one-hour sessions of LT on a treadmill using body-weight support, or one-hour of LT and stand training on alternate days, as part of another research study conducted at the Kentucky Spinal Cord Injury Research Center, University of Louisville, were enrolled in this pilot trial. Urodynamic assessments were performed and International Data Set questionnaire forms completed for bladder, bowel and sexual functions at pre-and post-training time points. Four usual care (non-trained; regular at-home routine) research participants were also enrolled in this study and had the same assessments collected twice, at least 3 months apart. Results Filling cystometry documented significant increases in bladder capacity, voiding efficiency and detrusor contraction time as well as significant decreases in voiding pressure post-training relative to baseline. Questionnaires revealed a decrease in the frequency of nocturia and urinary incontinence for several research participants as well as a significant decrease in time required for defecation and a significant increase in sexual desire post-training. No significant differences were found for usual care research participants. Conclusions These results suggest that an appropriate level of sensory information provided to the spinal cord, generated through task-specific stepping and/or loading, can positively benefit the neural circuitries controlling urogenital and bowel functions. Trial registration ClinicalTrials.gov NCT03036527 PMID:29385166

  5. Limb deficiency and prosthetic management. 2. Aging with limb loss.

    PubMed

    Flood, Katherine M; Huang, Mark E; Roberts, Toni L; Pasquina, Paul F; Nelson, Virginia S; Bryant, Phillip R

    2006-03-01

    This self-directed learning module highlights the issues faced by people aging with limb loss. It is part of the study guide on limb deficiency and vascular rehabilitation in the Self-Directed Physiatric Education Program for practitioners and trainees in physical medicine and rehabilitation. This article specifically focuses on the impact that limb loss has on health and physical function throughout the life span. Case examples are used to illustrate what effect limb loss in childhood or young adulthood has on the incidence and management of new impairments or disease processes commonly associated with aging. To discuss the impact of early-life limb loss on the incidence and management of physiologic and functional changes associated with aging.

  6. The Lesioned Spinal Cord Is a “New” Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey

    PubMed Central

    Parker, David

    2017-01-01

    Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where comparisons with mammalian systems can be made effects seem to be conserved, improving functional recovery in higher vertebrates will require interventions that generate the optimal spinal cord conditions conducive to recovery. The analyses needed to identify these conditions are difficult in the mammalian spinal cord, but lower vertebrate systems should help to identify the principles of the optimal spinal cord response to injury. PMID:29163065

  7. Long-term outcome of dogs treated with ulnar rollover transposition for limb-sparing of distal radial osteosarcoma: 27 limbs in 26 dogs.

    PubMed

    Séguin, Bernard; O'Donnell, Matthew D; Walsh, Peter J; Selmic, Laura E

    2017-10-01

    To determine outcomes in dogs with distal radial osteosarcoma treated with ulnar rollover transposition (URT) limb-sparing surgery including: viability of the ulnar graft, complications, subjective limb function, disease-free interval (DFI), and survival time (ST). Retrospective case series. Twenty-six client-owned dogs with distal radial osteosarcoma and no involvement of the ulna. Data of dogs treated with URT were collected at the time of surgery and retrospectively from medical records and by contacting owners and referring veterinarians. URT technique was performed on 27 limbs in 26 dogs. The ulnar graft was determined to be viable in 17 limbs, nonviable in 3, and unknown in 7. Complications occurred in 20 limbs. Infection was diagnosed in 12 limbs. Biomechanical complications occurred in 15 and local recurrence in 2 limbs. Limb function graded by veterinarians or owners was poor in 2 limbs, fair in 4, good in 14, excellent in 3, and unknown in 4. Median DFI was 245 days and median ST was 277 days. The URT technique maintained the viability of the ulnar graft. The complication rate was high but limb function appeared acceptable. Although sufficient length of the distal aspect of the ulna must be preserved to perform this technique, local recurrence was not increased compared to other limb-sparing techniques when cases were appropriately selected. © 2017 The American College of Veterinary Surgeons.

  8. Demonstration of the test-retest reliability and sensitivity of the Lower Limb Functional Index-10 as a measure of functional recovery post burn injury: a cross-sectional repeated measures study design.

    PubMed

    Ryland, Margaret E; Grisbrook, Tiffany L; Wood, Fiona M; Phillips, Michael; Edgar, Dale W

    2016-01-01

    Lower limb burns can significantly delay recovery of function. Measuring lower limb functional outcomes is challenging in the unique burn patient population and necessitates the use of reliable and valid tools. The aims of this study were to examine the test-retest reliability, sensitivity, and internal consistency of Sections 1 and 3 of the Lower Limb Functional Index-10 (LLFI-10) questionnaire for measuring functional ability in patients with lower limb burns over time. Twenty-nine adult patients who had sustained a lower limb burn injury in the previous 12 months completed the test-retest procedure of the study. In addition, the minimal detectable change (MDC) was calculated for Section 1 and 3 of the LLFI-10. Section 1 is focused on the activity limitations experienced by patients with a lower limb disorder whereas Section 3 involves patients indicating their current percentage of pre-injury duties. Section 1 of the LLFI-10 demonstrated excellent test-retest reliability (intra-class correlation coefficient (ICC) 0.98, 95 % CI 0.96-0.99) whilst Section 3 demonstrated high test-retest reliability (ICC 0.88, 95 % CI 0.79-0.94). MDC scores for Sections 1 and 3 were 1.27 points and 30.22 %, respectively. Internal consistency was demonstrated with a significant negative association (r s  = -0.83) between Sections 1 and 3 of the LLFI-10 (p < 0.001). This study demonstrates that Section 1 and 3 of the LLFI-10 are reliable for measuring functional ability in patients who have sustained lower limb burns in the previous 12 months, and furthermore, Section 1 is sensitive to changes in patient function over time.

  9. Functional specialisation of pelvic limb anatomy in horses (Equus caballus)

    PubMed Central

    Payne, RC; Hutchinson, JR; Robilliard, JJ; Smith, NC; Wilson, AM

    2005-01-01

    We provide quantitative anatomical data on the muscle–tendon units of the equine pelvic limb. Specifically, we recorded muscle mass, fascicle length, pennation angle, tendon mass and tendon rest length. Physiological cross sectional area was then determined and maximum isometric force estimated. There was proximal-to-distal reduction in muscle volume and fascicle length. Proximal limb tendons were few and, where present, were relatively short. By contrast, distal limb tendons were numerous and long in comparison to mean muscle fascicle length, increasing potential for elastic energy storage. When compared with published data on thoracic limb muscles, proximal pelvic limb muscles were larger in volume and had shorter fascicles. Distal limb muscle architecture was similar in thoracic and pelvic limbs with the exception of flexor digitorum lateralis (lateral head of the deep digital flexor), the architecture of which was similar to that of the pelvic and thoracic limb superficial digital flexors, suggesting a functional similarity. PMID:15960766

  10. Elevated vacuum suspension preserves residual-limb skin health in people with lower-limb amputation: Randomized clinical trial.

    PubMed

    Rink, Cameron; Wernke, Matthew M; Powell, Heather M; Gynawali, Surya; Schroeder, Ryan M; Kim, Jayne Y; Denune, Jeffrey A; Gordillo, Gayle M; Colvin, James M; Sen, Chandan K

    2016-01-01

    A growing number of clinical trials and case reports support qualitative claims that use of an elevated vacuum suspension (EVS) prosthesis improves residual-limb health on the basis of self-reported questionnaires, clinical outcomes scales, and wound closure studies. Here, we report first efforts to quantitatively assess residual-limb circulation in response to EVS. Residual-limb skin health and perfusion of people with lower-limb amputation (N = 10) were assessed during a randomized crossover study comparing EVS with nonelevated vacuum suspension (control) over a 32 wk period using noninvasive probes (transepidermal water loss, laser speckle imaging, transcutaneous oxygen measurement) and functional hyperspectral imaging approaches. Regardless of the suspension system, prosthesis donning decreased perfusion in the residual limb under resting conditions. After 16 wk of use, EVS improved residual-limb oxygenation during treadmill walking. Likewise, prosthesis-induced reactive hyperemia was attenuated with EVS following 16 wk of use. Skin barrier function was preserved with EVS but disrupted after control socket use. Taken together, outcomes suggest chronic EVS use improves perfusion and preserves skin barrier function in people with lower-limb amputation. ClinicalTrials.gov; "Evaluation of limb health associated with a prosthetic vacuum socket system": NCT01839123; https://clinicaltrials.gov/ct2/show/NCT01839123?term=NCT01839123&rank=1.

  11. Dynamic primitives in the control of locomotion.

    PubMed

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term "rhythmic" may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.

  12. Opioid administration following spinal cord injury: Implications for pain and locomotor recovery

    PubMed Central

    Woller, Sarah A.; Hook, Michelle A.

    2013-01-01

    Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries. PMID:23501709

  13. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera).

    PubMed

    Fussnecker, Brendon L; Smith, Brian H; Mustard, Julie A

    2006-10-01

    The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially affected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception.

  14. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera)

    PubMed Central

    Fussnecker, Brendon L.; Smith, Brian H.; Mustard, Julie A.

    2006-01-01

    The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially effected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception. PMID:17028016

  15. Differences in Monoamine Oxidase Activity in the Brain of Wistar and August Rats with High and Low Locomotor Activity: A Cytochemical Study.

    PubMed

    Sergutina, A V; Rakhmanova, V I

    2016-06-01

    Monoamine oxidase activity was quantitatively assessed by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampal CA3 field) of rats of August line and Wistar population with high and low locomotor activity in the open fi eld test. Monoamine oxidase activity (substrate tryptamine) predominated in the nucleus accumbens of Wistar rats with high motor activity in comparison with rats with low locomotor activity. In August rats, enzyme activity (substrates tryptamine and serotonin) predominated in the hippocampus of animals with high motor activity. Comparison of August rats with low locomotor activity and Wistar rats with high motor activity (i.e. animals demonstrating maximum differences in motor function) revealed significantly higher activity of the enzyme (substrates tryptamine and serotonin) in the hippocampus of Wistar rats. The study demonstrates clear-cut morphochemical specificity of monoaminergic metabolism based on the differences in the cytochemical parameter "monoamine oxidase activity", in the studied brain structures, responsible for the formation and realization of goal-directed behavior in Wistar and August rats.

  16. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    PubMed Central

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  17. Down-regulation of Decapping Protein 2 mediates chronic nicotine exposure-induced locomotor hyperactivity in Drosophila.

    PubMed

    Ren, Jing; Sun, Jinghan; Zhang, Yunpeng; Liu, Tong; Ren, Qingzhong; Li, Yan; Guo, Aike

    2012-01-01

    Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence.

  18. Voluntary wheel running improves recovery from a moderate spinal cord injury.

    PubMed

    Engesser-Cesar, Christie; Anderson, Aileen J; Basso, D Michele; Edgerton, V R; Cotman, Carl W

    2005-01-01

    Recently, locomotor training has been shown to improve overground locomotion in patients with spinal cord injury (SCI). This has triggered renewed interest in the role of exercise in rehabilitation after SCI. However, there are no mouse models for voluntary exercise and recovery of function following SCI. Here, we report voluntary wheel running improves recovery from a SCI in mice. C57Bl/10 female mice received a 60-kdyne T9 contusion injury with an IH impactor after 3 weeks of voluntary wheel running or 3 weeks of standard single housing conditions. Following a 7-day recovery period, running mice were returned to their running wheels. Weekly open-field behavior measured locomotor recovery using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale and the Basso Mouse Scale (BMS) locomotor rating scale, a scale recently developed specifically for mice. Initial experiments using standard rung wheels show that wheel running impaired recovery, but subsequent experiments using a modified flat-surface wheel show improved recovery with exercise. By 14 days post SCI, the modified flat-surface running group had significantly higher BBB and BMS scores than the sedentary group. A repeated measures ANOVA shows locomotor recovery of modified flat-surface running mice was significantly improved compared to sedentary animals (p < 0.05). Locomotor assessment using a ladder beam task also shows a significant improvement in the modified flat-surface runners (p < 0.05). Finally, fibronectin staining shows no significant difference in lesion size between the two groups. These data represent the first mouse model showing voluntary exercise improves recovery after SCI.

  19. Down-Regulation of Decapping Protein 2 Mediates Chronic Nicotine Exposure-Induced Locomotor Hyperactivity in Drosophila

    PubMed Central

    Ren, Jing; Sun, Jinghan; Zhang, Yunpeng; Liu, Tong; Ren, Qingzhong; Li, Yan; Guo, Aike

    2012-01-01

    Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence. PMID:23300696

  20. Comparison of the effect of intrathecal administration of clonidine and yohimbine on the locomotion of intact and spinal cats.

    PubMed

    Giroux, N; Reader, T A; Rossignol, S

    2001-06-01

    Several studies have shown that noradrenergic mechanisms are important for locomotion. For instance, L-dihydroxyphenylalanine (L-DOPA) can initiate "fictive" locomotion in immobilized acutely spinalized cats and alpha(2)-noradrenergic agonists, such as 2,6,-dichloro-N-2-imidazolidinylid-enebenzenamine (clonidine), can induce treadmill locomotion soon after spinalization. However, the activation of noradrenergic receptors may be not essential for the basic locomotor rhythmicity because chronic spinal cats can walk with the hindlimbs on a treadmill in the absence of noradrenergic stimulation because the descending pathways are completely severed. This suggests that locomotion, in intact and spinal conditions, is probably expressed and controlled through different neurotransmitter mechanisms. To test this hypothesis, we compared the effect of the alpha(2) agonist, clonidine, and the antagonist (16 alpha, 17 alpha)-17-hydroxy yohimbine-16-carboxylic acid methyl ester hydrochloride (yohimbine), injected intrathecally at L(3)--L(4) before and after spinalization in the same cats chronically implanted with electrodes to record electromyograms (EMGs). In intact cats, clonidine (50-150 microg/100 microl) modulated the locomotor pattern slightly causing a decrease in duration of the step cycle accompanied with some variation of EMG burst amplitude and duration. In the spinal state, clonidine could trigger robust and sustained hind limb locomotion in the first week after the spinalization at a time when the cats were paraplegic. Later, after the spontaneous recovery of a stable locomotor pattern, clonidine prolonged the cycle duration, increased the amplitude and duration of flexor and extensor bursts, and augmented the foot drag at the onset of swing. In intact cats, yohimbine at high doses (800--1600 microg/100 microl) caused major walking difficulties characterized by asymmetric stepping, stumbling with poor lateral stability, and, at smaller doses (400 microg/100 microl), only had slight effects such as abduction of one of the hindlimbs and the turning of the hindquarters to one side. After spinalization, yohimbine had no effect even at the largest doses. These results indicate that, in the intact state, noradrenergic mechanisms probably play an important role in the control of locomotion since blocking the receptors results in a marked disruption of walking. In the spinal state, although the receptors are still present and functional since they can be activated by clonidine, they are seemingly not critical for the spontaneous expression of spinal locomotion since their blockade by yohimbine does not impair spinal locomotion. It is postulated therefore that the expression of spinal locomotion must depend on the activation of other types of receptors, probably related to excitatory amino acids.

  1. Cannabidiol-treated rats exhibited higher motor score after cryogenic spinal cord injury.

    PubMed

    Kwiatkoski, Marcelo; Guimarães, Francisco Silveira; Del-Bel, Elaine

    2012-04-01

    Cannabidiol (CBD), a non-psychoactive constituent of cannabis, has been reported to induce neuroprotective effects in several experimental models of brain injury. We aimed at investigating whether this drug could also improve locomotor recovery of rats submitted to spinal cord cryoinjury. Rats were distributed into five experimental groups. Animals were submitted to laminectomy in vertebral segment T10 followed or not by application of liquid nitrogen for 5 s into the spinal cord at the same level to cause cryoinjury. The animals received injections of vehicle or CBD (20 mg/kg) immediately before, 3 h after and daily for 6 days after surgery. The Basso, Beattie, and Bresnahan motor evaluation test was used to assess motor function post-lesion one day before surgery and on the first, third, and seventh postoperative days. The extent of injury was evaluated by hematoxylin-eosin histology and FosB expression. Cryogenic lesion of the spinal cord resulted in a significant motor deficit. Cannabidiol-treated rats exhibited a higher Basso, Beattie, and Bresnahan locomotor score at the end of the first week after spinal cord injury: lesion + vehicle, day 1: zero, day 7: four, and lesion + Cannabidiol 20 mg/kg, day 1: zero, day 7: seven. Moreover, at this moment there was a significant reduction in the extent of tissue injury and FosB expression in the ventral horn of the spinal cord. The present study confirmed that application of liquid nitrogen to the spinal cord induces reproducible and quantifiable spinal cord injury associated with locomotor function impairments. Cannabidiol improved locomotor functional recovery and reduced injury extent, suggesting that it could be useful in the treatment of spinal cord lesions.

  2. Effects of serotonergic medications on locomotor performance in humans with incomplete spinal cord injury.

    PubMed

    Leech, Kristan A; Kinnaird, Catherine R; Hornby, T George

    2014-08-01

    Incomplete spinal cord injury (iSCI) often results in significant motor impairments that lead to decreased functional mobility. Loss of descending serotonergic (5HT) input to spinal circuits is thought to contribute to motor impairments, with enhanced motor function demonstrated through augmentation of 5HT signaling. However, the presence of spastic motor behaviors in SCI is attributed, in part, to changes in spinal 5HT receptors that augment their activity in the absence of 5HT, although data demonstrating motor effects of 5HT agents that deactivate these receptors are conflicting. The effects of enhancement or depression of 5HT signaling on locomotor function have not been thoroughly evaluated in human iSCI. Therefore, the aim of the current study was to investigate acute effects of 5HT medications on locomotion in 10 subjects with chronic (>1 year) iSCI. Peak overground and treadmill locomotor performance, including measures of gait kinematics, electromyographic (EMG) activity, and oxygen consumption, were assessed before and after single-dose administration of either a selective serotonin reuptake inhibitor (SSRI) or a 5HT antagonist using a double-blinded, randomized, cross-over design. Results indicate that neither medication led to improvements in locomotion, with a significant decrease in peak overground gait speed observed after 5HT antagonists (from 0.8±0.1 to 0.7±0.1 m/s; p=0.01). Additionally, 5-HT medications had differential effects on EMG activity, with 5HT antagonists decreasing extensor activity and SSRIs increasing flexor activity. Our data therefore suggest that acute manipulation of 5HT signaling, despite changes in muscle activity, does not improve locomotor performance after iSCI.

  3. Reduced dopamine and glutamate neurotransmission in the nucleus accumbens of quinpirole-sensitized rats hints at inhibitory D2 autoreceptor function.

    PubMed

    Escobar, Angélica P; Cornejo, Francisca A; Olivares-Costa, Montserrat; González, Marcela; Fuentealba, José A; Gysling, Katia; España, Rodrigo A; Andrés, María E

    2015-09-01

    Dopamine from the ventral tegmental area and glutamate from several brain nuclei converge in the nucleus accumbens (NAc) to drive motivated behaviors. Repeated activation of D2 receptors with quinpirole (QNP) induces locomotor sensitization and compulsive behaviors, but the mechanisms are unknown. In this study, in vivo microdialysis and fast scan cyclic voltammetry in adult anesthetized rats were used to investigate the effect of repeated QNP on dopamine and glutamate neurotransmission within the NAc. Following eight injections of QNP, a significant decrease in phasic and tonic dopamine release was observed in rats that displayed locomotor sensitization. Either a systemic injection or the infusion of QNP into the NAc decreased dopamine release, and the extent of this effect was similar in QNP-sensitized and control rats, indicating that inhibitory D2 autoreceptor function is maintained despite repeated activation of D2 receptors and decreased dopamine extracellular levels. Basal extracellular levels of glutamate in the NAc were also significantly lower in QNP-treated rats than in controls. Moreover, the increase in NAc glutamate release induced by direct stimulation of medial prefrontal cortex was significantly lower in QNP-sensitized rats. Together, these results indicate that repeated activation of D2 receptors disconnects NAc from medial prefrontal cortex and ventral tegmental area. Repeated administration of the dopamine D2 receptor agonist quinpirole (QNP) induces locomotor sensitization. We found that the NAc of QNP-sensitized rats has reduced glutamate levels coming from prefrontal cortex together with a decreased phasic and tonic dopamine neurotransmission but a conserved presynaptic D2 receptor function. We suggest that locomotor sensitization is because of increased affinity state of D2 post-synaptic receptors. © 2015 International Society for Neurochemistry.

  4. The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence

    PubMed Central

    Boylan, Michael; Achall, Rajesh; Shirras, Alan; Broughton, Susan J.

    2015-01-01

    The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. PMID:26020640

  5. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.

    PubMed

    Yamaya, Seiji; Ozawa, Hiroshi; Kanno, Haruo; Kishimoto, Koshi N; Sekiguchi, Akira; Tateda, Satoshi; Yahata, Kenichiro; Ito, Kenta; Shimokawa, Hiroaki; Itoi, Eiji

    2014-12-01

    Extracorporeal shock wave therapy (ESWT) is widely used for the clinical treatment of various human diseases. Recent studies have demonstrated that low-energy ESWT upregulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis and functional recovery in myocardial infarction and peripheral artery disease. Many previous reports suggested that VEGF produces a neuroprotective effect to reduce secondary neural tissue damage after spinal cord injury (SCI). The purpose of the present study was to investigate whether low-energy ESWT promotes VEGF expression and neuroprotection and improves locomotor recovery after SCI. Sixty adult female Sprague-Dawley rats were randomly divided into 4 groups: sham group (laminectomy only), sham-SW group (low-energy ESWT applied after laminectomy), SCI group (SCI only), and SCI-SW group (low-energy ESWT applied after SCI). Thoracic spinal cord contusion injury was inflicted using an impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) Scale (open field locomotor score) at different time points over 42 days after SCI. Hematoxylin and eosin staining was performed to assess neural tissue damage in the spinal cord. Neuronal loss was investigated by immunostaining for NeuN. The mRNA expressions of VEGF and its receptor, Flt-1, in the spinal cord were assessed using real-time polymerase chain reaction. Immunostaining for VEGF was performed to evaluate VEGF protein expression in the spinal cord. In both the sham and sham-SW groups, no animals showed locomotor impairment on BBB scoring. Histological analysis of H & E and NeuN stainings in the sham-SW group confirmed that no neural tissue damage was induced by the low-energy ESWT. Importantly, animals in the SCI-SW group demonstrated significantly better locomotor improvement than those in the SCI group at 7, 35, and 42 days after injury (p < 0.05). The number of NeuN-positive cells in the SCI-SW group was significantly higher than that in the SCI group at 42 days after injury (p < 0.05). In addition, mRNA expressions of VEGF and Flt-1 were significantly increased in the SCI-SW group compared with the SCI group at 7 days after injury (p < 0.05). The expression of VEGF protein in the SCI-SW group was significantly higher than that in the SCI group at 7 days (p < 0.01). The present study showed that low-energy ESWT significantly increased expressions of VEGF and Flt-1 in the spinal cord without any detrimental effect. Furthermore, it significantly reduced neuronal loss in damaged neural tissue and improved locomotor function after SCI. These results suggested that low-energy ESWT enhances the neuroprotective effect of VEGF in reducing secondary injury and leads to better locomotor recovery following SCI. This study provides the first evidence that low-energy ESWT can be a safe and promising therapeutic strategy for SCI.

  6. Pelvic form and locomotor adaptation in strepsirrhine primates.

    PubMed

    Lewton, Kristi L

    2015-01-01

    The pelvic girdle is a complex structure with a critical role in locomotion, but efforts to model the mechanical effects of locomotion on its shape remain difficult. Traditional approaches to understanding form and function include univariate adaptive hypothesis-testing derived from mechanical models. Geometric morphometric (GM) methods can yield novel insight into overall three-dimensional shape similarities and differences across groups, although the utility of GM in assessing functional differences has been questioned. This study evaluates the contributions of both univariate and GM approaches to unraveling the trait-function associations between pelvic form and locomotion. Three-dimensional landmarks were collected on a phylogenetically-broad sample of 180 pelves from nine primate taxa. Euclidean interlandmark distances were calculated to facilitate testing of biomechanical hypotheses, and a principal components (PC) analysis was performed on Procrustes coordinates to examine overall shape differences. Both linear dimensions and PC scores were subjected to phylogenetic ANOVA. Many of the null hypotheses relating linear dimensions to locomotor loading were not rejected. Although both analytical approaches suggest that ilium width and robusticity differ among locomotor groups, the GM analysis also suggests that ischiopubic shape differentiates groups. Although GM provides additional quantitative results beyond the univariate analyses, this study highlights the need for new GM methods to more specifically address functional shape differences among species. Until these methods are developed, it would be prudent to accompany tests of directional biomechanical hypotheses with current GM methods for a more nuanced understanding of shape and function. © 2014 Wiley Periodicals, Inc.

  7. Single-limb force data for two lemur species while vertically clinging.

    PubMed

    Johnson, Laura E; Hanna, Jandy; Schmitt, Daniel

    2015-11-01

    Vertical clinging and climbing have been integral to hypotheses about primate origins, yet little is known about how an animal with nails instead of claws resists gravity while on large, vertical, and cylindrical substrates. Here we test models of how force is applied to maintain posture, predicting (1) the shear component force (Fs ) at the hands will be higher than the feet; (2) the normal component force (Fn ) at the feet will be relatively high compared to the hands; (3) the component force resisting gravity (Fg ) at the feet will be relatively high compared to the hands; (4) species with a high frequency of vertical clinging postures will have low Fg at the hands due to relatively short forelimbs. Using a novel instrumented support, single-limb force data were collected during clinging postures for the hands and feet and compared across limbs and species for Propithecus verreauxi (N = 2), a habitual vertical clinger and leaper, and Varecia variegata (N = 3), a habitual above-branch arboreal quadruped. For both species, hand Fs were significantly higher than at the feet and Fn and Fg at the feet were significantly higher than at the hands. Between species, P. verreauxi has relatively low Fg at the hands and Fn at the feet than V. vareigata. These results support previous models and show that hindlimb loading dominance, characteristic of primate locomotion, is found during clinging behaviors and may allow the forelimbs to be used for foraging while clinging. These findings provide insight into selective pressures on force distribution in primates and primate locomotor evolution. © 2015 Wiley Periodicals, Inc.

  8. Active ankle dorsiflexion and the Mingazzini manoeuvre: two clinical bedside tests related to prognosis of postural transferring, standing and walking ability in patients with stroke.

    PubMed

    Smania, N; Gambarin, M; Paolucci, S; Girardi, P; Bortolami, M; Fiaschi, A; Santilli, V; Picelli, A

    2011-09-01

    Lower limb paresis is one of the main determinants of postural transferring, standing and walking disability in patients with stroke. Early prognosis of recovery of lower limb function and of related functional disability is an important issue in neurorehabilitation clinical practice. Aim of this study was to assess the relationship between active ankle dorsiflexion and the Mingazzini manoeuvre with the prognosis of lower limb function and of postural transferring, standing and walking ability in patients with stroke. This was a longitudinal study with prospectively collected data. University hospital. The study included 53 patients with first unilateral brain ischemic stroke. Patients were evaluated initially (mean 4.02 days) and approximately at six months (mean 178.6 days) after stroke. Initial assessment included active ankle dorsiflexion and the Mingazzini manoeuvre. The assessment after six months included three outcome measures evaluating the rate of improvement of lower limb function and of postural transferring, standing and walking ability (Postural Assessment Scale for Stroke patients, Functional Ambulation Category, Motricity Index leg subtest). The active ankle dorsiflexion showed to be related with the prognosis of lower limb function and of walking ability, while the Mingazzini manoeuvre was related with the improvement of postural transferring and standing ability. Active ankle dorsiflexion and the Mingazzini manoeuvre are related with the prognosis of lower limb function and of postural transferring, standing and walking ability in patients with stroke. These simple bedside tests give a picture of improvement potential of motor activities connected to lower limb function in patients with acute stroke.

  9. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock.

    PubMed

    Sato, Trey K; Panda, Satchidananda; Miraglia, Loren J; Reyes, Teresa M; Rudic, Radu D; McNamara, Peter; Naik, Kinnery A; FitzGerald, Garret A; Kay, Steve A; Hogenesch, John B

    2004-08-19

    The mammalian circadian clock plays an integral role in timing rhythmic physiology and behavior, such as locomotor activity, with anticipated daily environmental changes. The master oscillator resides within the suprachiasmatic nucleus (SCN), which can maintain circadian rhythms in the absence of synchronizing light input. Here, we describe a genomics-based approach to identify circadian activators of Bmal1, itself a key transcriptional activator that is necessary for core oscillator function. Using cell-based functional assays, as well as behavioral and molecular analyses, we identified Rora as an activator of Bmal1 transcription within the SCN. Rora is required for normal Bmal1 expression and consolidation of daily locomotor activity and is regulated by the core clock in the SCN. These results suggest that opposing activities of the orphan nuclear receptors Rora and Rev-erb alpha, which represses Bmal1 expression, are important in the maintenance of circadian clock function.

  10. Upper limb motor function in young adults with spina bifida and hydrocephalus

    PubMed Central

    Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.

    2011-01-01

    Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605

  11. High Fat Diet Augments Amphetamine Sensitization in Mice: Role of Feeding Pattern, Obesity, and Dopamine Terminal Changes

    PubMed Central

    Fordahl, Steve C.; Locke, Jason L.; Jones, Sara R.

    2016-01-01

    High fat (HF) diet-induced obesity has been shown to augment behavioral responses to psychostimulants that target the dopamine system. The purpose of this study was to characterize dopamine terminal changes induced by a HF diet that correspond with enhanced locomotor sensitization to amphetamine. C57BL/6J mice had limited (2hr 3d/week) or extended (24h 7d/week) access to a HF diet or standard chow for six weeks. Mice were then repeatedly exposed to amphetamine (AMPH), and their locomotor responses to an amphetamine challenge were measured. Fast scan cyclic voltammetry was used to identify changes in dopamine terminal function after AMPH exposure. Exposure to a HF diet reduced dopamine uptake and increased locomotor responses to acute, high-dose AMPH administration compared to chow fed mice. Microdialysis showed elevated extracellular dopamine in the nucleus accumbens (NAc) coincided with enhanced locomotion after acute AMPH in HF-fed mice. All mice exhibited locomotor sensitization to amphetamine, but both extended and limited access to a HF diet augmented this response. Neither HF-fed group showed the robust amphetamine sensitization-induced increases in dopamine release, reuptake, and amphetamine potency observed in chow fed animals. However, the potency of amphetamine as an uptake inhibitor was significantly elevated after sensitization in mice with extended (but not limited) access to HF. Conversely, after amphetamine sensitization, mice with limited (but not extended) access to HF displayed reduced autoreceptor sensitivity to the D2/D3 agonist quinpirole. Additionally, we observed reduced membrane dopamine transporter (DAT) levels after HF, and a shift in DAT localization to the cytosol was detected with limited access to HF. This study showed that different patterns of HF exposure produced distinct dopamine terminal adaptations to repeated AMPH, which differed from chow fed mice, and enhanced sensitization to AMPH. Locomotor sensitization in chow fed mice coincided with elevated DAT function and increased AMPH potency; however, the enhanced behavioral response to AMPH after HF exposure was unique in that it coincided with reduced DAT function and diet pattern-specific adaptations. PMID:27267686

  12. A comparative study of single-leg ground reaction forces in running lizards.

    PubMed

    McElroy, Eric J; Wilson, Robbie; Biknevicius, Audrone R; Reilly, Stephen M

    2014-03-01

    The role of different limbs in supporting and propelling the body has been studied in many species with animals appearing to have either similarity in limb function or differential limb function. Differential hindlimb versus forelimb function has been proposed as a general feature of running with a sprawling posture and as benefiting sprawled postured animals by enhancing maneuvering and minimizing joint moments. Yet only a few species have been studied and thus the generality of differential limb function in running animals with sprawled postures is unknown. We measured the limb lengths of seven species of lizard and their single-limb three-dimensional ground reaction forces during high-speed running. We found that all species relied on the hindlimb for producing accelerative forces. Braking forces were forelimb dominated in four species and equally distributed between limbs in the other three. Vertical forces were dominated by the hindlimb in three species and equally distributed between the forelimb and hindlimb in the other four. Medial forces were dominated by the hindlimb in four species and equally distributed in the other three, with all Iguanians exhibiting hindlimb-biased medial forces. Relative hindlimb to forelimb length of each species was related to variation in hindlimb versus forelimb medial forces; species with relatively longer hindlimbs compared with forelimbs exhibited medial forces that were more biased towards the hindlimbs. These results suggest that the function of individual limbs in lizards varies across species with only a single general pattern (hindlimb-dominated accelerative force) being present.

  13. Can the mammalian lumbar spinal cord learn a motor task?

    PubMed

    Hodgson, J A; Roy, R R; de Leon, R; Dobkin, B; Edgerton, V R

    1994-12-01

    Progress toward restoring locomotor function in low thoracic spinal transected cats and the application of similar techniques to patients with spinal cord injury is reviewed. Complete spinal cord transection (T12-T13) in adult cats results in an immediate loss of locomotor function in the hindlimbs. Limited locomotor function returns after several months in cats that have not received specific therapies designed to restore hindlimb stepping. Training transected cats to step on a treadmill for 30 min.d-1 and 5 d.wk-1 greatly improves their stepping ability. The most successful outcome was in cats where training began early, i.e., 1 wk after spinal transection. Cats trained to stand instead of stepping had great difficulty using the hindlimbs for locomotion. These effects were reversible over a 20-month period such that cats unable to step as a result of standing training could be trained to step and, conversely, locomotion in stepping-trained cats could be abolished by standing training. These results indicate that the spinal cord is capable of learning specific motor tasks. It has not been possible to elicit locomotion in patients with clinically complete spinal injuries, but appropriately coordinated EMG activity has been demonstrated in musculature of the legs during assisted locomotion on a treadmill.

  14. Delayed Imatinib Treatment for Acute Spinal Cord Injury: Functional Recovery and Serum Biomarkers

    PubMed Central

    Finn, Anja; Hao, Jingxia; Wellfelt, Katrin; Josephson, Anna; Svensson, Camilla I.; Wiesenfeld-Hallin, Zsuzsanna; Eriksson, Ulf; Abrams, Mathew

    2015-01-01

    Abstract With no currently available drug treatment for spinal cord injury, there is a need for additional therapeutic candidates. We took the approach of repositioning existing pharmacological agents to serve as acute treatments for spinal cord injury and previously found imatinib to have positive effects on locomotor and bladder function in experimental spinal cord injury when administered immediately after the injury. However, for imatinib to have translational value, it needs to have sustained beneficial effects with delayed initiation of treatment, as well. Here, we show that imatinib improves hind limb locomotion and bladder recovery when initiation of treatment was delayed until 4 h after injury and that bladder function was improved with a delay of up to 24 h. The treatment did not induce hypersensitivity. Instead, imatinib-treated animals were generally less hypersensitive to either thermal or mechanical stimuli, compared with controls. In an effort to provide potential biomarkers, we found serum levels of three cytokines/chemokines—monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-3α, and keratinocyte chemoattractant/growth-regulated oncogene (interleukin 8)—to increase over time with imatinib treatment and to be significantly higher in injured imatinib-treated animals than in controls during the early treatment period. This correlated to macrophage activation and autofluorescence in lymphoid organs. At the site of injury in the spinal cord, macrophage activation was instead reduced by imatinib treatment. Our data strengthen the case for clinical trials of imatinib by showing that initiation of treatment can be delayed and by identifying serum cytokines that may serve as candidate markers of effective imatinib doses. PMID:25914996

  15. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial

    PubMed Central

    Kwakkel, G; Kollen, B; Wagenaar, R

    2002-01-01

    Objective: To assess long term effects at 1 year after stroke in patients who participated in an upper and lower limb intensity training programme in the acute and subacute rehabilitation phases. Design: A three group randomised controlled trial with repeated measures was used. Method: One hundred and one patients with a primary middle cerebral artery stroke were randomly allocated to one of three groups for a 20 week rehabilitation programme with an emphasis on (1) upper limb function, (2) lower limb function or (3) immobilisation with an inflatable pressure splint (control group). Follow up assessments within and between groups were compared at 6, 9, and 12 months after stroke. Results: No statistically significant effects were found for treatment assignment from 6 months onwards. At a group level, the significant differences in efficacy demonstrated at 20 weeks after stroke in favour of the lower limb remained. However, no significant differences in functional recovery between groups were found for Barthel index (BI), functional ambulation categories (FAC),action research arm test (ARAT), comfortable and maximal walking speed, Nottingham health profile part 1(NHP-part 1), sickness impact profile-68 (SIP-68), and Frenchay activities index (FAI) from 6 months onwards. At an individual subject level a substantial number of patients showed improvement or deterioration in upper limb function (n=8 and 5, respectively) and lower limb function (n=19 and 9, respectively). Activities of daily living (ADL) scores showed that five patients deteriorated and four improved beyond the error threshold from 6 months onwards. In particular, patients with some but incomplete functional recovery at 6 months are likely to continue to improve or regress from 6 months onwards. Conclusions: On average patients maintained their functional gains for up to 1 year after stroke after receiving a 20 week upper or lower limb function training programme. However, a significant number of patients with incomplete recovery showed improvements or deterioration in dexterity, walking ability, and ADL beyond the error threshold. PMID:11909906

  16. Learning a locomotor task: with or without errors?

    PubMed

    Marchal-Crespo, Laura; Schneider, Jasmin; Jaeger, Lukas; Riener, Robert

    2014-03-04

    Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task. In this study, the impact of robotic training strategies that amplify or reduce errors on muscle activation and motor learning of a simple locomotor task was investigated in twenty two healthy subjects. The experiment was conducted with the MAgnetic Resonance COmpatible Stepper (MARCOS) a special robotic device developed for investigations in the MR scanner. The robot moved the dominant leg passively and the subject was requested to actively synchronize the non-dominant leg to achieve an alternating stepping-like movement. Learning with four different training strategies that reduce or amplify errors was evaluated: (i) Haptic guidance: errors were eliminated by passively moving the limbs, (ii) No guidance: no robot disturbances were presented, (iii) Error amplification: existing errors were amplified with repulsive forces, (iv) Noise disturbance: errors were evoked intentionally with a randomly-varying force disturbance on top of the no guidance strategy. Additionally, the activation of four lower limb muscles was measured by the means of surface electromyography (EMG). Strategies that reduce or do not amplify errors limit muscle activation during training and result in poor learning gains. Adding random disturbing forces during training seems to increase attention, and therefore improve motor learning. Error amplification seems to be the most suitable strategy for initially less skilled subjects, perhaps because subjects could better detect their errors and correct them. Error strategies have a great potential to evoke higher muscle activation and provoke better motor learning of simple tasks. Neuroimaging evaluation of brain regions involved in learning can provide valuable information on observed behavioral outcomes related to learning processes. The impacts of these strategies on neurological patients need further investigations.

  17. Successful limb salvage through staged bypass combined with free gracilis muscle transfer for critical limb ischemia with osteomyelitis after failed endovascular therapy.

    PubMed

    Miyake, Keisuke; Kikuchi, Shinsuke; Okuda, Hiroko; Koya, Atsuhiro; Abe, Satomi; Sawa, Yoshiki; Ota, Tetsuo; Azuma, Nobuyoshi

    2018-05-02

    Critical limb ischemia with osteomyelitis is so difficult to treat that even appropriate revascularization and wound therapy cannot achieve limb salvage because of uncontrollable infection. It is still difficult to judge the possibility of limb salvage before revascularization. A 73-year-old male complained of a small ulcer on his left toe, which was treated with multiple endovascular therapy. After failed endovascular therapy, he suffered extensive tissue loss with tibial osteomyelitis. We carried out staged surgery that was composed of dual bypass to the sural artery and posterior tibial artery. After intensive debridement and wound care, insertion of a subsequent free gracilis muscle flap to cover the exposed tibial bone was performed, achieving functional limb salvage. Even in the threatened limb with extensive tissue loss and osteomyelitis, intensive and multidisciplinary treatment with staged revascularization, muscle transfer, and appropriate wound care achieved functional limb salvage.

  18. NeuroRecovery Network provides standardization of locomotor training for persons with incomplete spinal cord injury.

    PubMed

    Morrison, Sarah A; Forrest, Gail F; VanHiel, Leslie R; Davé, Michele; D'Urso, Denise

    2012-09-01

    To illustrate the continuity of care afforded by a standardized locomotor training program across a multisite network setting within the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Single patient case study. Two geographically different hospital-based outpatient facilities. This case highlights a 25-year-old man diagnosed with C4 motor incomplete spinal cord injury with American Spinal Injury Association Impairment Scale grade D. Standardized locomotor training program 5 sessions per week for 1.5 hours per session, for a total of 100 treatment sessions, with 40 sessions at 1 center and 60 at another. Ten-meter walk test and 6-minute walk test were assessed at admission and discharge across both facilities. For each of the 100 treatment sessions percent body weight support, average, and maximum treadmill speed were evaluated. Locomotor endurance, as measured by the 6-minute walk test, and overground gait speed showed consistent improvement from admission to discharge. Throughout training, the patient decreased the need for body weight support and was able to tolerate faster treadmill speeds. Data indicate that the patient continued to improve on both treatment parameters and walking function. Standardization across the NRN centers provided a mechanism for delivering consistent and reproducible locomotor training programs across 2 facilities without disrupting training or recovery progression. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in locomotor and respiratory muscles during experimental sepsis in mice.

    PubMed

    Morel, Jérome; Palao, Jean-Charles; Castells, Josiane; Desgeorges, Marine; Busso, Thierry; Molliex, Serge; Jahnke, Vanessa; Del Carmine, Peggy; Gondin, Julien; Arnould, David; Durieux, Anne Cécile; Freyssenet, Damien

    2017-09-07

    Sepsis induced loss of muscle mass and function contributes to promote physical inactivity and disability in patients. In this experimental study, mice were sacrificed 1, 4, or 7 days after cecal ligation and puncture (CLP) or sham surgery. When compared with diaphragm, locomotor muscles were more prone to sepsis-induced muscle mass loss. This could be attributed to a greater activation of ubiquitin-proteasome system and an increased myostatin expression. Thus, this study strongly suggests that the contractile activity pattern of diaphragm muscle confers resistance to atrophy compared to the locomotor gastrocnemius muscle. These data also suggest that a strategy aimed at preventing the activation of catabolic pathways and preserving spontaneous activity would be of interest for the treatment of patients with sepsis-induced neuromyopathy.

  20. AN IL-1 RECEPTOR ANTAGONIST BLOCKS A MORPHINE-INDUCED ATTENUATION OF LOCOMOTOR RECOVERY AFTER SPINAL CORD INJURY

    PubMed Central

    Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.

    2010-01-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  1. To 3D or Not to 3D, That Is the Question: Do 3D Surface Analyses Improve the Ecomorphological Power of the Distal Femur in Placental Mammals?

    PubMed Central

    Gould, Francois D. H.

    2014-01-01

    Improvements in three-dimensional imaging technologies have renewed interest in the study of functional and ecological morphology. Quantitative approaches to shape analysis are used increasingly to study form-function relationships. These methods are computationally intensive, technically demanding, and time-consuming, which may limit sampling potential. There have been few side-by-side comparisons of the effectiveness of such approaches relative to more traditional analyses using linear measurements and ratios. Morphological variation in the distal femur of mammals has been shown to reflect differences in locomotor modes across clades. Thus I tested whether a geometric morphometric analysis of surface shape was superior to a multivariate analysis of ratios for describing ecomorphological patterns in distal femoral variation. A sample of 164 mammalian specimens from 44 genera was assembled. Each genus was assigned to one of six locomotor categories. The same hypotheses were tested using two methods. Six linear measurements of the distal femur were taken with calipers, from which four ratios were calculated. A 3D model was generated with a laser scanner, and analyzed using three dimensional geometric morphometrics. Locomotor category significantly predicted variation in distal femoral morphology in both analyses. Effect size was larger in the geometric morphometric analysis than in the analysis of ratios. Ordination reveals a similar pattern with arboreal and cursorial taxa as extremes on a continuum of morphologies in both analyses. Discriminant functions calculated from the geometric morphometric analysis were more accurate than those calculated from ratios. Both analysis of ratios and geometric morphometric surface analysis reveal similar, biologically meaningful relationships between distal femoral shape and locomotor mode. The functional signal from the morphology is slightly higher in the geometric morphometric analysis. The practical costs of conducting these sorts of analyses should be weighed against potentially slight increases in power when designing protocols for ecomorphological studies. PMID:24633081

  2. Limb-darkening functions as derived from along-track operation of the ERBE scanning radiometer for January 1985

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Manalo, Natividad; Suttles, John T.; Walker, Ira

    1989-01-01

    During January 1985, the scanning radiometer aboard the Earth Radiation Budget Satellite was operated to scan along-track. These data have been analyzed to produce limb-darkening functions for Earth emitted radiation, which relate the radiance in any given direction to the radiant exitance. Limb-darkening functions are presented in tabular form and shown as figures for 10 day cases and 12 night cases, corresponding to various scene types and latitude zones. The scene types were computed using measurements within 10 deg of zenith. The limb-darkening functions have values of 1.03 to 1.09 at zenith, with 1.06 being typical. It is found that latitude causes a variation on the order of 1 percent, except for zenith angles greater than 70 deg. These limb-darkening models are about 2 percent higher at zenith than the models derived from Nimbus 7 data.

  3. Assessing upper limb function in nonambulant SMA patients: development of a new module.

    PubMed

    Mazzone, Elena; Bianco, Flaviana; Martinelli, Diego; Glanzman, Allan M; Messina, Sonia; De Sanctis, Roberto; Main, Marion; Eagle, Michelle; Florence, Julaine; Krosschell, Kristin; Vasco, Gessica; Pelliccioni, Marco; Lombardo, Marilena; Pane, Marika; Finkel, Richard; Muntoni, Francesco; Bertini, Enrico; Mercuri, Eugenio

    2011-06-01

    We report the development of a module specifically designed for assessing upper limb function in nonambulant SMA patients, including young children and those with severe contractures. The application of the module to a preschool cohort of 40 children (age 30-48 months) showed that all the items could be completed by 30 months. The module was also used in 45 nonambulant SMA patients (age 30 months to 27 years). Their scores were more variable than in the preschool cohort, ranging from 0 to 18. The magnitude of scores was not related to age (r=-0.19). The upper limb scores had a good correlation with the Hammersmith Functional Motor Scale, r=0.75, but the upper limb function did not always strictly follow the overall gross motor function. These findings suggest that even some of the very weak nonambulant children possess upper limb skills that can be measured. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Rhythmic motor activity and interlimb co-ordination in the developing pouch young of a wallaby (Macropus eugenii).

    PubMed Central

    Ho, S M

    1997-01-01

    1. The forelimb motor behaviour of developing wallaby was studied. A clock-like alternating movement was reactivated whenever the animal was removed from the pouch. 2. Forelimb stepping frequency increased during the first 3 weeks of development, while the phase relationship remained constant. Forelimb activity could be affected by altering the afferent feedback from the contralateral limb, or an increase in ambient temperature. 3. In vitro experiments were performed using an isolated brainstem-spinal cord preparation from animals up to 6 weeks postnatal. Fictive locomotor activity could be evoked by electrical stimulation or bath-applied NMDA (< 10 microM). 4. Bath-applied strychnine (10-25 microM) and bicuculline (10-50 microM) disrupted the phase relationship between motor pools, while rhythmic motor discharge remained in the absence of these inhibitory pathways. 5. The present findings indicate that the pattern generator that underlies the robust forelimb movement during the first journey to the pouch is retained for different motor functions during in-pouch development. The neural network that underlies such behaviour can be divided into two major components, a rhythm generator within each hemicord, and a pattern co-ordinating pathway which involve both glycinergic and GABAergic interneurones. PMID:9218221

  5. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb.

    PubMed

    Hudson, Penny E; Corr, Sandra A; Payne-Davis, Rachel C; Clancy, Sinead N; Lane, Emily; Wilson, Alan M

    2011-04-01

    The cheetah is capable of a top speed of 29 ms(-1) compared to the maximum speed of 17 ms(-1) achieved by the racing greyhound. In this study of the hindlimb and in the accompanying paper on the forelimb we have quantified the musculoskeletal anatomy of the cheetah and greyhound and compared them to identify any differences that may account for this variation in their locomotor abilities. Specifically, bone length, mass and mid-shaft diameter were measured, along with muscle mass, fascicle lengths, pennation angles and moment arms to enable estimates of maximal isometric force, joint torques and joint rotational velocities to be calculated. Surprisingly the cheetahs had a smaller volume of hip extensor musculature than the greyhounds, and we therefore propose that the cheetah powers acceleration using its extensive back musculature. The cheetahs also had an extremely powerful psoas muscle which could help to resist the pitching moments around the hip associated with fast accelerations. The hindlimb bones were proportionally longer and heavier, enabling the cheetah to take longer strides and potentially resist higher peak limb forces. The cheetah therefore possesses several unique adaptations for high-speed locomotion and fast accelerations, when compared to the racing greyhound. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.

  6. Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion

    NASA Astrophysics Data System (ADS)

    Jung, R.; Belanger, A.; Kanchiku, T.; Fairchild, M.; Abbas, J. J.

    2009-10-01

    The mechanisms underlying the effects of neuromuscular electrical stimulation (NMES) induced repetitive limb movement therapy after incomplete spinal cord injury (iSCI) are unknown. This study establishes the capability of using therapeutic NMES in rodents with iSCI and evaluates its ability to promote recovery of interlimb control during locomotion. Ten adult female Long Evans rats received thoracic spinal contusion injuries (T9; 156 ± 9.52 Kdyne). 7 days post-recovery, 6/10 animals received NMES therapy for 15 min/day for 5 days, via electrodes implanted bilaterally into hip flexors and extensors. Six intact animals served as controls. Motor function was evaluated using the BBB locomotor scale for the first 6 days and on 14th day post-injury. 3D kinematic analysis of treadmill walking was performed on day 14 post-injury. Rodents receiving NMES therapy exhibited improved interlimb coordination in control of the hip joint, which was the specific NMES target. Symmetry indices improved significantly in the therapy group. Additionally, injured rodents receiving therapy more consistently displayed a high percentage of 1:1 coordinated steps, and more consistently achieved proper hindlimb touchdown timing. These results suggest that NMES techniques could provide an effective therapeutic tool for neuromotor treatment following iSCI.

  7. Unifying principles in terrestrial locomotion: do hopping Australian marsupials fit in?

    PubMed

    Bennett, M B

    2000-01-01

    Mammalian terrestrial locomotion has many unifying principles. However, the Macropodoidea are a particularly interesting group that exhibit a number of significant deviations from the principles that seem to apply to other mammals. While the properties of materials that comprise the musculoskeletal system of mammals are similar, evidence suggests that tendon properties in macropodoid marsupials may be size or function dependent, in contrast to the situation in placental mammals. Postural differences related to hopping versus running have a dramatic effect on the scaling of the pelvic limb musculoskeletal system. Ratios of muscle fibre to tendon cross-sectional areas for ankle extensors and digital flexors scale with positive allometry in all mammals, but exponents are significantly higher in macropods. Tendon safety factors decline with increasing body mass in mammals, with eutherians at risk of ankle extensor tendon rupture at a body mass of about 150 kg, whereas kangaroos encounter similar problems at a body mass of approximately 35 kg. Tendon strength appears to limit locomotor performance in these animals. Elastic strain energy storage in tendons is mass dependent in all mammals, but exponents are significantly larger in macropodid. Tibial stresses may scale with positive allometry in kangaroos, which result in lower bone safety factors in macropods compared to eutherian mammals.

  8. The effect of hydrotherapy treatment on gait characteristics of hereditary spastic paraparesis patients.

    PubMed

    Zhang, Yanxin; Roxburgh, Richard; Huang, Liang; Parsons, John; Davies, T Claire

    2014-04-01

    Hereditary spastic paraparesis (HSP) is a group of neurological disorders characterised by slowly progressive increasing muscle tone, predominantly in the lower limbs, with relatively preserved power. This leads to progressive difficulties in motor control and walking. The purpose of this study was to evaluate the effectiveness of hydrotherapy treatment when used as a means to increase locomotor function in individuals with late onset HSP. This paper discusses the analysis of the effect on gait characteristics. Nine people with HSP were asked to participate in pre- and post-hydrotherapy gait analyses. Ground reaction force and motion trajectories were recorded and used to calculate spatiotemporal gait parameters, joint angles and moments. The normalised joint kinematics and kinetics profile revealed that the biomechanics of people with HSP were similar to that of controls for most of the joints, but with lower range of motion. Walking speed increased significantly (11%) after the course of hydrotherapy. Though part of this was achieved through increased ROM there was also a further increase in hip internal rotation and in peak hip extension moment. Although participants had increased walking speed and step length, it appears that hydrotherapy increases the ability to perform compensatory strategies rather than resulting in a more typical kinematic and kinetic approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Primed Physical Therapy Enhances Recovery of Upper Limb Function in Chronic Stroke Patients.

    PubMed

    Ackerley, Suzanne J; Byblow, Winston D; Barber, P Alan; MacDonald, Hayley; McIntyre-Robinson, Andrew; Stinear, Cathy M

    2016-05-01

    Recovery of upper limb function is important for regaining independence after stroke. To test the effects of priming upper limb physical therapy with intermittent theta burst stimulation (iTBS), a form of noninvasive brain stimulation. Eighteen adults with first-ever chronic monohemispheric subcortical stroke participated in this randomized, controlled, triple-blinded trial. Intervention consisted of priming with real or sham iTBS to the ipsilesional primary motor cortex immediately before 45 minutes of upper limb physical therapy, daily for 10 days. Changes in upper limb function (Action Research Arm Test [ARAT]), upper limb impairment (Fugl-Meyer Scale), and corticomotor excitability, were assessed before, during, and immediately, 1 month and 3 months after the intervention. Functional magnetic resonance images were acquired before and at one month after the intervention. Improvements in ARAT were observed after the intervention period when therapy was primed with real iTBS, but not sham, and were maintained at 1 month. These improvements were not apparent halfway through the intervention, indicating a dose effect. Improvements in ARAT at 1 month were related to balancing of corticomotor excitability and an increase in ipsilesional premotor cortex activation during paretic hand grip. Two weeks of iTBS-primed therapy improves upper limb function at the chronic stage of stroke, for at least 1 month postintervention, whereas therapy alone may not be sufficient to alter function. This indicates a potential role for iTBS as an adjuvant to therapy delivered at the chronic stage. © The Author(s) 2015.

  10. Methylene Blue Mitigates Acute Neuroinflammation after Spinal Cord Injury through Inhibiting NLRP3 Inflammasome Activation in Microglia.

    PubMed

    Lin, Zhi-Hang; Wang, Si-Yuan; Chen, Li-Li; Zhuang, Jia-Yuan; Ke, Qing-Feng; Xiao, Dan-Rui; Lin, Wen-Ping

    2017-01-01

    The spinal cord injury (SCI) is a detrimental neurological disease involving the primary mechanical injury and secondary inflammatory damage. Curtailing the detrimental neuroinflammation would be beneficial for spinal cord function recovery. Microglia reside in the spinal cord and actively participate in the onset, progression and perhaps resolution of post-SCI neuroinflammation. In the current study, we tested the effects of methylene blue on microglia both in vitro and in a rat SCI model. We found that methylene blue inhibited the protein levels of IL-1β and IL-18 rather than their mRNA levels in activated microglia. Further investigation indicated that methylene blue deceased the activation of NLRP3 inflammasome and NLRC4 inflammasome in microglia in vitro . Moreover, in the rat SCI model, the similar effect of methylene blue on post-SCI microglia was also observed, except that the activation of NLRC4 inflammasome was not seen. The inhibition of microglia NLRP3 inflammasome was associated with down-regulation of intracellular reactive oxygen species (ROS). The administration of methylene blue mitigated the overall post-SCI neuroinflammation, demonstrated by decreased pro-inflammatory cytokine production and leukocyte infiltrates. Consequently, the neuronal apoptosis was partially inhibited and the hind limb locomotor function was ameliorated by methylene blue treatment. Our research highlights the role of methylene blue in inhibiting post-SCI neuroinflammation, and suggests that methylene blue might be used for SCI therapy.

  11. Methylene Blue Mitigates Acute Neuroinflammation after Spinal Cord Injury through Inhibiting NLRP3 Inflammasome Activation in Microglia

    PubMed Central

    Lin, Zhi-Hang; Wang, Si-Yuan; Chen, Li-Li; Zhuang, Jia-Yuan; Ke, Qing-Feng; Xiao, Dan-Rui; Lin, Wen-Ping

    2017-01-01

    The spinal cord injury (SCI) is a detrimental neurological disease involving the primary mechanical injury and secondary inflammatory damage. Curtailing the detrimental neuroinflammation would be beneficial for spinal cord function recovery. Microglia reside in the spinal cord and actively participate in the onset, progression and perhaps resolution of post-SCI neuroinflammation. In the current study, we tested the effects of methylene blue on microglia both in vitro and in a rat SCI model. We found that methylene blue inhibited the protein levels of IL-1β and IL-18 rather than their mRNA levels in activated microglia. Further investigation indicated that methylene blue deceased the activation of NLRP3 inflammasome and NLRC4 inflammasome in microglia in vitro. Moreover, in the rat SCI model, the similar effect of methylene blue on post-SCI microglia was also observed, except that the activation of NLRC4 inflammasome was not seen. The inhibition of microglia NLRP3 inflammasome was associated with down-regulation of intracellular reactive oxygen species (ROS). The administration of methylene blue mitigated the overall post-SCI neuroinflammation, demonstrated by decreased pro-inflammatory cytokine production and leukocyte infiltrates. Consequently, the neuronal apoptosis was partially inhibited and the hind limb locomotor function was ameliorated by methylene blue treatment. Our research highlights the role of methylene blue in inhibiting post-SCI neuroinflammation, and suggests that methylene blue might be used for SCI therapy. PMID:29311826

  12. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats

    NASA Astrophysics Data System (ADS)

    Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni

    2018-02-01

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  13. Phenotypic characteristics associated with reduced short physical performance battery score in COPD.

    PubMed

    Patel, Mehul S; Mohan, Divya; Andersson, Yvonne M; Baz, Manuel; Samantha Kon, S C; Canavan, Jane L; Jackson, Sonya G; Clark, Amy L; Hopkinson, Nicholas S; Natanek, Samantha A; Kemp, Paul R; Bruijnzeel, Piet L B; Man, William D-C; Polkey, Michael I

    2014-05-01

    The Short Physical Performance Battery (SPPB) is commonly used in gerontology, but its determinants have not been previously evaluated in COPD. In particular, it is unknown whether pulmonary aspects of COPD would limit the value of SPPB as an assessment tool of lower limb function. In 109 patients with COPD, we measured SPPB score, spirometry, 6-min walk distance, quadriceps strength, rectus femoris cross-sectional area, fat-free mass, physical activity, health status, and Medical Research Council dyspnea score. In a subset of 31 patients with COPD, a vastus lateralis biopsy was performed, and the biopsy specimen was examined to evaluate the structural muscle characteristics associated with SPPB score. The phenotypic characteristics of patients stratified according to SPPB were determined. Quadriceps strength and 6-min walk distance were the only independent predictors of SPPB score in a multivariate regression model. Furthermore, while age, dyspnea, and health status were also univariate predictors of SPPB score, FEV 1 was not. Stratification by reduced SPPB score identified patients with locomotor muscle atrophy and increasing impairment in strength, exercise capacity, and daily physical activity. Patients with mild or major impairment defined as an SPPB score < 10 had a higher proportion of type 2 fibers (71% [14] vs 58% [15], P = .04). The SPPB is a valid and simple assessment tool that may detect a phenotype with functional impairment, loss of muscle mass, and structural muscle abnormality in stable patients with COPD.

  14. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats.

    PubMed

    Gomes, Verónica; Carretero, Miguel A; Kaliontzopoulou, Antigoni

    2018-01-02

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  15. Behavioral and Neurophysiological Correlates of Striatal Dopamine Depletion: A Rodent Model of Parkinson's Disease

    ERIC Educational Resources Information Center

    Plowman, Emily K.; Kleim, Jeffrey A.

    2011-01-01

    Both limb and cranial motor functions are adversely impacted by Parkinson's disease (PD). While current pharmacological and surgical interventions are effective in alleviating general limb motor symptoms of PD, they have failed to provide significant benefit for cranial motor functions. This suggests that the neuropathologies mediating limb and…

  16. [The effect of neurorehabilitation on the functional state and muscle tone of upper limb in patients after ischaemic stroke].

    PubMed

    Klimkiewicz, Paulina; Kubsik, Anna; Jankowska, Agnieszka; Woldańska-Okońska, Marta

    2014-03-01

    Rehabilitation of upper limb in patients after ischemic stroke is a major challenge for modern neurorehabilitation. Function of upper limb of patients after ischemic stroke returns on the end of the rehabilitation comparing with another parts of the body. Below presents two groups of patients after ischemic stroke who were rehabilitated with use of the following methods: kinesiotherapy combined with NDT- Bobath method and kinesiotherapy only. The aim of this study was to assess the impact of kinesiotherapy only and NDT- Bobath method combined with kinesiotherapy on the functional state and muscle tone of upper limb in patients after ischemic stroke. The study involved a group of 40 patients after ischemic stroke with motor control and muscle tone problems of upper limb. Patients were divided into two groups, each of them included 20 people. Upper limb in group I was rehabilitated with the use of kinesiotherapy exercise however group II with the use of kinesiotherapy exercise combined with NDT- Bobath method (Neurodevelopmental Treatment Bobath). To evaluate the patients before and after rehabilitation muscle tone Asworth scale was used and to assess functional status Rivermead Motor Assessment (RMAIII) scale was used. After 5 weeks of rehabilitation in group II in majority patients were observed decrease of muscle tone and improvement in upper limb functional status. In group I the muscle tone were also decreased and functional status were better but in smaller impact than in II group. Classical kinesiotherapy combined with the NDT-Bobath method gives better results in neurorehabilitation of upper limb than the use of kinesiotherapy exercises only in patients after ischemic stroke.

  17. Functional testing of space flight induced changes in tonic motor control by using limb-attached excitation and load devices

    NASA Astrophysics Data System (ADS)

    Gallasch, Eugen; Kozlovskaya, Inessa

    2007-02-01

    Long term space flights induce atrophy and contractile changes on postural muscles such effecting tonic motor control. Functional testing of tonic motor control structures is a challenge because of the difficulties to deliver appropriate test forces on crew members. In this paper we propose two approaches for functional testing by using limb attached loading devices. The first approach is based on a frequency and amplitude controllable moving magnet exciter to deliver sinusoidal test forces during limb postures. The responding limb deflection is recorded by an embedded accelerometer to obtain limb impedance. The second approach is based on elastic limb loading to evoke self-excited oscillations during arm extensions. Here the contraction force at the oscillation onset provides information about limb stiffness. The rationale for both testing approaches is based on Feldman's λ-model. An arm expander based on the second approach was probed in a 6-month MIR space flight. The results obtained from the load oscillations, confirmed that this device is well suited to capture space flight induced neuromuscular changes.

  18. Mirror therapy in chronic stroke survivors with severely impaired upper limb function: a randomized controlled trial.

    PubMed

    Colomer, Carolina; NOé, Enrique; Llorens, Roberto

    2016-06-01

    Mirror therapy (MT) has been proposed to improve the motor function of chronic individuals with stroke with mild to moderate impairment. With regards to severe upper limb paresis, MT has shown to provide limited motor improvement in the acute or sub-acute phase. However, no previous research has described the effects of MT in chronic individuals with stroke with severely impaired upper limb function. The aim of this study was to determine the effectiveness of MT on chronic stroke survivors with severe upper-limb impairment in comparison with passive mobilization. A randomized controlled trial. Rehabilitative outpatient unit. A total of 31 chronic subjects poststroke with severely impaired upper limb function were randomly assigned to either an experimental group (N.=15), or a control group (N.=16). Twenty-four intervention sessions were performed for both groups. Each session included 45-minute period of MT (experimental group) or passive mobilization (control group), administered three days a week. Participants were assessed before and after the intervention with the Wolf Motor Function Test, the Fugl-Meyer Assessment, and the Nottingham Sensory Assessment. Improvement in motor function was observed in both groups on the time (P=0.002) and ability (P=0.001) subscales of the Wolf Motor Function Test. No differences were detected in kinesthesis or stereognosis. However, the experimental group showed a significant improvement in tactile sensation that was mainly observed as an increased sensitivity to light touches. In comparison with passive mobilization, MT in chronic stroke survivors with severely impaired upper-limb function may provide a limited but positive effect on light touch sensitivity while providing similar motor improvement. MT is a therapeutic approach that can be used in the rehabilitation of severely impaired upper limb in chronic stroke survivors, specifically to address light touch sensitivity deficits.

  19. Differential neurotoxic effects of in utero and lactational exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) on spontaneous locomotor activity and motor coordination in young adult male mice.

    PubMed

    Haijima, Asahi; Lesmana, Ronny; Shimokawa, Noriaki; Amano, Izuki; Takatsuru, Yusuke; Koibuchi, Noriyuki

    2017-01-01

    We investigated whether in utero or lactational exposure to 4-hydroxy-2',3,3',4',5'-pentachlorobiphenyl (OH-PCB 106) affects spontaneous locomotor activity and motor coordination in young adult male mice. For in utero exposure, pregnant C57BL/6J mice received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from gestational day 10 to 18. For lactational exposure, the different groups of dams received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from postpartum day 3 to 13. At 6-7 weeks of age, the spontaneous locomotor activities of male offspring were evaluated for a 24-hr continuous session in a home cage and in an open field for 30-min. Motor coordination function on an accelerating rotarod was also measured. Mice exposed prenatally to OH-PCB 106 showed increased spontaneous locomotor activities during the dark phase in the home cage and during the first 10-min in the open field compared with control mice. Mice exposed lactationally to OH-PCB 106, however, did not show a time-dependent decrease in locomotor activity in the open field. Instead, their locomotor activity increased significantly during the second 10-min block. In addition, mice exposed lactationally to OH-PCB 106 displayed impairments in motor coordination in the rotarod test. These results suggest that perinatal exposure to OH-PCB 106 affects motor behaviors in young adult male mice. Depending on the period of exposure, OH-PCB 106 may have different effects on neurobehavioral development.

  20. Cocaine- and amphetamine-regulated transcript peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient over-expression of α-Ca2+ /calmodulin-dependent protein kinase II.

    PubMed

    Xiong, Lixia; Meng, Qing; Sun, Xi; Lu, Xiangtong; Fu, Qiang; Peng, Qinghua; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen

    2018-01-04

    Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca 2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca 2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca 2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. © 2018 International Society for Neurochemistry.

  1. Food deprivation increases the low-dose locomotor stimulant response to ethanol in Drosophila melanogaster.

    PubMed

    Kliethermes, Christopher L

    2013-10-01

    Acute and chronic states of food deprivation result in increased sensitivity to a variety of natural reinforcers as well as to drugs of abuse. Food deprived animals show increased locomotor activity during periods of food deprivation, as well as increased locomotor stimulant responses to drugs of abuse, including cocaine, amphetamine, morphine, and ethanol, implying that drugs of abuse act in part on neural systems that underlie responses towards food. To determine whether this effect extends to an invertebrate, highly genetically tractable animal, the locomotor stimulant effects of low dose ethanol were assessed under a variety of feeding conditions in the fruit fly, Drosophila melanogaster. Food deprivation resulted in strain specific increases in ethanol-stimulated locomotor activity in most strains tested, although elevated baseline activity confounded interpretation in some strains. Experiments conducted with Canton S flies found that the effects of food deprivation on the locomotor stimulant response to ethanol increased with the duration of deprivation, and could be blocked by refeeding the flies with standard food or sucrose, but not yeast, immediately prior to the ethanol exposure. Life-span extending dietary depletion procedures or previous periods of food deprivation did not affect the response to ethanol, indicating that only animals in an acutely food deprived state are more sensitive to the stimulant effects of ethanol. These results suggest that increased sensitivity to the stimulant effects of some drugs of abuse might reflect an evolutionarily conserved neural mechanism that underlies behavioral responses to natural reinforcers and drugs of abuse. The identification of this mechanism, and the genes that underlie its development and function, will constitute a novel approach towards the study of alcohol abuse and dependence. © 2013.

  2. Agmatine improves locomotor function and reduces tissue damage following spinal cord injury.

    PubMed

    Yu, C G; Marcillo, A E; Fairbanks, C A; Wilcox, G L; Yezierski, R P

    2000-09-28

    Clinically effective drug treatments for spinal cord injury (SCI) remain unavailable. Agmatine, an NMDA receptor antagonist and inhibitor of nitric oxide synthase (NOS), is an endogenous neuromodulator found in the brain and spinal cord. Evidence is presented that agmatine significantly improves locomotor function and reduces tissue damage following traumatic SCI in rats. The results suggest the importance of future therapeutic strategies encompassing the use of single drugs with multiple targets for the treatment of acute SCI. The therapeutic targets of agmatine (NMDA receptor and NOS) have been shown to be critically linked to the pathophysiological sequelae of CNS injury and this, combined with the non-toxic profile, lends support to agmatine being considered as a potential candidate for future clinical applications.

  3. A Hypothetical Perspective on the Relative Contributions of Strategic and Adaptive Control Mechanisms in Plastic Recalibration of Locomotor Heading Direction

    NASA Technical Reports Server (NTRS)

    Richards, J. T.; Mulavara, A. P.; Ruttley, T.; Peters, B. T.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    We have previously shown that viewing simulated rotary self-motion during treadmill locomotion causes adaptive modification of the control of position and trajectory during over-ground locomotion, which functionally reflects adaptive changes in the sensorimotor integration of visual, vestibular, and proprioceptive cues (Mulavara et al., 2005). The objective of this study was to investigate how strategic changes in torso control during exposure to simulated rotary self-motion during treadmill walking influences adaptive modification of locomotor heading direction during over-ground stepping.

  4. Unexpected recovery after robotic locomotor training at physiologic stepping speed: a single-case design.

    PubMed

    Spiess, Martina R; Jaramillo, Jeffrey P; Behrman, Andrea L; Teraoka, Jeffrey K; Patten, Carolynn

    2012-08-01

    To investigate the effect of walking speed on the emergence of locomotor electromyogram (EMG) patterns in an individual with chronic incomplete spinal cord injury (SCI), and to determine whether central pattern generator activity during robotic locomotor training (RLT) transfers to volitional EMG activity during overground walking. Single-case (B-A-B; experimental treatment-withdrawal-experimental treatment) design. Freestanding rehabilitation research center. A 50-year-old man who was nonambulatory for 16 months after incomplete SCI (sub-T11). The participant completed two 6-week blocks of RLT, training 4 times per week for 30 minutes per session at walking speeds up to 5km/h (1.4m/s) over continuous bouts lasting up to 17 minutes. Surface EMG was recorded weekly during RLT and overground walking. The Walking Index for Spinal Cord Injury (WISCI-II) was assessed daily during training blocks. During week 4, reciprocal, patterned EMG emerged during RLT. EMG amplitude modulation revealed a curvilinear relationship over the range of walking speeds from 1.5 to 5km/h (1.4m/s). Functionally, the participant improved from being nonambulatory (WISCI-II 1/20), to walking overground with reciprocal stepping using knee-ankle-foot orthoses and a walker (WISCI-II 9/20). EMG was also observed during overground walking. These functional gains were maintained greater than 4 years after locomotor training (LT). Here we report an unexpected course of locomotor recovery in an individual with chronic incomplete SCI. Through RLT at physiologic walking speeds, it was possible to activate the central pattern generator even 16 months postinjury. Further, to a certain degree, improvements from RLT transferred to overground walking. Our results suggest that LT-induced changes affect the central pattern generator and allow supraspinal inputs to engage residual spinal pathways. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Studies of locomotor network neuroprotection by the selective poly(ADP-ribose) polymerase-1 inhibitor PJ-34 against excitotoxic injury to the rat spinal cord in vitro.

    PubMed

    Nasrabady, Sara E; Kuzhandaivel, Anujaianthi; Nistri, Andrea

    2011-06-01

    Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) that induces 'parthanatos', namely a non-apoptotic cell death mechanism. With an in vitro model of excitotoxicity, we have previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl (PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 μm) blocked PARP-1 activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate. Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological damage that was widely prevented by PJ-34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network inhibition was critical for ensuring locomotor cycles. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Functional expansion of sensorimotor representation and structural reorganization of callosal connections in lower limb amputees.

    PubMed

    Simões, Elington L; Bramati, Ivanei; Rodrigues, Erika; Franzoi, Ana; Moll, Jorge; Lent, Roberto; Tovar-Moll, Fernanda

    2012-02-29

    Previous studies have indicated that amputation or deafferentation of a limb induces functional changes in sensory (S1) and motor (M1) cortices, related to phantom limb pain. However, the extent of cortical reorganization after lower limb amputation in patients with nonpainful phantom phenomena remains uncertain. In this study, we combined functional magnetic resonance (fMRI) and diffusion tensor imaging (DTI) to investigate the existence and extent of cortical and callosal plasticity in these subjects. Nine "painless" patients with lower limb amputation and nine control subjects (sex- and age-matched) underwent a 3-T MRI protocol, including fMRI with somatosensory stimulation. In amputees, we observed an expansion of activation maps of the stump in S1 and M1 of the deafferented hemisphere, spreading to neighboring regions that represent the trunk and upper limbs. We also observed that tactile stimulation of the intact foot in amputees induced a greater activation of ipsilateral S1, when compared with controls. These results demonstrate a functional remapping of S1 in lower limb amputees. However, in contrast to previous studies, these neuroplastic changes do not appear to be dependent on phantom pain but do also occur in those who reported only the presence of phantom sensation without pain. In addition, our findings indicate that amputation of a limb also induces changes in the cortical representation of the intact limb. Finally, DTI analysis showed structural changes in the corpus callosum of amputees, compatible with the hypothesis that phantom sensations may depend on inhibitory release in the sensorimotor cortex.

  7. A Mesozoic gliding mammal from northeastern China.

    PubMed

    Meng, Jin; Hu, Yaoming; Wang, Yuanqing; Wang, Xiaolin; Li, Chuankui

    2006-12-14

    Gliding flight has independently evolved many times in vertebrates. Direct evidence of gliding is rare in fossil records and is unknown in mammals from the Mesozoic era. Here we report a new Mesozoic mammal from Inner Mongolia, China, that represents a previously unknown group characterized by a highly specialized insectivorous dentition and a sizable patagium (flying membrane) for gliding flight. The patagium is covered with dense hair and supported by an elongated tail and limbs; the latter also bear many features adapted for arboreal life. This discovery extends the earliest record of gliding flight for mammals to at least 70 million years earlier in geological history, and demonstrates that early mammals were diverse in their locomotor strategies and lifestyles; they had experimented with an aerial habit at about the same time as, if not earlier than, when birds endeavoured to exploit the sky.

  8. Ertl and Non-Ertl amputees exhibit functional biomechanical differences during the sit-to-stand task.

    PubMed

    Ferris, Abbie E; Christiansen, Cory L; Heise, Gary D; Hahn, David; Smith, Jeremy D

    2017-05-01

    People with transtibial amputation stand ~50times/day. There are two general approaches to transtibial amputation: 1) distal tibia and fibula union using a "bone-bridge" (Ertl), 2) non-union of the tibia and fibula (Non-Ertl). The Ertl technique may improve functional outcomes by increasing the end-bearing ability of the residual limb. We hypothesized individuals with an Ertl would perform a five-time sit-to-stand task faster through greater involvement/end-bearing of the affected limb. Ertl (n=11) and Non-Ertl (n=7) participants sat on a chair with each foot on separate force plates and performed the five-time sit-to-stand task. A symmetry index (intact vs affected limbs) was calculated using peak ground reaction forces. The Ertl group performed the task significantly faster (9.33s (2.66) vs 13.27 (2.83)s). Symmetry index (23.33 (23.83)% Ertl, 36.53 (13.51)% Non-Ertl) indicated the intact limb for both groups produced more force than the affected limb. Ertl affected limb peak ground reaction forces were significantly larger than the Non-Ertl affected limb. Peak knee power and net work of the affected limb were smaller than their respective intact limb for both groups. The Ertl intact limb produced significantly greater peak knee power and net work than the Non-Ertl intact knee. Although loading asymmetries existed between the intact and affected limb of both groups, the Ertl group performed the task ~30% faster. This was driven by greater power and work production of the Ertl intact limb knee. Our results suggest that functional differences exist between the procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Improved walking ability and reduced therapeutic stress with an electromechanical gait device.

    PubMed

    Freivogel, Susanna; Schmalohr, Dieter; Mehrholz, Jan

    2009-09-01

    To evaluate the effectiveness of repetitive locomotor training using a newly developed electromechanical gait device compared with treadmill training/gait training with respect to patient's ambulatory motor outcome, necessary personnel resources, and discomfort experienced by therapists and patients. Randomized, controlled, cross-over trial. Sixteen non-ambulatory patients after stroke, severe brain or spinal cord injury sequentially received 2 kinds of gait training. Study intervention A: 20 treatments of locomotor training with an electromechanical gait device; control intervention B: 20 treatments of locomotor training with treadmill or task-oriented gait training. The primary variable was walking ability (Functional Ambulation Category). Secondary variables included gait velocity, Motricity-Index, Rivermead-Mobility-Index, number of therapists needed, and discomfort and effort of patients and therapists during training. Gait ability and the other motor outcome related parameters improved for all patients, but without significant difference between intervention types. However, during intervention A, significantly fewer therapists were needed, and they reported less discomfort and a lower level of effort during training sessions. Locomotor training with or without an electromechanical gait trainer leads to improved gait ability; however, using the electromechanical gait trainer requires less therapeutic assistance, and therapist discomfort is reduced.

  10. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  11. High-resolution analysis of locomotor activity rhythms in disconnected, a visual-system mutant of Drosophila melanogaster.

    PubMed

    Dowse, H B; Dushay, M S; Hall, J C; Ringo, J M

    1989-07-01

    Free-running locomotor activity and eclosion rhythms of Drosophila melanogaster, mutant at the disconnected (disco) locus, are substantially different from the wild-type phenotype. Initial periodogram analysis revealed little or no rhythmicity (Dushay et al., 1989). We have reanalyzed the locomotor activity data using high-resolution signal analysis (maximum-entropy spectral analysis, or MESA). These analyses, corroborated by autocorrelograms, uncovered significant residual circadian rhythmicity and strong ultradian rhythms in most of the animals tested. In this regard the disco mutants are much like flies expressing mutant alleles of the period gene, as well as wild-type flies reared throughout life in constant darkness. We hypothesize that light normally triggers the coupling of multiple ultradian oscillators into a functional circadian clock and that this process is disrupted in disco flies as a result of the neural lesion.

  12. Locomotor activity modulates associative learning in mouse cerebellum.

    PubMed

    Albergaria, Catarina; Silva, N Tatiana; Pritchett, Dominique L; Carey, Megan R

    2018-05-01

    Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual's ability to learn.

  13. Comparing interventions and exploring neural mechanisms of exercise in Parkinson disease: a study protocol for a randomized controlled trial.

    PubMed

    Earhart, Gammon M; Duncan, Ryan P; Huang, John L; Perlmutter, Joel S; Pickett, Kristen A

    2015-02-05

    Effective treatment of locomotor dysfunction in Parkinson disease (PD) is essential, as gait difficulty is an early and major contributor to disability. Exercise is recommended as an adjunct to traditional treatments for improving gait, balance, and quality of life. Among the exercise approaches known to improve walking, tango and treadmill training have recently emerged as two promising therapies for improving gait, disease severity and quality of life, yet these two interventions have not been directly compared to each other. Prior studies have been helpful in identifying interventions effective in improving gait function, but have done little to elucidate the neural mechanisms underlying functional improvements. The primary objective of the proposed work is to compare the effects of three community-based exercise programs, tango, treadmill training and stretching, on locomotor function in individuals with PD. In addition, we aim to determine whether and how these interventions alter functional connectivity of locomotor control networks in the brain. One hundred and twenty right-handed individuals with idiopathic PD who are at least 30 years of age will be assigned in successive waves to one of three community-based exercise groups: tango dancing, treadmill training or stretching (control). Each group will receive three months of exercise training with twice weekly one-hour group classes. Each participant will be evaluated at three time points: pre-intervention (baseline), post-intervention (3 months), and follow-up (6 months). All evaluations will include assessment of gait, balance, disease severity, and quality of life. Baseline and post-intervention evaluations will also include task-based functional magnetic resonance imaging (fMRI) and resting state functional connectivity MRI. All MRI and behavioral measures will be conducted with participants OFF anti-Parkinson medication, with behavioral measures also assessed ON medication. This study will provide important insights regarding the effects of different modes of exercise on locomotor function in PD. The protocol is innovative because it: 1) uses group exercise approaches for all conditions including treadmill training, 2) directly compares tango to treadmill training and stretching, 3) tests participants OFF medication, and 4) utilizes two distinct neuroimaging approaches to explore mechanisms of the effects of exercise on the brain. ClinicalTrials.gov NCT01768832 .

  14. Effects of Robot-assisted Gait Training Combined with Functional Electrical Stimulation on Recovery of Locomotor Mobility in Chronic Stroke Patients: A Randomized Controlled Trial.

    PubMed

    Bae, Young-Hyeon; Ko, Young Jun; Chang, Won Hyuk; Lee, Ju Hyeok; Lee, Kyeong Bong; Park, Yoo Jung; Ha, Hyun Geun; Kim, Yun-Hee

    2014-12-01

    [Purpose] The purpose of the present study was to investigate the effects of robot-assisted gait training combined with functional electrical stimulation on locomotor recovery in patients with chronic stroke. [Subjects] The 20 subjects were randomly assigned into either an experimental group (n = 10) that received a combination of robot-assisted gait training and functional electrical stimulation on the ankle dorsiflexor of the affected side or a control group (n = 10) that received robot-assisted gait training only. [Methods] Both groups received the respective therapies for 30 min/day, 3 days/week for 5 weeks. The outcome was measured using the Modified Motor Assessment Scale (MMAS), Timed Up-and-Go Test (TUG), Berg Balance Scale (BBS), and gait parameters through gait analysis (Vicon 370 motion analysis system, Oxford Metrics Ltd., Oxford, UK). All the variables were measured before and after training. [Results] Step length and maximal knee extension were significantly greater than those before training in the experimental group only. Maximal Knee flexion showed a significant difference between the experimental and control groups. The MMAS, BBS, and TUG scores improved significantly after training compared with before training in both groups. [Conclusion] We suggest that the combination of robot-assisted gait training and functional electrical stimulation encourages patients to actively participate in training because it facilitates locomotor recovery without the risk of adverse effects.

  15. Lesions causing freezing of gait localize to a cerebellar functional network

    PubMed Central

    Fasano, Alfonso; Laganiere, Simon E.; Lam, Susy; Fox, Michael D.

    2016-01-01

    Objective Freezing of gait is a disabling symptom in Parkinson’s disease and related disorders, but the brain regions involved in symptom generation remain unclear. Here we analyze brain lesions causing acute onset freezing of gait to identify regions causally involved in symptom generation. Methods Fourteen cases of lesion-induced freezing of gait were identified from the literature and lesions were mapped to a common brain atlas. Because lesion-induced symptoms can come from sites connected to the lesion location, not just the lesion location itself, we also identified brain regions functionally connected to each lesion location. This technique, termed lesion network mapping, has been recently shown to identify regions involved in symptom generation across a variety of lesion-induced disorders. Results Lesion location was heterogeneous and no single region could be considered necessary for symptom generation. However, over 90% (13/14) of lesions were functionally connected to a focal area in the dorsal medial cerebellum. This cerebellar area overlapped previously recognized regions that are activated by locomotor tasks, termed the cerebellar locomotor region. Connectivity to this region was specific to lesions causing freezing of gait compared to lesions causing other movement disorders (hemichorea or asterixis). Interpretation Lesions causing freezing of gait are located within a common functional network characterized by connectivity to the cerebellar locomotor region. These results based on causal brain lesions complement prior neuroimaging studies in Parkinson’s disease patients, advancing our understanding of the brain regions involved in freezing of gait. PMID:28009063

  16. Pain and pain-related interference in adults with lower-limb amputation: comparison of knee-disarticulation, transtibial, and transfemoral surgical sites.

    PubMed

    Behr, James; Friedly, Janna; Molton, Ivan; Morgenroth, David; Jensen, Mark P; Smith, Douglas G

    2009-01-01

    Pain and pain-related interference with physical function have not been thoroughly studied in individuals who have undergone knee-disarticulation amputations. The principal aim of this study was to determine whether individuals with knee-disarticulation amputations have worse pain and pain-related interference with physical function than do individuals with transtibial or transfemoral amputations. We analyzed cross-sectional survey data provided by 42 adults with lower-limb amputations. These individuals consisted of 14 adults reporting knee-disarticulation amputation in one limb and best-matched cases (14 reporting transfemoral amputation and 14 reporting transtibial amputation) from a larger cross-sectional sample of 472 individuals. Participants were rigorously matched based on time since amputation, reason for amputation, age, sex, diabetes diagnosis, and pain before amputation. Continuous outcome variables were analyzed by one-way analysis of variance. Categorical outcomes were analyzed by Pearson chi-square statistic. Given the relatively small sample size and power concerns, mean differences were also described by estimated effect size (Cohen's d). Of the 42 participants, 83% were male. They ranged in age from 36 to 85 (median = 55.1, standard deviation = 11.0). Most amputations were of traumatic origin (74%), and participants were on average 12.4 years from their amputations at the time of the survey. Individuals with transtibial amputation reported significantly more prosthesis use than did individuals with knee-disarticulation amputation. Amputation levels did not significantly differ in phantom limb pain, residual limb pain, back pain, and pain-related interference with physical function. Estimates of effect size, however, indicated that participants with knee-disarticulation amputation reported less phantom limb pain, phantom limb pain-related interference with physical function, residual limb pain, residual limb pain-related interference with physical function, and back pain-related interference with physical function than did participants with transtibial or transfemoral amputations. This study demonstrated that patients with knee-disarticulation amputation used prostheses significantly less than did patients with transtibial amputation. However, no evidence was found that patients with knee-disarticulation amputation have worse outcomes in terms of pain and pain-related interference with physical function; in fact, they may have more favorable long-term outcomes.

  17. Assessment of NgR1 Function In Vivo After Spinal Cord Injury

    PubMed Central

    Tong, Jing; Ren, Yi; Wang, Xiaowei; Dimopoulos, Vassilios G.; Kesler, Henry N.; Liu, Weimin; He, Xiaosheng; Nedergaard, Maiken; Huang, Jason H.

    2014-01-01

    Background: Neuronal Nogo-66 receptor 1 (NgR1) has attracted attention as a converging point for mediating the effects of myelin-associate inhibitory ligands in the CNS, establishing the growth restrictive environment, and limiting axon regeneration following traumatic injury. Objective: The importance of NgR1 has been undermined by several studies that have shown the lack of substantial axon regeneration following spinal cord injury (SCI) in NgR1 knockout or knockdown animal models. This study aims to investigate the factors that may be contributing to the discrepancy. Methods: We used mice carrying either a homozygous or heterozygous null mutation in the NgR1 gene and subjected them to either a moderate or severe SCI. Results: Locomotor function assessments revealed that the level of functional recovery is affected by the degree of injury suffered. NgR1 ablation enhanced local collateral sprouting in the mutant mice. Reactive astrocytes and chondroitin sulfate proteoglycans (CSPGs) are upregulated surrounding the injury site. MMP-9, which has been shown to degrade CSPGs, was significantly upregulated in the homozygous mutant mice compared to the heterozygous or wild-type mice. However, CSPG levels remained higher in the homozygous compared to the heterozygous mice, suggesting that CSPG-degrading activity of MMP-9 may require the presence of NgR1. Conclusion: Genetic ablation of NgR1 may lead to significant recovery in locomotor function following SCI. The difference in locomotor recovery we observed between the groups that suffered varying degrees of injury suggests that injury severity may be a confounding factor in functional recovery following SCI. PMID:24594926

  18. The functional anatomy of suggested limb paralysis.

    PubMed

    Deeley, Quinton; Oakley, David A; Toone, Brian; Bell, Vaughan; Walsh, Eamonn; Marquand, Andre F; Giampietro, Vincent; Brammer, Michael J; Williams, Steven C R; Mehta, Mitul A; Halligan, Peter W

    2013-02-01

    Suggestions of limb paralysis in highly hypnotically suggestible subjects have been employed to successfully model conversion disorders, revealing similar patterns of brain activation associated with attempted movement of the affected limb. However, previous studies differ with regard to the executive regions involved during involuntary inhibition of the affected limb. This difference may have arisen as previous studies did not control for differences in hypnosis depth between conditions and/or include subjective measures to explore the experience of suggested paralysis. In the current study we employed functional magnetic resonance imaging (fMRI) to examine the functional anatomy of left and right upper limb movements in eight healthy subjects selected for high hypnotic suggestibility during (i) hypnosis (NORMAL) and (ii) attempted movement following additional left upper limb paralysis suggestions (PARALYSIS). Contrast of left upper limb motor function during NORMAL relative to PARALYSIS conditions revealed greater activation of contralateral M1/S1 and ipsilateral cerebellum, consistent with the engagement of these regions in the completion of movements. By contrast, two significant observations were noted in PARALYSIS relative to NORMAL conditions. In conjunction with reports of attempts to move the paralysed limb, greater supplementary motor area (SMA) activation was observed, a finding consistent with the role of SMA in motor intention and planning. The anterior cingulate cortex (ACC, BA 24) was also significantly more active in PARALYSIS relative to NORMAL conditions - suggesting that ACC (BA 24) may be implicated in involuntary, as well as voluntary inhibition of prepotent motor responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Mirror therapy in complex regional pain syndrome type 1 of the upper limb in stroke patients.

    PubMed

    Cacchio, Angelo; De Blasis, Elisabetta; De Blasis, Vincenzo; Santilli, Valter; Spacca, Giorgio

    2009-10-01

    Complex regional pain syndrome type 1 (CRPSt1) of the upper limb is a painful and debilitating condition, frequent after stroke, and interferes with the rehabilitative process and outcome. However, treatments used for CRPSt1 of the upper limb are limited. . This randomized controlled study was conducted to compare the effectiveness on pain and upper limb function of mirror therapy on CRPSt1 of upper limb in patients with acute stroke. . Of 208 patients with first episode of unilateral stroke admitted to the authors' rehabilitation center, 48 patients with CRPSt1 of the affected upper limb were enrolled in a randomized controlled study, with a 6-month follow-up, and assigned to either a mirror therapy group or placebo control group. The primary end points were a reduction in the visual analogue scale score of pain at rest, on movement, and brush-induced tactile allodynia. The secondary end points were improvement in motor function as assessed by the Wolf Motor Function Test and Motor Activity Log. . The mean scores of both the primary and secondary end points significantly improved in the mirror group (P < .001). No statistically significant improvement was observed in any of the control group values (P > .001). Moreover, statistically significant differences after treatment (P < .001) and at the 6-month follow-up were found between the 2 groups. . The results indicate that mirror therapy effectively reduces pain and enhances upper limb motor function in stroke patients with upper limb CRPSt1.

  20. A Special Golden Curve in Human Upper Limbs' Length Proportion: A Functional Partition Which Is Different from Anatomy.

    PubMed

    Wang, Nan; Ma, Jie; Jin, Dan; Yu, Bin

    2017-01-01

    Aim . The purpose of this study was to investigate the relationship between upper limbs' three functional partitions and the golden curve. Materials and Methods . We measured 30 subjects' right or left upper limb data and investigate the relationship between them and the golden curve by use of SPSS version 20.0 statistical software (SPSS, Inc., Chicago, Illinois), one-sample t -test. Results . There are four points on human's upper limbs which have no difference with the four points on the golden curve. And there is one point of which the difference is obvious. But we still could draw the conclusion that human upper limbs are accordant with the golden curve. Conclusion . Human upper limbs are accordant with the golden curve.

  1. Differential sensitivity of cranial and limb motor function to nigrostriatal dopamine depletion

    PubMed Central

    Plowman, Emily K.; Maling, Nicholas; Rivera, Benjamin J.; Larson, Krista; Thomas, Nagheme J.; Fowler, Stephen C.; Manfredsson, Fredric P.; Shrivastav, Rahul; Kleim, Jeffrey A.

    2012-01-01

    The present study determined the differential effects of unilateral striatal dopamine depletion on cranial motor versus limb motor function. Forty male Long Evans rats were first trained on a comprehensive motor testing battery that dissociated cranial versus limb motor function and included: cylinder forepaw placement, single pellet reaching, vermicelli pasta handling; sunflower seed opening, pasta biting acoustics, and a licking task. Following baseline testing, animals were randomized to either a 6-hydroxydopamine (6-OHDA) (n = 20) or control (n = 20) group. Animals in the 6-OHDA group received unilateral intrastriatal 6-OHDA infusions to induce striatal dopamine depletion. Six-weeks following infusion, all animals were re-tested on the same battery of motor tests. Near infrared densitometry was performed on sections taken through the striatum that were immunohistochemically stained for tyrosine hydroxylase (TH). Animals in the 6-OHDA condition showed a mean reduction in TH staining of 88.27%. Although 6-OHDA animals were significantly impaired on all motor tasks, limb motor deficits were more severe than cranial motor impairments. Further, performance on limb motor tasks was correlated with degree of TH depletion while performance on cranial motor impairments showed no significant correlation. These results suggest that limb motor function may be more sensitive to striatal dopaminergic depletion than cranial motor function and is consistent with the clinical observation that therapies targeting the nigrostriatal dopaminergic system in Parkinson’s disease are more effective for limb motor symptoms than cranial motor impairments. PMID:23018122

  2. Associations of water balance and thermal sensitivity of toads with macroclimatic characteristics of geographical distribution.

    PubMed

    Titon, Braz; Gomes, Fernando Ribeiro

    2017-06-01

    Interspecific variation in patterns of geographical distribution of phylogenetically related species of amphibians might be related to physiological adaptation to different climatic conditions. In this way, a comparative study of resistance to evaporative water loss, rehydration rates and sensitivity of locomotor performance to variations on hydration level and temperature was performed for five species of Bufonidae toads (Rhinella granulosa, R. jimi, R. ornata, R. schneideri and R. icterica) inhabiting different Brazilian biomes. The hypotheses tested were that, when compared to species inhabiting mesic environments, species living at hot and dry areas would show: (1) greater resistance to evaporative water loss, (2) higher rates of water uptake, (3) lower sensitivity of locomotor performance to dehydration and (4) lower sensitivity of locomotor performance at higher temperatures and higher sensitivity of locomotor performance at lower temperatures. This comparative analysis showed relations between body mass and interspecific variation in rehydration rates and resistance to evaporative water loss in opposite directions. These results might represent a functional compensation associated with relatively lower absorption areas in larger toads and higher evaporative areas in smaller ones. Moreover, species from the semi-arid Caatinga showed locomotor performance less sensitive to dehydration but highly affected by lower temperatures, as well greater resistance to evaporative water loss, when compared to the other species from the mesic Atlantic Forest and the savannah-like area called Cerrado. These results suggest adaptation patterns to environmental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion.

    PubMed

    Holowka, Nicholas B; O'Neill, Matthew C; Thompson, Nathan E; Demes, Brigitte

    2017-09-01

    Many aspects of chimpanzee ankle and midfoot joint morphology are believed to reflect adaptations for arboreal locomotion. However, terrestrial travel also constitutes a significant component of chimpanzee locomotion, complicating functional interpretations of chimpanzee and fossil hominin foot morphology. Here we tested hypotheses of foot motion and, in keeping with general assumptions, we predicted that chimpanzees would use greater ankle and midfoot joint ranges of motion during travel on arboreal supports than on the ground. We used a high-speed motion capture system to measure three-dimensional kinematics of the ankle and midfoot joints in two male chimpanzees during three locomotor modes: terrestrial quadrupedalism on a flat runway, arboreal quadrupedalism on a horizontally oriented tree trunk, and climbing on a vertically oriented tree trunk. Chimpanzees used relatively high ankle joint dorsiflexion angles during all three locomotor modes, although dorsiflexion was greatest in arboreal modes. They used higher subtalar joint coronal plane ranges of motion during terrestrial and arboreal quadrupedalism than during climbing, due in part to their use of high eversion angles in the former. Finally, they used high midfoot inversion angles during arboreal locomotor modes, but used similar midfoot sagittal plane kinematics across all locomotor modes. The results indicate that chimpanzees use large ranges of motion at their various ankle and midfoot joints during both terrestrial and arboreal locomotion. Therefore, we argue that chimpanzee foot anatomy enables a versatile locomotor repertoire, and urge caution when using foot joint morphology to reconstruct arboreal behavior in fossil hominins. © 2017 Wiley Periodicals, Inc.

  4. The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins.

    PubMed

    Hernández-Vega, Amayra; Minguillón, Carolina

    2011-08-01

    Limbs represent an excellent model to study the induction, growth, and patterning of several organs. A breakthrough to study gene function in various tissues has been the characterization of regulatory elements that allow tissue-specific interference of gene function. The mouse Prx1 promoter has been used to generate limb-specific mutants and overexpress genes in tetrapod limbs. Although zebrafish possess advantages that favor their use to study limb morphogenesis, there is no driver described suitable for specifically interfering with gene function in developing fins. We report the generation of zebrafish lines that express enhanced green fluorescent protein (EGFP) driven by the mouse Prx1 enhancer in developing pectoral fins. We also describe the expression pattern of the zebrafish prrx1 genes and identify three conserved non-coding elements (CNEs) that we use to generate fin-specific EGFP reporter lines. Finally, we show that the mouse and zebrafish regulatory elements may be used to modify gene function in pectoral fins. Copyright © 2011 Wiley-Liss, Inc.

  5. Systematic review of mirror therapy compared with conventional rehabilitation in upper extremity function in stroke survivors.

    PubMed

    Pérez-Cruzado, David; Merchán-Baeza, Jose Antonio; González-Sánchez, Manuel; Cuesta-Vargas, Antonio I

    2017-04-01

    Stroke is a leading cause of disability in developed countries. One of the most widespread techniques in clinical practice is mirror therapy (MT). To determine the effectiveness of MT over other methods of intervention in the recovery of upper limb function in people who have had a stroke. A systematic review was conducted. The search string was established based on the last systematic review about MT that dated from 2009: "upper extremity" OR "upper limb "AND "mirror therapy" AND stroke. For this search Pubmed, Scopus and SciELO databases were used. Fifteen studies were included in the systematic review. Recovery of the upper limb, upper limb function and gross manual dexterity were frequently measured in these studies. In the primary variables in promoting recovery, MT alone showed better results in acute and chronic stroke patients in upper limb functioning than either conventional rehabilitation (CR) or CR plus MT. PROSPERO registration number: CRD42015026869. © 2016 Occupational Therapy Australia.

  6. Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed.

    PubMed

    Meyns, P; Van de Crommert, H W A A; Rijken, H; van Kuppevelt, D H J M; Duysens, J

    2014-12-01

    Case series. To determine the optimal testing speed at which the recovery of the EMG (electromyographic) activity should be assessed during and after body weight supported (BWS) locomotor training. Tertiary hospital, Sint Maartenskliniek, Nijmegen, The Netherlands. Four participants with incomplete chronic SCI were included for BWS locomotor training; one AIS-C and three AIS-D (according to the ASIA (American Spinal Injury Association) Impairment Scale or AIS). All were at least 5 years after injury. The SCI participants were trained three times a week for a period of 6 weeks. They improved their locomotor function in terms of higher walking speed, less BWS and less assistance needed. To investigate which treadmill speed for EMG assessment reflects the functional improvement most adequately, all participants were assessed weekly using the same two speeds (0.5 and 1.5 km h(-1), referred to as low and high speed, respectively) for 6 weeks. The change in root mean square EMG (RMS EMG) was assessed in four leg muscles; biceps femoris, rectus femoris, gastrocnemius medialis and tibialis anterior. The changes in RMS EMG occurred at similar phases of the step cycle for both walking conditions, but these changes were larger when the treadmill was set at a low speed (0.5 km h(-1)). Improvement in gait is feasible with BWS treadmill training even long after injury. The EMG changes after treadmill training are more optimally expressed using a low rather than a high testing treadmill speed.

  7. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators

    PubMed Central

    Malloy, Jaclyn N.; Paulose, Jiffin K.; Li, Ye

    2012-01-01

    Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhythms, and the sympathetic nervous system in regulation of circadian GI rhythms in the mouse Mus musculus. Surgical ablation of the SCN abolishes circadian locomotor, feeding, and stool output rhythms when animals are presented with food ad libitum, while restricted feeding reestablishes these rhythms temporarily. In intact mice, chemical sympathectomy with 6-hydroxydopamine has no effect on feeding and locomotor rhythmicity in light-dark cycles or constant darkness but attenuates stool weight and stool number rhythms. Again, however, restricted feeding reestablishes rhythms in locomotor activity, feeding, and stool output rhythms. Ex vivo, intestinal tissue from PER2::LUC transgenic mice expresses circadian rhythms of luciferase bioluminescence. Chemical sympathectomy has little effect on these rhythms, but timed administration of the β-adrenergic agonist isoproterenol causes a phase-dependent shift in PERIOD2 expression rhythms. Collectively, the data suggest that the SCN are required to maintain feeding, locomotor, and stool output rhythms during ad libitum conditions, acting at least in part through daily activation of sympathetic activity. Even so, this input is not necessary for entrainment to timed feeding, which may be the province of oscillators within the intestines themselves or other components of the GI system. PMID:22723262

  8. Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling.

    PubMed

    Ting, L H; Raasch, C C; Brown, D A; Kautz, S A; Zajac, F E

    1998-09-01

    The objective of this study was to determine if independent central pattern generating elements controlling the legs in bipedal and unipedal locomotion is a viable theory for locomotor propulsion in humans. Coordinative coupling of the limbs could then be accomplished through mechanical interactions and ipsilateral feedback control rather than through central interlimb neural pathways. Pedaling was chosen as the locomotor task to study because interlimb mechanics can be significantly altered, as pedaling can be executed with the use of either one leg or two legs (cf. walking) and because the load on the limb can be well-controlled. Subjects pedaled a modified bicycle ergometer in a two-legged (bilateral) and a one-legged (unilateral) pedaling condition. The loading on the leg during unilateral pedaling was designed to be identical to the loading experienced by the leg during bilateral pedaling. This loading was achieved by having a trained human "motor" pedal along with the subject and exert on the opposite crank the torque that the subject's contralateral leg generated in bilateral pedaling. The human "motor" was successful at reproducing each subject's one-leg crank torque. The shape of the motor's torque trajectory was similar to that of subjects, and the amount of work done during extension and flexion was not significantly different. Thus the same muscle coordination pattern would allow subjects to pedal successfully in both the bilateral and unilateral conditions, and the afferent signals from the pedaling leg could be the same for both conditions. Although the overall work done by each leg did not change, an 86% decrease in retarding (negative) crank torque during limb flexion was measured in all 11 subjects during the unilateral condition. This corresponded to an increase in integrated electromyography of tibialis anterior (70%), rectus femoris (43%), and biceps femoris (59%) during flexion. Even given visual torque feedback in the unilateral condition, subjects still showed a 33% decrease in negative torque during flexion. These results are consistent with the existence of an inhibitory pathway from elements controlling extension onto contralateral flexion elements, with the pathway operating during two-legged pedaling but not during one-legged pedaling, in which case flexor activity increases. However, this centrally mediated coupling can be overcome with practice, as the human "motor" was able to effectively match the bilateral crank torque after a longer practice regimen. We conclude that the sensorimotor control of a unipedal task is affected by interlimb neural pathways. Thus a task performed unilaterally is not performed with the same muscle coordination utilized in a bipedal condition, even if such coordination would be equally effective in the execution of the unilateral task.

  9. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation.

    PubMed

    Takeoka, Aya; Jindrich, Devin L; Muñoz-Quiles, Cintia; Zhong, Hui; van den Brand, Rubia; Pham, Daniel L; Ziegler, Matthias D; Ramón-Cueto, Almudena; Roy, Roland R; Edgerton, V Reggie; Phelps, Patricia E

    2011-03-16

    Reports based primarily on anatomical evidence suggest that olfactory ensheathing glia (OEG) transplantation promotes axon regeneration across a complete spinal cord transection in adult rats. Based on functional, electrophysiological, and anatomical assessments, we found that OEG promoted axon regeneration across a complete spinal cord transection and that this regeneration altered motor responses over time. At 7 months after transection, 70% of OEG-treated rats showed motor-evoked potentials in hindlimb muscles after transcranial electric stimulation. Furthermore, a complete spinal cord retransection performed 8 months after injury demonstrated that this axon regeneration suppressed locomotor performance and decreased the hypersensitive hindlimb withdrawal response to mechanical stimulation. OEG transplantation alone promoted reorganization of lumbosacral locomotor networks and, when combined with long-term training, enhanced some stepping measures. These novel findings demonstrate that OEG promote regeneration of mature axons across a complete transection and reorganization of spinal circuitry, both of which contribute to sensorimotor function.

  10. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.

    PubMed

    Keirstead, Hans S; Nistor, Gabriel; Bernal, Giovanna; Totoiu, Minodora; Cloutier, Frank; Sharp, Kelly; Steward, Oswald

    2005-05-11

    Demyelination contributes to loss of function after spinal cord injury, and thus a potential therapeutic strategy involves replacing myelin-forming cells. Here, we show that transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into adult rat spinal cord injuries enhances remyelination and promotes improvement of motor function. OPCs were injected 7 d or 10 months after injury. In both cases, transplanted cells survived, redistributed over short distances, and differentiated into oligodendrocytes. Animals that received OPCs 7 d after injury exhibited enhanced remyelination and substantially improved locomotor ability. In contrast, when OPCs were transplanted 10 months after injury, there was no enhanced remyelination or locomotor recovery. These studies document the feasibility of predifferentiating hESCs into functional OPCs and demonstrate their therapeutic potential at early time points after spinal cord injury.

  11. Axon Regeneration Can Facilitate or Suppress Hindlimb Function after Olfactory Ensheathing Glia Transplantation

    PubMed Central

    Takeoka, Aya; Jindrich, Devin L.; Muñoz-Quiles, Cintia; Zhong, Hui; van den Brand, Rubia; Pham, Daniel L.; Ziegler, Matthias D.; Ramón-Cueto, Almudena; Roy, Roland R.; Edgerton, V. Reggie

    2011-01-01

    Reports based primarily on anatomical evidence suggest that olfactory ensheathing glia (OEG) transplantation promotes axon regeneration across a complete spinal cord transection in adult rats. Based on functional, electrophysiological, and anatomical assessments, we found that OEG promoted axon regeneration across a complete spinal cord transection and that this regeneration altered motor responses over time. At 7 months after transection, 70% of OEG-treated rats showed motor-evoked potentials in hindlimb muscles after transcranial electric stimulation. Furthermore, a complete spinal cord retransection performed 8 months after injury demonstrated that this axon regeneration suppressed locomotor performance and decreased the hypersensitive hindlimb withdrawal response to mechanical stimulation. OEG transplantation alone promoted reorganization of lumbosacral locomotor networks and, when combined with long-term training, enhanced some stepping measures. These novel findings demonstrate that OEG promote regeneration of mature axons across a complete transection and reorganization of spinal circuitry, both of which contribute to sensorimotor function. PMID:21411671

  12. Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function.

    PubMed

    Zhang, Hong-Yan; Sillar, Keith T

    2012-03-20

    Brain networks memorize previous performance to adjust their output in light of past experience. These activity-dependent modifications generally result from changes in synaptic strengths or ionic conductances, and ion pumps have only rarely been demonstrated to play a dynamic role. Locomotor behavior is produced by central pattern generator (CPG) networks and modified by sensory and descending signals to allow for changes in movement frequency, intensity, and duration, but whether or how the CPG networks recall recent activity is largely unknown. In Xenopus frog tadpoles, swim bout duration correlates linearly with interswim interval, suggesting that the locomotor network retains a short-term memory of previous output. We discovered an ultraslow, minute-long afterhyperpolarization (usAHP) in network neurons following locomotor episodes. The usAHP is mediated by an activity- and sodium spike-dependent enhancement of electrogenic Na(+)/K(+) pump function. By integrating spike frequency over time and linking the membrane potential of spinal neurons to network performance, the usAHP plays a dynamic role in short-term motor memory. Because Na(+)/K(+) pumps are ubiquitously expressed in neurons of all animals and because sodium spikes inevitably accompany network activity, the usAHP may represent a phylogenetically conserved but largely overlooked mechanism for short-term memory of neural network function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Dynamic primitives in the control of locomotion

    PubMed Central

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term “rhythmic” may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered. PMID:23801959

  14. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners

    PubMed Central

    Finatto, Paula; Silva, Edson Soares Da; Okamura, Alexandre B.; Almada, Bruna P.; Oliveira, Henrique B.

    2018-01-01

    Purpose Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet) and an improvement in running performance is feasible with strength training of the postural and trunk muscles. Methods Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16) or the Pilates group (PG, n = 16). Results Confirming our hypothesis, a significant improvement (p<0.05) was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min) compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min). Similarly, the PG (4.33±0.07 J.kg-1.m-1) had better responses than the CG (4.71±0.11 J.kg-1.m-1) during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG. Conclusions Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners. PMID:29561907

  15. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners.

    PubMed

    Finatto, Paula; Silva, Edson Soares Da; Okamura, Alexandre B; Almada, Bruna P; Oliveira, Henrique B; Peyré-Tartaruga, Leonardo A

    2018-01-01

    Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet) and an improvement in running performance is feasible with strength training of the postural and trunk muscles. Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16) or the Pilates group (PG, n = 16). Confirming our hypothesis, a significant improvement (p<0.05) was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min) compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min). Similarly, the PG (4.33±0.07 J.kg-1.m-1) had better responses than the CG (4.71±0.11 J.kg-1.m-1) during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG. Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners.

  16. The delta-opioid receptor agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] synergistically enhances the locomotor-activating effects of some psychomotor stimulants, but not direct dopamine agonists, in rats.

    PubMed

    Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H

    2008-02-01

    The nonpeptidic delta-opioid agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] produces many stimulant-like behavioral effects in rodents and monkeys, such as locomotor stimulation, generalization to cocaine in discrimination procedures, and antiparkinsonian effects. Tolerance to the locomotor-stimulating effects of SNC80 develops after a single administration of SNC80 in rats; it is not known whether cross-tolerance develops to the effects of other stimulant compounds. In the initial studies to determine whether SNC80 produced cross-tolerance to other stimulant compounds, it was discovered that amphetamine-stimulated locomotor activity was greatly enhanced in SNC80-pretreated rats. This study evaluated acute cross-tolerance between delta-opioid agonists and other locomotor-stimulating drugs. Locomotor activity was measured in male Sprague-Dawley rats implanted with radiotransmitters, and activity levels were recorded in the home cage environment. Three-hour SNC80 pretreatment produced tolerance to further delta-opioid receptor stimulation but also augmented greatly amphetamine-stimulated locomotor activity in a dose-dependent manner. Pretreatments with other delta-opioid agonists, (+)BW373U86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-hydroxybenzyl]-N,N-diethylbenzamide] and oxymorphindole (17-methyl-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-6,7,2',3'-indolomorphinan), also modified amphetamine-induced activity levels. SNC80 pretreatment enhanced the stimulatory effects of the dopamine/norepinephrine transporter ligands cocaine and nomifensine (1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-isoquinolinanmine maleate salt), but not the direct dopamine receptor agonists SKF81297 [R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide] and quinpirole [trans-(-)-(4alphaR)-4,4a, 5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g] quinoline monohydrochloride]. In conclusion, SNC80 enhanced the locomotor-stimulating effects of monoamine transporter ligands suggesting that delta-opioid receptor activation might alter the functional activity of monoamine transporters or presynaptic monoamine terminals.

  17. The anuran Bauplan: a review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology.

    PubMed

    Handrigan, Gregory R; Wassersug, Richard J

    2007-02-01

    Anurans (frogs, toads, and their larvae) are among the most morphologically derived of vertebrates. While tightly conserved across the order, the anuran Bauplan (body plan) diverges widely from that of other vertebrates, particularly with respect to the skeleton. Here we address the adaptive, ontogenetic, and genetic bases of three such hallmark anuran features: (1) the absence of discrete caudal vertebrae, (2) a truncated axial skeleton, and (3) elongate hind limbs. We review the functional significance of each as it relates to the anuran lifestyle, which includes locomotor adaptations to both aquatic and terrestrial environments. We then shift our focus to the proximal origins of each feature, namely, ontogeny and its molecular regulation. Drawing on relatively limited data, we detail the development of each character and then, by extrapolating from comparative vertebrate data, propose molecular bases for these processes. Cast in this light, the divergent morphology of anurans emerges as a product of evolutionary modulation of the generalised vertebrate developmental machinery. Specifically, we hypothesise that: (1) the formation of caudal vertebrae is precluded due to a failure of sclerotomes to form cartilaginous condensations, perhaps resulting from altered expression of a suite of genes, including Pax1, Pax9, Msx1, Uncx-4.1, Sonic hedgehog, and noggin; (2) anteriorised Hox gene expression in the paraxial mesoderm has led to a rostral shift of morphological boundaries of the vertebral column; and, (3) spatial and temporal shifts in Hox expression may underlie the expanded tarsal elements of the anuran hind limb. Technology is currently in place to investigate each of these scenarios in the African clawed frog Xenopus. Experimental corroboration will further our understanding of the molecular regulation of the anuran Bauplan and provide insight into the origin of vertebrate morphological diversity as well as the role of development in evolution.

  18. Control of body's center of mass motion relative to center of pressure during uphill walking in the elderly.

    PubMed

    Hong, Shih-Wun; Leu, Tsai-Hsueh; Wang, Ting-Ming; Li, Jia-Da; Ho, Wei-Pin; Lu, Tung-Wu

    2015-10-01

    Uphill walking places more challenges on the locomotor system than level walking does when the two limbs work together to ensure the stability and continuous progression of the body over the base of support. With age-related degeneration older people may have more difficulty in maintaining balance during uphill walking, and may thus experience an increased risk of falling. The current study aimed to investigate using gait analysis techniques to determine the effects of age and slope angles on the control of the COM relative to the COP in terms of their inclination angles (IA) and the rate of change of IA (RCIA) during uphill walking. The elderly were found to show IAs similar to those of the young, but with reduced self-selected walking speed and RCIAs (P<0.05). After adjusting for walking speed differences, the elderly showed significantly greater excursions of IA in the sagittal plane (P<0.05) and increased RCIA at heel-strike and during single limb support (SLS) and double limb support (DLS) in the sagittal plane (P<0.05), and increased RCIA at heel-strike in the frontal plane (P<0.05). The RCIAs were significantly reduced with increasing slope angles (P<0.05). The current results show that the elderly adopted a control strategy different from the young during uphill walking, and that the IA and RCIA during walking provide a sensitive measure to differentiate individuals with different balance control abilities. The current results and findings may serve as baseline data for future clinical and ergonomic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Early life stress induces attention-deficit hyperactivity disorder (ADHD)-like behavioral and brain metabolic dysfunctions: functional imaging of methylphenidate treatment in a novel rodent model.

    PubMed

    Bock, J; Breuer, S; Poeggel, G; Braun, K

    2017-03-01

    In a novel animal model Octodon degus we tested the hypothesis that, in addition to genetic predisposition, early life stress (ELS) contributes to the etiology of attention-deficit hyperactivity disorder-like behavioral symptoms and the associated brain functional deficits. Since previous neurochemical observations revealed that early life stress impairs dopaminergic functions, we predicted that these symptoms can be normalized by treatment with methylphenidate. In line with our hypothesis, the behavioral analysis revealed that repeated ELS induced locomotor hyperactivity and reduced attention towards an emotionally relevant acoustic stimulus. Functional imaging using ( 14 C)-2-fluoro-deoxyglucose-autoradiography revealed that the behavioral symptoms are paralleled by metabolic hypoactivity of prefrontal, mesolimbic and subcortical brain areas. Finally, the pharmacological intervention provided further evidence that the behavioral and metabolic dysfunctions are due to impaired dopaminergic neurotransmission. Elevating dopamine in ELS animals by methylphenidate normalized locomotor hyperactivity and attention-deficit and ameliorated brain metabolic hypoactivity in a dose-dependent manner.

  20. Motor and Sensory Cortical Changes after Contralateral Cervical Seventh Nerve Root (CC7) Transfer in Patients with Brachial Plexus Injuries.

    PubMed

    Kakinoki, Ryosuke; Duncan, Scott F M; Ikeguchi, Ryosuke; Ohta, Souichi; Nankaku, Manabu; Sakai, Hiroshi; Noguchi, Takashi; Kaizawa, Yukitoshi; Akagi, Masao

    2017-06-01

    Previous animal studies demonstrated that the sensory and motor functions in ipsilesional upper limbs that had been reconstructed by CC7 transfer eventually associated with the contralesional brain cortices that had originally mediated the functions of the ipsilesional upper limbs before brachial plexus injury (BPI). Our hypothesis was that the same findings would be seen in humans. Four patients with total BPI treated with CC7 transfer were included. Changes in the locations of the activated areas in the primary motor (M1) and somatosensory (S1) cortices corresponding to the motor outputs to and sensory inputs from the ipsilesional limbs were investigated using functional near-infrared spectroscopy (fNIRS) 2-3 years and 6-7 years after surgery. One patient was excluded from the evaluation of motor function after CC7 transfer. The motor and sensory functions of the ipsilesional upper limb in all patients were still controlled by the ipsilesional brain hemisphere 2-3 years after CC7 transfer. The reconstructed motions of the ipsilesional upper limbs correlated with the contralesional M1 in one patient and the bilateral M1s in another patient (both of whom demonstrated good motor recovery in the ipsilesional upper limbs) and with the ipsilesional M1 in a third patient with poor motor recovery in the ipsilesional upper limb. Sensory stimulation of the ipsilesional hands 6-7 years after CC7 transfer activated the contralesional S1 in two patients who achieved good sensory recovery in the ipsilesional hands but activated the ipsilesional S1 in the other two patients with poor sensory recovery of the ipsilesional hands. Transhemispheric transposition of the activated brain cortices associated with the recovery of motor and sensory functions of the ipsilesional upper limbs was seen in patients with CC7 transfer as has been reported for animal models of CC7 transfer.

  1. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study.

    PubMed

    Taveggia, Giovanni; Borboni, Alberto; Salvi, Lorena; Mulé, Chiara; Fogliaresi, Stefania; Villafañe, Jorge H; Casale, Roberto

    2016-12-01

    A prompt and effective physical and rehabilitation medicine approach is essential to obtain recovery of an impaired limb to prevent tendon shortening, spasticity and pain. Robot-assisted virtual reality intervention has been shown to be more effective than conventional interventions and achieved greater improvement in upper limb function. The aim of this study was to evaluate the effectiveness of robotic-assisted motion and activity in addition to PRM for the rehabilitation of the upper limb in post-stroke inpatients. Randomized controlled trial. Departments of Physical and Rehabilitation Medicine from three different hospitals (Sarnico, Brescia; Bergamo; Milan). A total of 54 patients and enrolled 23 men and 31 women with post-stroke hemiparesis, aged 18 to 80 years old, enrolled from July 2014 to February 2015. Of the 54 enrolled patients, 57% were female (mean age 71±12 years), and all had upper limb function deficit post-stroke. The experimental group received a passive mobilization of the upper limb through the robotic device ARMEO Spring and the control group received PRM for 6 consecutive weeks (5 days/week) in addition to traditional PRM. We assessed the impact on functional recovery (Functional Independence Measure [FIM] scale), strength (Motricity Index [MI]), spasticity (Modified Ashworth Scale [MAS]) and pain (Numeric Rating Pain Scale [NRPS]). All patients were evaluated by a blinded observer using the outcomes tests at enrollment (T0), after the treatment (T1) and at follow up 6 weeks later (T2). Both control and experimental groups evidenced an improvement of the outcomes after the treatment (MI, Ashworth and NRPS with P<0.05). The experimental group showed further improvements after the follow up (all outcomes with P<0.01). In the treatment of pain, disability and spasticity in upper limb after stroke, robot-assisted mobilization associated to PRM is as effective as traditional rehabilitation. Robot-assisted treatment has an impact on upper limb motor function in stroke patients.

  2. Development of Evaluation Methods for Lower Limb Function between Aged and Young Using Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Nomoto, Yohei; Yamashita, Kazuhiko; Ohya, Tetsuya; Koyama, Hironori; Kawasumi, Masashi

    There is the increasing concern of the society to prevent the fall of the aged. The improvement in aged people's the muscular strength of the lower-limb, postural control and walking ability are important for quality of life and fall prevention. The aim of this study was to develop multiple evaluation methods in order to advise for improvement and maintenance of lower limb function between aged and young. The subjects were 16 healthy young volunteers (mean ± S.D: 19.9 ± 0.6 years) and 10 healthy aged volunteers (mean ± S.D: 80.6 ± 6.1 years). Measurement items related to lower limb function were selected from the items which we have ever used. Selected measurement items of function of lower are distance of extroversion of the toe, angle of flexion of the toe, maximum width of step, knee elevation, moving distance of greater trochanter, walking balance, toe-gap force and rotation range of ankle joint. Measurement items summarized by the principal component analysis into lower ability evaluation methods including walking ability and muscle strength of lower limb and flexibility of ankle. The young group demonstrated the factor of 1.6 greater the assessment score of walking ability compared with the aged group. The young group demonstrated the factor of 1.4 greater the assessment score of muscle strength of lower limb compared with the aged group. The young group demonstrated the factor of 1.2 greater the assessment score of flexibility of ankle compared with the aged group. The results suggested that it was possible to assess the lower limb function of aged and young numerically and to advise on their foot function.

  3. Effect of Increased Intensity of Physiotherapy on Patient Outcomes After Stroke: An Evidence-Based Analysis

    PubMed Central

    Sehatzadeh, S

    2015-01-01

    Background After stroke, impairment of the upper and lower limb can limit patients’ motor function and ability to perform activities of daily living (ADL). Physiotherapy (PT) is an established clinical practice for stroke patients, playing an important role in improving limb function. Recently, several randomized trials have evaluated the effect of higher-intensity physiotherapy (increased duration and/or frequency) on patients’ functional ability. Objectives Our objective is to investigate whether an increased intensity of PT after stroke results in better outcomes for patients. Data Sources A literature search was performed on June 7, 2013, for English-language randomized controlled trials published from January 1, 2003, to June 7, 2013. Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews were searched. Review Methods We reviewed the full text of articles that compared 2 or more levels of PT intensity. Outcomes of interest included motor function, ADL, and quality of life (QOL). Results High-quality evidence showed that higher-intensity upper-limb PT and higher-intensity lower-limb PT both resulted in significantly greater improvements in motor function. Moderate-quality evidence showed that higher-intensity general PT did not. Moderate-quality evidence showed a significant improvement in ADL performance with higher-intensity upper-limb PT, but no improvement with higher-intensity general PT; no studies reported on ADL outcomes on lower-limb PT specifically. According to moderate-quality evidence, patient QOL did not change significantly after increased intensity of upper-limb, lower-limb, or general PT. When considering the results, one difference should be noted: Compared with the studies examining upper- and lower-limb PT, the studies examining general PT looked at a smaller increase—2 hours or less of additional therapy per week. Limitations This analysis is limited to the earlier post-stroke phase and is not equipped to comment on expected outcomes of later-stage PT. Conclusions Overall, this analysis found support for the use of more intensive PT to improve motor function and ability to perform ADL after stroke. PMID:26356355

  4. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.

    PubMed

    Rangasamy, Suresh Babu

    2013-07-01

    Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed in partially lesioned cord of monkeys. Copyright © 2013 Wiley Periodicals, Inc.

  5. Measures of upper limb function for people with neck pain: a systematic review of measurement and practical properties (protocol).

    PubMed

    Alreni, Ahmad Salah Eldin; Harrop, Deborah; Gumber, Anil; McLean, Sionnadh

    2015-04-07

    Upper limb disability is a common musculoskeletal condition frequently associated with neck pain. Recent literature has reported the need to utilise validated upper limb outcome measures in the assessment and management of patients with neck pain. However, there is a lack of clear guidance about the suitability of available measures, which may impede utilisation. This review will identify all available measures of upper limb function developed for use in neck pain patients and evaluate their measurement and practical properties in order to identify those measures that are most appropriate for use in clinical practice and research. This review will be performed in two phases. Phase one will identify all measures used to assess upper limb function for patients with neck pain. Phase two will identify all available studies of the measurement and practical properties of identified instrument. The COnsensus-based Standards for selection of health Measurement INstrument (COSMIN) will be used to evaluate the methodological quality of the included studies. To ensure methodological rigour, the findings of this review will be reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guideline. Optimal management of patients with neck pain should incorporate upper limb rehabilitation. The findings of this study will assist clinicians who seek to utilise suitable and accurate measures to assess upper limb function for a patient with neck pain. In addition, the findings of this study may suggest new research directions to support the development of upper limb outcome measures for patients with neck pain. PROSPERO CRD42015016624.

  6. Determinants of midterm functional outcomes, wound healing, and resources used in a hospital-based limb preservation program.

    PubMed

    Ramanan, Bala; Ahmed, Ayman; Wu, Bian; Causey, Marlin W; Gasper, Warren J; Vartanian, Shant M; Reyzelman, Alexander M; Hiramoto, Jade S; Conte, Michael S

    2017-12-01

    The objective of this study was to assess midterm functional status, wound healing, and in-hospital resource use among a prospective cohort of patients treated in a tertiary hospital, multidisciplinary Center for Limb Preservation. Data were prospectively gathered on all consecutive admissions to the Center for Limb Preservation from July 2013 to October 2014 with follow-up data collection through January 2016. Limbs were staged using the Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) threatened limb classification scheme at the time of hospital admission. Patients with nonatherosclerotic vascular disorders, acute limb ischemia, and trauma were excluded. The cohort included 128 patients with 157 threatened limbs; 8 limbs with unstageable disease were excluded. Mean age (±standard deviation [SD]) was 66 (±13) years, and median follow-up duration (interquartile range) was 395 (80-635) days. Fifty percent (n = 64/128) of patients were readmitted at least once, with a readmission rate of 20% within 30 days of the index admission. Mean total number of admissions per patient (±SD) was 1.9 ± 1.2, with mean (±SD) cumulative length of stay (cLOS) of 17.1 (±17.9) days. During follow-up, 25% of limbs required a vascular reintervention, and 45% developed recurrent wounds. There was no difference in the rate of readmission, vascular reintervention, or wound recurrence by initial WIfI stage (P > .05). At the end of the study period, 23 (26%) were alive and nonambulatory; in 20%, functional status was missing. On both univariate and multivariate analysis, end-stage renal disease and prior functional status predicted ability to ambulate independently (P < .05). WIfI stage was associated with major amputation (P = .01) and cLOS (P = .002) but not with time to wound healing. Direct hospital (inpatient) cost per limb saved was significantly higher in stage 4 patients (P < .05 for all time periods). WIfI stage was associated with cumulative in-hospital costs at 1 year and for the overall follow-up period. Among a population of patients admitted to a tertiary hospital limb preservation service, WIfI stage was predictive of midterm freedom from amputation, cLOS, and hospital costs but not of ambulatory functional status, time to wound healing, or wound recurrence. Patients presenting with limb-threatening conditions require significant inpatient care, have a high frequency of repeated hospitalizations, and are at significant risk for recurrent wounds and leg symptoms at later times. Stage 4 patients require the most intensive care and have the highest initial and aggregate hospital costs per limb saved. However, limb salvage can be achieved in these patients with a dedicated multidisciplinary team approach. Published by Elsevier Inc.

  7. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M

    2015-08-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals.

  8. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum)

    PubMed Central

    Phan, Anne Q.; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V.

    2015-01-01

    Abstract Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain‐of‐function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position‐specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position‐specific, developmental‐stage‐specific, and heparan sulfate‐dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals. PMID:27499874

  9. Chemical activation of Wnt/β-catenin signalling inhibits innervation and causes skeletal tissue malformations during axolotl limb regeneration.

    PubMed

    Wischin, Sabina; Castañeda-Patlán, Cristina; Robles-Flores, Martha; Chimal-Monroy, Jesús

    2017-04-01

    Limb regeneration involves several interrelated physiological processes in which a particular signalling pathway may play a variety of functions. Blocking the function of Wnt/β-catenin signalling during limb regeneration inhibits regeneration in axolotls (Ambystoma mexicanum). Limb development shares many features with limb regeneration, and Wnt/β-catenin activation has different effects depending on the developmental stage. The aim of this study was to evaluate whether Wnt/β-catenin signalling activation during axolotl limb regeneration has different effects when activated at different stages of regeneration. To evaluate this hypothesis, we treated amputated axolotls with a Wnt agonist chemical at different stages of limb regeneration. The results showed that limb regeneration was inhibited when the treatment began before blastema formation. Under these conditions, blastema formation was hindered, possibly due to the lack of innervation. On the other hand, when axolotls were treated after blastema formation and immediately before the onset of morphogenesis, we observed structural disorganization in skeletal formation. In conclusion, we found that limb regeneration was differentially affected depending on the stage at which the Wnt signalling pathway was activated. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Age-Related Differences in Bilateral Asymmetry in Cycling Performance

    ERIC Educational Resources Information Center

    Liu, Ting; Jensen, Jody L.

    2012-01-01

    Bilateral asymmetry, a form of limb laterality in the context of moving two limbs, emerges in childhood. Children and adults show lateral preference in tasks that involve the upper and lower limbs. The importance of research in limb laterality is the insight it could provide about lateralized functions of the cerebral hemispheres. Analyzing…

  11. Genetic deletion of GPR52 enhances the locomotor-stimulating effect of an adenosine A2A receptor antagonist in mice: A potential role of GPR52 in the function of striatopallidal neurons.

    PubMed

    Nishiyama, Keiji; Suzuki, Hirobumi; Maruyama, Minoru; Yoshihara, Tomoki; Ohta, Hiroyuki

    2017-09-01

    G protein-coupled receptor 52 (GPR52) is largely co-expressed with dopamine D 2 receptor (DRD2) in the striatum and nucleus accumbens, and this expression pattern is similar to that of adenosine A 2A receptor (ADORA2A). GPR52 has been proposed as a therapeutic target for positive symptoms of schizophrenia, based on observations from pharmacological and transgenic mouse studies. However, the physiological role of GPR52 in dopaminergic functions in the basal ganglia remains unclear. Here, we used GPR52 knockout (KO) mice to examine the role of GPR52 in dopamine receptor-mediated and ADORA2A-mediated locomotor activity and dopamine receptor signaling. High expression of GPR52 protein in the striatum, nucleus accumbens, and lateral globus pallidus of wild type (WT) littermates was confirmed by immunohistochemical analysis. GPR52 KO and WT mice exhibited almost identical locomotor responses to the dopamine releaser methamphetamine and the N-methyl-d-aspartate antagonist MK-801. In contrast, the locomotor response to the ADORA2A antagonist istradefylline was significantly augmented in GPR52 KO mice compared to WT mice. Gene expression analysis revealed that striatal expression of DRD2, but not of dopamine D 1 receptor and ADORA2A, was significantly decreased in GPR52 KO mice. Moreover, a significant reduction in the mRNA expression of enkephalin, a marker of the activity of striatopallidal neurons, was observed in the striatum of GPR52 KO mice, suggesting that GPR52 deletion could enhance DRD2 signaling. Taken together, these results imply the physiological relevance of GPR52 in modulating the function of striatopallidal neurons, possibly by interaction of GPR52 with ADORA2A and DRD2. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparison of laterality index of upper and lower limb movement using brain activated fMRI

    NASA Astrophysics Data System (ADS)

    Harirchian, Mohammad Hossein; Oghabian, Mohammad Ali; Rezvanizadeh, Alireza; Bolandzadeh, Niousha

    2008-03-01

    Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions such as motor functions. This asymmetry maybe altered in some clinical conditions such as Multiple Sclerosis (MS). The aim of this study was to delineate the laterality differences for upper and lower limbs in healthy subjects to compare this pattern with subjects suffering from MS in advance. Hence 9 Male healthy subjects underwent fMRI assessment, while they were asked to move their limbs in a predetermined pattern. The results showed that hands movement activates the brain with a significant lateralization in pre-motor cortex in comparison with lower limb. Also, dominant hands activate brain more lateralized than the non-dominant hand. In addition, Left basal ganglia were observed to be activated regardless of the hand used, While, These patterns of Brain activation was not detected in lower limbs. We hypothesize that this difference might be attributed to this point that hand is usually responsible for precise and fine voluntary movements, whereas lower limb joints are mainly responsible for locomotion, a function integrating voluntary and automatic bilateral movements.

  13. Effects of a Home-Based Upper Limb Training Program in Patients With Multiple Sclerosis: A Randomized Controlled Trial.

    PubMed

    Ortiz-Rubio, Araceli; Cabrera-Martos, Irene; Rodríguez-Torres, Janet; Fajardo-Contreras, Waldo; Díaz-Pelegrina, Ana; Valenza, Marie Carmen

    2016-12-01

    To evaluate the effects of a home-based upper limb training program on arm function in patients with multiple sclerosis (MS). Additionally, the effects of this program on manual dexterity, handgrip strength, and finger prehension force were analyzed. Randomized, single-blind controlled trial. Home based. Patients with a clinical diagnosis of MS acknowledging impaired manual ability (N=37) were randomized into 2 groups. Patients in the experimental group were included in a supervised home-based upper limb training program for 8 weeks twice a week. Patients in the control group received information in the form of a leaflet with a schedule of upper limb exercise training. The primary outcome measure was arm function (motor functioning assessed using the finger tapping test and a functional measure, the Action Research Arm Test). The secondary outcome measures were manual dexterity assessed with the Purdue Pegboard Test and handgrip strength and finger prehension force evaluated with a handgrip and a pinch dynamometer, respectively. After 8 weeks, a significant between-group improvement (P<.05) was found on the Action Research Arm Test bilaterally and the finger tapping test in the most affected upper limb. The secondary outcomes also improved in the most affected limb in the experimental group. An 8-week home-based intervention program focused on upper limbs twice a week improved arm function and physiologic variables with a primary focus on the more affected extremity in patients with MS compared with the control group. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Cortical motor activity and reorganization following upper-limb amputation and subsequent targeted reinnervation.

    PubMed

    Chen, Albert; Yao, Jun; Kuiken, Todd; Dewald, Julius P A

    2013-01-01

    Previous studies have postulated that the amount of brain reorganization following peripheral injuries may be correlated with negative symptoms or consequences. However, it is unknown whether restoring effective limb function may then be associated with further changes in the expression of this reorganization. Recently, targeted reinnervation (TR), a surgical technique that restores a direct neural connection from amputated sensorimotor nerves to new peripheral targets such as muscle, has been successfully applied to upper-limb amputees. It has been shown to be effective in restoring both peripheral motor and sensory functions via the reinnervated nerves as soon as a few months after the surgery. However, it was unclear whether TR could also restore normal cortical motor representations for control of the missing limb. To answer this question, we used high-density electroencephalography (EEG) to localize cortical activity related to cued motor tasks generated by the intact and missing limb. Using a case study of 3 upper-limb amputees, 2 of whom went through pre and post-TR experiments, we present unique quantitative evidence for the re-mapping of motor representations for the missing limb closer to their original locations following TR. This provides evidence that an effective restoration of peripheral function from TR can be linked to the return of more normal cortical expression for the missing limb. Therefore, cortical mapping may be used as a potential guide for monitoring rehabilitation following peripheral injuries.

  15. Lmx1b-targeted cis-regulatory modules involved in limb dorsalization.

    PubMed

    Haro, Endika; Watson, Billy A; Feenstra, Jennifer M; Tegeler, Luke; Pira, Charmaine U; Mohan, Subburaman; Oberg, Kerby C

    2017-06-01

    Lmx1b is a homeodomain transcription factor responsible for limb dorsalization. Despite striking double-ventral (loss-of-function) and double-dorsal (gain-of-function) limb phenotypes, no direct gene targets in the limb have been confirmed. To determine direct targets, we performed a chromatin immunoprecipitation against Lmx1b in mouse limbs at embryonic day 12.5 followed by next-generation sequencing (ChIP-seq). Nearly 84% ( n =617) of the Lmx1b-bound genomic intervals (LBIs) identified overlap with chromatin regulatory marks indicative of potential cis -regulatory modules (PCRMs). In addition, 73 LBIs mapped to CRMs that are known to be active during limb development. We compared Lmx1b-bound PCRMs with genes regulated by Lmx1b and found 292 PCRMs within 1 Mb of 254 Lmx1b-regulated genes. Gene ontological analysis suggests that Lmx1b targets extracellular matrix production, bone/joint formation, axonal guidance, vascular development, cell proliferation and cell movement. We validated the functional activity of a PCRM associated with joint-related Gdf5 that provides a mechanism for Lmx1b-mediated joint modification and a PCRM associated with Lmx1b that suggests a role in autoregulation. This is the first report to describe genome-wide Lmx1b binding during limb development, directly linking Lmx1b to targets that accomplish limb dorsalization. © 2017. Published by The Company of Biologists Ltd.

  16. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study

    PubMed Central

    Brownstone, Robert M.

    2015-01-01

    Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740

  17. Innovative Use of Thighplasty to Improve Prosthesis Fit and Function in a Transfemoral Amputee.

    PubMed

    Kuiken, Todd A; Fey, Nicholas P; Reissman, Timothy; Finucane, Suzanne B; Dumanian, Gregory A

    2018-01-01

    Excess residual limb fat is a common problem that can impair prosthesis control and negatively impact gait. In the general population, thighplasty and liposuction are commonly performed for cosmetic reasons but not specifically to improve function in amputees. The objective of this study was to determine if these procedures could enhance prosthesis fit and function in an overweight above-knee amputee. We evaluated the use of these techniques on a 50-year-old transfemoral amputee who was overweight. The patient underwent presurgical imaging and tests to measure her residual limb tissue distribution, socket-limb interface stiffness, residual femur orientation, lower-extremity function, and prosthesis satisfaction. A medial thighplasty procedure with circumferential liposuction was performed, during which 2,812 g (6.2 lbs.) of subcutaneous fat and skin was removed from her residual limb. Imaging was repeated 5 months postsurgery; functional assessments were repeated 9 months postsurgery. The patient demonstrated notable improvements in socket fit and in performing most functional and walking tests. Her comfortable walking speed increased 13.3%, and her scores for the Sit-to-Stand and Four Square Step tests improved over 20%. Femur alignment in her socket changed from 8.13 to 4.14 degrees, and analysis showed a marked increase in the socket-limb interface stiffness. This study demonstrates the potential of using a routine plastic surgery procedure to modify the intrinsic properties of the limb and to improve functional outcomes in overweight or obese transfemoral amputees. This technique is a potentially attractive option compared with multiple reiterations of sockets, which can be time-consuming and costly.

  18. Development of a Countermeasure to Mitigate Postflight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Ruttley, T. M.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Evidence for the potential efficacy of an adaptive generalization gait training program can be obtained from numerous studies in the motor learning literature which have demonstrated that systematically varying the conditions of training enhances the ability of the performer to learn and retain a novel motor task. These variable practice training approaches have been used in applied contexts to improve motor skills required in a number of different sports. The central nervous system (CNS) can produce voluntary movement in an almost infinite number of ways. For example, locomotion can be achieved with many different combinations of joint angles, muscle activation patterns and forces. The CNS can exploit these degrees of freedom to enhance motor response adaptability during periods of adaptive flux like that encountered during a change in gravitational environment. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to normal. Rather the training regimen should facilitate the reorganization of available sensory and motor subsystems to achieve safe and effective locomotion as soon as possible after long duration space flight. Indeed, this approach has been proposed as a basic feature underlying effective neurological rehabilitation. We have previously confirmed that subjects participating in an adaptive generalization training program using a variety of visuomotor distortions and throwing as the dependent measure can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001). Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. In other words, our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. A gait adaptability training program can be superimposed on nominal treadmill exercise activities thus ensuring that no additional crew time is required to perform this type of training regimen and that it can be implemented with current in-flight exercise systems available on the International Space Station.

  19. Effect of cadence on locomotor-respiratory coupling during upper-body exercise.

    PubMed

    Tiller, Nicholas B; Price, Mike J; Campbell, Ian G; Romer, Lee M

    2017-02-01

    Asynchronous arm-cranking performed at high cadences elicits greater cardiorespiratory responses compared to low cadences. This has been attributed to increased postural demand and locomotor-respiratory coupling (LRC), and yet, this has not been empirically tested. This study aimed to assess the effects of cadence on cardiorespiratory responses and LRC during upper-body exercise. Eight recreationally-active men performed arm-cranking exercise at moderate and severe intensities that were separated by 10 min of rest. At each intensity, participants exercised for 4 min at each of three cadences (50, 70, and 90 rev min -1 ) in a random order, with 4 min rest-periods applied in-between cadences. Exercise measures included LRC via whole- and half-integer ratios, cardiorespiratory function, perceptions of effort (RPE and dyspnoea), and diaphragm EMG using an oesophageal catheter. The prevalence of LRC during moderate exercise was highest at 70 vs. 50 rev min -1 (27 ± 10 vs. 13 ± 9%, p = 0.000) and during severe exercise at 90 vs. 50 rev min -1 (24 ± 7 vs. 18 ± 5%, p = 0.034), with a shorter inspiratory time and higher mean inspiratory flow (p < 0.05) at higher cadences. During moderate exercise, [Formula: see text] and f C were higher at 90 rev min -1 (p < 0.05) relative to 70 and 50 rev min -1 ([Formula: see text] 1.19 ± 0.25 vs. 1.05 ± 0.21 vs. 0.97 ± 0.24 L min -1 ; f C 116 ± 11 vs. 101 ± 13 vs. 101 ± 12 b min -1 ), with concomitantly elevated dyspnoea. There were no discernible cadence-mediated effects on diaphragm EMG. Participants engage in LRC to a greater extent at moderate-high cadences which, in turn, increase respiratory airflow. Cadence rate should be carefully considered when designing aerobic training programmes involving the upper-limbs.

  20. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm.

    PubMed

    Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S

    2006-07-01

    Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.

Top