Science.gov

Sample records for limbic forebrain noradrenergic

  1. Effects of lithium and aripiprazole on brain stimulation reward and neuroplasticity markers in the limbic forebrain.

    PubMed

    Mavrikaki, Maria; Schintu, Nicoletta; Kastellakis, Andreas; Nomikos, George G; Svenningsson, Per; Panagis, George

    2014-04-01

    Bipolar disorder (BD) is a severe pathological condition with impaired reward-related processing. The present study was designed to assess the effects of two commonly used BD medications, the mood stabilizer lithium chloride (LiCl) and the atypical antipsychotic and antimanic agent aripiprazole, in an animal model of reward and motivation and on markers of neuroplasticity in the limbic forebrain in rats. We utilized intracranial self-simulation (ICSS) to assess the effects of acute and chronic administration of LiCl and aripiprazole on brain stimulation reward, and phosphorylation studies to determine their effects on specific cellular neuroplasticity markers, i.e., the phosphorylation of CREB and crucial phosphorylation sites on the GluA1 subunit of AMPA receptors and the NA1 and NA2B subunits of NMDA receptors, in the limbic forebrain. Chronic LiCl induced tolerance to the anhedonic effect of the drug observed after acute administration, while chronic aripiprazole induced a sustained anhedonic effect. These distinct behavioral responses might be related to differences in molecular markers of neuroplasticity. Accordingly, we demonstrated that chronic LiCl, but not aripiprazole, decreased phosphorylation of CREB at the Ser133 site and NA1 at the Ser896 site in the prefrontal cortex and GluA1 at the Ser831 site and NA2B at the Ser1303 site in the ventral striatum. The present study provides evidence for BD medication-evoked changes in reward and motivation processes and in specific markers of neuronal plasticity in the limbic forebrain, promoting the notion that these drugs may blunt dysregulated reward processes in BD by counteracting neuronal plasticity deficits.

  2. Visualizing an emotional valence map in the limbic forebrain by TAI-FISH.

    PubMed

    Xiu, Jianbo; Zhang, Qi; Zhou, Tao; Zhou, Ting-ting; Chen, Yang; Hu, Hailan

    2014-11-01

    A fundamental problem in neuroscience is how emotional valences are represented in the brain. We know little about how appetitive and aversive systems interact and the extent to which information regarding these two opposite values segregate and converge. Here we used a new method, tyramide-amplified immunohistochemistry-fluorescence in situ hybridization, to simultaneously visualize the neural correlates of two stimuli of contrasting emotional valence across the limbic forebrain at single-cell resolution. We discovered characteristic patterns of interaction, segregated, convergent and intermingled, between the appetitive and aversive neural ensembles in mice. In nucleus accumbens, we identified a mosaic activation pattern by positive and negative emotional cues, and unraveled previously unappreciated functional heterogeneity in the D1- and D2-type medium-spiny neurons, which correspond to the Go and NoGo pathways. These results provide insights into the coding of emotional valence in the brain and act as a proof of principle of a powerful methodology for simultaneous functional mapping of two distinct behaviors.

  3. Ropinirole regulates emotionality and neuronal activity markers in the limbic forebrain.

    PubMed

    Mavrikaki, Maria; Schintu, Nicoletta; Nomikos, George G; Panagis, George; Svenningsson, Per

    2014-12-01

    Restless legs syndrome (RLS) and Parkinson's disease (PD) are movement disorders usually accompanied by emotional and cognitive deficits. Although D3/D2 receptor agonists are effective against motor and non-motor deficits in RLS and PD, the exact behavioral and neurochemical effects of these drugs are not clearly defined. This study aimed to evaluate the effects of acute ropinirole (0, 0.1, 1 or 10 mg/kg, i.p.), a preferential D3/D2 receptor agonist, on intracranial self-stimulation (ICSS), spontaneous motor activity, anxiety- and depression-like behaviors, spatial reference and working memory in rats as well as on certain markers of neuronal activity, i.e. induction of immediate early genes, such as c-fos and arc, and crucial phosphorylations on GluA1 subunit of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and NA1, NA2A and NA2B subunits of N-methyl-D-aspartate (NMDA) receptors. Ropinirole decreased ICSS thresholds and induced anxiolytic- and antidepressive-like effects without affecting motor activity or spatial memory. The effects on emotionality were associated with a decrease in p-Ser897-NA1 and an increase in p-Tyr1472-NA2B in the ventral striatum as well as an increased induction of c-fos messenger RNA (mRNA) in the prefrontal cortex (PFC) and decreased expression of arc mRNA in the striatum and the shell of the nucleus accumbens. Our data indicate that ropinirole significantly affects emotionality at doses (1-10 mg/kg, i.p.) that exert no robust effects on locomotion or cognition. The data reinforce the use of D3/D2 receptor agonists in the treatment of RLS and PD patients characterized by emotional deficits and suggest that altered NMDA-mediated neurotransmission in the limbic forebrain may underlie some of ropinirole's therapeutic actions.

  4. Region-specific modulation of PER2 expression in the limbic forebrain and hypothalamus by nighttime restricted feeding in rats.

    PubMed

    Verwey, Michael; Khoja, Zehra; Stewart, Jane; Amir, Shimon

    2008-07-25

    Feeding schedules that restrict food access to a predictable daytime meal induce in rodents food-anticipatory behaviors, changes in physiological rhythms and shifts in the rhythm of clock gene expression in the brain and periphery. However, little is known about the effects of nighttime restricted feeding. Previously, we showed that daytime restricted access to a highly palatable complete meal replacement, Ensure Plus (Ensure), shifts the rhythm of expression of the clock protein PER2 in limbic forebrain areas including the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), central nucleus of the amygdala (CEA), basolateral amygdala (BLA) and dentate gyrus (DG), and induces a rhythm in the dorsomedial hypothalamic nucleus (DMH) in food deprived (restricted feeding), but not free-fed rats (restricted treat). In the present study we investigated the effects of nighttime restricted feeding (Ensure only, 2 h/night) and nighttime restricted treats (Ensure 2 h/night+free access to chow) in order to determine whether these effects were dependent on the time of day the meal was provided. We found that nighttime restricted feeding, like daytime restricted feeding, shifted the rhythm of PER2 expression in the BNSTov and CEA and peak expression was observed approximately 12 h after the mealtime. Also consistent with previous work, nighttime restricted feeding induced a rhythm of PER2 expression in the DMH and these effects occurred without affecting the rhythm in the suprachiasmatic nucleus (SCN). In contrast to previous work with daytime restricted feeding, nighttime restricted feeding had no effect on PER2 rhythms in the BLA and DG. Finally, nighttime restricted treats, as was the case for daytime restricted treats, had no effect on PER2 expression in any of the brain areas studied. The present results together with our previous findings show that the effect of restricted feeding on PER2 rhythms in the limbic forebrain and hypothalamus depend on a negative

  5. Variable restricted feeding disrupts the daily oscillations of Period2 expression in the limbic forebrain and dorsal striatum in rats.

    PubMed

    Verwey, Michael; Amir, Shimon

    2012-02-01

    Predictable restricted feeding schedules limit food availability to a single meal at the same time each day, lead to the induction and entrainment of circadian rhythms in food-anticipatory activity, and shift daily rhythms of clock gene expression in areas of the brain that are important in the regulation of motivational and emotional state. In contrast, when food is delivered under a variable restricted feeding (VRF) schedule, at a new and unpredictable mealtime each day, circadian rhythms in food-anticipatory activity fail to develop. Here, we study the effects of VRF on the daily rhythm of plasma corticosterone and of clock gene expression in the limbic forebrain and dorsal striatum, of rats provided a 2-h access to a complete meal replacement (Ensure Plus) at an unpredictable time each day. VRF schedules varied the mealtimes within the 12 h of light (daytime VRF), the 12 h of dark (nighttime VRF), or across the 24 h light-dark cycle (anytime VRF). Our results show that contrary to the synchronizing effects of predictable restricted feeding, VRF blunts the daily corticosterone rhythm and disrupts daily rhythms of PER2 expression in a region-specific and mealtime-dependent manner.

  6. Variable restricted feeding disrupts the daily oscillations of Period2 expression in the limbic forebrain and dorsal striatum in rats.

    PubMed

    Verwey, Michael; Amir, Shimon

    2012-02-01

    Predictable restricted feeding schedules limit food availability to a single meal at the same time each day, lead to the induction and entrainment of circadian rhythms in food-anticipatory activity, and shift daily rhythms of clock gene expression in areas of the brain that are important in the regulation of motivational and emotional state. In contrast, when food is delivered under a variable restricted feeding (VRF) schedule, at a new and unpredictable mealtime each day, circadian rhythms in food-anticipatory activity fail to develop. Here, we study the effects of VRF on the daily rhythm of plasma corticosterone and of clock gene expression in the limbic forebrain and dorsal striatum, of rats provided a 2-h access to a complete meal replacement (Ensure Plus) at an unpredictable time each day. VRF schedules varied the mealtimes within the 12 h of light (daytime VRF), the 12 h of dark (nighttime VRF), or across the 24 h light-dark cycle (anytime VRF). Our results show that contrary to the synchronizing effects of predictable restricted feeding, VRF blunts the daily corticosterone rhythm and disrupts daily rhythms of PER2 expression in a region-specific and mealtime-dependent manner. PMID:21547532

  7. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol.

    PubMed

    Kirkham, Tim C; Williams, Claire M; Fezza, Filomena; Di Marzo, Vincenzo

    2002-06-01

    Endocannabinoids are implicated in appetite and body weight regulation. In rodents, anandamide stimulates eating by actions at central CB1 receptors, and hypothalamic endocannabinoids may be under the negative control of leptin. However, changes to brain endocannabinoid levels in direct relation to feeding or changing nutritional status have not been investigated. We measured anandamide and 2-arachidonoyl glycerol (2-AG) levels in feeding-associated brain regions of rats, during fasting, feeding of a palatable food, or after satiation. Endocannabinoid levels were compared to those in rats fed ad libitum, at a point in their daily cycle when motivation to eat was absent. Fasting increased levels of anandamide and 2-AG in the limbic forebrain and, to a lesser extent, of 2-AG in the hypothalamus. By contrast, hypothalamic 2-AG declined as animals ate. No changes were detected in satiated rats. Endocannabinoid levels in the cerebellum, a control region not directly involved in the control of food intake, were unaffected by any manipulation. As 2-AG was most sensitive to variation during feeding, and to leptin regulation in a previous study, we examined the behavioural effects of 2-AG when injected into the nucleus accumbens shell, a limbic forebrain area strongly linked to eating motivation. 2-AG potently, and dose-dependently, stimulated feeding. This effect was attenuated by the CB1 receptor antagonist SR141716. These findings provide the first direct evidence of altered brain levels of endocannabinoids, and of 2-AG in particular, during fasting and feeding. The nature of these effects supports a role for endocannabinoids in the control of appetitive motivation.

  8. A 14C-2-deoxyglucose analysis of the neural pathways of the limbic forebrain in the rat: II. The hypothalamus.

    PubMed

    Watson, R E; Troiano, R; Poulakos, J; Weiner, S; Siegel, A

    1982-05-01

    An attempt was made to characterize the nature of the functional organization of the hypothalamus by observing the patterns of uptake of 14C-2-deoxyglucose (2DG) following electrical stimulation of different regions within the preoptico-hypothalamus in the rat. The experimental paradigm consisted of electrical brain stimulation delivered continuously for periods of 30 sec on and 30 sec off for 45 minutes following injection of 2DG. Brains were removed and processed for autoradiography. Activation of the medial forebrain bundle was noted following stimulation of the nucleus accumbens and lateral preoptico-hypothalamus. Activated fibers could be followed only in a caudal direction through the medial forebrain bundle and into the ventral tegmental area as a result of nucleus accumbens stimulation. Stimulation of the lateral preoptic region or of the anterior half of lateral hypothalamus produced activation of the lateral septal nucleus, lateral habenular nucleus, perifornical region, midline thalamus and ventral tegmental area. Since stimulation of the perifornical hypothalamus significantly activated the rostro-caudal extent of the midbrain cental gray, it is suggested that impulses from the lateral hypothalamus reach the lower brainstem via its connections with the perifornical hypothalamus. Ventromedial hypothalamic stimulation activated only the lateral septal nucleus, cortico-medial amygdala and medial preoptico-hypothalamus, while medial preoptico-hypothalamic stimulation resulted in increased 2DG uptake in the midbrain central gray, thus suggesting that medial hypothalamic impulses reach the brainstem by first ascending to the level of the preoptico-hypothalamus. Mammillary body stimulation orthodromically activated fibers in the mammillothalamic and mammillotegmental tracts and antidromically fibers in the fornix for a short distance.

  9. Noradrenergic Modulation of Arousal

    PubMed Central

    Berridge, Craig W.

    2008-01-01

    Through a highly divergent efferent projection system, the locus coeruleus-noradrenergic system supplies norepinephrine throughout the central nervous system. State-dependent neuronal discharge activity of locus coeruleus neurons has long-suggested a role of this system in the induction of an alert waking state. More recent work supports this hypothesis, demonstrating robust wake-promoting actions of the locus coeruleus-noradrenergic system. Norepinephrine enhances arousal, in part, via actions of β- and α1-receptors located within multiple subcortical structures, including the general regions of the medial septal area and the medial preoptic areas. Recent anatomical studies suggest that arousal-enhancing actions of norepinephrine are not limited to the locus coeruleus system and likely include the A1 and A2 noradrenergic cell groups. Thus, noradrenergic modulation of arousal state involves multiple noradrenergic systems acting with multiple subcortical regions. Pharmacological studies indicate that the combined actions of these systems are necessary for the sustained maintenance of arousal levels associated with spontaneous waking. Enhanced arousal state is a prominent aspect of both stress and psychostimulant drug action and evidence indicates that noradrenergic systems likely play an important role in both stress-related and psychostimulant-induced arousal. These and other observations suggest that the dysregulation of noradrenergic neurotransmission could well contribute to the dysregulation of arousal associated with a variety of behavioral disorders including insomnia and stress-related disorders. PMID:18199483

  10. The Role of the Central Noradrenergic System in Behavioral Inhibition

    PubMed Central

    Stone, Eric A.; Lin, Yan; Sarfraz, Yasmeen; Quartermain, David

    2011-01-01

    Although the central noradrenergic system has been shown to be involved in a number of behavioral and neurophysiological processes, the relation of these to its role in depressive illness has been difficult to define. The present review discusses the hypothesis that one of its chief functions that may be related to affective illness is the inhibition of behavioral activation, a prominent symptom of the disorder. This hypothesis is found to be consistent with most previous neuropsychopharmacological and immunohistochemical experiments on active behavior in rodents in a variety of experimental conditions using manipulation of neurotransmission at both locus coeruleus and forebrain adrenergic receptors. The findings support a mechanism in which high rates of noradrenergic neural activity suppress the neural activity of principal neurons in forebrain regions mediating active behavior. The suppression may be mediated through postsynaptic galaninergic and adrenergic receptors, and via the release of corticotrophin-releasing hormone. The hypothesis is consistent with clinical evidence for central noradrenergic system hyperactivity in depressives and with the view that this hyperactivity is a contributing etiological factor in the disorder. A similar mechanism may underlie the ability of the noradrenergic system to suppress seizure activity suggesting that inhibition of the spread of neural activation may be a unifying function. PMID:21315760

  11. Noradrenergic dysfunction in Alzheimer's disease

    PubMed Central

    Gannon, Mary; Che, Pulin; Chen, Yunjia; Jiao, Kai; Roberson, Erik D.; Wang, Qin

    2015-01-01

    The brain noradrenergic system supplies the neurotransmitter norepinephrine throughout the brain via widespread efferent projections, and plays a pivotal role in modulating cognitive activities in the cortex. Profound noradrenergic degeneration in Alzheimer's disease (AD) patients has been observed for decades, with recent research suggesting that the locus coeruleus (where noradrenergic neurons are mainly located) is a predominant site where AD-related pathology begins. Mounting evidence indicates that the loss of noradrenergic innervation greatly exacerbates AD pathogenesis and progression, although the precise roles of noradrenergic components in AD pathogenesis remain unclear. The aim of this review is to summarize current findings on noradrenergic dysfunction in AD, as well as to point out deficiencies in our knowledge where more research is needed. PMID:26136654

  12. Bilateral limbic system destruction in man

    PubMed Central

    Feinstein, Justin S.; Rudrauf, David; Khalsa, Sahib S.; Cassell, Martin D.; Bruss, Joel; Grabowski, Thomas J.; Tranel, Daniel

    2010-01-01

    We report here a case study of a rare neurological patient with bilateral brain damage encompassing a substantial portion of the so-called “limbic system.” The patient, Roger, has been studied in our laboratory for over 14 years and the current article presents his complete neuroanatomical and neuropsychological profiles. The brain damage occurred in 1980 following an episode of herpes simplex encephalitis. The amount of destroyed neural tissue is extensive and includes bilateral damage to core limbic and paralimbic regions, including the hippocampus, amygdala, parahippocampal gyrus, temporal poles, orbitofrontal cortex, basal forebrain, anterior cingulate cortex, and insular cortex. The right hemisphere is more extensively affected than the left, although the lesions are largely bilateral. Despite the magnitude of his brain damage, Roger has a normal IQ, average to above average attention, working memory, and executive functioning skills, and very good speech and language abilities. In fact, his only obvious presenting deficits are a dense global amnesia and a severe anosmia and ageusia. Roger's case presents a rare opportunity to advance our understanding of the critical functions underlying the human limbic system, and the neuropsychological and neuroanatomical data presented here provide a critical foundation for such investigations. PMID:19763994

  13. Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test.

    PubMed

    Cryan, John F; Page, Michelle E; Lucki, Irwin

    2002-02-01

    The novel antidepressant reboxetine is a selective norepinephrine reuptake inhibitor. In this study, the antidepressant-like effects of reboxetine were characterized in a modified rat forced swim test. Further, in order to investigate the role of the locus coeruleus and lateral tegmental noradrenergic systems in the mediation of reboxetine's effects, the impact of different chemical lesions of these two pathways was examined on the behavioral responses induced by reboxetine in the forced swim test. Reboxetine (5-20 mg/kg, s.c.) dose-dependently decreased immobility and swimming behavior in the forced swim test while it simultaneously increased climbing behavior. These effects were similar to those previously demonstrated with tricyclic antidepressants and are indicative of reboxetine's effects on the noradrenergic system. Discrete local injections of the neurotoxin 6-hydroxydopamine were employed to lesion the ventral noradrenergic bundle arising from cells located in the lateral tegmentum. This resulting lesion completely prevented reboxetine (10 mg/kg, s.c.)-induced decreases in immobility and increases in climbing behavior, demonstrating that an intact ventral noradrenergic bundle is required for the manifestation of reboxetine-induced antidepressant-like behavior in the test. In contrast, lesions of the dorsal noradrenergic bundle which consists of neurons arising from the nucleus locus coereleus, were achieved by systemic pretreatment with the selective noradrenergic neurotoxin N-(2-chloroethyl)-N-2-bromobenzylamine (DSP-4; 50 mg/kg, i.p.). The ability of reboxetine (10 mg/kg, s.c.) to increase climbing and decrease immobility was augmented by DSP-4 pretreatment. Furthermore, neither lesions of the dorsal noradrenergic bundle nor the ventral noradrenergic bundle altered baseline immobility scores in the forced swim test. Taken together, these data suggest that forebrain regions innervated by these two distinct noradrenergic pathways exert opposing influences

  14. Limbic system (image)

    MedlinePlus

    ... structures which govern emotions and behavior. The limbic system, and in particular the hippocampus and amygdala, is involved in the formation of long-term memory, and is closely associated with the olfactory structures (having to do with the sense of ...

  15. Noradrenergic nuclei that receive sensory input during mating and project to the ventromedial hypothalamus play a role in mating-induced pseudopregnancy in the female rat.

    PubMed

    Northrop, L E; Polston, E K; Erskine, M S

    2010-10-01

    In female rats, vaginal-cervical stimulation (VCS) received during mating induces bicircadian prolactin surges that are required for the maintenance of pregnancy or pseudopregnancy (PSP). The neural circuits that transmit VCS inputs to the brain have not been fully described, although mating stimulation is known to activate medullary noradrenergic cell groups that project to the forebrain. In response to VCS, these neurones release noradrenaline within the ventrolateral division of the ventromedial hypothalamus (VMHvl) and the posterodorsal medial amygdala (MePD), two forebrain sites that are implicated in the initiation of PSP. Noradrenaline receptor activation within the VMHvl is both necessary and sufficient for PSP induction, suggesting that noradrenaline acting within the VMHvl is particularly important in mediating the effects of VCS towards the establishment of PSP. We therefore investigated whether or not endogenous, VCS-induced noradrenaline release within the VMHvl is involved in PSP induction in the rat. Before the receipt of sufficient mating stimulation to induce PSP, a retrograde neurotoxin, dopamine-β-hydroxylase-saporin (DBH-SAP), was infused bilaterally into the either the VMHvl or the MePD to selectively destroy afferent noradrenergic nuclei in the brainstem. DBH-SAP infusions into the VMHvl lesioned mating-responsive noradrenergic neurones in A1 and A2 medullary nuclei and reduced the incidence of PSP by 50%. Infusions of DBH-SAP into the MePD had no effect on the subsequent induction of PSP. These results suggest that VCS is conveyed to mating-responsive forebrain areas by brainstem noradrenergic neurones, and that the activity of noradrenergic cells projecting to the VMHvl is involved in the induction of PSP.

  16. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    NASA Astrophysics Data System (ADS)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  17. Methylphenidate and atomoxetine inhibit social play behavior through prefrontal and subcortical limbic mechanisms in rats.

    PubMed

    Achterberg, E J Marijke; van Kerkhof, Linda W M; Damsteegt, Ruth; Trezza, Viviana; Vanderschuren, Louk J M J

    2015-01-01

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD. PMID:25568111

  18. Methylphenidate and atomoxetine inhibit social play behavior through prefrontal and subcortical limbic mechanisms in rats.

    PubMed

    Achterberg, E J Marijke; van Kerkhof, Linda W M; Damsteegt, Ruth; Trezza, Viviana; Vanderschuren, Louk J M J

    2015-01-01

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD.

  19. Heritability of the limbic networks

    PubMed Central

    Kawadler, Jamie M.; Dell'Acqua, Flavio; Rijsdijk, Frühling V.; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M.; Murphy, Declan G.; Craig, Michael C.; Catani, Marco

    2016-01-01

    Individual differences in cognitive ability and social behaviour are influenced by the variability in the structure and function of the limbic system. A strong heritability of the limbic cortex has been previously reported, but little is known about how genetic factors influence specific limbic networks. We used diffusion tensor imaging tractography to investigate heritability of different limbic tracts in 52 monozygotic and 34 dizygotic healthy adult twins. We explored the connections that contribute to the activity of three distinct functional limbic networks, namely the dorsal cingulum (‘medial default-mode network’), the ventral cingulum and the fornix (‘hippocampal-diencephalic-retrosplenial network’) and the uncinate fasciculus (‘temporo-amygdala-orbitofrontal network’). Genetic and environmental variances were mapped for multiple tract-specific measures that reflect different aspects of the underlying anatomy. We report the highest heritability for the uncinate fasciculus, a tract that underpins emotion processing, semantic cognition, and social behaviour. High to moderate genetic and shared environmental effects were found for pathways important for social behaviour and memory, for example, fornix, dorsal and ventral cingulum. These findings indicate that within the limbic system inheritance of specific traits may rely on the anatomy of distinct networks and is higher for fronto-temporal pathways dedicated to complex social behaviour and emotional processing. PMID:26714573

  20. Heritability of the limbic networks.

    PubMed

    Budisavljevic, Sanja; Kawadler, Jamie M; Dell'Acqua, Flavio; Rijsdijk, Frühling V; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M; Murphy, Declan G; Craig, Michael C; Catani, Marco

    2016-05-01

    Individual differences in cognitive ability and social behaviour are influenced by the variability in the structure and function of the limbic system. A strong heritability of the limbic cortex has been previously reported, but little is known about how genetic factors influence specific limbic networks. We used diffusion tensor imaging tractography to investigate heritability of different limbic tracts in 52 monozygotic and 34 dizygotic healthy adult twins. We explored the connections that contribute to the activity of three distinct functional limbic networks, namely the dorsal cingulum ('medial default-mode network'), the ventral cingulum and the fornix ('hippocampal-diencephalic-retrosplenial network') and the uncinate fasciculus ('temporo-amygdala-orbitofrontal network'). Genetic and environmental variances were mapped for multiple tract-specific measures that reflect different aspects of the underlying anatomy. We report the highest heritability for the uncinate fasciculus, a tract that underpins emotion processing, semantic cognition, and social behaviour. High to moderate genetic and shared environmental effects were found for pathways important for social behaviour and memory, for example, fornix, dorsal and ventral cingulum. These findings indicate that within the limbic system inheritance of specific traits may rely on the anatomy of distinct networks and is higher for fronto-temporal pathways dedicated to complex social behaviour and emotional processing. PMID:26714573

  1. Thinking of attachments reduces noradrenergic stress response.

    PubMed

    Bryant, Richard A; Chan, Lilian

    2015-10-01

    Although there is much evidence that activating mental representations of attachments figure is beneficial for psychological health and can reduce stress response, no research has directly investigated whether attachment activation can ameliorate hormonal stress response. This study investigated whether activating an attachment figure or a non-attachment figure following administration of a socially evaluated cold pressor test to elicit stress impacted on glucocorticoid and noradrenergic response. Participants (N = 61) provided baseline salivary samples, underwent a cold pressor test, then imagined an attachment or non-attachment figure, and finally provided subsequent saliva samples. Participants who imagined a non-attachment figure had greater noradrenergic response following the stressor than those who imagined an attachment figure. These findings highlight that activating attachment representations can ameliorate the immediate noradrenergic stress response.

  2. Noradrenergic innervation of juvenile nasopharyngeal angiofibroma.

    PubMed

    Wang, H W; Su, W Y; Wang, J Y

    1994-01-01

    The glyoxylic catecholaminergic histofluorescence method was employed on tissues from five cases of juvenile nasopharyngeal angiofibroma in order to study the sympathetic innervation present. There was no sympathetic innervation identified in tumor parenchyma while some scant noradrenergic fibers were found in the tumor border. These findings indicate that keeping a dissection surface out of tumor during planned excisions may be very important, as vessels there have more sympathetic innervation which will then result in good vessel contraction in controlling bleeding. Non-diseased nasal mucosa from each patient was used as control tissue, with its submucosa seen to be filled with noradrenergic innervation. Some noradrenergic fibers were also found to innervate the muscle layers of arterioles or venules adjacent to the sphenopalatine foramen.

  3. The forebrain of actinopterygians revisited.

    PubMed

    Nieuwenhuys, Rudolf

    2009-01-01

    The forebrain of actinopterygian fishes differs from that of other vertebrates in that it consists of a pair of solid lobes. Lateral ventricles surrounded by nervous tissue are entirely lacking. Comparative anatomical and embryological studies have shown that the unusual configuration of the forebrain in actinopterygians results from an outward bending or eversion of the dorsal portions of its lateral walls. Due to this eversion, the telencephalic roof plate is transformed into a wide, membranous structure which surrounds the dorsal and lateral parts of the solid lobes and is attached to their lateral or ventrolateral aspects. The taeniae, i.e. the lines of attachment of the widened roof plate, represent important landmarks in actinopterygian forebrains. In the present paper, the process of eversion is specified and quantified. It is pointed out that recent suggestions to modify the original eversion concept lack an empirical basis. Eversion is the antithesis of the inward bending or inversion that occurs in the forebrains of most other vertebrates. The forebrain lobes in actinopterygians, like those in other vertebrates, comprise a pallium and a subpallium, both of which include a number of distinct cell masses. The morphological interpretations of these cell masses over the past 130 years are reviewed and evaluated in light of a set of carefully selected criteria for homologous relationships. Special attention is paid to the interpretation of a cell mass known as Dp, situated in the caudolateral portion of the pallium in teleosts (by far the largest clade of living actinopterygians). Based on its position close to the taenia, and given the everted condition of the pallium in teleosts, this cell mass clearly corresponds with the medial pallium in inverted forebrains; however, Dp receives a dense olfactory input, and it shares this salient feature with the lateral pallium, rather than with the medial pallium of inverted forebrains. There is presently no consensus

  4. Forebrain Pain Mechanisms

    PubMed Central

    Neugebauer, Volker; Galhardo, Vasco; Maione, Sabatino; Mackey, Sean C.

    2009-01-01

    Emotional-affective and cognitive dimensions of pain are less well understood than nociceptive and nocifensive components, but the forebrain is believed to play an important role. Recent evidence suggests subcortical and cortical brain areas outside the traditional pain processing network contribute critically to emotional-affective responses and cognitive deficits related to pain. These brain areas include different nuclei of the amygdala and certain prefrontal cortical areas. Their roles in various aspects of pain will be discussed. Biomarkers of cortical dysfunction are being identified that may evolve into therapeutic targets to modulate pain experience and improve pain-related cognitive impairment. Supporting data from preclinical studies in neuropathic pain models will be presented. Neuroimaging analysis provides evidence for plastic changes in the pain processing brain network. Results of clinical studies in neuropathic pain patients suggest that neuroimaging may help determine mechanisms of altered brain functions in pain as well as monitor the effects of pharmacologic interventions to optimize treatment in individual patients. Recent progress in the analysis of higher brain functions emphasizes the concept of pain as a multidimensional experience and the need for integrative approaches to determine the full spectrum of harmful or protective neurobiological changes in pain. PMID:19162070

  5. Sleep research in space: expression of immediate early genes in forebrain structures of rats during the nasa neurolab mission (STS-90).

    PubMed

    Centini, C; Pompeiano, O

    2007-05-01

    . Some Fos staining was also present in limbic cortical areas, the septum, and the hippocampus. The main area of the forebrain of FLT rats sacrificed at R + 1, showing an increased expression of Fos, was the central nucleus of the amygdala (CeA) (cf. 127), as well as the noradrenergic locus coeruleus (LC) nucleus (cf. 122). At R + 13 Fos immunostaining was variable among FLT rats. However, none of these rats showed a significant number of Fos-positive cells in CeA. 4. Most of the rats studied for Fos expression were also tested for FRA expression. In particular, a scattered amount of FRA expression occurred at FD14 in different areas of the neocortex and in limbic forebrain regions (such as the cingulate, retrosplenial and entorhinal cortex). It included also the hippocampus, the lateral septum, the caudate/putamen, as well as some hypothalamic regions. At the reentry (R + 1) it was previously shown that a prominent increase in FRA expression occurred in the LC of FLT rats (cf. 122). This finding was associated with an increase in FRA expression which affected not only the nucleus paragigantocellularis lateralis of the medulla, which sends excitatory glutamatergic afferents to the LC (cf. 31 for ref.), but also structures which are known to produce corticotropin-releasing factor (CRF), a neuropeptide which activates the noradrenergic LC neurons during stress. 5. These findings which result from acceleration stress were followed by REMS episodes, which probably occurred after a long period of sleep deprivation following exposure to microgravity. It was previously shown that an increase in Fos and FRA expression occurred at the reentry in some pontine and medullary reticular structures (cf. 128), which are likely to be involved in both the descending (postural atonia) and the ascending manifestations of PS. These findings can be integrated by results of the present experiments showing that at the reentry high levels of FRA expression occurred in the hippocampus and the

  6. Neurotransmitters and prefrontal cortex-limbic system interactions: implications for plasticity and psychiatric disorders.

    PubMed

    Del Arco, Alberto; Mora, Francisco

    2009-08-01

    The prefrontal cortex (PFC) efferent projections to limbic areas facilitate a top-down control on the execution of goal-directed behaviours. The PFC sends glutamatergic outputs to limbic areas such as the hippocampus and amygdala which in turn modulate the activity of the nucleus accumbens (NAc). Dopamine and acetylcholine neurons in the brainstem and basal forebrain/septal areas, which send outputs to NAc, hippocampus and amygdala, are also regulated by PFC glutamatergic projections, and seem to be of special relevance in modulating motor, emotional and mnemonic functions. Both the physiological and pathological changes in the PFC influence the activity of these limbic areas and the corresponding final-guided behaviours. We revise our most recent studies on PFC-NAc interactions focussed on the role of dopamine and glutamate receptors in the PFC. Specifically, by performing microinjections/microdialysis studies we found that the activation of D2 dopamine receptors and the blockade of glutamate NMDA receptors in the PFC change the release of dopamine and acetylcholine in the NAc. We suggest the possibility that dopamine and glutamate receptors in the PFC could change the activity of dopamine and acetylcholine function in the hippocampus and amygdala. Finally, it is speculated that changes in the function of the PFC, associated with psychiatric disorders or due to environmental-dependent plasticity, can change PFC-limbic system interactions.

  7. Limbic circuitry of the midline thalamus.

    PubMed

    Vertes, Robert P; Linley, Stephanie B; Hoover, Walter B

    2015-07-01

    The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or 'limbic thalamus') consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The 'limbic' thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic-associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the 'limbic thalamus'. PMID:25616182

  8. Limbic circuitry of the midline thalamus.

    PubMed

    Vertes, Robert P; Linley, Stephanie B; Hoover, Walter B

    2015-07-01

    The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or 'limbic thalamus') consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The 'limbic' thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic-associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the 'limbic thalamus'.

  9. [Septal Activation and Control of Limbic Structures].

    PubMed

    Fedotova, I R; Frolov, A A

    2015-01-01

    Coherent activation of limbic system structures as the main function of theta-rhythm is widely discussed in the literature. However until now does not exist the common view on its generation in these brain structures. The model of septal theta-rhythmic activation and control of limbic structures is suggested basing on the literature and own experimental data.

  10. LIMBIC CIRCUITRY OF THE MIDLINE THALAMUS

    PubMed Central

    Vertes, Robert P.; Linley, Stephanie B.; Hoover, Walter B.

    2016-01-01

    The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or ‘limbic thalamus’) consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The ‘limbic’ thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic–associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the ‘limbic thalamus’. PMID:25616182

  11. Evidence for alterations in central noradrenergic signaling in irritable bowel syndrome*, **

    PubMed Central

    Berman, Steven; Suyenobu, Brandall; Naliboff, Bruce D.; Bueller, Joshua; Stains, Jean; Wong, Heng; Mandelkern, Mark; Fitzgerald, Leah; Ohning, Gordon; Gupta, Arpana; Labus, Jennifer S.; Tillisch, Kirsten; Mayer, Emeran A.

    2014-01-01

    Background/aims Alterations in noradrenergic (NE) signaling have been implicated in the pathophysiology of irritable bowel syndrome (IBS), and adrenergic receptors are potential treatment targets. Methods To characterize central NE signaling in IBS, 11 patients and 11 healthy controls (HCs) were studied 3 times during an auditory oddball vigilance task after double-blind ingestion of the α2-adrenoreceptor (α2AR) antagonist yohimbine (YOH), the α2AR agonist clonidine (CLO), or placebo (PLA). Regional cerebral glucose metabolism was measured with [18F] fluorodeoxyglucose (FDG) positron emission tomography (PET). Measures of anxiety, early-life trauma, plasma NE and blood pressure were acquired. Results Patients had higher plasma NE levels than HCs before and after ingestion of all drugs (all p <0.05). YOH increased plasma NE and more anxiety in patients than in HCs. After YOH, NE levels directly correlated with drug-induced increases in anxiety in IBS patients (r=0.61), but not in HCs. IBS patients showed less YOH-mediated reduction of activity in a central arousal circuit, consistent with fewer functional presynaptic α2AR. In HCs, but not in patients, activation of amygdala and subgenual anterior cingulate cortex (sgACC) was inversely correlated with activation of anterior mid cingulate cortex (aMCC), and state anxiety covaried directly with activity in limbic and right frontotemporal cortices, but indirectly with activity in the left frontotemporal cortex. YOH-mediated reduction of activity in brainstem and amygdala inversely correlated with early life trauma. Conclusions IBS patients showed evidence for increased noradrenergic activity consistent with downregulation of presynaptic inhibitory α2ARs. Activity within central arousal circuits was biased toward greater excitability and reduced corticolimbic inhibition in IBS. Early life trauma may be one mediator of these abnormalities. PMID:22917679

  12. Dynamic gene and protein expression patterns of the autism-associated Met receptor tyrosine kinase in the developing mouse forebrain

    PubMed Central

    Judson, Matthew C.; Bergman, Mica Y.; Campbell, Daniel B.; Eagleson, Kathie L.; Levitt, Pat

    2009-01-01

    The establishment of appropriate neural circuitry depends upon the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival - all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits with particular relevance to social and emotional dimensions of behavior. PMID:19226509

  13. Chlordiazepoxide-induced released responding in extinction and punishment-conflict procedures is not altered by neonatal forebrain norepinephrine depletion.

    PubMed

    Bialik, R J; Pappas, B A; Pusztay, W

    1982-02-01

    The effects of chlordiazepoxide (CDZ) in extinction and punishment-conflict tasks were examined in rats after neonatal systemic administration of 6-hydroxydopamine (6-OHDA) to deplete forebrain norepinephrine (NE). At about 70 days of age the rats were water deprived and trained for three days to drink in a novel apparatus. On the fourth day (test day) drinking was either extinguished by elimination of water from the drinking tube or punished by lick-contingent shock. Just prior to this test session half of the vehicle and half of the 6-OHDA treated rats were given an injection of CDZ (8 mg/kg IP). Both the injection of CDZ and forebrain NE depletion prolonged responding during extinction and reduced the suppressant effects of punishment in male rats, and these effects were of similar magnitude. Furthermore, CDZ was as effective in neonatal 6-OHDA treated male rats as in vehicle treated rats indicating that decreased transmission is ascending NE fibers caused by CDZ is not solely responsible for its behavioral effects in extinction and conflict tasks. Rather, these effects may involve cooperative mediation by both noradrenergic and serotonergic forebrain terminals. Unexpectedly, CDZ's anti-extinction effect was absent in female rats and its anti-conflict effect observed only in NE depleted females.

  14. Chlordiazepoxide-induced released responding in extinction and punishment-conflict procedures is not altered by neonatal forebrain norepinephrine depletion.

    PubMed

    Bialik, R J; Pappas, B A; Pusztay, W

    1982-02-01

    The effects of chlordiazepoxide (CDZ) in extinction and punishment-conflict tasks were examined in rats after neonatal systemic administration of 6-hydroxydopamine (6-OHDA) to deplete forebrain norepinephrine (NE). At about 70 days of age the rats were water deprived and trained for three days to drink in a novel apparatus. On the fourth day (test day) drinking was either extinguished by elimination of water from the drinking tube or punished by lick-contingent shock. Just prior to this test session half of the vehicle and half of the 6-OHDA treated rats were given an injection of CDZ (8 mg/kg IP). Both the injection of CDZ and forebrain NE depletion prolonged responding during extinction and reduced the suppressant effects of punishment in male rats, and these effects were of similar magnitude. Furthermore, CDZ was as effective in neonatal 6-OHDA treated male rats as in vehicle treated rats indicating that decreased transmission is ascending NE fibers caused by CDZ is not solely responsible for its behavioral effects in extinction and conflict tasks. Rather, these effects may involve cooperative mediation by both noradrenergic and serotonergic forebrain terminals. Unexpectedly, CDZ's anti-extinction effect was absent in female rats and its anti-conflict effect observed only in NE depleted females. PMID:7071081

  15. CNS Dopamine Transmission Mediated by Noradrenergic Innervation

    PubMed Central

    Smith, Caroline C.; Greene, Robert W.

    2012-01-01

    The pre-synaptic source of dopamine in the CA1 field of dorsal hippocampus is uncertain due to an anatomical mismatch between dopaminergic terminals and receptors. We show, in an in vitro slice preparation from C57BL6 male mice, that a dopamine (DA) D1 receptor (D1R) mediated enhancement in glutamate synaptic transmission occurs following release of endogenous DA with amphetamine exposure. It is assumed DA is released from terminals innervating from the ventral tegmental area (VTA) even though DA transporter (DAT) positive fibers are absent in hippocampus, a region with abundant D1Rs. It has been suggested this results from a lack of DAT expression on VTA terminals rather than a lack of these terminals per se. Neither a knockdown of tyrosine hydroxylase (TH) expression in the VTA by THsiRNA, delivered locally, by adeno-associated viral vector, nor localized pharmacological blockade of DAT to prevent amphetamine uptake into DA terminals, has any effect on the D1R synaptic, enhancement response to amphetamine. However, either a decrease in TH expression in the locus coeruleus (LC) or a blockade of the norepinephrine (NE) transporter prevents the DA mediated response, indicating LC terminals can release both NE and DA. These findings suggest noradrenergic fibers may be the primary source of DA release in hippocampus and corresponding DA mediated increase in synaptic transmission. Accordingly, these data imply the LC may have a role in DA transmission in the CNS in response to drugs of abuse, and potentially, under physiological conditions. PMID:22553014

  16. Mapping of limbic seizure progressions utilizing the electrogenic status epilepticus model and the 14C-2-deoxyglucose method.

    PubMed

    Handforth, A; Ackermann, R F

    1995-01-01

    We have previously described a model of limbic status epilepticus in which chronic prolonged seizure states of immobile, exploratory, minor convulsive or clonic convulsive behavior are induced by intracerebral electrical stimulation; these states appear to belong to the same behavioral progression as kindled seizures. We postulated that the underlying seizure substrates, as mapped by the 14C-2-deoxyglucose method, should reflect a corresponding anatomic progression of discharge spread. Status epilepticus was induced in rat by pulsed-train current delivered for up to 90 min to one of several subcortical areas. Autoradiographs revealed that most of the observed patterns of seizure-induced metabolic activation comprised a hierarchical sequence, such that progressively more extensive patterns subsumed anatomic territories activated in less extensive patterns, thus allowing inferences as to the progression of discharge spread. In this sequence, the basolateral amygdala ipsilateral to the induction electrode was among the first structures to be activated. In successively larger activation patterns a small unilateral network related to basolateral amygdala was involved; this evolved through a transitional state to a unilateral extensive limbic pattern; which in turn was succeeded by bilateral extensive limbic activation. This hierarchical sequence culminated in a neocortical activation pattern, in which most of the forebrain was involved in intense seizure-induced activation. Seizure behaviors increased in severity in correspondence with the underlying seizure-activated anatomic substrate. In contrast, patterns of seizure activation were observed which did not fit within the early stages of the above sequence, although analysis indicates that the later stages of spread may be shared. The study of these patterns and those reported in the literature indicates that although limbic seizure networks may be anatomically distinct at their origination, further expansion is

  17. Neurocircuitry of limbic dysfunction in anorexia nervosa.

    PubMed

    Lipsman, Nir; Woodside, D Blake; Lozano, Andres M

    2015-01-01

    Anorexia Nervosa (AN) is a serious psychiatric condition marked by firmly entrenched and maladaptive behaviors and beliefs about body, weight and food, as well as high rates of psychiatric comorbidity. The neural roots of AN are now beginning to emerge, and appear to be related to dysfunctional, primarily limbic, circuits driving pathological thoughts and behaviors. As a result, the significant physical symptoms of AN are increasingly being understood at least partially as a result of abnormal or dysregulated emotional processing. This paper reviews the nature of limbic dysfunction in AN, and how structural and functional imaging has implicated distinct emotional and perceptual neural circuits driving AN symptoms. We propose that top-down and bottom-up influences converge on key limbic modulatory structures, such as the subcallosal cingulate and insula, whose normal functioning is critical to affective regulation and emotional homeostasis. Dysfunctional activity in these structures, as is seen in AN, may lead to emotional processing deficits and psychiatric symptoms, which then drive maladaptive behaviors. Modulating limbic dysregulation may therefore be a potential treatment strategy in some AN patients.

  18. The forebrain of the Pacific hagfish: a cladistic reconstruction of the ancestral craniate forebrain.

    PubMed

    Wicht, H; Northcutt, R G

    1992-01-01

    The forebrain of the Pacific hagfish is described with regard to its morphology, cytoarchitecture, and secondary olfactory projections. The forebrain ventricular system is greatly reduced in adult hagfishes, although vestiges of ventricular structures can still be recognized. In order to clarify topographical relationships within the forebrain, we provide a three-dimensional reconstruction of the ventricular system, including the vestigial portions. Topography and embryology lead us to conclude that the 'primordium hippocampi' of previous authors is a diencephalic structure. For topographical and hodological reasons, we interpret the 'area basalis' of previous authors to be part of the preoptic region, and we identify a part of the so-called 'nucleus olfactorius anterior' as the homologue of the striatum. The laminated pallium is dominated by secondary olfactory projections and shows a high degree of regional cytoarchitectural specialization, as does the entire forebrain. In all, 42 cell groups are identified in the forebrain of hagfishes (compared to only about 25 in lampreys, for example). This surprisingly high degree of cytoarchitectural complexity prompted us to re-examine the phylogenetic history of craniate brains with this complexity in mind. In this paper we use cladistic methodology to reconstruct a morphotype, and we conclude that the forebrains of the earliest craniates may have been more complex than previously believed. This reconstruction includes hypotheses regarding the general morphology, secondary olfactory system, and visual system, as well as the relative sizes of major divisions of the forebrain in the earliest craniates.

  19. Physical exercise affects attentional orienting behavior through noradrenergic mechanisms.

    PubMed

    Robinson, Andrea M; Buttolph, Thomas; Green, John T; Bucci, David J

    2015-06-01

    Spontaneously hypertensive rats (SHRs), a commonly used animal model of attention-deficit/hyperactivity disorder, exhibit little habituation of the orienting response to repeated presentations of a nonreinforced visual stimulus. However, SHRs that have access to a running wheel for 5, 10, or 21 days exhibit robust habituation that is indistinguishable from normo-active rats. Two days of exercise, in comparison, is not sufficient to affect habituation. Here we tested the hypothesis that the effect of exercise on orienting behavior in SHRs is mediated by changes in noradrenergic function. In Experiment 1, we found that 5, 10, or 21 days of access to a running wheel, but not 2 days, significantly reduced levels of the norepinephrine transporter in medial prefrontal cortex. In Experiment 2, we tested for a causal relationship between changes in noradrenergic function and orienting behavior by blocking noradrenergic receptors during exercise. Rats that received propranolol (beta adrenergic/noradrenergic receptor blocker) during 10 days of exercise failed to exhibit an exercise-induced reduction in orienting behavior. The results inform a growing literature regarding the effects of exercise on behavior and the potential use of exercise as a treatment for mental disorders. PMID:26030434

  20. Physical exercise affects attentional orienting behavior through noradrenergic mechanisms.

    PubMed

    Robinson, Andrea M; Buttolph, Thomas; Green, John T; Bucci, David J

    2015-06-01

    Spontaneously hypertensive rats (SHRs), a commonly used animal model of attention-deficit/hyperactivity disorder, exhibit little habituation of the orienting response to repeated presentations of a nonreinforced visual stimulus. However, SHRs that have access to a running wheel for 5, 10, or 21 days exhibit robust habituation that is indistinguishable from normo-active rats. Two days of exercise, in comparison, is not sufficient to affect habituation. Here we tested the hypothesis that the effect of exercise on orienting behavior in SHRs is mediated by changes in noradrenergic function. In Experiment 1, we found that 5, 10, or 21 days of access to a running wheel, but not 2 days, significantly reduced levels of the norepinephrine transporter in medial prefrontal cortex. In Experiment 2, we tested for a causal relationship between changes in noradrenergic function and orienting behavior by blocking noradrenergic receptors during exercise. Rats that received propranolol (beta adrenergic/noradrenergic receptor blocker) during 10 days of exercise failed to exhibit an exercise-induced reduction in orienting behavior. The results inform a growing literature regarding the effects of exercise on behavior and the potential use of exercise as a treatment for mental disorders.

  1. Physical Exercise Affects Attentional Orienting Behavior through Noradrenergic Mechanisms

    PubMed Central

    Robinson, Andrea M.; Buttolph, Thomas; Green, John T.; Bucci, David J.

    2015-01-01

    Spontaneously Hypertensive Rats (SHRs), a commonly-used animal model of ADHD, exhibit little habituation of the orienting response to repeated presentations of a non-reinforced visual stimulus. However, SHRs that have access to a running wheel for 5, 10, or 21 days exhibit robust habituation that is indistinguishable from normo-active rats. Two days of exercise, in comparison, was not sufficient to affect habituation. Here we tested the hypothesis that the effect of exercise on orienting behavior in SHRs is mediated by changes in noradrenergic function. In Experiment 1, we found that 5, 10, or 21 days of access to a running wheel, but not 2 days, significantly reduced levels of the norepinephrine transporter (NET) in medial prefrontal cortex. In Experiment 2, we tested for a causal relationship between changes in noradrenergic function and orienting behavior by blocking noradrenergic receptors during exercise. Rats that received propranolol (beta adrenergic/noradrenergic receptor blocker) during 10 days of exercise failed to exhibit an exercise-induced reduction in orienting behavior. The results inform a growing literature regarding the effects of exercise on behavior and the potential use of exercise as a treatment for mental disorders. PMID:26030434

  2. The effects of mirtazapine on central noradrenergic and serotonergic neurotransmission.

    PubMed

    de Boer, T

    1995-12-01

    Mirtazapine is a new antidepressant with a unique mode of action: it preferentially blocks the noradrenergic alpha2-auto- and heteroreceptors held responsible for controlling noradrenaline and serotonin release. In addition, mirtazapine has a low affinity for serotonin (5-HT)1A receptors but potently blocks 5-HT2 and 5-HT3 receptors. It increases serotonergic cell-firing in the dorsal raphe and 5-HT release in the hippocampus as measured by microdialysis. These effects are explained by noradrenergic enhancement of 5-HT cell-firing and blockade of noradrenaline-mediated inhibition of hippocampal 5-HT release. Because mirtazapine blocks 5-HT2 and 5-HT3 receptors, only 5-HT1-mediated transmission is enhanced. The noradrenergic activation and the consequent indirect enhancement of serotonergic transmission most probably underlie the marked therapeutic activity of mirtazapine. The blockade of 5-HT2 and 5-HT3 receptors prevents development of the side effects associated with non-selective 5-HT activation and may contribute to the anxiolytic and sleep-improving properties of this new compound. Therefore mirtazapine can be described as a noradrenergic and specific serotonergic antidepressant (NaSSA). PMID:8930006

  3. Basal forebrain projections to the lateral habenula modulate aggression reward.

    PubMed

    Golden, Sam A; Heshmati, Mitra; Flanigan, Meghan; Christoffel, Daniel J; Guise, Kevin; Pfau, Madeline L; Aleyasin, Hossein; Menard, Caroline; Zhang, Hongxing; Hodes, Georgia E; Bregman, Dana; Khibnik, Lena; Tai, Jonathan; Rebusi, Nicole; Krawitz, Brian; Chaudhury, Dipesh; Walsh, Jessica J; Han, Ming-Hu; Shapiro, Matt L; Russo, Scott J

    2016-06-30

    Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing. PMID:27357796

  4. Basal forebrain projections to the lateral habenula modulate aggression reward.

    PubMed

    Golden, Sam A; Heshmati, Mitra; Flanigan, Meghan; Christoffel, Daniel J; Guise, Kevin; Pfau, Madeline L; Aleyasin, Hossein; Menard, Caroline; Zhang, Hongxing; Hodes, Georgia E; Bregman, Dana; Khibnik, Lena; Tai, Jonathan; Rebusi, Nicole; Krawitz, Brian; Chaudhury, Dipesh; Walsh, Jessica J; Han, Ming-Hu; Shapiro, Matt L; Russo, Scott J

    2016-06-30

    Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing.

  5. A2 noradrenergic neurons regulate forced swim test immobility.

    PubMed

    Nam, Hyungwoo; Kerman, Ilan A

    2016-10-15

    The Wistar-Kyoto (WKY) rat is a widely used animal model of depression, which is characterized by dysregulation of noradrenergic signaling. We previously demonstrated that WKY rats show a unique behavioral profile on the forced swim test (FST), characterized by high levels of immobility upon initial exposure and a greater learning-like response by further increasing immobility upon re-exposure than the genetically related Wistar rats. In the current study we aimed to determine whether altered activation of brainstem noradrenergic cell groups contributes to this behavioral profile. We exposed WKY and Wistar rats, to either 5min of forced swim or to the standard two-day FST (i.e. 15min forced swim on Day 1, followed by 5min on Day 2). We then stained their brains for FOS/tyrosine hydroxylase double-immunocytochemistry to determine potential differences in the activation of the brainstem noradrenergic cell groups. We detected a relative hyperactivation in the locus coeruleus of WKY rats when compared to Wistars in response to both one- and two-day forced swim. In contrast, within the A2 noradrenergic cell group, WKY rats exhibited diminished levels of FOS across both days of the FST, suggesting their lesser activation. We followed up these observations by selectively lesioning the A2 neurons, using anti-dopamine-β-hydroxylase-conjugated saporin, in Wistar rats, which resulted in increased FST immobility on both days of the test. Together these data indicate that the A2 noradrenergic cell group regulates FST behavior, and that its hypoactivation may contribute to the unique behavioral phenotype of WKY rats.

  6. Effects of abstinence from chronic cocaine self-administration on nonhuman primate dorsal and ventral noradrenergic bundle terminal field structures.

    PubMed

    Smith, Hilary R; Beveridge, Thomas J R; Nader, Michael A; Porrino, Linda J

    2016-06-01

    Repeated exposure to cocaine is known to dysregulate the norepinephrine system, and norepinephrine has also been implicated as having a role in abstinence and withdrawal. The goal of this study was to determine the effects of exposure to cocaine self-administration and subsequent abstinence on regulatory elements of the norepinephrine system in the nonhuman primate brain. Rhesus monkeys self-administered cocaine (0.3 mg/kg/injection, 30 reinforcers/session) under a fixed-interval 3-min schedule of reinforcement for 100 sessions. Animals in the abstinence group then underwent a 30-day period during which no operant responding was conducted, followed by a final session of operant responding. Control animals underwent identical schedules of food reinforcement and abstinence. This duration of cocaine self-administration has been shown previously to increase levels of norepinephrine transporters (NET) in the ventral noradrenergic bundle terminal fields. In contrast, in the current study, abstinence from chronic cocaine self-administration resulted in elevated levels of [(3)H]nisoxetine binding to the NET primarily in dorsal noradrenergic bundle terminal field structures. As compared to food reinforcement, chronic cocaine self-administration resulted in decreased binding of [(3)H]RX821002 to α2-adrenoceptors primarily in limbic-related structures innervated by both dorsal and ventral bundles, as well as elevated binding in the striatum. However, following abstinence from responding for cocaine binding to α2-adrenoceptors was not different than in control animals. These data demonstrate the dynamic nature of the regulation of norepinephrine during cocaine use and abstinence, and provide further evidence that the norepinephrine system should not be overlooked in the search for effective pharmacotherapies for cocaine dependence. PMID:26013302

  7. Distribution of metabotropic glutamate 2 and 3 receptors in the rat forebrain: Implication in emotional responses and central disinhibition.

    PubMed

    Gu, Guibao; Lorrain, Daniel S; Wei, Hongbing; Cole, Rebecca L; Zhang, Xin; Daggett, Lorrie P; Schaffhauser, Herve J; Bristow, Linda J; Lechner, Sandra M

    2008-03-01

    The receptor localization of metabotropic glutamate receptors (mGlu) 2 and 3 was examined by using in situ hybridization and a well-characterized mGlu2-selective antibody in the rat forebrain. mGlu2 was highly and discretely expressed in cell bodies in almost all of the key regions of the limbic system in the forebrain, including the midline and intralaminar structures of the thalamus, the association cortices, the dentate gyrus of the hippocampus, the medial mammillary nucleus, and the lateral and basolateral nuclei of the amygdala. Moreover, presynaptic mGlu2 terminals were found in most of the forebrain structures, especially in the lateral part of the central nucleus of the amygdala, and the CA1 region of the hippocampus. Although some overlaps exist, such as in the hippocampus and the amygdala, the expression of mGlu3 mRNA, however, appeared to be more disperse, compared with that of mGlu2 mRNA. These distribution results support previous behavioral studies that the mGlu2 and 3 receptors may play important roles in emotional responses. In addition to its expression in glia, mGlu3 was distinctively expressed in cells in the GABAergic reticular nucleus of the thalamus. Local infusion of a non-selective mGlu2/3 agonist, LY379268, in the reticular nucleus of the thalamus, significantly reduced GABA release, suggesting that mGlu3 may also play a role in central disinhibition. PMID:18242587

  8. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    PubMed

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  9. Noradrenergic control of error perseveration in medial prefrontal cortex

    PubMed Central

    Caetano, Marcelo S.; Jin, Lu E.; Harenberg, Linda; Stachenfeld, Kimberly L.; Arnsten, Amy F. T.; Laubach, Mark

    2013-01-01

    The medial prefrontal cortex (mPFC) plays a key role in behavioral variability, action monitoring, and inhibitory control. The functional role of mPFC may change over the lifespan due to a number of aging-related issues, including dendritic regression, increased cAMP signaling, and reductions in the efficacy of neuromodulators to influence mPFC processing. A key neurotransmitter in mPFC is norepinephrine. Previous studies have reported aging-related changes in the sensitivity of mPFC-dependent tasks to noradrenergic agonist drugs, such as guanfacine. Here, we assessed the effects of yohimbine, an alpha-2 noradrenergic antagonist, in cohorts of younger and older rats in a classic test of spatial working memory (using a T-maze). Older rats (23–29 mo.) were impaired by a lower dose of yohimbine compared to younger animals (5–10 mo.). To determine if the drug acts on alpha-2 noradrenergic receptors in mPFC and if its effects are specific to memory-guided performance, we made infusions of yohimbine into mPFC of a cohort of young rats (6 mo.) using an operant delayed response task. The task involved testing rats in blocks of trials with memory- and stimulus-guided performance. Yohimbine selectively impaired memory-guided performance and was associated with error perseveration. Infusions of muscimol (a GABA-A agonist) at the same sites also selectively impaired memory-guided performance, but did not lead to error perseveration. Based on these results, we propose several potential interpretations for the role for the noradrenergic system in the performance of delayed response tasks, including the encoding of previous response locations, task rules (i.e., using a win-stay strategy instead of a win-shift strategy), and performance monitoring (e.g., prospective encoding of outcomes). PMID:23293590

  10. Noradrenergic modulation of extinction learning and exposure therapy.

    PubMed

    Mueller, Devin; Cahill, Shawn P

    2010-03-17

    Memory consolidation is enhanced by emotional arousal, an effect mediated by noradrenergic beta-receptor signaling. Norepinephrine strengthens consolidation of both appetitive and aversive learning, and is implicated in extinction of conditioned responses. In this review, we summarize work on the noradrenergic mechanisms of extinction learning and implications for extinction-based exposure therapy. The evidence suggests that norepinephrine release evoked by conditioned stimuli during extinction strengthens extinction memory via beta-receptor signaling. The modulatory effect of norepinephrine during extinction depends on predictable presentation of conditioned stimuli and optimal levels of norepinephrine release. Mechanistically, norepinephrine acts to increase cellular excitability and enhance synaptic plasticity within extinction-related neural circuitry. Currently, drugs that modulate norepinephrine are being used to treat symptoms of anxiety disorders, and are now being tested as pharmacotherapeutic prophalactics in the prevention of chronic posttraumatic stress reactions and as adjuncts to extinction-based exposure therapy. Studies of these new applications of noradrenergic drugs show a converging pattern of results with basic science suggesting ways in which basic laboratory findings can be translated into procedures to enhance clinical outcomes.

  11. Descending motor pathways and the spinal motor system - Limbic and non-limbic components

    NASA Technical Reports Server (NTRS)

    Holstege, Gert

    1991-01-01

    Research on descending motor pathways to caudal brainstem and spinal cord in the spinal motor system is reviewed. Particular attention is given to somatic and autonomic motoneurons in the spinal cord and brainstem, local projections to motoneurons, bulbospinal interneurons projecting to motoneurons, descending pathways of somatic motor control systems, and descending pathways involved in limbic motor control systems.

  12. Forebrain noradrenaline concentration following weakly reinforced training.

    PubMed

    Crowe, S F; Ng, K T; Gibbs, M E

    1991-09-01

    Day-old chicks trained on a single-trial discriminated passive avoidance task using a concentrated taste aversant, methyl anthranilate, have been shown to exhibit three stages of memory processing; short-, intermediate-, and long-term memory. If the aversant is diluted to 20% v/v methyl anthranilate in absolute ethanol, only the short-term and some of the intermediate stage are observed. In this study we investigated the whole forebrain levels of noradrenaline in response to differing intensities of the training experience. The results show a profound difference in the level of whole forebrain NA at all training-sacrifice intervals for the trained as compared to the untrained controls, except at 15- and 20-minute posttraining, when a substantial reduction in the level of NA was achieved under all training conditions. Furthermore, subjects which received treatments which resulted in the emergence of behavioural evidence of long-term memory tended to have higher levels of whole-forebrain NA at 30 minutes after initial training. This is the time when we have postulated that triggering of protein synthesis associated with long-term memory formation takes place.

  13. Limbic systems for emotion and for memory, but no single limbic system.

    PubMed

    Rolls, Edmund T

    2015-01-01

    The concept of a (single) limbic system is shown to be outmoded. Instead, anatomical, neurophysiological, functional neuroimaging, and neuropsychological evidence is described that anterior limbic and related structures including the orbitofrontal cortex and amygdala are involved in emotion, reward valuation, and reward-related decision-making (but not memory), with the value representations transmitted to the anterior cingulate cortex for action-outcome learning. In this 'emotion limbic system' a computational principle is that feedforward pattern association networks learn associations from visual, olfactory and auditory stimuli, to primary reinforcers such as taste, touch, and pain. In primates including humans this learning can be very rapid and rule-based, with the orbitofrontal cortex overshadowing the amygdala in this learning important for social and emotional behaviour. Complementary evidence is described showing that the hippocampus and limbic structures to which it is connected including the posterior cingulate cortex and the fornix-mammillary body-anterior thalamus-posterior cingulate circuit are involved in episodic or event memory, but not emotion. This 'hippocampal system' receives information from neocortical areas about spatial location, and objects, and can rapidly associate this information together by the different computational principle of autoassociation in the CA3 region of the hippocampus involving feedback. The system can later recall the whole of this information in the CA3 region from any component, a feedback process, and can recall the information back to neocortical areas, again a feedback (to neocortex) recall process. Emotion can enter this memory system from the orbitofrontal cortex etc., and be recalled back to the orbitofrontal cortex etc. during memory recall, but the emotional and hippocampal networks or 'limbic systems' operate by different computational principles, and operate independently of each other except insofar as an

  14. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions.

    PubMed

    Han, Yong; Shi, Yu-feng; Xi, Wang; Zhou, Rui; Tan, Zhi-bing; Wang, Hao; Li, Xiao-ming; Chen, Zhong; Feng, Guoping; Luo, Minmin; Huang, Zhi-li; Duan, Shumin; Yu, Yan-qin

    2014-03-17

    The basal forebrain (BF) plays a crucial role in cortical activation [1, 2]. However, the exact role of cholinergic BF (ch-BF) neurons in the sleep-wake cycle remains unclear [3, 4]. We demonstrated that photostimulation of ch-BF neurons genetically targeted with channelrhodopsin 2 (ChR2) was sufficient to induce an immediate transition to waking or rapid eye movement (REM) sleep from slow-wave sleep (SWS). Light stimulation was most likely to induce behavioral arousal during SWS, but not during REM sleep, a result in contrast to the previously reported photostimulation of noradrenergic or hypocretin neurons that induces wake transitions from both SWS and REM sleep. Furthermore, the ratio of light-induced transitions from SWS to wakefulness or to REM sleep did not significantly differ from that of natural transitions, suggesting that activation of ch-BF neurons facilitates the transition from SWS but does not change the direction of the transition. Excitation of ch-BF neurons during wakefulness or REM sleep sustained the cortical activation. Stimulation of these neurons for 1 hr induced a delayed increase in the duration of wakefulness in the subsequent inactive period. Our results suggest that activation of ch-BF neurons alone is sufficient to suppress SWS and promote wakefulness and REM sleep.

  15. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface

    NASA Astrophysics Data System (ADS)

    Widge, Alik S.; Moritz, Chet T.

    2014-04-01

    Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.

  16. Limbic but not non-limbic kindling impairs conditioned fear and promotes plasticity of NPY and its Y2 receptor.

    PubMed

    Botterill, J J; Guskjolen, A J; Marks, W N; Caruncho, H J; Kalynchuk, L E

    2015-11-01

    Epileptic seizures negatively affect cognition. However, the mechanisms that contribute to cognitive impairments after seizures are largely unknown. Here, we examined the effects of long-term kindling (i.e., 99 stimulations) of limbic (basolateral amygdala, dorsal hippocampus) and non-limbic (caudate nucleus) brain sites on conditioned fear and hippocampal plasticity. We first showed that kindling had no effect on acquisition of a hippocampal-dependent trace fear-conditioning task but limbic kindling impaired the retrieval of these fear memories. To determine the relationship between memory and hippocampal neuronal activity, we examined the expression of Fos protein 90 min after memory retrieval (i.e., 4 days after the last kindling stimulation). We found that limbic kindling, but not non-limbic kindling, decreased Fos expression in the granule cell layer, hilus, CA3 pyramidal cell layer, and CA1 pyramidal cell layer. Next, to investigate a mechanism that could contribute to dampen hippocampal neuronal activity in limbic-kindled rats, we focused on the endogenous anticonvulsant neuropeptide Y (NPY), which is expressed in a subset of GABAergic interneurons and can prevent glutamate release through interactions with its Y2 receptor. We found that limbic kindling significantly decreased the number of NPY-immunoreactive cells in several hippocampal subfields despite minimal staining of the neurodegenerative marker Fluoro-Jade B. However, we also noted that limbic kindling enhanced NPY immunoreactivity throughout the mossy fiber pathway. In these same regions, we observed limbic kindling-induced de novo expression of the NPY Y2 receptor. These novel findings demonstrate the site-specific effects of kindling on cognition and NPY plasticity, and they provide evidence that altered hippocampal NPY after limbic seizures coincides with dampened neural activity and cognitive impairments.

  17. Forebrain substrates of reward and motivation.

    PubMed

    Wise, Roy A

    2005-12-01

    Electrical stimulation of the medial forebrain bundle can reward arbitrary acts or motivate biologically primitive, species-typical behaviors like feeding or copulation. The subsystems involved in these behaviors are only partially characterized, but they appear to transsynaptically activate the mesocorticolimbic dopamine system. Basal function of the dopamine system is essential for arousal and motor function; phasic activation of this system is rewarding and can potentiate the effectiveness of reward-predictors that guide learned behaviors. This system is phasically activated by most drugs of abuse and such activation contributes to the habit-forming actions of these drugs.

  18. Forebrain substrates of reward and motivation

    PubMed Central

    Wise, Roy A.

    2008-01-01

    Electrical stimulation of the medial forebrain bundle can reward arbitrary acts or motivate biologically primitive, species-typical behaviors like feeding or copulation. The sub-systems involved in these behaviors are only partially characterized, but they appear to trans-synaptically activate the mesocorticolimbic dopamine system. Basal function of the dopamine system is essential for arousal and motor function; phasic activation of this system is rewarding and can potentiate the effectiveness of reward-predictors that guide learned behaviors. This system is phasically activated by most drugs of abuse and such activation contributes to the habit-forming actions of these drugs. PMID:16254990

  19. Alleviation of response suppression to conditioned aversive stimuli by lesions of the dorsal noradrenergic bundle.

    PubMed

    Tsaltas, E; Gray, J A; Fillenz, M

    1984-08-01

    Rats with neurotoxic lesions of the dorsal ascending noradrenergic bundle (DB) were compared with sham-operated (SH) controls on the acquisition, steady state and extinction of response suppression maintained by a classical (conditioned suppression) or an instrumental (discriminated punishment) contingency. DB lesions interfered neither with the acquisition of the reference response of sucrose-rewarded barpressing nor with unconditioned responding to the overhead flashing light subsequently used as a signal of shock. The acquisition of discriminated response suppression was also unaffected by the lesion under both types of contingency. However, once discriminated suppression had stabilized, both the conditioned and the discriminative stimulus used were significantly less effective in maintaining suppression in DB animals than in SH controls provided that low intensity footshock (0.2 mA) was used as the unconditioned stimulus (UCS). Upon increase of UCS intensity (to 0.5 mA) normal suppression was observed in the DB group under both contingencies. Extinction of the classical contingency reinstated the difference between DB and SH performance: DB lesion resulted in significantly faster extinction of fear. In contrast, extinction of the discriminated punishment contingency was unaffected by the lesion, although generalized response suppression dissipated faster in the DB than in the SH animals trained under this condition. Our results offer no support for the reinforcement hypothesis of DB function (normal acquisition of barpressing and of discriminated suppression of barpressing); mixed support (greater initial generalization of suppression in DB animals) and contradiction (more rapid extinction of conditioned suppression in DB animals) for the attentional hypothesis; and weak support (reduced suppression and more rapid extinction of suppression in DB animals, but only within limited experimental parameters) for the anxiety hypothesis of DB function. Hence none of

  20. Noradrenergic enhancement of associative fear memory in humans.

    PubMed

    Soeter, Marieke; Kindt, Merel

    2011-09-01

    Ample evidence in animals and humans supports the noradrenergic modulation in the formation of emotional memory. However, in humans the effects of stress on emotional memory are traditionally investigated by declarative memory tests (e.g., recall, recognition) for non-associative emotional stimuli (e.g., stories, pictures). Given that anxiety disorders are thought to originate from associative learning processes and are characterized by distressing emotional responses, the existing literature seems to be inconclusive for the understanding of these disorders. Here, we tested whether noradrenaline strengthens the emotional expression of associative fear memory by using a differential fear conditioning procedure in humans. Stimulation of the noradrenergic system by the administration of yohimbine HCl (20mg) during memory formation did not directly augment the differential startle fear response 48 h later. Yet, the other retention tests uncovered that the administration of yohimbine HCl contrary to placebo pill extensively delayed the process of extinction learning and generated a superior recovery of fear (i.e., reinstatement and reacquisition). Conversely, the yohimbine HCl manipulation did not affect the skin conductance responding and the US expectancy ratings, emphasizing the concept of multiple memory systems. To our knowledge this is the first demonstration in humans that increased noradrenaline release during or shortly after a stressful event strengthens the formation of associative fear memory traces. The present findings suggest that noradrenaline may play an important role in the etiology and maintenance of anxiety disorders. PMID:21624479

  1. Adult neurogenesis and the ischemic forebrain.

    PubMed

    Lichtenwalner, Robin J; Parent, Jack M

    2006-01-01

    The recent identification of endogenous neural stem cells and persistent neuronal production in the adult brain suggests a previously unrecognized capacity for self-repair after brain injury. Neurogenesis not only continues in discrete regions of the adult mammalian brain, but new evidence also suggests that neural progenitors form new neurons that integrate into existing circuitry after certain forms of brain injury in the adult. Experimental stroke in adult rodents and primates increases neurogenesis in the persistent forebrain subventricular and hippocampal dentate gyrus germinative zones. Of greater relevance for regenerative potential, ischemic insults stimulate endogenous neural progenitors to migrate to areas of damage and form neurons in otherwise dormant forebrain regions, such as the neostriatum and hippocampal pyramidal cell layer, of the mature brain. This review summarizes the current understanding of adult neurogenesis and its regulation in vivo, and describes evidence for stroke-induced neurogenesis and neuronal replacement in the adult. Current strategies used to modify endogenous neurogenesis after ischemic brain injury also will be discussed, as well as future research directions with potential for achieving regeneration after stroke and other brain insults. PMID:15959458

  2. Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebello-limbic pathway

    PubMed Central

    Arrigo, Alessandro; Mormina, Enricomaria; Anastasi, Giuseppe Pio; Gaeta, Michele; Calamuneri, Alessandro; Quartarone, Angelo; De Salvo, Simona; Bruschetta, Daniele; Rizzo, Giuseppina; Trimarchi, Fabio; Milardi, Demetrio

    2014-01-01

    The limbic system is part of an intricate network which is involved in several functions like memory and emotion. Traditionally the role of the cerebellum was considered mainly associated to motion control; however several evidences are raising about a role of the cerebellum in learning skills, emotions control, mnemonic and behavioral processes involving also connections with limbic system. In 15 normal subjects we studied limbic connections by probabilistic Constrained Spherical Deconvolution (CSD) tractography. The main result of our work was to prove for the first time in human brain the existence of a direct cerebello-limbic pathway which was previously hypothesized but never demonstrated. We also extended our analysis to the other limbic connections including cingulate fasciculus, inferior longitudinal fasciculus, uncinated fasciculus, anterior thalamic connections and fornix. Although these pathways have been already described in the tractographic literature we provided reconstruction, quantitative analysis and Fractional Anisotropy (FA) right-left symmetry comparison using probabilistic CSD tractography that is known to provide a potential improvement compared to previously used Diffusion Tensor Imaging (DTI) techniques. The demonstration of the existence of cerebello-limbic pathway could constitute an important step in the knowledge of the anatomic substrate of non-motor cerebellar functions. Finally the CSD statistical data about limbic connections in healthy subjects could be potentially useful in the diagnosis of pathological disorders damaging this system. PMID:25538606

  3. A revised limbic system model for memory, emotion and behaviour.

    PubMed

    Catani, Marco; Dell'acqua, Flavio; Thiebaut de Schotten, Michel

    2013-09-01

    Emotion, memories and behaviour emerge from the coordinated activities of regions connected by the limbic system. Here, we propose an update of the limbic model based on the seminal work of Papez, Yakovlev and MacLean. In the revised model we identify three distinct but partially overlapping networks: (i) the Hippocampal-diencephalic and parahippocampal-retrosplenial network dedicated to memory and spatial orientation; (ii) The temporo-amygdala-orbitofrontal network for the integration of visceral sensation and emotion with semantic memory and behaviour; (iii) the default-mode network involved in autobiographical memories and introspective self-directed thinking. The three networks share cortical nodes that are emerging as principal hubs in connectomic analysis. This revised network model of the limbic system reconciles recent functional imaging findings with anatomical accounts of clinical disorders commonly associated with limbic pathology.

  4. The bilaterian forebrain: an evolutionary chimaera.

    PubMed

    Tosches, Maria Antonietta; Arendt, Detlev

    2013-12-01

    The insect, annelid and vertebrate forebrains harbour two major centres of output control, a sensory-neurosecretory centre releasing hormones and a primordial locomotor centre that controls the initiation of muscular body movements. In vertebrates, both reside in the hypothalamus. Here, we review recent comparative neurodevelopmental evidence indicating that these centres evolved from separate condensations of neurons on opposite body sides ('apical nervous system' versus 'blastoporal nervous system') and that their developmental specification involved distinct regulatory networks (apical six3 and rx versus mediolateral nk and pax gene-dependent patterning). In bilaterian ancestors, both systems approached each other and became closely intermingled, physically, functionally and developmentally. Our 'chimeric brain hypothesis' sheds new light on the vast success and rapid diversification of bilaterian animals in the Cambrian and revises our understanding of brain architecture.

  5. Enhancing central noradrenergic function in depression: is there still a place for a new antidepressant?

    PubMed

    Pinder, Roger M

    2005-03-01

    Noradrenaline has long played a key role in the way the etiology of depression is conceptualized and in the mechanism of action of many current antidepressants. Tricyclic antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs), serotonin-noradrenaline reuptake inhibitors (SNRIs), selective noradrenaline reuptake inhibitors (NRIs), the noradrenergic and specific serotonergic antidepressant (NaSSA) mirtazapine, and many atypicals, like mianserin and bupropion, influence, at least in part, central noradrenergic function. Enhancement of noradrenergic function may be particularly helpful in patients with melancholia. However, while noradrenaline will continue to be a target for research into the etiology and treatment of depression, it is unlikely that antidepressants acting solely on noradrenaline will be pursued. PMID:18568121

  6. The effects of noradrenergic blockade on extinction in humans.

    PubMed

    Bos, Marieke G N; Beckers, Tom; Kindt, Merel

    2012-03-01

    The process of reconsolidation has attracted much attention because of its potential application for the treatment of psychiatric disorders. Here, we investigate a possible boundary condition of disrupting reconsolidation with the noradrenergic antagonist propranolol in humans. Reconsolidation can be initiated by retrieval of an acquired fear memory, which is in procedure equivalent to extinction training. If memory retrieval promotes the formation of a novel extinction memory trace, propranolol may interfere with extinction rather than with reconsolidation. Using a differential fear conditioning paradigm, we demonstrate that administration of propranolol (double-blind placebo controlled) prior to repetitive unreinforced CS presentations did not affect extinction at a physiological level (startle reflex and skin conductance). At a cognitive level, propranolol directly impaired extinction learning. These findings indicate that careful selection of timing parameters is essential to ensure that pharmacological agents interfere with the intended memory process to reduce fear.

  7. Behavioral models in mice. Implication of the alpha noradrenergic system.

    PubMed

    Hascoët, M; Bourin, M; Bradwejn, J

    1991-01-01

    1. The mechanism of action of drugs might change according to the test used. Several noradrenergic drugs were tested in order to understand their implication in the mobility tests. 2. It was found that clonidine, an Alpha 2 agonist, acted differently according to the test used. It provoked sedation in spontaneous activity test, and anti-immobility effects in the other tests. 3. Tail suspension test is able to show the double acting of clonidine. 4. Idazoxan might act either as an alpha 2 antagonist or as partial alpha 2 agonist. TST shown the unexpected partial alpha agonist effect of the molecule. 5. Forced swimming test is more specific for predicting antidepressant activity than tail suspension test which is close to a spontaneous activity model. PMID:1684874

  8. Behavioral models in mice. Implication of the alpha noradrenergic system.

    PubMed

    Hascoët, M; Bourin, M; Bradwejn, J

    1991-01-01

    1. The mechanism of action of drugs might change according to the test used. Several noradrenergic drugs were tested in order to understand their implication in the mobility tests. 2. It was found that clonidine, an Alpha 2 agonist, acted differently according to the test used. It provoked sedation in spontaneous activity test, and anti-immobility effects in the other tests. 3. Tail suspension test is able to show the double acting of clonidine. 4. Idazoxan might act either as an alpha 2 antagonist or as partial alpha 2 agonist. TST shown the unexpected partial alpha agonist effect of the molecule. 5. Forced swimming test is more specific for predicting antidepressant activity than tail suspension test which is close to a spontaneous activity model.

  9. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment

    PubMed Central

    Paul, Saswati; Jeon, Won Kyung; Bizon, Jennifer L.; Han, Jung-Soo

    2015-01-01

    A substantial number of studies on basal forebrain (BF) cholinergic neurons (BFCN) have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD), and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA) axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine (ACh), glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, to which could help decipher disease states and propose leads for pharmacological intervention. PMID:25883567

  10. Limbic corticostriatal systems and delayed reinforcement.

    PubMed

    Cardinal, Rudolf N; Winstanley, Catharine A; Robbins, Trevor W; Everitt, Barry J

    2004-06-01

    Impulsive choice, one aspect of impulsivity, is characterized by an abnormally high preference for small, immediate rewards over larger delayed rewards, and can be a feature of adolescence, but also attention-deficit/hyperactivity disorder (ADHD), addiction, and other neuropsychiatric disorders. Both the serotonin and dopamine neuromodulator systems are implicated in impulsivity; manipulations of these systems affect animal models of impulsive choice, though these effects may depend on the receptor subtype and whether or not the reward is signaled. These systems project to limbic cortical and striatal structures shown to be abnormal in animal models of ADHD. Damage to the nucleus accumbens core (AcbC) causes rats to exhibit impulsive choice. These rats are also hyperactive, but are unimpaired in tests of visuospatial attention; they may therefore represent an animal model of the hyperactive-impulsive subtype of ADHD. Lesions to the anterior cingulate or medial prefrontal cortex, two afferents to the AcbC, do not induce impulsive choice, but lesions of the basolateral amygdala do, while lesions to the orbitofrontal cortex have had opposite effects in different tasks measuring impulsive choice. In theory, impulsive choice may emerge as a result of abnormal processing of the magnitude of rewards, or as a result of a deficit in the effects of delayed reinforcement. Recent evidence suggests that AcbC-lesioned rats perceive reward magnitude normally, but exhibit a selective deficit in learning instrumental responses using delayed reinforcement, suggesting that the AcbC is a reinforcement learning system that mediates the effects of delayed rewards.

  11. Nonaggressive and adapted social cognition is controlled by the interplay between noradrenergic and nicotinic receptor mechanisms in the prefrontal cortex

    PubMed Central

    Coura, Renata S.; Cressant, Arnaud; Xia, Jing; de Chaumont, Fabrice; Olivo-Marin, Jean Christophe; Pelloux, Yann; Dalley, Jeffrey W.; Granon, Sylvie

    2013-01-01

    Social animals establish flexible behaviors and integrated decision-making processes to adapt to social environments. Such behaviors are impaired in all major neuropsychiatric disorders and depend on the prefrontal cortex (PFC). We previously showed that nicotinic acetylcholine receptors (nAChRs) and norepinephrine (NE) in the PFC are necessary for mice to show adapted social cognition. Here, we investigated how the cholinergic and NE systems converge within the PFC to modulate social behavior. We used a social interaction task (SIT) in C57BL/6 mice and mice lacking β2*nAChRs (β2−/− mice), making use of dedicated software to analyze >20 social sequences and pinpoint social decisions. We performed specific PFC NE depletions before SIT and measured monoamines and acetylcholine (ACh) levels in limbic corticostriatal circuitry. After PFC-NE depletion, C57BL/6 mice exhibited impoverished and more rigid social behavior and were 6-fold more aggressive than sham-lesioned animals, whereas β2−/− mice showed unimpaired social behavior. Our biochemical measures suggest a critical involvement of DA in SIT. In addition, we show that the balance between basal levels of monoamines and of ACh modulates aggressiveness and this modulation requires functional β2*nAChRs. These findings demonstrate the critical interplay between prefrontal NE and nAChRs for the development of adapted and nonaggressive social cognition.—Coura, R. S., Cressant, A., Xia, J., de Chaumont, F., Olivo-Marin, J. C., Pelloux, Y., Dalley, J. W., Granon, S. Nonaggressive and adapted social cognition is controlled by the interplay between noradrenergic and nicotinic receptor mechanisms in the prefrontal cortex. PMID:23882123

  12. Stimulation of carotid body chemoreceptors does not influence the discharge of A1 neurons projecting to the forebrain.

    PubMed

    Jamieson, S M; Harris, M C

    1989-01-01

    Stimulation of carotid body chemoreceptors activates putative vasopressin neurons in the supraoptic nucleus, an effect which has been abolished by lesions in the caudal ventrolateral medulla. Stimulation within the A1 catecholamine cell group in the ventrolateral medulla also activates supraoptic neurons and releases vasopressin. Therefore the A1 catecholamine neurons may be the means by which carotid body chemoreceptors influence the supraoptic nucleus and other parts of the forebrain. To test this possibility the influence of carotid body chemoreceptors on the discharge of rostrally-projecting neurons in the A1 region of the caudal ventrolateral medulla has been assessed in rats anaesthetized with a mixture of urethane and sodium pentobarbitone. Tests were performed on 131 neurons, 23 of which were antidromically invaded following electrical stimulation within the supraoptic nucleus, the medial forebrain bundle or the ventral noradrenergic bundle. The positions of all antidromically invaded neurons were marked with dye and in six animals subsequent fluorescence histochemistry showed that the blue spots were in the proximity of one or more catecholamine-containing cell bodies in the ventrolateral medulla. The recorded neurons were therefore presumed to be part of the A1 group of catecholamine-containing neurons. All neurons located were tested for their responses to specific stimulation of ipsilateral carotid body chemoreceptors and also to general baroreflex activation. Not one of the antidromically invaded neurons was affected by chemoreceptor stimulation and only one was activated by baroreflex activation. Of the non-antidromically invaded neurons, seven were activated and 13 were depressed following chemoreceptor stimulation but in many cases the latency to onset was very long.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2511501

  13. A review of the adverse effects and safety of noradrenergic antidepressants.

    PubMed

    Whiskey, Eromona; Taylor, David

    2013-08-01

    There are a variety of noradrenergic antidepressants available, most of which act by inhibiting neuronal noradrenaline re-uptake, although few drugs are specific for this action. Where drugs have numerous actions the adverse effects of noradrenaline reuptake may be difficult to isolate, although in this respect the adverse effects of reboxetine, a specific noradrenaline re-uptake inhibitor, are illuminating. Noradrenergic antidepressants typically cause minor changes in blood and heart rate, sweating and insomnia. Other pharmacological actions shown by non-specific antidepressants may act to worsen or mitigate these adverse effects. Noradrenergic drugs are less likely than selective serotonin reuptake inhibitors (SSRIs) to cause sexual dysfunction but more likely to cause urinary hesitancy. Doubts remain over the relative propensity for antidepressants with different modes of action to cause diabetes and hyponatraemia. Noradrenergic actions do not seem to confer a risk of death in overdose.

  14. A review of the adverse effects and safety of noradrenergic antidepressants.

    PubMed

    Whiskey, Eromona; Taylor, David

    2013-08-01

    There are a variety of noradrenergic antidepressants available, most of which act by inhibiting neuronal noradrenaline re-uptake, although few drugs are specific for this action. Where drugs have numerous actions the adverse effects of noradrenaline reuptake may be difficult to isolate, although in this respect the adverse effects of reboxetine, a specific noradrenaline re-uptake inhibitor, are illuminating. Noradrenergic antidepressants typically cause minor changes in blood and heart rate, sweating and insomnia. Other pharmacological actions shown by non-specific antidepressants may act to worsen or mitigate these adverse effects. Noradrenergic drugs are less likely than selective serotonin reuptake inhibitors (SSRIs) to cause sexual dysfunction but more likely to cause urinary hesitancy. Doubts remain over the relative propensity for antidepressants with different modes of action to cause diabetes and hyponatraemia. Noradrenergic actions do not seem to confer a risk of death in overdose. PMID:23784737

  15. Patterning of the chick forebrain anlage by the prechordal plate.

    PubMed

    Pera, E M; Kessel, M

    1997-10-01

    We analysed the role of the prechordal plate in forebrain development of chick embryos in vivo. After transplantation to uncommitted ectoderm a prechordal plate induces an ectopic, dorsoventrally patterned, forebrain-like vesicle. Grafting laterally under the anterior neural plate causes ventralization of the lateral side of the forebrain, as indicated by a second expression domain of the homeobox gene NKX2.1. Such a lateral ventralization cannot be induced by the secreted factor Sonic Hedgehog alone, as this is only able to distort the ventral forebrain medially. Removal of the prechordal plate does not reduce the rostrocaudal extent of the anterior neural tube, but leads to significant narrowing and cyclopia. Excision of the head process results in the caudal expansion of the NKX2.1 expression in the ventral part of the anterior neural tube, while PAX6 expression in the dorsal part remains unchanged. We suggest that there are three essential steps in early forebrain patterning, which culminate in the ventralization of the forebrain. First, anterior neuralization occurs at the primitive streak stage, when BMP-4-antagonizing factors emanate from the node and spread in a planar fashion to induce anterior neural ectoderm. Second, the anterior translocation of organizer-derived cells shifts the source of neuralizing factors anteriorly, where the relative concentration of BMP-4-antagonists is thus elevated, and the medial part of the prospective forebrain becomes competent to respond to ventralizing factors. Third, the forebrain anlage is ventralized by signals including Sonic Hedgehog, thereby creating a new identity, the prospective hypothalamus, which splits the eye anlage into two lateral domains.

  16. Noradrenergic neurons expressing Fos during waking and paradoxical sleep deprivation in the rat.

    PubMed

    Léger, Lucienne; Goutagny, Romain; Sapin, Emilie; Salvert, Denise; Fort, Patrice; Luppi, Pierre-Hervé

    2009-05-01

    Noradrenaline is known to induce waking (W) and to inhibit paradoxical sleep (PS or REM). Both roles have been exclusively attributed to the noradrenergic neurons of the locus coeruleus (LC, A6), shown to be active during W and inactive during PS. However, the A1, A2, A5 and A7 noradrenergic neurons could also be responsible. Therefore, to determine the contribution of each of the noradrenergic groups in W and in PS inhibition, rats were maintained in continuous W for 3h in a novel environment or specifically deprived of PS for 3 days, with some of them allowed to recover from this deprivation. A double immunohistochemical labeling with Fos and tyrosine hydroxylase was then performed. Thirty percent of the LC noradrenergic cells were found to be Fos-positive after exposure to the novel environment and less than 2% after PS deprivation. In contrast, a significant number of double-labeled neurons (up to 40% of the noradrenergic neurons) were observed in the A1/C1, A2 and A5 groups, after both novel environment and PS deprivation. After PS recovery and in control condition, less than 1% of the noradrenergic neurons were Fos-immunoreactive, regardless of the noradrenergic group. These results indicate that the brainstem noradrenergic cell groups are activated during W and silent during PS. They further suggest that the inhibitory effect of noradrenaline on PS may be due to the A1/C1, A2 and to a lesser degree to A5 neurons but not from those of the LC as previously hypothesized.

  17. Targeting the Noradrenergic System for Gender-Sensitive Medication Development for Tobacco Dependence

    PubMed Central

    Verplaetse, Terril L.; Weinberger, Andrea H.; Smith, Philip H.; Cosgrove, Kelly P.; Mineur, Yann S.; Picciotto, Marina R.; Mazure, Carolyn M.

    2015-01-01

    Introduction: Tobacco use remains the leading cause of morbidity and mortality for both women and men in the United States, and women often experience poorer smoking cessation outcomes than men. Preliminary evidence suggests there are sex differences in medication effectiveness for smoking cessation. However, current medications do not take into account gender-sensitive treatment development and efficacy, underscoring the importance of this underdeveloped area of research. Methods: We reviewed preclinical and clinical evidence for gender differences in the inability to quit smoking by examining (a) the effect of increased negative affect and stress reactivity on smoking outcomes in women and (b) smoking for nicotine reinforcement in men. We also reviewed the current literature targeting the noradrenergic system as a novel gender-sensitive treatment strategy for tobacco dependence. Results: We hypothesize that noradrenergic agents that normalize noradrenergic activity may differentially attenuate stress reactivity in women and nicotine-related reinforcement in men, indicating that targeting the noradrenergic system for smoking cessation may be effective for both genders, with benefits operating through sex-specific mechanisms. Conclusions: Converging lines of preclinical and clinical evidence suggest that gender-sensitive approaches to medication development for smoking cessation are a critical next step for addressing low quit rates and exacerbated health risks among women. Evidence reviewed indicates that smoking activates different brain systems modulated by noradrenergic activity in women versus men, and noradrenergic compounds may preferentially target these gender-sensitive systems. PMID:25762760

  18. Fatal insomnia and agrypnia excitata: sleep and the limbic system.

    PubMed

    Provini, F; Cortelli, P; Montagna, P; Gambetti, P; Lugaresi, E

    2008-01-01

    Fatal familial insomnia, a human prion disease, Morvan's chorea, an autoimmune limbic encephalopathy, and delirium tremens, the well-known alcohol (or benzodiazepine [BDZ]) withdrawal syndrome, share a clinical phenotype largely consisting in an inability to sleep associated with motor and autonomic activation. Agrypnia excitata is the term which aptly defines this clinical condition, whose pathogenetic mechanism consists in an intralimbic disconnection releasing the hypothalamus and brainstem reticular formation from corticolimbic inhibitory control. Severance of cortical-subcortical limbic structures is due to visceral thalamus degeneration in fatal familial insomnia, and may depend on autoantibodies blocking voltage-gated potassium channels within the limbic system in Morvan's chorea, and the sudden changes in gabaergic synapses down-regulated by chronic alcohol abuse within the limbic system in delirium tremens. On the basis of these findings, we suggest that a neuronal network, extending from the medulla to the limbic cortex, controls the sleep-wake cycle, operating in an integrated fashion following a caudorostral organization.

  19. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water

    SciTech Connect

    Bowyer, John F.; Latendresse, John R.; Delongchamp, Robert R.; Warbritton, Alan R.; Thomas, Monzy; Divine, Becky; Doerge, Daniel R.

    2009-11-01

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were <= 1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  20. Forebrain-Cerebellar Interactions During Learning

    PubMed Central

    Weible, Aldis P.; Galvez, Roberto; Disterhoft, John F.

    2013-01-01

    The cerebral cortex and cerebellum are high level neural centers that must interact cooperatively to generate coordinated and efficient goal directed movements, including those necessary for a well-timed conditioned response. In this review we describe the progress made in utilizing the forebrain-dependent trace eyeblink conditioning paradigm to understand the neural substrates mediating cerebro-cerebellar interactions during learning and consolidation of conditioned responses. This review expands upon our previous hypothesis that the interaction occurs at sites that project to the pontine nuclei (Weiss & Disterhoft, 1996), by offering more details on the function of the hippocampus and prefrontal cortex during acquisition and the circuitry involved in facilitating pontine input to the cerebellum as a necessary requisite for trace eyeblink conditioning. Our discussion describes the role of the hippocampus, caudal anterior cingulate gyrus, basal ganglia, thalamus, and sensory cortex, including the benefit of utilizing the whisker barrel cortical system. We propose that permanent changes in the sensory cortex, along with input from the caudate and claustrum, and a homologue of the primate dorsolateral prefrontal cortex, serve to bridge the stimulus free trace interval and allow the cerebellum to generate a well-timed conditioned response. PMID:26617664

  1. Hypothermia in VGKC antibody-associated limbic encephalitis.

    PubMed

    Jacob, S; Irani, S R; Rajabally, Y A; Grubneac, A; Walters, R J; Yazaki, M; Clover, L; Vincent, A

    2008-02-01

    Voltage-gated potassium channel antibody (VGKC-Ab)-associated limbic encephalitis (LE) is a recently described syndrome that broadens the spectrum of immunotherapy-responsive central nervous system disorders. Limbic encephalitis is typically characterised by a sub-acute onset of disorientation, amnesia and seizures, but the clinical spectrum is not yet fully defined and the syndrome could be under-diagnosed. We here describe the clinical profile of four patients with VGKC-Ab-associated LE who had intermittent, episodic hypothermia. One of the patients also described a prodrome of severe neuropathic pain preceding the development of limbic symptoms. Both of these novel symptoms responded well to immunosuppressive therapy, with concurrent amelioration of amnesia/seizures.

  2. Tuning out the noise: Limbic-auditory interactions in tinnitus

    PubMed Central

    Rauschecker, Josef P.; Leaver, Amber M.; Mühlau, Mark

    2010-01-01

    Tinnitus, the most common auditory disorder, affects about 40 million people in the United States alone, and its incidence is rising due to an aging population and increasing noise exposure. Although several approaches for the alleviation of tinnitus exist, there is as of yet no cure. The present article proposes a testable model for tinnitus that is grounded in recent findings from human imaging and focuses on brain areas in cortex, thalamus, and ventral striatum. Limbic and auditory brain areas are thought to interact at the thalamic level. While a tinnitus signal originates from lesion-induced plasticity of the auditory pathways, it can be tuned out by feedback connections from limbic regions, which block the tinnitus signal from reaching auditory cortex. If the limbic regions are compromised, this “noise-cancellation” mechanism breaks down, and chronic tinnitus results. Hopefully, this model will ultimately enable the development of effective treatment. PMID:20620868

  3. Noradrenergic neurotransmission within the bed nucleus of the stria terminalis modulates the retention of immobility in the rat forced swimming test.

    PubMed

    Nagai, Michelly M; Gomes, Felipe V; Crestani, Carlos C; Resstel, Leonardo B M; Joca, Sâmia R L

    2013-06-01

    The bed nucleus of the stria terminalis (BNST) is a limbic structure that has a direct influence on the autonomic, neuroendocrine, and behavioral responses to stress. It was recently reported that reversible inactivation of synaptic transmission within this structure causes antidepressant-like effects, indicating that activation of the BNST during stressful situations would facilitate the development of behavioral changes related to the neurobiology of depression. Moreover, noradrenergic neurotransmission is abundant in the BNST and has an important role in the regulation of emotional processes related to the stress response. Thus, this study aimed to test the hypothesis that activation of adrenoceptors within the BNST facilitates the development of behavioral consequences of stress. To investigate this hypothesis, male Wistar rats were stressed (forced swimming, 15 min) and 24 h later received intra-BNST injections of vehicle, WB4101, RX821002, CGP20712, or ICI118,551, which are selective α(1), α(2), β(1), and β(2) adrenoceptor antagonists, respectively, 10 min before a 5-min forced swimming test. It was observed that administration of WB4101 (10 and 15 nmol), CGP20712 (5 and 10 nmol), or ICI118,551 (5 nmol) into the BNST reduced the immobility time of rats subjected to forced swimming test, indicating an antidepressant-like effect. These findings suggest that activation of α(1), β(1), and β(2) adrenoceptors in the BNST could be involved in the development of the behavioral consequences of stress.

  4. Evolution of vertebrate forebrain development: how many different mechanisms?

    PubMed

    Foley, A C; Stern, C D

    2001-01-01

    Over the past 50 years and more, many models have been proposed to explain how the nervous system is initially induced and how it becomes subdivided into gross regions such as forebrain, midbrain, hindbrain and spinal cord. Among these models is the 2-signal model of Nieuwkoop & Nigtevecht (1954), who suggested that an initial signal ('activation') from the organiser both neuralises and specifies the forebrain, while later signals ('transformation') from the same region progressively caudalise portions of this initial territory. An opposing idea emerged from the work of Otto Mangold (1933) and other members of the Spemann laboratory: 2 or more distinct organisers, emitting different signals, were proposed to be responsible for inducing the head, trunk and tail regions. Since then, evidence has accumulated that supports one or the other model, but it has been very difficult to distinguish between them. Recently, a considerable body of work from mouse embryos has been interpreted as favouring the latter model, and as suggesting that a 'head organiser', required for the induction of the forebrain, is spatially separate from the classic organiser (Hensen's node). An extraembryonic tissue, the 'anterior visceral endoderm' (AVE), was proposed to be the source of forebrain-inducing signals. It is difficult to find tissues that are directly equivalent embryologically or functionally to the AVE in other vertebrates, which led some (e.g. Kessel, 1998) to propose that mammals have evolved a new way of patterning the head. We will present evidence from the chick embryo showing that the hypoblast is embryologically and functionally equivalent to the mouse AVE. Like the latter, the hypoblast also plays a role in head development. However, it does not act like a true organiser. It induces pre-neural and pre-forebrain markers, but only transiently. Further development of neural and forebrain phenotypes requires additional signals not provided by the hypoblast. In addition, the

  5. Forebrain pathway for auditory space processing in the barn owl.

    PubMed

    Cohen, Y E; Miller, G L; Knudsen, E I

    1998-02-01

    The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway. PMID:9463450

  6. Neuropeptide FF receptors as novel targets for limbic seizure attenuation.

    PubMed

    Portelli, Jeanelle; Meurs, Alfred; Bihel, Frederic; Hammoud, Hassan; Schmitt, Martine; De Kock, Joery; Utard, Valerie; Humbert, Jean-Paul; Bertin, Isabelle; Buffel, Ine; Coppens, Jessica; Tourwe, Dirk; Maes, Veronique; De Prins, An; Vanhaecke, Tamara; Massie, Ann; Balasubramaniam, Ambikaipakan; Boon, Paul; Bourguignon, Jean-Jacques; Simonin, Frederic; Smolders, Ilse

    2015-08-01

    Neuropeptide Y (NPY) is a well established anticonvulsant and first-in-class antiepileptic neuropeptide. In this study, the controversial role of NPY1 receptors in epilepsy was reassessed by testing two highly selective NPY1 receptor ligands and a mixed NPY1/NPFF receptor antagonist BIBP3226 in a rat model for limbic seizures. While BIBP3226 significantly attenuated the pilocarpine-induced seizures, neither of the highly selective NPY1 receptor ligands altered the seizure severity. Administration of the NPFF1/NPFF2 receptor antagonist RF9 also significantly attenuated limbic seizure activity. To further prove the involvement of NPFF receptors in these seizure-modulating effects, low and high affinity antagonists for the NPFF receptors were tested. We observed that the low affinity ligand failed to exhibit anticonvulsant properties while the two high affinity ligands significantly attenuated the seizures. Continuous NPFF1 receptor agonist administration also inhibited limbic seizures whereas bolus administration of the NPFF1 receptor agonist was without effect. This suggests that continuous agonist perfusion could result in NPFF1 receptor desensitization and mimic NPFF1 receptor antagonist administration. Our data unveil for the first time the involvement of the NPFF system in the management of limbic seizures. PMID:25963417

  7. Limbic system seizures and aggressive behavior (superkindling effects).

    PubMed

    Andy, O J; Velamati, S

    1978-01-01

    This study was done to further analyze the neural mechanisms underlying aggressive behavior associated with psychomotor or temporal lobe seizures. The studies revealed that superkindling the aggressive system by sequential stimulations at seizure-inducing thresholds, of two or more sites in the limbic, hypothalamic, and basal ganglia structures facilitated the production of aggressive seizures. Aggressive behavior in the freely moving cat was evaluated in relation to the occurrence of hissing and growling during stimulation, after-discharge and postictal period. The behavior was correlated with the frequency of the elicited seizures and the seizure durations. Aggression did develop as a component behavioral manifestation of the limbic (psychomotor) seizure. Development of aggressive seizures was facilitated by "priming" the aggressive system. Optimum levels of aggressive behavior occurred with seizures of medium duration. Catecholamine blockers tended to attentuate the occurrence of aggression, whereas the agonist tended to facilitate it. Once the aggressive system was rendered hyperexcitable, exteroceptive stimuli also evoked aggressive attack behavior. It was concluded that repeatedly recurring limbic system seizures through superkindling mechanisms can eventually render the limbic-basal ganglia-preoptico-hypothalamic aggressive system hyper-responsive to both recurring seizures and to exteroceptive stimuli with resulting aggressive behavior with or without an accompanying seizure. PMID:571080

  8. Electrically Induced Limbic Seizures: Preliminary Findings in a Rodent Model

    PubMed Central

    Kowski, Alexander B; Holtkamp, Martin

    2015-01-01

    In epilepsy, novel pharmacological and nonpharmacological treatment approaches are commonly assessed in model systems of acute motor and often generalized seizures. We developed a rodent model with short-term electrical stimulation of the perforant path resulting in stereotyped limbic seizures. Limbic structures play a major role in human intractable epilepsy. In 10 rats, single electrical 5-second and 20-Hz stimuli to the perforant path reliably produced limbic seizures characterized by resting behavior and subtle motor signs. Electrophysiological recordings from the dentate gyrus demonstrated a seizure pattern with 4-Hz to 5-Hz discharges. Multiple inductions of seizures within 72 hours did not alter behavioral and electrophysiological seizure characteristics. Electrophysiological excitatory and inhibitory parameters assessed by evoked single and paired pulses did not change with increasing number of seizures. We present preliminary findings on a new model of electrically induced limbic seizures of mesiotemporal origin. This model may represent a reliable screening tool for new treatment approaches such as deep brain stimulation. PMID:25861223

  9. Neuropeptide FF receptors as novel targets for limbic seizure attenuation.

    PubMed

    Portelli, Jeanelle; Meurs, Alfred; Bihel, Frederic; Hammoud, Hassan; Schmitt, Martine; De Kock, Joery; Utard, Valerie; Humbert, Jean-Paul; Bertin, Isabelle; Buffel, Ine; Coppens, Jessica; Tourwe, Dirk; Maes, Veronique; De Prins, An; Vanhaecke, Tamara; Massie, Ann; Balasubramaniam, Ambikaipakan; Boon, Paul; Bourguignon, Jean-Jacques; Simonin, Frederic; Smolders, Ilse

    2015-08-01

    Neuropeptide Y (NPY) is a well established anticonvulsant and first-in-class antiepileptic neuropeptide. In this study, the controversial role of NPY1 receptors in epilepsy was reassessed by testing two highly selective NPY1 receptor ligands and a mixed NPY1/NPFF receptor antagonist BIBP3226 in a rat model for limbic seizures. While BIBP3226 significantly attenuated the pilocarpine-induced seizures, neither of the highly selective NPY1 receptor ligands altered the seizure severity. Administration of the NPFF1/NPFF2 receptor antagonist RF9 also significantly attenuated limbic seizure activity. To further prove the involvement of NPFF receptors in these seizure-modulating effects, low and high affinity antagonists for the NPFF receptors were tested. We observed that the low affinity ligand failed to exhibit anticonvulsant properties while the two high affinity ligands significantly attenuated the seizures. Continuous NPFF1 receptor agonist administration also inhibited limbic seizures whereas bolus administration of the NPFF1 receptor agonist was without effect. This suggests that continuous agonist perfusion could result in NPFF1 receptor desensitization and mimic NPFF1 receptor antagonist administration. Our data unveil for the first time the involvement of the NPFF system in the management of limbic seizures.

  10. Chick homeobox gene cDlx expression demarcates the forebrain anlage, indicating the onset of forebrain regional specification at gastrulation.

    PubMed

    Borghjid, S; Siddiqui, M A

    2000-01-01

    Here we describe the isolation and characterization of a chick homeobox-containing gene, cDlx, which shows greater than 85% homology to the homeodomain of other vertebrate Distal-less genes. Northern blot analysis and in situ hybridization studies reveal that cDlx expression is developmentally regulated and is tissue specific. In particular, the developmental expression pattern is characterized by an early appearance of cDlx transcript in the prospective forebrain region of gastrulating embryos. During neurulation, cDlx is consistently expressed in a spatially restricted domain in the presumptive ventral forebrain region of the neural plate that will give rise to the hypothalamus and the adenohypophysis. Our data support the notion that members of the Dlx gene family are part of a homeobox gene code in forebrain pattern formation and suggest that regional specification of the forebrain occurs at much earlier stages than previously thought. The homeobox gene cDlx may thus play a role in defining forebrain regional identity as early as gastrulation.

  11. Task-phase-specific dynamics of basal forebrain neuronal ensembles

    PubMed Central

    Tingley, David; Alexander, Andrew S.; Kolbu, Sean; de Sa, Virginia R.; Chiba, Andrea A.; Nitz, Douglas A.

    2014-01-01

    Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases. PMID:25309352

  12. Laser-scanning photostimulation of optogenetically targeted forebrain circuits.

    PubMed

    Lee, Charles C; Lam, Ying-Wan; Imaizumi, Kazuo; Sherman, S Murray

    2013-01-01

    The sensory forebrain is composed of intricately connected cell types, of which functional properties have yet to be fully elucidated. Understanding the interactions of these forebrain circuits has been aided recently by the development of optogenetic methods for light-mediated modulation of neuronal activity. Here, we describe a protocol for examining the functional organization of forebrain circuits in vitro using laser-scanning photostimulation of channelrhodopsin, expressed optogenetically via viral-mediated transfection. This approach also exploits the utility of cre-lox recombination in transgenic mice to target expression in specific neuronal cell types. Following transfection, neurons are physiologically recorded in slice preparations using whole-cell patch clamp to measure their evoked responses to laser-scanning photostimulation of channelrhodopsin expressing fibers. This approach enables an assessment of functional topography and synaptic properties. Morphological correlates can be obtained by imaging the neuroanatomical expression of channelrhodopsin expressing fibers using confocal microscopy of the live slice or post-fixed tissue. These methods enable functional investigations of forebrain circuits that expand upon more conventional approaches. PMID:24430760

  13. Impaired Autonomic Responses to Emotional Stimuli in Autoimmune Limbic Encephalitis

    PubMed Central

    Schröder, Olga; Schriewer, Elisabeth; Golombeck, Kristin S.; Kürten, Julia; Lohmann, Hubertus; Schwindt, Wolfram; Wiendl, Heinz; Bruchmann, Maximilian; Melzer, Nico; Straube, Thomas

    2015-01-01

    Limbic encephalitis (LE) is an autoimmune-mediated disorder that affects structures of the limbic system, in particular, the amygdala. The amygdala constitutes a brain area substantial for processing of emotional, especially fear-related signals. The amygdala is also involved in neuroendocrine and autonomic functions, including skin conductance responses (SCRs) to emotionally arousing stimuli. This study investigates behavioral and autonomic responses to discrete emotion evoking and neutral film clips in a patient suffering from LE associated with contactin-associated protein-2 (CASPR2) antibodies as compared to a healthy control group. Results show a lack of SCRs in the patient while watching the film clips, with significant differences compared to healthy controls in the case of fear-inducing videos. There was no comparable impairment in behavioral data (emotion report, valence, and arousal ratings). The results point to a defective modulation of sympathetic responses during emotional stimulation in patients with LE, probably due to impaired functioning of the amygdala. PMID:26648907

  14. Disruption of limbic pathways in a case of profound amnesia.

    PubMed

    Papanicolaou, A C; Hasan, K M; Boake, C; Eluvathingal, Thomas J; Kramer, L

    2007-08-01

    We report a case of episodic amnesia in which the anatomical basis of injury was investigated by diffusion tensor imaging (DTI). Two months after an adult male suffered severe closed head injury, conventional magnetic resonance imaging (CMRI) revealed only a right superior frontal lesion. However, 14 years later, DTI revealed structural anomalies not visible on CMRI involving limbic white matter tracts, notably the fornix, which could explain the amnesia.

  15. Mephedrone alters basal ganglia and limbic neurotensin systems.

    PubMed

    German, Christopher L; Hoonakker, Amanda H; Fleckenstein, Annette E; Hanson, Glen R

    2014-08-01

    Mephedrone (4-methylmethcathinone) is a synthetic cathinone designer drug that alters pre-synaptic dopamine (DA) activity like many psychostimulants. However, little is known about the post-synaptic dopaminergic impacts of mephedrone. The neuropeptide neurotensin (NT) provides inhibitory feedback for basal ganglia and limbic DA pathways, and post-synaptic D1 -like and D2 -like receptor activity affects NT tissue levels. This study evaluated how mephedrone alters basal ganglia and limbic system NT content and the role of NT receptor activation in drug consumption behavior. Four 25 mg/kg injections of mephedrone increased NT content in basal ganglia (striatum, substantia nigra and globus pallidus) and the limbic regions (nucleus accumbens core), while a lower dosage (5 mg/kg/injection) only increased striatal NT content. Mephedrone-induced increases in basal ganglia NT levels were mediated by D1 -like receptors in the striatum and the substantia nigra by both D1 -like and D2 -like receptors in the globus pallidus. Mephedrone increased substance P content, another neuropeptide, in the globus pallidus, but not in the dorsal striatum or substantia nigra. Finally, the NT receptor agonist PD149163 blocked mephedrone self-administration, suggesting reduced NT release, as indicated by increased tissue levels, likely contributing to patterns of mephedrone consumption.

  16. Mephedrone alters basal ganglia and limbic dynorphin systems.

    PubMed

    German, Christopher L; Alburges, Mario E; Hoonakker, Amanda J; Fleckenstein, Annette E; Hanson, Glen R

    2014-08-25

    Mephedrone (4-methymethcathinone) is a synthetic cathinone designer drug that disrupts central nervous system (CNS) dopamine (DA) signaling. Numerous central neuropeptide systems reciprocally interact with dopaminergic neurons to provide regulatory counterbalance, and are altered by aberrant DA activity associated with stimulant exposure. Endogenous opioid neuropeptides are highly concentrated within dopaminergic CNS regions and facilitate many rewarding and aversive properties associated with drug use. Dynorphin, an opioid neuropeptide and kappa receptor agonist, causes dysphoria and aversion to drug consumption through signaling within the basal ganglia and limbic systems, which is affected by stimulants. This study evaluated how mephedrone alters basal ganglia and limbic system dynorphin content, and the role of DA signaling in these changes. Repeated mephedrone administrations (4 × 25 mg/kg/injection, 2-h intervals) selectively increased dynorphin content throughout the dorsal striatum and globus pallidus, decreased dynorphin content within the frontal cortex, and did not alter dynorphin content within most limbic system structures. Pretreatment with D1 -like (SCH-23380) or D2 -like (eticlopride) antagonists blocked mephedrone-induced changes in dynorphin content in most regions examined, indicating altered dynorphin activity is a consequence of excessive DA signaling. Synapse, 2014. © 2014 Wiley Periodicals, Inc.

  17. Mephedrone alters basal ganglia and limbic dynorphin systems

    PubMed Central

    German, Christopher L.; Alburges, Mario E.; Hoonakker, Amanda J.; Fleckenstein, Annette E.; Hanson, Glen R.

    2014-01-01

    Mephedrone (4-methymethcathinone) is a synthetic cathinone designer drug that disrupts central nervous system (CNS) dopamine (DA) signaling. Numerous central neuropeptide systems reciprocally interact with dopaminergic neurons to provide regulatory counterbalance, and are altered by aberrant DA activity associated with stimulant exposure. Endogenous opioid neuropeptides are highly concentrated within dopaminergic CNS regions and facilitate many rewarding and aversive properties associated with drug use. Dynorphin, an opioid neuropeptide and kappa receptor agonist, causes dysphoria and aversion to drug consumption through signaling within the basal ganglia and limbic systems, which is affected by stimulants. This study evaluated how mephedrone alters basal ganglia and limbic system dynorphin content, and the role of DA signaling in these changes. Repeated mephedrone administrations (4 × 25 mg/kg/injection, 2-h intervals) selectively increased dynorphin content throughout the dorsal striatum and globus pallidus, decreased dynorphin content within the frontal cortex, and did not alter dynorphin content within most limbic system structures. Pre-treatment with D1-like (SCH-23380) or D2-like (eticlopride) antagonists blocked mephedrone-induced changes in dynorphin content in most regions examined, indicating altered dynorphin activity is a consequence of excessive DA signaling. PMID:25155699

  18. Volume of the Human Septal Forebrain Region Is a Predictor of Source Memory Accuracy

    PubMed Central

    Butler, Tracy; Blackmon, Karen; Zaborszky, Laszlo; Wang, Xiuyuan; DuBois, Jonathan; Carlson, Chad; Barr, William B.; French, Jacqueline; Devinsky, Orrin; Kuzniecky, Ruben; Halgren, Eric; Thesen, Thomas

    2012-01-01

    Septal nuclei, components of basal forebrain, are strongly and reciprocally connected with hippocampus, and have been shown in animals to play a critical role in memory. In humans, the septal forebrain has received little attention. To examine the role of human septal forebrain in memory, we acquired high-resolution magnetic resonance imaging scans from 25 healthy subjects and calculated septal forebrain volume using recently developed probabilistic cytoarchitectonic maps. We indexed memory with the California Verbal Learning Test-II. Linear regression showed that bilateral septal forebrain volume was a significant positive predictor of recognition memory accuracy. More specifically, larger septal forebrain volume was associated with the ability to recall item source/context accuracy. Results indicate specific involvement of septal forebrain in human source memory, and highlight the need for additional research into the role of septal nuclei in memory and other impairments associated with human diseases. PMID:22152217

  19. Intracranial Metastatic Disease Spares the Limbic Circuit: A Review of 697 Metastatic Lesions in 107 Patients

    SciTech Connect

    Marsh, James C.; Herskovic, Arnold M.; Gielda, Benjamin T.; Hughes, Frank F.; Hoeppner, Thomas; Turian, Julius; Abrams, Ross A.

    2010-02-01

    Purpose: We report the incidence of metastatic involvement of the limbic circuit in a retrospective review of patients treated at our institution. This review was performed to assess the feasibility of selectively sparing the limbic system during whole-brain radiotherapy and prophylactic cranial irradiation. Methods and Materials: We identified 697 intracranial metastases in 107 patients after reviewing contrast-enhanced CT and/or MR image sets for each patient. Lesions were localized to the limbic circuit or to the rest of the brain/brain stem. Patients were categorized by tumor histology (e.g., non-small-cell lung cancer, small-cell lung cancer, breast cancer, and other) and by total number of intracranial metastases (1-3, oligometastatic; 4 or more, nonoligometastatic). Results: Thirty-six limbic metastases (5.2% of all metastases) were identified in 22 patients who had a median of 16.5 metastases/patient (limbic metastases accounted for 9.9% of their lesions). Sixteen metastases (2.29%) involved the hippocampus, and 20 (2.86%) involved the rest of the limbic circuit; 86.2% of limbic metastases occurred in nonoligometastatic patients, and 13.8% occurred in oligometastatic patients. The incidence of limbic metastases by histologic subtype was similar. The incidence of limbic metastases in oligometastatic patients was 4.9% (5/103): 0.97%, hippocampus; 3.9%, remainder of the limbic circuit. One of 53 oligometastatic patients (1.9%) had hippocampal metastases, while 4/53 (7.5%) had other limbic metastases. Conclusions: Metastatic involvement of the limbic circuit is uncommon and limited primarily to patients with nonoligometastatic disease, supporting our hypothesis that it is reasonable to selectively exclude or reduce the dose to the limbic circuit when treating patients with prophylactic cranial irradiation or whole-brain radiotherapy for oligometastatic disease not involving these structures.

  20. Facilitation of Learning by Social-Emotional Feedback in Humans Is Beta-Noradrenergic-Dependent

    ERIC Educational Resources Information Center

    Mihov, Yoan; Mayer, Simon; Musshoff, Frank; Maier, Wolfgang; Kendrick, Keith M.; Hurlemann, Rene

    2010-01-01

    Adaptive behavior in dynamic environments critically depends on the ability to learn rapidly and flexibly from the outcomes of prior choices. In social environments, facial expressions of emotion often serve as performance feedback and thereby guide declarative learning. Abundant evidence implicates beta-noradrenergic signaling in the modulatory…

  1. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease

    PubMed Central

    Wang, Bing; Chen, Li-Hua

    2016-01-01

    In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105

  2. Orphanin FQ/Nociceptin Interacts with the Basolateral Amygdala Noradrenergic System in Memory Consolidation

    ERIC Educational Resources Information Center

    Roozendaal, Benno; Lengvilas, Ray; McGaugh, James L.; Civelli, Olivier; Reinscheid, Rainer K.

    2007-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) mediates hormonal and neurotransmitter effects on the consolidation of emotionally influenced memory and that such modulatory influences involve noradrenergic activation of the BLA. As the BLA also expresses a high density of receptors for orphanin FQ/nociceptin…

  3. Noradrenergic Control of Odor Recognition in a Nonassociative Olfactory Learning Task in the Mouse

    ERIC Educational Resources Information Center

    Veyrac, Alexandra; Nguyen, Veronique; Marien, Marc; Didier, Anne; Jourdan, Francois

    2007-01-01

    The present study examined the influence of pharmacological modulations of the locus coeruleus noradrenergic system on odor recognition in the mouse. Mice exposed to a nonrewarded olfactory stimulation (training) were able to memorize this odor and to discriminate it from a new odor in a recall test performed 15 min later. At longer delays (30 or…

  4. Noradrenergic Action in Prefrontal Cortex in the Late Stage of Memory Consolidation

    ERIC Educational Resources Information Center

    Tronel, Sophie; Feenstra, Matthijs G. P.; Sara, Susan J.

    2004-01-01

    These experiments investigated the role of the noradrenergic system in the late stage of memory consolidation and in particular its action at beta receptors in the prelimbic region (PL) of the prefrontal cortex in the hours after training. Rats were trained in a rapidly acquired, appetitively motivated foraging task based on olfactory…

  5. The Memory Function of Noradrenergic Activity in Non-REM Sleep

    ERIC Educational Resources Information Center

    Gais, Steffen; Rasch, Bjorn; Dahmen, Johannes C.; Sara, Susan; Born, Jan

    2011-01-01

    There is a long-standing assumption that low noradrenergic activity during sleep reflects mainly the low arousal during this brain state. Nevertheless, recent research has demonstrated that the locus coeruleus, which is the main source of cortical noradrenaline, displays discrete periods of intense firing during non-REM sleep, without any signs of…

  6. Co-expression of Cholinergic and Noradrenergic Phenotypes in Human and Non-Human Autonomic Nervous System

    PubMed Central

    Weihe, Eberhard; Schütz, Burkhard; Hartschuh, Wolfgang; Anlauf, Martin; Schäfer, Martin K.; Eiden, Lee E.

    2008-01-01

    It has long been known that the sympathetic innervation of the sweat glands is cholinergic in most mammalian species, and that during development, rodent sympathetic cholinergic sweat gland innervation transiently expresses noradrenergic traits. We show here that some noradrenergic traits persist in cholinergic sympathetic innervation of the sweat glands in rodents, but that lack of expression of the vesicular monoamine transporter renders these cells functionally non-noradrenergic. Adult human sweat gland innervation, however, is not only cholinergic, but co-expresses all of the proteins required for full noradrenergic function as well, including tyrosine hydroxylase, aromatic amino acid decarboxylase, dopamine ß-hydroxylase, and the vesicular monoamine transporter VMAT2. Thus, cholinergic/noradrenergic co-transmission is apparently a unique feature of the primate autonomic sympathetic nervous system. Furthermore, sympathetic neurons innervating specifically the cutaneous arteriovenous anastomoses (Hoyer Grosser organs) in humans also possess a full cholinergic/noradrenergic co-phenotype. Cholinergic/noradrenergic co-expression is absent from other portions of the human sympathetic nervous system, but is extended in the parasympathetic nervous system to the intrinsic neurons innervating the heart. These observations suggest a mode of autonomic regulation, based on co-release of norepinephrine and acetylcholine at parasympathocardiac, sudomotor, and selected vasomotor neuroeffector junctions, that is unique to the primate peripheral nervous system. PMID:16217790

  7. The noradrenergic paradox: implications in the management of depression and anxiety

    PubMed Central

    Montoya, Alonso; Bruins, Robert; Katzman, Martin A; Blier, Pierre

    2016-01-01

    Both major depressive disorder and the anxiety disorders are major causes of disability and markedly contribute to a significant global burden of the disease worldwide. In part because of the significant socioeconomic burden associated with these disorders, theories have been developed to specifically build clinical treatment approaches. One such theory, the monoaminergic hypothesis, has led to the development of several generations of selective and nonselective inhibitors of transporters of serotonin and norepinephrine, with the goal of augmenting monoaminergic transmission. These efforts have led to considerable success in the development of antidepressant therapeutics. However, there is a strong correlation between enhanced noradrenergic activity and fear and anxiety. Consequently, some physicians have expressed concerns that the same enhanced noradrenergic activity that alleviates depression could also promote anxiety. The fact that the serotonergic and noradrenergic reuptake inhibitors are successfully used in the treatment of anxiety and panic disorders seems paradoxical. This review was undertaken to determine if any clinical evidence exists to show that serotonergic and noradrenergic reuptake inhibitors can cause anxiety. The PubMed, EMBASE, and Cochrane Library databases were searched, and the results limited to randomized, double-blind, placebo-controlled studies performed in nongeriatric adults and with clear outcome measures were reported. Based on these criteria, a total of 52 studies were examined. Patients in these studies suffered from depression or anxiety disorders (generalized and social anxiety disorders, panic disorder, and posttraumatic stress disorder). The large majority of these studies employed venlafaxine or duloxetine, and the remainder used tri-cyclic antidepressants, atomoxetine, or reboxetine. All the studies reported clinically significant alleviation of depressive and/or anxious symptoms by these therapeutics. In none of these

  8. The noradrenergic paradox: implications in the management of depression and anxiety.

    PubMed

    Montoya, Alonso; Bruins, Robert; Katzman, Martin A; Blier, Pierre

    2016-01-01

    Both major depressive disorder and the anxiety disorders are major causes of disability and markedly contribute to a significant global burden of the disease worldwide. In part because of the significant socioeconomic burden associated with these disorders, theories have been developed to specifically build clinical treatment approaches. One such theory, the monoaminergic hypothesis, has led to the development of several generations of selective and nonselective inhibitors of transporters of serotonin and norepinephrine, with the goal of augmenting monoaminergic transmission. These efforts have led to considerable success in the development of antidepressant therapeutics. However, there is a strong correlation between enhanced noradrenergic activity and fear and anxiety. Consequently, some physicians have expressed concerns that the same enhanced noradrenergic activity that alleviates depression could also promote anxiety. The fact that the serotonergic and noradrenergic reuptake inhibitors are successfully used in the treatment of anxiety and panic disorders seems paradoxical. This review was undertaken to determine if any clinical evidence exists to show that serotonergic and noradrenergic reuptake inhibitors can cause anxiety. The PubMed, EMBASE, and Cochrane Library databases were searched, and the results limited to randomized, double-blind, placebo-controlled studies performed in nongeriatric adults and with clear outcome measures were reported. Based on these criteria, a total of 52 studies were examined. Patients in these studies suffered from depression or anxiety disorders (generalized and social anxiety disorders, panic disorder, and posttraumatic stress disorder). The large majority of these studies employed venlafaxine or duloxetine, and the remainder used tri-cyclic antidepressants, atomoxetine, or reboxetine. All the studies reported clinically significant alleviation of depressive and/or anxious symptoms by these therapeutics. In none of these

  9. Basal forebrain control of wakefulness and cortical rhythms

    PubMed Central

    Anaclet, Christelle; Pedersen, Nigel P.; Ferrari, Loris L.; Venner, Anne; Bass, Caroline E.; Arrigoni, Elda; Fuller, Patrick M.

    2015-01-01

    Wakefulness, along with fast cortical rhythms and associated cognition, depend on the basal forebrain (BF). BF cholinergic cell loss in dementia and the sedative effect of anti-cholinergic drugs have long implicated these neurons as important for cognition and wakefulness. The BF also contains intermingled inhibitory GABAergic and excitatory glutamatergic cell groups whose exact neurobiological roles are unclear. Here we show that genetically targeted chemogenetic activation of BF cholinergic or glutamatergic neurons in behaving mice produced significant effects on state consolidation and/or the electroencephalogram but had no effect on total wake. Similar activation of BF GABAergic neurons produced sustained wakefulness and high-frequency cortical rhythms, whereas chemogenetic inhibition increased sleep. Our findings reveal a major contribution of BF GABAergic neurons to wakefulness and the fast cortical rhythms associated with cognition. These findings may be clinically applicable to manipulations aimed at increasing forebrain activation in dementia and the minimally conscious state. PMID:26524973

  10. Basal forebrain control of wakefulness and cortical rhythms.

    PubMed

    Anaclet, Christelle; Pedersen, Nigel P; Ferrari, Loris L; Venner, Anne; Bass, Caroline E; Arrigoni, Elda; Fuller, Patrick M

    2015-11-03

    Wakefulness, along with fast cortical rhythms and associated cognition, depend on the basal forebrain (BF). BF cholinergic cell loss in dementia and the sedative effect of anti-cholinergic drugs have long implicated these neurons as important for cognition and wakefulness. The BF also contains intermingled inhibitory GABAergic and excitatory glutamatergic cell groups whose exact neurobiological roles are unclear. Here we show that genetically targeted chemogenetic activation of BF cholinergic or glutamatergic neurons in behaving mice produced significant effects on state consolidation and/or the electroencephalogram but had no effect on total wake. Similar activation of BF GABAergic neurons produced sustained wakefulness and high-frequency cortical rhythms, whereas chemogenetic inhibition increased sleep. Our findings reveal a major contribution of BF GABAergic neurons to wakefulness and the fast cortical rhythms associated with cognition. These findings may be clinically applicable to manipulations aimed at increasing forebrain activation in dementia and the minimally conscious state.

  11. Acute nonparaneoplastic limbic encephalitis in childhood: a case series in Japan.

    PubMed

    Sakuma, Hiroshi; Sugai, Kenji; Sasaki, Masayuki

    2010-09-01

    Limbic encephalitis not associated with malignancy was investigated in Japanese children, with particular focus on clinical features distinct from adult cases. Clinical, laboratory, and radiographic findings were studied in pediatric nonparaneoplastic limbic encephalitis, based on a literature review and questionnaire-based analyses. Analysis of 14 cases revealed the predominance of seizure occurrence, disturbance in consciousness, and frequent extralimbic signs. The majority manifested antecedent febrile illnesses, suggesting the involvement of infection-induced autoimmunity targeted to neuronal antigens. These clinical observations indicate a child-specific phenotype of limbic encephalitis. Further studies on its immunopathogenesis are needed to determine whether childhood limbic encephalitis is a distinct subcategory. PMID:20691937

  12. Evidence for evolutionary specialization in human limbic structures

    PubMed Central

    Barger, Nicole; Hanson, Kari L.; Teffer, Kate; Schenker-Ahmed, Natalie M.; Semendeferi, Katerina

    2014-01-01

    Increasingly, functional and evolutionary research has highlighted the important contribution emotion processing makes to complex human social cognition. As such, it may be asked whether neural structures involved in emotion processing, commonly referred to as limbic structures, have been impacted in human brain evolution. To address this question, we performed an extensive evolutionary analysis of multiple limbic structures using modern phylogenetic tools. For this analysis, we combined new volumetric data for the hominoid (human and ape) amygdala and 4 amygdaloid nuclei, hippocampus, and striatum, collected using stereological methods in complete histological series, with previously published datasets on the amygdala, orbital and medial frontal cortex, and insula, as well as a non-limbic structure, the dorsal frontal cortex, for contrast. We performed a parallel analysis using large published datasets including many anthropoid species (human, ape, and monkey), but fewer hominoids, for the amygdala and 2 amygdaloid subdivisions, hippocampus, schizocortex, striatum, and septal nuclei. To address evolutionary change, we compared observed human values to values predicted from regressions run through (a) non-human hominoids and (b) non-human anthropoids, assessing phylogenetic influence using phylogenetic generalized least squares regression. Compared with other hominoids, the volumes of the hippocampus, the lateral nucleus of the amygdala, and the orbital frontal cortex were, respectively, 50, 37, and 11% greater in humans than predicted for an ape of human hemisphere volume, while the medial and dorsal frontal cortex were, respectively, 26 and 29% significantly smaller. Compared with other anthropoids, only human values for the striatum fell significantly below predicted values. Overall, the data present support for the idea that regions involved in emotion processing are not necessarily conserved or regressive, but may even be enhanced in recent human evolution

  13. Corelease of acetylcholine and GABA from cholinergic forebrain neurons

    PubMed Central

    Saunders, Arpiar; Granger, Adam J; Sabatini, Bernardo L

    2015-01-01

    Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-synaptic currents (PSCs) in layer 1 interneurons. Surprisingly, we observed PSCs mediated by GABAA receptors in addition to nicotinic acetylcholine receptors. Based on PSC latency and pharmacological sensitivity, our results suggest monosynaptic release of both GABA and ACh. Anatomical analysis showed that forebrain cholinergic neurons express the GABA synthetic enzyme Gad2 and the vesicular GABA transporter (Slc32a1). We confirmed the direct release of GABA by knocking out Slc32a1 from cholinergic neurons. Our results identify GABA as an overlooked fast neurotransmitter utilized throughout the forebrain cholinergic system. GABA/ACh corelease may have major implications for modulation of cortical function by cholinergic neurons. DOI: http://dx.doi.org/10.7554/eLife.06412.001 PMID:25723967

  14. Brainstem and limbic encephalitis with paraneoplastic neuromyelitis optica.

    PubMed

    Moussawi, Khaled; Lin, David J; Matiello, Marcelo; Chew, Sheena; Morganstern, Daniel; Vaitkevicius, Henrikas

    2016-01-01

    The spectrum of disorders associated with anti-neuromyelitis optica (NMO) antibody is being extended to include infrequent instances associated with cancer. We describe a patient with brainstem and limbic encephalitis from NMO-immunoglobulin G in serum and cerebrospinal fluid in the context of newly diagnosed breast cancer. The neurological features markedly improved with excision of her breast cancer and immune suppressive therapy. This case further broadens the NMO spectrum disorders (NMOSD) by an association between NMOSD and cancer and raises the question of coincidental occurrence and the appropriate circumstances to search for a tumor in certain instances of NMO.

  15. Effectiveness of multimodality treatment for autoimmune limbic epilepsy.

    PubMed

    Dubey, Divyanshu; Konikkara, John; Modur, Pradeep N; Agostini, Mark; Gupta, Puneet; Shu, Francy; Vernino, Steven

    2014-12-01

    We evaluated the outcome of multimodality treatment in autoimmune limbic epilepsy in 3 consecutive patients (2 male and 1 female; age 33-55 years) presenting with a combination of focal non-convulsive status epilepticus, memory impairment, and psychosis. MRI showed right or bitemporal T2 or FLAIR hyperintensity. Video-EEG showed seizures of right temporo-occipital or bitemporal independent onset. Extensive workup failed to reveal infectious aetiology or an underlying tumour. However, the autoantibody panel was positive for one or more of these antibodies: anti-VGKC, anti-GABAB, anti-VGCC (P/Q, N types), and anti-GAD65. All patients received: (1) conventional antiepileptic drugs including levetiracetam, lacosamide, phenobarbital, lamotrigine, and valproate; (2) immunomodulatory therapy including methylprednisolone, plasmapheresis, and intravenous immunoglobulin; and (3) rituximab. After a 4-6-week in-hospital course, the seizures resolved in all patients but 2 had persistent memory impairment. None had treatment-related complications. At the time of last follow-up, 2-3 months later, 2 patients remained seizure-free while 2 had residual memory impairment. Our findings suggest that multimodality treatment with a combination of conventional AEDs, immunomodulatory therapy, and rituximab is effective and safe in autoimmune limbic epilepsy. PMID:25465439

  16. The Subthalamic Nucleus, Limbic Function, and Impulse Control.

    PubMed

    Rossi, P Justin; Gunduz, Aysegul; Okun, Michael S

    2015-12-01

    It has been well documented that deep brain stimulation (DBS) of the subthalamic nucleus (STN) to address some of the disabling motor symptoms of Parkinson's disease (PD) can evoke unintended effects, especially on non-motor behavior. This observation has catalyzed more than a decade of research concentrated on establishing trends and identifying potential mechanisms for these non-motor effects. While many issues remain unresolved, the collective result of many research studies and clinical observations has been a general recognition of the role of the STN in mediating limbic function. In particular, the STN has been implicated in impulse control and the related construct of valence processing. A better understanding of STN involvement in these phenomena could have important implications for treating impulse control disorders (ICDs). ICDs affect up to 40% of PD patients on dopamine agonist therapy and approximately 15% of PD patients overall. ICDs have been reported to be associated with STN DBS. In this paper we will focus on impulse control and review pre-clinical, clinical, behavioral, imaging, and electrophysiological studies pertaining to the limbic function of the STN.

  17. Are Onconeural Antibodies a Clinical Phenomenology in Paraneoplastic Limbic Encephalitis?

    PubMed Central

    Zhang, Hongliang; Zhou, Chunkui; Wu, Limin; Ni, Fengming; Zhu, Jie; Jin, Tao

    2013-01-01

    Paraneoplastic neurological syndromes (PNSs) occur in patients with cancer and can cause clinical symptoms and signs of dysfunction of the nervous system that are not due to a local effect of the tumor or its metastases. Most of these clinical syndromes in adults are associated with lung cancer, especially small cell lung cancer (SCLC), lymphoma, and gynecological tumors. The finding of highly specific antibodies directed against onconeural antigens has revolutionized the diagnosis and promoted the understanding of these syndromes and led to the current hypothesis of an autoimmune pathophysiology. Accumulating data strongly suggested direct pathogenicity of these antibodies. The field of PNS has expanded rapidly in the past few years with the discovery of limbic encephalitis associated with glutamic acid decarboxylase (GAD) 65, the voltage (VGKC-gated potassium channel) complex, the methyl (N-NMDA-D-aspartate), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and gamma aminobutyric acid (GABA) (B) receptors, and so forth. Despite this, the clinical spectrum of these diseases has not yet been fully investigated. The clinical importance of these conditions lies in their frequent response to immunotherapies and, less commonly, their association with distinctive tumors. This review provides an overview on the pathogenesis and diagnosis of PNS, with emphasis on the role of antibodies in limbic encephalitis. PMID:23983403

  18. Noradrenergic lesioning with an anti-dopamine beta-hydroxylase immunotoxin

    NASA Technical Reports Server (NTRS)

    Picklo, M. J.; Wiley, R. G.; Lappi, D. A.; Robertson, D.

    1994-01-01

    Sympathectomy has been achieved by a variety of methods but each has its limitations. These include lack of tissue specificity, incomplete lesioning, and the age range of susceptibility to the lesioning. To circumvent these drawbacks, an immunotoxin was constructed using a monoclonal antibody against the noradrenergic specific enzyme dopamine beta-hydroxylase (D beta H) coupled via a disulfide bond to saporin, a ribosomal inactivating protein. Three days after intravenous injection of the anti-D beta H immunotoxin (50 micrograms) into adult Sprague-Dawley rats, 66% of neurons in the superior cervical ganglia were chromatolytic. Superior cervical ganglia neurons were poisoned in 1 day old and 1 week old (86% of neurons) neonatal rats following subcutaneous injection of 3.75 and 15 micrograms, respectively. The anti-D beta H immunotoxin will be a useful tool in the study of the peripheral noradrenergic system in adult and neonatal animals.

  19. Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress.

    PubMed

    Fitzgerald, Paul J; Giustino, Thomas F; Seemann, Jocelyn R; Maren, Stephen

    2015-07-14

    Stress-induced impairments in extinction learning are believed to sustain posttraumatic stress disorder (PTSD). Noradrenergic signaling may contribute to extinction impairments by modulating medial prefrontal cortex (mPFC) circuits involved in fear regulation. Here we demonstrate that aversive fear conditioning rapidly and persistently alters spontaneous single-unit activity in the prelimbic and infralimbic subdivisions of the mPFC in behaving rats. These conditioning-induced changes in mPFC firing were mitigated by systemic administration of propranolol (10 mg/kg, i.p.), a β-noradrenergic receptor antagonist. Moreover, propranolol administration dampened the stress-induced impairment in extinction observed when extinction training is delivered shortly after fear conditioning. These findings suggest that β-adrenoceptors mediate stress-induced changes in mPFC spike firing that contribute to extinction impairments. Propranolol may be a helpful adjunct to behavioral therapy for PTSD, particularly in patients who have recently experienced trauma.

  20. Chlorotoxin-mediated disinhibition of noradrenergic locus coeruleus neurons using a conditional transgenic approach.

    PubMed

    Salbaum, J Michael; Cirelli, Chiara; Walcott, Elisabeth; Krushel, Les A; Edelman, Gerald M; Tononi, Giulio

    2004-07-30

    The noradrenergic locus coeruleus (LC) has been implicated in the promotion of arousal, in focused attention and learning, and in the regulation of the sleep/waking cycle. The complex biological functions of the central noradrenergic system have been investigated largely through electrophysiological recordings and neurotoxic lesions of LC neurons. Activation of LC neurons through electrical or chemical stimulation has also led to important insights, although these techniques have limited cellular specificity and short-term effects. Here, we describe a novel method aimed at stimulating the central noradrenergic system in a highly selective manner for prolonged periods of time. This was achieved through the conditional expression of a transgene for chlorotoxin (Cltx) in the LC of adult mice. Chlorotoxin is a component of scorpion venom that partially blocks small conductance chloride channels. In this manner, the influence of GABAergic and glycinergic inhibitory inputs on LC cells is greatly reduced, while their ability to respond to excitatory inputs is unaffected. We demonstrate that the unilateral induction of Cltx expression in the LC is associated with a concomitant ipsilateral increase in the expression of markers of noradrenergic activity in LC neurons. Moreover, LC disinhibition is associated with the ipsilateral induction of the immediate early gene NGFI-A in cortical and subcortical target areas. Unlike previous gain of function approaches, transgenic disinhibition of LC cells is highly selective and persists for at least several weeks. This method represents a powerful new tool to assess the long-term effects of LC activation and is potentially applicable to other neuronal systems.

  1. Dopaminergic and noradrenergic substrates of positive reinforcement: differential effects of d- and l-amphetamine.

    PubMed

    Phillips, A G; Fibiger, H C

    1973-02-01

    Intracranial self-stimulation was elicited from electrodes located in either the lateral hypothalamus or substantia nigra of the rat. Facilitatory effects of d- and l-isomers of amphetamine on self-stimulation were assessed. The d-isomer was seven to ten times more effective than the l-isomer at the hypothalamic placement, whereas the two isomers were equipotent for substantia nigra electrodes. These data support the hypothesis that both dopaminergic and noradrenergic systems subserve positive reinforcement.

  2. Histamine in the locus coeruleus promotes descending noradrenergic inhibition of neuropathic hypersensitivity.

    PubMed

    Wei, Hong; Jin, Cong-Yu; Viisanen, Hanna; You, Hao-Jun; Pertovaara, Antti

    2014-12-01

    Among brain structures receiving efferent projections from the histaminergic tuberomammillary nucleus is the pontine locus coeruleus (LC) involved in descending noradrenergic control of pain. Here we studied whether histamine in the LC is involved in descending regulation of neuropathic hypersensitivity. Peripheral neuropathy was induced by unilateral spinal nerve ligation in the rat with a chronic intracerebral and intrathecal catheter for drug administrations. Mechanical hypersensitivity in the injured limb was assessed by monofilaments. Heat nociception was assessed by determining radiant heat-induced paw flick. Histamine in the LC produced a dose-related (1-10μg) mechanical antihypersensitivity effect (maximum effect at 15min and duration of effect 30min), without influence on heat nociception. Pretreatment of LC with zolantidine (histamine H2 receptor antagonist), but not with pyrilamine (histamine H1 receptor antagonist), and spinal administration of atipamezole (an α2-adrenoceptor antagonist), prazosine (an α1-adrenoceptor antagonist) or bicuculline (a GABAA receptor antagonist) attenuated the antihypersensitivity effect of histamine. The histamine-induced antihypersensitivity effect was also reduced by pretreatment of LC with fadolmidine, an α2-adrenoceptor agonist inducing autoinhibition of noradrenergic cell bodies. Zolantidine or pyrilamine alone in the LC failed to influence pain behavior, while A-960656 (histamine H3 receptor antagonist) suppressed hypersensitivity. A plausible explanation for these findings is that histamine, due to excitatory action mediated by the histamine H2 receptor on noradrenergic cell bodies, promotes descending spinal α1/2-adrenoceptor-mediated inhibition of neuropathic hypersensitivity. Blocking the autoinhibitory histamine H3 receptor on histaminergic nerve terminals in the LC facilitates release of histamine and thereby, increases descending noradrenergic pain inhibition.

  3. Facilitation of learning by social-emotional feedback in humans is beta-noradrenergic-dependent.

    PubMed

    Mihov, Yoan; Mayer, Simon; Musshoff, Frank; Maier, Wolfgang; Kendrick, Keith M; Hurlemann, René

    2010-08-01

    Adaptive behavior in dynamic environments critically depends on the ability to learn rapidly and flexibly from the outcomes of prior choices. In social environments, facial expressions of emotion often serve as performance feedback and thereby guide declarative learning. Abundant evidence implicates beta-noradrenergic signaling in the modulatory influence of emotion on declarative learning. It is currently unclear whether a similar mechanism also mediates a guidance of declarative learning by social-emotional feedback administered in the form of facial expressions. We therefore conducted a double-blind randomized placebo-controlled trial to test the effects of a 40-mg single oral dose of the nonspecific beta-noradrenergic antagonist propranolol in a behavioral task that required gradual declarative learning of item-category associations from either social-emotional (happy vs. angry faces) or nonsocial (green vs. red color signals) trial-by-trial feedback. As predicted on the basis of our previous experiments, learning from social-emotional feedback was more effective than learning from nonsocial feedback in placebo-treated subjects. This advantage of social-emotional over nonsocial feedback was abolished by propranolol treatment. Propranolol had no effect on learning during the nonsocial feedback condition. Our findings suggest that a facilitation of declarative learning by social-emotional feedback critically involves signaling via beta-noradrenergic receptors. PMID:20457167

  4. Possible involvement of activated locus coeruleus-noradrenergic neurons in pain-related sleep disorders.

    PubMed

    Koh, Keito; Hamada, Asami; Hamada, Yusuke; Yanase, Makoto; Sakaki, Mamiko; Someya, Kazuki; Narita, Michiko; Kuzumaki, Naoko; Ikegami, Daigo; Sakai, Hiroyasu; Iseki, Masako; Inada, Eiichi; Narita, Minoru

    2015-03-01

    The locus coeruleus (LC) is a noradrenergic brainstem structure that is considered to play a role in promoting arousal. To further clarify the role of LC noradrenergic neurons, we performed an optogenetic assay by injecting AAV-channelrhodopsin-2 (ChR2) into the LC of cre-tyrosine hydrolase (TH) mice. We found here that the specific activation of LC noradrenergic neurons produced a significant increase in wakefulness and a significant decrease in non-rapid eye movement (NREM) sleep during photostimulation. On the other hand, neuropathic pain is believed to significantly interfere with sleep, and inadequate sleep may contribute to the stressful negative consequences of living with pain. In the present study, sciatic nerve ligation, which produced significant thermal hyperalgesia, significantly increased the levels of noradrenaline released in the prefrontal cortex (PFC) by the weak electrical stimulation of neurons in the LC. Under these conditions, the systemic administration of adrenaline α and β inhibitor cocktail at 7 days after sciatic nerve ligation restored the increased wakefulness and decreased NREM sleep to normal levels. These results suggest that neuropathic pain may accelerate neurons in the LC, and its overactivation may be, at least in part, associated with sleep disturbance under neuropathic pain.

  5. Reduced response to chronic mild stress in PACAP mutant mice is associated with blunted FosB expression in limbic forebrain and brainstem centers.

    PubMed

    Kormos, Viktória; Gáspár, László; Kovács, László Á; Farkas, József; Gaszner, Tamás; Csernus, Valér; Balogh, András; Hashimoto, Hitoshi; Reglődi, Dóra; Helyes, Zsuzsanna; Gaszner, Balázs

    2016-08-25

    Pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in stress adaptation with potential relevance in mood disorder management. PACAP deficient (KO) mice on CD1 background were shown to have depression-like phenotype. Here we aimed at investigating effects of chronic variable mild stress (CVMS) in non-injected, vehicle and imipramine-treated KO mice vs. wildtype (WT) counterparts. We hypothesized reduced FosB neuronal activity in stress-related centers, altered activity and peptide/neurotransmitter content of corticotropin-releasing factor (CRF) cells of the oval (ovBST) bed nucleus of stria terminalis (BST), urocortin 1 (Ucn1) neurons of centrally projecting Edinger-Westphal nucleus (cpEW) and serotonin (5HT) cells of dorsal raphe (DR) in PACAP deficiency. CVMS caused decreased body weight and increased adrenal size, corticosterone (CORT) titers and depression-like behavior in WT mice, in contrast to KO animals. CVMS increased FosB in the central (CeA) and medial amygdala, dorsomedial (dmBST), ventral (vBST), ovBST, CA1 area, dentate gyrus (DG), ventral lateral septum, parvo- (pPVN) and magnocellular paraventricular nucleus, lateral periaqueductal gray, cpEW and DR. Lack of PACAP blunted the CVMS-induced FosB rise in the CeA, ovBST, dmBST, vBST, CA1 area, pPVN and DR. The CVMS-induced FosB expression in ovBST-CRF and cpEW-Ucn1 neurons was abolished in KO mice. Although CVMS did not induce FosB in 5HT-DR neurons, PACAP KO mice had increased 5HT cell counts and 5HT content. We conclude that PACAP deficiency affects neuronal reactivity in a brain area-specific manner in stress centers, as well as in ovBST-CRF, cpEW-Ucn1 and 5HT-DR neurons leading to reduced CVMS response and altered depression level. PMID:27282087

  6. [Faciobrachial dystonic seizures. Semiologic diagnosis in limbic encephalitis].

    PubMed

    González Otárula, Karina A; Ugarnes, Gabriela; Fernández Suárez, Marcos; D'Giano, Carlos

    2015-01-01

    Limbic encephalitis (LE) associated with positive potassium channel complex antibodies often manifests with faciobrachial dystonic seizures (FBDS). We retrospectively analyze two cases, admitted to our video-EEG unit between 2006 and 2014. Both patients were males, aged 66 and 76 years respectively, presenting with brief, but very frequent uni/bilateral dystonic brachial movements, hand posturing and ipsilateral facial grimacing. Severe hyponatremia was found in both patients who went on to develop cognitive impairment. Immunosuppressive therapy improved both seizures and cognitive dysfunction. Serology testing confirmed anti VGKC antibody presence. FBDS are often the first manifestation of LE associated to positive anti VGKC antibodies, and are refractory to treatment with antiepileptic drugs. Early diagnosis and treatment of FBDS with immunosuppressive therapy is important, not only because of seizure suppression, but also because it may help limit the extent of the cognitive damage.

  7. Cognitive Impairments Preceding and Outlasting Autoimmune Limbic Encephalitis

    PubMed Central

    Gross, Robert; Davis, Jennifer; Roth, Julie; Querfurth, Henry

    2016-01-01

    Mild cognitive impairment (MCI) can be the initial manifestation of autoimmune limbic encephalitis (ALE), a disorder that at times presents a diagnostic challenge. In addition to memory impairment, clinical features that might suggest this disorder include personality changes, agitation, insomnia, alterations of consciousness, and seizures. Once recognized, ALE typically responds to treatment with immune therapies, but long-term cognitive deficits may remain. We report two cases of patients with MCI who were ultimately diagnosed with ALE with antibodies against the voltage gated potassium channel complex. Months after apparent resolution of their encephalitides, both underwent neuropsychological testing, which demonstrated persistent cognitive deficits, primarily in the domains of memory and executive function, for cases 1 and 2, respectively. A brief review of the literature is included. PMID:26881156

  8. Estradiol selectively enhances auditory function in avian forebrain neurons.

    PubMed

    Caras, Melissa L; O'Brien, Matthew; Brenowitz, Eliot A; Rubel, Edwin W

    2012-12-01

    Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or nonbreeding conditions by manipulating plasma 17β-estradiol levels in wild-caught female Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner.

  9. Learning and the motivation to eat: Forebrain circuitry

    PubMed Central

    Petrovich, Gorica D.

    2011-01-01

    Appetite and eating are not only controlled by energy needs, but also by extrinsic factors that are not directly related to energy balance. Environmental signals that acquire motivational properties through associative learning—learned cues—can override homeostatic signals and stimulate eating in sated states, or inhibit eating in states of hunger. Such influences are important, as environmental factors are believed to contribute to the increased susceptibility to overeating and the rise in obesity in the developed world. Similarly, environmental and social factors contribute to the onset and maintenance of anorexia nervosa and other eating disorders through interactions with the individual genetic background. Nevertheless, how learning enables environmental signals to control feeding, and the underlying brain mechanisms are poorly understood. We developed two rodent models to study how learned cues are integrated with homeostatic signals within functional forebrain networks, and how these networks are modulated by experience. In one model, a cue previously paired with food when an animal was hungry induces eating in sated rats. In the other model, food-deprived rats inhibit feeding when presented with a cue that signals danger, a tone previously paired with footshocks. Here evidence will be reviewed that the forebrain network formed by the amygdala, lateral hypothalamus and medial prefrontal cortex mediates cue-driven feeding, while a parallel amygdalar circuitry mediates suppression of eating by the fear cue. Findings from the animal models may be relevant for understanding aspects of human appetite and eating, and maladaptive mechanisms that could lead to overeating and anorexia. PMID:21549730

  10. Dynamic variation in forebrain estradiol levels during song learning.

    PubMed

    Chao, Andrew; Paon, Ashley; Remage-Healey, Luke

    2015-03-01

    Estrogens shape brain circuits during development, and the capacity to synthesize estrogens locally has consequences for both sexual differentiation and the acute modulation of circuits during early learning. A recently optimized method to detect and quantify fluctuations in brain estrogens in vivo provides a direct means to explore how brain estrogen production contributes to both differentiation and neuromodulation during development. Here, we use this method to test the hypothesis that neuroestrogens are sexually differentiated as well as dynamically responsive to song tutoring (via passive video/audio playback) during the period of song learning in juvenile zebra finches. Our results show that baseline neuroestradiol levels in the caudal forebrain do not differ between males and females during an early critical masculinization window. Instead, we observe a prominent difference between males and females in baseline neuroestradiol that emerges during the subadult stage as animals approach sexual maturity. Second, we observe that fluctuating neuroestradiol levels during periods of passive song tutoring exhibit a markedly different profile in juveniles as compared to adults. Specifically, neuroestrogens in the caudal forebrain are elevated following (rather than during) tutor song exposure in both juvenile males and females, suggesting an important role for the early consolidation of tutor song memories. These results further reveal a circadian influence on the fluctuations in local neuroestrogens during sensory/cognitive tasks. Taken together, these findings uncover several unexpected features of brain estrogen synthesis in juvenile animals that may have implications for secondary masculinization as well as the consolidation of recent sensory experiences. PMID:25205304

  11. Distribution of vasopressin in the forebrain of spotted hyenas.

    PubMed

    Rosen, Greta J; De Vries, Geert J; Villalba, Constanza; Weldele, Mary L; Place, Ned J; Coscia, Elizabeth M; Glickman, Steve E; Forger, Nancy G

    2006-09-01

    The extreme virilization of the female spotted hyena raises interesting questions with respect to sexual differentiation of the brain and behavior. Females are larger and more aggressive than adult, non-natal males and dominate them in social encounters; their external genitalia also are highly masculinized. In many vertebrates, the arginine vasopressin (VP) innervation of the forebrain, particularly that of the lateral septum, is associated with social behaviors such as aggression and dominance. Here, we used immunohistochemistry to examine the distribution of VP cells and fibers in the forebrains of adult spotted hyenas. We find the expected densely staining VP immunoreactive (VP-ir) neurons in the paraventricular and supraoptic nuclei, as well as an unusually extensive distribution of magnocelluar VP-ir neurons in accessory regions. A small number of VP-ir cell bodies are present in the suprachiasmatic nucleus and bed nucleus of the stria terminalis; however, there are extensive VP-ir fiber networks in presumed projection areas of these nuclei, for example, the subparaventricular zone and lateral septum, respectively. No significant sex differences were detected in the density of VP-ir fibers in any area examined. In the lateral septum, however, marked variability was observed. Intact females exhibited a dense fiber network, as did two of the four males examined; the two other males had almost no VP-ir septal fibers. This contrasts with findings in many other vertebrate species, in which VP innervation of the lateral septum is consistently greater in males than in females.

  12. Learning and the motivation to eat: forebrain circuitry.

    PubMed

    Petrovich, Gorica D

    2011-09-26

    Appetite and eating are not only controlled by energy needs, but also by extrinsic factors that are not directly related to energy balance. Environmental signals that acquire motivational properties through associative learning-learned cues-can override homeostatic signals and stimulate eating in sated states, or inhibit eating in states of hunger. Such influences are important, as environmental factors are believed to contribute to the increased susceptibility to overeating and the rise in obesity in the developed world. Similarly, environmental and social factors contribute to the onset and maintenance of anorexia nervosa and other eating disorders through interactions with the individual genetic background. Nevertheless, how learning enables environmental signals to control feeding, and the underlying brain mechanisms are poorly understood. We developed two rodent models to study how learned cues are integrated with homeostatic signals within functional forebrain networks, and how these networks are modulated by experience. In one model, a cue previously paired with food when an animal was hungry induces eating in sated rats. In the other model, food-deprived rats inhibit feeding when presented with a cue that signals danger, a tone previously paired with footshocks. Here evidence will be reviewed that the forebrain network formed by the amygdala, lateral hypothalamus and medial prefrontal cortex mediates cue-driven feeding, while a parallel amygdalar circuitry mediates suppression of eating by the fear cue. Findings from the animal models may be relevant for understanding aspects of human appetite and eating, and maladaptive mechanisms that could lead to overeating and anorexia. PMID:21549730

  13. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons

    PubMed Central

    Hawryluk, J. M.; Ferrari, L. L.; Keating, S. A.

    2012-01-01

    Adenosine has been proposed as an endogenous homeostatic sleep factor that accumulates during waking and inhibits wake-active neurons to promote sleep. It has been specifically hypothesized that adenosine decreases wakefulness and promotes sleep recovery by directly inhibiting wake-active neurons of the basal forebrain (BF), particularly BF cholinergic neurons. We previously showed that adenosine directly inhibits BF cholinergic neurons. Here, we investigated 1) how adenosine modulates glutamatergic input to BF cholinergic neurons and 2) how adenosine uptake and adenosine metabolism are involved in regulating extracellular levels of adenosine. Our experiments were conducted using whole cell patch-clamp recordings in mouse brain slices. We found that in BF cholinergic neurons, adenosine reduced the amplitude of AMPA-mediated evoked glutamatergic excitatory postsynaptic currents (EPSCs) and decreased the frequency of spontaneous and miniature EPSCs through presynaptic A1 receptors. Thus we have demonstrated that in addition to directly inhibiting BF cholinergic neurons, adenosine depresses excitatory inputs to these neurons. It is therefore possible that both direct and indirect inhibition may synergistically contribute to the sleep-promoting effects of adenosine in the BF. We also found that blocking the influx of adenosine through the equilibrative nucleoside transporters or inhibiting adenosine kinase and adenosine deaminase increased endogenous adenosine inhibitory tone, suggesting a possible mechanism through which adenosine extracellular levels in the basal forebrain are regulated. PMID:22357797

  14. Treatment of VGKC complex antibody-associated limbic encephalitis: a systematic review.

    PubMed

    Radja, Guirindhra Koumar; Cavanna, Andrea Eugenio

    2013-01-01

    Limbic encephalitis is an autoimmune neuropsychiatric condition characterized by subacute cognitive symptoms, seizures, and affective changes. Although limbic encephalitis is usually caused by an immune reaction secondary to neoplasms, different types of potentially treatable non-paraneoplastic limbic encephalitis (nPLE) have recently been described. In particular, published studies have reported variable responses to immunosuppressive therapy in Voltage-Gated Potassium Channel (VGKC) complex antibody-associated nPLE. This systematic literature review found that the most significant improvements were reported by patients presenting with affective symptoms and consistent neuroradiological changes. In these patients, improved clinical outcomes correlated with the largest decreases in antibody titers.

  15. The Sensory Impact of Nicotine on Noradrenergic and Dopaminergic Neurons of the Nicotine Reward - Addiction Neurocircuitry

    PubMed Central

    Rose, Jed E; Dehkordi, Ozra; Manaye, Kebreten F; Millis, Richard M; Cianaki, Salman Ameri; Jayam-Trouth, Annapurni

    2016-01-01

    The sensory experience of smoking is a key component of nicotine addiction known to result, in part, from stimulation of nicotinic acetylcholine receptors (nAChRs) at peripheral sensory nerve endings. Such stimulation of nAChRs is followed by activation of neurons at multiple sites in the mesocorticolimbic reward pathways. However, the neurochemical profiles of CNS cells that mediate the peripheral sensory impact of nicotine remain unknown. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by nicotine (NIC, 40 μg/kg, IP) and by a peripherally-acting analog of nicotine, nicotine pyrrolidine methiodide (NIC-PM, 30 μg/kg, IP). Sequential double-labelling was then performed to determine whether noradrenergic and dopaminergic neurons of the nicotine reward-addiction circuitry were primary targets of NIC and NIC-PM. Double-labelling of NIC and/or NIC-PM activated c-Fos immunoreactive cells with tyrosine hydroxylase (TH) showed no apparent c-Fos expression by the dopaminergic cells of the ventral tegmental area (VTA). With the exception of sparse numbers of TH immunoreactive D11 cells, dopamine-containing neurons in other areas of the reward-addiction circuitry, namely periaqueductal gray, and dorsal raphe, were also devoid of c-Fos immunoreactivity. Noradrenergic neurons of locus coeruleus (LC), known to innervate VTA, were activated by both NIC and NIC-PM. These results demonstrate that noradrenergic neurons of LC are among the first structures that are stimulated by single acute IP injection of NIC and NIC-PM. Dopaminergic neurons of VTA and other CNS sites, did not respond to acute IP administration of NIC or NIC-PM by induction of c-Fos. PMID:27347434

  16. Glucocorticoid enhancement of dorsolateral striatum-dependent habit memory requires concurrent noradrenergic activity.

    PubMed

    Goodman, J; Leong, K-C; Packard, M G

    2015-12-17

    Previous findings indicate that post-training administration of glucocorticoid stress hormones can interact with the noradrenergic system to enhance consolidation of hippocampus- or amygdala-dependent cognitive/emotional memory. The present experiments were designed to extend these findings by examining the potential interaction of glucocorticoid and noradrenergic mechanisms in enhancement of dorsolateral striatum (DLS)-dependent habit memory. In experiment 1, different groups of adult male Long-Evans rats received training in two DLS-dependent memory tasks. In a cued water maze task, rats were released from various start points and were reinforced to approach a visibly cued escape platform. In a response-learning version of the water plus-maze task, animals were released from opposite starting positions and were reinforced to make a consistent egocentric body-turn to reach a hidden escape platform. Immediately post-training, rats received peripheral injections of the glucocorticoid corticosterone (1 or 3 mg/kg) or vehicle solution. In both tasks, corticosterone (3 mg/kg) enhanced DLS-dependent habit memory. In experiment 2, a separate group of animals received training in the response learning version of the water plus-maze task and were given peripheral post-training injections of corticosterone (3 mg/kg), the β-adrenoreceptor antagonist propranolol (3 mg/kg), corticosterone and propranolol concurrently, or control vehicle solution. Corticosterone injections again enhanced DLS-dependent memory, and this effect was blocked by concurrent administration of propranolol. Propranolol administration by itself (3 mg/kg) did not influence DLS-dependent memory. Taken together, the findings indicate an interaction between glucocorticoid and noradrenergic mechanisms in DLS-dependent habit memory. Propranolol administration may be useful in treating stress-related human psychopathologies associated with a dysfunctional DLS-dependent habit memory system.

  17. Are NPY and enkephalins costored in the same noradrenergic neurons and vesicles?

    PubMed

    Kong, J Y; Thureson-Klein, A K; Klein, R L

    1990-01-01

    Separate studies show that NPY and enkephalins are widely distributed in peripheral noradrenergic neurons. In the present study, the subcellular costorage and release in response to intense sympathetic stimulation and reserpine at near therapeutic doses (0.05 mg/kg every other day) were examined. In young pig arteries and vas deferens, enkephalin and D beta H immunofluorescence show consistent but not total overlap. Also NPY is colocalized with D beta H in many fibers but with VIP (nonnoradrenergic) in others. Ultrastructural immunogold labeling indicates that individual terminals contain large dense cored vesicles (LDVs) which store either NPY or enkephalins, even though costorage of both peptides occurs. Some LDVs costore NPY and VIP, especially in the middle cerebral artery and in the lamina propria of vas deferens. Acute CNS ischemia depletes enkephalins and norepinephrine in all tissues analyzed without parallel loss of NPY. Reserpine depletes norepinephrine 70-85% but does not deplete NPY or enkephalins. The latter is in contrast to commonly used high doses known to produce nonspecific, detergent-like effects. In fact, low doses of reserpine induce a time-dependent new synthesis and processing of NPY precursor peptides in vas deferns. Contrasting effects of reserpine on NPY and enkephalin contents, new synthesis and apparent processing, and a differential response to acute CNS ischemia were found in every tissue studied. Activation of precursor neuropeptide processing occurred immediately upon intense sympathetic stimulation in most tissues. Dual localization of NPY in noradrenergic and nonnoradrenergic fibers and differences in subcellular LDV storage help explain why enkephalin correlates better than NPY with norepinephrine loss in response to acute CNS ischemia. Furthermore, the costorage of NPY and enkephalins in distinct subpopulations of noradrenergic fibers, which varies according to tissue, is likely to be under separate CNS control.

  18. The antinociceptive effect of mirtazapine in mice is mediated through serotonergic, noradrenergic and opioid mechanisms.

    PubMed

    Schreiber, Shaul; Rigai, Tova; Katz, Yeshayahu; Pick, Chaim G

    2002-09-30

    The antinociceptive effects of the noradrenergic and specific serotonergic antidepressant (NaSSA) drug mirtazapine and its interaction with various opioid receptor subtypes were evaluated in mice with a hotplate analgesicmeter. Mirtazapine elicited an antinociceptive effect in a dose-dependent manner following doses from 1 to 7.5mg/kg. As the mirtazapine dose increased beyond 10mg/kg latencies returned to baseline, yielding a biphasic dose-response curve. The effect of opioid, adrenergic, and serotonergic receptor antagonists was examined as to their ability to block mirtazapine antinociception. Mirtazapine (at 10mg/kg)-induced antinociception was significantly inhibited by naloxone, nor-BNI, and naltrindole, but neither by beta-FNA nor by naloxonazine, implying the involvement of kappa(1)- and delta-opioid mechanisms. When adrenergic and serotonergic antagonists were used, both metergoline and yohimbine, decreased antinociception elicited by mirtazapine, implying a combined serotonergic and noradrenergic mechanism of antinociception. When mirtazapine was administered together with various agonists of the opioid receptor subtypes, it significantly potentiated antinociception mediated only by kappa(3)-opioid receptor subtypes. Summing up these results we conclude that the antinociceptive effect of mirtazapine is mainly influenced by the kappa(3)-opioid receptor subtype combined with both serotonergic and noradrenergic receptors. These results suggest a potential use of mirtazapine in the management of some pain syndromes, and raise questions regarding a possible indirect opioid-dependence induced by mirtazapine. However, further research is needed in order to establish both the exact clinical indications and the effective doses of mirtazapine when prescribed for pain. PMID:12372565

  19. Behavioral reactivity to a noradrenergic challenge after chronic oral methylphenidate (ritalin) in rats.

    PubMed

    Leblanc-Duchin, Denise; Taukulis, Harald K

    2004-12-01

    Methylphenidate (Ritalin) is routinely used for the treatment of attention-deficit/hyperactivity disorder (ADHD). It is a psychomotor stimulant with pharmacodynamics similar to those established for cocaine and amphetamine with primary activation of the noradrenergic and dopaminergic systems. Long-term exposure to psychostimulants including methylphenidate (MPD) is believed to result in enduring functional changes along both these pathways and various behaviors mediated by these systems may be affected. In the present experiment, the effects of intermittent oral administration of methylphenidate (10 mg/kg) to rats over a 4-week period were subsequently (after a drug washout interval) assessed in three animal models sensitive to noradrenergic manipulation: the elevated plus-maze, predator odor avoidance, and social interaction tests. The behaviors of methylphenidate-experienced animals were compared with untreated controls. Thirty minutes prior to testing, half the animals with each of these histories received an injection of yohimbine hydrochloride (2.0 mg/kg), an alpha2-adrenoreceptor blocker intended to evoke noradrenergic system activation, while the remainder received a saline injection. Yohimbine was expected to reduce both exploration of novel stimuli and interaction with conspecifics, and it was predicted that methylphenidate would potentiate these effects. Relative to saline-tested controls, rats that received both the methylphenidate treatment and the yohimbine challenge exhibited the least exploration in the predator odor test and the lowest duration of interaction with an unfamiliar conspecific partner in the social interaction test. The behavior patterns observed in this group of rats suggest heightened emotionality and defensiveness that are typically seen when rats are administered drugs known to be anxiogenic in human subjects. In the plus-maze, exploratory locomotor activities remained unaltered by either drug while yohimbine decreased risk

  20. Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide

    SciTech Connect

    Gross-Isseroff, R.; Dillon, K.A.; Fieldust, S.J.; Biegon, A. )

    1990-11-01

    In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measured by autoradiography.

  1. Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer's Disease Patients.

    PubMed

    Kerbler, Georg M; Nedelska, Zuzana; Fripp, Jurgen; Laczó, Jan; Vyhnalek, Martin; Lisý, Jiří; Hamlin, Adam S; Rose, Stephen; Hort, Jakub; Coulson, Elizabeth J

    2015-01-01

    The basal forebrain degenerates in Alzheimer's disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants' ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy.

  2. Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer's Disease Patients.

    PubMed

    Kerbler, Georg M; Nedelska, Zuzana; Fripp, Jurgen; Laczó, Jan; Vyhnalek, Martin; Lisý, Jiří; Hamlin, Adam S; Rose, Stephen; Hort, Jakub; Coulson, Elizabeth J

    2015-01-01

    The basal forebrain degenerates in Alzheimer's disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants' ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy. PMID:26441643

  3. Visualization of growth factor receptor sites in rat forebrain

    SciTech Connect

    Quirion, R.; Araujo, D.; Nair, N.P.; Chabot, J.G.

    1988-01-01

    It is now known that various growth factors may also act in the central nervous system. Among them, it has recently been shown that epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) may possess trophic effects in the mammalian brain. We report here on the respective autoradiographic distribution of (/sup 125/I)EGF and (/sup 125/I)IGF-I receptor binding sites in the rat brain, both during ontogeny and in adulthood. It appears that (/sup 125/I)EGF sites are mostly found in the rat forebrain during brain development. On the other hand, (/sup 125/I)IGF-I sites are more widely distributed both during ontogeny and in adulthood. These results reveal the plasticity of the expression of EGF and IGF-I receptor sites in the mammalian brain. This could be relevant for the respective role of these two growth factors in the development and maintenance of neuronal function.

  4. Intracellular calcium and survival of tadpole forebrain cells in anoxia.

    PubMed

    Hedrick, Michael S; Fahlman, Christian S; Bickler, Philip E

    2005-02-01

    The frog brain survives hypoxia with a slow loss of energy charge and ion homeostasis. Because hypoxic death in most neurons is associated with increases in intracellular calcium ([Ca2+]i), we examined the relationship between [Ca2+]i and survival of a mixed population of isolated cells from the forebrain of North American bullfrog Rana catesbeiana tadpoles. Forebrain cells from stage V-XV tadpoles were isolated by enzymatic digestion and loaded with one of three different calcium indicators (Fura-2, Fura 2-FF and BTC) to provide estimates of [Ca2+]i accurate at low and high [Ca2+]i. Propidium iodide (PI) fluorescence was used as an indicator of cell viability. Cells were exposed to anoxia (100% N2) and measurements of [Ca2+]i and cell survival made from 1 h to 18 h. Intracellular [Ca2+] increased significantly after 3-6 h anoxia (P<0.05), regardless of the type of Ca2+ indicator used; however, there were substantial differences in the measurements of [Ca2+]i with the different indicators, reflecting their varying affinities for Ca2+. Resting [Ca2+]i was approximately 50 nmol l(-1) and increased to about 9-30 micromol l(-1) after 4-6 h anoxia. The significant increase in [Ca2+]i during anoxia was not associated with significant increases in cell death, with 85-95% survival over this time period. Cells exposed to anoxia for 18 h, or those made anoxic for 4-6 and reoxygenated for 12 h to 16 h, had survival rates greater than 70%, but survival was significantly less than normoxic controls. These results indicate that large increases in [Ca2+]i are not necessarily associated with hypoxic cell death in vertebrate brain cells. PMID:15695760

  5. Diffusion-weighted magnetic resonance imaging detection of basal forebrain cholinergic degeneration in a mouse model.

    PubMed

    Kerbler, Georg M; Hamlin, Adam S; Pannek, Kerstin; Kurniawan, Nyoman D; Keller, Marianne D; Rose, Stephen E; Coulson, Elizabeth J

    2013-02-01

    Loss of basal forebrain cholinergic neurons is an early and key feature of Alzheimer's disease, and magnetic resonance imaging (MRI) volumetric measurement of the basal forebrain has recently gained attention as a potential diagnostic tool for this condition. The aim of this study was to determine whether loss of basal forebrain cholinergic neurons underpins changes which can be detected through diffusion MRI using diffusion tensor imaging (DTI) and probabilistic tractography in a mouse model. To cause selective basal forebrain cholinergic degeneration, the toxin saporin conjugated to a p75 neurotrophin receptor antibody (mu-p75-SAP) was used. This resulted in ~25% loss of the basal forebrain cholinergic neurons and significant loss of terminal cholinergic projections in the hippocampus, as determined by histology. To test whether lesion of cholinergic neurons caused basal forebrain, hippocampal, or whole brain atrophy, we performed manual segmentation analysis, which revealed no significant atrophy in lesioned animals compared to controls (Rb-IgG-SAP). However, analysis by DTI of the basal forebrain area revealed a significant increase in fractional anisotropy (FA; +7.7%), mean diffusivity (MD; +6.1%), axial diffusivity (AD; +8.5%) and radial diffusivity (RD; +4.0%) in lesioned mice compared to control animals. These parameters strongly inversely correlated with the number of choline acetyl transferase-positive neurons, with FA showing the greatest association (r(2)=0.72), followed by MD (r(2)=0.64), AD (r(2)=0.64) and RD (r(2)=0.61). Moreover, probabilistic tractography analysis of the septo-hippocampal tracts originating from the basal forebrain revealed an increase in streamline MD (+5.1%) and RD (+4.3%) in lesioned mice. This study illustrates that moderate loss of basal forebrain cholinergic neurons (representing only a minor proportion of all septo-hippocampal axons) can be detected by measuring either DTI parameters of the basal forebrain nuclei or

  6. In vivo magnetic resonance imaging of the human limbic white matter.

    PubMed

    Mori, Susumu; Aggarwal, Manisha

    2014-01-01

    The limbic system mediates memory, behavior, and emotional output in the human brain, and is implicated in the pathology of Alzheimer's disease and a wide spectrum of related neurological disorders. In vivo magnetic resonance imaging (MRI) of structural components comprising the limbic system and their interconnections via white matter pathways in the human brain has helped define current understanding of the limbic model based on the classical circuit proposed by Papez. MRI techniques, including diffusion MR imaging, provide a non-invasive method to characterize white matter tracts of the limbic system, and investigate pathological changes that affect these pathways in clinical settings. This review focuses on delineation of the anatomy of major limbic tracts in the human brain, namely, the cingulum, the fornix and fimbria, and the stria terminalis, based on in vivo MRI contrasts. The detailed morphology and intricate trajectories of these pathways that can be identified using relaxometry-based and diffusion-weighted MRI provide an important anatomical reference for evaluation of clinical disorders commonly associated with limbic pathology.

  7. Central noradrenergic mechanisms and the acute stress response during painful stimulation.

    PubMed

    Chapman, C Richard; Bradshaw, David H; Donaldson, Gary W; Jacobson, Robert C; Nakamura, Yoshio

    2014-12-01

    Events that threaten tissue integrity including noxious stimulation activate central noradrenergic circuits, particularly locus coeruleus and its projections. Recent advances in theory hold that an adaptive, defensive shift in brain activity takes place in response to threat. In principle, this shift may accentuate the autonomic and central biomarkers of the perception of painful events and the experience of pain itself. We have examined the effects of an alpha-2 agonist on pupil dilation responses, skin conductance responses, near field somatosensory evoked potentials and pain reports in normal volunteers undergoing repeated trials of painful fingertip stimulation delivered at low, medium and high intensities. In a double-blinded study, 114 healthy male and female volunteers underwent repeated noxious stimulation under baseline, placebo and active drug conditions where the active drug was the alpha-2 agonist tizanidine 4 mg. In contrast to baseline and placebo conditions, tizanidine 4 mg significantly reduced the magnitudes of the mean pupil dilation response, the mean skin conductance response, the mean near field somatosensory evoked potential peak-to-peak amplitude and the mean pain intensity rating. Stimulus intensity significantly altered all three biomarkers and the pain report in a graded fashion. There were no sex differences. These findings support the hypotheses that painful events activate central noradrenergic circuits, and that these circuits play a role in the autonomic and central arousal associated with pain. PMID:25122041

  8. Noradrenergic and cholinergic modulation of late ERP responses to deviant stimuli.

    PubMed

    Brown, Stephen B R E; van der Wee, Nic J A; van Noorden, Martijn S; Giltay, Erik J; Nieuwenhuis, Sander

    2015-12-01

    Researchers have proposed several hypotheses about the neuromodulator systems involved in generating P3 components of the ERP. To test some of these hypotheses, we conducted a randomized placebo-controlled crossover study in which we investigated how the late positive ERP response to deviant stimuli is modulated by (a) clonidine, an α2 agonist that attenuates baseline noradrenergic activity; and (b) scopolamine, a muscarinic antagonist of acetylcholine receptors. We collected EEG data from 18 healthy volunteers during the performance of an auditory oddball task with several active and passive task conditions. We then used temporospatial principal component analysis (PCA) to decompose the ERP waveforms. The PCA revealed two distinct late positive ERP components: the classic parietal P300 and the frontal novelty P3. Statistical analysis of the temporospatial factor scores indicated that in most conditions the amplitude of the classic P300 was increased by clonidine and scopolamine. In contrast, the amplitude of the novelty P3 was decreased by both drugs. The similar pattern of results for clonidine and scopolamine probably reflects the strong interactions between the noradrenergic and cholinergic systems. The results, in combination with previous pharmacological studies, suggest a critical role for both neuromodulator systems in the generation of the P300 and the novelty P3.

  9. Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset

    PubMed Central

    Hirao, Kenzo; Eto, Kei; Nakahata, Yoshihisa; Ishibashi, Hitoshi; Nagai, Taku

    2015-01-01

    Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system. PMID:26203112

  10. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia

    PubMed Central

    Vazey, Elena M.; Aston-Jones, Gary

    2014-01-01

    Mechanisms driving emergence from general anesthesia are not well understood. The noradrenergic brain nucleus locus coeruleus (LC) modulates arousal and may have effects on general anesthetic state. Using virally delivered designer receptors to specifically control LC norepinephrine (NE) neurons, we investigated the causal relationship between LC-NE activity and general anesthetic state under isoflurane. Selective activation of LC-NE neurons produced cortical electroencephalography (EEG) activation under continuous deep isoflurane anesthesia. Specifically, LC-NE activation reduced burst suppression in EEG and drove a rightward shift in peak EEG frequency with reduced δ EEG power and increased θ EEG power, measures of cortical arousal. LC-NE activation also accelerated behavioral emergence from deep isoflurane anesthesia; this was prevented with β or α1 noradrenergic antagonists. Moreover, these adrenoreceptor antagonists alone were sufficient to markedly potentiate anesthetic duration when delivered centrally or peripherally. Induction of anesthesia also was retarded by LC-NE activation. Our results demonstrate that the LC-NE system strongly modulates the anesthetic state, and that changes in LC-NE neurotransmission alone can affect the emergence from isoflurane general anesthesia. Taken together, these findings extend our understanding of mechanisms underlying general anesthesia and cortical arousal, and have significant implications for optimizing the clinical safety and management of general anesthesia. PMID:24567395

  11. A shift of paradigm: from noradrenergic to dopaminergic modulation of learning?

    PubMed

    Breitenstein, Caterina; Flöel, Agnes; Korsukewitz, Catharina; Wailke, Stefanie; Bushuven, Stefan; Knecht, Stefan

    2006-10-25

    d-Amphetamine coupled with behavioral training has been effective for improving functional recovery after stroke. d-amphetamine acts on multiple brain transmitter systems, but the recovery enhancing effect has been attributed to its noradrenergic actions. Another potent modulator of learning is dopamine, which may also enhance stroke recovery in humans. Based on data from previous studies of our group, we compared the learning enhancing effects of d-amphetamine with a more selective dopaminergic substance (levodopa) in identical protocols. Using a prospective, randomized, double-blind, placebo-controlled design, we had taught 60 male healthy subjects a miniature lexicon of 50 concrete nouns over the course of five consecutive training days using an associative learning principle. Subjects had received either d-amphetamine (0.25 mg/kg), levodopa/carbidopa (fixed dose of 100/25 mg), or placebo 90 min prior to training on each of the 5 days. Novel word learning was significantly enhanced in both the d-amphetamine and levodopa groups as compared to the placebo group. The learning superiority was maintained at the two re-assessments (1 week and 1 month post training). Both d-amphetamine and levodopa are thus potent drugs in enhancing learning in humans. We here discuss why the efficiency of both d-amphetamine and levodopa may be related to dopaminergic rather than noradrenergic actions. PMID:16815467

  12. Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset.

    PubMed

    Hirao, Kenzo; Eto, Kei; Nakahata, Yoshihisa; Ishibashi, Hitoshi; Nagai, Taku; Nabekura, Junichi

    2015-09-01

    Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system.

  13. Neurodevelopment Genes in Lampreys Reveal Trends for Forebrain Evolution in Craniates

    PubMed Central

    Guérin, Adèle; d'Aubenton-Carafa, Yves; Marrakchi, Emna; Da Silva, Corinne; Wincker, Patrick; Mazan, Sylvie; Rétaux, Sylvie

    2009-01-01

    The forebrain is the brain region which has undergone the most dramatic changes through vertebrate evolution. Analyses conducted in lampreys are essential to gain insight into the broad ancestral characteristics of the forebrain at the dawn of vertebrates, and to understand the molecular basis for the diversifications that have taken place in cyclostomes and gnathostomes following their splitting. Here, we report the embryonic expression patterns of 43 lamprey genes, coding for transcription factors or signaling molecules known to be involved in cell proliferation, stemcellness, neurogenesis, patterning and regionalization in the developing forebrain. Systematic expression patterns comparisons with model organisms highlight conservations likely to reflect shared features present in the vertebrate ancestors. They also point to changes in signaling systems –pathways which control the growth and patterning of the neuroepithelium-, which may have been crucial in the evolution of forebrain anatomy at the origin of vertebrates. PMID:19399187

  14. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location

    PubMed Central

    Lai, Meizan; Hughes, Ethan G.; Peng, Xiaoyu; Zhou, Lei; Gleichman, Amy J.; Shu, Huidy; Matà, Sabrina; Kremens, Daniel; Vitaliani, Roberta; Geschwind, Michael D.; Bataller, Luis; Kalb, Robert G.; Davis, Rebecca; Graus, Francesc; Lynch, David R.; Balice-Gordon, Rita; Dalmau, Josep

    2009-01-01

    Background Limbic encephalitis (LE) frequently associates with antibodies to cell surface antigens. Characterization of these antigens is important because it facilitates the diagnosis of those disorders that are treatment-responsive. We report a novel antigen of LE and the effect of patients' antibodies on neuronal cultures. Methods Clinical analysis of 10 patients with LE. Immunoprecipitation and mass spectrometry were used to identify the antigens. HEK293 cells expressing the antigens were used in immunocytochemistry and ELISA. The effect of patients' antibodies on cultures of live rat hippocampal neurons was determined with confocal microscopy. Results Median age was 60 years (38-87); 9 were women. Seven had tumors of the lung, breast or thymus. Nine patients responded to immunotherapy or oncological therapy but neurologic relapses, without tumor recurrence, were frequent and influenced the long-term outcome. One untreated patient died of LE. All patients had antibodies against neuronal cell surface antigens that by immunoprecipitation were found to be the GluR1 and GluR2 subunits of the AMPA receptor (AMPAR). HEK293 cells expressing GluR1/2 reacted with all patients' sera or CSF, providing a diagnostic test for the disorder. Application of antibodies to cultures of neurons significantly decreased the number of GluR2-containing AMPAR clusters at synapses with a smaller decrease in overall AMPAR cluster density; these effects were reversed after antibody removal. Conclusions Antibodies to GluR1/2 associate with LE that is often paraneoplastic, treatment-responsive, and has a tendency to relapse. Our findings support an antibody-mediated pathogenesis in which patients' antibodies alter the synaptic localization and number of AMPAR. PMID:19338055

  15. Psychiatric implications of altered limbic-hypothalamic-pituitary-adrenocortical activity.

    PubMed

    Holsboer, F

    1989-01-01

    Hormones of the limbic-hypothalamic-pituitary-adrenocortical (LHPA) system are much involved in central nervous system regulation. The major LHPA neuropeptides, corticotropin-releasing hormone (CRH), vasopressin (AVP) and corticotropin (ACTH) do not only coordinate the neuroendocrine response to stress, but also induce behavioral adaptation. Transcription and post-translational processing of these neuropeptides is regulated by corticosteroids secreted from the adrenal cortex after stimulation by ACTH and other proopiomelanocortin derived peptides. These steroids play a key role as regulators of cell development, homeostatic maintenance and adaptation to environmental challenges. They execute vitally important actions through genomic effects resulting in altered gene expression and nongenomic effects leading to altered neuronal excitability. Since excessive secretory activity of this particular neuroendocrine system is part of an acute stress response or depressive symptom pattern, there is good reason to suspect that central actions of these steroids and peptides are involved in pathophysiology determining the clinical phenotype, drug response and relapse liability. This overview summarizes the clinical neuroendocrine investigations of the author and his collaborators, while they worked at the Department of Psychiatry in Mainz. The major conclusions from this work were: (1) aberrant hormonal responses to challenges with dexamethasone, ACTH or CRH are reflecting altered brain physiology in affective illness and related disorders; (2) hormones of the LHPA axis influence also nonendocrine behavioral systems such as sleep EEG; (3) physiologically significant interactions exist between LHPA hormones, the thyroid, growth hormone, gonadal and other neuroendocrine systems; (4) hormones of the LHPA axis constitute a bidirectional link between immunoregulation and brain activity; and (5) future psychiatric research topics such as molecular genetics of affective disorders

  16. Forebrain glucocorticoid receptor gene deletion attenuates behavioral changes and antidepressant responsiveness during chronic stress.

    PubMed

    Jacobson, Lauren

    2014-10-01

    Stress is an important risk factor for mood disorders. Stress also stimulates the secretion of glucocorticoids, which have been found to influence mood. To determine the role of forebrain glucocorticoid receptors (GR) in behavioral responses to chronic stress, the present experiments compared behavioral effects of repeated social defeat in mice with forebrain GR deletion and in floxed GR littermate controls. Repeated defeat produced alterations in forced swim and tail suspension immobility in floxed GR mice that did not occur in mice with forebrain GR deletion. Defeat-induced changes in immobility in floxed GR mice were prevented by chronic antidepressant treatment, indicating that these behaviors were dysphoria-related. In contrast, although mice with forebrain GR deletion exhibited antidepressant-induced decreases in tail suspension immobility in the absence of stress, this response did not occur in mice with forebrain GR deletion after defeat. There were no marked differences in plasma corticosterone between genotypes, suggesting that behavioral differences depended on forebrain GR rather than on abnormal glucocorticoid secretion. Defeat-induced gene expression of the neuronal activity marker c-fos in the ventral hippocampus, paraventricular thalamus and lateral septum correlated with genotype-related differences in behavioral effects of defeat, whereas c-fos induction in the nucleus accumbens and central and basolateral amygdala correlated with genotype-related differences in behavioral responses to antidepressant treatment. The dependence of both negative (dysphoria-related) and positive (antidepressant-induced) behaviors on forebrain GR is consistent with the contradictory effects of glucocorticoids on mood, and implicates these or other forebrain regions in these effects.

  17. Forebrain glucocorticoid receptor gene deletion attenuates behavioral changes and antidepressant responsiveness during chronic stress

    PubMed Central

    Jacobson, Lauren

    2014-01-01

    Stress is an important risk factor for mood disorders. Stress also stimulates the secretion of glucocorticoids, which have been found to influence mood. To determine the role of forebrain glucocorticoid receptors (GR) in behavioral responses to chronic stress, the present experiments compared behavioral effects of repeated social defeat in mice with forebrain GR deletion and in floxed GR littermate controls. Repeated defeat produced alterations in forced swim and tail suspension immobility in floxed GR mice that did not occur in mice with forebrain GR deletion. Defeat-induced changes in immobility in floxed GR mice were prevented by chronic antidepressant treatment, indicating that these behaviors were dysphoria-related. In contrast, although mice with forebrain GR deletion exhibited antidepressant-induced decreases in tail suspension immobility in the absence of stress, this response did not occur in mice with forebrain GR deletion after defeat. There were no marked differences in plasma corticosterone between genotypes, suggesting that behavioral differences depended on forebrain GR rather than on abnormal glucocorticoid secretion. Defeat-induced gene expression of the neuronal activity marker c-fos in the ventral hippocampus, paraventricular thalamus and lateral septum correlated with genotype-related differences in behavioral effects of defeat, whereas c-fos induction in the nucleus accumbens and central and basolateral amygdala correlated with genotype-related differences in behavioral responses to antidepressant treatment. The dependence of both negative (dysphoria-related) and positive (antidepressant-induced) behaviors on forebrain GR is consistent with the contradictory effects of glucocorticoids on mood, and implicates these or other forebrain regions in these effects. PMID:25168761

  18. Exendin-4 reverts behavioural and neurochemical dysfunction in a pre-motor rodent model of Parkinson's disease with noradrenergic deficit.

    PubMed

    Rampersaud, N; Harkavyi, A; Giordano, G; Lever, R; Whitton, J; Whitton, Ps

    2012-12-01

    BACKGROUND AND PURPOSE Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss; however, the noradrenergic system exhibits degeneration as well. Noradrenergic deficit in PD may be responsible for certain non-motor symptoms of the pathology, including psychiatric disorders and cognitive decline. The aim of this study was to generate a pre-motor rodent model of PD with noradrenergic denervation, and to assess whether treatment with exendin-4 (EX-4), a glucagon-like peptide 1 receptor agonist, could reverse impairment exhibited by our model. EXPERIMENTAL APPROACH We generated a model of PD utilizing N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine and 6-hydroxydopamine to create partial lesions of both the noradrenergic and dopaminergic systems respectively. We then assessed the validity of our model using an array of behavioural paradigms and biochemical techniques. Finally, we administered EX-4 over a 1 week period to determine therapeutic efficacy. KEY RESULTS Our model exhibits anhedonia and decreased object recognition as indicated by a decrease in sucrose preference, increased immobility in the forced swim test and reduced novel object exploration. Tissue and extracellular dopamine and noradrenaline were reduced in the frontal cortex and striatum. TH+ cell counts decreased in the locus coeruleus and substantia nigra. Treatment with EX-4 reversed behavioural impairment and restored extracellular/tissue levels of both dopamine and noradrenaline and TH+ cell counts. CONCLUSION AND IMPLICATIONS We conclude that early treatment with EX-4 may reverse certain neuropsychiatric dysfunction and restore dopamine and noradrenaline content.

  19. Adrenergic and noradrenergic innervation of the midbrain ventral tegmental area and retrorubral field: Prominent inputs from medullary homeostatic centers

    PubMed Central

    Mejías-Aponte, Carlos A; Drouin, Candice; Aston-Jones, Gary

    2009-01-01

    Adrenergic agents modulate the activity of midbrain ventral tegmental area (VTA) neurons. However, the sources of noradrenergic and adrenergic inputs are not well characterized. Immunostaining for dopamine beta-hydroxylase revealed fibers within dopamine (DA) neuron areas, with the highest density in the retrorubral field (A8 cell group), followed by the VTA (A10 cell group), and very few fibers within substantia nigra compacta. A less dense, but similar pattern of fibers was also found for the epinephrine marker, phenylethanolamine N-methyl transferase. Injection of the retrograde tracer wheat germ agglutinin-apo (inactivated) horseradish peroxidase conjugated to colloidal gold, or cholera toxin subunit b, revealed that the noradrenergic innervation of the A10 and A8 regions arise primarily from A1, A2, A5, and locus coeruleus neurons. Selective lesions of the ventral noradrenergic bundle confirmed a prominent innervation from A1 and A2 areas. Retrogradely labeled epinephrine neurons were found mainly in the C1 area. The identification of medullary noradrenergic and adrenergic afferents to DA neuron areas indicates new pathways for visceral-related inputs to reward-related areas in the midbrain. PMID:19295165

  20. Both a Nicotinic Single Nucleotide Polymorphism (SNP) and a Noradrenergic SNP Modulate Working Memory Performance when Attention Is Manipulated

    ERIC Educational Resources Information Center

    Greenwood, Pamela M.; Sundararajan, Ramya; Lin, Ming-Kuan; Kumar, Reshma; Fryxell, Karl J.; Parasuraman, Raja

    2009-01-01

    We investigated the relation between the two systems of visuospatial attention and working memory by examining the effect of normal variation in cholinergic and noradrenergic genes on working memory performance under attentional manipulation. We previously reported that working memory for location was impaired following large location precues,…

  1. Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice.

    PubMed

    Holloway, Benjamin B; Stornetta, Ruth L; Bochorishvili, Genrieta; Erisir, Alev; Viar, Kenneth E; Guyenet, Patrice G

    2013-11-27

    The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons.

  2. The integrity of the ventral noradrenergic bundle (VNAB) is not necessary for a normal neuroendocrine stress response.

    PubMed

    Castagné, V; Rivet, J M; Mormède, P

    1990-03-19

    The paraventricular nucleus of the hypothalamus (PVN) receives a dense noradrenergic innervation originating in the caudal brainstem and conveyed by the ventral noradrenergic bundle (VNAB). To evaluate the importance of this pathway, rats were bilaterally injected with 6-hydroxydopamine (6-OHDA) into the VNAB, posterior to the locus coeruleus to avoid the lesion of the dorsal noradrenergic system. These lesions reduced noradrenaline (NA) levels in the PVN by 60% without any significant change of NA levels in the cortex or of dopamine or serotonin in any part of the brain, indicating the specificity of the lesion. After one or three weeks, the neuroendocrine responses to stress were monitored. The secretion of adrenocorticotropic hormone (ACTH), corticosterone and prolactin were studied under basal conditions and after exposure to a novel environment. The activity of the sympathetic nervous system (SNS) was studied in catheterized rats. Plasma catecholamines were measured in basal conditions, and in response to gentle handling or exposure to footshocks. Apart from a transient increase of the adrenocortical axis activity which disappeared 3 weeks after surgery, the lesion did not change either basal levels of the hormones measured or their response to stress, indicating that the noradrenergic input to the PVN conveyed by the VNAB is not necessary for a normal neuroendocrine stress response to occur. PMID:2159362

  3. Projections of medullary and pontine noradrenergic neurons to the horizontal limb of the nucleus of diagonal band in the rat.

    PubMed

    Senatorov, V V; Renaud, L P

    1999-01-01

    Recent investigations in the rat have implicated a noradrenergic innervation to the horizontal nucleus of the diagonal band of Broca as a critical link in a neural circuit that conveys baroreceptor information centrally to inhibit the firing of vasopressin-secreting neurons in the hypothalamic supraoptic nucleus. In this study we used small intra-diagonal band injections of a retrograde tracer, rhodamine latex microspheres, in combination with tyrosine hydroxylase histochemistry to identify brainstem noradrenergic cells contributing to this innervation. In three cases where tracer injections were limited to the horizontal limb of the diagonal band, we observed 20-50 double-labelled neurons ipsilaterally in the dorsal part of the locus coeruleus (A6) and the caudal nucleus tractus solitarius (A2), and bilaterally in the caudal ventrolateral medulla (A1). Double-labelled neurons were also noted in the ventral tegmental area (dopaminergic A10 cell group). Although all major brainstem noradrenergic cell groups contribute fibers to the horizontal limb of the nucleus of diagonal band, data from physiological studies suggest that the noradrenergic A2 neurons in the nucleus tractus solitarius are the most likely pathway through which it receives this baroreceptor information.

  4. From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells.

    PubMed

    Lupo, Giuseppe; Bertacchi, Michele; Carucci, Nicoletta; Augusti-Tocco, Gabriella; Biagioni, Stefano; Cremisi, Federico

    2014-08-01

    Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy. PMID:24643740

  5. From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells.

    PubMed

    Lupo, Giuseppe; Bertacchi, Michele; Carucci, Nicoletta; Augusti-Tocco, Gabriella; Biagioni, Stefano; Cremisi, Federico

    2014-08-01

    Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.

  6. Ilex paraguariensis Promotes Orofacial Pain Relief After Formalin Injection: Involvement of Noradrenergic Pathway

    PubMed Central

    de Carvalho, Eudislaine Fonseca; de Oliveira, Simone Kobe; Nardi, Viviane Koepp; Gelinski, Tathiana Carla; Bortoluzzi, Marcelo Carlos; Maraschin, Marcelo; Nardi, Geisson Marcos

    2016-01-01

    Background: Drinking mate or chimarrão, a hot infusion of Ilex paraguariensis (ILEX) leaves, is a common habit in Southern South America that has a social and almost ritualistic role. It has been used as a stimulant beverage in South America and analgesic in regions of Argentina for treatment of headache and others painful inflammatory conditions such as arthritis and rheumatism. Objective: The aim of this study was to evaluate the pharmacological activity of I. paraguariensis infusion (ILEX) on orofacial nociception model induced by formalin, and study its mechanism of action. Materials and Methods: The analgesic effect of ILEX was assessed through writhing test, paw formalin test, paw edema induced by carrageenan, and orofacial pain induced by formalin. To study the action mechanism of ILEX, opioidergic, dopaminergic, nitrergic, and adrenergic pathways were investigated. Results: The high-performance liquid chromatography analysis of ILEX infusion revealed caffeine and theobromine. The treatment with ILEX reduced the number of writhing. However, it was effective neither in the formalin paw test nor in the paw edema induced by carrageenan. Different from formalin paw test, ILEX was able to reduce the orofacial reactivity to formalin in 31.8% (70.4 ± 2.5 s; first phase), and 20% (127.3 ± 18.9 s; second phase). The analgesic effect of ILEX results from the modulation of noradrenergic pathways since prazosin (α1-adrenoceptor antagonist, 0.15 mg/kg; intraperitoneal) reversed the analgesic effect of ILEX. Conclusions: The present report demonstrates that analgesic effect of ILEX in orofacial formalin test is due mainly to modulation of noradrenergic pathways. SUMMARY Ilex paraguariensis (ILEX) has been used as a stimulant beverage in South America and analgesic in regions of Argentina for the treatment of headache and others painful inflammatory conditions such arthritis and rheumatism.The aim of this study was to evaluate the pharmacological activity of ILEX on

  7. Stimulation of the noradrenergic system during memory formation impairs extinction learning but not the disruption of reconsolidation.

    PubMed

    Soeter, Marieke; Kindt, Merel

    2012-04-01

    The noradrenergic system plays a critical role in the 'consolidation' of emotional memory. If we are to target 'reconsolidation' in patients with anxiety disorders, the noradrenergic strengthening of fear memory should not impair the disruption of reconsolidation. In Experiment I, we addressed this issue using a differential fear conditioning procedure allowing selective reactivation of one of two fear associations. First, we strengthened fear memory by administering an α(2)-adrenergic receptor antagonist (ie, yohimbine HCl; double-blind placebo-controlled study) 30 min before acquisition (time for peak value yohimbine HCl <1 h). Next, the reconsolidation of one of the fear associations was manipulated by administering a β-adrenergic receptor antagonist (ie, propranolol HCl) 90 min before its selective reactivation (time for peak value propranolol HCl <2 h). In Experiment II, we administered propranolol HCl after reactivation of the memory to rule out a possible effect of the pharmacological manipulation on the memory retrieval itself. The excessive release of noradrenaline during memory formation not only delayed the process of extinction 48 h later, but also triggered broader fear generalization. Yet, the β-adrenergic receptor blocker during reconsolidation selectively 'neutralized' the fear-arousing aspects of the noradrenergic-strengthened memory and undermined the generalization of fear. We observed a similar reduction in fear responding when propranolol HCl was administered after reactivation of the memory. The present findings demonstrate the involvement of noradrenergic modulation in the formation as well as generalization of human fear memory. Given that the noradrenergic strengthening of fear memory impaired extinction learning but not the disruption of reconsolidation, our findings may have implications for the treatment of anxiety disorders. PMID:22169947

  8. Aberrant hippocampal neurogenesis after limbic kindling: Relationship to BDNF and hippocampal-dependent memory.

    PubMed

    Botterill, J J; Brymer, K J; Caruncho, H J; Kalynchuk, L E

    2015-06-01

    Seizures dramatically increase the number of adult generated neurons in the hippocampus. However, it is not known whether this effect depends on seizures that originate in specific brain regions or whether it is nonspecific to seizure activity regardless of origin. We used kindling of different brain sites to address this question. Rats received 99 kindling stimulations of the basolateral amygdala, dorsal hippocampus, or caudate nucleus over a 6-week period. After kindling, we counted the number of adult generated hippocampal neurons that were birth-dated with the proliferative marker bromodeoxyuridine (BrdU) to evaluate cell proliferation and survival under conditions of repeated seizures. Next, we counted the number of doublecortin immunoreactive (DCX-ir) cells and evaluated their dendritic complexity to determine if limbic and nonlimbic seizures have differential effects on neuronal maturation. We also quantified hippocampal brain-derived neurotrophin factor (BDNF) protein levels using an ELISA kit and assessed memory performance using a hippocampal-dependent fear conditioning paradigm. We found that limbic, but not nonlimbic, seizures dramatically increased hippocampal cell proliferation and the number of hilar-CA3 ectopic granule cells. Further, limbic kindling promoted dendritic outgrowth of DCX-ir cells and the number of DCX-ir cells containing basal dendrites. Limbic kindling also enhanced BDNF protein levels throughout the entire hippocampus and impaired the retrieval of fear memories. Collectively, our results suggest a relationship between limbic seizures, neurogenesis, BDNF protein, and cognition.

  9. Maternal sensitivity, infant limbic structure volume and functional connectivity: a preliminary study.

    PubMed

    Rifkin-Graboi, A; Kong, L; Sim, L W; Sanmugam, S; Broekman, B F P; Chen, H; Wong, E; Kwek, K; Saw, S-M; Chong, Y-S; Gluckman, P D; Fortier, M V; Pederson, D; Meaney, M J; Qiu, A

    2015-10-27

    Mechanisms underlying the profound parental effects on cognitive, emotional and social development in humans remain poorly understood. Studies with nonhuman models suggest variations in parental care affect the limbic system, influential to learning, autobiography and emotional regulation. In some research, nonoptimal care relates to decreases in neurogenesis, although other work suggests early-postnatal social adversity accelerates the maturation of limbic structures associated with emotional learning. We explored whether maternal sensitivity predicts human limbic system development and functional connectivity patterns in a small sample of human infants. When infants were 6 months of age, 20 mother-infant dyads attended a laboratory-based observational session and the infants underwent neuroimaging at the same age. After considering age at imaging, household income and postnatal maternal anxiety, regression analyses demonstrated significant indirect associations between maternal sensitivity and bilateral hippocampal volume at six months, with the majority of associations between sensitivity and the amygdala demonstrating similar indirect, but not significant results. Moreover, functional analyses revealed direct associations between maternal sensitivity and connectivity between the hippocampus and areas important for emotional regulation and socio-emotional functioning. Sensitivity additionally predicted indirect associations between limbic structures and regions related to autobiographical memory. Our volumetric results are consistent with research indicating accelerated limbic development in response to early social adversity, and in combination with our functional results, if replicated in a larger sample, may suggest that subtle, but important, variations in maternal care influence neuroanatomical trajectories important to future cognitive and emotional functioning.

  10. Maternal sensitivity, infant limbic structure volume and functional connectivity: a preliminary study

    PubMed Central

    Rifkin-Graboi, A; Kong, L; Sim, L W; Sanmugam, S; Broekman, B F P; Chen, H; Wong, E; Kwek, K; Saw, S-M; Chong, Y-S; Gluckman, P D; Fortier, M V; Pederson, D; Meaney, M J; Qiu, A

    2015-01-01

    Mechanisms underlying the profound parental effects on cognitive, emotional and social development in humans remain poorly understood. Studies with nonhuman models suggest variations in parental care affect the limbic system, influential to learning, autobiography and emotional regulation. In some research, nonoptimal care relates to decreases in neurogenesis, although other work suggests early-postnatal social adversity accelerates the maturation of limbic structures associated with emotional learning. We explored whether maternal sensitivity predicts human limbic system development and functional connectivity patterns in a small sample of human infants. When infants were 6 months of age, 20 mother–infant dyads attended a laboratory-based observational session and the infants underwent neuroimaging at the same age. After considering age at imaging, household income and postnatal maternal anxiety, regression analyses demonstrated significant indirect associations between maternal sensitivity and bilateral hippocampal volume at six months, with the majority of associations between sensitivity and the amygdala demonstrating similar indirect, but not significant results. Moreover, functional analyses revealed direct associations between maternal sensitivity and connectivity between the hippocampus and areas important for emotional regulation and socio-emotional functioning. Sensitivity additionally predicted indirect associations between limbic structures and regions related to autobiographical memory. Our volumetric results are consistent with research indicating accelerated limbic development in response to early social adversity, and in combination with our functional results, if replicated in a larger sample, may suggest that subtle, but important, variations in maternal care influence neuroanatomical trajectories important to future cognitive and emotional functioning. PMID:26506054

  11. LEVOMILNACIPRAN--A SUCCESSOR OF MILNACIPRAN WITH A HIGHER NORADRENERGIC SELECTIVITY.

    PubMed

    Zadka, Łukasz; Dziwota, Ewelina; Olajossy, Marcin

    2016-01-01

    A new antidepressant, levomilnacipran, is the levorotatory enantiomer of milnacipran. The drug belongs to selective serotonin-norepinephrine reuptake inhibitors (SNRI) and has the highest noradrenergic selectivity of all members of this group of antidepressants. Clinical trials have confirmed the effectiveness of levomilnacipran in the treatment of depression. The drug was placed on the US market in the form of prolonged-release capsules, which greatly simplifies the treatment of psychiatric patients. The safety of the drug is also higher than the safety of a racemate, resulting in a beneficial impact on the therapeutic effect. In this paper we present current information on the pharmacological and clinical properties of the newest antidepressant--levomilnacipran. PMID:27180420

  12. Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex

    PubMed Central

    Martins, Ana Raquel O.; Froemke, Robert C.

    2015-01-01

    The cerebral cortex is plastic and represents the world according to the significance of sensory stimuli. However, cortical networks are embodied within complex circuits including neuromodulatory systems such as the noradrenergic locus coeruleus, providing information about internal state and behavioral relevance. While norepinephrine is important for cortical plasticity, it is unknown how modulatory neurons themselves respond to changes of sensory input. Here we examine how locus coeruleus neurons are modified by experience, and the consequences of locus coeruleus plasticity on cortical representations and sensory perception. We made whole-cell recordings from rat locus coeruleus and primary auditory cortex (AI), pairing sounds with locus coeruleus activation. Although initially unresponsive, locus coeruleus neurons developed and maintained auditory responses afterwards. Locus coeruleus plasticity induced changes in AI responses lasting at least hours and improved auditory perception for days to weeks. Our results demonstrate that locus coeruleus is highly plastic, leading to substantial changes in regulation of brain state by norepinephrine. PMID:26301326

  13. Evolution and development of interhemispheric connections in the vertebrate forebrain

    PubMed Central

    Suárez, Rodrigo; Gobius, Ilan; Richards, Linda J.

    2014-01-01

    Axonal connections between the left and right sides of the brain are crucial for bilateral integration of lateralized sensory, motor, and associative functions. Throughout vertebrate species, forebrain commissures share a conserved developmental plan, a similar position relative to each other within the brain and similar patterns of connectivity. However, major events in the evolution of the vertebrate brain, such as the expansion of the telencephalon in tetrapods and the origin of the six-layered isocortex in mammals, resulted in the emergence and diversification of new commissural routes. These new interhemispheric connections include the pallial commissure, which appeared in the ancestors of tetrapods and connects the left and right sides of the medial pallium (hippocampus in mammals), and the corpus callosum, which is exclusive to eutherian (placental) mammals and connects both isocortical hemispheres. A comparative analysis of commissural systems in vertebrates reveals that the emergence of new commissural routes may have involved co-option of developmental mechanisms and anatomical substrates of preexistent commissural pathways. One of the embryonic regions of interest for studying these processes is the commissural plate, a portion of the early telencephalic midline that provides molecular specification and a cellular scaffold for the development of commissural axons. Further investigations into these embryonic processes in carefully selected species will provide insights not only into the mechanisms driving commissural evolution, but also regarding more general biological problems such as the role of developmental plasticity in evolutionary change. PMID:25071525

  14. Forebrain neurocircuitry associated with human reflex cardiovascular control

    PubMed Central

    Shoemaker, J. Kevin; Goswami, Ruma

    2015-01-01

    Physiological homeostasis depends upon adequate integration and responsiveness of sensory information with the autonomic nervous system to affect rapid and effective adjustments in end organ control. Dysregulation of the autonomic nervous system leads to cardiovascular disability with consequences as severe as sudden death. The neural pathways involved in reflexive autonomic control are dependent upon brainstem nuclei but these receive modulatory inputs from higher centers in the midbrain and cortex. Neuroimaging technologies have allowed closer study of the cortical circuitry related to autonomic cardiovascular adjustments to many stressors in awake humans and have exposed many forebrain sites that associate strongly with cardiovascular arousal during stress including the medial prefrontal cortex, insula cortex, anterior cingulate, amygdala and hippocampus. Using a comparative approach, this review will consider the cortical autonomic circuitry in rodents and primates with a major emphasis on more recent neuroimaging studies in awake humans. A challenge with neuroimaging studies is their interpretation in view of multiple sensory, perceptual, emotive and/or reflexive components of autonomic responses. This review will focus on those responses related to non-volitional baroreflex control of blood pressure and also on the coordinated responses to non-fatiguing, non-painful volitional exercise with particular emphasis on the medial prefrontal cortex and the insula cortex. PMID:26388780

  15. Forebrain neurocircuitry associated with human reflex cardiovascular control.

    PubMed

    Shoemaker, J Kevin; Goswami, Ruma

    2015-01-01

    Physiological homeostasis depends upon adequate integration and responsiveness of sensory information with the autonomic nervous system to affect rapid and effective adjustments in end organ control. Dysregulation of the autonomic nervous system leads to cardiovascular disability with consequences as severe as sudden death. The neural pathways involved in reflexive autonomic control are dependent upon brainstem nuclei but these receive modulatory inputs from higher centers in the midbrain and cortex. Neuroimaging technologies have allowed closer study of the cortical circuitry related to autonomic cardiovascular adjustments to many stressors in awake humans and have exposed many forebrain sites that associate strongly with cardiovascular arousal during stress including the medial prefrontal cortex, insula cortex, anterior cingulate, amygdala and hippocampus. Using a comparative approach, this review will consider the cortical autonomic circuitry in rodents and primates with a major emphasis on more recent neuroimaging studies in awake humans. A challenge with neuroimaging studies is their interpretation in view of multiple sensory, perceptual, emotive and/or reflexive components of autonomic responses. This review will focus on those responses related to non-volitional baroreflex control of blood pressure and also on the coordinated responses to non-fatiguing, non-painful volitional exercise with particular emphasis on the medial prefrontal cortex and the insula cortex. PMID:26388780

  16. Basal forebrain circuit for sleep-wake control.

    PubMed

    Xu, Min; Chung, Shinjae; Zhang, Siyu; Zhong, Peng; Ma, Chenyan; Chang, Wei-Cheng; Weissbourd, Brandon; Sakai, Noriaki; Luo, Liqun; Nishino, Seiji; Dan, Yang

    2015-11-01

    The mammalian basal forebrain (BF) has important roles in controlling sleep and wakefulness, but the underlying neural circuit remains poorly understood. We examined the BF circuit by recording and optogenetically perturbing the activity of four genetically defined cell types across sleep-wake cycles and by comprehensively mapping their synaptic connections. Recordings from channelrhodopsin-2 (ChR2)-tagged neurons revealed that three BF cell types, cholinergic, glutamatergic and parvalbumin-positive (PV+) GABAergic neurons, were more active during wakefulness and rapid eye movement (REM) sleep (wake/REM active) than during non-REM (NREM) sleep, and activation of each cell type rapidly induced wakefulness. By contrast, activation of somatostatin-positive (SOM+) GABAergic neurons promoted NREM sleep, although only some of them were NREM active. Synaptically, the wake-promoting neurons were organized hierarchically by glutamatergic→cholinergic→PV+ neuron excitatory connections, and they all received inhibition from SOM+ neurons. Together, these findings reveal the basic organization of the BF circuit for sleep-wake control.

  17. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. )

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  18. Habituation and extinction of fear recruit overlapping forebrain structures.

    PubMed

    Furlong, Teri M; Richardson, Rick; McNally, Gavan P

    2016-02-01

    Establishing the neurocircuitry involved in inhibiting fear is important for understanding and treating anxiety disorders. To date, extinction procedures have been predominately used to examine the inhibition of learned fear, where fear is reduced to a conditioned stimulus (CS) by presenting it in the absence of the unconditioned stimulus (US). However, learned fear can also be reduced by habituation procedures where the US is presented in the absence of the CS. Here we used expression of the activity marker c-Fos in rats to compare the recruitment of several forebrain structures following fear habituation and extinction. Following fear conditioning where a tone CS was paired with a loud noise US, fear was then reduced the following day by either presentation of the CS or US alone (i.e. CS extinction or US habituation, respectively). This extinction and habituation training recruited several common structures, including infralimbic cortex, basolateral amygdala, midline thalamus and medial hypothalamus (orexin neurons). Moreover, this overlap was shared when examining the neural correlates of the expression of habituation and extinction, with common recruitment of infralimbic cortex and midline thalamus. However, there were also important differences. Specifically, acquisition of habituation was associated with greater recruitment of prelimbic cortex whereas expression of habituation was associated with greater recruitment of paraventricular thalamus. There was also less recruitment of central amygdala for habituation compared to extinction in the retention phase. These findings indicate that largely overlapping neurocircuitries underlie habituation and fear extinction and imply common mechanisms for reducing fear across different inhibitory treatments.

  19. Parallel changes in brain flunitrazepam binding and density of noradrenergic innervation.

    PubMed

    Medina, J H; Novas, M L

    1983-04-01

    The neonatal injection of neurotoxic compounds such as 6-hydroxydopa (6-OH-DOPA) and DSP 4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride) produces marked changes in the development of central noradrenergic neurons, i.e. permanent denervation of the cerebral cortex and hyperinnervation of the brain stem and the cerebellum. Adult animals treated at birth with both neurotoxins were used to study the binding of [3H]flunitrazepam (FNZ) to membranes isolated from these regions. The administration of both toxins produced a marked and similar increase in the number of FNZ binding sites in the cerebellum. In the brain stem, 6-OH-DOPA increased the density of these receptors much more than DSP 4 (33% vs. 13%), a difference similar to that observed between the effects of both compounds on brain stem NA. In the cerebral cortex, both compounds reduced the maximal number of FNZ binding sites. No changes were observed in the affinity of FNZ binding sites in the different structures. When adult rats treated at birth with 6-OH-DOPA received an injection of DSP 4 7 days later, the number of FNZ binding sites was reduced by 43% in the cerebellum, 53% in the brain stem and 11% in the cerebral cortex. In these structures, DSP 4 reduced the absolute number of FNZ binding sites to the same level both in rats treated at birth with 6-OH-DOPA and in non-treated animals receiving DSP 4 7 days before killing. These results are further support for the existence of close parallelism between the density of benzodiazepine receptors, as demonstrated by FNZ binding, and the density of brain noradrenergic innervation.

  20. Thermoregulatory effects of chlorpyrifos in the rat: long-term changes in cholinergic and noradrenergic sensitivity.

    PubMed

    Gordon, C J

    1994-01-01

    Subcutaneous injection of a sublethal dose of chlorpyrifos (CHLP), an organophosphate (OP) pesticide, causes long-term inhibition in cholinesterase activity (ChE) of brain, blood, and other tissues. Such prolonged inhibition in ChE should lead to marked behavioral and autonomic thermoregulatory patterns, especially in terms of altered noradrenergic and cholinergic sensitivity. To evaluate the behavioral and autonomic effects of long-term ChE inhibition, Long-Evans rats were implanted with radiotelemetry transmitters that continuously monitored core temperature (Tc), heart rate (HR), and motor activity (MA). These parameters were monitored for 7 days following a single injection of peanut oil (vehicle control) or 280 mg/kg CHLP. CHLP led to a significant reduction in Tc during the first night after treatment but had no other effects on Tc. CHLP also resulted in a significant elevation in HR which lasted for approximately 72 h. Motor activity was unaffected by CHLP. Cholinergic and noradrenergic drug sensitivity was assessed between 7 and 25 days after CHLP. CHLP-treated rats were more sensitive to norepinephrine as based on a greater hyperthermic response. MA of CHLP-treated rats was more sensitive to scopolamine. On the other hand, the hypothermic effects of oxotremorine (0.4 mg/kg) were nearly abolished by CHLP treatment, indicating tolerance to cholinergic stimulation. The tachycardic effects of methyscopolamine were also greater in the CHLP group. Overall, the acute effects of CHLP are unusual compared to other OP's in that there is no hypothermic response, an attenuated nocturnal elevation in Tc and a prolonged elevation in HR.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7514260

  1. Bisphenol A exposure disrupts the development of the locus coeruleus-noradrenergic system in mice.

    PubMed

    Tando, So; Itoh, Kyoko; Yaoi, Takeshi; Ogi, Hiroshi; Goto, Shoko; Mori, Miyuki; Fushiki, Shinji

    2014-12-01

    It has been reported that bisphenol A (BPA), a widespread xenoestrogen employed in the production of polycarbonate plastics, affects brain development in both humans and rodents. In the present study employing mice, we examined the effects of exposure to BPA (500 μg/kg/day) during fetal and lactational periods on the development of the locus coeruleus (LC) at the age of embryonic day 18 (E18), postnatal 3 weeks (P3W), P8W and P16W. The number of tyrosine hydroxylase-immunoreactive cells (TH-IR cells) in females exposed to BPA was decreased, compared with the control females at P3W. At P8W, the number of TH-IR cells in females exposed to BPA was significantly decreased, compared with the control females, whereas the number of TH-IR cells in males exposed to BPA was significantly increased, compared with the control males, which resulted in reversed transient sexual differences in the numbers of TH-IR cells observed in the controls at P8W. However, no significant changes were demonstrated at E18 or P16W. Next, we examined the density of the fibers containing norepinephrine transporter (NET) in the anterior cingulate cortex (ACC) and prefrontal cortex, at P3W, P8W and P16W, because NET would be beneficial in identifying the targets of the LC noradrenergic neurons. There were no significant differences shown in the density of the NET-positive fibers, between the control and the groups exposed to BPA. These results suggested that BPA might disrupt the development of physiological sexual differences in the LC-noradrenergic system in mice, although further studies are necessary to clarify the underlying mechanisms. PMID:24985408

  2. Direct transcriptional regulation of Six6 is controlled by SoxB1 binding to a remote forebrain enhancer

    PubMed Central

    Lee, Bumwhee; Rizzoti, Karine; Kwon, David S.; Kim, Seon-Young; Oh, Sangtaek; Epstein, Douglas J.; Son, Youngsook; Yoon, Jaeseung; Baek, Kwanghee; Jeong, Yongsu

    2014-01-01

    Six6, a sine oculis homeobox protein, plays a crucial and conserved role in the development of the forebrain and eye. To understand how the expression of Six6 is regulated during embryogenesis, we screened ~250 kb of genomic DNA encompassing the Six6 locus for cis-regulatory elements capable of directing reporter gene expression to sites of Six6 transcription in transgenic mouse embryos. Here, we describe two novel enhancer elements, that are highly conserved in vertebrate species and whose activities recapitulate Six6 expression in the ventral forebrain and eye, respectively. Cross-species comparisons of the Six6 forebrain enhancer sequences revealed highly conserved binding sites matching the consensus for homeodomain and SoxB1 transcription factors. Deletion of either of the binding sites resulted in loss of the forebrain enhancer activity in the ventral forebrain. Moreover, our studies show that members of the SoxB1 family, including Sox2 and Sox3, are expressed in the overlapping region of the ventral forebrain with Six6 and can bind to the Six6 forebrain enhancer. Loss of function of SoxB1 genes in vivo further emphasizes their role in regulating Six6 forebrain enhancer activity. Thus, our data strongly suggest that SoxB1 transcription factors are direct activators of Six6 expression in the ventral forebrain. PMID:22561201

  3. Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function.

    PubMed

    Fragkouli, A; Stamatakis, A; Zographos, E; Pachnis, V; Stylianopoulou, F

    2006-01-01

    It has been reported recently that mice lacking both alleles of the LIM-homeobox gene Lhx7, display dramatically reduced number of forebrain cholinergic neurons. In the present study, we investigated whether the Lhx7 mutation affects male and female mice differently, given the fact that gender differences are consistently observed in forebrain cholinergic function. Our results show that in adult male as well as female Lhx7 homozygous mutants there is a dramatic loss of choline acetyltransferase immunoreactive forebrain neurons, both projection and interneurons. The reduction of forebrain choline acetyltransferase immunoreactive neurons in Lhx7 homozygous mutants is accompanied by a decrease of acetylcholinesterase histochemical staining in all forebrain cholinergic neuron target areas of both male and female homozygous mutants. Furthermore, there was an increase of M1-, but not M2-, muscarinic acetylcholine receptor binding site density in the somatosensory cortex and basal ganglia of only the female homozygous mutant mice. Such an increase can be regarded as a mechanism acting to compensate for the dramatically reduced cholinergic input, raising the possibility that the forebrain cholinergic system in female mice may be more plastic and responsive to situations of limited neurotransmitter availability. Finally, our study provides additional data for the sexual dimorphism of the forebrain cholinergic system, as female mice appear to have a lower density of M1-muscarinic acetylcholine receptors in the striatal areas of the basal ganglia and a higher density of M2-muscarinic acetylcholine receptors, in a number of cortical areas, as well as the striatal areas of the basal ganglia.

  4. The clinical diagnosis and treatment about 22 cases of limbic encephalitis were retrospectively analyzed.

    PubMed

    Zang, Weiping; Zhang, Zhijun; Feng, Laihui; Zhang, Ailing

    2016-03-01

    To summarize and analyze the clinical characteristics and treatment of limbic encephalitis, in order to provide the basis for clinical work. We retrospectively analyzed the clinical characteristics, magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) and self immune antibody results of 22 patients with limbic encephalitis in Zheng zhou people's Hospital from March 2013 to May 2014. 22 cases of patients with psychiatric disturbance, such as hallucinations being typical clinical manifestations: Memory decline in 18 cases: Seizures in 13 patients: Altered level of consciousness in 10 cases; Movement disorders in 7 cases and 9 cases with febrile.14 cases have relieved after treating with antiviral and immunosuppressive therapy, 5 cases left memory decline, 2 patients left overwhelmingly excited, 1 cases of seizures. The clinical symptoms of patients with limbic encephalitis are complicated changeable and unspecific. so earlier diagnosis and treatment are very important for the prognosis of patients. PMID:27113304

  5. The clinical diagnosis and treatment about 22 cases of limbic encephalitis were retrospectively analyzed.

    PubMed

    Zang, Weiping; Zhang, Zhijun; Feng, Laihui; Zhang, Ailing

    2016-03-01

    To summarize and analyze the clinical characteristics and treatment of limbic encephalitis, in order to provide the basis for clinical work. We retrospectively analyzed the clinical characteristics, magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) and self immune antibody results of 22 patients with limbic encephalitis in Zheng zhou people's Hospital from March 2013 to May 2014. 22 cases of patients with psychiatric disturbance, such as hallucinations being typical clinical manifestations: Memory decline in 18 cases: Seizures in 13 patients: Altered level of consciousness in 10 cases; Movement disorders in 7 cases and 9 cases with febrile.14 cases have relieved after treating with antiviral and immunosuppressive therapy, 5 cases left memory decline, 2 patients left overwhelmingly excited, 1 cases of seizures. The clinical symptoms of patients with limbic encephalitis are complicated changeable and unspecific. so earlier diagnosis and treatment are very important for the prognosis of patients.

  6. Limbic Encephalitis: Potential Impact of Adaptive Autoimmune Inflammation on Neuronal Circuits of the Amygdala

    PubMed Central

    Melzer, Nico; Budde, Thomas; Stork, Oliver; Meuth, Sven G.

    2015-01-01

    Limbic encephalitis is characterized by adaptive autoimmune inflammation of the gray matter structures of the limbic system. It has recently been identified as a major cause of temporal lobe epilepsy accompanied by progressive declarative – mainly episodic – ­memory disturbance as well as a variety of rather poorly defined emotional and behavioral changes. While autoimmune inflammation of the hippocampus is likely to be responsible for declarative memory disturbance, consequences of autoimmune inflammation of the amygdala are largely unknown. The amygdala is central for the generation of adequate homoeostatic behavioral responses to emotionally significant external stimuli following processing in a variety of parallel neuronal circuits. Here, we hypothesize that adaptive cellular and humoral autoimmunity may target and modulate distinct inhibitory or excitatory neuronal networks within the amygdala, and thereby strongly impact processing of emotional stimuli and corresponding behavioral responses. This may explain some of the rather poorly understood neuropsychiatric symptoms in limbic encephalitis. PMID:26284026

  7. 18F-FDG PET/CT findings in voltage-gated potassium channel limbic encephalitis.

    PubMed

    Kamaleshwaran, Koramadai Karuppuswamy; Iyer, Rajesh Shankar; Antony, Joppy; Radhakrishnan, Edathuruthy Kalarickal; Shinto, Ajit

    2013-05-01

    Limbic encephalitis (LE) can be associated with cancer, viral infection, or be idiopathic. One such rare but treatable form is associated with voltage-gated potassium channel (VGKC) antibodies. Typical abnormalities are seen in FDG PET/CT. We report a 39-year-old female patient who presented with 3 months of progressive faciobrachial dystonic seizures and limbic encephalitis. Her serum and cerebrospinal fluid Lgi1 antibody titers were elevated. FDG PET/CT showed basal ganglial hypermetabolism and associated abnormalities. Serial MRI demonstrated atrophic changes predominantly involving the temporal lobes. She is on immunosuppressive therapy and shows clinical improvement with lowering of antibody titers.

  8. Opsoclonus-myoclonus and anti-Hu positive limbic encephalitis in a patient with neuroblastoma.

    PubMed

    Morales La Madrid, Andres; Rubin, Charles M; Kohrman, Michael; Pytel, Peter; Cohn, Susan L

    2012-03-01

    Opsoclonus-myoclonus syndrome (OMS) is seen in 2-3% of children with neuroblastoma and is believed to be caused by an autoimmune process elicited by the tumor. Although long-term neurologic sequelae are common in children with OMS, limbic encephalitis has not previously been reported. We report a child who developed limbic encephalitis associated with anti-Hu antibodies, 6 years after her initial diagnosis of neuroblastoma and OMS. This case demonstrates that patients with neuroblastoma and OMS are at risk for developing new paraneoplastic symptoms years after their original diagnosis and emphasizes the need for careful long-term follow-up.

  9. Paraneoplastic limbic encephalitis and possible narcolepsy in a patient with testicular cancer: case study.

    PubMed Central

    Landolfi, Joseph C.; Nadkarni, Mangala

    2003-01-01

    We describe a patient who presented with a clinical syndrome of limbic encephalitis, narcolepsy, and cataplexy. The anti-Ma2 antibody was positive. Although there was no mass on imaging, orchiectomy was performed in this patient, and testicular carcinoma was found. This is the first known case of limbic encephalitis and anti-Ma2 antibody to be associated with cataplexy and possible narcolepsy. Neurological symptoms precede the diagnosis of cancer in 50% of patients with paraneoplastic syndromes, and clinicians are therefore strongly advised to evaluate patients with neurological symptoms for this condition. PMID:12816728

  10. Impact of basal forebrain cholinergic inputs on basolateral amygdala neurons.

    PubMed

    Unal, Cagri T; Pare, Denis; Zaborszky, Laszlo

    2015-01-14

    In addition to innervating the cerebral cortex, basal forebrain cholinergic (BFc) neurons send a dense projection to the basolateral nucleus of the amygdala (BLA). In this study, we investigated the effect of near physiological acetylcholine release on BLA neurons using optogenetic tools and in vitro patch-clamp recordings. Adult transgenic mice expressing cre-recombinase under the choline acetyltransferase promoter were used to selectively transduce BFc neurons with channelrhodopsin-2 and a reporter through the injection of an adeno-associated virus. Light-induced stimulation of BFc axons produced different effects depending on the BLA cell type. In late-firing interneurons, BFc inputs elicited fast nicotinic EPSPs. In contrast, no response could be detected in fast-spiking interneurons. In principal BLA neurons, two different effects were elicited depending on their activity level. When principal BLA neurons were quiescent or made to fire at low rates by depolarizing current injection, light-induced activation of BFc axons elicited muscarinic IPSPs. In contrast, with stronger depolarizing currents, eliciting firing above ∼ 6-8 Hz, these muscarinic IPSPs lost their efficacy because stimulation of BFc inputs prolonged current-evoked afterdepolarizations. All the effects observed in principal neurons were dependent on muscarinic receptors type 1, engaging different intracellular mechanisms in a state-dependent manner. Overall, our results suggest that acetylcholine enhances the signal-to-noise ratio in principal BLA neurons. Moreover, the cholinergic engagement of afterdepolarizations may contribute to the formation of stimulus associations during fear-conditioning tasks where the timing of conditioned and unconditioned stimuli is not optimal for the induction of synaptic plasticity.

  11. Dissociating basal forebrain and medial temporal amnesic syndromes: insights from classical conditioning.

    PubMed

    Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A

    2002-01-01

    In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.

  12. Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala's nucleus.

    PubMed

    Teipel, Stefan J; Flatz, Wilhelm; Ackl, Nibal; Grothe, Michel; Kilimann, Ingo; Bokde, Arun L W; Grinberg, Lea; Amaro, Edson; Kljajevic, Vanja; Alho, Eduardo; Knels, Christina; Ebert, Anne; Heinsen, Helmut; Danek, Adrian

    2014-03-30

    Primary progressive aphasia (PPA) is characterized by left hemispheric frontotemporal cortical atrophy. Evidence from anatomical studies suggests that the nucleus subputaminalis (NSP), a subnucleus of the cholinergic basal forebrain, may be involved in the pathological process of PPA. Therefore, we studied the pattern of cortical and basal forebrain atrophy in 10 patients with a clinical diagnosis of PPA and 18 healthy age-matched controls using high-resolution magnetic resonance imaging (MRI). We determined the cholinergic basal forebrain nuclei according to Mesulam's nomenclature and the NSP in MRI reference space based on histological sections and the MRI scan of a post-mortem brain in cranio. Using voxel-based analysis, we found left hemispheric cortical atrophy in PPA patients compared with controls, including prefrontal, lateral temporal and medial temporal lobe areas. We detected cholinergic basal forebrain atrophy in left predominant localizations of Ch4p, Ch4am, Ch4al, Ch3 and NSP. For the first time, we have described the pattern of basal forebrain atrophy in PPA and confirmed the involvement of NSP that had been predicted based on theoretical considerations. Our findings may enhance understanding of the role of cholinergic degeneration for the regional specificity of the cortical destruction leading to the syndrome of PPA.

  13. Sox2-mediated differential activation of Six3.2 contributes to forebrain patterning.

    PubMed

    Beccari, Leonardo; Conte, Ivan; Cisneros, Elsa; Bovolenta, Paola

    2012-01-01

    The vertebrate forebrain is patterned during gastrulation into telencephalic, retinal, hypothalamic and diencephalic primordia. Specification of each of these domains requires the concerted activity of combinations of transcription factors (TFs). Paradoxically, some of these factors are widely expressed in the forebrain, which raises the question of how they can mediate regional differences. To address this issue, we focused on the homeobox TF Six3.2. With genomic and functional approaches we demonstrate that, in medaka fish, Six3.2 regulates, in a concentration-dependent manner, telencephalic and retinal specification under the direct control of Sox2. Six3.2 and Sox2 have antagonistic functions in hypothalamic development. These activities are, in part, executed by Foxg1 and Rx3, which seem to be differentially and directly regulated by Six3.2 and Sox2. Together, these data delineate the mechanisms by which Six3.2 diversifies its activity in the forebrain and highlight a novel function for Sox2 as one of the main regulators of anterior forebrain development. They also demonstrate that graded levels of the same TF, probably operating in partially independent transcriptional networks, pattern the vertebrate forebrain along the anterior-posterior axis. PMID:22096077

  14. Effects of GABAergic and noradrenergic injections into the cerebellar flocculus on vestibulo-ocular reflexes in the rabbit.

    PubMed

    van Neerven, J; Pompeiano, O; Collewijn, H

    1991-01-01

    The role of the vesitibulo-cerebellum of the rabbit in the control of the vestibulo-ocular response (VOR) and optokinetic response (OKR) reflexes was investigated by bilateral microinjections, into the flocculus, of substances affecting GABAergic or noradrenergic neurotransmission. GABA, the main transmitter through which cerebellar interneurons inhibit Purkinje cells directly or indirectly, acts normally through GABAA receptors (mainly located in the granular layer) and GABAB receptors (predominantly located in the molecular layer). Despite this different distribution, floccular injections of the GABAA agonist muscimol and of the GABAB agonist baclofen had a similar effect, presumably by profound inhibition of Purkinje cells. This effect consisted of a reduction in the gain of the VOR (in darkness and in light) as well as of the OKR by at least 50%. This provides firm evidence that the net effect of normal Purkinje-cell activity in the flocculus is to enhance the VOR and OKR, rather than to inhibit these responses, as is sometimes supposed. Intrafloccular injections of the beta-noradrenergic agonist isoproterenol or the beta-noradrenergic antagonist sotalol did not affect the basic magnitude of the VOR and OKR. However, these substances markedly affected the adaptive processes, which cause the VOR and OKR to change its magnitude when this is no longer adequate in stabilizing the retinal image. By a suitable combination of vestibular and optokinetic stimuli, consistent upward changes in the gain of these reflexes could be reliably and reproducibly induced in uninjected animals. Floccular injections of sotalol impaired these adaptive changes markedly, whereas injections of isoproterenol enhanced the adaptation, particularly of the VOR measured in darkness. These findings strongly suggest that the effectuation of adaptive changes of vestibular, and possibly other, motor control systems is strongly facilitated by the noradrenergic innervation of the flocculus, which

  15. Ultrastructural evidence for synaptic contacts between cortical noradrenergic afferents and endocannabinoid-synthesizing post-synaptic neurons.

    PubMed

    Reyes, B A S; Heldt, N A; Mackie, K; Van Bockstaele, E J

    2015-09-10

    Endocannabinoids (eCBs) are involved in a myriad of physiological processes that are mediated through the activation of cannabinoid receptors, which are ubiquitously distributed within the nervous system. One neurochemical target at which cannabinoids interact to have global effects on behavior is brain noradrenergic circuitry. We, and others, have previously shown that CB type 1 receptors (CB1r) are positioned to pre-synaptically modulate norepinephrine (NE) release in the rat frontal cortex (FC). Diacylglycerol lipase (DGL) is a key enzyme in the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). While DGL-α is expressed in the FC in the rat brain, it is not known whether noradrenergic afferents target neurons expressing synthesizing enzymes for the endocannabinoid, 2-AG. In the present study, we employed high-resolution neuroanatomical approaches to better define cellular sites for interactions between noradrenergic afferents and FC neurons expressing DGL-α. Immunofluorescence microscopy showed close appositions between processes containing the norepinephrine transporter (NET) or dopamine-β-hydroxylase (DβH) and cortical neurons expressing DGL-α-immunoreactivity. Ultrastructural analysis using immunogold-silver labeling for DGL-α and immunoperoxidase labeling for NET or DβH confirmed that NET-labeled axon terminals were directly apposed to FC somata and dendritic processes that exhibited DGL-α-immunoreactivity. Finally, tissue sections were processed for immunohistochemical detection of DGL-α, CB1r and DβH. Triple label immunofluorescence revealed that CB1r and DβH were co-localized in common cellular profiles and these were in close association with DGL-α. Taken together, these data provide anatomical evidence for direct synaptic associations between noradrenergic afferents and cortical neurons exhibiting endocannabinoid synthesizing machinery.

  16. Ultrastructural evidence for synaptic contacts between cortical noradrenergic afferents and endocannabinoid-synthesizing post-synaptic neurons

    PubMed Central

    Reyes, Beverly A. S.; Heldt, Nathan A.; Mackie, Ken; Van Bockstaele, Elisabeth J.

    2015-01-01

    Endocannabinoids (eCBs) are involved in a myriad of physiological processes that are mediated through the activation of cannabinoid receptors, which are ubiquitously distributed within the nervous system. One neurochemical target at which cannabinoids interact to have global effects on behavior is brain noradrenergic circuitry. We, and others, have previously shown that CB type 1 receptors (CB1r) are positioned to pre-synaptically modulate norepinephrine (NE) release in the rat frontal cortex (FC). Diacylglycerol lipase (DGL) is a key enzyme in the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). While DGL-α is expressed in the FC in the rat brain, it is not known whether noradrenergic afferents target neurons expressing synthesizing enzymes for the endocannabinoid, 2-AG. In the present study, we employed high-resolution neuroanatomical approaches to better define cellular sites for interactions between noradrenergic afferents and FC neurons expressing DGL-α. Immunofluorescence microscopy showed close appositions between processes containing the norepinephrine transporter (NET) or dopamine-β-hydroxylase (DβH) and cortical neurons expressing DGL-α-immunoreactivity. Ultrastructural analysis using immunogold-silver labeling for DGL-α and immunoperoxidase labeling for NET or DβH confirmed that NET-labeled axon terminals were directly apposed to FC somata and dendritic processes that exhibited DGL-α-immunoreactivity. Finally, tissue sections were processed for immunohistochemical detection of DGL-α , CB1r and DβH. Triple label immunofluorescence revealed that CB1r and DβH were co-localized in common cellular profiles and these were in close association with DGL-α. Taken together, these data provide anatomical evidence for direct synaptic associations between noradrenergic afferents and cortical neurons exhibiting endocannabinoid synthesizing machinery. PMID:26162236

  17. An exploratory association study of the influence of noradrenergic genes and childhood trauma in Borderline Personality Disorder.

    PubMed

    Martín-Blanco, Ana; Ferrer, Marc; Soler, Joaquim; Arranz, Maria Jesús; Vega, Daniel; Bauzà, Joana; Calvo, Natalia; Elices, Matilde; Sanchez-Mora, Cristina; García-Martinez, Iris; Salazar, Juliana; Ribases, Marta; Carmona, Cristina; Prat, Mónica; Pascual, Juan C

    2015-09-30

    This study investigated the possible association of 40 polymorphisms within 4 noradrenergic genes with BPD risk and the modulating effect of childhood trauma on these associations in 481 BPD subjects and 442 controls. COMT rs5993882, DBH rs77905 and SLC6A2 rs1814270 showed associations with BPD, which were modulated by childhood trauma. However, none of these findings survived Bonferroni correction. Further investigation is needed to clarify the involvement of these genes in BPD pathogenesis. PMID:26216165

  18. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits.

    PubMed

    Patel, Jyoti C; Rossignol, Elsa; Rice, Margaret E; Machold, Robert P

    2012-01-01

    Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.

  19. Psychopharmacological profile of the selective serotonin reuptake inhibitor, paroxetine: implication of noradrenergic and serotonergic mechanisms.

    PubMed

    Redrobe, J P; Bourin, M; Colombel, M C; Baker, G B

    1998-01-01

    The present study was designed to evaluate the psychopharmacological profile of the selective serotonin reuptake inhibitor paroxetine, and thus assess potential noradrenergic and/or serotonergic activity. Paroxetine dose-dependently increased mobility time in the mouse forced swimming test (8, 16, 32 and 64 mg/kg, i.p.) and reduced spontaneous locomotor activity when administered at a high dose (64 mg/kg, i.p.). Prior administration of 8-hydroxy-2-(di-n-propylamino)tetralin (1 mg/kg, i.p.), (+/-) pindolol (32 mg/kg, i.p.) or 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridyl)-1H-indole (RU 24969) (1 mg/kg, i.p.) potentiated the antidepressant-like effects of subactive doses of paroxetine (1, 2 and 4 mg/kg, i.p.) in the mouse forced swimming test. These effects were antagonized by prior administration of 1-(2-methoxyphenyl)-4-[-(2-phthalimido)butyl]piperazine) (0.5 mg/kg, i.p.). Complementary studies suggested that RU24969-induced anti-immobility effects were a result of an increase in locomotor activity; other interactions were without increase/decrease in locomotor activity. Acute administration of paroxetine (8, 16, and 32 mg/kg, i.p.) antagonized the hypothermia induced by the D2/D1 receptor agonist, apomorphine (16 mg/kg, s.c.), while repeated treatment with paroxetine (32 mg/kg) attenuated clonidine-induced (0.5 mg/kg, i.p.) hypothermia. Pre-treatment with the serotonergic neurotoxin, para-chlorophenylalanine attenuated the anti-immobility effects of low doses of paroxetine (8 and 16 mg/kg, i.p.) in the forced swimming test, whereas a higher dose of paroxetine remained active (32 mg/kg, i.p.). The results of the present study indicated that paroxetine displayed both noradrenergic-like and serotonergic-like activity in the pre-clinical psychopharmacological tests employed.

  20. A1 Noradrenergic Neurons Lesions Reduce Natriuresis and Hypertensive Responses to Hypernatremia in Rats

    PubMed Central

    da Silva, Elaine Fernanda; Freiria-Oliveira, André Henrique; Custódio, Carlos Henrique Xavier; Ghedini, Paulo César; Bataus, Luiz Artur Mendes; Colombari, Eduardo; de Castro, Carlos Henrique; Colugnati, Diego Basile; Rosa, Daniel Alves; Cravo, Sergio L. D.; Pedrino, Gustavo Rodrigues

    2013-01-01

    Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group) contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS) infusion in non-anesthetized rats. Male Wistar rats (280–340 g) received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL−1) or free saporin (sham, 0.021 ng.nL−1) into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2) and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg−1, b.wt., for longer than 1 min). In the sham-group (n = 8), HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline). Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11)were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group), and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg). Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05). In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid. PMID:24039883

  1. Enhanced noradrenergic activity in the amygdala contributes to hyperarousal in an animal model of PTSD.

    PubMed

    Ronzoni, Giacomo; Del Arco, Alberto; Mora, Francisco; Segovia, Gregorio

    2016-08-01

    Increased activity of the noradrenergic system in the amygdala has been suggested to contribute to the hyperarousal symptoms associated with post-traumatic stress disorder (PTSD). However, only two studies have examined the content of noradrenaline or its metabolites in the amygdala of rats previously exposed to traumatic stress showing inconsistent results. The aim of this study was to investigate the effects of an inescapable foot shock (IFS) procedure (1) on reactivity to novelty in an open-field (as an index of hyperarousal), and (2) on noradrenaline release in the amygdala during an acute stress. To test the role of noradrenaline in amygdala, we also investigated the effects of microinjections of propranolol, a β-adrenoreceptor antagonist, and clenbuterol, a β-adrenoreceptor agonist, into the amygdala of IFS and control animals. Finally, we evaluated the expression of mRNA levels of β-adrenoreceptors (β1 and β2) in the amygdala, the hippocampus and the prefrontal cortex. Male Wistar rats (3 months) were stereotaxically implanted with bilateral guide cannulae. After recovering from surgery, animals were exposed to IFS (10 shocks, 0.86mA, and 6s per shock) and seven days later either microdialysis or microinjections were performed in amygdala. Animals exposed to IFS showed a reduced locomotion compared to non-shocked animals during the first 5min in the open-field. In the amygdala, IFS animals showed an enhanced increase of noradrenaline induced by stress compared to control animals. Bilateral microinjections of propranolol (0.5μg) into the amygdala one hour before testing in the open-field normalized the decreased locomotion observed in IFS animals. On the other hand, bilateral microinjections of clenbuterol (30ng) into the amygdala of control animals did not change the exploratory activity induced by novelty in the open field. IFS modified the mRNA expression of β1 and β2 adrenoreceptors in the prefrontal cortex and the hippocampus. These results

  2. Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress.

    PubMed

    Grimm, Simone; Pestke, Karin; Feeser, Melanie; Aust, Sabine; Weigand, Anne; Wang, Jue; Wingenfeld, Katja; Pruessner, Jens C; La Marca, Roberto; Böker, Heinz; Bajbouj, Malek

    2014-11-01

    Early life stress (ELS) is associated with altered stress responsivity, structural and functional brain changes and an increased risk for the development of psychopathological conditions in later life. Due to its behavioral and physiological effects, the neuropeptide oxytocin (OXT) is a useful tool to investigate stress responsivity, even though the neurobiological underpinnings of its effects are still unknown. Here we investigate the effects of OXT on cortisol stress response and neural activity during psychosocial stress. Using functional magnetic resonance imaging in healthy subjects with and without a history of ELS, we found attenuated hormonal reactivity and significantly reduced limbic deactivation after OXT administration in subjects without a history of ELS. Subjects who experienced ELS showed both blunted stress reactivity and limbic deactivation during stress. Furthermore, in these subjects OXT had opposite effects with increased hormonal reactivity and increased limbic deactivation. Our results might implicate that reduced limbic deactivation and hypothalamic-pituitary-adrenal axis responsivity during psychosocial stress are markers for biological resilience after ELS. Effects of OXT in subjects with a history of maltreatment could therefore be considered detrimental and suggest careful consideration of OXT administration in such individuals. PMID:24478326

  3. Early Life Stress as an Influence on Limbic Epilepsy: An Hypothesis Whose Time has Come?

    PubMed Central

    Koe, Amelia S.; Jones, Nigel C.; Salzberg, Michael R.

    2009-01-01

    The pathogenesis of mesial temporal lobe epilepsy (MTLE), the most prevalent form of refractory focal epilepsy in adults, is thought to begin in early life, even though seizures may not commence until adolescence or adulthood. Amongst the range of early life factors implicated in MTLE causation (febrile seizures, traumatic brain injury, etc.), stress may be one important contributor. Early life stress is an a priori agent deserving study because of the large amount of neuroscientific data showing enduring effects on structure and function in hippocampus and amygdala, the key structures involved in MTLE. An emerging body of evidence directly tests hypotheses concerning early life stress and limbic epilepsy: early life stressors, such as maternal separation, have been shown to aggravate epileptogenesis in both status epilepticus and kindling models of limbic epilepsy. In addition to elucidating its influence on limbic epileptogenesis itself, the study of early life stress has the potential to shed light on the psychiatric disorder that accompanies MTLE. For many years, psychiatric comorbidity was viewed as an effect of epilepsy, mediated psychologically and/or neurobiologically. An alternative – or complementary – perspective is that of shared causation. Early life stress, implicated in the pathogenesis of several psychiatric disorders, may be one such causal factor. This paper aims to critically review the body of experimental evidence linking early life stress and epilepsy; to discuss the direct studies examining early life stress effects in current models of limbic seizures/epilepsy; and to suggest priorities for future research. PMID:19838325

  4. Diffusion Imaging of Auditory and Auditory-Limbic Connectivity in Tinnitus: Preliminary Evidence and Methodological Challenges

    PubMed Central

    Seydell-Greenwald, Anna; Raven, Erika P.; Leaver, Amber M.; Turesky, Ted K.; Rauschecker, Josef P.

    2014-01-01

    Subjective tinnitus, or “ringing in the ears,” is perceived by 10 to 15 percent of the adult population and causes significant suffering in a subset of patients. While it was originally thought of as a purely auditory phenomenon, there is increasing evidence that the limbic system influences whether and how tinnitus is perceived, far beyond merely determining the patient's emotional reaction to the phantom sound. Based on functional imaging and electrophysiological data, recent articles frame tinnitus as a “network problem” arising from abnormalities in auditory-limbic interactions. Diffusion-weighted magnetic resonance imaging is a noninvasive method for investigating anatomical connections in vivo. It thus has the potential to provide anatomical evidence for the proposed changes in auditory-limbic connectivity. However, the few diffusion imaging studies of tinnitus performed to date have inconsistent results. In the present paper, we briefly summarize the results of previous studies, aiming to reconcile their results. After detailing analysis methods, we then report findings from a new dataset. We conclude that while there is some evidence for tinnitus-related increases in auditory and auditory-limbic connectivity that counteract hearing-loss related decreases in auditory connectivity, these results should be considered preliminary until several technical challenges have been overcome. PMID:25050181

  5. Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress.

    PubMed

    Grimm, Simone; Pestke, Karin; Feeser, Melanie; Aust, Sabine; Weigand, Anne; Wang, Jue; Wingenfeld, Katja; Pruessner, Jens C; La Marca, Roberto; Böker, Heinz; Bajbouj, Malek

    2014-11-01

    Early life stress (ELS) is associated with altered stress responsivity, structural and functional brain changes and an increased risk for the development of psychopathological conditions in later life. Due to its behavioral and physiological effects, the neuropeptide oxytocin (OXT) is a useful tool to investigate stress responsivity, even though the neurobiological underpinnings of its effects are still unknown. Here we investigate the effects of OXT on cortisol stress response and neural activity during psychosocial stress. Using functional magnetic resonance imaging in healthy subjects with and without a history of ELS, we found attenuated hormonal reactivity and significantly reduced limbic deactivation after OXT administration in subjects without a history of ELS. Subjects who experienced ELS showed both blunted stress reactivity and limbic deactivation during stress. Furthermore, in these subjects OXT had opposite effects with increased hormonal reactivity and increased limbic deactivation. Our results might implicate that reduced limbic deactivation and hypothalamic-pituitary-adrenal axis responsivity during psychosocial stress are markers for biological resilience after ELS. Effects of OXT in subjects with a history of maltreatment could therefore be considered detrimental and suggest careful consideration of OXT administration in such individuals.

  6. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus.

    PubMed

    Kraus, Kari Suzanne; Canlon, Barbara

    2012-06-01

    Acoustic experience such as sound, noise, or absence of sound induces structural or functional changes in the central auditory system but can also affect limbic regions such as the amygdala and hippocampus. The amygdala is particularly sensitive to sound with valence or meaning, such as vocalizations, crying or music. The amygdala plays a central role in auditory fear conditioning, regulation of the acoustic startle response and can modulate auditory cortex plasticity. A stressful acoustic stimulus, such as noise, causes amygdala-mediated release of stress hormones via the HPA-axis, which may have negative effects on health, as well as on the central nervous system. On the contrary, short-term exposure to stress hormones elicits positive effects such as hearing protection. The hippocampus can affect auditory processing by adding a temporal dimension, as well as being able to mediate novelty detection via theta wave phase-locking. Noise exposure affects hippocampal neurogenesis and LTP in a manner that affects structural plasticity, learning and memory. Tinnitus, typically induced by hearing malfunctions, is associated with emotional stress, depression and anatomical changes of the hippocampus. In turn, the limbic system may play a role in the generation as well as the suppression of tinnitus indicating that the limbic system may be essential for tinnitus treatment. A further understanding of auditory-limbic interactions will contribute to future treatment strategies of tinnitus and noise trauma.

  7. Organization of the avian basal forebrain: chemical anatomy in the parrot (Melopsittacus undulatus).

    PubMed

    Roberts, Todd Freeman; Hall, William Sterling; Brauth, Steven Earle

    2002-12-23

    Hodological, electrophysiological, and ablation studies indicate a role for the basal forebrain in telencephalic vocal control; however, to date the organization of the basal forebrain has not been extensively studied in any nonmammal or nonhuman vocal learning species. To this end the chemical anatomy of the avian basal forebrain was investigated in a vocal learning parrot, the budgerigar (Melopsittacus undulatus). Immunological and histological stains, including choline acetyltransferase, acetylcholinesterase, tyrosine hydroxylase, dopamine and cAMP-regulated phosphoprotein (DARPP)-32, the calcium binding proteins calbindin D-28k and parvalbumin, calcitonin gene-related peptide, iron, substance P, methionine enkephalin, nicotinamide adenine dinucleotide phosphotase diaphorase, and arginine vasotocin were used in the present study. We conclude that the ventral paleostriatum (cf. Kitt and Brauth [1981] Neuroscience 6:1551-1566) and adjacent archistriatal regions can be subdivided into several distinct subareas that are chemically comparable to mammalian basal forebrain structures. The nucleus accumbens is histochemically separable into core and shell regions. The nucleus taeniae (TN) is theorized to be homologous to the medial amygdaloid nucleus. The archistriatum pars ventrolateralis (Avl; comparable to the pigeon archistriatum pars dorsalis) is theorized to be a possible homologue of the central amygdaloid nucleus. The TN and Avl are histochemically continuous with the medial aspects of the bed nucleus of the stria terminalis and the ventromedial striatum, forming an avian analogue of the extended amygdala. The apparent counterpart in budgerigars of the mammalian nucleus basalis of Meynert consists of a field of cholinergic neurons spanning the basal forebrain. The budgerigar septal region is theorized to be homologous as a field to the mammalian septum. Our results are discussed with regard to both the evolution of the basal forebrain and its role in vocal

  8. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the basal forebrain

    PubMed Central

    Murillo-Rodriguez, Eric; Liu, Meng; Blanco-Centurion, Carlos; Shiromani, Priyattam J.

    2009-01-01

    Neurons containing the neuropeptide hypocretin (orexin) are localized only in the lateral hypothalamus from where they innervate multiple regions implicated in arousal, including the basal forebrain. HCRT activation of downstream arousal neurons is likely to stimulate release of endogenous factors. One such factor is adenosine (AD), which in the basal forebrain increases with waking and decreases with sleep, and is hypothesized to regulate the waxing and waning of sleep drive. Does loss of HCRT neurons affect AD levels in the basal forebrain? Is the increased sleep that accompanies HCRT loss a consequence of higher AD levels in the basal forebrain? In the present study, we investigate these questions by lesioning the HCRT neurons (hypocretin-2-saporin) and measuring sleep and extracellular levels of AD in the basal forebrain. In separate groups of rats, the neurotoxin HCRT2-SAP or saline were administered locally to the lateral hypothalamus and 80 days later AD and sleep were assessed. Rats given the neurotoxin had a 94% loss of the HCRT neurons. These rats awake less at night, and had more REM sleep, which is consistent with a HCRT hypofunction. These rats also had more sleep after brief periods of sleep deprivation. However, in the lesioned rats, AD levels did not increase with 6h sleep deprivation, whereas such an increase in AD occurred in rats without lesion of the HCRT neurons. These findings indicate that AD levels do not increase with waking in rats with a HCRT lesion, and that the increased sleep in these rats occurs independently of AD levels in the basal forebrain. PMID:18783368

  9. Placenta-derived hypo-serotonin situations in the developing forebrain cause autism.

    PubMed

    Sato, Kohji

    2013-04-01

    Autism is a pervasive developmental disorder that is characterized by the behavioral traits of impaired social cognition and communication, and repetitive and/or obsessive behavior and interests. Although there are many theories and speculations about the pathogenetic causes of autism, the disruption of the serotonergic system is one of the most consistent and well-replicated findings. Recently, it has been reported that placenta-derived serotonin is the main source in embryonic day (E) 10-15 mouse forebrain, after that period, the serotonergic fibers start to supply serotonin into the forebrain. E 10-15 is the very important developing period, when cortical neurogenesis, migration and initial axon targeting are processed. Since all these events have been considered to be involved in the pathogenesis of autism and they are highly controlled by serotonin signals, the paucity of placenta-derived serotonin should have potential importance when the pathogenesis of autism is considered. I, thus, postulate a hypothesis that placenta-derived hypo-serotonin situations in the developing forebrain cause autism. The hypothesis is as follows. Various factors, such as inflammation, dysfunction of the placenta, together with genetic predispositions cause a decrease of placenta-derived serotonin levels. The decrease of placenta-derived serotonin levels leads to hypo-serotonergic situations in the forebrain of the fetus. The paucity of serotonin in the forebrain leads to mis-wiring in important regions which are responsible for the theory of mind. The paucity of serotonin in the forebrain also causes over-growth of serotonergic fibers. These disturbances result in network deficiency and aberration of the serotonergic system, leading to the autistic phenotypes.

  10. Catecholamine innervation of the forebrain in the bull frog, Rana catesbiana.

    PubMed

    Tohyama, M; Yamamoto, K; Satoh, K; Sakumoto, T; Shimizu, N

    1977-01-01

    The innervation of forebrain catecholamine (CA) were experimentally investigated with use of sensitive fluorescence method of glyoxylic acid formaldehyde in the brain of the bull frog, Rana catesbiana. The CA of the olfactory bulb is supplied by CA neurons situated in olfactory bulb. And CA neurons in the hypothalamus contribute the main source for the forebrain CA except olfactory bulb. The hypothalamic CA neurons also give rise to long descending axons to innervate the brain stem. Judging from their anatomical aspects it seems that the structure homologous to mammalian nigro-neostriatal dopamine or mesolimbic dopamine system is not present in amphibian brain. PMID:303652

  11. The anatomy of extended limbic pathways in Asperger syndrome: a preliminary diffusion tensor imaging tractography study.

    PubMed

    Pugliese, Luca; Catani, Marco; Ameis, Stephanie; Dell'Acqua, Flavio; Thiebaut de Schotten, Michel; Murphy, Clodagh; Robertson, Dene; Deeley, Quinton; Daly, Eileen; Murphy, Declan G M

    2009-08-15

    It has been suggested that people with autistic spectrum disorder (ASD) have altered development (and connectivity) of limbic circuits. However, direct evidence of anatomical differences specific to white matter pathways underlying social behaviour and emotions in ASD is lacking. We used Diffusion Tensor Imaging Tractography to compare, in vivo, the microstructural integrity and age-related differences in the extended limbic pathways between subjects with Asperger syndrome and healthy controls. Twenty-four males with Asperger syndrome (mean age 23+/-12 years, age range: 9-54 years) and 42 age-matched male controls (mean age 25+/-10 years, age range: 9-54 years) were studied. We quantified tract-specific diffusivity measurements as indirect indexes of microstructural integrity (e.g. fractional anisotropy, FA; mean diffusivity, MD) and tract volume (e.g. number of streamlines) of the main limbic tracts. The dissected limbic pathways included the inferior longitudinal fasciculus, inferior frontal occipital fasciculus, uncinate, cingulum and fornix. There were no significant between-group differences in FA and MD. However, compared to healthy controls, individuals with Asperger syndrome had a significantly higher number of streamlines in the right (p=.003) and left (p=.03) cingulum, and in the right (p=.03) and left (p=.04) inferior longitudinal fasciculus. In contrast, people with Asperger syndrome had a significantly lower number of streamlines in the right uncinate (p=.02). Within each group there were significant age-related differences in MD and number of streamlines, but not FA. However, the only significant age-related between-group difference was in mean diffusivity of the left uncinate fasciculus (Z(obs)=2.05) (p=.02). Our preliminary findings suggest that people with Asperger syndrome have significant differences in the anatomy, and maturation, of some (but not all) limbic tracts.

  12. [Paraneoplastic limbic encephalitis with positive anti-RI antibodies and mediastinal seminoma].

    PubMed

    Launay, M; Bozzolo, E; Venissac, N; Delmont, E; Fredenrich, A; Thomas, P

    2008-01-01

    We report the case of a 49-year-old man who was admitted for progressive behaviorial disorders with frontal elements. There was no sensorial nor motor deficiency. Clinical examination revealed android obesity, cutaneous and mucous paleness, pubic and axillary depilation and gynecomastia. Encephalic MRI found a lesion of the left amygdalian region with high T2 intensity and low T1 intensity associated with gadolinium-enhancement. Cerebrospinal fluid analysis showed a lymphocytic meningitis. Panhypopituitarism was found on the endocrine investigations. Anti-RI antibodies were positive, leading to the diagnosis of paraneoplastic limbic encephalitis. The CT-scan showed a node of the lower part of the thymic area. Surgical resection revealed an ectopic mediastinal seminoma. The evolution consisted of paraneoplastic fever and crossed-syndrome with right hemiparesia and left common oculomotor nerve paralysis. Treatment was completed by two cycles of carboplatin, corticosteroids and substitutive opotherapy. Paraneoplastic fever disappeared, but behavioral disorders and palsy remain unchanged. The patient died two years later in a bedridden state. This case of paraneoplastic limbic encephalitis associated with positive anti-RI antibodies and mediastinal seminoma is exceptional and has not to our knowledge been described in the literature. Cancers usually associated with anti-RI antibody are breast and lung cancer. Paraneoplastic limbic encephalitis is not the classical clinical presentation, which usually is brainstem encephalitis. Hypothalamic involvement, uncommon in paraneoplastic limbic encephalitis is mainly associated with positive antineuronal anti-Ma2 antibodies. Finally, the gadolinium enhancement on encephalic MRI is unusual in paraneoplastic limbic encephalitis. PMID:18565362

  13. Common modulation of limbic network activation underlies musical emotions as they unfold.

    PubMed

    Singer, Neomi; Jacoby, Nori; Lin, Tamar; Raz, Gal; Shpigelman, Lavi; Gilam, Gadi; Granot, Roni Y; Hendler, Talma

    2016-11-01

    Music is a powerful means for communicating emotions among individuals. Here we reveal that this continuous stream of affective information is commonly represented in the brains of different listeners and that particular musical attributes mediate this link. We examined participants' brain responses to two naturalistic musical pieces using functional Magnetic Resonance imaging (fMRI). Following scanning, as participants listened to the musical pieces for a second time, they continuously indicated their emotional experience on scales of valence and arousal. These continuous reports were used along with a detailed annotation of the musical features, to predict a novel index of Dynamic Common Activation (DCA) derived from ten large-scale data-driven functional networks. We found an association between the unfolding music-induced emotionality and the DCA modulation within a vast network of limbic regions. The limbic-DCA modulation further corresponded with continuous changes in two temporal musical features: beat-strength and tempo. Remarkably, this "collective limbic sensitivity" to temporal features was found to mediate the link between limbic-DCA and the reported emotionality. An additional association with the emotional experience was found in a left fronto-parietal network, but only among a sub-group of participants with a high level of musical experience (>5years). These findings may indicate two processing-levels underlying the unfolding of common music emotionality; (1) a widely shared core-affective process that is confined to a limbic network and mediated by temporal regularities in music and (2) an experience based process that is rooted in a left fronto-parietal network that may involve functioning of the 'mirror-neuron system'. PMID:27389788

  14. Short-term ethanol exposure causes imbalanced neurotrophic factor allocation in the basal forebrain cholinergic system: a novel insight into understanding the initial processes of alcohol addiction.

    PubMed

    Miki, Takanori; Kusaka, Takashi; Yokoyama, Toshifumi; Ohta, Ken-ichi; Suzuki, Shingo; Warita, Katsuhiko; Jamal, Mostofa; Wang, Zhi-Yu; Ueki, Masaaki; Liu, Jun-Qian; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki

    2014-02-01

    Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.

  15. Brain activity mapping in Mecp2 mutant mice reveals functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment.

    PubMed

    Kron, Miriam; Howell, C James; Adams, Ian T; Ransbottom, Michael; Christian, Diana; Ogier, Michael; Katz, David M

    2012-10-01

    Excitatory-inhibitory imbalance has been identified within specific brain microcircuits in models of Rett syndrome (RTT) and other autism spectrum disorders (ASDs). However, macrocircuit dysfunction across the RTT brain as a whole has not been defined. To approach this issue, we mapped expression of the activity-dependent, immediate-early gene product Fos in the brains of wild-type (Wt) and methyl-CpG-binding protein 2 (Mecp2)-null (Null) mice, a model of RTT, before and after the appearance of overt symptoms (3 and 6 weeks of age, respectively). At 6 weeks, Null mice exhibit significantly less Fos labeling than Wt in limbic cortices and subcortical structures, including key nodes in the default mode network. In contrast, Null mice exhibit significantly more Fos labeling than Wt in the hindbrain, most notably in cardiorespiratory regions of the nucleus tractus solitarius (nTS). Using nTS as a model, whole-cell recordings demonstrated that increased Fos expression in Nulls at 6 weeks of age is associated with synaptic hyperexcitability, including increased frequency of spontaneous and miniature EPSCs and increased amplitude of evoked EPSCs in Nulls. No such effect of genotype on Fos or synaptic function was seen at 3 weeks. In the mutant forebrain, reduced Fos expression, as well as abnormal sensorimotor function, were reversed by the NMDA receptor antagonist ketamine. In light of recent findings that the default mode network is hypoactive in autism, our data raise the possibility that hypofunction within this meta-circuit is a shared feature of RTT and other ASDs and is reversible. PMID:23035095

  16. Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans

    PubMed Central

    Tyler, William J.; Boasso, Alyssa M.; Mortimore, Hailey M.; Silva, Rhonda S.; Charlesworth, Jonathan D.; Marlin, Michelle A.; Aebersold, Kirsten; Aven, Linh; Wetmore, Daniel Z.; Pal, Sumon K.

    2015-01-01

    We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physiology under different experimental conditions. The TEN method involved delivering high-frequency pulsed electrical currents to ophthalmic and maxillary divisions of the right trigeminal nerve and cervical spinal nerve afferents. Under resting conditions, TEN significantly suppressed basal sympathetic tone compared to sham as indicated by functional infrared thermography of facial temperatures. In a different experiment, subjects treated with TEN reported significantly lower levels of tension and anxiety on the Profile of Mood States scale compared to sham. In a third experiment when subjects were experimentally stressed TEN produced a significant suppression of heart rate variability, galvanic skin conductance, and salivary α-amylase levels compared to sham. Collectively these observations demonstrate TEN can dampen basal sympathetic tone and attenuate sympathetic activity in response to acute stress induction. Our physiological and biochemical observations are consistent with the hypothesis that TEN modulates noradrenergic signaling to suppress sympathetic activity. We conclude that dampening sympathetic activity in such a manner represents a promising approach to managing daily stress. PMID:26353920

  17. Effects of cholinergic and noradrenergic agents on locomotion in the mudpuppy (Necturus maculatus).

    PubMed

    Fok, M; Stein, R B

    2002-08-01

    Some neurotransmitters act consistently on the central pattern generator (CPG) for locomotion in a wide range of vertebrates. In contrast, acetylcholine (ACh) and noradrenaline (NA) have various effects on locomotion in different preparations. The roles of ACh and NA have not been studied in amphibian walking, so we examined their effects in an isolated spinal cord preparation of the mudpuppy ( Necturus maculatus). This preparation contains a CPG that produces locomotor activity when N-methyl- D-aspartic acid (NMDA), an excitatory amino acid agonist, is added to the bath. The addition of carbachol, a long acting ACh agonist, to the bath disrupted the walking rhythm induced by NMDA, while not changing the level of activity in flexor and extensor motoneurons. Adding clonidine, an alpha(2)-noradrenergic agonist, had no effect on the NMDA-induced walking rhythm. Physostigmine, an ACh-esterase inhibitor, disrupted the walking rhythm, presumably by potentiating the effects of endogenously released ACh. Atropine, an ACh antagonist that binds to muscarinic ACh receptors, blocked the effects of carbachol, indicating that the action is mediated, at least in part, by muscarinic receptors. In the absence of carbachol, atropine had no effect. Locomotion was not induced by carbachol, atropine or clonidine in a resting spinal cord preparation. Cholinergic actions do not seem to be essential to the CPG for walking in the mudpuppy, but ACh may convert a rhythmic walking state to a more tonic state with occasional bursts of EMG activity for postural adjustments.

  18. CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety.

    PubMed

    McCall, Jordan G; Al-Hasani, Ream; Siuda, Edward R; Hong, Daniel Y; Norris, Aaron J; Ford, Christopher P; Bruchas, Michael R

    2015-08-01

    The locus coeruleus noradrenergic (LC-NE) system is one of the first systems engaged following a stressful event. While numerous groups have demonstrated that LC-NE neurons are activated by many different stressors, the underlying neural circuitry and the role of this activity in generating stress-induced anxiety has not been elucidated. Using a combination of in vivo chemogenetics, optogenetics, and retrograde tracing, we determine that increased tonic activity of the LC-NE system is necessary and sufficient for stress-induced anxiety and aversion. Selective inhibition of LC-NE neurons during stress prevents subsequent anxiety-like behavior. Exogenously increasing tonic, but not phasic, activity of LC-NE neurons is alone sufficient for anxiety-like and aversive behavior. Furthermore, endogenous corticotropin-releasing hormone(+) (CRH(+)) LC inputs from the amygdala increase tonic LC activity, inducing anxiety-like behaviors. These studies position the LC-NE system as a critical mediator of acute stress-induced anxiety and offer a potential intervention for preventing stress-related affective disorders.

  19. Noradrenergic Modulation of Intrinsic and Synaptic Properties of Lumbar Motoneurons in the Neonatal Rat Spinal Cord

    PubMed Central

    Tartas, Maylis; Morin, France; Barrière, Grégory; Goillandeau, Michel; Lacaille, Jean-Claude; Cazalets, Jean-René; Bertrand, Sandrine S.

    2009-01-01

    Although it is known that noradrenaline (NA) powerfully controls spinal motor networks, few data are available regarding the noradrenergic (NAergic) modulation of intrinsic and synaptic properties of neurons in motor networks. Our work explores the cellular basis of NAergic modulation in the rat motor spinal cord. We first show that lumbar motoneurons express the three classes of adrenergic receptors at birth. Using patch-clamp recordings in the newborn rat spinal cord preparation, we characterized the effects of NA and of specific agonists of the three classes of adrenoreceptors on motoneuron membrane properties. NA increases the motoneuron excitability partly via the inhibition of a KIR like current. Methoxamine (α1), clonidine (α2) and isoproterenol (β) differentially modulate the motoneuron membrane potential but also increase motoneuron excitability, these effects being respectively inhibited by the antagonists prazosin (α1), yohimbine (α2) and propranolol (β). We show that the glutamatergic synaptic drive arising from the T13-L2 network is enhanced in motoneurons by NA, methoxamine and isoproterenol. On the other hand, NA, isoproterenol and clonidine inhibit both the frequency and amplitude of miniature glutamatergic EPSCs while methoxamine increases their frequency. The T13-L2 synaptic drive is thereby differentially modulated from the other glutamatergic synapses converging onto motoneurons and enhanced by presynaptic α1 and β receptor activation. Our data thus show that the NAergic system exerts a powerful and complex neuromodulation of lumbar motor networks in the neonatal rat spinal cord. PMID:20300468

  20. Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans.

    PubMed

    Tyler, William J; Boasso, Alyssa M; Mortimore, Hailey M; Silva, Rhonda S; Charlesworth, Jonathan D; Marlin, Michelle A; Aebersold, Kirsten; Aven, Linh; Wetmore, Daniel Z; Pal, Sumon K

    2015-01-01

    We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physiology under different experimental conditions. The TEN method involved delivering high-frequency pulsed electrical currents to ophthalmic and maxillary divisions of the right trigeminal nerve and cervical spinal nerve afferents. Under resting conditions, TEN significantly suppressed basal sympathetic tone compared to sham as indicated by functional infrared thermography of facial temperatures. In a different experiment, subjects treated with TEN reported significantly lower levels of tension and anxiety on the Profile of Mood States scale compared to sham. In a third experiment when subjects were experimentally stressed TEN produced a significant suppression of heart rate variability, galvanic skin conductance, and salivary α-amylase levels compared to sham. Collectively these observations demonstrate TEN can dampen basal sympathetic tone and attenuate sympathetic activity in response to acute stress induction. Our physiological and biochemical observations are consistent with the hypothesis that TEN modulates noradrenergic signaling to suppress sympathetic activity. We conclude that dampening sympathetic activity in such a manner represents a promising approach to managing daily stress. PMID:26353920

  1. Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction.

    PubMed

    Mueller, Devin; Porter, James T; Quirk, Gregory J

    2008-01-01

    Emotional arousal strengthens memory. This is most apparent in aversive conditioning, in which the stress-related neurotransmitter norepinephrine (NE) enhances associations between sensory stimuli and fear-inducing events. In contrast to conditioning, extinction decreases fear responses, and is thought to form a new memory. It is not known, however, whether NE is necessary for extinction learning. Previous work has shown that the infralimbic prefrontal cortex (IL) is a site of extinction consolidation. Here, we show that blocking noradrenergic beta-receptors in IL before extinction training impaired retrieval of extinction the following day, consistent with a weakened extinction memory. We further found that the sequelae of beta-receptor activation, including protein kinase A (PKA), gene transcription and translation in IL, are necessary for extinction. To determine whether activation of this cascade modulates IL excitability, we measured the response of IL pyramidal neurons to injected current. NE increased the excitability of IL neurons in a beta-receptor- and PKA-dependent manner. We suggest that NE released in IL during fear extinction activates a PKA-mediated molecular cascade that strengthens extinction memory. Thus, emotional arousal evoked by conditioned fear paradoxically promotes the subsequent extinction of that fear, thereby ensuring behavioral flexibility.

  2. Statins Promote Long-Term Recovery after Ischemic Stroke by Reconnecting Noradrenergic Neuronal Circuitry

    PubMed Central

    Cho, Kyoung Joo; Cheon, So Young; Kim, Gyung Whan

    2015-01-01

    Inhibitors of HMG-CoA reductase (statins), widely used to lower cholesterol in coronary heart and vascular disease, are effective drugs in reducing the risk of stroke and improving its outcome in the long term. After ischemic stroke, cardiac autonomic dysfunction and psychological problems are common complications related to deficits in the noradrenergic (NA) system. This study investigated the effects of statins on the recovery of NA neuron circuitry and its function after transient focal cerebral ischemia (tFCI). Using the wheat germ agglutinin (WGA) transgene technique combined with the recombinant adenoviral vector system, NA-specific neuronal pathways were labeled, and were identified in the locus coeruleus (LC), where NA neurons originate. NA circuitry in the atorvastatin-treated group recovered faster than in the vehicle-treated group. The damaged NA circuitry was partly reorganized with the gradual recovery of autonomic dysfunction and neurobehavioral deficit. Newly proliferated cells might contribute to reorganizing NA neurons and lead anatomic and functional recovery of NA neurons. Statins may be implicated to play facilitating roles in the recovery of the NA neuron and its function. PMID:26448880

  3. Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans.

    PubMed

    Tyler, William J; Boasso, Alyssa M; Mortimore, Hailey M; Silva, Rhonda S; Charlesworth, Jonathan D; Marlin, Michelle A; Aebersold, Kirsten; Aven, Linh; Wetmore, Daniel Z; Pal, Sumon K

    2015-01-01

    We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physiology under different experimental conditions. The TEN method involved delivering high-frequency pulsed electrical currents to ophthalmic and maxillary divisions of the right trigeminal nerve and cervical spinal nerve afferents. Under resting conditions, TEN significantly suppressed basal sympathetic tone compared to sham as indicated by functional infrared thermography of facial temperatures. In a different experiment, subjects treated with TEN reported significantly lower levels of tension and anxiety on the Profile of Mood States scale compared to sham. In a third experiment when subjects were experimentally stressed TEN produced a significant suppression of heart rate variability, galvanic skin conductance, and salivary α-amylase levels compared to sham. Collectively these observations demonstrate TEN can dampen basal sympathetic tone and attenuate sympathetic activity in response to acute stress induction. Our physiological and biochemical observations are consistent with the hypothesis that TEN modulates noradrenergic signaling to suppress sympathetic activity. We conclude that dampening sympathetic activity in such a manner represents a promising approach to managing daily stress.

  4. Evidence for a regional specificity in the density and distribution of noradrenergic varicosities in rat cortex.

    PubMed

    Agster, Kara L; Mejias-Aponte, Carlos A; Clark, Brian D; Waterhouse, Barry D

    2013-07-01

    The brainstem nucleus locus coeruleus (LC) is the sole source of norepinephrine (NE)-containing fibers in the mammalian cortex. Previous studies suggest that the density of noradrenergic fibers in rat is relatively uniform across cortical regions and that cells in the nucleus discharge en masse. This implies that activation of the LC results in equivalent release of NE throughout the cortex. However, it is possible that there could be differences in the density of axonal varicosities across regions, and that these differences, rather than a difference in fiber density, may contribute to the regulation of NE efflux. Quantification of dopamine β-hydroxylase (DβH)-immunostained varicosities was performed on several cortical regions and in the ventral posterior medial (VPM) thalamus by using unbiased sampling methods. The density of DβH varicosities is greater in the prefrontal cortex than in motor, somatosensory, or piriform cortices, greater in superficial than in deep layers of cortex, and greater in the VPM than in the somatosensory cortex. Our results provide anatomical evidence for non-uniform release of NE across functionally discrete cortical regions. This morphology may account for a differential, region-specific, impact of LC output on different cortical areas.

  5. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety

    PubMed Central

    McCall, Jordan G.; Al-Hasani, Ream; Siuda, Edward R.; Hong, Daniel Y.; Norris, Aaron J.; Ford, Christopher P.; Bruchas, Michael R.

    2015-01-01

    Summary The locus coeruleus noradrenergic (LC-NE) system is one of the first systems engaged following a stressful event. While numerous groups have demonstrated that LC-NE neurons are activated by many different stressors, the underlying neural circuitry and the role of this activity in generating stress-induced anxiety has not been elucidated. Using a combination of in vivo chemogenetics, optogenetics, and retrograde tracing we determine that increased tonic activity of the LC-NE system is necessary and sufficient for stress-induced anxiety and aversion. Selective inhibition of LC-NE neurons during stress prevents subsequent anxiety-like behavior. Exogenously increasing tonic, but not phasic, activity of LC-NE neurons is alone sufficient for anxiety-like and aversive behavior. Furthermore, endogenous corticotropin releasing hormone+ (CRH+) LC inputs from the amygdala increase tonic LC activity, inducing anxiety-like behaviors. These studies position the LC-NE system as a critical mediator of acute stress-induced anxiety and offer a potential intervention for preventing stress-related affective disorders. PMID:26212712

  6. Hippocampal type I and type II corticosteroid receptors are modulated by central noradrenergic systems.

    PubMed

    Maccari, S; Mormède, P; Piazza, P V; Simon, H; Angelucci, L; Le Moal, M

    1992-01-01

    The effects of corticosteroids on various brain functions, including the negative feedback control of hypothalamo-pituitary-adrenal (HPA) axis activity, are mediated by two types of receptors (type I, or mineralocorticoid, and type II, or glucocorticoid) in the central nervous system. Although receptor numbers are thought to be regulated by circulating levels of corticosterone, there may be a direct neural control of corticosteroid receptors. In the present experiments, we demonstrate that 6-OHDA lesioning of noradrenergic (NA) ascending pathways in the pedunculus cerebellaris superior (PCS) reduces corticosterone secretion in response to novelty and increases the number of hippocampal type I corticosteroid receptors in rats 24 hr after adrenalectomy. The same lesion in adrenalectomized animals in which corticosterone levels were maintained within normal limits by corticosterone replacement implants also led to an increase in the number of type I corticosterone receptors and a decrease in the apparent affinity (Kd) of type II receptors in the hippocampus. These results suggest that the NA system may regulate HPA axis activity via a direct control of the number of type I receptors and the apparent affinity of type II receptors in the hippocampus. The possibility that there is a neural control of corticosteroid receptors may throw light on mechanisms controlling HPA axis activity and may suggest other approaches to the treatment of dysregulation of the HPA axis observed during stress and in certain psychopathological conditions. PMID:1332096

  7. Infusions of alpha-2 noradrenergic agonists and antagonists into the amygdala: effects on kindling.

    PubMed

    Pelletier, M R; Corcoran, M E

    1993-12-31

    We reported previously that activation of alpha-2 adrenoceptors with infusions of clonidine into the amygdala/pyriform region is sufficient to retard kindling. To characterize further the involvement in kindling of alpha-2 receptors in the amygdala/pyriform, we exposed rats to unilateral intraamygdaloid infusions of a variety of noradrenergic drugs followed by either low-frequency stimulation of the amygdala, to induce rapid kindling, or conventional high-frequency stimulation. Infusions and electrical stimulation were administered once every 48 h. The prophylactic effects of clonidine were blocked by simultaneous infusion of idazoxan, an alpha-2 adrenergic antagonist, which suggests strongly that these effects were produced at an alpha-2 receptor. Intraamygdaloid infusions of xylazine, another alpha-2 agonist, also significantly retarded low-frequency kindling. Unexpectedly, intraamygdaloid infusions of the alpha-2 antagonists idazoxan, yohimbine, and SK&F 104856 failed to accelerate kindling. Infusion of the alpha-1 antagonist corynanthine also failed to affect kindling. We propose that the alpha-2 adrenoceptors in the amygdala/pyriform region contribute to the prophylactic effects of systemically administered clonidine and that the facilitation of kindling observed after systemic administration of alpha-2 antagonists may be due to blockade of alpha-2 adrenoceptors outside of the amygdala/pyriform region.

  8. Exercise offers anxiolytic potential: a role for stress and brain noradrenergic-galaninergic mechanisms.

    PubMed

    Sciolino, Natale R; Holmes, Philip V

    2012-10-01

    Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise.

  9. Exercise offers anxiolytic potential: A role for stress and brain noradrenergic-galaninergic mechanisms

    PubMed Central

    Sciolino, Natale R.; Holmes, Philip V.

    2016-01-01

    Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise. PMID:22771334

  10. Vocal control pathways through the anterior forebrain of a parrot (Melopsittacus undulatus).

    PubMed

    Durand, S E; Heaton, J T; Amateau, S K; Brauth, S E

    1997-01-13

    A feature of the telencephalic vocal control system in the budgerigar (Melopsittacus undulatus) that has been hypothesized to represent a profound difference in organization from the oscine vocal system is its reported lack of an inherent circuit through the anterior forebrain. The present study reports anatomical connections that indicate the existence of an anterior forebrain circuit comparable in important ways to the "recursive" pathway of oscine songbirds. Results from anterograde and retrograde tracing experiments with biocytin and fluorescently labeled dextran amines indicate that the central nucleus of the anterior archistriatum (AAc) is the source of ascending projections upon the oval nuclei of the anterior neostriatum and ventral hyperstriatum (NAo and HVo, respectively). Efferent projections from the latter nuclei terminate in the lateral neostriatum afferent to AAc, thereby forming a short recurrent pathway through the pallium. Previously reported projections from HVo and NAo upon the magnocellular nucleus of the lobus parolfactorius (LPOm), and after LPOm onto the magnocellular nucleus of the dorsal thalamus (DMm; G.F. Striedter [1994] J. Comp. Neurol. 343:35-56), are confirmed. A specific projection from DMm onto NAom is also demonstrated; therefore, a recurrent pathway through the basal forebrain also exists in the budgerigar vocal system that is similar to the anterior forebrain circuit of oscine songbirds. Parallels between these circuits and mammalian basal ganglia-thalamo-cortical circuits are discussed. It is hypothesized that vocal control nuclei of the avian anterior neostriatum may perform a function similar to the primate supplemental motor area.

  11. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum.

    PubMed

    Cheng, Dongmei; Hoogenraad, Casper C; Rush, John; Ramm, Elizabeth; Schlager, Max A; Duong, Duc M; Xu, Ping; Wijayawardana, Sameera R; Hanfelt, John; Nakagawa, Terunaga; Sheng, Morgan; Peng, Junmin

    2006-06-01

    The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD. PMID:16507876

  12. Pain sensitivity following loss of cholinergic basal forebrain (CBF) neurons in the rat.

    PubMed

    Vierck, C J; Yezierski, R P; Wiley, R G

    2016-04-01

    Flexion/withdrawal reflexes are attenuated by spinal, intracerebroventricular (ICV) and systemic delivery of cholinergic agonists. In contrast, some affective reactions to pain are suppressed by systemic cholinergic antagonism. Attention to aversive stimulation can be impaired, as is classical conditioning of fear and anxiety to aversive stimuli and psychological activation of stress reactions that exacerbate pain. Thus, in contrast to the suppressive effects of cholinergic agonism on reflexes, pain sensitivity and affective reactions to pain could be attenuated by reduced cerebral cholinergic activation. This possibility was evaluated in the present study, using an operant test of escape from nociceptive thermal stimulation (10 °C and 44.5 °C) before and after destruction of basal forebrain cholinergic neurons. ICV injection of 192 IgG-saporin produced widespread loss of basal forebrain cholinergic innervation of the cerebral cortex and hippocampus. Post-injection, escape from thermal stimulation was decreased with no indication of recovery for upto 19 weeks. Also, the normal hyperalgesic effect of sound stress was absent after ICV 192-sap. Effects of cerebral cholinergic denervation or stress on nociceptive licking and guarding reflexes were not consistent with the effects on operant escape, highlighting the importance of evaluating pain sensitivity of laboratory animals with an operant behavioral test. These results reveal that basal forebrain cholinergic transmission participates in the cerebral processing of pain, which may be relevant to the pain sensitivity of patients with Alzheimer's disease who have prominent degeneration of basal forebrain cholinergic neurons. PMID:26812034

  13. Conserved Noncoding Sequences Regulate lhx5 Expression in the Zebrafish Forebrain

    PubMed Central

    Sun, Liu; Chen, Fengjiao; Peng, Gang

    2015-01-01

    The LIM homeobox family protein Lhx5 plays important roles in forebrain development in the vertebrates. The lhx5 gene exhibits complex temporal and spatial expression patterns during early development but its transcriptional regulation mechanisms are not well understood. Here, we have used transgenesis in zebrafish in order to define regulatory elements that drive lhx5 expression in the forebrain. Through comparative genomic analysis we identified 10 non-coding sequences conserved in five teleost species. We next examined the enhancer activities of these conserved non-coding sequences with Tol2 transposon mediated transgenesis. We found a proximately located enhancer gave rise to robust reporter EGFP expression in the forebrain regions. In addition, we identified an enhancer located at approximately 50 kb upstream of lhx5 coding region that is responsible for reporter gene expression in the hypothalamus. We also identify an enhancer located approximately 40 kb upstream of the lhx5 coding region that is required for expression in the prethalamus (ventral thalamus). Together our results suggest discrete enhancer elements control lhx5 expression in different regions of the forebrain. PMID:26147098

  14. Orexin receptor activity in the basal forebrain alters performance on an olfactory discrimination task.

    PubMed

    Piantadosi, Patrick T; Holmes, Ashley; Roberts, Bradley M; Bailey, Aileen M

    2015-01-12

    Cholinergic innervation of the prefrontal cortex is critical for various forms of cognition, although the efferent modulators contributing to acetylcholine (ACh) release are not well understood. The main source of cortical ACh, the basal forebrain, receives projections from lateral and perifornical hypothalamic neurons releasing the peptides orexin (orexin A; OxA, and orexin B; OxB), of which OxA is hypothesized to play a role in various cognitive functions. We sought to assess one such function known to be susceptible to basal forebrain cholinergic manipulation, olfactory discrimination acquisition, and reversal learning, in rats following intra-basal forebrain infusion of OxA or the orexin 1 receptor (OxR1) antagonist SB-334867. OxA administration facilitated, while OxR1 antagonism impaired performance on both the acquisition and reversal portions of the task. These data suggest that orexin acting in the basal forebrain may be important for cortical-dependant executive functions, possibly through the stimulation of cortical ACh release.

  15. [Method of Calculating the Distance Between the Classes of the Structural Components of the Forebrain Birds].

    PubMed

    Voronov, L N; Konstantinov, V Y

    2016-01-01

    The method of calculating the distance between the classes of the structural components of the brain of birds. Compared interclass distances of glia, neurons and neuroglial complexes in the forebrain hooded crow (Corvus cornix) (a bird with a highly rational activity) and common crossbill (Loxia curvirostra) (birds with a medium level of rational activity). PMID:27263281

  16. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    ERIC Educational Resources Information Center

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  17. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine

    PubMed Central

    Vu, Michael T.; Du, Guizhi; Bayliss, Douglas A.

    2015-01-01

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K+ (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K+ current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASKf/f mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30–50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30–50 Hz activity in ChAT-Cre:TASKf/f mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. SIGNIFICANCE STATEMENT Attentive states and cognitive function are associated with the generation of γ EEG activity

  18. Sensitivity of depression-like behavior to glucocorticoids and antidepressants is independent of forebrain glucocorticoid receptors

    PubMed Central

    Vincent, Melanie Y.; Hussain, Rifat J.; Zampi, Michael E.; Sheeran, Katherine; Solomon, Matia B.; Herman, James P.; Khan, Anum; Jacobson, Lauren

    2013-01-01

    The location of glucocorticoid receptors (GR) implicated in depression symptoms and antidepressant action remains unclear. Forebrain glucocorticoid receptor deletion on a C57B/6×129×CBA background (FBGRKO-T50) reportedly produces increased depression-like behavior and elevated glucocorticoids. We further hypothesized that forebrain GR deletion would reduce behavioral sensitivity to glucocorticoids and to antidepressants. We have tested this hypothesis in mice with calcium calmodulin kinase IIα-Cre-mediated forebrain GR deletion derived from a new founder on a pure C57BL/6 background (FBGRKO-T29-1). We measured immobility in forced swim or tail suspension tests after manipulating glucocorticoids or after dose response experiments with tricyclic or monoamine oxidase inhibitor antidepressants. Despite forebrain GR deletion that was at least as rapid and more extensive than reported in the mixed-strain FBGRKO-T50 mice (Boyle et al. 2005), and possibly because of their different founder, our FBGRKO-T29-1 mice did not exhibit increases in depression-like behavior or adrenocortical axis hormones. Nevertheless, FBGRKO-T29-1 mice were at least as sensitive as floxed GR controls to the depressive effects of glucocorticoids and the effects of two different classes of antidepressants. FBGRKO-T29-1 mice also unexpectedly exhibited increased mineralocorticoid receptor (MR) gene expression. Our results reinforce prior evidence that antidepressant action does not require forebrain GR, and suggest a correlation between the absence of depression-like phenotype and combined MR up-regulation and central amygdala GR deficiency. Our findings demonstrate that GR outside the areas targeted in FBGRKO-T29-1 mice are involved in the depressive effects of glucocorticoids, and leave open the possibility that these GR populations also contribute to antidepressant action. PMID:23727405

  19. In vitro characterization of noradrenergic modulation of chemosensitive neurons in the retrotrapezoid nucleus.

    PubMed

    Kuo, Fu-Shan; Falquetto, Bárbara; Chen, Dawei; Oliveira, Luiz M; Takakura, Ana C; Mulkey, Daniel K

    2016-09-01

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) regulate breathing in response to CO2/H(+) changes and serve as an integration center for other autonomic centers, including brain stem noradrenergic neurons. Norepinephrine (NE) contributes to respiratory control and chemoreception, and, since disruption of NE signaling may contribute to several breathing disorders, we sought to characterize effects of NE on RTN chemoreception. All neurons included in this study responded similarly to CO2/H(+) but showed differential sensitivity to NE; we found that NE activated (79%), inhibited (7%), or had no effect on activity (14%) of RTN chemoreceptors. The excitatory effect of NE on RTN chemoreceptors was dose dependent, retained in the presence of neurotransmitter receptor blockers, and could be mimicked and blocked by pharmacological manipulation of α1-adrenergic receptors (ARs). In addition, NE-activation was blunted by XE991 (KCNQ channel blocker), and partially occluded the firing response to serotonin, suggesting involvement of KCNQ channels. However, in whole cell voltage clamp, activation of α1-ARs decreased outward current and conductance by what appears to be a mixed effect on multiple channels. The inhibitory effect of NE on RTN chemoreceptors was blunted by an α2-AR antagonist. A third group of RTN chemoreceptors was insensitive to NE. We also found that chemosensitive RTN astrocytes do not respond to NE with a change in voltage or by releasing ATP to enhance activity of chemosensitive neurons. These results indicate NE modulates subsets of RTN chemoreceptors by mechanisms involving α1- and α2-ARs. PMID:27306669

  20. Collateral sprouting of central noradrenergic neurons during aging: histochemical and neurochemical studies in intraocular triple transplants.

    PubMed

    Srivastava, N; Granholm, A C; Gerhardt, G A

    1997-06-01

    The sprouting capacity of aged noradrenergic neurons of the brain-stem nucleus locus coeruleus (LC) was examined using intraocular transplants of fetal tissues. Fetal hippocampal tissue (E18) and LC tissue (E15) were transplanted together as a double transplant into the anterior chamber of the eye of young adult Fischer 344 rats. The double transplants were allowed to mature for 14-18 months, after which an additional fetal hippocampal transplant was placed next to the LC graft. The triple transplants were monitored for overall growth and vascularization for an additional 2-6 months. Immunohistochemical examinations showed that both young (2-6 months old) and aged (16-24 months old) hippocampal cografts contained a plexus of thin varicose tyrosine hydroxylase (TH)-immunoreactive fibers extending throughout the grafted hippocampal tissues. However, the aged hippocampal grafts contained a denser uniform plexus of TH-positive fibers compared to the young transplants. Immunohistochemistry with synapsin antibodies demonstrated that both the young and the aged hippocampal transplants contained much higher densities of synaptic elements than the LC grafts. In vivo electrochemical measurements of potassium-evoked overflow of norepinephrine (NE) in the grafts showed that similar amounts of NE overflow were detected in both the young and the aged hippocampal grafts. HPLC-EC measurements of NE levels in the grafts revealed that there were similar amounts of NE in the young and the aged grafts, and the grafts did not contain serotonin or dopamine. In summary, the findings of the present study show that aged LC neurons are capable of undergoing collateral sprouting producing a functional NE neuronal system when introduced to an appropriate young target. PMID:9217088

  1. Effects of Propranolol, a β-noradrenergic Antagonist, on Memory Consolidation and Reconsolidation in Mice

    PubMed Central

    Villain, Hélène; Benkahoul, Aïcha; Drougard, Anne; Lafragette, Marie; Muzotte, Elodie; Pech, Stéphane; Bui, Eric; Brunet, Alain; Birmes, Philippe; Roullet, Pascal

    2016-01-01

    Memory reconsolidation impairment using the β-noradrenergic receptor blocker propranolol is a promising novel treatment avenue for patients suffering from pathogenic memories, such as post-traumatic stress disorder (PTSD). However, in order to better inform targeted treatment development, the effects of this compound on memory need to be better characterized via translational research. We examined the effects of systemic propranolol administration in mice undergoing a wide range of behavioral tests to determine more specifically which aspects of the memory consolidation and reconsolidation are impaired by propranolol. We found that propranolol (10 mg/kg) affected memory consolidation in non-aversive tasks (object recognition and object location) but not in moderately (Morris water maze (MWM) to highly (passive avoidance, conditioned taste aversion) aversive tasks. Further, propranolol impaired memory reconsolidation in the most and in the least aversive tasks, but not in the moderately aversive task, suggesting its amnesic effect was not related to task aversion. Moreover, in aquatic object recognition and location tasks in which animals were forced to behave (contrary to the classic versions of the tasks); propranolol did not impair memory reconsolidation. Taken together our results suggest that the memory impairment observed after propranolol administration may result from a modification of the emotional valence of the memory rather than a disruption of the contextual component of the memory trace. This is relevant to the use of propranolol to block memory reconsolidation in individuals with PTSD, as such a treatment would not erase the traumatic memory but only reduce the emotional valence associated with this event. PMID:27014009

  2. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    PubMed

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. PMID:26598443

  3. Effects of Propranolol, a β-noradrenergic Antagonist, on Memory Consolidation and Reconsolidation in Mice.

    PubMed

    Villain, Hélène; Benkahoul, Aïcha; Drougard, Anne; Lafragette, Marie; Muzotte, Elodie; Pech, Stéphane; Bui, Eric; Brunet, Alain; Birmes, Philippe; Roullet, Pascal

    2016-01-01

    Memory reconsolidation impairment using the β-noradrenergic receptor blocker propranolol is a promising novel treatment avenue for patients suffering from pathogenic memories, such as post-traumatic stress disorder (PTSD). However, in order to better inform targeted treatment development, the effects of this compound on memory need to be better characterized via translational research. We examined the effects of systemic propranolol administration in mice undergoing a wide range of behavioral tests to determine more specifically which aspects of the memory consolidation and reconsolidation are impaired by propranolol. We found that propranolol (10 mg/kg) affected memory consolidation in non-aversive tasks (object recognition and object location) but not in moderately (Morris water maze (MWM) to highly (passive avoidance, conditioned taste aversion) aversive tasks. Further, propranolol impaired memory reconsolidation in the most and in the least aversive tasks, but not in the moderately aversive task, suggesting its amnesic effect was not related to task aversion. Moreover, in aquatic object recognition and location tasks in which animals were forced to behave (contrary to the classic versions of the tasks); propranolol did not impair memory reconsolidation. Taken together our results suggest that the memory impairment observed after propranolol administration may result from a modification of the emotional valence of the memory rather than a disruption of the contextual component of the memory trace. This is relevant to the use of propranolol to block memory reconsolidation in individuals with PTSD, as such a treatment would not erase the traumatic memory but only reduce the emotional valence associated with this event.

  4. Norepinephrine and brain damage: alpha noradrenergic pharmacology alters functional recovery after cortical trauma.

    PubMed

    Feeney, D M; Westerberg, V S

    1990-06-01

    The goal of these experiments was to evaluate the effects of some drugs affecting noradrenergic (NE) synaptic transmission, commonly prescribed following stroke or traumatic brain injury, on functional recovery. Measurement of recovery from a transient hemiplegia produced by a traumatic unilateral focal contusion in sensorimotor cortex (SMCX) of rats was used to assess the effects of chronic haloperidol (HAL) treatment begun early (1 day) or late (18 days to recovered animals) after injury. Additionally, using the same model, the effects of a single administration of drugs with selective action at NE receptors were also evaluated early or late (30 days) after injury. These drugs were: phenoxybenzamine (PBZ), an alpha 1-NE antagonist; prazosin (PRAZ), an alpha 1-NE antagonist; yohimbine (YOH), an alpha 2-NE antagonist; propranolol (PROP), a beta 1- and 2-NE receptor antagonist; methoxymine (METHOX), an alpha 1-NE agonist; and clonidine (CLON), an alpha 2-NE agonist. The data indicate that drugs with antagonistic effects at alpha 1 NE receptors, including HAL and PRAZ but not PROP, administered early after SMCX contusion retard locomotor recovery. Beneficial effects of enhancing NE transmission by METHOX or YOH were not observed. In animals recovered from beam walk (BW) deficits, a single administration of PBZ or PRAZ (alpha 1 NE antagonists) or CLON (alpha 2 NE agonist) transiently reinstated hemiplegic symptoms. The nonspecific beta NE receptor antagonist PROP had no effect in recovered animals. A single dose of HAL had no effect in recovered animals, but a BW deficit transiently developed in some animals following chronic treatment. The data are discussed with reference to drug contraindications noted in clinical studies of recovery from poststroke aphasia and cognition in demented patients with degenerative brain disease. PMID:2166617

  5. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    PubMed

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT.

  6. Blockage of induced pseudopregnancy by electrochemical stimulation of the limbic system.

    PubMed

    Peters, J A; Gala, R R

    1975-01-01

    Pseudopregnancy induced by cervical stimulation was inhibited by acute electrochemical stimulation of the corticomedial amygdala or dorsal hippocampus under sodium pentobarbital anesthesia (40 mg/kg) in adult, cyclic female Sprague-Dawley rats. The degree to which pseudopregnancy was blocked depended on temporal conditions of brain stimulation and sodium pentobarbital administration. Pentobarbital alone had a suppressing effect on the incidence of pseudopregnancy, especially when it preceded cervical stimulation. Limbic stimulation before cervical stimulation had a tendency to potentiate the suppression of pseudopregnancy by pentobarbital. After cervical stimulation, hippocampal stimulation tended to inhibit the development of pseudopregnancy, potentiating the pentobarbital suppression, while amygdala stimulation tended to override the pentobarbital blockage of pseudopregnancy. These findings suggest a negative influence of these two limbic structures and pentobarbital on the secretion of prolactin.

  7. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders

    PubMed Central

    Vadnie, Chelsea A.; Park, Jun Hyun; Abdel Gawad, Noha; Ho, Ada Man Choi; Hinton, David J.; Choi, Doo-Sup

    2014-01-01

    Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD. PMID:25278825

  8. A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia.

    PubMed

    England, Samantha J; Blanchard, Guy B; Mahadevan, L; Adams, Richard J

    2006-12-01

    Mechanisms for shaping and folding sheets of cells during development are poorly understood. An example is the complex reorganisation of the forebrain neural plate during neurulation, which must fold a sheet into a tube while evaginating two eyes from a single contiguous domain within the neural plate. We, for the first time, track these cell rearrangements to show that forebrain morphogenesis differs significantly from prior hypotheses. We postulate a new model for forebrain neurulation and demonstrate how mutations affecting two signalling pathways can generate cyclopic phenotypes by disrupting normal cell movements or introducing new erroneous behaviours.

  9. [Anti-VGKC antibody-associated limbic encephalitis/Morvan syndrome].

    PubMed

    Misawa, Tamako; Mizusawa, Hidehiro

    2010-04-01

    Anti-voltage-gated potassium channel antibodies (anti-VGKC-Ab) cause hyperexcitability of the peripheral nerve and central nervous system. Peripheral nerve hyperexcitability is the chief manifestation of Issacs syndrome and cramp-fasciculation syndrome. Morvan syndrome is characterized by neuromyotonia with autonomic and CNS involvement. Manifestations involving the CNS without peripheral involvement are characteristic of limbic encephalitis and epilepsy. The clinical features of anti-VGKC-Ab-associated limbic encephalitis are subacute onset of episodic memory impairment, disorientation and agitation. Hyponatremia is also noted in most patients. Cortico-steroid therapy, plasma exchange and intravenous immunoglobulin are effective in treating to not only the clinical symptoms but also hyponatremia. Unlike other anti-VGKC-Ab-associated neurological disorders, paraneoplastic cases are rare. Thus, anti-VGKC-Ab-associated limbic encephalopathy is considered to be an autoimmune, non-paraneoplastic, potentially treatable encephalitis. Morvan syndrome is characterized by widespread neurological symptoms involving the peripheral nervous system (neuromyotonia), autonomic system (hyperhidrosis, severe constipation, urinary incontinence, and cardiac arrhythmia) and the CNS (severe insomnia, hallucinations, impairment of short-term memory and epilepsy). Many patients have an underlying tumor, for example thymoma, lung cancer, testicular cancer and lymphoma; this indicates the paraneoplastic nature of the disease. Needle electro-myography reveals myokimic discharge. In nerve conduction study, stimulus-induced repetitive descharges are frequently demonstrated in involved muscles. Plasma exchange is an effective treatment approach, and tumor resection also improves symptoms. Both VGKC-Ab-associated limbic encephalitis and Morvan syndrome can be successfully treated. Therefore, when these diseases are suspected, it's important to measure the anti-VGKC-Ab level.

  10. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Telang, F.; Fowler, J.S.; Pradhan, K.; Jayne, M.; Logan, J.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.T.

    2010-07-01

    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and {sup 18}FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic

  11. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder.

    PubMed

    Göttlich, Martin; Krämer, Ulrike M; Kordon, Andreas; Hohagen, Fritz; Zurowski, Bartosz

    2014-11-01

    Obsessive-compulsive disorder (OCD) is characterized by recurrent intrusive thoughts and ritualized, repetitive behaviors, or mental acts. Convergent experimental evidence from neuroimaging and neuropsychological studies supports an orbitofronto-striato-thalamo-cortical dysfunction in OCD. Moreover, an over excitability of the amygdala and over monitoring of thoughts and actions involving the anterior cingulate, frontal and parietal cortex has been proposed as aspects of pathophysiology in OCD. We chose a data driven, graph theoretical approach to investigate brain network organization in 17 unmedicated OCD patients and 19 controls using resting-state fMRI. OCD patients showed a decreased connectivity of the limbic network to several other brain networks: the basal ganglia network, the default mode network, and the executive/attention network. The connectivity within the limbic network was also found to be decreased in OCD patients compared to healthy controls. Furthermore, we found a stronger connectivity of brain regions within the executive/attention network in OCD patients. This effect was positively correlated with disease severity. The decreased connectivity of limbic regions (amygdala, hippocampus) may be related to several neurocognitive deficits observed in OCD patients involving implicit learning, emotion processing and expectation, and processing of reward and punishment. Limbic disconnection from fronto-parietal regions relevant for (re)-appraisal may explain why intrusive thoughts become and/or remain threatening to patients but not to healthy subjects. Hyperconnectivity within the executive/attention network might be related to OCD symptoms such as excessive monitoring of thoughts and behavior as a dysfunctional strategy to cope with threat and uncertainty. PMID:25044747

  12. Retroductive reasoning in a proposed subtype of partial seizures, evoked by limbic "kindling".

    PubMed

    Pontius, A A

    1995-02-01

    This analysis provides a specific example of the generally applicable process of creative delineation of a novel pattern while searching for an explanatory hypothesis for puzzling observations. In so doing, the neglected retroductive form of inference or abduction was used. Central to such a process is the delineation of a specific "generative mechanism" capable of uniting and explaining heretofore unexplained phenomena. Herein the neurophysiologically known mechanism of limbic seizure "kindling" is offered as a unifying explanation for a dozen bizarre phenomena, proposed as a new subtype of partial seizures, "Limbic Psychotic Trigger Reaction." This new syndrome has been proposed over 15 years in 17 male social loners. Upon encounter with an individualized stimulus, which revived in memory prior moderately hurtful experiences, these men suddenly committed motiveless, unplanned acts with flat affect, transient psychosis and autonomic arousal, showing no quantitative impairment of consciousness and so without memory loss for their perplexing homicidal acts (13 cases), firesetting (3 cases), or bank robbery (1 case). Events occurred in three phases reminiscent of seizures: (1) aura-like puzzlement, (2) transient ictus with a limbic release of predatory or defensive aggression (circa 20 min.), and (3) postictal inefficient actions, implicating a transient frontal lobe system dysfunction secondary to the limbic hyperactivation. The 17 men were of diverse backgrounds, but all without history of prior violence or severe emotional trauma. Seven of 17 had some abnormal tests at some time during their lives and eight known histories of typically overlooked closed-brain injury. Brain damage may facilitate seizure "kindling" but has been traditionally observed in mammals and in a few humans without such damage. PMID:7770594

  13. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder.

    PubMed

    Göttlich, Martin; Krämer, Ulrike M; Kordon, Andreas; Hohagen, Fritz; Zurowski, Bartosz

    2014-11-01

    Obsessive-compulsive disorder (OCD) is characterized by recurrent intrusive thoughts and ritualized, repetitive behaviors, or mental acts. Convergent experimental evidence from neuroimaging and neuropsychological studies supports an orbitofronto-striato-thalamo-cortical dysfunction in OCD. Moreover, an over excitability of the amygdala and over monitoring of thoughts and actions involving the anterior cingulate, frontal and parietal cortex has been proposed as aspects of pathophysiology in OCD. We chose a data driven, graph theoretical approach to investigate brain network organization in 17 unmedicated OCD patients and 19 controls using resting-state fMRI. OCD patients showed a decreased connectivity of the limbic network to several other brain networks: the basal ganglia network, the default mode network, and the executive/attention network. The connectivity within the limbic network was also found to be decreased in OCD patients compared to healthy controls. Furthermore, we found a stronger connectivity of brain regions within the executive/attention network in OCD patients. This effect was positively correlated with disease severity. The decreased connectivity of limbic regions (amygdala, hippocampus) may be related to several neurocognitive deficits observed in OCD patients involving implicit learning, emotion processing and expectation, and processing of reward and punishment. Limbic disconnection from fronto-parietal regions relevant for (re)-appraisal may explain why intrusive thoughts become and/or remain threatening to patients but not to healthy subjects. Hyperconnectivity within the executive/attention network might be related to OCD symptoms such as excessive monitoring of thoughts and behavior as a dysfunctional strategy to cope with threat and uncertainty.

  14. History of cigarette smoking is associated with higher limbic GABAA receptor availability.

    PubMed

    Stokes, Paul R A; Benecke, Aaf; Myers, Jim; Erritzoe, David; Watson, Ben J; Kalk, Nicola; Barros, Daniela Riano; Hammers, Alexander; Nutt, David J; Lingford-Hughes, Anne R

    2013-04-01

    Cigarette smoking presents a significant worldwide healthcare challenge. Preclinical, genetic association and clinical trials studies provide considerable evidence for the involvement of the human γ-aminobutyric acid (GABA) system in the neurobiology of nicotine addiction. However there are few human GABA neurochemical imaging studies of nicotine addiction. We investigated limbic GABA(A) receptor availability in volunteers with a history of cigarette smoking using [(11)C]Ro15 4513 positron emission tomography (PET). Eight [(11)C]Ro15 4513 PET scans from volunteers with a history of cigarette smoking were compared to twelve scans from volunteers who were non-smokers. Total, α1 and α5 GABA(A) receptor subtype [(11)C]Ro15 4513 V(T) values were quantified using spectral analysis of limbic regions implicated in nicotine addiction. Spectral analysis allows quantification of the overall [(11)C]Ro15 4513 spectral frequency as well as α1 and α5 GABA(A) receptor subtype specific spectral frequency components. Volunteers with a history of cigarette smoking showed significantly higher total [(11)C]Ro15 4513 V(T) values in the presubgenual cingulate and parahippocampal gyrus, and at a trend level in the insula, nucleus accumbens and subgenual cingulate. In six abstinent previous smokers ('ex-smokers'), total [(11)C]Ro15 4513 binding was significantly higher in all limbic regions studied, with higher α5 availability in the amygdala, anterior cingulate, nucleus accumbens and presubgenual cingulate. These results suggest that limbic GABA(A) receptor availability is higher in volunteers with a history of cigarette smoking which may reflect either higher expression of GABA(A) receptors or lower endogenous GABA levels. The findings in ex-smokers suggest that higher GABA(A) receptor availability continues with abstinence indicating that this may be a trait marker for nicotine addiction or that alterations in GABA function associated with cigarette smoking persist.

  15. Noradrenergic stimulation modulates activation of extinction-related brain regions and enhances contextual extinction learning without affecting renewal

    PubMed Central

    Lissek, Silke; Glaubitz, Benjamin; Güntürkün, Onur; Tegenthoff, Martin

    2015-01-01

    Renewal in extinction learning describes the recovery of an extinguished response if the extinction context differs from the context present during acquisition and recall. Attention may have a role in contextual modulation of behavior and contribute to the renewal effect, while noradrenaline (NA) is involved in attentional processing. In this functional magnetic resonance imaging (fMRI) study we investigated the role of the noradrenergic system for behavioral and brain activation correlates of contextual extinction and renewal, with a particular focus upon hippocampus and ventromedial prefrontal cortex (PFC), which have crucial roles in processing of renewal. Healthy human volunteers received a single dose of the NA reuptake inhibitor atomoxetine prior to extinction learning. During extinction of previously acquired cue-outcome associations, cues were presented in a novel context (ABA) or in the acquisition context (AAA). In recall, all cues were again presented in the acquisition context. Atomoxetine participants (ATO) showed significantly faster extinction compared to placebo (PLAC). However, atomoxetine did not affect renewal. Hippocampal activation was higher in ATO during extinction and recall, as was ventromedial PFC activation, except for ABA recall. Moreover, ATO showed stronger recruitment of insula, anterior cingulate, and dorsolateral/orbitofrontal PFC. Across groups, cingulate, hippocampus and vmPFC activity during ABA extinction correlated with recall performance, suggesting high relevance of these regions for processing the renewal effect. In summary, the noradrenergic system appears to be involved in the modification of established associations during extinction learning and thus has a role in behavioral flexibility. The assignment of an association to a context and the subsequent decision on an adequate response, however, presumably operate largely independently of noradrenergic mechanisms. PMID:25745389

  16. Serotonergic and noradrenergic lesions suppress the enhancing effect of maternal exercise during pregnancy on learning and memory in rat pups.

    PubMed

    Akhavan, M M; Emami-Abarghoie, M; Safari, M; Sadighi-Moghaddam, B; Vafaei, A A; Bandegi, A R; Rashidy-Pour, A

    2008-02-19

    The beneficial effects of exercise on learning and memory are well documented but the effects of prenatal exposure to maternal exercise on offspring are not clear yet. Using a two-trial-per-day Morris water maze for five consecutive days, succeeded by a probe trial 2 days later we showed that maternal voluntary exercise (wheel running) by pregnant rats increased the acquisition phase of the pups' learning. Maternal forced swimming by pregnant rats increased both acquisition and retention phases of the pups' learning. Also we found that the rat pups whose mother was submitted to forced-swimming during pregnancy had significantly higher brain, liver, heart and kidney weights compared with their sedentary counterparts. On the other hand we estimated the cell number of different regions of the hippocampus in the rat pups. We found that both exercise models during pregnancy increased the cell number in cornus ammonis subregion 1 (CA1) and dentate gyrus of the hippocampus in rat pups. To determine the role that noradrenergic and serotonergic neurotransmission and N-methyl-D-aspartate (NMDA) receptors hold in mediation of the maternal exercise in offspring, we used N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), p-chloroamphetamine (PCA) and MK-801 to eliminate or block the above systems, respectively. Blocking the NMDA receptors, significantly abolished learning and memory in rat pups from all three experimental groups. Elimination of noradrenergic or serotonergic input did not significantly attenuate the learning and memory in rat pups whose mothers were sedentary, while it significantly reversed the positive effects of maternal exercise during pregnancy on rat pups' learning and memory. The presented results suggest that noradrenergic and serotonergic systems in offspring brain seem to have a crucial specific role in mediating the effects of maternal physical activity during pregnancy on rat pups' cognitive function in both models of voluntary and forced exercise.

  17. Viral infection and dissemination through the olfactory pathway and the limbic system by Theiler's virus.

    PubMed

    Wada, Y; Fujinami, R S

    1993-07-01

    Theiler's murine encephalomyelitis virus (TMEV) infection of mice can produce a biphasic disease of the central nervous system (CNS). Most susceptible strains of mice survive the acute infection and develop a chronic demyelinating disease. In this report, we analyzed the routes of spread of TMEV within the CNS of nude mice and target sites eventually infected in the CNS. Compared to the immunocompetent mouse, in which an antiviral immune response is mounted but virus persists, the nude mouse develops a severe encephalomyelitis due to the lack of functional T lymphocytes and provides a useful model for the study of viral dissemination. We demonstrated, by immunohistochemistry, the presence of viral antigen in defined regions of the CNS, corresponding to various structures of the limbic system. In addition, we found a different time course for viral spread using two different sites of intracerebral inoculation, ie, via the olfactory bulb or the cortex. Limbic structures were rapidly infected following olfactory bulb infection and then showed a decrease in viral load, presumably due to loss of target neurons. Using either route of infection, the virus was able to disseminate to similar regions. These results indicate that limbic structures and their connections are very important for the spread of TMEV in the brain. In the spinal cord, not only neuronal but hematogenous pathways were suspected to be involved in the dissemination of Theiler's virus.

  18. Viral infection and dissemination through the olfactory pathway and the limbic system by Theiler's virus.

    PubMed Central

    Wada, Y.; Fujinami, R. S.

    1993-01-01

    Theiler's murine encephalomyelitis virus (TMEV) infection of mice can produce a biphasic disease of the central nervous system (CNS). Most susceptible strains of mice survive the acute infection and develop a chronic demyelinating disease. In this report, we analyzed the routes of spread of TMEV within the CNS of nude mice and target sites eventually infected in the CNS. Compared to the immunocompetent mouse, in which an antiviral immune response is mounted but virus persists, the nude mouse develops a severe encephalomyelitis due to the lack of functional T lymphocytes and provides a useful model for the study of viral dissemination. We demonstrated, by immunohistochemistry, the presence of viral antigen in defined regions of the CNS, corresponding to various structures of the limbic system. In addition, we found a different time course for viral spread using two different sites of intracerebral inoculation, ie, via the olfactory bulb or the cortex. Limbic structures were rapidly infected following olfactory bulb infection and then showed a decrease in viral load, presumably due to loss of target neurons. Using either route of infection, the virus was able to disseminate to similar regions. These results indicate that limbic structures and their connections are very important for the spread of TMEV in the brain. In the spinal cord, not only neuronal but hematogenous pathways were suspected to be involved in the dissemination of Theiler's virus. Images Figure 2 Figure 3 Figure 4 PMID:8317548

  19. Effects of meclofenamic acid on limbic epileptogenesis in mice kindling models.

    PubMed

    Jin, Miaomiao; Dai, Yunjian; Xu, Cenglin; Wang, Yi; Wang, Shuang; Chen, Zhong

    2013-05-24

    The most avid goal for antiepileptic drugs (AEDs) development today is to discover potential agents to prevent epilepsy or slow the process of epileptogenesis. Accumulating evidence reveals that gap junctions in the brain may be involved in epileptogenesis. Meclofenamic acid (MFA), a gap junction blocker, has not yet been applied in epileptogenic models to test whether it has antiepileptogenic or disease-modifying properties or not. In this study, we investigated the effects of MFA on limbic epileptogenesis in amygdaloid kindling and hippocampus rapid kindling models in mice. We found that intracerebroventricular (i.c.v., 2 μl) administration of either dose of MFA (100 μM, 1mM or 100mM) 15 min prior daily kindling stimulus decreased seizure stage, shortened the after-discharge duration (ADD) and increased the number of stimulations required to elicit stage 5 seizure. MFA also prevented the establishment of post-kindling enhanced amygdala excitability, evident as the increase of afterdischarge threshold (ADT) compared with pre-kindling values. Furthermore, MFA retarded kindling acquisition in mice hippocampus rapid kindling model as well, which demonstrated that the antiepileptogenic effects of MFA were not specific to the amygdala but also occur in other limbic structures such as the hippocampus. Our results confirm that MFA can slow the limbic epileptogenesis in both amygdaloid kindling and hippocampus rapid kindling models, and indicate that MFA may be a potential drug that has antiepileptogenic or disease-modifying properties.

  20. Non-paraneoplastic limbic encephalitis and central nervous HHV-6B reactivation: Causality or coincidence?

    PubMed

    Niehusmann, Pitt; Widman, Guido; Eis-Hübinger, Anna M; Greschus, Susanne; Robens, Barbara K; Grote, Alexander; Becker, Albert J

    2016-08-01

    Autoantibody-related encephalopathies represent an important differential diagnosis in adult onset epilepsy. Here, we report the case of a 25-year-old patient with new-onset epilepsy and psychotic syndrome, who underwent biopsy resection for etiological classification. MRI analysis and neuropathological examination showed a T-lymphocytic dominated encephalitis with involvement of the limbic system. An indirect immunohistochemistry approach identified autoantibodies against glutamic acid decarboxylase (GAD) in cerebral spinal fluid and serum, which were confirmed by affinity purification / mass spectrometry analysis. Further examinations revealed evidence of chromosomally integrated human herpes virus type 6B (HHV-6B). However, astrocytic expression of HHV-6 lytic protein was detected by double immunofluorescence analysis. The cerebral expression of HHV-6 antigen, a clinical improvement under antiviral therapy as well as an initial finding of HHV-6 IgM antibodies strongly argue for an additional active HHV-6B infection. Review of the literature reveals singular reports of patients with GAD antibody-positive limbic encephalitis and central nervous system infections with HHV-6B. Since herpes simplex virus encephalitis has been recently reported as a trigger of N-methyl-D-aspartate receptor antibody encephalitis, it is tempting to speculate that HHV-6B infections may trigger a non-paraneoplastic form of limbic encephalitis in a parallel cascade. PMID:27431532

  1. Stereotactic limbic leucotomy—a follow-up study of thirty patients

    PubMed Central

    Kelly, Desmond; Mitchell-Heggs, Nita

    1973-01-01

    This prospective study reports the results of stereotactic limbic leucotomy at a mean of 17 months following surgery. Clinical improvement had occurred in twenty-four (80%) of the patients, fifteen (50%) of them being symptom free or much improved. Fourteen of sixteen patients suffering from obsessional neurosis were improved, as were five of seven with chronic anxiety and the degree of improvement at 17 months was superior to that at 6 weeks. Psychometric scores of anxiety, obsessions and neuroticism were all significantly reduced at 17 months. The mean depression scores were also significantly reduced and this result was superior to that reported in a previous study of ‘free-hand’ operations. Adverse effects were not a problem following limbic leucotomy. Emotional blunting, disinhibition, post-operative epilepsy and excessive weight gain were not encountered, and intelligence was unaffected by the operation. Limbic leucotomy is a much more limited and precise procedure than older ‘free-hand’ operations which we have studied, but its therapeutic effects are comparable and in obsessional neurosis, superior. PMID:4618906

  2. Effects of isomers of apomorphines on dopamine receptors in striatal and limbic tissue of rat brain

    SciTech Connect

    Kula, N.S.; Baldessarini, R.J.; Bromley, S.; Neumeyer, J.L.

    1985-09-16

    The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (Da) receptors in extrapyramidal and limbic preparations of rat brain tissues. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulation adenylate cyclase (D-1 sites) and in competing for high affinity binding of /sup 3/H-spiroperidol (D-2 sites) and of /sup 3/H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity of higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.

  3. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.

    PubMed

    Fang, Peng; Zeng, Ling-Li; Shen, Hui; Wang, Lubin; Li, Baojuan; Liu, Li; Hu, Dewen

    2012-01-01

    Magnetic resonance imaging studies have reported significant functional and structural differences between depressed patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most discriminating features that represent between-group differences. Classification results showed that 91.7% (patients=86.4%, controls=96.2%; permutation test, p<0.0001) of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the anatomical basis of emotional dysregulation and cognitive impairments associated with this disease. PMID:23049910

  4. Resting-sate functional reorganization of the rat limbic system following neuropathic injury.

    PubMed

    Baliki, M N; Chang, P C; Baria, A T; Centeno, M V; Apkarian, A V

    2014-09-02

    Human brain imaging studies from various clinical cohorts show that chronic pain is associated with large-scale brain functional and morphological reorganization. However, how the rat whole-brain network is topologically reorganized to support persistent pain-like behavior following neuropathic injury remains unknown. Here we compare resting state fMRI functional connectivity-based whole-brain network properties between rats receiving spared nerve injury (SNI) vs. sham injury, at 5 days (n = 11 SNI; n = 12 sham) and 28 days (n = 11 SNI; n = 12 sham) post-injury. Similar to the human, the rat brain topological properties exhibited small world features and did not differ between SNI and sham. Local neural networks in SNI animals showed minimal disruption at day 5, and more extensive reorganization at day 28 post-injury. Twenty-eight days after SNI, functional connection changes were localized mainly to within the limbic system, as well as between the limbic and nociceptive systems. No connectivity changes were observed within the nociceptive network. Furthermore, these changes were lateralized and in proportion to the tactile allodynia exhibited by SNI animals. The findings establish that SNI is primarily associated with altered information transfer of limbic regions and provides a novel translational framework for understanding brain functional reorganization in response to a persistent neuropathic injury.

  5. The hyaluronan receptor RHAMM in noradrenergic fibers contributes to axon growth capacity of locus coeruleus neurons in an intraocular transplant model.

    PubMed

    Nagy, J I; Price, M L; Staines, W A; Lynn, B D; Granholm, A C

    1998-09-01

    The hyaluronan receptor for hyaluronic acid-mediated motility (RHAMM) plays a role in cell migration and motility in many systems. Recent observations on the involvement of RHAMM in neurite motility in vitro suggest that it might also be important in axon outgrowth in situ. This was addressed directly by investigating both RHAMM expression in the rat CNS and the ability of anti-RHAMM reagents to interfere with tissue growth and axon outgrowth in intraocular brainstem transplants. By western blotting, anti-RHAMM antibody detected a RHAMM isoform of 75,000 mol. wt in both whole brain homogenate and synaptosome preparations, and a 65,000 mol. wt isoform in synaptosomes. Immunofluorescence of adult brain sections revealed RHAMM-like immunoreactivity in varicose fibers that were also positive for the noradrenergic marker dopamine-beta-hydroxylase. Not all noradrenergic fibers contained RHAMM, nor was RHAMM detected in other monoaminergic fiber types. Lesions of noradrenergic fiber systems with beta-halobenzylamine-N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) eliminated RHAMM-positive fibers, but noradrenergic axons that sprouted extensively after this treatment were strongly RHAMM-positive. To assess RHAMM's role in fiber outgrowth, fetal brainstem tissue containing noradrenergic neurons was grafted into the anterior chamber of the eye. Treatment of grafts with anti-RHAMM antibody caused significant inhibition of tissue growth and axon outgrowth, as did a peptide corresponding to a hyaluronan binding domain of RHAMM. These agents had no such effects on transplants containing serotonergic and dopaminergic neurons. These results suggest that RHAMM, an extracellular matrix receptor previously shown to contribute to migratory and contact behavior of cells, may also be important in the growth and/or regenerative capacity of central noradrenergic fibers originating from the locus coeruleus. PMID:9692758

  6. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease.

    PubMed

    Baker-Nigh, Alaina; Vahedi, Shahrooz; Davis, Elena Goetz; Weintraub, Sandra; Bigio, Eileen H; Klein, William L; Geula, Changiz

    2015-06-01

    The mechanisms that contribute to selective vulnerability of the magnocellular basal forebrain cholinergic neurons in neurodegenerative diseases, such as Alzheimer's disease, are not fully understood. Because age is the primary risk factor for Alzheimer's disease, mechanisms of interest must include age-related alterations in protein expression, cell type-specific markers and pathology. The present study explored the extent and characteristics of intraneuronal amyloid-β accumulation, particularly of the fibrillogenic 42-amino acid isoform, within basal forebrain cholinergic neurons in normal young, normal aged and Alzheimer's disease brains as a potential contributor to the selective vulnerability of these neurons using immunohistochemistry and western blot analysis. Amyloid-β1-42 immunoreactivity was observed in the entire cholinergic neuronal population regardless of age or Alzheimer's disease diagnosis. The magnitude of this accumulation as revealed by optical density measures was significantly greater than that in cortical pyramidal neurons, and magnocellular neurons in the globus pallidus did not demonstrate a similar extent of amyloid immunoreactivity. Immunoblot analysis with a panel of amyloid-β antibodies confirmed accumulation of high concentration of amyloid-β in basal forebrain early in adult life. There was no age- or Alzheimer-related alteration in total amyloid-β content within this region. In contrast, an increase in the large molecular weight soluble oligomer species was observed with a highly oligomer-specific antibody in aged and Alzheimer brains when compared with the young. Similarly, intermediate molecular weight oligomeric species displayed an increase in aged and Alzheimer brains when compared with the young using two amyloid-β42 antibodies. Compared to cortical homogenates, small molecular weight oligomeric species were lower and intermediate species were enriched in basal forebrain in ageing and Alzheimer's disease. Regional and age

  7. Development of glucocorticoid receptor regulation in the rat forebrain: Implications for adverse effects of glucocorticoids in preterm infants

    EPA Science Inventory

    Glucocorticoids are the consensus treatment to avoid respiratory distress in preterm infants but there is accumulating evidence that these agents evoke long-term neurobehavioral deficits. Earlier, we showed that the developing rat forebrain is far more sensitive to glucocorticoi...

  8. Meta-analysis of noradrenergic and specific serotonergic antidepressant use in schizophrenia.

    PubMed

    Kishi, Taro; Iwata, Nakao

    2014-02-01

    We examined whether noradrenergic and specific serotonergic antidepressants (NaSSAs: mirtazapine and mianserin), as augmentation therapy, have therapeutic potential for schizophrenia treatment. A systematic review was conducted of PubMed, Cochrane Library and PsycINFO in December 2012 and meta-analyses of double-blind, randomized placebo-controlled trials were performed. Standardized mean difference (SMD), risk ratio (RR), number-needed-to-treat (NNT), number-needed-to-harm (NNH) and 95% confidence intervals (CI) were calculated. Results were across 12 studies and 362 patients were included (mirtazapine: seven trials and 221 patients; mianserin: five trials and 141 patients). NaSSA augmentation therapy was superior to placebo in overall symptoms (S.M.D. = -0.75, CI -1.24 to -0.26, p = 0.003, N = 11, n = 301), negative symptoms (S.M.D. = -0.88, CI -1.41 to -0.34, p = 0.001, N = 9, n = 240) and response rate (RR = 0.71, CI 0.57-0.88, p = 0.002, NNT = 4, p<0.00001, N = 6, n = 163). There was no significant difference in positive symptoms, depressive symptoms or discontinuation rate between NaSSAs and placebo treatments. In addition, no patients who received NaSSAs developed worsening psychosis during the study. For individual NaSSAs, mirtazapine was superior to placebo in overall symptoms (S.M.D. = 0.98, CI = -1.74 to -0.22, p = 0.01, N = 7, n = 194), negative symptoms (S.M.D. = -1.25, CI -1.88 to -0.62, p = 0.0001, N = 6, n = 172) and response rate (RR = 0.70, p = 0.04, NNT = 4, p = 0.0004, N = 4, n = 119). Moreover, NaSSAs were associated with reduced akathisia score (p < 0.00001) and extrapyramidal symptom scales (p = 0.01). However, NaSSAs caused drowsiness/sedation/somnolence compared with placebo (RR = 3.52, p = 0.002, NNT = 6, p = 0.01, N = 8, n = 209). Our results indicate that NaSSA (especially mirtazapine) augmentation therapy improved overall and negative symptoms in patients with schizophrenia. Because the included studies were small, the results should be

  9. Age-related changes of the noradrenergic and acetylcholinesterase reactive nerve fibres innervating the pigeon bursa of Fabricius.

    PubMed

    Ciriaco, E; Ricci, A; Bronzetti, E; Mammola, C L; Germanà, G; Vega, J A

    1995-05-01

    Age-dependent changes in the innervation of the pigeon (Columba livia, L.) bursa of Fabricius, from hatching to 120 days of age, were studied by fluorescence-histochemical and neurochemical methods for demonstrating noradrenergic and acetylcholinesterase (AChE)-reactive nerve fibres respectively. The distribution of both nerve fibre types was largely perivascular. Furthermore, a few isolated nerve fiber profiles were observed beneath the bursal epithelium, in the interfollicular septa and in the follicular cortex. No nerve fibre profiles reaching the medulla of the lymphoid follicles were observed. In addition to nerve fibres, AChE reactive neuron-like cells were encountered within the capsule and interfollicular septa. AChE reactivity was also found in dendritic-like cells localized in the cortical and cortico-medullary border. No changes in the density of perivascular noradrenergic innervation were noticeable during the ages studied, whereas the density of AChE-reactive fibres supplying vessels reached the adult pattern at 30 days, and then remained unvaried. The density of non-perivascular nerve fiber profiles, specially the AChE reactive type, increased until 30 days, remained unchanged until 75 days and then increased with aging (90-120 days). The interrelationship between the autonomic nervous system and the immune system is discussed.

  10. Lactational alcohol exposure elicits long-term immune deficits and increased noradrenergic synaptic transmission in lymphoid organs

    SciTech Connect

    Gottesfeld, Z. ); LeGrue, S.J. )

    1990-01-01

    Increasing evidence suggests that the sympathetic nervous system plays an important role in immunomodulation. While chronic alcohol consumption has been associated with immune deficits, the effects of exposure to alcohol during early postnatal life on subsequent immunocompetence and activity of sympathetic neurons in lymphoid organs are not known. This study examined the long-term effects of lactational alcohol consumption on cellular immune responses and noradrenergic synaptic transmission in lymphoid and other organs of the young adult C57BL/6 mouse. The data show that exposure to alcohol via the mother's milk was associated with long-term deficits in cellular immunity, including suppression of the local graft vs host and contact hypersensitive responses. The animals also displayed enhanced noradrenergic synaptic transmission and decreased {beta}-adrenoceptor density selectively in lymphoid organs. These neuroimmune changes are particularly striking since body weight-gain of the suckling pups was normal and their blood alcohol concentration was considerably lower than that of the alcohol-consuming dam. This suggests an increased sensitivity of the nascent immune and nervous systems during the critical period of early postnatal development.

  11. Reduced Forebrain Serotonin Transmission is Causally Involved in the Development of Compulsive Cocaine Seeking in Rats

    PubMed Central

    Pelloux, Yann; Dilleen, Ruth; Economidou, Daina; Theobald, David; Everitt, Barry J

    2012-01-01

    Whereas the majority of cocaine users quit as they experience the negative consequences of drug use, some lose control over their drug taking and compulsively seek drugs. We report that 20% of rats compulsively seek cocaine despite intermittent negative outcomes after escalating their cocaine self-administration. This compulsive subgroup showed marked reductions in forebrain serotonin utilization; increasing serotonin transmission reduced their compulsive cocaine seeking. Depleting forebrain serotonin induced compulsive cocaine seeking in rats with a limited cocaine taking history; this was reversed by systemic treatment with a 5-hydroxytryptamine (5-HT2C) receptor agonist and mimicked by systemic treatment with a 5-HT2C receptor antagonist in intact animals. These results indicate the causal involvement of reduced serotoninergic transmission in the emergence of compulsive drug seeking after a long cocaine-taking history. PMID:22763621

  12. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration

    PubMed Central

    McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors. PMID:26444546

  13. Overexpression of the Type 1 Adenylyl Cyclase in the Forebrain Leads to Deficits of Behavioral Inhibition

    PubMed Central

    Cao, Hong; Saraf, Amit; Zweifel, Larry S.

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126

  14. Clonally related forebrain interneurons disperse broadly across both, functional areas and structural boundaries

    PubMed Central

    Mayer, Christian; Jaglin, Xavier H.; Cobbs, Lucy V.; Bandler, Rachel C.; Streicher, Carmen; Cepko, Constance L.; Hippenmeyer, Simon; Fishell, Gord

    2015-01-01

    The medial ganglionic eminence (MGE) gives rise to the majority of mouse forebrain interneurons. Here, we examine the lineage relationship among MGE-derived interneurons using a replication-defective retroviral library containing a highly diverse set of DNA barcodes. Recovering the barcodes from the mature progeny of infected progenitor cells enabled us to unambiguously determine their respective lineal relationship. We found that clonal dispersion occurs across large areas of the brain and is not restricted by anatomical divisions. As such, sibling interneurons can populate the cortex, hippocampus striatum and globus pallidus. The majority of interneurons appeared to be generated from asymmetric divisions of MGE progenitor cells, followed by symmetric divisions within the subventricular zone. Altogether, our findings uncover that lineage relationships do not appear to determine interneuron allocation to particular regions. As such, it is likely that clonally-related interneurons have considerable flexibility as to the particular forebrain circuits to which they can contribute. PMID:26299473

  15. Overexpression of the type 1 adenylyl cyclase in the forebrain leads to deficits of behavioral inhibition.

    PubMed

    Chen, Xuanmao; Cao, Hong; Saraf, Amit; Zweifel, Larry S; Storm, Daniel R

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition.

  16. Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep.

    PubMed

    Lee, Maan Gee; Hassani, Oum K; Alonso, Angel; Jones, Barbara E

    2005-04-27

    It is known that acetylcholine can stimulate activation and promote plasticity in the cerebral cortex, yet it is not known how the cholinergic basal forebrain neurons, which release acetylcholine in the cortex, discharge in relation to natural cortical activity and sleep-wake states. By recording basal forebrain units in association with electroencephalographic activity across the sleep-wake cycle and labeling individual neurons with Neurobiotin for immunohistochemical identification, we show for the first time that cholinergic neurons discharge in bursts at maximal rates during active waking and paradoxical sleep, when gamma and theta electroencephalographic activity are maximal. They virtually cease firing during slow-wave sleep. Notably, their bursting discharge is synchronized with theta oscillations. Through their maximal firing and rhythmic theta discharge during active waking and paradoxical sleep, the cholinergic neurons can thus modulate the cortex to promote activation along with plasticity during these two states.

  17. Role of tissue plasminogen activator/plasmin cascade in delayed neuronal death after transient forebrain ischemia.

    PubMed

    Takahashi, Hiroshi; Nagai, Nobuo; Urano, Tetsumei

    We studied the possible involvement of the tissue plasminogen activator (t-PA)/plasmin system on both delayed neuronal death in the hippocampus and the associated enhancement of locomotor activity in rats, after transient forebrain ischemia induced by a four-vessel occlusion (FVO). Seven days after FVO, locomotor activity was abnormally increased and, after 10 days, pyramidal cells were degraded in the CA1 region of the hippocampus. FVO increased the t-PA antigen level and its activity in the hippocampus, which peaked at 4 h. Both the enhanced locomotor activity and the degradation of pyramidal cells were significantly suppressed by intracerebroventricular injection of aprotinin, a plasmin inhibitor, at 4 h but not during FVO. These results suggest the importance of the t-PA/plasmin cascade during the early pathological stages of delayed neuronal death in the hippocampus following transient forebrain ischemia.

  18. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats.

    PubMed

    Pelloux, Yann; Dilleen, Ruth; Economidou, Daina; Theobald, David; Everitt, Barry J

    2012-10-01

    Whereas the majority of cocaine users quit as they experience the negative consequences of drug use, some lose control over their drug taking and compulsively seek drugs. We report that 20% of rats compulsively seek cocaine despite intermittent negative outcomes after escalating their cocaine self-administration. This compulsive subgroup showed marked reductions in forebrain serotonin utilization; increasing serotonin transmission reduced their compulsive cocaine seeking. Depleting forebrain serotonin induced compulsive cocaine seeking in rats with a limited cocaine taking history; this was reversed by systemic treatment with a 5-hydroxytryptamine (5-HT2C) receptor agonist and mimicked by systemic treatment with a 5-HT2C receptor antagonist in intact animals. These results indicate the causal involvement of reduced serotoninergic transmission in the emergence of compulsive drug seeking after a long cocaine-taking history.

  19. Receptors for GRP/bombesin-like peptides in the rat forebrain

    SciTech Connect

    Wolf, S.S.; Moody, T.W.

    1985-01-01

    Binding sites in the rat forebrain were characterized using ( SVI-Tyr4)bombesin as a receptor probe. Pharmacology experiments indicate that gastrin releasing peptide (GRP) and the GRP fragments GRP as well as Ac-GRP inhibited radiolabeled (Tyr4)bombesin binding with high affinity. Biochemistry experiments indicated that heat, N-ethyl maleimide or trypsin greatly reduced radiolabeled (Tyr4)bombesin binding. Also, autoradiographic studies indicated that highest grain densities were present in the stria terminalis, periventricular and suprachiasmatic nucleus of the hypothalamus, dorsomedial and rhomboid thalamus, dentate gyrus, hippocampus and medial amygdaloid nucleus. The data suggest that CNS protein receptors, which are discretely distributed in the rat forebrain, may mediate the action of endogenous GRP/bombesin-like peptides.

  20. A specific form of cognitive rigidity following excitotoxic lesions of the basal forebrain in marmosets.

    PubMed

    Roberts, A C; Robbins, T W; Everitt, B J; Muir, J L

    1992-01-01

    The effects of N-methyl-D-aspartate-induced lesions of the basal forebrain were studied on performance of a series of visual discrimination tests that examined a range of cognitive functions in the marmoset. These included the ability to attend to the various dimensional properties of stimuli and to use just one of these properties in order to solve a discrimination (intra-dimensional shift); to switch attention from one dimension to another (extra-dimensional shift); to learn the reinforcement value of specific exemplars within a dimension (new learning); and to relearn their reinforcement value following reversal of the reward contingencies (serial reversals). Lesions of the basal forebrain did not impair the ability either to attend selectively to the dimensional properties of the stimuli or to switch attention from one dimension to the other. However, the lesion did affect various aspects of associative learning including a transient impairment of new learning and a marked disruption of serial reversal learning. The reversal deficit could be characterised as a tendency to perseverate on the previously correct stimulus and as a failure to to show the formation of a reversal learning set. In addition, the lesion prevented disruption of performance of a well-learned discrimination when novel exemplars from the irrelevant dimension were introduced (probe test). It is suggested that the functional effects of the basal forebrain lesion reflect impaired learning of stimulus-reward associations and behavioural rigidity. The finding, however, that there was no effect of the lesion on attentional set-shifting suggests that any loss of inhibitory control was specific to the level of stimulus-response or stimulus-reward associations, inhibitory control at the level of attentional selection remaining intact. The similarity of the effects of damage to the basal forebrain to those seen following damage to the orbitofrontal cortex and the amygdala are discussed in the context

  1. Extracellular signal-regulated kinase phosphorylation in forebrain neurones contributes to osmoregulatory mechanisms

    PubMed Central

    Dine, Julien; Ducourneau, Vincent R R; Fénelon, Valérie S; Fossat, Pascal; Amadio, Aurélie; Eder, Matthias; Israel, Jean-Marc; Oliet, Stéphane H R; Voisin, Daniel L

    2014-01-01

    Vasopressin secretion from the magnocellular neurosecretory cells (MNCs) is crucial for body fluid homeostasis. Osmotic regulation of MNC activity involves the concerted modulation of intrinsic mechanosensitive ion channels, taurine release from local astrocytes as well as excitatory inputs derived from osmosensitive forebrain regions. Extracellular signal-regulated protein kinases (ERK) are mitogen-activated protein kinases that transduce extracellular stimuli into intracellular post-translational and transcriptional responses, leading to changes in intrinsic neuronal properties and synaptic function. Here, we investigated whether ERK activation (i.e. phosphorylation) plays a role in the functioning of forebrain osmoregulatory networks. We found that within 10 min after intraperitoneal injections of hypertonic saline (3 m, 6 m) in rats, many phosphoERK-immunopositive neurones were observed in osmosensitive forebrain regions, including the MNC containing supraoptic nuclei. The intensity of ERK labelling was dose-dependent. Reciprocally, slow intragastric infusions of water that lower osmolality reduced basal ERK phosphorylation. In the supraoptic nucleus, ERK phosphorylation predominated in vasopressin neurones vs. oxytocin neurones and was absent from astrocytes. Western blot experiments confirmed that phosphoERK expression in the supraoptic nucleus was dose dependent. Intracerebroventricular administration of the ERK phosphorylation inhibitor U 0126 before a hyperosmotic challenge reduced the number of both phosphoERK-immunopositive neurones and Fos expressing neurones in osmosensitive forebrain regions. Blockade of ERK phosphorylation also reduced hypertonically induced depolarization and an increase in firing of the supraoptic MNCs recorded in vitro. It finally reduced hypertonically induced vasopressin release in the bloodstream. Altogether, these findings identify ERK phosphorylation as a new element contributing to the osmoregulatory mechanisms of

  2. Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba)

    PubMed Central

    Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca

    2015-01-01

    Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior–posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals. PMID:26594155

  3. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    SciTech Connect

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. )

    1990-10-12

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.

  4. Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast.

    PubMed

    Foley, A C; Skromne, I; Stern, C D

    2000-09-01

    Several models have been proposed for the generation of the rostral nervous system. Among them, Nieuwkoop's activation/transformation hypothesis and Spemann's idea of separate head and trunk/tail organizers have been particularly favoured recently. In the mouse, the finding that the visceral endoderm (VE) is required for forebrain development has been interpreted as support for the latter model. Here we argue that the chick hypoblast is equivalent to the mouse VE, based on fate, expression of molecular markers and characteristic anterior movements around the time of gastrulation. We show that the hypoblast does not fit the criteria for a head organizer because it does not induce neural tissue from naïve epiblast, nor can it change the regional identity of neural tissue. However, the hypoblast does induce transient expression of the early markers Sox3 and Otx2. The spreading of the hypoblast also directs cell movements in the adjacent epiblast, such that the prospective forebrain is kept at a distance from the organizer at the tip of the primitive streak. We propose that this movement is important to protect the forebrain from the caudalizing influence of the organizer. This dual role of the hypoblast is more consistent with the Nieuwkoop model than with the notion of separate organizers, and accommodates the available data from mouse and other vertebrates. PMID:10934028

  5. Activation of Wnt/ß-catenin signaling in ESC promotes rostral forebrain differentiation in vitro.

    PubMed

    Takata, Nozomu; Sakakura, Eriko; Sasai, Yoshiki

    2016-03-01

    Wnt/ß-catenin signaling is crucial for maintenance of pluripotent state of embryonic stem cell (ESC). However, it is unclear how Wnt/ß-catenin signaling affects the differentiation ability of ESC, especially with regard to rostral forebrain cells. Here, using Rax, rostral forebrain marker, and Wnt/ß-catenin reporter lines, we report ratio of Rax(+) and Wnt responding tissue (Wnt(+)) patterns, which were affected by seeding number of ESC in three-dimensional culture system. Surprisingly, we found ß-catenin level and localization are heterogeneous in ESC colony by immunostaining and time-laps imaging of ß-catenin-mEGFP signals. Moreover, activation of Wnt signaling in ESC promoted expression level and nuclear localization of ß-catenin, and mRNA levels of Wnt antagonists, axin2 and dkk1, leading to upregulating Wnt/ß-catenin reporter in ESC state and Rax expression at differentiation culture day 7. Together, our results suggest that activation of Wnt signaling in ESC promotes the differentiation efficacy of rostral forebrain cells. Wnt-priming culture method may provide a useful tool for applications in the areas of basic science and molecular therapeutics for regenerative medicine.

  6. Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba).

    PubMed

    Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca

    2015-01-01

    Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior-posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals. PMID:26594155

  7. Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex.

    PubMed

    Ahern, Todd H; Krug, Stefanie; Carr, Audrey V; Murray, Elaine K; Fitzpatrick, Emmett; Bengston, Lynn; McCutcheon, Jill; De Vries, Geert J; Forger, Nancy G

    2013-08-01

    Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain.

  8. Spatiotemporal clustering of cell death in the avian forebrain proliferative zone.

    PubMed

    Charvet, Christine J; Striedter, Georg F

    2008-01-01

    The extent to which programmed cell death is the fate of proliferative, rather than post-mitotic, cells remains controversial, but a preponderance of evidence suggests that at least some cells within the brain's proliferative zone die during mammalian brain development. One major unresolved question is the extent to which cell death in the proliferative zone is spatiotemporally patterned. In order to answer this question we used the terminal dUTP nick end labeling (TUNEL) method to stain apoptotic cells in the forebrain of chicken embryos at relatively early stages of brain development (Hamburger-Hamilton stages 19-32). Our principal finding is that most of the TUNEL-positive cells within the brain's proliferative zone are concentrated into distinct clusters, whose location varies with developmental stage. At stage 19, many TUNEL+ cells are found within the basal synencephalon, just below where the forebrain's first neurons are located. At stages 24-26, numerous TUNEL+ cells are located within the preoptic area and along the optic stalk. After stage 26, TUNEL labeling is prominent in two telencephalic areas: the thin dorsomedial telencephalon and the thickest portions of the telencephalon's lateral walls (i.e. the dorsal ventricular ridge). Collectively, the observed pattern of TUNEL staining suggests that cell death in the proliferative zone plays a substantial role in shaping the forebrain. In addition, cell death in the proliferative zone may be related to cell cycle exit.

  9. Altered cholinergic function in the basal forebrain of girls with Rett syndrome.

    PubMed

    Wenk, G L; Hauss-Wegrzyniak, B

    1999-06-01

    Rett syndrome (RS) is a neurodevelopmental disorder that is predominant in females and is associated with cortical atrophy, stereotyped hand movements and severe mental deficiency. Previous studies have demonstrated a significant decline in number of choline acetyltransferase (ChAT)-containing neurons throughout the forebrain of RS girls. The loss of these ChAT-positive cells may be caused by a lack of nerve growth factor (NGF). In the current study, cortical levels of NGF were normal in RS girls as compared to age-and sex-matched controls. The number of neurons within the basal forebrain that express the 75 kDa (p75) low-affinity receptor for NGF was unchanged. In contrast, the number of ChAT-positive neurons was significantly decreased. The results suggest that normal amounts of NGF are available for binding to the p75 receptor and for retrograde transport to forebrain cholinergic cells, however, these neurons do not respond by producing the ChAT protein that is necessary for the production of the neurotransmitter acetylcholine.

  10. Localization and spatiotemporal expression of IDO following transient forebrain ischemia in gerbils.

    PubMed

    Taguchi, Ayako; Hara, Akira; Saito, Kuniaki; Hoshi, Masato; Niwa, Masayuki; Seishima, Mitsuru; Mori, Hideki

    2008-06-27

    Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the kynurenine pathway that converts L-tryptophan to L-kynurenine. Transient forebrain ischemia initiates a series of cellular events that lead to the delayed neuronal degeneration of several brain regions. The goal of this study was to determine the localization of IDO in gerbil brain, and analyze the spatiotemporal expression of IDO in a transient forebrain ischemic model. Expression of IDO in the normal gerbil brain was observed by using immunohistochemistry. Time-course of the expression of IDO following transient forebrain ischemic gerbils was examined by immunohistochemistry, combined with hematoxylin and eosin staining for morphological analysis, and in situ terminal dUTP-biotin nick end labeling of DNA fragments (TUNEL) method. In normal gerbils, IDO immunostaining was observed in thalamus, hypothalamus and amygdaloid nucleus. IDO expression was negative in the cingulate cortex, hippocampal CA1 region and parietal cortex. Following transient ischemia, we observed a time-dependent increase of IDO expression in CA1, cingulate cortex and hypothalamus. The peak of IDO expression in CA1 and cingulate cortex occurred at 48 h after ischemic insult and diminished by 2 weeks. TUNEL staining was observed only in the CA1 region at 72 and 96 h after transient ischemia. Thus, IDO protein is present in specific regions in gerbil brain, and dynamic changes of IDO expression was observed in some neurons following transient ischemia. PMID:18501338

  11. Forebrain neuropeptide regulation of pair association and behavior in cooperating cleaner fish.

    PubMed

    Cardoso, Sónia C; Grutter, Alexandra S; Paula, José R; André, Gonçalo I; Messias, João P; Gozdowska, Magdalena; Kulczykowska, Ewa; Soares, Marta C

    2015-06-01

    Animals establish privileged relationships with specific partners, which are treated differently from other conspecifics, and contribute to behavioral variation. However, there is limited information on the underlying physiological mechanisms involved in the establishment of these privileged ties and their relationship to individual cooperation levels. The Indo-Pacific bluestreak cleaner wrasse Labroides dimidiatus often forages in mixed-sex pairs when cleaning fish clients. Intra-couple conflicts often arise during a joint client inspection, which may alter the overall quality of cleaning service provided. Here we tested two hypotheses: a) whether intra-pair association (i.e. association index), measured with joint interspecific cleaning and intraspecific behavior, is correlated with neuroendocrine mechanisms involving forebrain neuropeptides arginine vasotocin (AVT) and isotocin (IT) and b) whether these neuropeptide level shifts relate to an individual's interspecific service quality. We found that partner support (number of cleaning interactions and tactile stimulation) received by male cleaners increased with association index. When cleaners inspected clients alone, cleaners' cheating decreased with association index for females but not males. AVT levels did not differ according to sex or association level. Forebrain IT levels increased with association index for males, whereas no relationship was found for females. Finally, cleaner cheating varied between sex and forebrain IT levels. Findings indicate that variation in pairs' relationships influences male and female cleaner fish differently and contributes to the variation of brain neuropeptide levels, which is linked to distinct cooperative outcomes. PMID:25802022

  12. Activity of basal forebrain neurons in the rat during motivated behaviors.

    PubMed

    Mink, J W; Sinnamon, H M; Adams, D B

    1983-04-01

    The activity of single neurons in the basal forebrain was recorded in the freely-moving rat with moveable fine-wire electrodes. Neural activity was observed while the water-deprived male rat was exposed to three different types of motivating stimuli that elicit locomotion in a running wheel: an estrous female rat; a drinking tube containing water; and grasping and lifting by the experimenter. The neural activity was also observed when the subject was presented with standardized sensory tests and during single pulse stimulation of other brain structures. A majority of the 76 neurons recorded in the forebrain changed their firing rate during orienting and/or locomotion in general (23 neurons) or during behavior related to only one of the specific motivational contexts: the conspecific female (4 neurons); water (7 neurons); or grasp by the experimenter (8 neurons). Whereas the neurons related to orienting and/or locomotion in general were scattered through various brain structures, those neurons related to specific motivational contexts were concentrated in specific areas: the sexually dimorphic nucleus of the medial preoptic area (conspecific female); lateral septum (water); and lateral preoptic area (water and grasp). The present results, although based on relatively few neurons, are consonant with results of research using other techniques. This indicates that analyses at the level of the single neuron promise to be useful for understanding the role of the basal forebrain in motivational systems.

  13. Genetically determined cholinergic deficiency in the forebrain of C57BL/6 mice.

    PubMed

    Bentivoglio, A R; Altavista, M C; Granata, R; Albanese, A

    1994-02-21

    This study demonstrates that a deficiency of forebrain cholinergic neurons occurs in C57BL/6 (C57) mice, a strain characterized by poor learning capabilities. The brains of 21-day-old and 18-week-old C57 and DBA/2 (DBA) mice were studied by means of acetylcholinesterase (AChE) histochemistry and of choline acetyltransferase (ChAT) immunocytochemistry. Computer-assisted image analysis was performed on sections through the medial septum, the diagonal band of Broca, the basal nucleus of Meynert and the neostriatum. As compared to the DBA strain, C57 mice had a reduced number of forebrain cholinergic neurons. This feature was present at the age of 21 days and persisted to 18 weeks. Between-strain variations in the density of neurons were more obvious in ChAT-stained material than in AChE-stained sections. These data show that C57 mice can be regarded as a genetic mutant, whose phenotype is characterized by a reduced number of forebrain cholinergic neurons and by cognitive abnormalities. C57 mice represent a valuable model for studying the influence of genetic factors on central nervous system cholinergic mechanisms and the effects of genetically determined cholinergic deficiency on behavior and learning.

  14. Forebrain neuropeptide regulation of pair association and behavior in cooperating cleaner fish.

    PubMed

    Cardoso, Sónia C; Grutter, Alexandra S; Paula, José R; André, Gonçalo I; Messias, João P; Gozdowska, Magdalena; Kulczykowska, Ewa; Soares, Marta C

    2015-06-01

    Animals establish privileged relationships with specific partners, which are treated differently from other conspecifics, and contribute to behavioral variation. However, there is limited information on the underlying physiological mechanisms involved in the establishment of these privileged ties and their relationship to individual cooperation levels. The Indo-Pacific bluestreak cleaner wrasse Labroides dimidiatus often forages in mixed-sex pairs when cleaning fish clients. Intra-couple conflicts often arise during a joint client inspection, which may alter the overall quality of cleaning service provided. Here we tested two hypotheses: a) whether intra-pair association (i.e. association index), measured with joint interspecific cleaning and intraspecific behavior, is correlated with neuroendocrine mechanisms involving forebrain neuropeptides arginine vasotocin (AVT) and isotocin (IT) and b) whether these neuropeptide level shifts relate to an individual's interspecific service quality. We found that partner support (number of cleaning interactions and tactile stimulation) received by male cleaners increased with association index. When cleaners inspected clients alone, cleaners' cheating decreased with association index for females but not males. AVT levels did not differ according to sex or association level. Forebrain IT levels increased with association index for males, whereas no relationship was found for females. Finally, cleaner cheating varied between sex and forebrain IT levels. Findings indicate that variation in pairs' relationships influences male and female cleaner fish differently and contributes to the variation of brain neuropeptide levels, which is linked to distinct cooperative outcomes.

  15. Reduced Fractional Anisotropy in the Visual Limbic Pathway of Young Adults Witnessing Domestic Violence in Childhood

    PubMed Central

    Choi, Jeewook; Jeong, Bumseok; Polcari, Ann; Rohan, Michael L.; Teicher, Martin H.

    2011-01-01

    Witnessing domestic violence (WDV) is a traumatic childhood experience associated with increased risk for depression, posttraumatic stress disorder and reduced IQ scores. Specific affects of WDV on brain development have not been assessed. We sought to ascertain whether WDV was associated with abnormalities in white matter (WM) tract integrity using diffusion tensor imaging (DTI). Twenty subjects who witnessed domestic violence (16F/ 4M, mean age 22.4±2.48 yrs) but were not physically or sexually abused were compared to 27 healthy controls (19F/ 8M, 21.9±1.97 yrs) without exposure to trauma or Axis I and II disorders. DTI images were acquired with a 3T Siemens Trio scanner. Group differences in fractional anisotropy (FA), covaried by age, gender, parental education, perceived financial sufficiency, IQ and degree of exposure to parental verbal aggression were assessed using tract-based spatial statistics (TBSS), which projects FA values onto an alignment-invariant fiber tract representation. FA values in the inferior longitudinal fasciculus of left lateral occipital lobe were significantly lower (p<0.05 corrected for multiple comparison) in the WDV group. FA values correlated inversely with ratings of depression, anxiety, somatization, ‘limbic irritability’ and neuropsychological measures of processing speed. Measures of radial but not axial diffusivity were affected suggesting alterations in myelination. Degree of FA reduction was associated with duration of witnessing interparental verbal aggression and with exposure between ages 7 – 13 years. The inferior longitudinal fasciculus connects occipital and temporal cortex and is the main component of the visual–limbic pathway that subserves emotional, learning and memory functions that are modality specific to vision. This finding is consistent with the hypothesis that exposure to childhood maltreatment is associated with alterations in fiber pathways that convey the adverse experience to frontal, temporal

  16. Intrathecal immunoglobulin A and G antibodies to synapsin in a patient with limbic encephalitis

    PubMed Central

    Piepgras, Johannes; Höltje, Markus; Otto, Carolin; Harms, Hendrik; Satapathy, Annyesha; Cesca, Fabrizia; Benfenati, Fabio; Gitler, Daniel; Pich, Andreas; Zander, Johannes-Friedrich

    2015-01-01

    Objective: To report on the identification of intrathecally synthesized immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies to synapsin, a synaptic vesicle-associated protein, in a patient with limbic encephalitis. Methods: Methods included clinical characterization, indirect immunofluorescence, immunoprecipitation, mass spectrometry, immunoblots of wild-type and synapsin I/II/III knockout mice, and cell-based assays with synapsin Ia, Ib, IIa, and IIb plasmids. Results: A 69-year-old man presented with confusion, disorientation, seizures, and left hippocampal hyperintensities on MRI. CSF examinations revealed an intrathecal IgA and IgG synthesis. Except for IgG antibodies to voltage-gated potassium channels in CSF, screening for known neuronal autoantibodies in serum and CSF was negative. However, indirect immunofluorescence using the patient's CSF showed binding of IgA to mouse hippocampus, amygdala, and cerebellum. Immunoprecipitation with CSF IgA followed by mass spectrometry identified synapsin as autoantigenic target. Knockout tissues and cell-based assays confirmed that IgA and IgG in the patient's CSF and serum reacted with synapsin Ia, Ib, and IIa. Calculation of antibody indices proved intrathecal synthesis of anti-synapsin IgA and IgG. The patient responded clinically to immunotherapy but developed left hippocampal atrophy. CSF IgA or IgG of the patient did not bind to live, unfixed, and nonpermeabilized mouse hippocampal neurons, compatible with synapsin being an intracellular antigen. Conclusions: This report identifies isoforms of the synaptic vesicle-associated protein synapsin as targets of intrathecally produced IgA and IgG antibodies in a patient with limbic encephalitis. Future studies should clarify the prevalence and pathogenic relevance of anti-synapsin antibodies in limbic encephalitis. PMID:26587554

  17. Prelude to Passion: Limbic Activation by “Unseen” Drug and Sexual Cues

    PubMed Central

    Childress, Anna Rose; Ehrman, Ronald N.; Wang, Ze; Li, Yin; Sciortino, Nathan; Hakun, Jonathan; Jens, William; Suh, Jesse; Listerud, John; Marquez, Kathleen; Franklin, Teresa; Langleben, Daniel; Detre, John; O'Brien, Charles P.

    2008-01-01

    Background The human brain responds to recognizable signals for sex and for rewarding drugs of abuse by activation of limbic reward circuitry. Does the brain respond in similar way to such reward signals even when they are “unseen”, i.e., presented in a way that prevents their conscious recognition? Can the brain response to “unseen” reward cues predict the future affective response to recognizable versions of such cues, revealing a link between affective/motivational processes inside and outside awareness? Methodology/Principal Findings We exploited the fast temporal resolution of event-related functional magnetic resonance imaging (fMRI) to test the brain response to “unseen” (backward-masked) cocaine, sexual, aversive and neutral cues of 33 milliseconds duration in male cocaine patients (n = 22). Two days after scanning, the affective valence for visible versions of each cue type was determined using an affective bias (priming) task. We demonstrate, for the first time, limbic brain activation by “unseen” drug and sexual cues of only 33 msec duration. Importantly, increased activity in an large interconnected ventral pallidum/amygdala cluster to the “unseen” cocaine cues strongly predicted future positive affect to visible versions of the same cues in subsequent off-magnet testing, pointing both to the functional significance of the rapid brain response, and to shared brain substrates for appetitive motivation within and outside awareness. Conclusions/Significance These findings represent the first evidence that brain reward circuitry responds to drug and sexual cues presented outside awareness. The results underscore the sensitivity of the brain to “unseen” reward signals and may represent the brain's primordial signature for desire. The limbic brain response to reward cues outside awareness may represent a potential vulnerability in disorders (e.g., the addictions) for whom poorly-controlled appetitive motivation is a central feature

  18. Juvenile stress affects anxiety-like behavior and limbic monoamines in adult rats.

    PubMed

    Luo, Xiao-Min; Yuan, San-Na; Guan, Xi-Ting; Xie, Xi; Shao, Feng; Wang, Wei-Wen

    2014-08-01

    Epidemiological evidence suggests that childhood and adolescent maltreatment is a major risk factor for mood disorders in adulthood. However, the mechanisms underlying the manifestation of mental disorders during adulthood are not well understood. Using a recently developed rat model for assessing chronic variable stress (CVS) during early adolescence (juvenility), we investigated the long-term effects of juvenile CVS on emotional and cognitive function and on monoaminergic activities in the limbic areas. During juvenility (postnatal days 27-33), rats in the stress group were exposed to variable stressors every other day for a week. Four weeks later, anhedonia was tested in the sucrose test, anxiety-like behaviors were assessed in the elevated plus-maze (EPM) and open field (OF) tests, and cortically mediated cognitive function was evaluated during an attentional set-shifting task (AST). After the behavioral tests, the rats were decapitated to determine limbic monoamine and metabolite levels. Adult rats stressed during juvenility exhibited higher anxiety-like behaviors, as evidenced by reduced locomotion and rearing behavior in the OF and fewer entries into the open arms in the EPM. There were no differences between the stressed rats and the controls in depressive-like anhedonia during the sucrose preference test or in cognitive function during the AST test in adulthood. In addition, the previously stressed rats exhibited increased dopamine (DA) and decreased 5-HIAA in the medial prefrontal cortex (mPFC) and decreased noradrenaline in the amygdala compared with controls. Furthermore, DA levels in the mPFC were correlated with adult anxious behaviors in the OF. These results suggest that juvenile stress induces long-term changes in the expression of anxiety-like behaviors and limbic monoaminergic activity in adult rats.

  19. Social isolation impairs adult neurogenesis in the limbic system and alters behaviors in female prairie voles.

    PubMed

    Lieberwirth, Claudia; Liu, Yan; Jia, Xixi; Wang, Zuoxin

    2012-09-01

    Disruptions in the social environment, such as social isolation, are distressing and can induce various behavioral and neural changes in the distressed animal. We conducted a series of experiments to test the hypothesis that long-term social isolation affects brain plasticity and alters behavior in the highly social prairie vole (Microtus ochrogaster). In Experiment 1, adult female prairie voles were injected with a cell division marker, 5-bromo-2'-deoxyuridine (BrdU), and then same-sex pair-housed (control) or single-housed (isolation) for 6 weeks. Social isolation reduced cell proliferation, survival, and neuronal differentiation and altered cell death in the dentate gyrus of the hippocampus and the amygdala. In addition, social isolation reduced cell proliferation in the medial preoptic area and cell survival in the ventromedial hypothalamus. These data suggest that long-term social isolation affects distinct stages of adult neurogenesis in specific limbic brain regions. In Experiment 2, isolated females displayed higher levels of anxiety-like behaviors in both the open field and elevated plus maze tests and higher levels of depression-like behavior in the forced swim test than controls. Further, isolated females showed a higher level of affiliative behavior than controls, but the two groups did not differ in social recognition memory. Together, our data suggest that social isolation not only impairs cell proliferation, survival, and neuronal differentiation in limbic brain areas, but also alters anxiety-like, depression-like, and affiliative behaviors in adult female prairie voles. These data warrant further investigation of a possible link between altered neurogenesis within the limbic system and behavioral changes.

  20. CHOLINERGIC AND NORADRENERGIC MODULATION OF LONG-TERM EXPLICIT MEMORY ARE ALTERED BY CHRONIC LOW-LEVEL LEAD EXPOSURE. (U915393)

    EPA Science Inventory

    Recent evidence suggests that septohippocampal cholinergic activity is suppressed in rats exposed to low levels of lead (Pb). As a result, noradrenergic activity may be elevated due to compensatory sympathetic sprouting. Therefore, the goals of this study were to (a) determine...

  1. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions

    PubMed Central

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V.; Field, Bianca; Deutch, Ariel Y.

    2015-01-01

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DATIREScre mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. SIGNIFICANCE STATEMENT Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain

  2. Impaired limbic gamma oscillatory synchrony during anxiety-related behavior in a genetic mouse model of bipolar mania.

    PubMed

    Dzirasa, Kafui; McGarity, DeAnna L; Bhattacharya, Anirban; Kumar, Sunil; Takahashi, Joseph S; Dunson, David; McClung, Colleen A; Nicolelis, Miguel A L

    2011-04-27

    Alterations in anxiety-related processing are observed across many neuropsychiatric disorders, including bipolar disorder. Though polymorphisms in a number of circadian genes confer risk for this disorder, little is known about how changes in circadian gene function disrupt brain circuits critical for anxiety-related processing. Here we characterize neurophysiological activity simultaneously across five limbic brain areas (nucleus accumbens, amygdala, prelimbic cortex, ventral hippocampus, and ventral tegmental area) as wild-type (WT) mice and mice with a mutation in the circadian gene, CLOCK (Clock-Δ19 mice) perform an elevated zero maze task. In WT mice, basal limbic gamma oscillatory synchrony observed before task performance predicted future anxiety-related behaviors. Additionally, dynamic changes in limbic gamma oscillatory synchrony were observed based on the position of WT mice in the zero maze. Clock-Δ19 mice, which displayed an increased propensity to enter the open section of the elevated maze, showed profound deficits in these anxiety-related circuit processes. Thus, our findings link the anxiety-related behavioral deficits observed in Clock-Δ19 mice with dysfunctional gamma oscillatory tuning across limbic circuits and suggest that alterations in limbic oscillatory circuit function induced by circadian gene polymorphisms may contribute to the behavioral manifestations seen in bipolar mania.

  3. Renal Cell Carcinoma Presenting with Paraneoplastic Hallucinations and Cognitive Decline from Limbic Encephalitis.

    PubMed

    Harrison, Joshua W; Cherukuri, Ramesh; Buchan, Debra

    2015-07-01

    We present a 66-year-old woman with 2 months of visual hallucinations, unintentional weight loss, and short-term memory decline, whose clinical presentation and EEG supported a diagnosis of limbic encephalitis. Subsequent evaluation for a paraneoplastic etiology revealed a renal mass, which was resected and identified as clear cell renal carcinoma. The patient's clinical condition improved after resection of the mass. When patients present with incongruous subacute neuropsychiatric symptoms, clinicians should be mindful of paraneoplastic neurological disorders, as early diagnosis and treatment of malignancy may lead to symptomatic improvement.

  4. [A case of acute limbic encephalitis with cerebral salt wasting syndrome].

    PubMed

    Nishio, Motonobu; Nishitani, Nobuyuki; Tanaka, Keiko

    2014-01-01

    A 37-year-old woman presented with psychiatric symptoms. Cerebrospinal fluid analysis revealed pleocytosis and increased protein. The patient was diagnosed with limbic encephalitis on the basis of the clinical course. However, remarkable hyponatremia was noted throughout the clinical course, leading to a diagnosis of cerebral salt wasting syndrome (CSWS). The hyponatremia was alleviated by supplementation with sodium and water. The findings seen in this case indicate that differentiation between syndrome of inappropriate of antidiuretic hormone and CSWS is important in cases of hyponatremia accompanied by central nervous system disease.

  5. Renal Cell Carcinoma Presenting with Paraneoplastic Hallucinations and Cognitive Decline from Limbic Encephalitis.

    PubMed

    Harrison, Joshua W; Cherukuri, Ramesh; Buchan, Debra

    2015-07-01

    We present a 66-year-old woman with 2 months of visual hallucinations, unintentional weight loss, and short-term memory decline, whose clinical presentation and EEG supported a diagnosis of limbic encephalitis. Subsequent evaluation for a paraneoplastic etiology revealed a renal mass, which was resected and identified as clear cell renal carcinoma. The patient's clinical condition improved after resection of the mass. When patients present with incongruous subacute neuropsychiatric symptoms, clinicians should be mindful of paraneoplastic neurological disorders, as early diagnosis and treatment of malignancy may lead to symptomatic improvement. PMID:25608740

  6. Stepwise, non-adherent differentiation of human pluripotent stem cells to generate basal forebrain cholinergic neurons via hedgehog signaling.

    PubMed

    Crompton, Lucy A; Byrne, Meg L; Taylor, Hannah; Kerrigan, Talitha L; Bru-Mercier, Gilles; Badger, Jennifer L; Barbuti, Peter A; Jo, Jihoon; Tyler, Sue J; Allen, Shelley J; Kunath, Tilo; Cho, Kwangwook; Caldwell, Maeve A

    2013-11-01

    Basal forebrain cholinergic neurons (bfCNs) which provide innervation to the hippocampus and cortex, are required for memory and learning, and are primarily affected in Alzheimer's Disease (AD), resulting in related cognitive decline. Therefore generation of a source of bfCNs from human pluripotent stem cells (hPSCs) is crucial for in vitro disease modeling and development of novel AD therapies. In addition, for the advancement of regenerative approaches there is a requirement for an accurate developmental model to study the neurogenesis and survival of this population. Here we demonstrate the efficient production of bfCNs, using a novel embryoid body (EB) based non-adherent differentiation (NAdD) protocol. We establish a specific basal forebrain neural stem cell (NSC) phenotype via expression of the basal forebrain transcription factors NKX2.1 and LHX8, as well as the general forebrain marker FOXG1. We present evidence that this lineage is achieved via recapitulation of embryonic events, with induction of intrinsic hedgehog signaling, through the use of a 3D non-adherent differentiation system. This is the first example of hPSC-derived basal forebrain-like NSCs, which are scalable via self-renewal in prolonged culture. Furthermore upon terminal differentiation these basal forebrain-like NSCs generate high numbers of cholinergic neurons expressing the specific markers ChAT, VACht and ISL1. These hPSC-derived bfCNs possess characteristics that are crucial in a model to study AD related cholinergic neuronal loss in the basal forebrain. Examples are expression of the therapeutic target p75(NTR), the release of acetylcholine, and demonstration of a mature, and functional electrophysiological profile. In conclusion, this work provides a renewable source of human functional bfCNs applicable for studying AD specifically in the cholinergic system, and also provides a model of the key embryonic events in human bfCN development. PMID:24013066

  7. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    PubMed

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. PMID:27091299

  8. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    PubMed

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day.

  9. Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: Possible role of disrupted noradrenergic signaling.

    PubMed

    Skelly, M J; Chappell, A E; Carter, E; Weiner, J L

    2015-10-01

    Alcohol use disorder, anxiety disorders, and post-traumatic stress disorder (PTSD) are highly comorbid, and exposure to chronic stress during adolescence may increase the incidence of these conditions in adulthood. Efforts to identify the common stress-related mechanisms driving these disorders have been hampered, in part, by a lack of reliable preclinical models that replicate their comorbid symptomatology. Prior work by us, and others, has shown that adolescent social isolation increases anxiety-like behaviors and voluntary ethanol consumption in adult male Long-Evans rats. Here we examined whether social isolation also produces deficiencies in extinction of conditioned fear, a hallmark symptom of PTSD. Additionally, as disrupted noradrenergic signaling may contribute to alcoholism, we examined the effect of anxiolytic medications that target noradrenergic signaling on ethanol intake following adolescent social isolation. Our results confirm and extend previous findings that adolescent social isolation increases anxiety-like behavior and enhances ethanol intake and preference in adulthood. Additionally, social isolation is associated with a significant deficit in the extinction of conditioned fear and a marked increase in the ability of noradrenergic therapeutics to decrease ethanol intake. These results suggest that adolescent social isolation not only leads to persistent increases in anxiety-like behaviors and ethanol consumption, but also disrupts fear extinction, and as such may be a useful preclinical model of stress-related psychopathology. Our data also suggest that disrupted noradrenergic signaling may contribute to escalated ethanol drinking following social isolation, thus further highlighting the potential utility of noradrenergic therapeutics in treating the deleterious behavioral sequelae associated with early life stress.

  10. Neurophysiological responses to stressful motion and anti-motion sickness drugs as mediated by the limbic system

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.; Odell, S.

    1982-01-01

    Performance is characterized in terms of attention and memory, categorizing extrinsic mechanism mediated by ACTH, norepinephrine and dopamine, and intrinsic mechanisms as cholinergic. The cholinergic role in memory and performance was viewed from within the limbic system and related to volitional influences of frontal cortical afferents and behavioral responses of hypothalamic and reticular system efferents. The inhibitory influence of the hippocampus on the autonomic and hormonal responses mediated through the hypothalamus, pituitary, and brain stem are correlated with the actions of such anti-motion sickness drugs as scopolamine and amphetamine. These drugs appear to exert their effects on motion sickness symptomatology through diverse though synergistic neurochemical mechanisms involving the septohippocampal pathway and other limbic system structures. The particular impact of the limbic system on an animal's behavioral and hormonal responses to stress is influenced by ACTH, cortisol, scopolamine, and amphetamine.

  11. Hippocampal noradrenergic activation is necessary for object recognition memory consolidation and can promote BDNF increase and memory persistence.

    PubMed

    Mello-Carpes, Pâmela B; da Silva de Vargas, Liane; Gayer, Mateus Cristofari; Roehrs, Rafael; Izquierdo, Ivan

    2016-01-01

    Previously we showed that activation of the Nucleus of the Solitary Tract (NTS)-Nucleus Paragigantocellularis (PGi)-Locus coeruleus (LC) pathway, which theoretically culminates with norepinephrine (NE) release in dorsal hippocampus (CA1 region) and basolateral amygdala (BLA) is necessary for the consolidation of object recognition (OR) memory. Here we show that, while the microinjection of the beta-noradrenergic receptor blocker timolol into CA1 impairs OR memory consolidation, the microinjection of norepinephrine (NE) promotes the persistence of this type of memory. Further, we show that OR consolidation is attended by an increase of norepinephrine (NE) levels and of the expression of brain derived neurotrophic factor (BDNF) in hippocampus, which are impaired by inactivation of the NTS-PGi-LC pathway by the infusion of muscimol into the NTS. PMID:26691781

  12. Hippocampal noradrenergic activation is necessary for object recognition memory consolidation and can promote BDNF increase and memory persistence.

    PubMed

    Mello-Carpes, Pâmela B; da Silva de Vargas, Liane; Gayer, Mateus Cristofari; Roehrs, Rafael; Izquierdo, Ivan

    2016-01-01

    Previously we showed that activation of the Nucleus of the Solitary Tract (NTS)-Nucleus Paragigantocellularis (PGi)-Locus coeruleus (LC) pathway, which theoretically culminates with norepinephrine (NE) release in dorsal hippocampus (CA1 region) and basolateral amygdala (BLA) is necessary for the consolidation of object recognition (OR) memory. Here we show that, while the microinjection of the beta-noradrenergic receptor blocker timolol into CA1 impairs OR memory consolidation, the microinjection of norepinephrine (NE) promotes the persistence of this type of memory. Further, we show that OR consolidation is attended by an increase of norepinephrine (NE) levels and of the expression of brain derived neurotrophic factor (BDNF) in hippocampus, which are impaired by inactivation of the NTS-PGi-LC pathway by the infusion of muscimol into the NTS.

  13. Limbic response to psychosocial stress in schizotypy: a functional magnetic resonance imaging study.

    PubMed

    Soliman, Alexandra; O'Driscoll, Gillian A; Pruessner, Jens; Joober, Ridha; Ditto, Blaine; Streicker, Elizabeth; Goldberg, Yael; Caro, Josie; Rekkas, P Vivien; Dagher, Alain

    2011-09-01

    Psychological stress causes dopamine release in the striatum and is thought to play a role in susceptibility to psychotic illness. Previous work suggests that an elevated dopaminergic response to stress may index vulnerability to psychosis in certain individuals. With functional magnetic resonance imaging, we measured stress-induced changes in brain activity in healthy individuals at elevated risk of developing psychosis. Participants were 15 controls and 25 psychometric schizotypes: 12 with positive symptom schizotypy (perceptual aberrations) and 13 with negative symptom schizotypy (physical anhedonia), as determined by questionnaires (Chapman et al., 1976; Chapman and Chapman, 1978). In the scanner, participants performed the Montreal Imaging Stress Task and a matched sensory-motor control task. Measures of self-reported stress and salivary cortisol levels were taken throughout the experiment. All three groups showed significant increases in self-reported stress and significant fMRI signal change in the striatal, limbic and cortical regions. However, the Physical Anhedonia group showed greater stress-induced striatal and limbic deactivation than the other two groups. Deactivation in the striatum was significantly correlated with Physical Anhedonia score across all subjects. Our findings suggest the presence of abnormalities in striatal response to stress in negative symptom schizotypy.

  14. Structural Plasticity of Dentate Granule Cell Mossy Fibers During the Development of Limbic Epilepsy

    PubMed Central

    Danzer, Steve C.; He, Xiaoping; Loepke, Andreas W.; McNamara, James O.

    2009-01-01

    Altered granule cell≫CA3 pyramidal cell synaptic connectivity may contribute to the development of limbic epilepsy. To explore this possibility, granule cell giant mossy fiber bouton plasticity was examined in the kindling and pilocarpine models of epilepsy using green fluorescent protein-expressing transgenic mice. These studies revealed significant increases in the frequency of giant boutons with satellite boutons 2 days and 1 month after pilocarpine status epilepticus, and increases in giant bouton area at 1 month. Similar increases in giant bouton area were observed shortly after kindling. Finally, both models exhibited plasticity of mossy fiber giant bouton filopodia, which contact GABAergic interneurons mediating feedforward inhibition of CA3 pyramids. In the kindling model, however, all changes were fleeting, having resolved by 1 month after the last evoked seizure. Together, these findings demonstrate striking structural plasticity of granule cell mossy fiber synaptic terminal structure in two distinct models of adult limbic epileptogenesis. We suggest that these plasticities modify local connectivities between individual mossy fiber terminals and their targets, inhibitory interneurons, and CA3 pyramidal cells potentially altering the balance of excitation and inhibition during the development of epilepsy. PMID:19294647

  15. Diffusion tensor imaging in Alzheimer's disease: insights into the limbic-diencephalic network and methodological considerations

    PubMed Central

    Acosta-Cabronero, Julio; Nestor, Peter J.

    2014-01-01

    Glucose hypometabolism and gray matter atrophy are well known consequences of Alzheimer's disease (AD). Studies using these measures have shown that the earliest clinical stages, in which memory impairment is a relatively isolated feature, are associated with degeneration in an apparently remote group of areas—mesial temporal lobe (MTL), diencephalic structures such as anterior thalamus and mammillary bodies, and posterior cingulate. These sites are thought to be strongly anatomically inter-connected via a limbic-diencephalic network. Diffusion tensor imaging or DTI—an imaging technique capable of probing white matter tissue microstructure—has recently confirmed degeneration of the white matter connections of the limbic-diencephalic network in AD by way of an unbiased analysis strategy known as tract-based spatial statistics (TBSS). The present review contextualizes the relevance of these findings, in which the fornix is likely to play a fundamental role in linking MTL and diencephalon. An interesting by-product of this work has been in showing that alterations in diffusion behavior are complex in AD—while early studies tended to focus on fractional anisotropy, recent work has highlighted that this measure is not the most sensitive to early changes. Finally, this review will discuss in detail several technical aspects of DTI both in terms of image acquisition and TBSS analysis as both of these factors have important implications to ensure reliable observations are made that inform understanding of neurodegenerative diseases. PMID:25324775

  16. The role of the medial temporal limbic system in processing emotions in voice and music.

    PubMed

    Frühholz, Sascha; Trost, Wiebke; Grandjean, Didier

    2014-12-01

    Subcortical brain structures of the limbic system, such as the amygdala, are thought to decode the emotional value of sensory information. Recent neuroimaging studies, as well as lesion studies in patients, have shown that the amygdala is sensitive to emotions in voice and music. Similarly, the hippocampus, another part of the temporal limbic system (TLS), is responsive to vocal and musical emotions, but its specific roles in emotional processing from music and especially from voices have been largely neglected. Here we review recent research on vocal and musical emotions, and outline commonalities and differences in the neural processing of emotions in the TLS in terms of emotional valence, emotional intensity and arousal, as well as in terms of acoustic and structural features of voices and music. We summarize the findings in a neural framework including several subcortical and cortical functional pathways between the auditory system and the TLS. This framework proposes that some vocal expressions might already receive a fast emotional evaluation via a subcortical pathway to the amygdala, whereas cortical pathways to the TLS are thought to be equally used for vocal and musical emotions. While the amygdala might be specifically involved in a coarse decoding of the emotional value of voices and music, the hippocampus might process more complex vocal and musical emotions, and might have an important role especially for the decoding of musical emotions by providing memory-based and contextual associations. PMID:25291405

  17. Diffusion tensor imaging in Alzheimer's disease: insights into the limbic-diencephalic network and methodological considerations.

    PubMed

    Acosta-Cabronero, Julio; Nestor, Peter J

    2014-01-01

    Glucose hypometabolism and gray matter atrophy are well known consequences of Alzheimer's disease (AD). Studies using these measures have shown that the earliest clinical stages, in which memory impairment is a relatively isolated feature, are associated with degeneration in an apparently remote group of areas-mesial temporal lobe (MTL), diencephalic structures such as anterior thalamus and mammillary bodies, and posterior cingulate. These sites are thought to be strongly anatomically inter-connected via a limbic-diencephalic network. Diffusion tensor imaging or DTI-an imaging technique capable of probing white matter tissue microstructure-has recently confirmed degeneration of the white matter connections of the limbic-diencephalic network in AD by way of an unbiased analysis strategy known as tract-based spatial statistics (TBSS). The present review contextualizes the relevance of these findings, in which the fornix is likely to play a fundamental role in linking MTL and diencephalon. An interesting by-product of this work has been in showing that alterations in diffusion behavior are complex in AD-while early studies tended to focus on fractional anisotropy, recent work has highlighted that this measure is not the most sensitive to early changes. Finally, this review will discuss in detail several technical aspects of DTI both in terms of image acquisition and TBSS analysis as both of these factors have important implications to ensure reliable observations are made that inform understanding of neurodegenerative diseases.

  18. The role of the medial temporal limbic system in processing emotions in voice and music.

    PubMed

    Frühholz, Sascha; Trost, Wiebke; Grandjean, Didier

    2014-12-01

    Subcortical brain structures of the limbic system, such as the amygdala, are thought to decode the emotional value of sensory information. Recent neuroimaging studies, as well as lesion studies in patients, have shown that the amygdala is sensitive to emotions in voice and music. Similarly, the hippocampus, another part of the temporal limbic system (TLS), is responsive to vocal and musical emotions, but its specific roles in emotional processing from music and especially from voices have been largely neglected. Here we review recent research on vocal and musical emotions, and outline commonalities and differences in the neural processing of emotions in the TLS in terms of emotional valence, emotional intensity and arousal, as well as in terms of acoustic and structural features of voices and music. We summarize the findings in a neural framework including several subcortical and cortical functional pathways between the auditory system and the TLS. This framework proposes that some vocal expressions might already receive a fast emotional evaluation via a subcortical pathway to the amygdala, whereas cortical pathways to the TLS are thought to be equally used for vocal and musical emotions. While the amygdala might be specifically involved in a coarse decoding of the emotional value of voices and music, the hippocampus might process more complex vocal and musical emotions, and might have an important role especially for the decoding of musical emotions by providing memory-based and contextual associations.

  19. Limbic Tract Integrity Contributes to Pattern Separation Performance Across the Lifespan.

    PubMed

    Bennett, Ilana J; Huffman, Derek J; Stark, Craig E L

    2015-09-01

    Accurate memory for discrete events is thought to rely on pattern separation to orthogonalize the representations of similar events. Previously, we reported that a behavioral index of pattern separation was correlated with activity in the hippocampus (dentate gyrus, CA3) and with integrity of the perforant path, which provides input to the hippocampus. If the hippocampus operates as part of a broader neural network, however, pattern separation would likely also relate to integrity of limbic tracts (fornix, cingulum bundle, and uncinate fasciculus) that connect the hippocampus to distributed brain regions. In this study, healthy adults (20-89 years) underwent diffusion tensor imaging and completed the Behavioral Pattern Separation Task-Object Version (BPS-O) and Rey Auditory Verbal Learning Test (RAVLT). After controlling for global effects of brain aging, exploratory skeleton-wise and targeted tractography analyses revealed that fornix integrity (fractional anisotropy, mean diffusivity, and radial diffusivity; but not mode) was significantly related to pattern separation (measured using BPS-O and RAVLT tasks), but not to recognition memory. These data suggest that hippocampal disconnection, via individual- and age-related differences in limbic tract integrity, contributes to pattern separation performance. Extending our earlier work, these results also support the notion that pattern separation relies on broad neural networks interconnecting the hippocampus.

  20. Functional heterogeneity of the limbic thalamus: From hippocampal to cortical functions.

    PubMed

    Wolff, Mathieu; Alcaraz, Fabien; Marchand, Alain R; Coutureau, Etienne

    2015-07-01

    Today, the idea that the integrity of the limbic thalamus is necessary for normal memory functions is well established. However, if the study of thalamic patients emphasized the anterior and the mediodorsal thalamus as the critical thalamic loci supporting cognitive functions, clinical studies have so far failed to attribute a specific role to each of these regions. In view of these difficulties, we review here the experimental data conducted in rodents harboring specific lesions of each thalamic region. These data clearly indicate a major functional dissociation within the limbic thalamus. The anterior thalamus provides critical support for hippocampal functions due to its cardinal location in the Papez circuit, while the mediodorsal thalamus may signal relevant information in a circuit encompassing the basolateral amygdala and the prefrontal cortex. Interestingly, while clinical studies have suggested that diencephalic pathologies may disconnect the medial temporal lobe from the cortex, experimental studies conducted in rodent show how this may differently affect distinct temporo-thalamo-cortical circuits, sharing the same general organization but supporting dissociable functions.

  1. Limbic system structures differentially contribute to exploratory trip organization of the rat.

    PubMed

    Winter, Shawn S; Köppen, Jenny R; Ebert, Tialia B N; Wallace, Douglas G

    2013-02-01

    The role of limbic system structures in spatial orientation continues to be debated. The hippocampus (HPC) has been implicated in encoding symbolic representations of environments (i.e., cognitive map), whereas entorhinal cortex (EC) function has been implicated in self-movement cue processing (i.e., dead reckoning). These distinctions largely depend on the electrophysiological characteristics of cells within these regions and behavioral tasks that typically fail to dissociate environmental and self-movement cue processing. Topographic and kinematic characteristics of exploratory trip organization have been shown to differentially depend on environmental and self-movement cue processing. The present study examines the effects of either HPC or EC lesions on exploratory trip organization under varying lighting conditions. HPC lesions selectively impaired all measures of performance under dark conditions, but spared all measures of performance under light conditions. EC lesions impaired kinematic measures related to distance estimation under all conditions and impaired all measures of performance under light conditions. These results provide evidence that the HPC is involved in processing self-movement cues but not environmental cues, and EC is involved in processing distance estimates generated from either self-movement or environmental cues. These observations provide further support for serial processing of self-movement cues through limbic system structures that converge on the HPC.

  2. Cognitive therapy for irritable bowel syndrome is associated with reduced limbic activity, GI symptoms, and anxiety.

    PubMed

    Lackner, Jeffrey M; Lou Coad, Mary; Mertz, Howard R; Wack, David S; Katz, Leonard A; Krasner, Susan S; Firth, Rebecca; Mahl, Thomas C; Lockwood, Alan H

    2006-05-01

    This study sought to identify brain regions that underlie symptom changes in severely affected IBS patients undergoing cognitive therapy (CT). Five healthy controls and 6 Rome II diagnosed IBS patients underwent psychological testing followed by rectal balloon distention while brain neural activity was measured with O-15 water positron emission tomography (PET) before and after a brief regimen of CT. Pre-treatment resting state scans, without distention, were compared to post-treatment scans using statistical parametric mapping (SPM). Neural activity in the parahippocampal gyrus and inferior portion of the right cortex cingulate were reduced in the post-treatment scan, compared to pre-treatment (x, y, z coordinates in MNI standard space were -30, -12, -30, P=0.017; 6, 34, -8, P=0.023, respectively). Blood flow values at these two sites in the controls were intermediate between those in the pre- and post-treatment IBS patients. Limbic activity changes were accompanied by significant improvements in GI symptoms (e.g., pain, bowel dysfunction) and psychological functioning (e.g., anxiety, worry). The left pons (-2, -26, -28, P=0.04) showed decreased neural activity which was correlated with post-treatment anxiety scores. Changes in neural activity of cortical-limbic regions that subserve hypervigilance and emotion regulation may represent biologically oriented change mechanisms that mediate symptom improvement of CT for IBS.

  3. Striatal-Limbic Activation is Associated with Intensity of Anticipatory Anxiety

    PubMed Central

    Yang, Hongyu; Spence, Jeffrey S.; Devous, Michael D.; Briggs, Richard W.; Goyal, Aman; Xiao, Hong; Yadav, Hardik; Adinoff, Bryon

    2013-01-01

    Anxiety experienced in anticipation of impending aversive events induces striatal-limbic activation. However, previous functional magnetic imaging (fMRI) studies of anticipatory anxiety have utilized post-test measures of anxiety, making a direct association between neural activation and distress problematic. This paradigm was designed to assess the BOLD response to an aversive conditioned stimulus while simultaneously measuring subjective anxiety. Fifteen male healthy subjects (45.5±8.5 years old) were studied. A high threat conditioned stimulus (CS) was paired with either an unpredictable, highly aversive (painful) or a non-aversive (non-painful) unconditioned stimulus and compared to a low threat CS paired with a predictable, non-aversive stimulus. Neural response was assessed with fMRI, and subjective anxiety (1 to 4) was recorded upon the presentation of each CS. High subjective ratings of real-time anticipatory anxiety (2, 3, and 4), relative to low anticipatory anxiety (1), elicited increased activation in the bilateral striatum, bilateral orbital frontal cortex, left anterior insula, and anterior cingulate cortex (ACC) and decreased activation in the posterior cingulate cortex (PCC). The amplitude of BOLD signal change generally paralleled the subjective rating of anxiety. Real-time measures of anticipatory anxiety confirm previous reports, using post-test measures of anxiety, of striatal-limbic activation during anticipatory anxiety while simultaneously demonstrating an increase in BOLD response in parallel with heightened anxiety. PMID:23137803

  4. Targeting the Noradrenergic System in Posttraumatic Stress Disorder: A Systematic Review and Meta-Analysis of Prazosin Trials.

    PubMed

    De Berardis, Domenico; Marini, Stefano; Serroni, Nicola; Iasevoli, Felice; Tomasetti, Carmine; de Bartolomeis, Andrea; Mazza, Monica; Tempesta, Daniela; Valchera, Alessandro; Fornaro, Michele; Pompili, Maurizio; Sepede, Gianna; Vellante, Federica; Orsolini, Laura; Martinotti, Giovanni; Di Giannantonio, Massimo

    2015-01-01

    Post-traumatic stress disorder (PTSD) is a chronic psychiatric disorder that may develop after exposure to a life-threatening trauma. As veterans and armed forces may deal with diverse health problems compared with civilians, they have a greater risk for psychiatric disorders, including PTSD, than civilians, even if the disorder may be also frequent in the general population. PTSD is associated with significant comorbidity, especially with mood disorders and substance abuse. Moreover, the suicide risk is higher in PTSD patients than in the general population. Selective Serotonin Reuptake Inhibitors (SSRIs), atypical antipsychotics and benzodiazepines are commonly employed in the management of PTSD, but often these treatments fail or are discontinued due to adverse effects. It has been demonstrated that high noradrenergic activity may be associated with hyperarousal, trauma nightmares and sleep disturbances in PTSD subjects, probably through the stimulation of α -1 adrenergic receptors in the brain prefrontal cortex. The α -1 adrenoreceptor antagonist prazosin decreases noradrenaline effects at brain α-1 adrenoreceptors and may be a promising agent in the treatment of PTSD, as some studies have found it effective and well tolerated. Therefore, the present review is aimed to examine the role of noradrenergic system in the pathophysiology of PTSD. Moreover, we conducted a systematic review to evaluate the effectiveness and tolerability of prazosin in PTSD patients. Meta-analysis was used to combine data from multiple studies and better estimate the effect of prazosin on specific outcomes. We found prazosin to be significantly more efficacious than placebo in reducing distressing dreams in PTSD patients, even though our results should be interpreted with caution due to the small number of studies included in our quantitative synthesis. PMID:25944011

  5. Both a nicotinic single nucleotide polymorphism (SNP) and a noradrenergic SNP modulate working memory performance when attention is manipulated.

    PubMed

    Greenwood, Pamela M; Sundararajan, Ramya; Lin, Ming-Kuan; Kumar, Reshma; Fryxell, Karl J; Parasuraman, Raja

    2009-11-01

    We investigated the relation between the two systems of visuospatial attention and working memory by examining the effect of normal variation in cholinergic and noradrenergic genes on working memory performance under attentional manipulation. We previously reported that working memory for location was impaired following large location precues, indicating the scale of visuospatial attention has a role in forming the mental representation of the target. In one of the first studies to compare effects of two single nucleotide polymorphisms (SNPs) on the same cognitive task, we investigated the neurotransmission systems underlying interactions between attention and memory. Based on our previous report that the CHRNA4 rs#1044396 C/T nicotinic receptor SNP affected visuospatial attention, but not working memory, and the DBH rs#1108580 G/A noradrenergic enzyme SNP affected working memory, but not attention, we predicted that both SNPs would modulate performance when the two systems interacted and working memory was manipulated by attention. We found the scale of visuospatial attention deployed around a target affected memory for location of that target. Memory performance was modulated by the two SNPs. CHRNA4 C/C homozygotes and DBH G allele carriers showed the best memory performance but also the greatest benefit of visuospatial attention on memory. Overall, however, the CHRNA4 SNP exerted a stronger effect than the DBH SNP on memory performance when visuospatial attention was manipulated. This evidence of an integrated cholinergic influence on working memory performance under attentional manipulation is consistent with the view that working memory and visuospatial attention are separate systems which can interact.

  6. Local and Global Resting State Activity in the Noradrenergic and Dopaminergic Pathway Modulated by Reboxetine and Amisulpride in Healthy Subjects

    PubMed Central

    Wiegers, Maike; Walter, Martin; Abler, Birgit; Graf, Heiko

    2016-01-01

    Background: Various psychiatric populations are currently investigated with resting state fMRI, with the aim of individualizing diagnostics and treatment options and improving treatment outcomes. Many of these studies are conducted in large naturalistic samples, providing rich insights regarding disease-related neural alterations, but with the common psychopharmacological medication limiting interpretations of the results. We therefore investigated the effects of common noradrenergic and anti-dopaminergic medications on local and global resting state activity (rs-activity) in healthy volunteers to further the understanding of the respective effects independent from disease-related alterations. Methods: Within a randomized, double-blind, placebo-controlled crossover design, we investigated 19 healthy male subjects by resting state fMRI after the intake of reboxetine (4mg/d), amisulpride (200mg/d), and placebo for 7 days each. Treatment-related differences in local and global rs-activity were measured by the fractional amplitude of low frequency fluctuations (fALFF) and resting state functional connectivity (rs-FC). Results: fALFF revealed alterations of local rs-activity within regions of the core noradrenergic pathway, including the locus coeruleus under reboxetine, correlated with its plasma levels. Moreover, reboxetine led to increased rs-FC between regions within this pathway, i.e. the locus coeruleus, tectum, thalamus, and amygdala. Amisulpride modulated local rs-activity of regions within the dopaminergic pathway, with the altered signal in the putamen correlating with amisulpride plasma levels. Correspondingly, amisulpride increased rs-FC between regions of the dopaminergic pathway comprising the substantia nigra and putamen. Conclusion: Our data provide evidence of how psychopharmacological agents alter local and global rs-activity within the respective neuroanatomical pathways in healthy subjects, which may help with interpreting data in psychiatric

  7. Noradrenergic modulation of masseter muscle activity during natural rapid eye movement sleep requires glutamatergic signalling at the trigeminal motor nucleus.

    PubMed

    Schwarz, Peter B; Mir, Saba; Peever, John H

    2014-08-15

    Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep-wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally.

  8. Brain Serotonergic and Noradrenergic Deficiencies in Behavioral Variant Frontotemporal Dementia Compared to Early-Onset Alzheimer's Disease.

    PubMed

    Vermeiren, Yannick; Janssens, Jana; Aerts, Tony; Martin, Jean-Jacques; Sieben, Anne; Van Dam, Debby; De Deyn, Peter P

    2016-06-15

    Routinely prescribed psychoactive drugs in behavioral variant frontotemporal dementia (FTD) for improvement of (non)cognitive symptoms are primarily based on monoamine replacement or augmentation strategies. These were, however, initially intended to symptomatically treat other degenerative, behavioral, or personality disorders, and thus lack disease specificity. Moreover, current knowledge on brain monoaminergic neurotransmitter deficiencies in this presenile disorder is scarce, particularly with reference to changes in Alzheimer's disease (AD). The latter hence favors neurochemical comparison studies in order to elucidate the monoaminergic underpinnings of FTD compared to early-onset AD, which may contribute to better pharmacotherapy. Therefore, frozen brain samples, i.e., Brodmann area (BA) 6/8/9/10/11/12/22/24/46, amygdala, and hippocampus, of 10 neuropathologically confirmed FTD, AD, and control subjects were analyzed by means of reversed-phase high-performance liquid chromatography. Levels of serotonergic, dopaminergic, and noradrenergic compounds were measured. In nine brain areas, serotonin (5-HT) concentrations were significantly increased in FTD compared to AD patients, while 5-hydroxyindoleacetic acid/5-HT ratios were decreased in eight regions, also compared to controls. Furthermore, in all regions, noradrenaline (NA) levels were significantly higher, and 3-methoxy-4-hydroxyphenylglycol/NA ratios were significantly lower in FTD than in AD and controls. Contrarily, significantly higher dopamine (DA) levels and reduced homovanillic acid/DA ratios were only found in BA12 and BA46. Results indicate that FTD is defined by distinct serotonergic and noradrenergic deficiencies. Additional research regarding the interactions between both monoaminergic networks is required. Similarly, clinical trials investigating the effects of 5-HT1A receptor antagonists or NA-modulating agents, such as α1/2/β1-blockers, seem to have a rationale and should be considered. PMID

  9. [Disorders of neurogenesis of cortical and subcortical structures in rat brain limbic system during fetal alcohol syndrome formation].

    PubMed

    Svanidze, I K; Museridze, D P; Didimova, E V; Sanikidze, T V; Gegenava, L G; Gvinadze, N N

    2012-01-01

    Disorders of neurogenesis of cortical and subcortical structures in rat brain limbic system were studied in the offspring of rats that received ethanol during pregnancy. The methods used included the staining of histological sections with cresyl violet, in vitro culture, and electron paramagnetic resonance. Prenatal alcohol intoxication was shown to induce the disturbances in proliferative activity of granular layer cells in the hippocampal dentate gyrus, neuron- and glioblast migration, enhancement of free NO and lipoperoxide production and cell death. This resulted in the changes in the number of neurons in cortical and subcortical structures of rat brain limbic system and in fetal alcohol syndrome formation.

  10. Forebrain neural patterns associated with sex differences in autonomic and cardiovascular function during baroreceptor unloading.

    PubMed

    Kimmerly, D S; Wong, S; Menon, R; Shoemaker, J K

    2007-02-01

    Generally, women demonstrate smaller autonomic and cardiovascular reactions to stress, compared with men. The mechanism of this sex-dependent difference is unknown, although reduced baroreflex sensitivity may be involved. Recently, we identified a cortical network associated with autonomic cardiovascular responses to baroreceptor unloading in men. The current investigation examined whether differences in the neural activity patterns within this network were related to sex-related physiological responses to lower body negative pressure (LBNP, 5, 15, and 35 mmHg). Forebrain activity in healthy men and women (n = 8 each) was measured using functional magnetic resonance imaging with blood oxygen level-dependent (BOLD) contrast. Stroke volume (SV), heart rate (HR), and muscle sympathetic nerve activity (MSNA) were collected on a separate day. Men had larger decreases in SV than women (P < 0.01) during 35 mmHg LBNP only. At 35 mmHg LBNP, HR increased more in males then females (9 +/- 1 beats/min vs. 4 +/- 1 beats/min, P < 0.05). Compared with women, increases in total MSNA were similar at 15 mmHg LBNP but greater during 35 mmHg LBNP in men [1,067 +/- 123 vs. 658 +/- 103 arbitrary units (au), P < 0.05]. BOLD signal changes (P < 0.005, uncorrected) were identified within discrete forebrain regions associated with these sex-specific HR and MSNA responses. Men had larger increases in BOLD signal within the right insula and dorsal anterior cingulate cortex than women. Furthermore, men demonstrated greater BOLD signal reductions in the right amygdala, left insula, ventral anterior cingulate, and ventral medial prefrontal cortex vs. women. The greater changes in forebrain activity in men vs. women may have contributed to the elevated HR and sympathetic responses observed in men during 35 mmHg LBNP. PMID:17272671

  11. Forebrain regions associated with postexercise differences in autonomic and cardiovascular function during baroreceptor unloading.

    PubMed

    Kimmerly, D S; Wong, S W; Salzer, D; Menon, R; Shoemaker, J K

    2007-07-01

    The cortical regions representing peripheral autonomic reactions in humans are poorly understood. This study examined whether changes in forebrain activity were associated with the altered physiological responses to lower body negative pressure (LBNP) following a single bout of dynamic exercise (POST-EX). We hypothesized that, compared with the nonexercised condition (NO-EX), POST-EX would elicit greater reductions in stroke volume (SV) and larger increases in heart rate (HR) and muscle sympathetic nerve activity (MSNA) during LBNP (5, 15, and 35 mmHg). Forebrain neural activity (n = 11) was measured using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. HR, SV, arterial blood pressure (ABP), and MSNA were collected separately. Compared with NO-EX, baseline ABP was reduced, whereas HR and total vascular conductance (TVC) were elevated in POST-EX (P < 0.05). In both conditions, 5 mmHg LBNP did not elicit a change (from baseline) in any physiological parameter. Compared with NO-EX, 35 mmHg LBNP-mediated decreases in SV and TVC produced greater increases in HR and MSNA during POST-EX (P < 0.05). The right posterior insula and dorsal anterior cingulate cortex demonstrated a larger decrease in BOLD at 5 mmHg LBNP but greater BOLD increase at 15 and 35 mmHg LBNP POST-EX vs. NO-EX (P < 0.005). Conversely, the thalamus and ventral medial prefrontal cortex displayed the opposite BOLD activity pattern (i.e., larger increase at 5 mmHg LBNP but greater decrease at 15 and 35 mmHg LBNP POST-EX vs. NO-EX). Our findings suggest that discrete forebrain regions may be involved with the generation of baroreflex-mediated sympathetic and cardiovascular responses elicited by moderate LBNP. PMID:17351074

  12. The cerebral metabolic effects of manipulating glutamatergic systems within the basal forebrain in conscious rats.

    PubMed

    Browne, S E; Muir, J L; Robbins, T W; Page, K J; Everitt, B J; McCulloch, J

    1998-02-01

    N-methyl-D-aspartate (NMDA) and non-NMDA receptor-mediated manipulations of the cortical cholinergic input arising from the basal forebrain differentially affect cognitive function. We used [14C]-2-deoxyglucose autoradiography in conscious rats to map the effects of excitatory amino acid agonist infusions into the nucleus basalis magnocellularis (NBM) on cerebral functional activity, as reflected by local rates of glucose utilization. Acute stimulation of NBM neurones by local infusion of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), 15 min before glucose use measurement, resulted in glucose use reductions in nine cortical regions innervated by NBM efferents including prefrontal, frontal, sensorimotor and cingulate cortices. NMDA infusions altered glucose use in two cortical areas. Both AMPA and NMDA markedly increased glucose use in the striatum and globus pallidus, with concomitant perturbations in striato-pallidal projection targets including the substantia nigra, entopeduncular nucleus, subthalamic nucleus and lateral habenular nucleus. In contrast, the GABAA agonist muscimol did not affect glucose use in the NBM or neocortical regions, but induced glucose use increases in several subcortical nuclei including the substantia nigra and entopeduncular nucleus. The delayed effects of excitotoxic lesions were assessed 3 weeks after basal forebrain infusions of AMPA, NMDA, ibotenate or quisqualate. Statistically significant glucose use changes only occurred in the hypothalamus after NMDA, and the NBM after ibotenate infusions, although reduced cortical metabolism was apparent following AMPA-induced lesions of the NBM. Results support a dissociation between the functional sequelae of NMDA and non-NMDA receptor-mediated events in the basal forebrain, and long-term compensatory functional adaptation following cortical denervation.

  13. Internal field strength measurements in chick forebrains at 50, 147, and 450 MHz.

    PubMed

    Weil, C M; Spiegel, R J; Joines, W T

    1984-01-01

    This report describes some experimental measurements of the internal field levels induced within isolated chick-forebrains irradiated at 50, 147, and 450 MHz, under essentially the same conditions as those used in the in vitro calcium-ion efflux experiments. Ratios of incident power at 50/147 MHz and 147/450 MHz that are needed to establish the same probe output are given and comparisons made with values predicted by different spherical models. Data predicted by the layered-sphere model were found to be in close agreement with measured values for the 50/147-MHz ratio. Agreement for the 147/450-MHz ratio was poorer.

  14. Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain.

    PubMed

    Kesby, James P; Cui, Xiaoying; Ko, Pauline; McGrath, John J; Burne, Thomas H J; Eyles, Darryl W

    2009-09-18

    There is growing evidence that low vitamin D impacts adversely on brain development. The current study investigated the impact of developmental vitamin D (DVD) deficiency on dopamine and serotonin metabolism in the neonatal rat brain. DVD-deficiency resulted in an altered dopaminergic metabolic profile in the forebrain, with a decrease in the conversion of dihydroxyphenylacetic acid (DOPAC) to homovanillic acid (HVA). Correspondingly, expression of the enzyme required for this conversion, catechol-O-methyl transferase (COMT), was decreased. These results suggest that DVD-deficiency influences dopamine turnover during development. PMID:19500655

  15. Immediate post-defeat infusions of the noradrenergic receptor antagonist propranolol impair the consolidation of conditioned defeat in male Syrian hamsters.

    PubMed

    Gray, Cloe Luckett; Krebs-Kraft, Desiree L; Solomon, Matia B; Norvelle, Alisa; Parent, Marise B; Huhman, Kim L

    2015-12-01

    Social defeat occurs when an animal is attacked and subjugated by an aggressive conspecific. Following social defeat, male Syrian hamsters fail to display species-typical territorial aggression and instead exhibit submissive or defensive behaviors even when in the presence of a non-aggressive intruder. We have termed this phenomenon conditioned defeat (CD). The mechanisms underlying CD are not fully understood, but data from our lab suggest that at least some of the mechanisms are similar to those that mediate classical fear conditioning. The goal of the present experiment was to test the hypothesis that noradrenergic signaling promotes the consolidation of CD, as in classical fear conditioning, by determining whether CD is disrupted by post-training blockade of noradrenergic activity. In Experiment 1, we determined whether systemic infusions of the noradrenergic receptor antagonist propranolol (0, 1.0, 10, or 20mg/kg) given immediately after a 15 min defeat by a resident aggressor would impair CD tested 48 h later. Hamsters that were given immediate post-training infusions of propranolol (1.0, but not 10 or 20mg/kg) showed significantly less submissive behavior than did those given vehicle infusions supporting the hypothesis that there is noradrenergic modulation of the consolidation of a social defeat experience. In Experiment 2, we demonstrated that propranolol (1.0mg/kg) given immediately, but not 4 or 24h, after defeat impaired CD tested 48 h after defeat indicating that the window within which the memory for social defeat is susceptible to beta-adrenergic modulation is temporary. In Experiment 3, we examined whether central blockade of noradrenergic receptors could recapitulate the effect of systemic injections by giving an intracerebroventricular infusion of propranolol immediately after defeat and examining the effect on CD 24h later. Centrally administered propranolol (20 μg/3 μl but not 2 μg/3 μl) was also effective in dose-dependently reducing

  16. Immediate post-defeat infusions of the noradrenergic receptor antagonist propranolol impair the consolidation of conditioned defeat in male Syrian hamsters.

    PubMed

    Gray, Cloe Luckett; Krebs-Kraft, Desiree L; Solomon, Matia B; Norvelle, Alisa; Parent, Marise B; Huhman, Kim L

    2015-12-01

    Social defeat occurs when an animal is attacked and subjugated by an aggressive conspecific. Following social defeat, male Syrian hamsters fail to display species-typical territorial aggression and instead exhibit submissive or defensive behaviors even when in the presence of a non-aggressive intruder. We have termed this phenomenon conditioned defeat (CD). The mechanisms underlying CD are not fully understood, but data from our lab suggest that at least some of the mechanisms are similar to those that mediate classical fear conditioning. The goal of the present experiment was to test the hypothesis that noradrenergic signaling promotes the consolidation of CD, as in classical fear conditioning, by determining whether CD is disrupted by post-training blockade of noradrenergic activity. In Experiment 1, we determined whether systemic infusions of the noradrenergic receptor antagonist propranolol (0, 1.0, 10, or 20mg/kg) given immediately after a 15 min defeat by a resident aggressor would impair CD tested 48 h later. Hamsters that were given immediate post-training infusions of propranolol (1.0, but not 10 or 20mg/kg) showed significantly less submissive behavior than did those given vehicle infusions supporting the hypothesis that there is noradrenergic modulation of the consolidation of a social defeat experience. In Experiment 2, we demonstrated that propranolol (1.0mg/kg) given immediately, but not 4 or 24h, after defeat impaired CD tested 48 h after defeat indicating that the window within which the memory for social defeat is susceptible to beta-adrenergic modulation is temporary. In Experiment 3, we examined whether central blockade of noradrenergic receptors could recapitulate the effect of systemic injections by giving an intracerebroventricular infusion of propranolol immediately after defeat and examining the effect on CD 24h later. Centrally administered propranolol (20 μg/3 μl but not 2 μg/3 μl) was also effective in dose-dependently reducing

  17. LRP2 is an auxiliary SHH receptor required to condition the forebrain ventral midline for inductive signals.

    PubMed

    Christ, Annabel; Christa, Anna; Kur, Esther; Lioubinski, Oleg; Bachmann, Sebastian; Willnow, Thomas E; Hammes, Annette

    2012-02-14

    Sonic hedgehog (SHH) is a regulator of forebrain development that acts through its receptor, patched 1. However, little is known about cellular mechanisms at neurulation, whereby SHH from the prechordal plate governs specification of the rostral diencephalon ventral midline (RDVM), a major forebrain organizer. We identified LRP2, a member of the LDL receptor gene family, as a component of the SHH signaling machinery in the RDVM. LRP2 acts as an apical SHH-binding protein that sequesters SHH in its target field and controls internalization and cellular trafficking of SHH/patched 1 complexes. Lack of LRP2 in mice and in cephalic explants results in failure to respond to SHH, despite functional expression of patched 1 and smoothened, whereas overexpression of LRP2 variants in cells increases SHH signaling capacity. Our data identify a critical role for LRP2 in SHH signaling and reveal the molecular mechanism underlying forebrain anomalies in mice and patients with Lrp2 defects.

  18. Sleep-waking states develop independently in the isolated forebrain and brain stem following early postnatal midbrain transection in cats.

    PubMed

    Villablanca, J R; de Andrés, I; Olmstead, C E

    2001-01-01

    We report the effects of permanently separating the immature forebrain from the brain stem upon sleeping and waking development. Kittens ranging from postnatal 9 to 27 days of age sustained a mesencephalic transection and were maintained for up to 135 days. Prior to postnatal day 40, the electroencephalogram of the isolated forebrain and behavioral sleep-wakefulness of the decerebrate animal showed the immature patterns of normal young kittens. Thereafter, the isolated forebrain showed alternating sleep-wakefulness electrocortical rhythms similar to the corresponding normal patterns of intact, mature cats. Olfactory stimuli generally changed forebrain sleeping into waking activity, and in cats with the section behind the third nerve nuclei, normal correlates of eye movements-pupillary activity with electrocortical rhythms were present. Behind the transection, decerebrate animals showed wakefulness, and after 20 days of age displayed typical behavioral episodes of rapid eye movements sleep and, during these periods, the pontine recordings showed ponto-geniculo-occipital waves, which are markers for this sleep stage, together with muscle atonia and rapid lateral eye movements. Typically, but with remarkable exceptions suggesting humoral interactions, the sleep-waking patterns of the isolated forebrain were dissociated from those of the decerebrate animal. These results were very similar to our previous findings in midbrain-transected adult cats. However, subtle differences suggested greater functional plasticity in the developing versus the adult isolated forebrain. We conclude that behavioral and electroencephalographic patterns of non-rapid eye movement sleep and of rapid eye movement sleep states mature independently in the forebrain and the brain stem, respectively, after these structures are separated early postnatally. In terms of waking, the findings strengthen our concept that in higher mammals the rostral brain can independently support wakefulness

  19. Idiopathic phenobarbital-responsive hypersialosis in the dog: an unusual form of limbic epilepsy?

    PubMed

    Stonehewer, J; Mackin, A J; Tasker, S; Simpson, J W; Mayhew, I G

    2000-09-01

    Three unusual cases of salivary gland enlargement and hypersialosis in the dog that responded to anticonvulsant therapy are reported. Presenting complaints included weight loss, hypersalivation, retching and vomiting of several weeks' duration. Two dogs were presented with enlarged painful mandibular salivary glands. The third dog exhibited bizarre behaviour (including jaw chattering) and developed enlarged painful mandibular salivary glands during hospitalisation. Fine needle aspirate cytology and biopsies from the enlarged salivary glands revealed no significant pathological changes. In one dog, an electroencephalogram revealed changes consistent with epilepsy. Hypersialism and salivary gland enlargement resolved completely during phenobarbital administration in all cases. Two dogs were successfully weaned off treatment six months after diagnosis. The remaining dog relapsed after eight months, but normalised with the addition of oral potassium bromide. It is hypothesised that the syndrome idiopathic hypersialosis may in fact be an unusual form of limbic epilepsy.

  20. High grade glioma mimicking voltage gated potassium channel complex associated antibody limbic encephalitis.

    PubMed

    Athauda, Dilan; Delamont, R S; Pablo-Fernandez, E De

    2014-01-01

    Though raised titres of voltage gated potassium channel (VGKC) complex antibodies have been occasionally associated with extracranial tumours, mainly presenting as Morvan's Syndrome or neuromyotonia, they have not yet been reported to be associated with an intracranial malignancy. This is especially important as misdiagnosis of these conditions and delay of the appropriate treatment can have important prognostic implications. We describe a patient with a high grade glioma presenting with clinical, radiological, and serological features consistent with the diagnosis of VGKC antibody associated limbic encephalitis (LE). This is the first association between a primary brain tumour and high titre of VGKC complex antibodies. Clinicoradiological progression despite effective immunosuppressive treatment should prompt clinicians to look for alternative diagnoses. Further studies to elucidate a possible association between VGKC complex and other surface antigen antibodies with primary brain tumours should be carried out.

  1. Unusual amnesia in a patient with VGKC-Ab limbic encephalitis: a case study.

    PubMed

    Kartsounis, Luke D; de Silva, Rajith

    2011-04-01

    We describe the case of a patient with confirmed voltage-gated potassium channel antibody-associated encephalitis (VGKC-Ab). MRI studies revealed bilateral hyper-intensity in the hippocampi, with their volumes preserved. At presentation, the patient's anterograde and retrograde memory skills were found to be impaired and he showed fluctuation in his ability to recall familiar information. Following treatment with immunotherapy, his condition improved considerably and, in a series of follow up assessments, he performed satisfactorily (i.e., within the average range or above) on formal tests of memory, as well as on a range of other cognitive tests, including tests of executive function. By contrast, in the context of contemporaneous unstructured interviews, he showed a strong tendency to confabulate. We argue that the reported case broadens the phenomenology of VGKC-Ab limbic encephalitis and raises important theoretical questions about the aetiology of this patient's most unusual memory disorder.

  2. Limbic Encephalitis Associated with Sjögren's Syndrome: Report of Three Cases.

    PubMed

    Çoban, Arzu; Özyurt, Selen; Meriç, Kaan; Mısırlı, Handan; Tüzün, Erdem; Türkoğlu, Recai

    2016-01-01

    Sjögren's syndrome (SS) may be complicated by neurological manifestations. We herein report three women (age range 26-60 years old) who all presented with limbic encephalitis (LE) as the predominant clinical feature 3 months to 15 years after the diagnosis of SS. The 26-year-old patient also developed acute motor axonal neuropathy one week after autoimmune encephalitis. All three patients showed contrast-enhanced MRI lesions and inflammatory cerebrospinal fluid findings, while not displaying any anti-neuronal antibodies and showing a remarkable response to immunotherapy. SS is often overlooked when the symptoms are mild. Therefore, in LE cases with no identifiable cause, serological screening for rheumatologic disorders is recommended. PMID:27523010

  3. Brain limbic system-based intelligent controller application to lane change manoeuvre

    NASA Astrophysics Data System (ADS)

    Kim, Changwon; Langari, Reza

    2011-12-01

    This paper presents the application of a novel neuromorphic control strategy for lane change manoeuvres in the highway environment. The lateral dynamics of a vehicle with and without wind disturbance are derived and utilised to implement a control strategy based on the brain limbic system. To show the robustness of the proposed controller, several disturbance conditions including wind, uncertainty in the cornering stiffness, and changes in the vehicle mass are investigated. To demonstrate the performance of the suggested strategy, simulation results of the proposed method are compared with the human driver model-based control scheme, which has been discussed in the literature. The simulation results demonstrate the superiority of the proposed controller in energy efficiency, driving comfort, and robustness.

  4. Limbic encephalitis. A rare presentation of the small-cell lung carcinoma.

    PubMed

    den Hollander, A M; van Hulst, A M; Meerwaldt, J D; Haasjes, J G

    1989-11-01

    Two patients with an acute organic brain syndrome and accompanying neurological symptoms are described. Extensive work up showed that both patients suffered from small-cell lung cancer. Cerebral metastases were absent. Following chemotherapy and radiotherapy to the primary tumor one of the two patients showed a complete remission of psychiatric symptoms for one year. A paraneoplastic origin of this syndrome, in the literature known as limbic encephalitis, is postulated. The exact cause of this syndrome is yet unknown. Recent research reveals data indicating an immunological pathogenesis. The major clinical importance of this (neuro)-psychiatric syndrome is that its appearance may serve as a warning sign for an occult malignancy; furthermore, effective treatment of the primary malignancy can reverse the encephalitis. Thus antitumor therapy can result in a prolonged survival and considerably improved quality of life. PMID:2553530

  5. Interaction of some limbic structures which exert inhibitory effect on corticosterone secretion.

    PubMed

    Suárez, M; Perassi, N I

    1990-12-01

    The interaction between limbic structures which exert inhibitory influence on corticosterone secretion was investigated in the rat. The following experiments were performed: 1) electrical stimulation at mammillary medial nucleus (MMN) in rats with lesioned anterodrosal thalami nucleus (ADTN) or intermediate tegmental area; 2) electrical stimulation at ADTN in rats with lesioned retrosplenial cortex (RC). Bilateral stimulation at MMN in ADTN or RC-lesioned rats produces an increase in plasma corticosterone concentration. In animals with lesioned RC, values of plasma corticosterone after stimulation at ADTN were higher than before stimulation. Taking into consideration that electrical stimulation of MMN or ADTN in intact rats produces a decrease in plasma corticosterone concentration, these studies demonstrate that MMN and ADTN exert inhibitory influence on corticoadrenal activity only when their projection areas remain intact.

  6. Immunotherapy-responsive limbic encephalitis with antibodies to glutamic acid decarboxylase.

    PubMed

    Markakis, Ioannis; Alexopoulos, Harry; Poulopoulou, Cornelia; Akrivou, Sofia; Papathanasiou, Athanasios; Katsiva, Vassiliki; Lyrakos, Georgios; Gekas, Georgios; Dalakas, Marinos C

    2014-08-15

    Glutamic acid decarboxylase (GAD) has been recently identified as a target of humoral autoimmunity in a small subgroup of patients with non-paraneoplastic limbic encephalitis (NPLE). We present a patient with NPLE and positive anti-GAD antibodies who showed significant improvement after long-term immunotherapy. A 48-year old female was admitted with a two-year history of anterograde amnesia and seizures. Brain MRI revealed bilateral lesions of medial temporal lobes. Screening for anti-neuronal antibodies showed high anti-GAD titers in both serum and cerebrospinal fluid (CSF) with strong evidence of intrathecal production. The patient received treatment with prednisolone and long-term plasma exchange. During a 12-month follow-up, she exhibited complete seizure remission and an improvement in memory and visuo-spatial skills. Anti-GAD antibodies may serve as a useful marker to identify a subset of NPLE patients that respond to immunoregulatory treatment.

  7. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats

    PubMed Central

    Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-01-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning. PMID:27051340

  8. Beta-catenin-mediated cell-adhesion is vital for embryonic forebrain development.

    PubMed

    Junghans, Dirk; Hack, Iris; Frotscher, Michael; Taylor, Verdon; Kemler, Rolf

    2005-06-01

    Forming a complex structure such as the mammalian brain requires a complex interplay between cells and different signalling cascades during embryonic development. beta-catenin plays pivotal roles in these processes by mediating cadherin-based cell adhesion and Wnt signalling. We show for the first time that beta-catenin functions predominantly as a mediator of cell adhesion during early development of the mammalian telencephalon. Immunohistochemical analysis demonstrates that beta-catenin is localized, together with N-cadherin, to adhesion junctions at the apical lining of the neuroepithelium. The ablation of beta-catenin specifically from the forebrain leads to a disruption of apical adherens junctions and a breakdown of neuroepithelial structures. We show that beta-catenin-deficient neuroepithelial cells delaminate and undergo apoptosis. Newborn beta-catenin mutants lack the entire forebrain and anterior facial structures. Our data also indicate a lack of TCF/LEF-beta-catenin-dependent transcriptional activity in the telencephalon of Wnt reporter embryos. Together with the absence of nuclear beta-catenin, this finding suggests that canonical Wnt signalling is not active during early telencephalic development. In summary, we demonstrate that beta-catenin mediates cell-cell adhesion in the early telencephalon and is vital for maintaining the structural integrity of the neuroepithelium.

  9. Forebrain glutamatergic neurons mediate leptin action on depression-like behaviors and synaptic depression.

    PubMed

    Guo, Ming; Lu, Yuan; Garza, Jacob C; Li, Yuqing; Chua, Streamson C; Zhang, Wei; Lu, Bai; Lu, Xin-Yun

    2012-01-01

    The glutamatergic system has been implicated in the pathophysiology of depression and the mechanism of action of antidepressants. Leptin, an adipocyte-derived hormone, has antidepressant-like properties. However, the functional role of leptin receptor (Lepr) signaling in glutamatergic neurons remains to be elucidated. In this study, we generated conditional knockout mice in which the long form of Lepr was ablated selectively in glutamatergic neurons located in the forebrain structures, including the hippocampus and prefrontal cortex (Lepr cKO). Lepr cKO mice exhibit normal growth and body weight. Behavioral characterization of Lepr cKO mice reveals depression-like behavioral deficits, including anhedonia, behavioral despair, enhanced learned helplessness and social withdrawal, with no evident signs of anxiety. In addition, loss of Lepr in forebrain glutamatergic neurons facilitates NMDA-induced hippocampal long-term synaptic depression (LTD), whereas conventional LTD or long-term potentiation (LTP) was not affected. The facilitated LTD induction requires activation of the GluN2B subunit as it was completely blocked by a selective GluN2B antagonist. Moreover, Lepr cKO mice are highly sensitive to the antidepressant-like behavioral effects of the GluN2B antagonist but resistant to leptin. These results support important roles for Lepr signaling in glutamatergic neurons in regulating depression-related behaviors and modulating excitatory synaptic strength, suggesting a possible association between synaptic depression and behavioral manifestations of depression.

  10. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats.

    PubMed

    Dejanovic, Bratislav; Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-03-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning. PMID:27051340

  11. The Impact of Hippocampal Lesions on Trace Eyeblink Conditioning and Forebrain-Cerebellar Interactions

    PubMed Central

    Weiss, Craig; Disterhoft, John F.

    2015-01-01

    Twenty-five years ago Behavioral Neuroscience published a pivotal paper by Moyer, Deyo and Disterhoft (1990) that described the impaired acquisition of trace eyeblink conditioning in rabbits with complete removal of the hippocampus. As part of the Behavioral Neuroscience celebration commemorating the 30th anniversary of the Journal, we reflect upon the impact of that study on understanding the role of the hippocampus, forebrain, and forebrain-cerebellar interactions that mediate acquisition and retention of trace conditioned responses, and of declarative memory more globally. We discuss the expansion of the conditioning paradigm to species other than the rabbit, the heterogeneity of responses among hippocampal neurons during trace conditioning, the responsivity of hippocampal neurons following consolidation of conditioning, the role of awareness in conditioning, how blink conditioning can be used as a translational tool by assaying potential therapeutics for cognitive enhancement, how trace and delay classical conditioning may be used to investigate neurological disorders including Alzheimer's Disease and schizophrenia, and how the two paradigms may be used to understand the relationship between declarative and nondeclarative memory systems. PMID:26214216

  12. Generation and behavioral characterization of beta-catenin forebrain-specific conditional knock-out mice.

    PubMed

    Gould, Todd D; O'Donnell, Kelley C; Picchini, Alyssa M; Dow, Eliot R; Chen, Guang; Manji, Husseini K

    2008-05-16

    The canonical Wnt pathway and beta-catenin have been implicated in the pathophysiology of mood disorders. We generated forebrain-specific CRE-mediated conditional beta-catenin knock-out mice to begin exploring the behavioral implications of decreased Wnt pathway signaling in the central nervous system. In situ hybridization revealed a progressive knock-out of beta-catenin that began between 2 and 4 weeks of age, and by 12 weeks resulted in considerably decreased beta-catenin expression in regions of the forebrain, including the frontal cortex, hippocampus, and striatum. A significant decrease in protein levels of beta-catenin in these brain regions was observed by Western blot. Behavioral characterization of these mice in several tests (including the forced swim test, tail suspension test (TST), learned helplessness, response and sensitization to stimulants, and light/dark box among other tests) revealed relatively circumscribed alterations. In the TST, knock-out mice spent significantly less time struggling (a depression-like phenotype). However, knock-out mice did not differ from their wild-type littermates in the other behavioral tests of mood-related or anxiety-related behaviors. These results suggest that a 60-70% beta-catenin reduction in circumscribed brain regions is only capable of inducing subtle behavioral changes. Alternatively, regulating beta-catenin may modulate drug effects rather than being a model of mood disorder pathophysiology per se.

  13. [REM sleep modulation by non-GABAergic neurons of the hypothalamus and basal forebrain].

    PubMed

    Reinoso Suárez, Fernando

    2010-01-01

    The ventral part of the oral pontine reticular nucleus (vRPO) is a demonstrated site of brainstem REM-sleep generation and maintenance. The vRPO has reciprocal connections with structures that control other states of the sleep-wakefulness cycle, many situated in the basal forebrain and the diencephalon. The aim of the present revision is to map, using the results described in previous publications of our group, the local origin of the basal forebrain and hypothalamus non-GABAergic projections to the vRPO, and specially the contribution of the hypothalamic neurons positive to hypocretin/orexin (H/O) peptides. I summarize non-GABAergic projections to the vRPO from the: ipsilateral central amygdaline nucleus and the stria terminalis bed nuclei, bilateral projections, but most abundant in the ipsilateral side, from the median preoptic nucleus, medial and lateral preoptic areas, abundant from the zona incerta and dorsal, lateral, posterior and perifornical hypothalamic areas. Very abundant bilateral projections of H/O neurons to the vRPO are described, expressive of the important modulation exerted by these neurons on the vRPO nucleus. I discuss the functional significance of the above results and the corresponding mechanisms, supported by physiological and ultrastructural results of our group. Based on the connections and action mechanisms of H/O neurons on the vRPO, which produce the decreased activity of neurons in this nucleus and, therefore, inhibition of REM sleep, I reflect briefly on narcolepsy pathophysiology.

  14. Age and sex-dependent decreases in ChAT in basal forebrain nuclei.

    PubMed

    Luine, V N; Renner, K J; Heady, S; Jones, K J

    1986-01-01

    Microdissection techniques were utilized to measure the activity of choline acetyltransferase (ChAT) (enzyme responsible for synthesis of acetylcholine) in individual basal forebrain nuclei of aged (24 month) and young (4 month) male and female rats. Small but consistent decreases in the activity of ChAT in aged rats were found, and the location of the changes was dependent on the sex of the rat. Aged female rats showed approximately 30% lower ChAT and 40% lower acetylcholinesterase (AChE) activity in the ventral globus pallidus (vGP). Aged males did not show decreased ChAT in the vGP but activity in the medial aspect of the horizontal diagonal band nucleus was 50% lower than in the young males. ChAT activity in four other closely aligned basal forebrain nuclei was not different between the young and aged rats. Analysis of cell number, density and area in the vGP by AChE histochemistry showed no significant differences between aged and young females. In addition, age and sex-dependent changes were measured in pituitary glucose-6-phosphate dehydrogenase activity. The relationship of the changes to age-dependent decrements in memory, the possible influence of gonadal hormones on aging, and the mechanisms responsible for age-related declines in ChAT activity are discussed.

  15. Representation of binaural spatial cues in field L of the barn owl forebrain.

    PubMed

    Cohen, Y E; Knudsen, E I

    1998-02-01

    This study examined the representation of spatial information in the barn owl Field L, the first telencephalic processing stage of the classical auditory pathway. Field L units were recorded extracellularly, and their responses to dichotically presented interaural time differences (ITD) and interaural level differences (ILD) were tested. We observed a variety of tuning profiles in Field L. Some sites were not sensitive to ITD or ILD. Other sites, especially those in the high-frequency region, were highly selective for values of ITD and ILD. These sites had multipeaked (commonly called "phase ambiguous") ITD tuning profiles and were tuned for a single value of ILD. The tuning properties of these sites are similar to those seen in the lateral shell of the central nucleus of the inferior colliculus. Although the tuning properties of Field L sites were similar to those observed in the inferior colliculus, the functional organization of this spatial information was fundamentally different. Whereas in the inferior colliculus spatial information is organized into global topographics maps, in Field L spatial information is organized into local clusters, with sites having similar binaural tuning properties grouped together. The representation of binaural cues in Field L suggests that it is involved in auditory space processing but at a lower level of information processing than the auditory archistriatum, a forebrain area that is specialized for processing spatial information, and that the levels of information processing in the forebrain space processing pathway are remarkably similar to those in the well-known midbrain space processing pathway. PMID:9463449

  16. Loss of Lrp2 in zebrafish disrupts pronephric tubular clearance but not forebrain development.

    PubMed

    Kur, Esther; Christa, Anna; Veth, Kerry N; Gajera, Chandresh R; Andrade-Navarro, Miguel A; Zhang, Jingjing; Willer, Jason R; Gregg, Ronald G; Abdelilah-Seyfried, Salim; Bachmann, Sebastian; Link, Brian A; Hammes, Annette; Willnow, Thomas E

    2011-06-01

    Low-density lipoprotein receptor-related protein 2 (LRP2) is a multifunctional cell surface receptor conserved from nematodes to humans. In mammals, it acts as regulator of sonic hedgehog and bone morphogenetic protein pathways in patterning of the embryonic forebrain and as a clearance receptor in the adult kidney. Little is known about activities of this LRP in other phyla. Here, we extend the functional elucidation of LRP2 to zebrafish as a model organism of receptor (dys)function. We demonstrate that expression of Lrp2 in embryonic and larval fish recapitulates the patterns seen in mammalian brain and kidney. Furthermore, we studied the consequence of receptor deficiencies in lrp2 and in lrp2b, a homologue unique to fish, using ENU mutagenesis or morpholino knockdown. While receptor-deficient zebrafish suffer from overt renal resorption deficiency, their brain development proceeds normally, suggesting evolutionary conservation of receptor functions in pronephric duct clearance but not in patterning of the teleost forebrain.

  17. Shp2 in forebrain neurons regulates synaptic plasticity, locomotion, and memory formation in mice.

    PubMed

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori; Matozaki, Takashi; Ohnishi, Hiroshi

    2015-05-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K(+)-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation.

  18. TGFbeta2 mediates rapid inhibition of calcium influx in identified cholinergic basal forebrain neurons.

    PubMed

    Williams, Sylvain; Souchelnytskyi, Serhiy; Danik, Marc

    2002-02-01

    Transforming growth factors betas (TGFbetas) are known to have important roles in neuronal survival and can be upregulated in disease. However, unlike many other trophic factors, nothing is known about the rapid neurotransmitter-like actions of TGFbeta in the CNS. We explored this by examining the effects of TGFbeta on calcium influx of large enzymatically dissociated basal forebrain neurons. We show that brief application of TGFbeta2, but not TGFbeta1, to fura-2AM-loaded neurons reversibly and acutely (within seconds) inhibited K(+)-evoked calcium influx. Moreover, using single-cell RT-PCR, we confirmed that the large TGFbeta2-responsive neurons presented a cholinergic phenotype. Investigation of the signaling mechanism underlying TGFbeta2 actions using whole-cell recordings of calcium currents revealed that TGFbeta2-mediated responses were insensitive to the nonhydrolyzable GTP analogue GTPgammaS. However, TGFbeta2-mediated calcium current reductions were prevented by intracellular perfusion of a Smad2/3 peptide antagonist. Together, these results suggest that TGFbeta2 can acutely regulate the excitability of basal forebrain cholinergic neurons through an atypical signaling mechanism. PMID:11812008

  19. Effect of tramadol on behavioral alterations and lipid peroxidation after transient forebrain ischemia in rats.

    PubMed

    Nagakannan, Pandian; Shivasharan, Basavaraj D; Thippeswamy, Boreddy S; Veerapur, Veeresh P

    2012-11-01

    N-methyl-D-aspartate (NMDA) antagonists and γ-aminobutyric acid (GABA) agonists are proven protective in various animal models of ischemic brain damage. Tramadol, a centrally acting opioid analgesic reportedly possesses NMDA antagonistic and GABA agonistic properties, with additional ion channel blocking activity. The aim of the present study was to evaluate the possible neuroprotective effect of tramadol hydrochloride in a rat model of transient forebrain ischemia. Male Wistar rats were pretreated with tramadol hydrochloride at doses of 10 and 20 mg/kg b.w. intraperitoneally for 4 days and were subjected to 30 min occlusion of bilateral common carotid arteries followed by reperfusion for 24 h. Impairment in sensorimotor functions was evaluated by beam walking task, spontaneous locomotor activity and hanging wire test. Animals were sacrificed and the brain homogenates were used for estimating the levels of lipid peroxidation, a marker for extent of oxidative stress. Ischemic rats exhibited a significant decrease in locomotion, grip strength and increase in beam walking latency. Tramadol attenuated the post ischemic motor impairment evidenced by improvement in the performance in sensorimotor tests. The extent of lipid peroxidation was significantly (p < 0.001) reduced by tramadol pretreatment which was higher in ischemic control. This study demonstrates the neuroprotective effect of tramadol against transient forebrain ischemia in rats. PMID:22871232

  20. Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes.

    PubMed

    Rodríguez, Fernando; López, J Carlos; Vargas, J Pedro; Gómez, Yolanda; Broglio, Cristina; Salas, Cosme

    2002-04-01

    The hippocampus of mammals and birds is critical for spatial memory. Neuroanatomical evidence indicates that the medial cortex (MC) of reptiles and the lateral pallium (LP) of ray-finned fishes could be homologous to the hippocampus of mammals and birds. In this work, we studied the effects of lesions to the MC of turtles and to the LP of goldfish in spatial memory. Lesioned animals were trained in place, and cue maze tasks and crucial probe and transfer tests were performed. In experiment 1, MC-lesioned turtles in the place task failed to locate the goal during trials in which new start positions were used, whereas sham animals navigated directly to the goal independently of start location. In contrast, no deficit was observed in cue learning. In experiment 2, LP lesion produced a dramatic impairment in goldfish trained in the place task, whereas medial and dorsal pallium lesions did not decrease accuracy. In addition, none of these pallial lesions produced deficits in cue learning. These results indicate that lesions to the MC of turtles and to the LP of goldfish, like hippocampal lesions in mammals and birds, selectively impair map-like memory representations of the environmental space. Thus, the forebrain structures of reptiles and teleost fish neuroanatomically equivalent to the mammalian and avian hippocampus also share a central role in spatial cognition. Present results suggest that the presence of a hippocampus-dependent spatial memory system is a primitive feature of the vertebrate forebrain that has been conserved through evolution.

  1. Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

    PubMed Central

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori

    2015-01-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. PMID:25713104

  2. Basal forebrain neurons suppress amygdala kindling via cortical but not hippocampal cholinergic projections in rats.

    PubMed

    Ferencz, I; Leanza, G; Nanobashvili, A; Kokaia, M; Lindvall, O

    2000-06-01

    Intraventricular administration of the immunotoxin 192 IgG-saporin in rats has been shown to cause a selective loss of cholinergic afferents to the hippocampus and cortical areas, and to facilitate seizure development in hippocampal kindling. Here we demonstrate that this lesion also accelerates seizure progression when kindling is induced by electrical stimulations in the amygdala. However, whereas intraventricular 192 IgG-saporin facilitated the development of the initial stages of hippocampal kindling, the same lesion promoted the late stages of amygdala kindling. To explore the role of various parts of the basal forebrain cholinergic system in amygdala kindling, selective lesions of the cholinergic projections to either hippocampus or cortex were produced by intraparenchymal injections of 192 IgG-saporin into medial septum/vertical limb of the diagonal band or nucleus basalis, respectively. Cholinergic denervation of the cortical regions caused acceleration of amygdala kindling closely resembling that observed after the more widespread lesion induced by intraventricular 192 IgG-saporin. In contrast, removal of the cholinergic input to the hippocampus had no effect on the development of amygdala kindling. These data indicate that basal forebrain cholinergic neurons suppress kindling elicited from amygdala, and that this dampening effect is mediated via cortical but not hippocampal projections.

  3. Effect of low doses of methamphetamine on rat limbic-related neurotensin systems.

    PubMed

    Alburges, Mario E; Hoonakker, Amanda J; Cordova, Nathaniel M; Robson, Christina M; McFadden, Lisa M; Martin, Amber L; Hanson, Glen R

    2015-08-01

    Administration of methamphetamine (METH) alters limbic-related (LR) neurotensin (NT) systems. Thus, through a D1-receptor mechanism, noncontingent high doses (5-15 mg kg(-1)), and likely self-administration, of METH appears to reduce NT release causing its accumulation and an elevation of NT-like immunoreactivity (NTLI) in limbic-related NT pathways. For comparison, we tested the effect of low doses of METH, that are more like those used in therapy, on NTLI in the core and shell of the nucleus accumbens (NAc and NAs), prefrontal cortex (PFC), ventral tegmental area (VTA), the lateral habenula (Hb) and basolateral amygdala (Amyg). METH at the dose of 0.25 mg kg(-1) in particular, but not 1.00 mg kg(-1), decreased NTLI concentration in all of the LR structures studied, except for the prefrontal cortex; however, these effects were rapid and brief being observed at 5 h but not at 24 h after treatment. In all of the LR areas where NTLI levels were reduced after the low dose of METH, the effect was blocked by pretreatment with either a D1 or a D2 antagonist. Thus, opposite to high doses like those associated with abuse, the therapeutic-like low-dose METH treatment induced reduction in NT tissue levels likely reflected an increase in NT release and a short-term depletion of the levels of this neuropeptide in LR structures, manifesting features comparable to the response of basal ganglia NT systems to similar low doses of METH.

  4. Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory

    PubMed Central

    Moseley, Rachel L.; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250

  5. Lost for emotion words: what motor and limbic brain activity reveals about autism and semantic theory.

    PubMed

    Moseley, Rachel L; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view 'emotion actions' as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed.

  6. Anterior thalamic nuclei lesions in rats disrupt markers of neural plasticity in distal limbic brain regions

    PubMed Central

    Dumont, J.R.; Amin, E.; Poirier, G.L.; Albasser, M.M.; Aggleton, J.P.

    2012-01-01

    In two related experiments, neurotoxic lesions were placed in the anterior thalamic nuclei of adult rats. The rats were then trained on behavioral tasks, immediately followed by the immunohistochemical measurement of molecules linked to neural plasticity. These measurements were made in limbic sites including the retrosplenial cortex, the hippocampal formation, and parahippocampal areas. In Experiment 1, rats with unilateral anterior thalamic lesions explored either novel or familiar objects prior to analysis of the immediate-early gene zif268. The lesions reduced zif268 activity in the granular retrosplenial cortex and postsubiculum. Exploring novel objects resulted in local changes of hippocampal zif268, but this change was not moderated by anterior thalamic lesions. In Experiment 2, rats that had received either bilateral anterior thalamic lesions or control surgeries were exposed to novel room cues while running in the arms of a radial maze. In addition to zif268, measurements of c-AMP response element binding protein (CREB), phosphorylated CREB (pCREB), and growth associated protein43 (GAP-43) were made. As before, anterior thalamic lesions reduced zif268 in retrosplenial cortex and postsubiculum, but there were also reductions of pCREB in granular retrosplenial cortex. Again, the hippocampus did not show lesion-induced changes in zif268, but there were differential effects on CREB and pCREB consistent with reduced levels of hippocampal CREB phosphorylation following anterior thalamic damage. No changes in GAP-43 were detected. The results not only point to changes in several limbic sites (retrosplenial cortex and hippocampus) following anterior thalamic damage, but also indicate that these changes include decreased levels of pCREB. As pCREB is required for neuronal plasticity, partly because of its regulation of immediate early-gene expression, the present findings reinforce the concept of an ‘extended hippocampal system’ in which hippocampal function is

  7. Reduced limbic metabolism and fronto-cortical volume in rats vulnerable to alcohol addiction

    PubMed Central

    Gozzi, Alessandro; Agosta, Federica; Massi, Maurizio; Ciccocioppo, Roberto; Bifone, Angelo

    2014-01-01

    Alcohol abuse is associated with long-term reductions in fronto-cortical volume and limbic metabolism. However, an unanswered question in alcohol research is whether these alterations are the sole consequence of chronic alcohol use, or contain heritable contributions reflecting biological propensity toward ethanol addiction. Animal models of genetic predisposition to alcohol dependence can be used to investigate the role of inborn brain abnormalities in the aetiology of alcoholism. Here we used magnetic resonance imaging (MRI) in e Marchigian Sardinian (msP) alcohol-preferring rats to assess the presence of inherited structural or functional brain alterations. Alcohol-naïve msP (N=22) and control rats (N=26) were subjected to basal cerebral blood volume (bCBV) mapping followed by voxel-based morphometry (VBM) of gray matter and tract-based spatial statistics mapping of white matter fractional anisotropy. msP rats exhibited significantly reduced bCBV, an established marker of resting brain function, in focal cortico-limbic and thalamic areas, together with reduced gray matter volume in the thalamus, ventral tegmental area, insular and cingulate cortex. No statistically significant differences in fractional anisotropy were observed between groups. These findings highlight the presence of inborn gray matter and metabolic abnormalities in alcohol-naïve msP rats, the localization and sign of which are remarkably similar to those mapped in abstinent alcoholics and subjects at high risk for alcohol dependence. Collectively, these results point for a significant role of heritable neurofunctional brain alterations in biological propensity toward ethanol addiction, and support the translational use of advanced imaging methods to describe the circuital determinants of vulnerability to drug addiction. PMID:23261637

  8. Analysis of the anatomy of the Papez circuit and adjoining limbic system by fiber dissection techniques.

    PubMed

    Shah, Abhidha; Jhawar, Sukhdeep Singh; Goel, Atul

    2012-02-01

    Fiber dissection techniques were used to study the limbic system, in particular the Papez circuit. The course, length and anatomical relations of the structures that make up the Papez circuit were delineated. Ten previously frozen and formalin-fixed cadaveric human brains were used, and dissected according to the fiber dissection techniques of Klingler et al. (Schweiz Arch Neurol Psychiatry 1935;36:247-56). The primary dissection tools were thin and curved wooden and metallic spatulas with tips of varying sizes. We found that the Papez circuit (mean length: 350 mm) begins in the hippocampus and continues into the fornix to reach the mamillary body. From there, the mamillothalamic tract continues to the anterior nucleus of the thalamus, which in turn connects to the cingulum by means of anterior thalamic radiations (mean length: 30 mm). The cingulum courses around the corpus callosum to end in the entorhinal cortex, which then projects to the hippocampus, thus completing the circuit. The average length and breadth of the mamillothalamic tract was 18 mm and 1.73 mm respectively. The average length of the cingulum was 19.6 cm and that of the fornix was 71 mm. The entire circuit was anatomically dissected first in situ in the hemisphere and was then reconstructed outside after removing its various components using fine fiber dissection under a surgical microscope. We found that fiber dissection elegantly delineates the anatomical subtleties of the Papez circuit and provides a three-dimensional perspective of the limbic system. Intricate knowledge of the anatomy of this part of the brain aids the neurosurgeon while performing epilepsy surgery and while approaching intrinsic brain parenchymal, ventricular and paraventricular lesions.

  9. Role of enhanced noradrenergic transmission within the ventral bed nucleus of the stria terminalis in visceral pain-induced aversion in rats.

    PubMed

    Deyama, Satoshi; Katayama, Takahiro; Kondoh, Naoto; Nakagawa, Takayuki; Kaneko, Shuji; Yamaguchi, Taku; Yoshioka, Mitsuhiro; Minami, Masabumi

    2009-02-11

    Pain is an unpleasant sensory and emotional experience. We demonstrated the crucial role of the bed nucleus of the stria terminalis (BNST) in the negative affective component of somatic and visceral pain induced by intraplantar formalin and intraperitoneal acetic acid injections, respectively, in rats. Recently, we reported the involvement of enhanced noradrenergic transmission via beta-adrenoceptors within the ventral BNST (vBNST) in formalin-induced aversion. Here, we examined the role of intra-vBNST noradrenergic transmission in the negative affective component of visceral pain induced by intraperitoneal acetic acid injection. In vivo microdialysis showed that extracellular noradrenaline levels within the vBNST significantly increased after intraperitoneal acetic acid injection. Using a conditioned place aversion (CPA) test, we found that intra-vBNST injection of timolol, a beta-adrenoceptor antagonist, dose-dependently attenuated the acetic acid-induced CPA without reducing nociceptive behaviors. These results suggest that enhanced noradrenergic transmission via beta-adrenoceptors within the vBNST plays a pivotal role in the negative affective, but not sensory, component of visceral pain.

  10. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex

    PubMed Central

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee

    2016-01-01

    Purpose Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. Materials and Methods We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by 18F-2-fluoro-2-deoxyglucose positron emission tomography. Results During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Conclusion Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism. PMID:26632397

  11. Early visual experience shapes the representation of auditory space in the forebrain gaze fields of the barn owl.

    PubMed

    Miller, G L; Knudsen, E I

    1999-03-15

    Auditory spatial information is processed in parallel forebrain and midbrain pathways. Sensory experience early in life has been shown to exert a powerful influence on the representation of auditory space in the midbrain space-processing pathway. The goal of this study was to determine whether early experience also shapes the representation of auditory space in the forebrain. Owls were raised wearing prismatic spectacles that shifted the visual field in the horizontal plane. This manipulation altered the relationship between interaural time differences (ITDs), the principal cue used for azimuthal localization, and locations of auditory stimuli in the visual field. Extracellular recordings were used to characterize ITD tuning in the auditory archistriatum (AAr), a subdivision of the forebrain gaze fields, in normal and prism-reared owls. Prism rearing altered the representation of ITD in the AAr. In prism-reared owls, unit tuning for ITD was shifted in the adaptive direction, according to the direction of the optical displacement imposed by the spectacles. Changes in ITD tuning involved the acquisition of unit responses to adaptive ITD values and, to a lesser extent, the elimination of responses to nonadaptive (previously normal) ITD values. Shifts in ITD tuning in the AAr were similar to shifts in ITD tuning observed in the optic tectum of the same owls. This experience-based adjustment of binaural tuning in the AAr helps to maintain mutual registry between the forebrain and midbrain representations of auditory space and may help to ensure consistent behavioral responses to auditory stimuli. PMID:10066282

  12. Distribution of neurotensin/neuromedin N mRNA in rat forebrain: Unexpected abundance in hippocampus and subiculum

    SciTech Connect

    Alexander, M.J.; Miller, M.A.; Dorsa, D.M.; Bullock, B.P.; Helloni, R.H. Jr.; Dobner, P.R.; Leeman, S.E. )

    1989-07-01

    The authors have used in situ hybridization to determine the regional distribution of mRNA encoding the neurotensin/neuromedin N (NT/N) precursor in the forebrain of the adult male rat. Cells containing NT/N mRNA are widely distributed in the forebrain. These areas include the septum, bed nucleus of the stria terminalis, preoptic area, hypothalamus, amygdala, accumbens nucleus, caudate-putamen, and piriform and retrosplenial cortex. In general, the regional distribution of NT/N mRNA corresponds to the previously determined distribution of neurotensin-immunoreactive cell bodies; however, several notable exceptions were observed. The most striking difference occurs specifically in the CA1 region of the hippocampus, where intense labeling is associated with the pyramidal cell layer despite the reported absence of neurotensin-immunoreactive cells in this region. A second major discrepancy between NT/N mRNA abundance and neurotensin-immunoreactivity occurs in the intensely labeled subiculum, a region that contains only scattered neurotensin-immunoreactive cells in the adult. These results suggest that, in specific regions of the forebrain, NT/N precursor is processed to yield products other than neurotensin. In addition, these results provide an anatomical basis for studying the physiological regulation of NT/N mRNA levels in the forebrain.

  13. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant

    PubMed Central

    Izumo, Mariko; Pejchal, Martina; Schook, Andrew C; Lange, Ryan P; Walisser, Jacqueline A; Sato, Takashi R; Wang, Xiaozhong; Bradfield, Christopher A; Takahashi, Joseph S

    2014-01-01

    In order to assess the contribution of a central clock in the hypothalamic suprachiasmatic nucleus (SCN) to circadian behavior and the organization of peripheral clocks, we generated forebrain/SCN-specific Bmal1 knockout mice by using floxed Bmal1 and pan-neuronal Cre lines. The forebrain knockout mice showed >90% deletion of BMAL1 in the SCN and exhibited an immediate and complete loss of circadian behavior in constant conditions. Circadian rhythms in peripheral tissues persisted but became desynchronized and damped in constant darkness. The loss of synchrony was rescued by light/dark cycles and partially by restricted feeding (only in the liver and kidney but not in the other tissues) in a distinct manner. These results suggest that the forebrain/SCN is essential for internal temporal order of robust circadian programs in peripheral clocks, and that individual peripheral clocks are affected differently by light and feeding in the absence of a functional oscillator in the forebrain. DOI: http://dx.doi.org/10.7554/eLife.04617.001 PMID:25525750

  14. Inhibition of A5 Neurons Facilitates the Occurrence of REM Sleep-Like Episodes in Urethane-Anesthetized Rats: A New Role for Noradrenergic A5 Neurons?

    PubMed

    Fenik, Victor B; Marchenko, Vitaliy; Davies, Richard O; Kubin, Leszek

    2012-01-01

    When rapid eye movement (REM) sleep occurs, noradrenergic cells become silent, with the abolition of activity in locus coeruleus (LC) neurons seen as a key event permissive for the occurrence of REM sleep. However, it is not known whether silencing of other than LC noradrenergic neurons contributes to the generation of REM sleep. In urethane-anesthetized rats, stereotyped REM sleep-like episodes can be repeatedly elicited by injections of the cholinergic agonist, carbachol, into a discrete region of the dorsomedial pons. We used this preparation to test whether inhibition of ventrolateral pontine noradrenergic A5 neurons only, or together with LC neurons, also can elicit REM sleep-like effects. To silence noradrenergic cells, we sequentially injected the α(2)-adrenergic agonist clonidine (20-40 nl, 0.75 mM) into both A5 regions and then the LC. In two rats, successful bilateral clonidine injections into the A5 region elicited the characteristic REM sleep-like episodes (hippocampal theta rhythm, suppression of hypoglossal nerve activity, reduced respiratory rate). In five rats, bilateral clonidine injections into the A5 region and then into one LC triggered REM sleep-like episodes, and in two rats injections into both A5 and then both LC were needed to elicit the effect. In contrast, in three rats, uni- or bilateral clonidine injections only into the LC had no effect, and clonidine injections placed in another six rats outside of the A5 and/or LC regions were without effect. The REM sleep-like episodes elicited by clonidine had similar magnitude of suppression of hypoglossal nerve activity (by 75%), similar pattern of hippocampal changes, and similar durations (2.5-5.3 min) to the episodes triggered in the same preparation by carbachol injections into the dorsomedial pontine reticular formation. Thus, silencing of A5 cells may importantly enable the occurrence of REM sleep-like episodes, at least under anesthesia. This is a new role for noradrenergic A5

  15. Inhibition of A5 Neurons Facilitates the Occurrence of REM Sleep-Like Episodes in Urethane-Anesthetized Rats: A New Role for Noradrenergic A5 Neurons?

    PubMed Central

    Fenik, Victor B.; Marchenko, Vitaliy; Davies, Richard O.; Kubin, Leszek

    2012-01-01

    When rapid eye movement (REM) sleep occurs, noradrenergic cells become silent, with the abolition of activity in locus coeruleus (LC) neurons seen as a key event permissive for the occurrence of REM sleep. However, it is not known whether silencing of other than LC noradrenergic neurons contributes to the generation of REM sleep. In urethane-anesthetized rats, stereotyped REM sleep-like episodes can be repeatedly elicited by injections of the cholinergic agonist, carbachol, into a discrete region of the dorsomedial pons. We used this preparation to test whether inhibition of ventrolateral pontine noradrenergic A5 neurons only, or together with LC neurons, also can elicit REM sleep-like effects. To silence noradrenergic cells, we sequentially injected the α2-adrenergic agonist clonidine (20–40 nl, 0.75 mM) into both A5 regions and then the LC. In two rats, successful bilateral clonidine injections into the A5 region elicited the characteristic REM sleep-like episodes (hippocampal theta rhythm, suppression of hypoglossal nerve activity, reduced respiratory rate). In five rats, bilateral clonidine injections into the A5 region and then into one LC triggered REM sleep-like episodes, and in two rats injections into both A5 and then both LC were needed to elicit the effect. In contrast, in three rats, uni- or bilateral clonidine injections only into the LC had no effect, and clonidine injections placed in another six rats outside of the A5 and/or LC regions were without effect. The REM sleep-like episodes elicited by clonidine had similar magnitude of suppression of hypoglossal nerve activity (by 75%), similar pattern of hippocampal changes, and similar durations (2.5–5.3 min) to the episodes triggered in the same preparation by carbachol injections into the dorsomedial pontine reticular formation. Thus, silencing of A5 cells may importantly enable the occurrence of REM sleep-like episodes, at least under anesthesia. This is a new role for noradrenergic A5

  16. The antidepressant-like effect of bacopaside I: possible involvement of the oxidative stress system and the noradrenergic system.

    PubMed

    Liu, Xiaojun; Liu, Fang; Yue, Rongcai; Li, Yuanyuan; Zhang, Jigang; Wang, Shuping; Zhang, Shoude; Wang, Rui; Shan, Lei; Zhang, Weidong

    2013-09-01

    In the present study, the antidepressant-like effect of bacopaside I, a saponin compound present in the Bacopa monniera plant, was evaluated by behavioral and neurochemical methods. Bacopaside I (50, 15 and 5 mg/kg) was given to mice via oral gavage for 7 successive days. The treatment significantly decreased the immobility time in mouse models of despair tests, but it did not influence locomotor activity. Neurochemical assays suggested that treatment by bacopaside I (50, 15 and 5 mg/kg) improved brain antioxidant activity to varying degrees after the behavioral despair test. Bacopaside I (15 and 5 mg/kg) significantly reversed reserpine-induced depressive-like behaviors, including low temperature and ptosis. Conversely, bacopaside I did not affect either brain MAO-A or MAO-B activity after the behavioral despair test in mice. Additionally, 5-hydroxytryptophan (a precursor of 5-serotonin) was not involved in the antidepressant-like effect of bacopaside I. These findings indicated that the antidepressant-like effect of bacopaside I might be related to both antioxidant activation and noradrenergic activation, although the exact mechanism remains to be further elucidated.

  17. Enhancement of noradrenergic neural transmission: an effective therapy of myasthenia gravis: a report on 52 consecutive patients.

    PubMed

    Lechin, F; van der Dijs, B; Pardey-Maldonado, B; John, E; Jimenez, V; Orozco, B; Baez, S; Lechin, M E

    2000-01-01

    Neurochemical, neuroautonomic and neuropharmacological assessments carried out on all our myasthenia gravis (MG) patients showed that they presented a neural sympathetic deficit plus excessive adrenal-sympathetic activity. These abnormalities were registered during the basal (supine-resting) state, as well as after several stress tests (orthostasis, exercise, oral glucose and buspirone). In addition, MG patients showed increased levels of free-serotonin (f5HT) in the plasma, supposedly associated with the increased platelet aggregability which we found in all MG patients. As the above trio of neurochemical disorders (low noradrenergic-activity + high adrenergic-activity + increased f-5HT plasma levels) is known to favor Th-1 immunosuppression + Th-2 predominance, we outlined a neuropharmacological strategy for reverting the above neurochemical disorder. This treatment provoked sudden (acute), and late sustained improvements. Acute effects have been attributed to the increase of alpha-1 activity at the spinal motoneuron level. Late improvements always paralleled a significant normalization of immunological disorders. Complete normalization was registered only in non-thymectomized MG patients. PMID:11508327

  18. Reversal of noradrenergic depletion and lipid peroxidation in the pons after brain injury correlates with motor function recovery in rats.

    PubMed

    Bueno-Nava, Antonio; Montes, Sergio; DelaGarza-Montano, Paloma; Alfaro-Rodriguez, Alfonso; Ortiz, Ascencion; Gonzalez-Pina, Rigoberto

    2008-09-26

    Functional impairment after brain injury (BI) has been attributed to the inhibition of regions that are related to the injured site. Therefore, noradrenaline (NA) is thought to play a critical role in recovery from motor injury. However, the mechanism of this recovery process has not been completely elucidated. Moreover, the locus coeruleus (LC) projects from the pons through the rat sensorimotor cortex, and injury axotomizes LC fibers, depressing NA function. This was tested by measuring lipid peroxidation (LP) in the pons after sensorimotor cortex injury. Depression of function in the pons would be expected to alter areas receiving pontine efferents. Male Wistar rats were divided into three groups: control (n=16), injured (n=10) and recovering (n=16), and they were evaluated using a beam-walking assay between 2 and 20 days after cortical injury. We performed measures of NA and LP in both sides of the pons and cerebellum. We found a decrease of NA in the pons and the cerebellum, and a concomitant increase in the motor deficit and LP in the pons of injured animals. Recovering rats had NA and LP levels that were very similar to those observed in control rats. These observations suggest that the mechanism of remote inhibition after BI involves lipid peroxidation, and that the NA decrease found in the cerebellum of injured animals is mediated by a noradrenergic depression in the pons, or in areas receiving NA projections from the pons.

  19. Role of noradrenergic and GABA-ergic inputs in pedunculopontine tegmentum for regulation of rapid eye movement sleep in rats.

    PubMed

    Pal, Dinesh; Mallick, Birendra Nath

    2006-07-01

    Rapid eye movement (REM) sleep disturbance is associated with several psycho-behavioral disorders, hence, it is important to understand its neural mechanism of regulation. Although it was known that the noradrenergic (NA-ergic) neurons from locus coeruleus (LC) project to the pedunculopontine tegmentum (PPT), the role of noradrenaline (NA) alone and in association with GABA, an inhibitory neurotransmitter, in PPT for REM sleep regulation was not known and was investigated in this study in freely moving normally behaving rats. Rats were surgically prepared for electrophysiological sleep-wake recording and simultaneous bilateral microinjections into PPT. 200nl of prazosin (alpha1-antagonist) or clonidine (alpha2-agonist) or propranolol (beta-antagonist) or combination of picrotoxin (GABA-A antagonist) and clonidine or vehicle (control) was microinjected bilaterally into PPT using a remote-controlled pump and the effects on REM sleep compared. Prazosin, clonidine and propranolol increased the total time spent in REM sleep whereas co-injection of picrotoxin and clonidine did not affect REM sleep. The results suggest that NA in PPT tonically inhibits REM sleep, possibly by acting on the cholinergic REM-ON neurons, while GABA inhibits the release of NA for REM sleep regulation. A model of neural connections explaining such regulation has been presented.

  20. The antidepressant-like effect of bacopaside I: possible involvement of the oxidative stress system and the noradrenergic system.

    PubMed

    Liu, Xiaojun; Liu, Fang; Yue, Rongcai; Li, Yuanyuan; Zhang, Jigang; Wang, Shuping; Zhang, Shoude; Wang, Rui; Shan, Lei; Zhang, Weidong

    2013-09-01

    In the present study, the antidepressant-like effect of bacopaside I, a saponin compound present in the Bacopa monniera plant, was evaluated by behavioral and neurochemical methods. Bacopaside I (50, 15 and 5 mg/kg) was given to mice via oral gavage for 7 successive days. The treatment significantly decreased the immobility time in mouse models of despair tests, but it did not influence locomotor activity. Neurochemical assays suggested that treatment by bacopaside I (50, 15 and 5 mg/kg) improved brain antioxidant activity to varying degrees after the behavioral despair test. Bacopaside I (15 and 5 mg/kg) significantly reversed reserpine-induced depressive-like behaviors, including low temperature and ptosis. Conversely, bacopaside I did not affect either brain MAO-A or MAO-B activity after the behavioral despair test in mice. Additionally, 5-hydroxytryptophan (a precursor of 5-serotonin) was not involved in the antidepressant-like effect of bacopaside I. These findings indicated that the antidepressant-like effect of bacopaside I might be related to both antioxidant activation and noradrenergic activation, although the exact mechanism remains to be further elucidated. PMID:23872136

  1. Presynaptic beta-adrenoceptors in guinea pig papillary muscle: evidence for adrenaline-mediated positive feedback on noradrenergic transmission

    SciTech Connect

    Valenta, B.; Singer, E.A. )

    1991-02-01

    Guinea pig papillary muscles were preincubated in the presence of 5 x 10{sup {minus} 9} mol/L unlabeled noradrenaline or adrenaline then incubated with ({sup 3}H)-noradrenaline and superfused. Electrical field stimulation with 180 pulses delivered at 1 or 3 Hz was used to induce overflow of radioactivity. Comparison of the effects of preexposure of the tissue to adrenaline or noradrenaline revealed that adrenaline incubation caused an enhancement of stimulation-evoked overflow of ({sup 3}H)noradrenaline and a reduction of the effect of exogenously added isoprenaline. Furthermore, the selective beta 2-adrenoceptor antagonist ICI 118,551 (10{sup {minus} 7} mol/L), but not the selective beta 1-adrenoceptor antagonist ICI 89,406 (10{sup {minus} 7} mol/L), reduced electrically evoked overflow of ({sup 3}H)noradrenaline in tissue preincubated with adrenaline but not in tissue preincubated with noradrenaline. The overflow-reducing effect of ICI 118.551 occurred at stimulation with 3 Hz but not at stimulation with 1 Hz. The present results support the hypothesis that noradrenergic transmission in guinea pig papillary muscle is facilitated via beta 2-adrenoceptors, and that adrenaline may serve as transmitter in this positive feedback mechanism after its incorporation into sympathetic nerves.

  2. Hippocampal Sclerosis but Not Normal Aging or Alzheimer Disease Is Associated With TDP-43 Pathology in the Basal Forebrain of Aged Persons.

    PubMed

    Cykowski, Matthew D; Takei, Hidehiro; Van Eldik, Linda J; Schmitt, Frederick A; Jicha, Gregory A; Powell, Suzanne Z; Nelson, Peter T

    2016-05-01

    Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD). PMID:26971127

  3. Hippocampal Sclerosis but Not Normal Aging or Alzheimer Disease Is Associated With TDP-43 Pathology in the Basal Forebrain of Aged Persons.

    PubMed

    Cykowski, Matthew D; Takei, Hidehiro; Van Eldik, Linda J; Schmitt, Frederick A; Jicha, Gregory A; Powell, Suzanne Z; Nelson, Peter T

    2016-05-01

    Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD).

  4. Preischemic Administration of Sevoflurane Does not Exert Dose-dependent Effects on the Outcome of Severe Forebrain Ischemia in Rats.

    PubMed

    Miura, Yoshihide; Kanazawa, Kaoru; Nasu, Ikuko

    2015-07-01

    We previously showed that preischemic administration of high-dose isoflurane worsened the outcome from severe forebrain ischemia in rats. Conversely, high doses of sevoflurane have been reported to improve the outcome from forebrain ischemia when the insult is moderate. To clarify the dose-dependent effects of sevoflurane on severe forebrain ischemia, we performed an outcome study using an identical protocol to that in our previous study with isoflurane. Fasting male Sprague-Dawley rats underwent surgical preparation for forebrain ischemia under halothane anesthesia. Anesthesia was changed to fentanyl/nitrous oxide to eliminate the halothane, after which 30 minutes of 0.5, 1.0, 1.5, 2.0, or 2.5 minimum alveolar concentration sevoflurane was administered. Ten minutes of ischemia was induced by bilateral carotid occlusion plus systemic hypotension, in which cessation of electroencephalographic activity was confirmed. Sevoflurane was discontinued and anesthesia continued with fentanyl/nitrous oxide for an additional 100 minutes. Outcome evaluation at 5 days postischemia included seizure incidence, mortality rate, neuromotor score, and histologic injuries to the cerebral cortex and hippocampal CA1 and CA3. Different doses of sevoflurane did not statistically affect seizure incidence (10.0% to 18.2%), mortality rate (20.0% to 46.7%), cortical damage (mild to moderate degree), or hippocampal CA1 damage (93.7% to 96.7% neuronal necrosis) or CA3 damage (36.3% to 41.7%). Dose-dependent effects of sevoflurane were not observed for any of the outcome variables assessed in this rat model of severe forebrain ischemia. PMID:25390656

  5. Neuronal ensemble bursting in the basal forebrain encodes salience irrespective of valence.

    PubMed

    Lin, Shih-Chieh; Nicolelis, Miguel A L

    2008-07-10

    Both reward- and punishment-related stimuli are motivationally salient and attract the attention of animals. However, it remains unclear how motivational salience is processed in the brain. Here, we show that both reward- and punishment-predicting stimuli elicited robust bursting of many noncholinergic basal forebrain (BF) neurons in behaving rats. The same BF neurons also responded with similar bursting to primary reinforcement of both valences. Reinforcement responses were modulated by expectation, with surprising reinforcement eliciting stronger BF bursting. We further demonstrate that BF burst firing predicted successful detection of near-threshold stimuli. Together, our results point to the existence of a salience-encoding system independent of stimulus valence. We propose that the encoding of motivational salience by ensemble bursting of noncholinergic BF neurons may improve behavioral performance by affecting the activity of widespread cortical circuits and therefore represents a novel candidate mechanism for top-down attention.

  6. Neuronal ensemble bursting in the basal forebrain encodes salience irrespective of valence.

    PubMed

    Lin, Shih-Chieh; Nicolelis, Miguel A L

    2008-07-10

    Both reward- and punishment-related stimuli are motivationally salient and attract the attention of animals. However, it remains unclear how motivational salience is processed in the brain. Here, we show that both reward- and punishment-predicting stimuli elicited robust bursting of many noncholinergic basal forebrain (BF) neurons in behaving rats. The same BF neurons also responded with similar bursting to primary reinforcement of both valences. Reinforcement responses were modulated by expectation, with surprising reinforcement eliciting stronger BF bursting. We further demonstrate that BF burst firing predicted successful detection of near-threshold stimuli. Together, our results point to the existence of a salience-encoding system independent of stimulus valence. We propose that the encoding of motivational salience by ensemble bursting of noncholinergic BF neurons may improve behavioral performance by affecting the activity of widespread cortical circuits and therefore represents a novel candidate mechanism for top-down attention. PMID:18614035

  7. Calcium Imaging of Basal Forebrain Activity during Innate and Learned Behaviors

    PubMed Central

    Harrison, Thomas C.; Pinto, Lucas; Brock, Julien R.; Dan, Yang

    2016-01-01

    The basal forebrain (BF) plays crucial roles in arousal, attention, and memory, and its impairment is associated with a variety of cognitive deficits. The BF consists of cholinergic, GABAergic, and glutamatergic neurons. Electrical or optogenetic stimulation of BF cholinergic neurons enhances cortical processing and behavioral performance, but the natural activity of these cells during behavior is only beginning to be characterized. Even less is known about GABAergic and glutamatergic neurons. Here, we performed microendoscopic calcium imaging of BF neurons as mice engaged in spontaneous behaviors in their home cages (innate) or performed a go/no-go auditory discrimination task (learned). Cholinergic neurons were consistently excited during movement, including running and licking, but GABAergic and glutamatergic neurons exhibited diverse responses. All cell types were activated by overt punishment, either inside or outside of the discrimination task. These findings reveal functional similarities and distinctions between BF cell types during both spontaneous and task-related behaviors. PMID:27242444

  8. Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology

    PubMed Central

    Unal, Cagri T.; Golowasch, Jorge P.; Zaborszky, Laszlo

    2012-01-01

    We performed whole-cell recordings from basal forebrain (BF) cholinergic neurons in transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the choline acetyltransferase promoter. BF cholinergic neurons can be differentiated into two electrophysiologically identifiable subtypes: early and late firing neurons. Early firing neurons (∼70%) are more excitable, show prominent spike frequency adaptation and are more susceptible to depolarization blockade, a phenomenon characterized by complete silencing of the neuron following initial action potentials. Late firing neurons (∼30%), albeit being less excitable, could maintain a tonic discharge at low frequencies. In voltage clamp analysis, we have shown that early firing neurons have a higher density of low voltage activated (LVA) calcium currents. These two cholinergic cell populations might be involved in distinct functions: the early firing group being more suitable for phasic changes in cortical acetylcholine release associated with attention while the late firing neurons could support general arousal by maintaining tonic acetylcholine levels. PMID:22586380

  9. GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability

    PubMed Central

    He, Minchao; Singh, Prabhakar; Cheng, Shaowu; Zhang, Qiang; Peng, Wei; Ding, XueFeng; Li, Longxuan; Liu, Jun; Premont, Richard T.; Morgan, Dave; Burns, Jeffery M.; Swerdlow, Russell H.; Suo, William Z.

    2016-01-01

    Why certain diseases primarily affect one specific neuronal subtype rather than another is a puzzle whose solution underlies the development of specific therapies. Selective basal forebrain cholinergic (BFC) neurodegeneration participates in cognitive impairment in Alzheimer’s disease (AD), yet the underlying mechanism remains elusive. Here, we report the first recapitulation of the selective BFC neuronal loss that is typical of human AD in a mouse model termed GAP. We created GAP mice by crossing Tg2576 mice that over-express the Swedish mutant human β-amyloid precursor protein gene with G protein-coupled receptor kinase-5 (GRK5) knockout mice. This doubly defective mouse displayed significant BFC neuronal loss at 18 months of age, which was not observed in either of the singly defective parent strains or in the wild type. Along with other supporting evidence, we propose that GRK5 deficiency selectively renders BFC neurons more vulnerable to degeneration. PMID:27193825

  10. GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability.

    PubMed

    He, Minchao; Singh, Prabhakar; Cheng, Shaowu; Zhang, Qiang; Peng, Wei; Ding, XueFeng; Li, Longxuan; Liu, Jun; Premont, Richard T; Morgan, Dave; Burns, Jeffery M; Swerdlow, Russell H; Suo, William Z

    2016-05-19

    Why certain diseases primarily affect one specific neuronal subtype rather than another is a puzzle whose solution underlies the development of specific therapies. Selective basal forebrain cholinergic (BFC) neurodegeneration participates in cognitive impairment in Alzheimer's disease (AD), yet the underlying mechanism remains elusive. Here, we report the first recapitulation of the selective BFC neuronal loss that is typical of human AD in a mouse model termed GAP. We created GAP mice by crossing Tg2576 mice that over-express the Swedish mutant human β-amyloid precursor protein gene with G protein-coupled receptor kinase-5 (GRK5) knockout mice. This doubly defective mouse displayed significant BFC neuronal loss at 18 months of age, which was not observed in either of the singly defective parent strains or in the wild type. Along with other supporting evidence, we propose that GRK5 deficiency selectively renders BFC neurons more vulnerable to degeneration.

  11. Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain.

    PubMed Central

    Hunter, K E; Hatten, M E

    1995-01-01

    During development of mammalian cerebral cortex, two classes of glial cells are thought to underlie the establishment of cell patterning. In the embryonic period, migration of young neurons is supported by a system of radial glial cells spanning the thickness of the cortical wall. In the neonatal period, neuronal function is assisted by the physiological support of a second class of astroglial cell, the astrocyte. Here, we show that expression of embryonic radial glial identity requires extrinsic soluble signals present in embryonic forebrain. Moreover, astrocytes reexpress features of radial glia in vitro in the presence of the embryonic cortical signals and in vivo after transplantation into embryonic neocortex. These findings suggest that the transformation of radial glia cells into astrocytes is regulated by availability of inducing signals rather than by changes in cell potential. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:7892225

  12. Calcium Imaging of Basal Forebrain Activity during Innate and Learned Behaviors.

    PubMed

    Harrison, Thomas C; Pinto, Lucas; Brock, Julien R; Dan, Yang

    2016-01-01

    The basal forebrain (BF) plays crucial roles in arousal, attention, and memory, and its impairment is associated with a variety of cognitive deficits. The BF consists of cholinergic, GABAergic, and glutamatergic neurons. Electrical or optogenetic stimulation of BF cholinergic neurons enhances cortical processing and behavioral performance, but the natural activity of these cells during behavior is only beginning to be characterized. Even less is known about GABAergic and glutamatergic neurons. Here, we performed microendoscopic calcium imaging of BF neurons as mice engaged in spontaneous behaviors in their home cages (innate) or performed a go/no-go auditory discrimination task (learned). Cholinergic neurons were consistently excited during movement, including running and licking, but GABAergic and glutamatergic neurons exhibited diverse responses. All cell types were activated by overt punishment, either inside or outside of the discrimination task. These findings reveal functional similarities and distinctions between BF cell types during both spontaneous and task-related behaviors. PMID:27242444

  13. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    PubMed Central

    Hu, Rongfeng; Jin, Sen; He, Xiaobin; Xu, Fuqiang; Hu, Ji

    2016-01-01

    The basal forebrain cholinergic system (BFCS) robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum, central amygdala, paraventricular nucleus of hypothalamus, dorsal raphe, and parabrachial nucleus. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal–hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function. PMID:27777554

  14. Distribution of SNAP-25 in transient neuronal circuitries of the developing human forebrain.

    PubMed

    Ulfig, N; Setzer, M; Neudörfer, F; Bohl, J

    2000-04-27

    The distribution of SNAP-25 is demonstrated within prominent transient structures in the developing human forebrain. During early fetal development SNAP-25 is mainly expressed in axons of the intermediate zone and the internal capsule. The fibers appear directed towards the mantle zone of the ganglionic eminence and the perireticular nucleus located within the internal capsule. Cells of these two areas are shown to interact with SNAP-25 immunoreactive structures with the aid of double-labellings. The SNAP-25 immunoreactive fibers may represent corticofugal axons which contact the perireticular nucleus and ganglionic eminence which are regarded as intermediate targets providing a scaffold for growing axons. Anti-SNAP-25, thus, is an appropriate marker of intermediate targets which are involved in brain injuries of preterm infants. PMID:10817603

  15. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    PubMed

    Swartzwelder, H Scott; Acheson, Shawn K; Miller, Kelsey M; Sexton, Hannah G; Liu, Wen; Crews, Fulton T; Risher, Mary-Louise

    2015-01-01

    The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30) received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR) test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE. PMID:26529506

  16. [Qualitative features of confabulation in a case with basal forebrain amnesia].

    PubMed

    Abe, M; Ohtake, H; Suzuki, K; Suzuki, M; Fujii, T; Yamadori, A

    2001-12-01

    We investigated qualitative features of confabulation in a case with basal forebrain amnesia. A 66-year-old, right-handed woman with a 8th-grade education, was admitted to the Rehabilitation Department of Tohoku University Hospital, Japan, for evaluation and therapy of amnesia. Her previous medical history included hypertension. Nine months before admission, she went to a hospital because of headache and blurred vision. She was diagnosed as suffering from a suprasellar arachnoid cyst and unruptured aneurysm at the anterior communicating artery. Five months later, resection of the cyst and clipping of the aneurysm was performed. After the operation, she became disoriented and amnesic with marked confabulation. On admission to our hospital 3 months later, she was alert and cooperative. Detailed neuropsychological assessment was performed during the next two months. She remained clinically stable throughout her hospitalization. Neurological examination showed no abnormalities. Brain magnetic resonance images revealed lesions in the bilateral orbito-frontal cortices and basal forebrain. Measurement of blood flow with 123I-IMP single photon emission computed tomography showed hypoperfusion in the bilateral frontotemporal regions. We performed systematic investigations to clarify the qualitative features of her confabulations. Her confabulations included many facts she had experienced before, but they were out of context. Each fact was recalled in isolation or associated with erroneous places, persons or times. Her confabulations were never fantastic or momentary in nature, but were consisted with isolated facts. Experimental investigation revealed that she could recognize individual facts (a person, a place, a task and time) in each episode. However, she could not integrate individual facts into an episode. We propose calling this type of confabulation "mosaic confabulation". PMID:11806121

  17. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers

    PubMed Central

    Swartzwelder, H. Scott; Acheson, Shawn K.; Miller, Kelsey M.; Sexton, Hannah G.; Liu, Wen; Crews, Fulton T.; Risher, Mary-Louise

    2015-01-01

    The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30) received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR) test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE. PMID:26529506

  18. Progressive loss of dopaminergic neurons induced by unilateral rotenone infusion into the medial forebrain bundle.

    PubMed

    Norazit, Anwar; Meedeniya, Adrian C B; Nguyen, Maria Nga; Mackay-Sim, Alan

    2010-11-11

    Rotenone, a mitochondrial complex 1 inhibitor, causes oxidative damage via production of reactive oxygen species. We examined the pathophysiology of neuronal and glial cells of the nigrostriatal pathway following unilateral infusion of varying doses of rotenone into the substantia nigra or medial forebrain bundle of adult male Sprague-Dawley rats, sacrificed 14 and 60 days after infusion. Immunofluorescence techniques were used to qualitatively and quantitatively assay dopaminergic neurons, their projections, glial cells, synapses, and oxidative stress. Rotenone infusion into the substantia nigra at all concentrations caused extensive damage and tissue necrosis, therefore of limited relevance for producing a Parkinson disease model. Infusion of 0.5μg of rotenone targeting the medial forebrain bundle induced oxidative stress in dopaminergic neurons causing ongoing cell stress as defined by an elevation of stress granule and oxidative stress markers. This treatment resulted in the loss of tyrosine hydroxylase immunoreactive cells in the substantia nigra (p≤0.01) and loss of tyrosine hydroxylase immunoreactive nerve fibres and synaptic specialisations in the striatum (p≤0.01). The infusion of 0.5μg of rotenone also caused an increase in astrocytes and microglial cells in the substantia nigra in comparison to control (p≤0.01). We examined the time-dependent reduction of tyrosine hydroxylase-positive nerve fibres and cell bodies in the striatum and substantia nigra respectively, with a progressive reduction evident 60days after infusion (p≤0.01, p≤0.05). Dopaminergic axons exposed to low-dose rotenone undergo oxidative stress, with a resultant ongoing loss of dopaminergic neurons, providing an animal model relevant to Parkinson disease.

  19. Transient forebrain ischemia-induced neuronal degeneration in fascia dentata transplants.

    PubMed

    Tønder, N; Aznar, S; Johansen, F F

    1994-01-01

    Fascia dentata tissue blocks from newborn rats were grafted into one-week-old, ibotenic acid-induced lesions of the fascia dentata, or the normal fascia dentata of adult rats. After at least 2 months survival the recipient rats were subjected to 10 min of forebrain ischemia (4-vessel occlusion), and examined 2 or 4 days later for neuronal degeneration in the host hippocampi and the transplants, by silver staining and immunohistochemistry. Transplants survived well in both normal and lesioned host brains, with easily recognizable subfields and layers and presence of normal types of principal and non-principal neurons. As expected, argyrophilic, degenerating neurons were present in the pyramidal cell layer of CAl and CA3c of the non-grafted contralateral host hippocampus and in the contralateral dentate hilus (CA4). In the hilus the degeneration corresponded to the loss of somatostatin-immunoreactive neurons, while parvalbumin-immunoreactive neurons were spared. In the dentate transplants degenerating neurons were observed in the granule cell layer, the hilus and the adjacent CA3 pyramidal cell layer. There was no obvious loss of either somatostatin- or parvalbumin-immunoreactive neurons. The degeneration varied considerably between transplants, from a few to large groups of silver stained neurons, but this difference did not display any obvious relation to grafting into normal or lesioned hosts, the exact location of the grafts or the general organization and distribution of intrinsic or extrinsic host afferents in the grafts. The results demonstrate that both ischemia-susceptible and -resistant types of neurons grafted to normal and lesioned adult rat brains are susceptible to transient forebrain ischemia after transplantation. In spite of an extensive reorganization of transplant nerve connections, the physiologicalbiochemical mechanisms necessary for the induction of ischemic cell death were accordingly present in the transplants.

  20. Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence.

    PubMed

    Lee, Tae-Ho; Telzer, Eva H

    2016-08-01

    Recent developmental brain imaging studies have demonstrated that negatively coupled prefrontal-limbic circuitry implicates the maturation of brain development in adolescents. Using resting-state functional magnetic resonance imaging (rs-fMRI) and independent component analysis (ICA), the present study examined functional network coupling between prefrontal and limbic systems and links to self-control and substance use onset in adolescents. Results suggest that negative network coupling (anti-correlated temporal dynamics) between the right fronto-parietal and limbic resting state networks is associated with greater self-control and later substance use onset in adolescents. These findings increase our understanding of the developmental importance of prefrontal-limbic circuitry for adolescent substance use at the resting-state network level.

  1. Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence.

    PubMed

    Lee, Tae-Ho; Telzer, Eva H

    2016-08-01

    Recent developmental brain imaging studies have demonstrated that negatively coupled prefrontal-limbic circuitry implicates the maturation of brain development in adolescents. Using resting-state functional magnetic resonance imaging (rs-fMRI) and independent component analysis (ICA), the present study examined functional network coupling between prefrontal and limbic systems and links to self-control and substance use onset in adolescents. Results suggest that negative network coupling (anti-correlated temporal dynamics) between the right fronto-parietal and limbic resting state networks is associated with greater self-control and later substance use onset in adolescents. These findings increase our understanding of the developmental importance of prefrontal-limbic circuitry for adolescent substance use at the resting-state network level. PMID:27344035

  2. Neuroimaging of frontal-limbic dysfunction in schizophrenia and epilepsy-related psychosis: toward a convergent neurobiology.

    PubMed

    Butler, Tracy; Weisholtz, Daniel; Isenberg, Nancy; Harding, Elizabeth; Epstein, Jane; Stern, Emily; Silbersweig, David

    2012-02-01

    Psychosis is a devastating, prevalent condition considered to involve dysfunction of frontal and medial temporal limbic brain regions as key nodes in distributed brain networks involved in emotional regulation. The psychoses of epilepsy represent an important, though understudied, model relevant to understanding the pathophysiology of psychosis in general. In this review, we (1) discuss the classification of epilepsy-related psychoses and relevant neuroimaging and other studies; (2) review structural and functional neuroimaging studies of schizophrenia focusing on evidence of frontal-limbic dysfunction; (3) report our laboratory's PET, fMRI, and electrophysiological findings; (4) describe a theoretical framework in which frontal hypoactivity and intermittent medial temporal hyperactivity play a critical role in the etiopathology of psychosis both associated and unassociated with epilepsy; and (5) suggest avenues for future research. PMID:22209327

  3. EEG-confirmed epileptic activity in a cat with VGKC-complex/LGI1 antibody-associated limbic encephalitis.

    PubMed

    Pakozdy, Akos; Glantschnigg, Ursula; Leschnik, Michael; Hechinger, Harald; Moloney, Teresa; Lang, Bethan; Halasz, Peter; Vincent, Angela

    2014-03-01

    A 5-year-old, female client-owned cat presented with acute onset of focal epileptic seizures with orofacial twitching and behavioural changes. Magnetic resonance imaging showed bilateral temporal lobe hyperintensities and the EEG was consistent with ictal epileptic seizure activity. After antiepileptic and additional corticosteroid treatment, the cat recovered and by 10 months of follow-up was seizure-free without any problem. Retrospectively, antibodies to LGI1, a component of the voltage-gated potassium channel-complex, were identified. Feline focal seizures with orofacial involvement have been increasingly recognised in client-owned cats, and autoimmune limbic encephalitis was recently suggested as a possible aetiology. This is the first report of EEG, MRI and long-term follow-up of this condition in cats which is similar to human limbic encephalitis.

  4. A case study of voltage-gated potassium channel antibody-related limbic encephalitis with PET/MRI findings

    PubMed Central

    Day, Brian K.; Eisenman, Lawrence; Black, Joseph; Maccotta, Luigi; Hogan, R. Edward

    2015-01-01

    Preclinical and clinical studies have demonstrated the significance of inflammation and autoantibodies in epilepsy, and the use of immunotherapies in certain situations has become an established practice. Temporal lobe epilepsy can follow paraneoplastic or nonparaneoplastic limbic encephalitis associated with antibodies directed against brain antigens. Here, we focus on a patient with worsening confusion and temporal lobe seizures despite treatment with antiepileptic medications. Serial brain MRIs did not conclusively reveal structural abnormalities, so the patient underwent brain PET/MRI to simultaneously evaluate brain structure and function, revealing bitemporal abnormalities. The patient was diagnosed with voltage-gated potassium channel antibody-related limbic encephalitis based on clinical presentation, imaging findings, and antibody testing. Treatment included the addition of a second antiepileptic agent and oral steroids. His seizures and cognitive deficits improved and stabilized. PMID:26106579

  5. Type 1 diabetes and GAD65 limbic encephalitis: a case report of a 10-year-old girl.

    PubMed

    Grilo, Ema; Pinto, Joana; Caetano, Joana Serra; Pereira, Helena; Cardoso, Patrícia; Cardoso, Rita; Dinis, Isabel; Pereira, Cristina; Fineza, Isabel; Mirante, Alice

    2016-08-01

    Limbic encephalitis is a rare neurological disorder that may be difficult to recognize. Clinical features include memory impairment, temporal lobe seizures and affective disturbance. We report the case of a 10-year-old girl with type 1 diabetes mellitus that presented with seizures, depressed mood and memory changes. The diagnosis of glutamic acid decarboxylase 65 (GAD65) mediated limbic encephalitis relied on cerebral magnetic resonance imaging lesions and high serological and cerebrospinal fluid GAD65-antibodies titers. High-dose steroidal therapy was started with clinical improvement. Relapse led to a second high-dose steroid treatment followed by rituximab with remission. A correlation between serum GAD65-antibodies levels and symptoms was found, demonstrating GAD65-antibodies titers may be useful for clinical follow-up and immunotherapy guidance. This report raises awareness of this serious neurological condition that may be associated with type 1 diabetes, underlining the importance of an early diagnosis and prompt treatment for a better prognosis.

  6. Microstructural abnormalities in language and limbic pathways in orphanage-reared children: a diffusion tensor imaging study.

    PubMed

    Kumar, Ajay; Behen, Michael E; Singsoonsud, Piti; Veenstra, Amy L; Wolfe-Christensen, Cortney; Helder, Emily; Chugani, Harry T

    2014-03-01

    This study utilized diffusion tensor imaging fiber tractography to examine the miscrostructural integrity of limbic and paralimbic white matter tracts in 36 children (age M = 124 months) with histories of early deprivation, raised from birth in orphanages and subsequently adopted into the United States, compared to 16 age-matched typically developing children. We found increased mean diffusivity bilaterally in the arcuate fasciculus and increased mean diffusivity and reduced fractional anisotropy bilaterally in the uncinate fasciculus and cingulum in children with early deprivation. Microstructural integrity of the left arcuate fasciculus and right cingulum was related to language and behavioral functioning, respectively. White matter abnormalities were also associated with length of deprivation and time in the adoptive home. Our findings suggest that white matter pathways, connecting limbic and paralimbic brain regions is abnormal in children with histories of early deprivation, with some pathways appearing more susceptible to early deprivation than others.

  7. Different patterns of local field potentials from limbic DBS targets in patients with major depressive and obsessive compulsive disorder.

    PubMed

    Neumann, W-J; Huebl, J; Brücke, C; Gabriëls, L; Bajbouj, M; Merkl, A; Schneider, G-H; Nuttin, B; Brown, P; Kühn, A A

    2014-11-01

    The role of distinct limbic areas in emotion regulation has been largely inferred from neuroimaging studies. Recently, the opportunity for intracranial recordings from limbic areas has arisen in patients undergoing deep brain stimulation (DBS) for neuropsychiatric disorders including major depressive disorder (MDD) and obsessive compulsive disorder (OCD). Here we test the hypothesis that distinct temporal patterns of local field potential (LFP) activity in the human limbic system reflect disease state and symptom severity in MDD and OCD patients. To this end, we recorded LFPs via implanted DBS electrodes from the bed nucleus of stria terminalis (BNST area) in 12 patients (5 OCD, 7 MDD) and from the subgenual cingulate cortex in 7 MDD patients (CG25 area). We found a distinct pattern of oscillatory activity with significantly higher α-power in MDD compared with OCD in the BNST area (broad α-band 8-14 Hz; P<0.01) and a similar level of α-activity in the CG25 area as in the BNST area in MDD patients. The mean α-power correlated with severity of depressive symptoms as assessed by the Beck depression inventory in MDD (n=14, r=0.55, P=0.042) but not with severity of obsessive compulsive symptoms in OCD. Here we show larger α-band activity in MDD patients compared with OCD recorded from intracranial DBS targets. Our results suggest that α-activity in the limbic system may be a signature of symptom severity in MDD and may serve as a potential state biomarker for closed loop DBS in MDD. PMID:24514569

  8. Revealing the ventral amygdalofugal pathway of the human limbic system using high spatial resolution diffusion tensor tractography.

    PubMed

    Kamali, Arash; Sair, Haris I; Blitz, Ari M; Riascos, Roy F; Mirbagheri, Saeedeh; Keser, Zafer; Hasan, Khader M

    2016-09-01

    The amygdala is known to have a role in core processes regulated by the limbic system such as motivation, memory, emotion, social behavior, self-awareness as well as certain primitive instincts. Several functional studies have investigated some of these brain tasks of the human limbic system. However, the underlying neuronal fiber connectivity of the amygdalo-diencephalon, as part of the limbic system, has not been delineated separately by prior diffusion-weighted imaging studies. The ability to trace the underlying fiber connections individually will be helpful in understanding the neurophysiology of these tracts in different functions. To date, few diffusion-weighted studies have focused on the amygdala, yet the fine connections of the amygdala, hypothalamus, septum or other adjacent limbic structures have yet to be elucidated by diffusion-weighted tractography studies. We therefore aimed to further investigate these fine neuronal connections using fiber tractography and high spatial resolution diffusion tensor imaging on 3T on 15 healthy right-handed male human subjects (age range 24-37 years). The ventral amygdalofugal pathway, anterior commissure and stria terminalis are the three main efferent pathways of the amygdala. We delineated the detailed trajectories of the ventral amygdalofugal tract, anterior commissure and their connections bilaterally in 15 normal adult human brains. Using a high-resolution diffusion tensor tractography technique, for the first time, we were able to demonstrate the trajectory of amygdalofugal tract and its connections to the hypothalamic and septal nuclei. We further revealed, for the first time, the close relationship of the amygdalofugal tract and anterior commissure with the fornix, stria terminalis and uncinate fasciculus bilaterally in 15 healthy adult human brains.

  9. A unique combination of autoimmune limbic encephalitis, type 1 diabetes, and Stiff person syndrome associated with GAD-65 antibody

    PubMed Central

    Sharma, Chandra Mohan; Pandey, Rajendra Kumar; Kumawat, Banshi Lal; Khandelwal, Dinesh; Gandhi, Pankaj

    2016-01-01

    Antibodies to GAD-65 have been implicated in the pathogenesis of type 1 diabetes, limbic encephalitis and Stiff person syndrome, however these diseases rarely occur concurrently. We intend to present a rare case of 35 year old female who was recently diagnosed as having type 1 diabetes presented with 1½ month history of recurrent seizures, subacute onset gait ataxia, dysathria, psychiatric disturbance and cognitive decline. No tumor was found on imaging and the classic paraneoplastic panel was negative. Cerebrospinal fluid and blood was positive for GAD-65 antibodies. Patient showed significant improvement with immunomodulatory therapy. Association of GAD-65 antibodies has been found with various disorders including type 1 diabetes, limbic encephalitis, Stiff person syndrome, cerebellar ataxia and palatal myoclonus. This case presents with unique combination of type 1 diabetes, Stiff person syndrome and limbic encephalitis associated with GAD-65 antibodies that is responsive to immunotherapy. It also highlights the emerging concept of autoimmunity in the causation of various disorders and there associations. PMID:27011652

  10. Mild Traumatic Brain Injury with Social Defeat Stress Alters Anxiety, Contextual Fear Extinction, and Limbic Monoamines in Adult Rats.

    PubMed

    Davies, Daniel R; Olson, Dawne; Meyer, Danielle L; Scholl, Jamie L; Watt, Michael J; Manzerra, Pasquale; Renner, Kenneth J; Forster, Gina L

    2016-01-01

    Mild traumatic brain injury (mTBI) produces symptoms similar to those typifying posttraumatic stress disorder (PTSD) in humans. We sought to determine whether a rodent model of stress concurrent with mTBI produces characteristics of PTSD such as impaired contextual fear extinction, while also examining concurrent alterations to limbic monoamine activity in brain regions relevant to fear and anxiety states. Male rats were exposed to social stress or control conditions immediately prior to mTBI induction, and 6 days later were tested either for anxiety-like behavior using the elevated plus maze (EPM), or for contextual fear conditioning and extinction. Brains were collected 24 h after EPM testing, and tissue from various limbic regions analyzed for content of monoamines, their precursors and metabolites using HPLC with electrochemical detection. Either social defeat or mTBI alone decreased time spent in open arms of the EPM, indicating greater anxiety-like behavior. However, this effect was enhanced by the combination of treatments. Further, rats exposed to both social defeat and mTBI exhibited greater freezing within extinction sessions compared to all other groups, suggesting impaired contextual fear extinction. Social defeat combined with mTBI also had greater effects on limbic monoamines than either insult alone, particularly with respect to serotonergic effects associated with anxiety and fear learning. The results suggest social stress concurrent with mTBI produces provides a relevant animal model for studying the prevention and treatment of post-concussive psychobiological outcomes. PMID:27147992

  11. A unique combination of autoimmune limbic encephalitis, type 1 diabetes, and Stiff person syndrome associated with GAD-65 antibody.

    PubMed

    Sharma, Chandra Mohan; Pandey, Rajendra Kumar; Kumawat, Banshi Lal; Khandelwal, Dinesh; Gandhi, Pankaj

    2016-01-01

    Antibodies to GAD-65 have been implicated in the pathogenesis of type 1 diabetes, limbic encephalitis and Stiff person syndrome, however these diseases rarely occur concurrently. We intend to present a rare case of 35 year old female who was recently diagnosed as having type 1 diabetes presented with 1½ month history of recurrent seizures, subacute onset gait ataxia, dysathria, psychiatric disturbance and cognitive decline. No tumor was found on imaging and the classic paraneoplastic panel was negative. Cerebrospinal fluid and blood was positive for GAD-65 antibodies. Patient showed significant improvement with immunomodulatory therapy. Association of GAD-65 antibodies has been found with various disorders including type 1 diabetes, limbic encephalitis, Stiff person syndrome, cerebellar ataxia and palatal myoclonus. This case presents with unique combination of type 1 diabetes, Stiff person syndrome and limbic encephalitis associated with GAD-65 antibodies that is responsive to immunotherapy. It also highlights the emerging concept of autoimmunity in the causation of various disorders and there associations. PMID:27011652

  12. Mild Traumatic Brain Injury with Social Defeat Stress Alters Anxiety, Contextual Fear Extinction, and Limbic Monoamines in Adult Rats

    PubMed Central

    Davies, Daniel R.; Olson, Dawne; Meyer, Danielle L.; Scholl, Jamie L.; Watt, Michael J.; Manzerra, Pasquale; Renner, Kenneth J.; Forster, Gina L.

    2016-01-01

    Mild traumatic brain injury (mTBI) produces symptoms similar to those typifying posttraumatic stress disorder (PTSD) in humans. We sought to determine whether a rodent model of stress concurrent with mTBI produces characteristics of PTSD such as impaired contextual fear extinction, while also examining concurrent alterations to limbic monoamine activity in brain regions relevant to fear and anxiety states. Male rats were exposed to social stress or control conditions immediately prior to mTBI induction, and 6 days later were tested either for anxiety-like behavior using the elevated plus maze (EPM), or for contextual fear conditioning and extinction. Brains were collected 24 h after EPM testing, and tissue from various limbic regions analyzed for content of monoamines, their precursors and metabolites using HPLC with electrochemical detection. Either social defeat or mTBI alone decreased time spent in open arms of the EPM, indicating greater anxiety-like behavior. However, this effect was enhanced by the combination of treatments. Further, rats exposed to both social defeat and mTBI exhibited greater freezing within extinction sessions compared to all other groups, suggesting impaired contextual fear extinction. Social defeat combined with mTBI also had greater effects on limbic monoamines than either insult alone, particularly with respect to serotonergic effects associated with anxiety and fear learning. The results suggest social stress concurrent with mTBI produces provides a relevant animal model for studying the prevention and treatment of post-concussive psychobiological outcomes. PMID:27147992

  13. Mapping the trajectory of the stria terminalis of the human limbic system using high spatial resolution diffusion tensor tractography.

    PubMed

    Kamali, Arash; Yousem, David M; Lin, Doris D; Sair, Haris I; Jasti, Siva P; Keser, Zafer; Riascos, Roy F; Hasan, Khader M

    2015-11-01

    The human limbic system is composed of gray and white matter structures which have been known to have a role in core processes such as motivation, memory, emotion, social behavior, self-awareness as well as certain primitive instincts. Multiple functional studies investigated some of these brain tasks in human brain limbic system. However, the underlying fine fiber pathways of the limbic system including the trajectory of the stria terminalis have not been delineated separately by prior diffusion weighted imaging. The ability to trace the underlying fiber anatomy noninvasively using diffusion tensor tractography (DTT) would be helpful to study the neurophysiology of these tracts in different functions in future functional studies. Few studies have focused on the stria terminalis using diffusion tensor tractography. Yet, the trajectory of the stria terminalis and some fine subtrajectories of the fornix have not been elucidated by prior DTT studies. We decided to further investigate these fine neuronal trajectory using tractography and high spatial resolution diffusion tensor imaging on 3T. Fifteen healthy right-handed men (age range 24-37 years) were studied. We delineated the detailed trajectories of the stria terminalis and fornix bilaterally in fifteen normal adult human brains. Using a high resolution DTT technique, we demonstrate for the first time, the trajectory of stria terminalis as well as detailed precommissural and postcommissural connectivity of the forniceal columns.

  14. Increased Functional Activation of Limbic Brain Regions during Negative Emotional Processing in Migraine.

    PubMed

    Wilcox, Sophie L; Veggeberg, Rosanna; Lemme, Jordan; Hodkinson, Duncan J; Scrivani, Steven; Burstein, Rami; Becerra, Lino; Borsook, David

    2016-01-01

    Pain is both an unpleasant sensory and emotional experience. This is highly relevant in migraine where cortical hyperexcitability in response to sensory stimuli (including pain, light, and sound) has been extensively reported. However, migraine may feature a more general enhanced response to aversive stimuli rather than being sensory-specific. To this end we used functional magnetic resonance imaging to assess neural activation in migraineurs interictaly in response to emotional visual stimuli from the International Affective Picture System. Migraineurs, compared to healthy controls, demonstrated increased neural activity in response to negative emotional stimuli. Most notably in regions overlapping in their involvement in both nociceptive and emotional processing including the posterior cingulate, caudate, amygdala, and thalamus (cluster corrected, p < 0.01). In contrast, migraineurs and healthy controls displayed no and minimal differences in response to positive and neutral emotional stimuli, respectively. These findings support the notion that migraine may feature more generalized altered cerebral processing of aversive/negative stimuli, rather than exclusively to sensory stimuli. A generalized hypersensitivity to aversive stimuli may be an inherent feature of migraine, or a consequential alteration developed over the duration of the disease. This proposed cortical-limbic hypersensitivity may form an important part of the migraine pathophysiology, including psychological comorbidity, and may represent an innate sensitivity to aversive stimuli that underpins attack triggers, attack persistence and (potentially) gradual headache chronification.

  15. Interaction between basal ganglia and limbic circuits in learning and memory processes.

    PubMed

    Calabresi, Paolo; Picconi, Barbara; Tozzi, Alessandro; Ghiglieri, Veronica

    2016-01-01

    Hippocampus and striatum play distinctive roles in memory processes since declarative and non-declarative memory systems may act independently. However, hippocampus and striatum can also be engaged to function in parallel as part of a dynamic system to integrate previous experience and adjust behavioral responses. In these structures the formation, storage, and retrieval of memory require a synaptic mechanism that is able to integrate multiple signals and to translate them into persistent molecular traces at both the corticostriatal and hippocampal/limbic synapses. The best cellular candidate for this complex synthesis is represented by long-term potentiation (LTP). A common feature of LTP expressed in these two memory systems is the critical requirement of convergence and coincidence of glutamatergic and dopaminergic inputs to the dendritic spines of the neurons expressing this form of synaptic plasticity. In experimental models of Parkinson's disease abnormal accumulation of α-synuclein affects these two memory systems by altering two major synaptic mechanisms underlying cognitive functions in cholinergic striatal neurons, likely implicated in basal ganglia dependent operative memory, and in the CA1 hippocampal region, playing a central function in episodic/declarative memory processes.

  16. Anti-leucine-rich glioma-inactivated 1 limbic encephalitis: A case report and literature review

    PubMed Central

    LIU, JINGYAO; LI, MIN; LI, GUIBO; ZHOU, CHUNKUI; ZHANG, RENSHENG

    2016-01-01

    This study describes the case of a 41-year-old woman admitted for anterograde memory loss, right facial grimacing and right arm posturing that had begun 1 month previously. Cranial magnetic resonance-diffusion weighted imaging and -fluid-attenuated inversion recovery imaging revealed a hyperintense signal in the left hippocampus and right basal ganglia, but no contrast enhancement. An electroencephalogram revealed rhythmic sharp and slow waves and rhythmic θ build-ups in the left temporal area. Single-photon emission computed tomography showed increased regional blood flow perfusion in the left cerebral frontal lobe and the right basal ganglia. The cerebrospinal fluid was normal, with the exception of the presence of leucine-rich glioma-inactivated 1 (LGI1) antibodies, and LGI1 antibodies were also found in the blood serum. The presence of the antibodies, the faciobrachial dystonic seizures (FBDSs) and the memory loss indicated limbic encephalitis. After 3 months of immunotherapy, the patient was free from epileptic seizures and had undergone a partial memory restoration. FBDSs alone justify the immediate initiation of immunotherapy, even prior to laboratory confirmation of the disease, as early treatment limits the duration of the illness. PMID:26889260

  17. CD8+ T Cell-Mediated Neuronal Dysfunction and Degeneration in Limbic Encephalitis

    PubMed Central

    Ehling, Petra; Melzer, Nico; Budde, Thomas; Meuth, Sven G.

    2015-01-01

    Autoimmune inflammation of the limbic gray matter structures of the human brain has recently been identified as major cause of mesial temporal lobe epilepsy with interictal temporal epileptiform activity and slowing of the electroencephalogram, progressive memory disturbances, as well as a variety of other behavioral, emotional, and cognitive changes. Magnetic resonance imaging exhibits volume and signal changes of the amygdala and hippocampus, and specific anti-neuronal antibodies binding to either intracellular or plasma membrane neuronal antigens can be detected in serum and cerebrospinal fluid. While effects of plasma cell-derived antibodies on neuronal function and integrity are increasingly becoming characterized, potentially contributing effects of T cell-mediated immune mechanisms remain poorly understood. CD8+ T cells are known to directly interact with major histocompatibility complex class I-expressing neurons in an antigen-specific manner. Here, we summarize current knowledge on how such direct CD8+ T cell–neuron interactions may impact neuronal excitability, plasticity, and integrity on a single cell and network level and provide an overview on methods to further corroborate the in vivo relevance of these mechanisms mainly obtained from in vitro studies. PMID:26236280

  18. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    PubMed

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation.

  19. Citicoline Affects Appetite and Cortico-Limbic Responses to Images of High Calorie Foods

    PubMed Central

    Killgore, William D. S.; Ross, Amy J.; Kamiya, Toshi; Kawada, Yoko; Renshaw, Perry F.; Yurgelun-Todd, Deborah A.

    2011-01-01

    Cytidine-5’-diphosphocholine (citicoline) has a variety of cognitive enhancing, neuroprotective, and neuroregenerative properties. In cocaine-addicted individuals, citicoline has been shown to increase brain dopamine levels and reduce cravings. The effects of this compound on appetite, food cravings, and brain responses to food are unknown. We compared the effects of treatment with citicoline (500 mg/day versus 2000 mg/day) for six weeks on changes in appetite ratings, weight, and cortico-limbic responses to images of high calorie foods using functional magnetic resonance imaging (fMRI). After six weeks, there was no significant change in weight status, although significant declines in appetite ratings were observed for the 2000 mg/day group. The higher dose group also showed significant increases in functional brain responses to food stimuli within the amygdala, insula, and lateral orbitofrontal cortex. Increased activation in these regions correlated with declines in appetite ratings. These preliminary findings suggest a potential usefulness of citicoline in modulating appetite, but further research is warranted. PMID:19260039

  20. Characterizing the Input-Output Function of the Olfactory-Limbic Pathway in the Guinea Pig.

    PubMed

    Breschi, Gian Luca; Ciliberto, Carlo; Nieus, Thierry; Rosasco, Lorenzo; Taverna, Stefano; Chiappalone, Michela; Pasquale, Valentina

    2015-01-01

    Nowadays the neuroscientific community is taking more and more advantage of the continuous interaction between engineers and computational neuroscientists in order to develop neuroprostheses aimed at replacing damaged brain areas with artificial devices. To this end, a technological effort is required to develop neural network models which can be fed with the recorded electrophysiological patterns to yield the correct brain stimulation to recover the desired functions. In this paper we present a machine learning approach to derive the input-output function of the olfactory-limbic pathway in the in vitro whole brain of guinea pig, less complex and more controllable than an in vivo system. We first experimentally characterized the neuronal pathway by delivering different sets of electrical stimuli from the lateral olfactory tract (LOT) and by recording the corresponding responses in the lateral entorhinal cortex (l-ERC). As a second step, we used information theory to evaluate how much information output features carry about the input. Finally we used the acquired data to learn the LOT-l-ERC "I/O function," by means of the kernel regularized least squares method, able to predict l-ERC responses on the basis of LOT stimulation features. Our modeling approach can be further exploited for brain prostheses applications.

  1. Increased Functional Activation of Limbic Brain Regions during Negative Emotional Processing in Migraine

    PubMed Central

    Wilcox, Sophie L.; Veggeberg, Rosanna; Lemme, Jordan; Hodkinson, Duncan J.; Scrivani, Steven; Burstein, Rami; Becerra, Lino; Borsook, David

    2016-01-01

    Pain is both an unpleasant sensory and emotional experience. This is highly relevant in migraine where cortical hyperexcitability in response to sensory stimuli (including pain, light, and sound) has been extensively reported. However, migraine may feature a more general enhanced response to aversive stimuli rather than being sensory-specific. To this end we used functional magnetic resonance imaging to assess neural activation in migraineurs interictaly in response to emotional visual stimuli from the International Affective Picture System. Migraineurs, compared to healthy controls, demonstrated increased neural activity in response to negative emotional stimuli. Most notably in regions overlapping in their involvement in both nociceptive and emotional processing including the posterior cingulate, caudate, amygdala, and thalamus (cluster corrected, p < 0.01). In contrast, migraineurs and healthy controls displayed no and minimal differences in response to positive and neutral emotional stimuli, respectively. These findings support the notion that migraine may feature more generalized altered cerebral processing of aversive/negative stimuli, rather than exclusively to sensory stimuli. A generalized hypersensitivity to aversive stimuli may be an inherent feature of migraine, or a consequential alteration developed over the duration of the disease. This proposed cortical-limbic hypersensitivity may form an important part of the migraine pathophysiology, including psychological comorbidity, and may represent an innate sensitivity to aversive stimuli that underpins attack triggers, attack persistence and (potentially) gradual headache chronification. PMID:27507939

  2. Impact of Size and Delay on Neural Activity in the Rat Limbic Corticostriatal System

    PubMed Central

    Roesch, Matthew R.; Bryden, Daniel W.

    2011-01-01

    A number of factors influence an animal’s economic decisions. Two most commonly studied are the magnitude of and delay to reward. To investigate how these factors are represented in the firing rates of single neurons, we devised a behavioral task that independently manipulated the expected delay to and size of reward. Rats perceived the differently delayed and sized rewards as having different values and were more motivated under short delay and big-reward conditions than under long delay and small reward conditions as measured by percent choice, accuracy, and reaction time. Since the creation of this task, we have recorded from several different brain areas including, orbitofrontal cortex, striatum, amygdala, substantia nigra pars reticulata, and midbrain dopamine neurons. Here, we review and compare those data with a substantial focus on those areas that have been shown to be critical for performance on classic time discounting procedures and provide a potential mechanism by which they might interact when animals are deciding between differently delayed rewards. We found that most brain areas in the cortico-limbic circuit encode both the magnitude and delay to reward delivery in one form or another, but only a few encode them together at the single neuron level. PMID:22363252

  3. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans.

    PubMed

    Rabinak, Christine A; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K Luan

    2014-09-01

    Pre-extinction administration of Δ9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely occurs via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 h after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders.

  4. Virtual reality adaptive stimulation of limbic networks in the mental readiness training.

    PubMed

    Cosić, Kresimir; Popović, Sinisa; Kostović, Ivica; Judas, Milos

    2010-01-01

    A significant proportion of severe psychological problems in recent large-scale peacekeeping operations underscores the importance of effective methods for strengthening the stress resilience. Virtual reality (VR) adaptive stimulation, based on the estimation of the participant's emotional state from physiological signals, may enhance the mental readiness training (MRT). Understanding neurobiological mechanisms by which the MRT based on VR adaptive stimulation can affect the resilience to stress is important for practical application in the stress resilience management. After the delivery of a traumatic audio-visual stimulus in the VR, the cascade of events occurs in the brain, which evokes various physiological manifestations. In addition to the "limbic" emotional and visceral brain circuitry, other large-scale sensory, cognitive, and memory brain networks participate with less known impact in this physiological response. The MRT based on VR adaptive stimulation may strengthen the stress resilience through targeted brain-body interactions. Integrated interdisciplinary efforts, which would integrate the brain imaging and the proposed approach, may contribute to clarifying the neurobiological foundation of the resilience to stress. PMID:20543262

  5. Behaviorally spontaneous confabulation in limbic encephalitis: the roles of reality filtering and strategic monitoring.

    PubMed

    Nahum, Louis; Ptak, Radek; Leemann, Béatrice; Lalive, Patrice; Schnider, Armin

    2010-11-01

    Behaviorally spontaneous confabulation is characterized by a confusion of reality evident in currently inappropriate acts that patients justify with confabulations and in disorientation. Here, we describe a 38-year-old woman lawyer hospitalized because of non-herpetic, presumably autoimmune, limbic encephalitis. For months, she considered herself at work and desperately tried to respect her falsely believed professional obligations. In contrast to a completely erroneous concept of reality, she did not confabulate about her remote personal past. In tasks proposed to test strategic retrieval monitoring, she produced no confabulations. As expected, she failed in tasks of reality filtering, previously shown to have high sensitivity and specificity for behaviorally spontaneous confabulation and disorientation: she failed to suppress the interference of currently irrelevant memories and she had deficient extinction capacity. The observation underscores the special status of behaviorally spontaneous confabulation among confabulatory phenomena and of reality filtering as a thought control mechanism. We suggest that different processes may underlie the generation of false memories and their verbal expression. We also emphasize the need to present theories of confabulation together with experimental tasks that allow one to empirically verify the theories and to explore underlying physiological mechanisms.

  6. Increased Functional Activation of Limbic Brain Regions during Negative Emotional Processing in Migraine.

    PubMed

    Wilcox, Sophie L; Veggeberg, Rosanna; Lemme, Jordan; Hodkinson, Duncan J; Scrivani, Steven; Burstein, Rami; Becerra, Lino; Borsook, David

    2016-01-01

    Pain is both an unpleasant sensory and emotional experience. This is highly relevant in migraine where cortical hyperexcitability in response to sensory stimuli (including pain, light, and sound) has been extensively reported. However, migraine may feature a more general enhanced response to aversive stimuli rather than being sensory-specific. To this end we used functional magnetic resonance imaging to assess neural activation in migraineurs interictaly in response to emotional visual stimuli from the International Affective Picture System. Migraineurs, compared to healthy controls, demonstrated increased neural activity in response to negative emotional stimuli. Most notably in regions overlapping in their involvement in both nociceptive and emotional processing including the posterior cingulate, caudate, amygdala, and thalamus (cluster corrected, p < 0.01). In contrast, migraineurs and healthy controls displayed no and minimal differences in response to positive and neutral emotional stimuli, respectively. These findings support the notion that migraine may feature more generalized altered cerebral processing of aversive/negative stimuli, rather than exclusively to sensory stimuli. A generalized hypersensitivity to aversive stimuli may be an inherent feature of migraine, or a consequential alteration developed over the duration of the disease. This proposed cortical-limbic hypersensitivity may form an important part of the migraine pathophysiology, including psychological comorbidity, and may represent an innate sensitivity to aversive stimuli that underpins attack triggers, attack persistence and (potentially) gradual headache chronification. PMID:27507939

  7. Spatial learning-related changes in metabolic activity of limbic structures at different posttask delays.

    PubMed

    Méndez-López, M; Méndez, M; Sampedro-Piquero, P; Arias, J L

    2013-01-01

    The aim of this study was to assess the functional contribution of brain limbic system regions at different moments after the acquisition of a short-term spatial memory task performed in the Morris water maze. Adult male Wistar rats were submitted to a matching-to-sample procedure with a hidden platform. The trials were made up of two daily identical visits to the platform, sample (swim-1) and retention (swim-2). To study oxidative metabolic activity, we applied cytochrome oxidase (COx) histochemistry. Densitometric measurements were taken at 1.5, 6, 24, and 48 hr posttask. An untrained group was added to explore the COx changes not specific to the learning process. The brain regions studied showed a different pattern of metabolic activity at different time points after the spatial memory task. Specifically, a significant increase of COx was found in the septal dentate gyrus, anteromedial thalamus, medial mammillary nucleus, and entorhinal cortex at early moments after learning. The entorhinal cortex maintained an increase of COx at later stages of the posttask period. In addition, an increase of COx activity was found in the supramammillary nucleus and the retrosplenial, perirhinal, and parietal cortices a long time after learning. These findings suggest that diencephalic and cortical regions are involved in this spatial learning and contribute at different moments to process this information.

  8. Effect of antidepressant drugs on the vmPFC-limbic circuitry.

    PubMed

    Chang, Celene H; Chen, Michael C; Lu, Jun

    2015-05-01

    Our recent study indicates that the lesions of the prefrontal cortex in rats result in depressive-like behavior in forced swim test and REM sleep alterations, two well-established biomarkers of depression disorder. We hypothesized that antidepressants may target the PFC to reverse depression. Systemic injections of antidepressants: the tricyclic antidepressant desipramine (DMI), the selective serotonin reuptake inhibitor fluoxetine, and the NMDA-antagonist ketamine selectively increased cFos expression (a marker of neuronal activity) in the deep layers of the ventromedial PFC (vmPFC) in rats. Of the vmPFC's limbic system targets, only the nucleus accumbens (NAc) was also activated by DMI. Using a retrograde tracer and a neuronal toxin, we also found that DMI-activated vmPFC neurons project to the NAc and that NAc activation by DMI was lost following vmPFC lesion. These results suggest that the vmPFC may be an essential target of antidepressant drugs, its projections to the NAc may be a key circuit regulating antidepressant action, and dysfunction of this pathway may contribute to depression.

  9. Cortico-limbic-striatal contribution after response and reversal learning: a metabolic mapping study.

    PubMed

    Fidalgo, Camino; Conejo, N M; González-Pardo, Héctor; Arias, J L

    2011-01-12

    Learning of arbitrary stimulus-response associations is an adaptive behavior essential for species survival in an ever-changing environment. Particular subdivisions of the striatum have been shown to be critical for both motor-response learning and reversal learning. However, recent evidence suggests that different cortical and subcortical brain regions may be involved in response learning, a kind of learning more complex than previously thought. In fact, many brain regions subserving response learning seem to be also related to reversal learning, traditionally ascribed to the prefrontal cortex. The present study examined the role of different subdivisions of the rat prefrontal cortex, striatum, amygdala and the ventral tegmental area on both response and reversal learning evaluated in the water T-maze. Increased neuronal metabolic activity, as measured by cytochrome oxidase (CO) histochemistry, was found in most brain regions after training rats in a response learning task as compared to yoked controls. Reversal learning was associated with a return to baseline CO activity levels except for the orbitofrontal cortex and the ventral tegmental area. Analysis of functional connectivity among brain regions showed significant correlations in CO activity between particular cortical and striatal subdivisions in the reversal learning group. These findings suggest that the interaction of specific frontal and subcortical regions is required for reversal but not for response learning. However, our findings support the involvement of a cortico-limbic-striatal circuit in both types of learning. PMID:21036158

  10. Neuropeptide Y-induced potentiation of noradrenergic vasoconstriction in the human saphenous vein: involvement of endothelium generated thromboxane.

    PubMed

    Fabi, F; Argiolas, L; Ruvolo, G; del Basso, P

    1998-05-01

    1. We investigated the potentiating effect of low concentrations of neuropeptide Y (NPY) on the vasoconstriction induced by transmural nerve stimulation (TNS) and noradrenaline (NA) in human saphenous veins. The effects of (i) endothelium removal; (ii) the addition of the NO pathway precursor L-arginine; (iii) the ET(A)/ET(B) endothelin receptor antagonist Ro 47-0203; (iv) the cyclo-oxygenase inhibitor, indomethacin; (v) the selective thromboxane A2 (TxA2) receptor antagonists Bay u3405 and ifetroban, and (vi) the TxA2 synthase inhibitor, UK 38485, were studied in order to gain information about the mechanisms of NPY-induced potentiation. 2. Contractile response curves for TNS (0.5-8 Hz) and for exogenously administered NA (0.1-3 microM) were obtained in superfused saphenous vein rings. The contractions induced by both TNS and NA at all tested frequencies and concentrations, respectively, were significantly potentiated by 50 nM NPY in endothelium intact veins. Conversely, in endothelium-denuded vessel rings the contractile-response curves to TNS and NA overlapped both in the absence and presence of NPY, thus suggesting that a release of vasoactive substances from endothelial cells could account for the noradrenergic NPY-induced potentiation. 3. In vessels with intact endothelium, the potentiating action of NPY on TNS and NA was unaffected by the presence of high concentrations of the NO precursor L-arginine (3-10 mM) or the non-selective ET(A)/ET(B) endothelin receptor antagonist, Ro 47-0203 (10 microM). These data indicate that the NPY-induced effect does not involve either the endothelium-derived vasodilator nitric oxide or the vasoconstrictor endothelin. Conversely, in the presence of the cyclo-oxygenase inhibitor, indomethacin (30 microM), NPY failed to potentiate the vasoconstrictions produced by either nerve stimulation or by exogenous NA, thus providing evidence that arachidonic acid metabolites through the cyclo-oxygenase pathway are mainly responsible for

  11. Human Bacterial Artificial Chromosome (BAC) Transgenesis Fully Rescues Noradrenergic Function in Dopamine β-Hydroxylase Knockout Mice

    PubMed Central

    Cubells, Joseph F.; Schroeder, Jason P.; Barrie, Elizabeth S.; Manvich, Daniel F.; Sadee, Wolfgang; Berg, Tiina; Mercer, Kristina; Stowe, Taylor A.; Liles, L. Cameron; Squires, Katherine E.; Mezher, Andrew; Curtin, Patrick; Perdomo, Dannie L.; Szot, Patricia; Weinshenker, David

    2016-01-01

    Dopamine β-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE) in noradrenergic/adrenergic cells. DBH deficiency prevents NE production and causes sympathetic failure, hypotension and ptosis in humans and mice; DBH knockout (Dbh -/-) mice reveal other NE deficiency phenotypes including embryonic lethality, delayed growth, and behavioral defects. Furthermore, a single nucleotide polymorphism (SNP) in the human DBH gene promoter (-970C>T; rs1611115) is associated with variation in serum DBH activity and with several neurological- and neuropsychiatric-related disorders, although its impact on DBH expression is controversial. Phenotypes associated with DBH deficiency are typically treated with L-3,4-dihydroxyphenylserine (DOPS), which can be converted to NE by aromatic acid decarboxylase (AADC) in the absence of DBH. In this study, we generated transgenic mice carrying a human bacterial artificial chromosome (BAC) encompassing the DBH coding locus as well as ~45 kb of upstream and ~107 kb of downstream sequence to address two issues. First, we characterized the neuroanatomical, neurochemical, physiological, and behavioral transgenic rescue of DBH deficiency by crossing the BAC onto a Dbh -/- background. Second, we compared human DBH mRNA abundance between transgenic lines carrying either a “C” or a “T” at position -970. The BAC transgene drove human DBH mRNA expression in a pattern indistinguishable from the endogenous gene, restored normal catecholamine levels to the peripheral organs and brain of Dbh -/- mice, and fully rescued embryonic lethality, delayed growth, ptosis, reduced exploratory activity, and seizure susceptibility. In some cases, transgenic rescue was superior to DOPS. However, allelic variation at the rs1611115 SNP had no impact on mRNA levels in any tissue. These results indicate that the human BAC contains all of the genetic information required for tissue-specific, functional expression of DBH and can rescue all measured Dbh

  12. Human Bacterial Artificial Chromosome (BAC) Transgenesis Fully Rescues Noradrenergic Function in Dopamine β-Hydroxylase Knockout Mice.

    PubMed

    Cubells, Joseph F; Schroeder, Jason P; Barrie, Elizabeth S; Manvich, Daniel F; Sadee, Wolfgang; Berg, Tiina; Mercer, Kristina; Stowe, Taylor A; Liles, L Cameron; Squires, Katherine E; Mezher, Andrew; Curtin, Patrick; Perdomo, Dannie L; Szot, Patricia; Weinshenker, David

    2016-01-01

    Dopamine β-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE) in noradrenergic/adrenergic cells. DBH deficiency prevents NE production and causes sympathetic failure, hypotension and ptosis in humans and mice; DBH knockout (Dbh -/-) mice reveal other NE deficiency phenotypes including embryonic lethality, delayed growth, and behavioral defects. Furthermore, a single nucleotide polymorphism (SNP) in the human DBH gene promoter (-970C>T; rs1611115) is associated with variation in serum DBH activity and with several neurological- and neuropsychiatric-related disorders, although its impact on DBH expression is controversial. Phenotypes associated with DBH deficiency are typically treated with L-3,4-dihydroxyphenylserine (DOPS), which can be converted to NE by aromatic acid decarboxylase (AADC) in the absence of DBH. In this study, we generated transgenic mice carrying a human bacterial artificial chromosome (BAC) encompassing the DBH coding locus as well as ~45 kb of upstream and ~107 kb of downstream sequence to address two issues. First, we characterized the neuroanatomical, neurochemical, physiological, and behavioral transgenic rescue of DBH deficiency by crossing the BAC onto a Dbh -/- background. Second, we compared human DBH mRNA abundance between transgenic lines carrying either a "C" or a "T" at position -970. The BAC transgene drove human DBH mRNA expression in a pattern indistinguishable from the endogenous gene, restored normal catecholamine levels to the peripheral organs and brain of Dbh -/- mice, and fully rescued embryonic lethality, delayed growth, ptosis, reduced exploratory activity, and seizure susceptibility. In some cases, transgenic rescue was superior to DOPS. However, allelic variation at the rs1611115 SNP had no impact on mRNA levels in any tissue. These results indicate that the human BAC contains all of the genetic information required for tissue-specific, functional expression of DBH and can rescue all measured Dbh deficiency

  13. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats.

    PubMed

    Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A; Ulrich-Lai, Yvonne M; Herman, James P

    2015-01-01

    Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic (NA) neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. In this study, we tested the hypothesis that NTS NA A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n = 5; HPA study, n = 5] or vehicle [cardiovascular study, n = 6; HPA study, n = 4]. Rats were exposed to acute restraint stress followed by 14 d of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low-frequency to high-frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress.

  14. PTSD-Like Memory Generated Through Enhanced Noradrenergic Activity is Mitigated by a Dual Step Pharmacological Intervention Targeting its Reconsolidation

    PubMed Central

    Gazarini, Lucas; Stern, Cristina A. J.; Piornedo, Rene R.; Takahashi, Reinaldo N.

    2015-01-01

    Background: Traumatic memories have been resilient to therapeutic approaches targeting their permanent attenuation. One of the potentially promising pharmacological strategies under investigation is the search for safe reconsolidation blockers. However, preclinical studies focusing on this matter have scarcely addressed abnormal aversive memories and related outcomes. Methods: By mimicking the enhanced noradrenergic activity reported after traumatic events in humans, here we sought to generate a suitable condition to establish whether some clinically approved drugs able to disrupt the reconsolidation of conditioned fear memories in rodents would still be effective. Results: We report that the α2-adrenoceptor antagonist yohimbine was able to induce an inability to restrict behavioral (fear) and cardiovascular (increased systolic blood pressure) responses to the paired context when administered immediately after acquisition, but not 6h later, indicating the formation of a generalized fear memory, which endured for over 29 days and was less susceptible to suppression by extinction. It was also resistant to reconsolidation disruption by the α2-adrenoceptor agonist clonidine or cannabidiol, the major non-psychotomimetic component of Cannabis sativa. Since signaling at N-methyl-D-aspartate (NMDA) receptors is important for memory labilization and because a dysfunctional memory may be less labile than is necessary to trigger reconsolidation on its brief retrieval and reactivation, we then investigated and demonstrated that pre-retrieval administration of the partial NMDA agonist D-cycloserine allowed the disrupting effects of clonidine and cannabidiol on reconsolidation. Conclusions: These findings highlight the effectiveness of a dual-step pharmacological intervention to mitigate an aberrant and enduring aversive memory similar to that underlying the post-traumatic stress disorder. PMID:25539509

  15. Similar increases in extracellular lactic acid in the limbic system during epileptic and/or olfactory stimulation.

    PubMed

    Fornai, F; Bassi, L; Gesi, M; Giorgi, F S; Guerrini, R; Bonaccorsi, I; Alessandrì, M G

    2000-01-01

    Previous studies have shown that physiological stimulation of brain activity increases anaerobic glucose consumption, both in humans and in experimental animals. To investigate this phenomenon further, we measured extracellular lactate levels within different rat brain regions, using microdialysis. Experiments were performed comparing the effects of natural, physiological olfactory stimulation of the limbic system with experimental limbic seizures. Olfactory stimulation was carried out by using different odors (i.e. both conventional odors: 2-isobutyl-3-methoxypyrazine, green pepper essence; thymol; and 2-sec-butylthiazoline, a sexual pheromone). Limbic seizures were either induced by systemic injection of pilocarpine (200-400 mg/kg) or focally elicited by microinfusions of chemoconvulsants (bicuculline 118 pmol and cychlothiazide 1.2 nmol) within the anterior piriform cortex. Seizures induced by systemic pilocarpine tripled lactic acid within the hippocampus, whereas limbic seizures elicited by focal microinfusion of chemoconvulsants within the piriform cortex produced a less pronounced increase in extracellular lactic acid. Increases in extracellular lactate occurring during olfactory stimulation with the sexual pheromone (three times the baseline levels) were non-significantly different from those occurring after systemic pilocarpine. Increases in lactic acid following natural olfactory stimulation were abolished both by olfactory bulbectomy and by the focal microinfusion of tetrodotoxin, while they were significantly attenuated by the local application of the N-methyl-D-aspartate antagonist AP-5. Increases in hippocampal lactate induced by short-lasting stimuli (olfactory stimulation or microinfusion of subthreshold doses of chemoconvulsants, bicuculline 30 pmol) were reproducible after a short delay (1 h) and cumulated when applied sequentially. In contrast, limbic status epilepticus led to a long-lasting refractoriness to additional lactate-raising stimuli

  16. Too Much of a Good Thing: Blocking Noradrenergic Facilitation in Medial Prefrontal Cortex Prevents the Detrimental Effects of Chronic Stress on Cognition

    PubMed Central

    Jett, Julianne D; Morilak, David A

    2013-01-01

    Cognitive impairments associated with dysfunction of the medial prefrontal cortex (mPFC) are prominent in stress-related psychiatric disorders. We have shown that enhancing noradrenergic tone acutely in the rat mPFC facilitated extra-dimensional (ED) set-shifting on the attentional set-shifting test (AST), whereas chronic unpredictable stress (CUS) impaired ED. In this study, we tested the hypothesis that the acute facilitatory effect of norepinephrine (NE) in mPFC becomes detrimental when activated repeatedly during CUS. Using microdialysis, we showed that the release of NE evoked in mPFC by acute stress was unchanged at the end of CUS treatment. Thus, to then determine if repeated elicitation of this NE activity in mPFC during CUS may have contributed to the ED deficit, we infused a cocktail of α1-, β1-, and β2-adrenergic receptor antagonists into the mPFC prior to each CUS session, then tested animals drug free on the AST. Antagonist treatment prevented the CUS-induced ED deficit, suggesting that NE signaling during CUS compromised mPFC function. We confirmed that this was not attributable to sensitization of adrenergic receptor function following chronic antagonist treatment, by administering an additional microinjection into the mPFC immediately prior to ED testing. Acute antagonist treatment did not reverse the beneficial effects of chronic drug treatment during CUS, nor have any effect on baseline ED performance in chronic vehicle controls. Thus, we conclude that blockade of noradrenergic receptors in mPFC protected against the detrimental cognitive effects of CUS, and that repeated elicitation of noradrenergic facilitatory activity is one mechanism by which chronic stress may promote mPFC cognitive dysfunction. PMID:23132268

  17. Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson's disease with combined noradrenergic and serotonergic lesions.

    PubMed

    Rampersaud, N; Harkavyi, A; Giordano, G; Lever, R; Whitton, J; Whitton, P S

    2012-10-01

    Research on Parkinson's disease (PD) has mainly focused on the degeneration of the dopaminergic neurons of nigro-striatal pathway; however, post-mortem studies have demonstrated that other brain regions such as the locus coeruleus (LC) and raphe nuclei (RN) are significantly affected as well. Degeneration of these crucial neuronal cell bodies may be responsible for depressive behavior and cognitive decline present in the pre-motor stage of PD. We have thus set out to create a pre-motor rodent model of PD which mimics the early stages of the condition. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), a selective noradrenergic neurotoxin, and parachloroampetamine (pCA), a selective serotonergic neurotoxin, were utilized concomitantly with bilateral 6-hydroxydopamine (6-OHDA) injections into the striatum to produce a pre-motor rodent model of PD with partial deficits in the dopaminergic, noradrenergic, and serotonergic systems. Our model exhibited a depressive/anhedonic condition as assessed using sucrose preference testing and the forced swim test. Our model also demonstrated deficits in object memory. These behavioral impairments were accompanied by a decline in both tissue and extracellular levels of all three neurotransmitters in both the frontal cortex and striatum. Immunohistochemistry also revealed a decrease in TH+ cells in the LC and substantia nigra. Exendin-4 (EX-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, promoted recovery of both the biochemical and behavioral dysfunction exhibited by our model. EX-4 was able to preserve the functional integrity of the dopaminergic, noradrenergic, and serotonergic systems. In conclusion, we have generated a novel animal model of PD that recapitulates certain pre-motor symptomology. These symptoms and causative physiology are ameliorated upon treatment with EX-4 and thus it could be used as a possible therapy for the non-motor symptoms prominent in the early stages of PD.

  18. The antidepressant-like effect of ethynyl estradiol is mediated by both serotonergic and noradrenergic systems in the forced swimming test.

    PubMed

    Vega-Rivera, N M; López-Rubalcava, C; Estrada-Camarena, E

    2013-10-10

    17α-Ethynyl-estradiol (EE2, a synthetic steroidal estrogen) induces antidepressant-like effects in the forced swimming test (FST) similar to those induced by 5-HT and noradrenaline reuptake inhibitors (dual antidepressants). However, the precise mechanism of action of EE2 has not been studied. In the present study, the participation of estrogen receptors (ERs) and the serotonergic and the noradrenergic presynaptic sites in the antidepressant-like action of EE2 was evaluated in the FST. The effects of the ER antagonist ICI 182,780 (10 μg/rat; i.c.v.), the serotonergic and noradrenergic terminal destruction with 5,7-dihydroxytryptamine (5,7-DHT; 200 μg/rat, i.c.v.), and N-(2-chloro-ethyl)-N-ethyl-2-bromobenzylamine (DSP4; 10mg/kg, i.p.) were studied in ovariectomized rats treated with EE2 and subjected to the FST. In addition, the participation of α2-adrenergic receptors in the antidepressant-like action of EE2 was explored using the selective α2-receptor antagonist idazoxan (0.25, 0.5 and 1.0mg/kg, i.p.). EE2 induced an antidepressant-like action characterized by a decrease in immobility behavior with a concomitant increase in swimming and climbing behaviors. The ER antagonist, 5,7-DHT, DSP4, and idazoxan blocked the effects of EE2 on the immobility behavior, whereas ICI 182,780 and 5,7-DHT affected swimming behavior. The noradrenergic compound DSP4 altered climbing behavior, while Idazoxan inhibited the increase of swimming and climbing behaviors induced by EE2. Our results suggest that the antidepressant-like action of EE2 implies a complex mechanism of action on monoaminergic systems and estrogen receptors.

  19. The effect of Schisandra chinensis extracts on depression by noradrenergic, dopaminergic, GABAergic and glutamatergic systems in the forced swim test in mice.

    PubMed

    Yan, Tingxu; Xu, Mengjie; Wu, Bo; Liao, Zhengzheng; Liu, Zhi; Zhao, Xu; Bi, Kaishun; Jia, Ying

    2016-06-15

    Schisandra chinensis (Turcz.) Baill., as a Chinese functional food, has been widely used in neurological disorders including insomnia and Alzheimer's disease. The treatment of classical neuropsychiatric disorder depression is to be developed from Schisandra chinensis. The antidepressant-like effects of the Schisandra chinensis extracts (SCE), and their probable involvement in the serotonergic, noradrenergic, dopaminergic, GABAergic and glutamatergic systems were investigated by the forced swim test (FST). Acute administration of SCE (600 mg kg(-1), i.g.), a combination of SCE (300 mg kg(-1), i.g.) and reboxetine (a noradrenalin reuptake inhibitor, 2.5 mg kg(-1), i.p.) or imipramine (a TCA, 2 mg kg(-1), i.p.) reduced the immobility time in the FST. Pretreatment with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4, a selective noradrenergic neurotoxin, 50 mg kg(-1), i.p., 4 days), haloperidol (a non-selective D2 receptor antagonist, 0.2 mg kg(-1), i.p.), SCH 23390 (a selective D1 receptor antagonist, 0.03 mg kg(-1), i.p.), bicuculline (a competitive GABA antagonist, 4 mg kg(-1), i.p.) and N-methyl-d-aspartic acid (NMDA, an agonist at the glutamate site, 75 mg kg(-1), i.p.) effectively reversed the antidepressant-like effect of SCE (600 mg kg(-1), i.g.). However, p-chlorophenylalanine (pCPA, an inhibitor of 5-HT synthesis, 100 mg kg(-1), i.p., 4 days,) did not eliminate the reduced immobility time induced by SCE (600 mg kg(-1), i.g.). Moreover, the treatments did not change the locomotor activity. Altogether, these results indicated that SCE produced antidepressant-like activity, which might be mediated by the modification of noradrenergic, dopaminergic, GABAergic and glutamatergic systems.

  20. Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons

    PubMed Central

    Oettinghaus, B; Schulz, J M; Restelli, L M; Licci, M; Savoia, C; Schmidt, A; Schmitt, K; Grimm, A; Morè, L; Hench, J; Tolnay, M; Eckert, A; D'Adamo, P; Franken, P; Ishihara, N; Mihara, K; Bischofberger, J; Scorrano, L; Frank, S

    2016-01-01

    Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration. PMID:25909888

  1. Pregnenolone sulfate and its enantiomer: differential modulation of memory in a spatial discrimination task using forebrain NMDA receptor deficient mice

    PubMed Central

    Petit, Géraldine H.; Tobin, Christine; Krishnan, Kathiresan; Moricard, Yves; Covey, Douglas F.; Rondi-Reig, Laure; Akwa, Yvette

    2010-01-01

    This study examined the role of forebrain N-methyl-D-aspartate receptors (NMDA-Rs) in the promnesiant effects of natural (+) pregnenolone sulfate (PREGS) and its synthetic (−) enantiomer ent-PREGS in young adult mice. Using the two-trial arm discrimination task in a Y-maze, PREGS and ent-PREGS administration to control mice increased memory performances. In mice with a knock-out of the NR1 subunit of NMDA-Rs in the forebrain, the promnesiant effect of ent-PREGS was maintained whereas the activity of PREGS was lost. Memory enhancement by PREGS involves the NMDA-R activity in the hippocampal CA1 area and possibly in some locations of the cortical layers, whereas ent-PREGS acts independently of NMDA-R function. PMID:21036556

  2. 5-hydroxymethyl-2-furfural prolongs survival and inhibits oxidative stress in a mouse model of forebrain ischemia☆

    PubMed Central

    Ya, Bailiu; Zhang, Lan; Zhang, Li; Li, Yali; Li, Lin

    2012-01-01

    In the present study, we hypothesized that 5-hydroxymethyl-2-furfural could attenuate ischemic brain damage by reducing oxidative injury. Thus, mice were subjected to bilateral common carotid artery occlusion to establish a model of permanent forebrain ischemia. The mice were intraperitoneally injected with 5-hydroxymethyl-2-furfural 30 minutes before ischemia or 5 minutes after ischemia. The survival time of mice injected with 5-hydroxymethyl-2-furfural was longer compared with untreated mice. The mice subjected to ischemia for 30 minutes and reperfusion for 5 minutes were intraperitoneally injected with 5-hydroxymethyl-2-furfural 5 minutes prior to reperfusion, which increased superoxide dismutase content and reduced malondialdehyde content, similar to the effects of Edaravone, a hydroxyl radical scavenger used for the treatment of stroke. These findings indicate that intraperitoneal injection of 5-hydroxymethyl-2-furfural can prolong the survival of mice with permanent forebrain ischemia. This outcome may be mediated by its antioxidative effects. PMID:25624794

  3. Differential prepuberal handling modifies behaviour and excitatory amino acids in the forebrain of the Naples High-Excitability rats.

    PubMed

    Ruocco, L A; Gironi Carnevale, U A; Sica, A; Arra, C; Topo, E; Di Giovanni, M; D'Aniello, A; Sadile, A G

    2009-03-01

    Naples High-Excitability (NHE) rats model the mesocortical variant of Attention-Deficit Hyperactivity Disorder (ADHD). Recently, a high level of excitatory amino acids (EAA) has been found in the forebrain of NHE rats. The aim of this study was to verify the effect of postnatal stimulation in prepuberal rats on forebrain EAA. Thus, prepuberal NHE and Naples Random Bred (NRB) control rats were daily handled (PS) or they were left undisturbed throughout (NO-PS). One hour after the last stimulation, PS and NO-PS rats were exposed to a spatial novelty in a Làt-maze and one day later to a non-reinforced Olton maze. In both tests the horizontal (HA) and vertical (frequency - VA and duration of rearing - RD) components of behaviour indexed activity and non-selective attention (NSA). Moreover, in the Olton maze the position of the number of arms visited before first repetition (FE) and to criterion (NVTC), indexed selective spatial attention (SSA). Amino acids were detected by HPLC in prefrontal cortex (PFC), striatum (STR), hippocampus (HPC) and hypothalamus (HYP). Results indicate that (i) in the Làt-maze, only for HA, NO-PS NHE rats were more active than PS, (ii) in the Olton maze NO-PS rats of both lines showed shorter rearing durations than PS, (iii) EAA level was higher in NHE than in NRB rats and (iv) NO-PS vs. PS treatment increased level of EAA across the forebrain in both rat lines. In contrast in NHE NO-PS rats L-glutamate (L-Glu) decreased in HYP and L-aspartate (L-Asp) decreased in HPC. In conclusion, postnatal stimulation in prepuberal rats significantly affects forebrain excitatory amino acids and behaviour in NHE line. Thus EAA are modulated by genetic determinants and environmental (epigenetic) factors.

  4. Engrailed-2 (En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior.

    PubMed

    Genestine, Matthieu; Lin, Lulu; Durens, Madel; Yan, Yan; Jiang, Yiqin; Prem, Smrithi; Bailoor, Kunal; Kelly, Brian; Sonsalla, Patricia K; Matteson, Paul G; Silverman, Jill; Crawley, Jacqueline N; Millonig, James H; DiCicco-Bloom, Emanuel

    2015-10-15

    Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2-knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ∼35% in forebrain, they were increased 40 -: 75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5 -: 15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human

  5. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome

    PubMed Central

    Goodliffe, Joseph W.; Olmos-Serrano, Jose Luis; Aziz, Nadine M.; Pennings, Jeroen L.A.; Guedj, Faycal; Bianchi, Diana W.

    2016-01-01

    Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. SIGNIFICANCE STATEMENT Down syndrome (DS) leads to intellectual disability. Several mouse models have increased our understanding of the neuropathology of DS and are currently being used to test therapeutic strategies. A new mouse model that contains an expanded number of DS-related genes, known as Dp(16)1Yey/+ (Dp16), has been generated recently. We sought to determine whether the extended triplication creates a better phenocopy of DS-related brain pathologies. We measured embryonic development, forebrain maturation, and perinatal/adult behavior and revealed an absence of prenatal phenotypes in Dp16 fetal brain, but specific cellular and behavioral

  6. fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity.

    PubMed

    Paret, Christian; Ruf, Matthias; Gerchen, Martin Fungisai; Kluetsch, Rosemarie; Demirakca, Traute; Jungkunz, Martin; Bertsch, Katja; Schmahl, Christian; Ende, Gabriele

    2016-01-15

    Down-regulation of the amygdala with real-time fMRI neurofeedback (rtfMRI NF) potentially allows targeting brain circuits of emotion processing and may involve prefrontal-limbic networks underlying effective emotion regulation. Little research has been dedicated to the effect of rtfMRI NF on the functional connectivity of the amygdala and connectivity patterns in amygdala down-regulation with neurofeedback have not been addressed yet. Using psychophysiological interaction analysis of fMRI data, we present evidence that voluntary amygdala down-regulation by rtfMRI NF while viewing aversive pictures was associated with increased connectivity of the right amygdala with the ventromedial prefrontal cortex (vmPFC) in healthy subjects (N=16). In contrast, a control group (N=16) receiving sham feedback did not alter amygdala connectivity (Group×Condition t-contrast: p<.05 at cluster-level). Task-dependent increases in amygdala-vmPFC connectivity were predicted by picture arousal (β=.59, p<.05). A dynamic causal modeling analysis with Bayesian model selection aimed at further characterizing the underlying causal structure and favored a bottom-up model assuming predominant information flow from the amygdala to the vmPFC (xp=.90). The results were complemented by the observation of task-dependent alterations in functional connectivity of the vmPFC with the visual cortex and the ventrolateral PFC in the experimental group (Condition t-contrast: p<.05 at cluster-level). Taken together, the results underscore the potential of amygdala fMRI neurofeedback to influence functional connectivity in key networks of emotion processing and regulation. This may be beneficial for patients suffering from severe emotion dysregulation by improving neural self-regulation.

  7. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex.

    PubMed

    Pirnia, T; Joshi, S H; Leaver, A M; Vasavada, M; Njau, S; Woods, R P; Espinoza, R; Narr, K L

    2016-01-01

    Electroconvulsive therapy (ECT) is a highly effective and rapidly acting treatment for severe depression. To understand the biological bases of therapeutic response, we examined variations in cortical thickness from magnetic resonance imaging (MRI) data in 29 patients scanned at three time points during an ECT treatment index series and in 29 controls at two time points. Changes in thickness across time and with symptom improvement were evaluated at high spatial resolution across the cortex and within discrete cortical regions of interest. Patients showed increased thickness over the course of ECT in the bilateral anterior cingulate cortex (ACC), inferior and superior temporal, parahippocampal, entorhinal and fusiform cortex and in distributed prefrontal areas. No changes across time occurred in controls. In temporal and fusiform regions showing significant ECT effects, thickness differed between patients and controls at baseline and change in thickness related to therapeutic response in patients. In the ACC, these relationships occurred in treatment responders only, and thickness measured soon after treatment initiation predicted the overall ECT response. ECT leads to widespread neuroplasticity in neocortical, limbic and paralimbic regions and changes relate to the extent of antidepressant response. Variations in ACC thickness, which discriminate treatment responders and predict response early in the course of ECT, may represent a biomarker of overall clinical outcome. Because post-mortem studies show focal reductions in glial density and neuronal size in patients with severe depression, ECT-related increases in thickness may be attributable to neuroplastic processes affecting the size and/or density of neurons and glia and their connections. PMID:27271858

  8. Outcome of limbic encephalitis with VGKC-complex antibodies: relation to antigenic specificity.

    PubMed

    Malter, M P; Frisch, C; Schoene-Bake, J C; Helmstaedter, C; Wandinger, K P; Stoecker, W; Urbach, H; Surges, R; Elger, C E; Vincent, A V; Bien, C G

    2014-09-01

    In limbic encephalitis (LE) with antibodies (Abs) to the voltage-gated potassium channel complex (VGKC), the Abs are mainly directed to the VGKC-complex proteins, leucine-rich, glioma inactivated 1 protein (LGI1) or contactin-associated protein-like 2 (CASPR-2) or neither. Here, we relate the outcomes of VGKC-LE patients to the presence of Abs to LGI1, CASPR-2 or neither antigen (LGI1/CASPR-2-Ab(-)). Clinical, neuropsychology and MRI data were obtained from patient records for all LE patients from the Bonn Epilepsy Centre positive for VGKC-Abs by radioimmunoprecipitation assay between 2002 and 2011. Eighteen VGKC-LE patients were identified: nine patients (50 %) had LGI1-Abs, three (16 %) had CASPR-2-Abs; and six (33 %) were negative for both LGI1- and CASPR-2-Abs. At first assessment, the groups did not differ clinically or radiologically, but faciobrachial dystonic seizures were only observed in two LGI1-Ab(+) patients. All patients received monthly intravenous methylprednisolone (MP) pulses. At the most recent follow up (median 26 months), thirteen (72 %) were seizure-free, and seizure-freedom rates did not differ between the Ab groups. Hippocampal atrophy had developed in 7/9 LGI1-Ab(+) patients, but in none of the CASPR-2-Ab(+) or LGI/CASPR-2-Ab(-) patients (p = 0.003). While all subgroups improved, memory scores only normalized in six patients (33 %) and LGI1-Ab(+) patients were left with significantly poorer memory than the other two subgroups. Most VGKC-LE patients become seizure-free with pulsed monthly MP, but memory outcome is less favourable. Hippocampal atrophy and poor memory recovery is common in patients with LGI1-Abs and suggests permanent functional damage. More intense immunotherapies could improve outcomes in LGI1-Ab(+)-LE.

  9. Limbic responses to reward cues correlate with antisocial trait density in heavy drinkers

    PubMed Central

    Oberlin, Brandon G.; Dzemidzic, Mario; Bragulat, Veronique; Lehigh, Cari A.; Talavage, Thomas; O’Connor, Sean J.; Kareken, David A.

    2012-01-01

    Antisocial traits are common among alcoholics— particularly in certain subtypes. Although people with antisocial tendencies show atypical brain activation in some emotion and reward paradigms, how the brain reward systems of heavy drinkers (HD) are influenced by antisocial traits remains unclear. We used subjects’ preferred alcohol drink odors (AO), appetitive (ApCO) and non-appetitive (NApO) control odors in functional magnetic resonance imaging (fMRI) to determine if reward system responses varied as a function of antisocial trait density (ASD). In this retrospective analysis, we examined 30 HD who had participated in imaging twice: once while exposed to clamped intravenous alcohol infusion targeted to 50 mg%, and once during placebo saline infusion. Under placebo, there were positive correlations between ASD and blood oxygenation level dependent (BOLD) activation in the [AO > ApCO] contrast in the left dorsal putamen, while negative correlations were present in medial orbitofrontal cortex (OFC) and the bilateral amygdala. A similar pattern was observed in the correlation with the [AO > NApO] contrast. This inverse relationship between ASD and activation to alcohol odors in OFC and amygdala was specific to AO. However, negative correlations between ASD and the [ApCO > NApO] contrast were also present in the insula, putamen, and medial frontal cortex. These data suggest that frontal and limbic reward circuits of those with significant ASD are less responsive to reward cues in general, and particularly to alcohol cues in medial OFC and amygdala. These findings are broadly consistent with the reward deficiency syndrome hypothesis, although positive correlation in the striatum suggests regional variability. PMID:22227139

  10. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex

    PubMed Central

    Pirnia, T; Joshi, S H; Leaver, A M; Vasavada, M; Njau, S; Woods, R P; Espinoza, R; Narr, K L

    2016-01-01

    Electroconvulsive therapy (ECT) is a highly effective and rapidly acting treatment for severe depression. To understand the biological bases of therapeutic response, we examined variations in cortical thickness from magnetic resonance imaging (MRI) data in 29 patients scanned at three time points during an ECT treatment index series and in 29 controls at two time points. Changes in thickness across time and with symptom improvement were evaluated at high spatial resolution across the cortex and within discrete cortical regions of interest. Patients showed increased thickness over the course of ECT in the bilateral anterior cingulate cortex (ACC), inferior and superior temporal, parahippocampal, entorhinal and fusiform cortex and in distributed prefrontal areas. No changes across time occurred in controls. In temporal and fusiform regions showing significant ECT effects, thickness differed between patients and controls at baseline and change in thickness related to therapeutic response in patients. In the ACC, these relationships occurred in treatment responders only, and thickness measured soon after treatment initiation predicted the overall ECT response. ECT leads to widespread neuroplasticity in neocortical, limbic and paralimbic regions and changes relate to the extent of antidepressant response. Variations in ACC thickness, which discriminate treatment responders and predict response early in the course of ECT, may represent a biomarker of overall clinical outcome. Because post-mortem studies show focal reductions in glial density and neuronal size in patients with severe depression, ECT-related increases in thickness may be attributable to neuroplastic processes affecting the size and/or density of neurons and glia and their connections. PMID:27271858

  11. Pre-existing structural abnormalities of the limbic system in transient global amnesia.

    PubMed

    Park, Kang Min; Han, Yong Hee; Kim, Tae Hyung; Mun, Chi Woong; Shin, Kyong Jin; Ha, Sam Yeol; Park, JinSe; Kim, Sung Eun

    2015-05-01

    This study aimed to investigate the clinical and radiological findings in patients with transient global amnesia and to evaluate structural abnormalities using voxel-based morphometry. The subjects were diagnosed with transient global amnesia. For the voxel-based morphometry analyses, Statistical Parametric Mapping, running on the MATLAB platform (MathWorks, Natick, MA, USA), was employed to analyze the structural differences between patients with transient global amnesia and control subjects. Eighty patients met the inclusion criteria. Twenty-three patients (29%) were men, and 57 patients (71%) were women. There were significantly more women among the transient global amnesia patients compared with the general Korean population. MRI revealed hippocampal cavities in 41 patients (51%), and the incidence of such cavities was significantly different from that of the control subjects (24%). There were no differences in the clinical factors between the patients with and without hippocampal cavities. Diffusion-weighted imaging was performed in 54 patients, and 13 patients (24%) exhibited high signal intensity in the hippocampus. There were also no differences in the clinical factors between the patients with and without high signal intensities in the hippocampus on diffusion-weighted imaging. Twenty-six patients underwent three-dimensional volumetric T1-weighted imaging that produced results suitable for voxel-based morphometry, and these patients presented with gray matter volume reductions in the hippocampus, cingulum, and cerebellum. There were significant structural differences in the limbic structures between patients with transient global amnesia and the control subjects that might have contributed to vulnerability of the memory pathways of the patients with transient global amnesia.

  12. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training.

    PubMed

    Morena, Maria; Roozendaal, Benno; Trezza, Viviana; Ratano, Patrizia; Peloso, Andrea; Hauer, Daniela; Atsak, Piray; Trabace, Luigia; Cuomo, Vincenzo; McGaugh, James L; Schelling, Gustav; Campolongo, Patrizia

    2014-12-23

    Previous studies have provided extensive evidence that administration of cannabinoid drugs after training modulates the consolidation of memory for an aversive experience. The present experiments investigated whether the memory consolidation is regulated by endogenously released cannabinoids. The experiments first examined whether the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) are released by aversive training. Inhibitory avoidance training with higher footshock intensity produced increased levels of AEA in the amygdala, hippocampus, and medial prefrontal cortex (mPFC) shortly after training in comparison with levels assessed in rats trained with lower footshock intensity or unshocked controls exposed only to the training apparatus. In contrast, 2-AG levels were not significantly elevated. The additional finding that posttraining infusions of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which selectively increases AEA levels at active synapses, administered into the basolateral complex of the amygdala (BLA), hippocampus, or mPFC enhanced memory strongly suggests that the endogenously released AEA modulates memory consolidation. Moreover, in support of the view that this emotional training-associated increase in endocannabinoid neurotransmission, and its effects on memory enhancement, depends on the integrity of functional interactions between these different brain regions, we found that disruption of BLA activity blocked the training-induced increases in AEA levels as well as the memory enhancement produced by URB597 administered into the hippocampus or mPFC. Thus, the findings provide evidence that emotionally arousing training increases AEA levels within prefrontal-limbic circuits and strongly suggest that this cannabinoid activation regulates emotional arousal effects on memory consolidation.

  13. Trait anxiety modulates fronto-limbic processing of emotional interference in borderline personality disorder.

    PubMed

    Holtmann, Jana; Herbort, Maike C; Wüstenberg, Torsten; Soch, Joram; Richter, Sylvia; Walter, Henrik; Roepke, Stefan; Schott, Björn H

    2013-01-01

    Previous studies of cognitive alterations in borderline personality disorder (BPD) have yielded conflicting results. Given that a core feature of BPD is affective instability, which is characterized by emotional hyperreactivity and deficits in emotion regulation, it seems conceivable that short-lasting emotional distress might exert temporary detrimental effects on cognitive performance. Here we used functional magnetic resonance imaging (fMRI) to investigate how task-irrelevant emotional stimuli (fearful faces) affect performance and fronto-limbic neural activity patterns during attention-demanding cognitive processing in 16 female, unmedicated BPD patients relative to 24 age-matched healthy controls. In a modified flanker task, emotionally negative, socially salient pictures (fearful vs. neutral faces) were presented as distracters in the background. Patients, but not controls, showed an atypical response pattern of the right amygdala with increased activation during emotional interference in the (difficult) incongruent flanker condition, but emotion-related amygdala deactivation in the congruent condition. A direct comparison of the emotional conditions between the two groups revealed that the strongest diagnosis-related differences could be observed in the dorsal and, to a lesser extent, also in the rostral anterior cingulate cortex (dACC, rACC) where patients exhibited an increased neural response to emotional relative to neutral distracters. Moreover, in the incongruent condition, both the dACC and rACC fMRI responses during emotional interference were negatively correlated with trait anxiety in the patients, but not in the healthy controls. As higher trait anxiety was also associated with longer reaction times (RTs) in the BPD patients, we suggest that in BPD patients the ACC might mediate compensatory cognitive processes during emotional interference and that such neurocognitive compensation that can be adversely affected by high levels of anxiety.

  14. Trait anxiety modulates fronto-limbic processing of emotional interference in borderline personality disorder

    PubMed Central

    Holtmann, Jana; Herbort, Maike C.; Wüstenberg, Torsten; Soch, Joram; Richter, Sylvia; Walter, Henrik; Roepke, Stefan; Schott, Björn H.

    2013-01-01

    Previous studies of cognitive alterations in borderline personality disorder (BPD) have yielded conflicting results. Given that a core feature of BPD is affective instability, which is characterized by emotional hyperreactivity and deficits in emotion regulation, it seems conceivable that short-lasting emotional distress might exert temporary detrimental effects on cognitive performance. Here we used functional magnetic resonance imaging (fMRI) to investigate how task-irrelevant emotional stimuli (fearful faces) affect performance and fronto-limbic neural activity patterns during attention-demanding cognitive processing in 16 female, unmedicated BPD patients relative to 24 age-matched healthy controls. In a modified flanker task, emotionally negative, socially salient pictures (fearful vs. neutral faces) were presented as distracters in the background. Patients, but not controls, showed an atypical response pattern of the right amygdala with increased activation during emotional interference in the (difficult) incongruent flanker condition, but emotion-related amygdala deactivation in the congruent condition. A direct comparison of the emotional conditions between the two groups revealed that the strongest diagnosis-related differences could be observed in the dorsal and, to a lesser extent, also in the rostral anterior cingulate cortex (dACC, rACC) where patients exhibited an increased neural response to emotional relative to neutral distracters. Moreover, in the incongruent condition, both the dACC and rACC fMRI responses during emotional interference were negatively correlated with trait anxiety in the patients, but not in the healthy controls. As higher trait anxiety was also associated with longer reaction times (RTs) in the BPD patients, we suggest that in BPD patients the ACC might mediate compensatory cognitive processes during emotional interference and that such neurocognitive compensation that can be adversely affected by high levels of anxiety. PMID

  15. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training

    PubMed Central

    Morena, Maria; Roozendaal, Benno; Trezza, Viviana; Ratano, Patrizia; Peloso, Andrea; Hauer, Daniela; Atsak, Piray; Trabace, Luigia; Cuomo, Vincenzo; McGaugh, James L.; Schelling, Gustav; Campolongo, Patrizia

    2014-01-01

    Previous studies have provided extensive evidence that administration of cannabinoid drugs after training modulates the consolidation of memory for an aversive experience. The present experiments investigated whether the memory consolidation is regulated by endogenously released cannabinoids. The experiments first examined whether the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) are released by aversive training. Inhibitory avoidance training with higher footshock intensity produced increased levels of AEA in the amygdala, hippocampus, and medial prefrontal cortex (mPFC) shortly after training in comparison with levels assessed in rats trained with lower footshock intensity or unshocked controls exposed only to the training apparatus. In contrast, 2-AG levels were not significantly elevated. The additional finding that posttraining infusions of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which selectively increases AEA levels at active synapses, administered into the basolateral complex of the amygdala (BLA), hippocampus, or mPFC enhanced memory strongly suggests that the endogenously released AEA modulates memory consolidation. Moreover, in support of the view that this emotional training-associated increase in endocannabinoid neurotransmission, and its effects on memory enhancement, depends on the integrity of functional interactions between these different brain regions, we found that disruption of BLA activity blocked the training-induced increases in AEA levels as well as the memory enhancement produced by URB597 administered into the hippocampus or mPFC. Thus, the findings provide evidence that emotionally arousing training increases AEA levels within prefrontal-limbic circuits and strongly suggest that this cannabinoid activation regulates emotional arousal effects on memory consolidation. PMID:25489086

  16. Dementia and visual hallucinations associated with limbic pathology in Parkinson's disease.

    PubMed

    Kalaitzakis, M E; Christian, L M; Moran, L B; Graeber, M B; Pearce, R K B; Gentleman, S M

    2009-03-01

    The pathological basis of dementia and visual hallucinations in Parkinson's disease (PD) is not yet fully understood. To investigate this further we have conducted a clinico-pathological study based on 30 post-mortem PD brains. PD cases were stratified into groups according to clinical characteristics as follows: (1) cognitively intact (n=9); (2) cases with severe dementia and visual hallucinations (n=12); (3) cases with severe dementia and no visual hallucinations (n=4); and (4) cases with severe visual hallucinations and no dementia (n=5). The extent of alpha-synuclein (alphaSyn), tau and amyloid beta peptide (Abeta) deposition was then examined in the CA2 sector of the hippocampus and in neocortical and subcortical areas known to subserve cognitive function. We find that dementia in PD is significantly associated with alphaSyn in the anterior cingulate gyrus, superior frontal gyrus, temporal cortex, entorhinal cortex, amygdaloid complex and CA2 sector of the hippocampus. Abeta in the anterior cingulate gyrus, entorhinal cortex, amygdaloid complex and nucleus basalis of Meynert is also associated with dementia as is tau in the CA2 sector of the hippocampus. alphaSyn burden in the amygdala is strongly related to the presence of visual hallucinations but only in those PD cases with concomitant dementia. Statistical analysis revealed that alphaSyn burden in the anterior cingulate gyrus could differentiate demented from non-demented PD cases with high sensitivity and specificity. We conclude that alphaSyn in limbic regions is related to dementia in PD as well as to visual hallucinations when there is an underlying dementia.

  17. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans

    PubMed Central

    Rabinak, Christine A.; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R.; Liberzon, Israel; Phan, K. Luan

    2013-01-01

    Pre-extinction administration of ∆9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely involves via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 hours after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders. PMID:24055595

  18. Orbitofrontal and limbic signatures of empathic concern and intentional harm in the behavioral variant frontotemporal dementia.

    PubMed

    Baez, Sandra; Morales, Juan P; Slachevsky, Andrea; Torralva, Teresa; Matus, Cristian; Manes, Facundo; Ibanez, Agustin

    2016-02-01

    Perceiving and evaluating intentional harms in an interpersonal context engages both cognitive and emotional domains. This process involves inference of intentions, moral judgment, and, crucially, empathy towards others' suffering. This latter skill is notably impaired in behavioral variant frontotemporal dementia (bvFTD). However, the relationship between regional brain atrophy in bvFTD and deficits in the above-mentioned abilities is not well understood. The present study investigated how gray matter (GM) atrophy in bvFTD patients correlates with the perception and evaluation of harmful actions (attribution of intentionality, evaluation of harmful behavior, empathic concern, and moral judgment). First, we compared the behavioral performance of 26 bvFTD patients and 23 healthy controls on an experimental task (ET) indexing intentionality, empathy, and moral cognition during evaluation of harmful actions. Second, we compared GM volume in patients and controls using voxel-based morphometry (VBM). Third, we examined brain regions where atrophy might be associated with specific impairments in the patient group. Finally, we explored whether the patients' deficits in intentionality comprehension and empathic concern could be partially explained by regional GM atrophy or impairments in other relevant factors, such as executive functions (EFs). In bvFTD patients, atrophy of limbic structures (amygdala and anterior paracingulate cortex--APC) was related to impairments in intentionality comprehension, while atrophy of the orbitofrontal cortex (OFC) was associated with empathic concern deficits. Intentionality comprehension impairments were predicted by EFs and orbitofrontal atrophy predicted deficits in empathic concern. Thus, although the perception and evaluation of harmful actions are variously compromised in bvFTD, deficits in empathic concern may be central to this syndrome as they are associated with one of the earliest atrophied region. More generally, our results

  19. Physiological effects of cigarette smoking in the limbic system revealed by 3 tesla magnetic resonance spectroscopy.

    PubMed

    Mennecke, Angelika; Gossler, Andrea; Hammen, Thilo; Dörfler, Arnd; Stadlbauer, Andreas; Rösch, Julie; Kornhuber, Johannes; Bleich, Stefan; Dölken, Marc; Thürauf, Norbert

    2014-10-01

    Several studies and recent models of effects of nicotine, the main addictive and psychoactive component in tobacco, point to action of the drug on the limbic system during maintenance of addiction, either direct or indirect via projections from the ventral tegmental area. The objective of this study was to demonstrate physiological effects of cigarette smoking on the hippocampus and the grey matter of the dorsal anterior cingulate cortex in the human brain with regard to addiction and withdrawal. This aim was achieved by group comparisons of results of magnetic resonance spectroscopy between non-smokers, smokers and smokers during withdrawal. 12 smokers and 12 non-smokers were measured with single voxel proton magnetic resonance spectroscopy for total N-acetyl aspartate, glutamate and glutamine, choline-containing compounds, myo-inositol and total creatine in the right and the left hippocampus and in the right and the left dorsal anterior cingulate cortex. Smokers were examined twice, first during regular cigarette smoking and second on the third day of nicotine withdrawal. The ratios to total creatine were used for better reliability. In our study, Glx/tCr was significantly increased and tCho/tCr was significantly decreased in the left cingulate cortex in smokers compared to non-smokers (p = 0.01, both). Six out of seven smokers showed normalization of the Glx/tCr in the left cingulate cortex during withdrawal. Although these results are preliminary due to the small sample size, our results confirm the assumption that cigarette smoking interferes directly or indirectly with the glutamate circuit in the dorsal anterior cingulate cortex.

  20. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome.

    PubMed

    Goodliffe, Joseph W; Olmos-Serrano, Jose Luis; Aziz, Nadine M; Pennings, Jeroen L A; Guedj, Faycal; Bianchi, Diana W; Haydar, Tarik F

    2016-03-01

    Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. PMID:26961948

  1. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome.

    PubMed

    Goodliffe, Joseph W; Olmos-Serrano, Jose Luis; Aziz, Nadine M; Pennings, Jeroen L A; Guedj, Faycal; Bianchi, Diana W; Haydar, Tarik F

    2016-03-01

    Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16.

  2. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer's Disease in Mouse Models.

    PubMed

    Yue, Wei; Li, Yuanyuan; Zhang, Ting; Jiang, Man; Qian, Yun; Zhang, Min; Sheng, Nengyin; Feng, Su; Tang, Ke; Yu, Xiang; Shu, Yousheng; Yue, Chunmei; Jing, Naihe

    2015-11-10

    Degeneration of basal forebrain cholinergic neurons (BFCNs) is associated with cognitive impairments of Alzheimer's disease (AD), implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs) are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD. PMID:26489896

  3. Forebrain-specific deletion of Cdk5 in pyramidal neurons results in mania-like behavior and cognitive impairment

    PubMed Central

    Su, Susan C.; Rudenko, Andrii; Cho, Sukhee; Tsai, Li-Huei

    2013-01-01

    Cyclin-dependent kinase 5 (Cdk5) is associated with synaptic plasticity and cognitive function. Previous reports have demonstrated that Cdk5 is necessary for memory formation, although others have reported Cdk5 conditional knockout mouse models exhibiting enhanced learning and memory. Furthermore, how Cdk5 acts in specific cell populations to affect behavior and cognitive outcomes remains unclear. Here we conduct a behavioral characterization of a forebrain-specific Cdk5 conditional knockout mouse model under the αCaMKII promoter, in which Cdk5 is ablated in excitatory pyramidal neurons of the forebrain. The Cdk5 conditional knockouts exhibit hyperactivitiy in the open field, reduced anxiety, and reduced behavioral despair. Moreover, the Cdk5 conditional knockouts also display impaired spatial learning in the Morris water maze and are severely impaired in contextual fear memory, which correspond to deficits in synaptic transmission. Remarkably, the hyperactivity of the Cdk5 conditional knockouts can be ameliorated by the administration of lithium chloride, an inhibitor of GSK3β signaling. Collectively, our data reveal that Cdk5 ablation from forebrain excitatory neurons results in deleterious effects on emotional and cognitive behavior and highlight a key role for Cdk5 in regulating the GSK3β signaling pathway. PMID:23850563

  4. Astaxanthin limits fish oil-related oxidative insult in the anterior forebrain of Wistar rats: putative anxiolytic effects?

    PubMed

    Mattei, Rita; Polotow, Tatiana G; Vardaris, Cristina V; Guerra, Beatriz A; Leite, José Roberto; Otton, Rosemari; Barros, Marcelo P

    2011-09-01

    The habitual consumption of marine fish is largely associated to human mental health. Fish oil is particularly rich in n-3 polyunsaturated fatty acids that are known to play a role in several neuronal and cognitive functions. In parallel, the orange-pinkish carotenoid astaxanthin (ASTA) is found in salmon and displays important antioxidant and anti-inflammatory properties. Many neuronal dysfunctions and anomalous psychotic behavior (such as anxiety, depression, etc.) have been strongly related to the higher sensitivity of cathecolaminergic brain regions to oxidative stress. Thus, the aim of this work was to study the combined effect of ASTA and fish oil on the redox status in plasma and in the monoaminergic-rich anterior forebrain region of Wistar rats with possible correlations with the anxiolytic behavior. Upon fish oil supplementation, the downregulation of superoxide dismutase and catalase activities combined to increased "free" iron content resulted in higher levels of lipid and protein oxidation in the anterior forebrain of animals. Such harmful oxidative modifications were hindered by concomitant supplementation with ASTA despite ASTA-related antioxidant protection was mainly observed in plasma. Although it is clear that ASTA properly crosses the brain-blood barrier, our data also address a possible indirect role of ASTA in restoring basal oxidative conditions in anterior forebrain of animals: by improving GSH-based antioxidant capacity of plasma. Preliminary anxiolytic tests performed in the elevated plus maze are in alignment with our biochemical observations.

  5. Neurochemical Organization and Experience-Dependent Activation of Estrogen-Associated Circuits in the Songbird Auditory Forebrain

    PubMed Central

    Jeong, Jin Kwon; Burrows, Kaiping; Tremere, Liisa A.; Pinaud, Raphael

    2011-01-01

    The classic steroid hormone estradiol is rapidly produced by central auditory neurons in the songbird brain and instantaneously modulates auditory coding to enhance the neural and behavioral discrimination of acoustic signals. Although these recent advances highlight novel roles for estradiol in the regulation of central auditory processing, current knowledge on the functional and neurochemical organization of estrogen-associated circuits, as well as the impact of sensory experience in these auditory forebrain networks, remains very limited. Here we show that both estrogen-producing and -sensitive neurons are highly expressed in the caudomedial nidopallium (NCM), the zebra finch analog of the mammalian auditory association cortex, but not other auditory forebrain areas. We further demonstrate that auditory experience primarily engages estrogen-producing, and to a lesser extent, estrogen-responsive neurons in NCM, that these neuronal populations moderately overl