Sample records for limbic structures involved

  1. Limbic circuitry of the midline thalamus.

    PubMed

    Vertes, Robert P; Linley, Stephanie B; Hoover, Walter B

    2015-07-01

    The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or 'limbic thalamus') consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The 'limbic' thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic-associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the 'limbic thalamus'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. LIMBIC CIRCUITRY OF THE MIDLINE THALAMUS

    PubMed Central

    Vertes, Robert P.; Linley, Stephanie B.; Hoover, Walter B.

    2016-01-01

    The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or ‘limbic thalamus’) consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The ‘limbic’ thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic–associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the ‘limbic thalamus’. PMID:25616182

  3. An aberrant parasympathetic response: a new perspective linking chronic stress and itch.

    PubMed

    Kim, Hei Sung; Yosipovitch, Gil

    2013-04-01

    Perceived stress has long been known to alter the dynamic equilibrium established between the nervous, endocrine and immune system and is widely recognised to trigger or enhance pruritus. However, the exact mechanism of how the major stress response systems, such as the hypothalamus-pituitary adrenal (HPA) axis and the autonomic nervous system induce or aggravate chronic itch, has not been elucidated. The limbic regions of the brain such as the prefrontal cortex and hippocampus are deeply involved in the regulation of the stress response and intersect with circuits that are responsible for memory and reward. According to the 'Polyvagal Theory', certain limbic structures that serve as a 'higher brain equivalent of the parasympathetic nervous system' play a foremost role in maintaining body homoeostasis by functioning as an active vagal brake. In addition, the limbic system has been postulated to regulate two distinct, yet related aspects of itch: (i) the sensory-discriminative aspect; and (ii) the affective-cognitive aspect. Chronic stress-induced itch is hypothesised to be caused by stress-related changes in limbic structure with subsequent rewiring of both the peripheral and central pruriceptive circuits. Herein, we review data suggesting that a dysfunctional parasympathetic nervous system associated with chronic stress may play a critical role in the regulatory control of key candidate molecules, receptors and brain structures involved in chronic itch. © 2012 John Wiley & Sons A/S.

  4. Bidirectional Causal Connectivity in the Cortico-Limbic-Cerebellar Circuit Related to Structural Alterations in First-Episode, Drug-Naive Somatization Disorder

    PubMed Central

    Li, Ranran; Liu, Feng; Su, Qinji; Zhang, Zhikun; Zhao, Jin; Wang, Ying; Wu, Renrong; Zhao, Jingping; Guo, Wenbin

    2018-01-01

    Background: Anatomical and functional deficits in the cortico-limbic-cerebellar circuit are involved in the neurobiology of somatization disorder (SD). The present study was performed to examine causal connectivity of the cortico-limbic-cerebellar circuit related to structural deficits in first-episode, drug-naive patients with SD at rest. Methods: A total of 25 first-episode, drug-naive patients with SD and 28 healthy controls underwent structural and resting-state functional magnetic resonance imaging. Voxel-based morphometry and Granger causality analysis (GCA) were used to analyze the data. Results: Results showed that patients with SD exhibited decreased gray matter volume (GMV) in the right cerebellum Crus I, and increased GMV in the left anterior cingulate cortex (ACC), right middle frontal gyrus (MFG), and left angular gyrus. Causal connectivity of the cortico-limbic-cerebellar circuit was partly affected by structural alterations in the patients. Patients with SD showed bidirectional cortico-limbic connectivity abnormalities and bidirectional cortico-cerebellar and limbic-cerebellar connectivity abnormalities. The mean GMV of the right MFG was negatively correlated with the scores of the somatization subscale of the symptom checklist-90 and persistent error response of the Wisconsin Card Sorting Test (WCST) in the patients. A negative correlation was observed between increased driving connectivity from the right MFG to the right fusiform gyrus/cerebellum IV, V and the scores of the Eysenck Personality Questionnaire extraversion subscale. The mean GMV of the left ACC was negatively correlated with the WCST number of errors and persistent error response. Negative correlation was found between the causal effect from the left ACC to the right middle temporal gyrus and the scores of WCST number of categories achieved. Conclusions: Our findings show the partial effects of structural alterations on the cortico-limbic-cerebellar circuit in first-episode, drug-naive patients with SD. Correlations are observed between anatomical alterations or causal effects and clinical variables in patients with SD, and bear clinical significance. The present study emphasizes the importance of the cortico-limbic-cerebellar circuit in the neurobiology of SD. PMID:29755373

  5. Neuropharmacological Specificity of Brain Structures Involved in Soman-Induced Seizures

    DTIC Science & Technology

    2012-01-01

    Bernabé Burckhart M-F, Lallement G. Efficacy of the ketamine-atropine combination in the delayed treatment of soman- induced status epilepticus ...The functional anatomy of limbic status epilepticus in the rat. I. Patterns of 14C-2-deoxyglucose uptake and fos immunochemistry. Journal of...Neuroscience 1993a;13(11):4787–801. White LE, Price JL. The functional anatomy of limbic status epilepticus in the rat. II. The effects of focal deactivation

  6. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex

    PubMed Central

    Goldstein, Rita Z.; Volkow, Nora D.

    2005-01-01

    Objective Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. Method An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. Results The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to track, update, and modulate the salience of a reinforcer as a function of context and expectation and the ability to control and inhibit prepotent responses. Conclusions These results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervaluing of alternative reinforcers, and deficits in inhibitory control for drug responses. These changes in addiction, which the authors call I-RISA (impaired response inhibition and salience attribution), expand the traditional concepts of drug dependence that emphasize limbic-regulated responses to pleasure and reward. PMID:12359667

  7. Neurophysiological responses to stressful motion and anti-motion sickness drugs as mediated by the limbic system

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.; Odell, S.

    1982-01-01

    Performance is characterized in terms of attention and memory, categorizing extrinsic mechanism mediated by ACTH, norepinephrine and dopamine, and intrinsic mechanisms as cholinergic. The cholinergic role in memory and performance was viewed from within the limbic system and related to volitional influences of frontal cortical afferents and behavioral responses of hypothalamic and reticular system efferents. The inhibitory influence of the hippocampus on the autonomic and hormonal responses mediated through the hypothalamus, pituitary, and brain stem are correlated with the actions of such anti-motion sickness drugs as scopolamine and amphetamine. These drugs appear to exert their effects on motion sickness symptomatology through diverse though synergistic neurochemical mechanisms involving the septohippocampal pathway and other limbic system structures. The particular impact of the limbic system on an animal's behavioral and hormonal responses to stress is influenced by ACTH, cortisol, scopolamine, and amphetamine.

  8. Perfusion network shift during seizures in medial temporal lobe epilepsy.

    PubMed

    Sequeira, Karen M; Tabesh, Ali; Sainju, Rup K; DeSantis, Stacia M; Naselaris, Thomas; Joseph, Jane E; Ahlman, Mark A; Spicer, Kenneth M; Glazier, Steve S; Edwards, Jonathan C; Bonilha, Leonardo

    2013-01-01

    Medial temporal lobe epilepsy (MTLE) is associated with limbic atrophy involving the hippocampus, peri-hippocampal and extra-temporal structures. While MTLE is related to static structural limbic compromise, it is unknown whether the limbic system undergoes dynamic regional perfusion network alterations during seizures. In this study, we aimed to investigate state specific (i.e. ictal versus interictal) perfusional limbic networks in patients with MTLE. We studied clinical information and single photon emission computed tomography (SPECT) images obtained with intravenous infusion of the radioactive tracer Technetium- Tc 99 m Hexamethylpropyleneamine Oxime (Tc-99 m HMPAO) during ictal and interictal state confirmed by video-electroencephalography (VEEG) in 20 patients with unilateral MTLE (12 left and 8 right MTLE). Pair-wise voxel-based analyses were used to define global changes in tracer between states. Regional tracer uptake was calculated and state specific adjacency matrices were constructed based on regional correlation of uptake across subjects. Graph theoretical measures were applied to investigate global and regional state specific network reconfigurations. A significant increase in tracer uptake was observed during the ictal state in the medial temporal region, cerebellum, thalamus, insula and putamen. From network analyses, we observed a relative decreased correlation between the epileptogenic temporal region and remaining cortex during the interictal state, followed by a surge of cross-correlated perfusion in epileptogenic temporal-limbic structures during a seizure, corresponding to local network integration. These results suggest that MTLE is associated with a state specific perfusion and possibly functional organization consisting of a surge of limbic cross-correlated tracer uptake during a seizure, with a relative disconnection of the epileptogenic temporal lobe in the interictal period. This pattern of state specific shift in metabolic networks in MTLE may improve the understanding of epileptogenesis and neuropsychological impairments associated with MTLE.

  9. [The limbic system and the motivation process].

    PubMed

    Karli, P

    1968-01-01

    Understanding the part played by the limbic system in the shaping of overall behaviour is assisted by the previous study of that system's involvement in the mechanisms underlying certain sections of behaviour. a) Limbic structures contribute to the dynamic synthesis of contemporary information, by reason of their share in mechanisms: I. of modulatory central control in the production and transmission of sensory messages, 2. in the genesis of states of vigilance, especially the focussing of attention. On the other hand, they have an inhibitory role in somatic motility by way of progressive elimination of all inadequate motor response. b) Limbic structures participate in the elaboration of emotional states, in the initiation of both positive and negative reinforcement. That is to say they participate in the processes by which: I. "appetitive" or "aversive" significance is progressively conferred upon a given stimulus or situation, 2. behaviour is subjected to a positive or negative reinforcement, assuring its stabilization or its extinction. c) The comparison of the present situation with experience, enabling the organism to foresee the results of its behaviour; and similarly the comparison of results achieved with those anticipated, imply information storage, and the formation of lasting memory traces. It appears that the limbic system by integration of cognitive and affective components of sensory information, contributes to the compilation of experience which can be drawn upon in recognition or evocation. When the lasting results of different limbic lesions upon total behaviour are studied, it is clear that these effects are all the more profound as, among the motivational factors involved, those due to experience and to adaptation to environment, play the more important part. Behavioural deficits appear especially due to the absence of inhibition of certain inadequate responses, which results in a "maladaptation" of behavior as much towards present environmental conditions as to the experience of the organism. a) Regarding alimentary behaviour, the limbic system seems only to have importance in fixing the various individual attitudes towards feeding (competition, feeding habits, time to repletion, etc.). b) Sexually, experimental facts suggest that the limbic system plays an essential part in facilitation and especially selective inhibition which, by the exclusion of inadequate responses, may differentiate adult heterosexual conduct from ambivalent sexuality. Thus, in the adult, sexual behaviour can appear which is adapted to the environment, and consistent with the genetic sex and certain individual behavioural characteristics of the organism.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways.

    PubMed

    Ferrari, P F; Gerbella, M; Coudé, G; Rozzi, S

    2017-09-01

    The vast majority of functional studies investigating mirror neurons (MNs) explored their properties in relation to hand actions, and very few investigated how MNs respond to mouth actions or communicative gestures. Since hand and mouth MNs were recorded in two partially overlapping sectors of the ventral precentral cortex of the macaque monkey, there is a general assumption that they share a same neuroanatomical network, with the parietal cortex as a main source of visual information. In the current review, we challenge this perspective and describe the connectivity pattern of mouth MN sector. The mouth MNs F5/opercular region is connected with premotor, parietal areas mostly related to the somatosensory and motor representation of the face/mouth, and with area PrCO, involved in processing gustatory and somatosensory intraoral input. Unlike hand MNs, mouth MNs do not receive their visual input from parietal regions. Such information related to face/communicative behaviors could come from the ventrolateral prefrontal cortex. Further strong connections derive from limbic structures involved in encoding emotional facial expressions and motivational/reward processing. These brain structures include the anterior cingulate cortex, the anterior and mid-dorsal insula, orbitofrontal cortex and the basolateral amygdala. The mirror mechanism is therefore composed and supported by at least two different anatomical pathways: one is concerned with sensorimotor transformation in relation to reaching and hand grasping within the traditional parietal-premotor circuits; the second one is linked to the mouth/face motor control and is connected with limbic structures, involved in communication/emotions and reward processing. Copyright © 2017. Published by Elsevier Ltd.

  11. Reduced Amygdalar Gray Matter Volume in Familial Pediatric Bipolar Disorder

    ERIC Educational Resources Information Center

    Chang, Kiki; Karchemskiy, Asya; Barnea-Goraly, Naama; Garrett, Amy; Simeonova, Diana Iorgova; Reiss, Allan

    2005-01-01

    Objective: Subcortical limbic structures have been proposed to be involved in the pathophysiology of adult and pediatric bipolar disorder (BD). We sought to study morphometric characteristics of these structures in pediatric subjects with familial BD compared with healthy controls. Method: Twenty children and adolescents with BD I (mean age = 14.6…

  12. Manual morphometry of hippocampus and amygdala in adults with attention-deficit hyperactivity disorder.

    PubMed

    Nickel, Kathrin; Tebartz van Elst, Ludger; Perlov, Evgeniy; Jitten-Schachenmeier, Renate; Beier, Daniel; Endres, Dominique; Goll, Peter; Philipsen, Alexandra; Maier, Simon

    2017-09-30

    Previous studies have pointed to the involvement of limbic structures in the genesis of attention deficit hyperactivity disorder (ADHD). The present researchers manually segmented magnetic resonance images of 30 individuals with ADHD and 30 individually matched controls, focusing on amygdala and hippocampus volumes. Neither hippocampus nor amygdala volume differed significantly between individuals with and without ADHD. However, ADHD patients with higher hyperactivity scores had significantly smaller left amygdala volumes. This finding suggests that limbic alterations are significant in hyperactive symptoms in the pathophysiology of ADHD. Copyright © 2017. Published by Elsevier B.V.

  13. Progressive neurostructural changes in adolescent and adult patients with bipolar disorder.

    PubMed

    Lisy, Megan E; Jarvis, Kelly B; DelBello, Melissa P; Mills, Neil P; Weber, Wade A; Fleck, David; Strakowski, Stephen M; Adler, Caleb M

    2011-06-01

    Several lines of evidence suggest that bipolar disorder is associated with progressive changes in gray matter volume (GMV), particularly in brain structures involved in emotional regulation and expression. The majority of these studies however, have been cross-sectional in nature. In this study we compared baseline and follow-up scans in groups of bipolar disorder and healthy subjects. We hypothesized bipolar disorder subjects would demonstrate significant GMV changes over time. A total of 58 bipolar disorder and 48 healthy subjects participated in structural magnetic resonance imaging (MRI). Subjects were rescanned 3-34 months after their baseline MRI. MRI images were segmented, normalized to standard stereotactic space, and compared voxel-by-voxel using statistical parametrical mapping software (SPM2). A model was developed to investigate differences in GMV at baseline, and associated with time and episodes, as well as in comparison to healthy subjects. We observed increases in GMV in bipolar disorder subjects across several brain regions at baseline and over time, including portions of the prefrontal cortex as well as limbic and subcortical structures. Time-related changes differed to some degree between adolescent and adult bipolar disorder subjects. The interval between scans positively correlated with GMV increases in bipolar disorder subjects in portions of the prefrontal cortex, and both illness duration and number of depressive episodes were associated with increased GMV in subcortical and limbic structures. Our findings support suggestions that widely observed progressive neurofunctional changes in bipolar disorder patients may be related to structural brain abnormalities in anterior limbic structures. Abnormalities largely involve regions previously noted to be integral to emotional expression and regulation, and appear to vary by age. © 2011 John Wiley and Sons A/S.

  14. Limbic system structure volumes and associated neurocognitive functioning in former NFL players.

    PubMed

    Lepage, Christian; Muehlmann, Marc; Tripodis, Yorghos; Hufschmidt, Jakob; Stamm, Julie; Green, Katie; Wrobel, Pawel; Schultz, Vivian; Weir, Isabelle; Alosco, Michael L; Baugh, Christine M; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; Coleman, Michael J; Lin, Alexander P; Pasternak, Ofer; Makris, Nikos; Stern, Robert A; Shenton, Martha E; Koerte, Inga K

    2018-05-19

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts. CTE has been linked to disruptions in cognition, mood, and behavior. Unfortunately, the diagnosis of CTE can only be made post-mortem. Neuropathological evidence suggests limbic structures may provide an opportunity to characterize CTE in the living. Using 3 T magnetic resonance imaging, we compared select limbic brain regional volumes - the amygdala, hippocampus, and cingulate gyrus - between symptomatic former National Football League (NFL) players (n = 86) and controls (n = 22). Moreover, within the group of former NFL players, we examined the relationship between those limbic structures and neurobehavioral functioning (n = 75). The former NFL group comprised eighty-six men (mean age = 55.2 ± 8.0 years) with at least 12 years of organized football experience, at least 2 years of active participation in the NFL, and self-reported declines in cognition, mood, and behavior within the last 6 months. The control group consisted of men (mean age = 57.0 ± 6.6 years) with no history of contact-sport involvement or traumatic brain injury. All control participants provided neurobehavioral data. Compared to controls, former NFL players exhibited reduced volumes of the amygdala, hippocampus, and cingulate gyrus. Within the NFL group, reduced bilateral cingulate gyrus volume was associated with worse attention and psychomotor speed (r = 0.4 (right), r = 0.42 (left); both p < 0.001), while decreased right hippocampal volume was associated with worse visual memory (r = 0.25, p = 0.027). Reduced volumes of limbic system structures in former NFL players are associated with neurocognitive features of CTE. Volume reductions in the amygdala, hippocampus, and cingulate gyrus may be potential biomarkers of neurodegeneration in those at risk for CTE.

  15. Commonalities in the central nervous system's involvement with complementary medical therapies: limbic morphinergic processes.

    PubMed

    Esch, Tobias; Guarna, Massimo; Bianchi, Enrica; Zhu, Wei; Stefano, George B

    2004-06-01

    Currently, complementary and alternative medicine (CAM) are experiencing growing popularity, especially in former industrialized countries. However, most of the underlying physiological and molecular mechanisms as well as participating biological structures are still speculative. Specific and non-specific effects may play a role in CAM. Moreover, trust, belief, and expectation may be of importance, pointing towards common central nervous system (CNS) pathways involved in CAM. Four CAM approaches (acupuncture, meditation, music therapy, and massage therapy) were examined with regard to the CNS activity pattern involved. CNS commonalities between different approaches were investigated. Frontal/prefrontal and limbic brain structures play a role in CAM. Particularly, left-anterior regions of the brain and reward or motivation circuitry constituents are involved, indicating positive affect and emotion-related memory processing--accompanied by endocrinologic and autonomic functions--as crucial components of CAM effects. Thus, trust and belief in a therapist or positive therapy expectations seem to be important. However, besides common non-specific or subjective effects, specific (objective) physiological components also exist. Non-specific CNS commonalities are involved in various CAM therapies. Different therapeutic approaches physiologically overlap in the brain. However, molecular correspondents of the detected CNS analogies still have to be specified. In particular, fast acting autoregulatory signaling molecules presumably play a role. These may also be involved in the placebo response.

  16. Inactivation of the Anterior Cingulate Cortex Impairs Extinction of Rabbit Jaw Movement Conditioning and Prevents Extinction-Related Inhibition of Hippocampal Activity

    ERIC Educational Resources Information Center

    Griffin, Amy L.; Berry, Stephen D.

    2004-01-01

    Although past research has highlighted the involvement of limbic structures such as the anterior cingulate cortex (ACC) and hippocampus in learning, few have addressed the nature of their interaction. The current study of rabbit jaw movement conditioning used a combination of reversible lesions and electrophysiology to examine the involvement of…

  17. Hypothalamic tumors impact gray and white matter volumes in fronto-limbic brain areas.

    PubMed

    Özyurt, Jale; Müller, Hermann L; Warmuth-Metz, Monika; Thiel, Christiane M

    2017-04-01

    Patients with hypothalamic involvement of a sellar/parasellar tumor often suffer from cognitive and social-emotional deficits that a lesion in the hypothalamus cannot fully explain. It is conceivable that these deficits are partly due to distal changes in hypothalamic networks, evolving secondary to a focal lesion. Focusing on childhood-onset craniopharyngioma patients, we aimed at investigating the impact of hypothalamic lesions on gray and white matter areas densely connected to the hypothalamus, and to relate structural changes to neuropsychological deficits frequently observed in patients. We performed a voxel-based morphometric analysis based on data of 11 childhood-onset craniopharyngioma patients with hypothalamic tumor involvement, and 18 healthy controls (median age: 17.2 and 17.4 yrs.). Whole-brain analyses were used to test for volumetric differences between the groups (T-tests) and subsequent regression analyses were used to correlate neuropsychological performance with gray and white matter volumes within the patient group. Patients compared to controls had significantly reduced gray matter volumes in areas of the anterior and posterior limbic subsystems which are densely connected with the hypothalamus. In addition, a reduction in white matter volumes was observed in tracts connecting the hypothalamus to other limbic areas. Worse long-term memory retrieval was correlated with smaller gray matter volumes in the posterior cingulate cortex. Our data provide the first evidence that hypothalamic tumor involvement impacts gray and white matter volumes in limbic areas, outside the area of tumor growth. Notably, the functional range of the two limbic subsystems affected, strikingly parallels the two major domains of psychological complaints in patients i.e., deficits in episodic memory and in socio-emotional functioning. We suggest that focal hypothalamic lesions may trigger distal changes in connected brain areas, which then contribute to the impairments in cognitive, social and emotional performance often observable in patients, and not explicable by a hypothalamic lesion alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of Explicit Evaluation on Neural Connectivity Related to Listening to Unfamiliar Music

    PubMed Central

    Liu, Chao; Brattico, Elvira; Abu-jamous, Basel; Pereira, Carlos S.; Jacobsen, Thomas; Nandi, Asoke K.

    2017-01-01

    People can experience different emotions when listening to music. A growing number of studies have investigated the brain structures and neural connectivities associated with perceived emotions. However, very little is known about the effect of an explicit act of judgment on the neural processing of emotionally-valenced music. In this study, we adopted the novel consensus clustering paradigm, called binarisation of consensus partition matrices (Bi-CoPaM), to study whether and how the conscious aesthetic evaluation of the music would modulate brain connectivity networks related to emotion and reward processing. Participants listened to music under three conditions – one involving a non-evaluative judgment, one involving an explicit evaluative aesthetic judgment, and one involving no judgment at all (passive listening only). During non-evaluative attentive listening we obtained auditory-limbic connectivity whereas when participants were asked to decide explicitly whether they liked or disliked the music excerpt, only two clusters of intercommunicating brain regions were found: one including areas related to auditory processing and action observation, and the other comprising higher-order structures involved with visual processing. Results indicate that explicit evaluative judgment has an impact on the neural auditory-limbic connectivity during affective processing of music. PMID:29311874

  19. Case report: Improvement in dissociative symptoms with mixed amphetamine salts.

    PubMed

    Scarella, Timothy M; Franzen, Jamie R

    2017-01-01

    Symptoms of dissociation, including dissociative amnesia, depersonalization, and derealization, commonly develop in individuals subject to chronic and repeated trauma during development. This includes the trauma of environmental inability to facilitate development of adequate cognitive strategies for coping with strong negative emotions. Dissociation likely involves dysregulated balance of prefrontal inhibition of limbic structures and inadequate regulation of attentional bias by both prefrontal and limbic systems. There is currently no established psychopharmacologic treatment for dissociative symptoms. Here the case of a woman with severe dissociative symptoms that were markedly improved with the administration of mixed amphetamine salts is discussed. Potential neurobiologic mechanisms for dissociative symptom improvement with psychostimulants are discussed.

  20. Selective Limbic Blood–Brain Barrier Breakdown in a Feline Model of Limbic Encephalitis with LGI1 Antibodies

    PubMed Central

    Tröscher, Anna R.; Klang, Andrea; French, Maria; Quemada-Garrido, Lucía; Kneissl, Sibylle Maria; Bien, Christian G.; Pákozdy, Ákos; Bauer, Jan

    2017-01-01

    Human leucine-rich glioma-inactivated protein 1 encephalitis (LGI1) is an autoimmune limbic encephalitis in which serum and cerebrospinal fluid contain antibodies targeting LGI1, a protein of the voltage gated potassium channel (VGKC) complex. Recently, we showed that a feline model of limbic encephalitis with LGI1 antibodies, called feline complex partial seizures with orofacial involvement (FEPSO), is highly comparable to human LGI1 encephalitis. In human LGI1 encephalitis, neuropathological investigations are difficult because very little material is available. Taking advantage of this natural animal model to study pathological mechanisms will, therefore, contribute to a better understanding of its human counterpart. Here, we present a brain-wide histopathological analysis of FEPSO. We discovered that blood–brain barrier (BBB) leakage was present not only in all regions of the hippocampus but also in other limbic structures such as the subiculum, amygdale, and piriform lobe. However, in other regions, such as the cerebellum, no leakage was observed. In addition, this brain-region-specific immunoglobulin leakage was associated with the breakdown of endothelial tight junctions. Brain areas affected by BBB dysfunction also revealed immunoglobulin and complement deposition as well as neuronal cell death. These neuropathological findings were supported by magnetic resonance imaging showing signal and volume increase in the amygdala and the piriform lobe. Importantly, we could show that BBB disturbance in LGI1 encephalitis does not depend on T cell infiltrates, which were present brain-wide. This finding points toward another, so far unknown, mechanism of opening the BBB. The limbic predilection sites of immunoglobulin antibody leakage into the brain may explain why most patients with LGI1 antibodies have a limbic phenotype even though LGI1, the target protein, is ubiquitously distributed across the central nervous system. PMID:29093718

  1. Selective Limbic Blood-Brain Barrier Breakdown in a Feline Model of Limbic Encephalitis with LGI1 Antibodies.

    PubMed

    Tröscher, Anna R; Klang, Andrea; French, Maria; Quemada-Garrido, Lucía; Kneissl, Sibylle Maria; Bien, Christian G; Pákozdy, Ákos; Bauer, Jan

    2017-01-01

    Human leucine-rich glioma-inactivated protein 1 encephalitis (LGI1) is an autoimmune limbic encephalitis in which serum and cerebrospinal fluid contain antibodies targeting LGI1, a protein of the voltage gated potassium channel (VGKC) complex. Recently, we showed that a feline model of limbic encephalitis with LGI1 antibodies, called feline complex partial seizures with orofacial involvement (FEPSO), is highly comparable to human LGI1 encephalitis. In human LGI1 encephalitis, neuropathological investigations are difficult because very little material is available. Taking advantage of this natural animal model to study pathological mechanisms will, therefore, contribute to a better understanding of its human counterpart. Here, we present a brain-wide histopathological analysis of FEPSO. We discovered that blood-brain barrier (BBB) leakage was present not only in all regions of the hippocampus but also in other limbic structures such as the subiculum, amygdale, and piriform lobe. However, in other regions, such as the cerebellum, no leakage was observed. In addition, this brain-region-specific immunoglobulin leakage was associated with the breakdown of endothelial tight junctions. Brain areas affected by BBB dysfunction also revealed immunoglobulin and complement deposition as well as neuronal cell death. These neuropathological findings were supported by magnetic resonance imaging showing signal and volume increase in the amygdala and the piriform lobe. Importantly, we could show that BBB disturbance in LGI1 encephalitis does not depend on T cell infiltrates, which were present brain-wide. This finding points toward another, so far unknown, mechanism of opening the BBB. The limbic predilection sites of immunoglobulin antibody leakage into the brain may explain why most patients with LGI1 antibodies have a limbic phenotype even though LGI1, the target protein, is ubiquitously distributed across the central nervous system.

  2. Interprofessional learning in primary care: an exploration of the service user experience leads to a new model for co-learning.

    PubMed

    Worswick, Louise; Little, Christine; Ryan, Kath; Carr, Eloise

    2015-01-01

    Research about service user involvement in research and education focuses on the purpose, the methods, the barriers and the impact of their involvement. Few studies report on the experience of the service users who get involved. This paper reports an exploration of the experience of service users who participated in an interprofessional educational initiative in primary care - the Learning to Improve the Management of Back Pain in the Community (LIMBIC) project. Service users attended workshops with practice teams and assisted them in developing small scale quality improvement projects to improve their provision of care for people with back pain. To explore the experience of service users involved in the LIMBIC project. Using the philosophical and methodological approaches of pragmatism this study analysed data from the wider LIMBIC project and collected primary data through semi structured interviews with service users. Secondary data were reanalysed and integrated with primary data to address the research question. The study was undertaken in the primary health care setting. Patients participated as service users in workshops and quality improvement projects with members from their practice teams. Interviews with service users were transcribed and analysed thematically. Document and thematic analyses of secondary data from the LIMBIC project included focus group transcripts, patient stories, film, emails, meeting notes, a wiki and educational material such as presentations. Themes identified through the analyses illustrated the importance, to the service users, of the sense of community, of clear communication, and of influencing change through involvement. A model for co-learning with service users resulted from the analyses. The experience of service users can be optimised by planning, preparation and support so that their wealth of expertise can be recognised and utilised. A model for co-learning was developed and is presented in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Limbic control of aggression in the cat.

    PubMed

    Adamec, R E; Stark-Adamec, C I

    1983-01-01

    Over a decade of work by Flynn and colleagues has delineated a network of limbic circuits which function to modulate the expression of predatory aggression and defence in the cat, and aspects of this work are reviewed. In particular, Flynn's work revealed a circuit involving the basomedial amygdala which functions to suppress attack, and at the same time facilitates defence. A second circuit, involving the ventral hippocampus, is involved in attack facilitation. Studies relating stable differences in excitability in these two circuits to developmentally determined behavioural dispositions toward aggression or defence are summarized. Finally, the impact of experimentally induced limbic seizures on interictally maintained expression of aggression and defence behaviourally, and on limbic excitability are reviewed. Taken together, the data indicate that the behavioural balance of attack and defence is under the tonic control of opponent limbic circuits, which are themselves biased in a measureable manner. Developmental studies indicate that adult defensiveness is determined early in life, so early as to suggest some pre-programmed neuro-developmental process. Experimentally induced seizures alter behaviour lastingly, producing an increase in defensive disposition. At the same time there is an equally lasting potentiation of interictal transmission of neural activity from the amygdala to the hypothalamus. Moreover, seizures may reduce interictal transmission of activity through the ventral hippocampus by potentiating recurrent inhibition. These effects of seizures are of interest since seizures reproduce naturally occurring differences in limbic excitability seen in naturally defensive cats.

  4. Descending motor pathways and the spinal motor system - Limbic and non-limbic components

    NASA Technical Reports Server (NTRS)

    Holstege, Gert

    1991-01-01

    Research on descending motor pathways to caudal brainstem and spinal cord in the spinal motor system is reviewed. Particular attention is given to somatic and autonomic motoneurons in the spinal cord and brainstem, local projections to motoneurons, bulbospinal interneurons projecting to motoneurons, descending pathways of somatic motor control systems, and descending pathways involved in limbic motor control systems.

  5. Size Matters: Increased Grey Matter in Boys with Conduct Problems and Callous-Unemotional Traits

    ERIC Educational Resources Information Center

    De Brito, Stephane A.; Mechelli, Andrea; Wilke, Marko; Laurens, Kristin R.; Jones, Alice P.; Barker, Gareth J.; Hodgins, Sheilagh; Viding, Essi

    2009-01-01

    Brain imaging studies of adults with psychopathy have identified structural and functional abnormalities in limbic and prefrontal regions that are involved in emotion recognition, decision-making, morality and empathy. Among children with conduct problems, a small subgroup presents callous-unemotional traits thought to be antecedents of…

  6. Sensorimotor Modulation of Mood and Depression: In Search of an Optimal Mode of Stimulation

    PubMed Central

    Canbeyli, Resit

    2013-01-01

    Depression involves a dysfunction in an affective fronto-limbic circuitry including the prefrontal cortices, several limbic structures including the cingulate cortex, the amygdala, and the hippocampus as well as the basal ganglia. A major emphasis of research on the etiology and treatment of mood disorders has been to assess the impact of centrally generated (top-down) processes impacting the affective fronto-limbic circuitry. The present review shows that peripheral (bottom-up) unipolar stimulation via the visual and the auditory modalities as well as by physical exercise modulates mood and depressive symptoms in humans and animals and activates the same central affective neurocircuitry involved in depression. It is proposed that the amygdala serves as a gateway by articulating the mood regulatory sensorimotor stimulation with the central affective circuitry by emotionally labeling and mediating the storage of such emotional events in long-term memory. Since both amelioration and aggravation of mood is shown to be possible by unipolar stimulation, the review suggests that a psychophysical assessment of mood modulation by multimodal stimulation may uncover mood ameliorative synergisms and serve as adjunctive treatment for depression. Thus, the integrative review not only emphasizes the relevance of investigating the optimal levels of mood regulatory sensorimotor stimulation, but also provides a conceptual springboard for related future research. PMID:23908624

  7. [Anti-VGKC antibody-associated limbic encephalitis/Morvan syndrome].

    PubMed

    Misawa, Tamako; Mizusawa, Hidehiro

    2010-04-01

    Anti-voltage-gated potassium channel antibodies (anti-VGKC-Ab) cause hyperexcitability of the peripheral nerve and central nervous system. Peripheral nerve hyperexcitability is the chief manifestation of Issacs syndrome and cramp-fasciculation syndrome. Morvan syndrome is characterized by neuromyotonia with autonomic and CNS involvement. Manifestations involving the CNS without peripheral involvement are characteristic of limbic encephalitis and epilepsy. The clinical features of anti-VGKC-Ab-associated limbic encephalitis are subacute onset of episodic memory impairment, disorientation and agitation. Hyponatremia is also noted in most patients. Cortico-steroid therapy, plasma exchange and intravenous immunoglobulin are effective in treating to not only the clinical symptoms but also hyponatremia. Unlike other anti-VGKC-Ab-associated neurological disorders, paraneoplastic cases are rare. Thus, anti-VGKC-Ab-associated limbic encephalopathy is considered to be an autoimmune, non-paraneoplastic, potentially treatable encephalitis. Morvan syndrome is characterized by widespread neurological symptoms involving the peripheral nervous system (neuromyotonia), autonomic system (hyperhidrosis, severe constipation, urinary incontinence, and cardiac arrhythmia) and the CNS (severe insomnia, hallucinations, impairment of short-term memory and epilepsy). Many patients have an underlying tumor, for example thymoma, lung cancer, testicular cancer and lymphoma; this indicates the paraneoplastic nature of the disease. Needle electro-myography reveals myokimic discharge. In nerve conduction study, stimulus-induced repetitive descharges are frequently demonstrated in involved muscles. Plasma exchange is an effective treatment approach, and tumor resection also improves symptoms. Both VGKC-Ab-associated limbic encephalitis and Morvan syndrome can be successfully treated. Therefore, when these diseases are suspected, it's important to measure the anti-VGKC-Ab level.

  8. History, anatomical nomenclature, comparative anatomy and functions of the hippocampal formation.

    PubMed

    El-Falougy, H; Benuska, J

    2006-01-01

    The complex structures in the cerebral hemispheres is included under one term, the limbic system. Our conception of this system and its special functions rises from the comparative neuroanatomical and neurophysiological studies. The components of the limbic system are the hippocampus, gyrus parahippocampalis, gyrus dentatus, gyrus cinguli, corpus amygdaloideum, nuclei anteriores thalami, hypothalamus and gyrus paraterminalis Because of its unique macroscopic and microscopic structure, the hippocampus is a conspicuous part of the limbic system. During phylogenetic development, the hippocampus developed from a simple cortical plate in amphibians into complex three-dimensional convoluted structure in mammals. In the last few decades, structures of the limbic system were extensively studied. Attention was directed to the physiological functions and pathological changes of the hippocampus. Experimental studies proved that the hippocampus has a very important role in the process of learning and memory. Another important functions of the hippocampus as a part of the limbic system is its role in regulation of sexual and emotional behaviour. The term "hippocampal formation" is defined as the complex of six structures: gyrus dentatus, hippocampus proprius, subiculum proprium, presubiculum, parasubiculum and area entorhinalis In this work we attempt to present a brief review of knowledge about the hippocampus from the point of view of history, anatomical nomenclature, comparative anatomy and functions (Tab. 1, Fig. 2, Ref. 33).

  9. Neurocircuitry of limbic dysfunction in anorexia nervosa.

    PubMed

    Lipsman, Nir; Woodside, D Blake; Lozano, Andres M

    2015-01-01

    Anorexia Nervosa (AN) is a serious psychiatric condition marked by firmly entrenched and maladaptive behaviors and beliefs about body, weight and food, as well as high rates of psychiatric comorbidity. The neural roots of AN are now beginning to emerge, and appear to be related to dysfunctional, primarily limbic, circuits driving pathological thoughts and behaviors. As a result, the significant physical symptoms of AN are increasingly being understood at least partially as a result of abnormal or dysregulated emotional processing. This paper reviews the nature of limbic dysfunction in AN, and how structural and functional imaging has implicated distinct emotional and perceptual neural circuits driving AN symptoms. We propose that top-down and bottom-up influences converge on key limbic modulatory structures, such as the subcallosal cingulate and insula, whose normal functioning is critical to affective regulation and emotional homeostasis. Dysfunctional activity in these structures, as is seen in AN, may lead to emotional processing deficits and psychiatric symptoms, which then drive maladaptive behaviors. Modulating limbic dysregulation may therefore be a potential treatment strategy in some AN patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Alternations of White Matter Structural Networks in First Episode Untreated Major Depressive Disorder with Short Duration.

    PubMed

    Lu, Yi; Shen, Zonglin; Cheng, Yuqi; Yang, Hui; He, Bo; Xie, Yue; Wen, Liang; Zhang, Zhenguang; Sun, Xuejin; Zhao, Wei; Xu, Xiufeng; Han, Dan

    2017-01-01

    It is crucial to explore the pathogenesis of major depressive disorder (MDD) at the early stage for the better diagnostic and treatment strategies. It was suggested that MDD might be involving in functional or structural alternations at the brain network level. However, at the onset of MDD, whether the whole brain white matter (WM) alterations at network level are already evident still remains unclear. In the present study, diffusion MRI scanning was adopt to depict the unique WM structural network topology across the entire brain at the early stage of MDD. Twenty-one first episode, short duration (<1 year) and drug-naïve depression patients, and 25 healthy control (HC) subjects were recruited. To construct the WM structural network, atlas-based brain regions were used for nodes, and the value of multiplying fiber number by the mean fractional anisotropy along the fiber bundles connected a pair of brain regions were used for edges. The structural network was analyzed by graph theoretic and network-based statistic methods. Pearson partial correlation analysis was also performed to evaluate their correlation with the clinical variables. Compared with HCs, the MDD patients had a significant decrease in the small-worldness (σ). Meanwhile, the MDD patients presented a significantly decreased subnetwork, which mainly involved in the frontal-subcortical and limbic regions. Our results suggested that the abnormal structural network of the orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might be a key pathology in early stage drug-naive depression. And the structural network analysis might be potential in early detection and diagnosis of MDD.

  11. Alternations of White Matter Structural Networks in First Episode Untreated Major Depressive Disorder with Short Duration

    PubMed Central

    Lu, Yi; Shen, Zonglin; Cheng, Yuqi; Yang, Hui; He, Bo; Xie, Yue; Wen, Liang; Zhang, Zhenguang; Sun, Xuejin; Zhao, Wei; Xu, Xiufeng; Han, Dan

    2017-01-01

    It is crucial to explore the pathogenesis of major depressive disorder (MDD) at the early stage for the better diagnostic and treatment strategies. It was suggested that MDD might be involving in functional or structural alternations at the brain network level. However, at the onset of MDD, whether the whole brain white matter (WM) alterations at network level are already evident still remains unclear. In the present study, diffusion MRI scanning was adopt to depict the unique WM structural network topology across the entire brain at the early stage of MDD. Twenty-one first episode, short duration (<1 year) and drug-naïve depression patients, and 25 healthy control (HC) subjects were recruited. To construct the WM structural network, atlas-based brain regions were used for nodes, and the value of multiplying fiber number by the mean fractional anisotropy along the fiber bundles connected a pair of brain regions were used for edges. The structural network was analyzed by graph theoretic and network-based statistic methods. Pearson partial correlation analysis was also performed to evaluate their correlation with the clinical variables. Compared with HCs, the MDD patients had a significant decrease in the small-worldness (σ). Meanwhile, the MDD patients presented a significantly decreased subnetwork, which mainly involved in the frontal–subcortical and limbic regions. Our results suggested that the abnormal structural network of the orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might be a key pathology in early stage drug-naive depression. And the structural network analysis might be potential in early detection and diagnosis of MDD. PMID:29118724

  12. [Psychotherapy of Depression as Neurobiological Process - Evidence from Neuroimaging].

    PubMed

    Rubart, Antonie; Hohagen, Fritz; Zurowski, Bartosz

    2018-06-01

    Research on neurobiological effects of psychotherapy in depression facilitates the improvement of treatment strategies. The cortico-limbic dysregulation model serves as a framework for numerous studies on neurobiological changes in depression. In this model, depression is described as hypoactivation of dorsal cortical brain regions in conjunction with hyperactivation of ventral paralimbic regions. This assumption has been supported by various studies of structural and functional brain abnormalities in depression. However, also regions not included in the original cortico-limbic dysregulation model, such as the dorsomedial prefrontal cortex, seem to play an important role in depression. Functional connectivity studies of depression have revealed an enhanced connectivity within the so-called default mode network which is involved in self-referential thinking. Studies also point to a normalization of limbic and cortical brain activity, especially in the anterior cingulate cortex, during psychotherapy. Some neurobiological markers like the activity of the anterior cingulate cortex, striatum and insula as well as hippocampal volume have been proposed to predict treatment response on a group-level. The activity of the anterior insula appears to be a candidate bio-marker for differential indication for psychotherapy or pharmacotherapy. The cortico-limbic dysregulation model and following research have inspired new forms of treatment for depression like deep brain stimulation of the subgenual anterior cingulate cortex, repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex, neurofeedback and attention training. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Multimodal Neuroimaging of Fronto-limbic Structure and Function Associated with Suicide Attempts in Adolescents and Young Adults with Bipolar Disorder

    PubMed Central

    Johnston, Jennifer A. Y.; Wang, Fei; Liu, Jie; Blond, Benjamin N.; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T.; Purves, Kirstin L.; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A.; Blumberg, Hilary P.

    2018-01-01

    Objective Bipolar disorder is associated with high risk for suicide behavior that often develops in adolescence/young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents/young adults with bipolar disorder with and without history of suicide attempts combines structural, diffusion tensor and functional magnetic resonance imaging methods to investigate implicated abnormalities in structural and functional connectivity within fronto-limbic systems. Method Participants with bipolar disorder included 26 with a prior suicide attempt and 42 without attempts. Regional gray matter volume, white matter integrity and functional connectivity during processing of emotional stimuli were compared between groups and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Results Compared to the non-attempter group, the attempter group showed reductions in gray matter volume in orbitofrontal cortex, hippocampus and cerebellum; white matter integrity in uncinate fasciculus, ventral frontal and right cerebellum regions; and amygdala functional connectivity to left ventral and right rostral prefrontal cortex (p<0.05, corrected). In exploratory analyses, among attempters, right rostral prefrontal connectivity was negatively correlated with suicidal ideation (p<0.05), and left ventral prefrontal connectivity was negatively correlated with attempt lethality (p<0.05). Conclusions Adolescent/young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral fronto-limbic neural system subserving emotion regulation. Among suicide attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicide ideation and attempt lethality. PMID:28135845

  14. A revised limbic system model for memory, emotion and behaviour.

    PubMed

    Catani, Marco; Dell'acqua, Flavio; Thiebaut de Schotten, Michel

    2013-09-01

    Emotion, memories and behaviour emerge from the coordinated activities of regions connected by the limbic system. Here, we propose an update of the limbic model based on the seminal work of Papez, Yakovlev and MacLean. In the revised model we identify three distinct but partially overlapping networks: (i) the Hippocampal-diencephalic and parahippocampal-retrosplenial network dedicated to memory and spatial orientation; (ii) The temporo-amygdala-orbitofrontal network for the integration of visceral sensation and emotion with semantic memory and behaviour; (iii) the default-mode network involved in autobiographical memories and introspective self-directed thinking. The three networks share cortical nodes that are emerging as principal hubs in connectomic analysis. This revised network model of the limbic system reconciles recent functional imaging findings with anatomical accounts of clinical disorders commonly associated with limbic pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Expression of the mRNAs encoding the limbic system-associated membrane protein (LAMP): II. Fetal rat brain.

    PubMed

    Pimenta, A F; Reinoso, B S; Levitt, P

    1996-11-11

    The limbic system-associated membrane protein (LAMP) is a 64-68 kDa neuronal surface glycoprotein expressed in cortical and subcortical regions of the limbic system of the adult and developing rat central nervous system (CNS). LAMP is a member of the immunoglobulin superfamily of cell adhesion molecules with three Ig domains and is highly conserved between rat and human. In this study, the temporal and spatial pattern of lamp gene expression during fetal rat development was analyzed by using Northern blot analysis and in situ hybridization. In Northern blot analysis, two lamp mRNA transcripts, 1.6 kb and 8.0 kb, identical in size to those present in the adult rat nervous system, were detected in developing neural tissue. In situ hybridization analysis showed close correlation, though not identity, between the expression of lamp mRNAs and the distribution of LAMP in limbic regions of the developing rat CNS, indicative of a more complex regulation of gene expression than was previously thought to be the case. The expression of lamp mRNAs is first detected on about embryonic day (E) 13. The hybridization signal is not seen in the proliferative ventricular zone at any level of the neuraxis, indicating that lamp is expressed in postmitotic neurons. In the cerebral cortex, lamp mRNAs are expressed in limbic cortical regions, such as the perirhinal cortex, prefrontal cortex, and cingulate cortex. In the hippocampus, the hybridization signal is observed in Ammon's horn by E18. The neostriatum, amygdaloid complex, and most hypothalamic areas express lamp mRNAs from early stages (E13-E14) in a pattern consistent with the onset of neurogenesis. The emerging patterns of lamp expression at the outset are similar to those seen in adult hypothalamus and dorsal thalamus. Although the hybridization signal is observed in some nonlimbic areas, including midbrain and hindbrain structures, intense labeling is evident in more classic limbic regions. The high levels of expression of lamp in limbic regions, beginning in early developmental stages, combined with the results of previous functional in vitro and in vivo studies, support a role for LAMP as a recognition molecule involved in the formation of limbic connections.

  16. Maternal sensitivity, infant limbic structure volume and functional connectivity: a preliminary study

    PubMed Central

    Rifkin-Graboi, A; Kong, L; Sim, L W; Sanmugam, S; Broekman, B F P; Chen, H; Wong, E; Kwek, K; Saw, S-M; Chong, Y-S; Gluckman, P D; Fortier, M V; Pederson, D; Meaney, M J; Qiu, A

    2015-01-01

    Mechanisms underlying the profound parental effects on cognitive, emotional and social development in humans remain poorly understood. Studies with nonhuman models suggest variations in parental care affect the limbic system, influential to learning, autobiography and emotional regulation. In some research, nonoptimal care relates to decreases in neurogenesis, although other work suggests early-postnatal social adversity accelerates the maturation of limbic structures associated with emotional learning. We explored whether maternal sensitivity predicts human limbic system development and functional connectivity patterns in a small sample of human infants. When infants were 6 months of age, 20 mother–infant dyads attended a laboratory-based observational session and the infants underwent neuroimaging at the same age. After considering age at imaging, household income and postnatal maternal anxiety, regression analyses demonstrated significant indirect associations between maternal sensitivity and bilateral hippocampal volume at six months, with the majority of associations between sensitivity and the amygdala demonstrating similar indirect, but not significant results. Moreover, functional analyses revealed direct associations between maternal sensitivity and connectivity between the hippocampus and areas important for emotional regulation and socio-emotional functioning. Sensitivity additionally predicted indirect associations between limbic structures and regions related to autobiographical memory. Our volumetric results are consistent with research indicating accelerated limbic development in response to early social adversity, and in combination with our functional results, if replicated in a larger sample, may suggest that subtle, but important, variations in maternal care influence neuroanatomical trajectories important to future cognitive and emotional functioning. PMID:26506054

  17. [Limbic encephalitis with antibodies against intracellular antigens].

    PubMed

    Morita, Akihiko; Kamei, Satoshi

    2010-04-01

    Limbic encephalitis is a paraneoplastic syndrome that is often associated with small cell lung cancer (SCLC), breast cancer, testicular tumors, teratoma, Hodgkin's lymphoma and thymoma. The common clinical manifestations of limbic encephalitis are subacute onset, cognitive dysfunction, seizures and psychiatric symptoms. Paraneoplastic neurological disorders are considered to occur because of cytotoxic T cell responses and antibodies against target neuronal proteins that are usually expressed by an underlying tumor. The main intracellular antigens related to limbic encephalitis are Hu, Ma2, and less frequently CV2/CRMP5 and amphiphysin. The anti-Hu antibody, which is involved in cerebellar degeneration and extensive or multifocal encephalomyelitis such as limbic encephalitis is closely associated with a history of smoking and SCLC. The anti-Ma2 antibody is associated with encephalitis of the limbic system, hypothalamus and brain-stem. For this reason, some patients with limbic encephalitis have sleep disorders (including REM sleep abnormalities), severe hypokinesis and gaze palsy in addition to limbic dysfunction. In men aged less than 50 years, anti-Ma2 antibody encephalitis is almost always associated with testicular germ-cell tumors that are occasionally difficult to detect. In older men and women, the most common tumors are non-SCLC and breast cancer. Limbic encephalitis associated with cell-surface antigens (e.g., voltage-gated potassium channels, NMDA receptors) is mediated by antibodies and often improves after a reduction in the antibody titer and after tumor resection. Patients with antibodies against intracellular antigens, except for those with anti-Ma2 antibodies and testicular tumors, are less responsive. Early diagnosis and treatment with immunotherapy, tumor resection or both are important for improving or stabilizing the condition of limbic encephalitis.

  18. [Spatial Cognition and Episodic Memory Formation in the Limbic Cortex].

    PubMed

    Kobayashi, Yasushi

    2017-04-01

    The limbic lobe defined by Broca is a cortical region with highly diverse structure and functions, and comprises the paleo-, archi-, and neocortices as well as their transitional zones. In the limbic lobe, Brodmann designated areas 27, 28, 34, 35, and 36 adjacent to the hippocampus, and areas 23, 24, 25, 26, 29, 30, 31, 32, and 33 around the corpus callosum. In the current literature, areas 27 and 28 correspond to the presubiculum and entorhinal cortex, respectively. Area 34 represents the cortico-medial part of the amygdaloid complex. Areas 35 and 36 roughly cover the perirhinal and parahippocampal cortices. Areas 24, 25, 32, and 33 belong to the anterior cingulate gyrus, while areas 23, 26, 29, 30, and 31 to the posterior cingulate gyrus. Areas 25, 32, and the anteroinferior portion of area 24 are deeply involved in emotional responses, particularly in their autonomic functions, through reciprocal connections with the amygdaloid complex, anterior thalamus and projections to the brainstem and spinal visceral centers. Areas 29 and 30 have dense reciprocal connections with areas 23 and 31, the dorsolateral prefrontal areas, and the regions related to the hippocampus. They play pivotal roles in mediating spatial cognition, working memory processing, and episodic memory formation.

  19. Anatomy of the Limbic White Matter Tracts as Revealed by Fiber Dissection and Tractography.

    PubMed

    Pascalau, Raluca; Popa Stănilă, Roxana; Sfrângeu, Silviu; Szabo, Bianca

    2018-05-01

    The limbic tracts are involved in crucial cerebral functions such as memory, emotion, and behavior. The complex architecture of the limbic circuit makes it harder to approach compared with other white matter networks. Our study aims to describe the 3-dimensional anatomy of the limbic white matter by the use of 2 complementary study methods, namely ex vivo fiber dissection and in vivo magnetic resonance imaging-based tractography. Three fiber dissection protocols were performed using blunt wooden instruments and a surgical microscope on formalin-fixed brains prepared according to the Klingler method. Diffusion tensor imaging acquisitions were done with a 3-Tesla magnetic resonance scanner on patients with head and neck pathology that did not involve the brain. Fiber tracking was performed with manually selected regions of interest. Cingulum, fornix, the anterior thalamic peduncle, the accumbofrontal bundle, medial forebrain bundle, the uncinate fasciculus, the mammillothalamic tract, ansa peduncularis, and stria terminalis were dissected and fiber tracked. For each tract, location, configuration, segmentation, dimensions, dissection and tractography particularities, anatomical relations, and terminations are described. The limbic white matter tracts were systematized as 2 concentric rings around the thalamus. The inner ring is formed by fornix, mammillothalamic tract, ansa peduncularis, stria terminalis, accumbofrontal fasciculus, and medial forebrain bundle and anterior thalamic peduncle, and the outer ring is formed by the cingulum and uncinate fasciculus. This paper proposes a fiber-tracking protocol for the limbic tracts inspired and validated by fiber dissection findings that can be used routinely in the clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Modulation of Limbic and Prefrontal Connectivity by Electroconvulsive Therapy in Treatment-resistant Depression: A Preliminary Study.

    PubMed

    Cano, Marta; Cardoner, Narcís; Urretavizcaya, Mikel; Martínez-Zalacaín, Ignacio; Goldberg, Ximena; Via, Esther; Contreras-Rodríguez, Oren; Camprodon, Joan; de Arriba-Arnau, Aida; Hernández-Ribas, Rosa; Pujol, Jesús; Soriano-Mas, Carles; Menchón, José M

    2016-01-01

    Although current models of depression suggest that a sequential modulation of limbic and prefrontal connectivity is needed for illness recovery, neuroimaging studies of electroconvulsive therapy (ECT) have focused on assessing functional connectivity (FC) before and after an ECT course, without characterizing functional changes occurring at early treatment phases. To assess sequential changes in limbic and prefrontal FC during the course of ECT and their impact on clinical response. Longitudinal intralimbic and limbic-prefrontal networks connectivity study. We assessed 15 patients with treatment-resistant depression at four different time-points throughout the entire course of an ECT protocol and 10 healthy participants at two functional neuroimaging examinations. Furthermore, a path analysis to test direct and indirect predictive effects of limbic and prefrontal FC changes on clinical response measured with the Hamilton Rating Scale for Depression was also performed. An early significant intralimbic FC decrease significantly predicted a later increase in limbic-prefrontal FC, which in turn significantly predicted clinical improvement at the end of an ECT course. Our data support that treatment response involves sequential changes in FC within regions of the intralimbic and limbic-prefrontal networks. This approach may help in identifying potential early biomarkers of treatment response. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Morphological brain measures of cortico-limbic inhibition related to resilience.

    PubMed

    Gupta, Arpana; Love, Aubrey; Kilpatrick, Lisa A; Labus, Jennifer S; Bhatt, Ravi; Chang, Lin; Tillisch, Kirsten; Naliboff, Bruce; Mayer, Emeran A

    2017-09-01

    Resilience is the ability to adequately adapt and respond to homeostatic perturbations. Although resilience has been associated with positive health outcomes, the neuro-biological basis of resilience is poorly understood. The aim of the study was to identify associations between regional brain morphology and trait resilience with a focus on resilience-related morphological differences in brain regions involved in cortico-limbic inhibition. The relationship between resilience and measures of affect were also investigated. Forty-eight healthy subjects completed structural MRI scans. Self-reported resilience was measured using the Connor and Davidson Resilience Scale. Segmentation and regional parcellation of images was performed to yield a total of 165 regions. Gray matter volume (GMV), cortical thickness, surface area, and mean curvature were calculated for each region. Regression models were used to identify associations between morphology of regions belonging to executive control and emotional arousal brain networks and trait resilience (total and subscales) while controlling for age, sex, and total GMV. Correlations were also conducted between resilience scores and affect scores. Significant associations were found between GM changes in hypothesized brain regions (subparietal sulcus, intraparietal sulcus, amygdala, anterior mid cingulate cortex, and subgenual cingulate cortex) and resilience scores. There were significant positive correlations between resilience and positive affect and negative correlations with negative affect. Resilience was associated with brain morphology of regions involved in cognitive and affective processes related to cortico-limbic inhibition. Brain signatures associated with resilience may be a biomarker of vulnerability to disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Towards a neural basis of music-evoked emotions.

    PubMed

    Koelsch, Stefan

    2010-03-01

    Music is capable of evoking exceptionally strong emotions and of reliably affecting the mood of individuals. Functional neuroimaging and lesion studies show that music-evoked emotions can modulate activity in virtually all limbic and paralimbic brain structures. These structures are crucially involved in the initiation, generation, detection, maintenance, regulation and termination of emotions that have survival value for the individual and the species. Therefore, at least some music-evoked emotions involve the very core of evolutionarily adaptive neuroaffective mechanisms. Because dysfunctions in these structures are related to emotional disorders, a better understanding of music-evoked emotions and their neural correlates can lead to a more systematic and effective use of music in therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory

    PubMed Central

    Moseley, Rachel L.; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250

  4. Hypersexuality or altered sexual preference following brain injury.

    PubMed Central

    Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M

    1986-01-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury. Images PMID:3746322

  5. Mirror trends of plasticity and stability indicators in primate prefrontal cortex.

    PubMed

    García-Cabezas, Miguel Á; Joyce, Mary Kate P; John, Yohan J; Zikopoulos, Basilis; Barbas, Helen

    2017-10-01

    Research on plasticity markers in the cerebral cortex has largely focused on their timing of expression and role in shaping circuits during critical and normal periods. By contrast, little attention has been focused on the spatial dimension of plasticity-stability across cortical areas. The rationale for this analysis is based on the systematic variation in cortical structure that parallels functional specialization and raises the possibility of varying levels of plasticity. Here, we investigated in adult rhesus monkeys the expression of markers related to synaptic plasticity or stability in prefrontal limbic and eulaminate areas that vary in laminar structure. Our findings revealed that limbic areas are impoverished in three markers of stability: intracortical myelin, the lectin Wisteria floribunda agglutinin, which labels perineuronal nets, and parvalbumin, which is expressed in a class of strong inhibitory neurons. By contrast, prefrontal limbic areas were enriched in the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), known to enhance plasticity. Eulaminate areas have more elaborate laminar architecture than limbic areas and showed the opposite trend: they were enriched in markers of stability and had lower expression of the plasticity-related marker CaMKII. The expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, was also higher in limbic areas, suggesting that cellular stress correlates with the rate of circuit reshaping. Elevated markers of plasticity may endow limbic areas with flexibility necessary for learning and memory within an affective context, but may also render them vulnerable to abnormal structural changes, as seen in neurologic and psychiatric diseases. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Brain Metabolism during Hallucination-Like Auditory Stimulation in Schizophrenia

    PubMed Central

    Horga, Guillermo; Fernández-Egea, Emilio; Mané, Anna; Font, Mireia; Schatz, Kelly C.; Falcon, Carles; Lomeña, Francisco; Bernardo, Miguel; Parellada, Eduard

    2014-01-01

    Auditory verbal hallucinations (AVH) in schizophrenia are typically characterized by rich emotional content. Despite the prominent role of emotion in regulating normal perception, the neural interface between emotion-processing regions such as the amygdala and auditory regions involved in perception remains relatively unexplored in AVH. Here, we studied brain metabolism using FDG-PET in 9 remitted patients with schizophrenia that previously reported severe AVH during an acute psychotic episode and 8 matched healthy controls. Participants were scanned twice: (1) at rest and (2) during the perception of aversive auditory stimuli mimicking the content of AVH. Compared to controls, remitted patients showed an exaggerated response to the AVH-like stimuli in limbic and paralimbic regions, including the left amygdala. Furthermore, patients displayed abnormally strong connections between the amygdala and auditory regions of the cortex and thalamus, along with abnormally weak connections between the amygdala and medial prefrontal cortex. These results suggest that abnormal modulation of the auditory cortex by limbic-thalamic structures might be involved in the pathophysiology of AVH and may potentially account for the emotional features that characterize hallucinatory percepts in schizophrenia. PMID:24416328

  7. The role of the medial temporal limbic system in processing emotions in voice and music.

    PubMed

    Frühholz, Sascha; Trost, Wiebke; Grandjean, Didier

    2014-12-01

    Subcortical brain structures of the limbic system, such as the amygdala, are thought to decode the emotional value of sensory information. Recent neuroimaging studies, as well as lesion studies in patients, have shown that the amygdala is sensitive to emotions in voice and music. Similarly, the hippocampus, another part of the temporal limbic system (TLS), is responsive to vocal and musical emotions, but its specific roles in emotional processing from music and especially from voices have been largely neglected. Here we review recent research on vocal and musical emotions, and outline commonalities and differences in the neural processing of emotions in the TLS in terms of emotional valence, emotional intensity and arousal, as well as in terms of acoustic and structural features of voices and music. We summarize the findings in a neural framework including several subcortical and cortical functional pathways between the auditory system and the TLS. This framework proposes that some vocal expressions might already receive a fast emotional evaluation via a subcortical pathway to the amygdala, whereas cortical pathways to the TLS are thought to be equally used for vocal and musical emotions. While the amygdala might be specifically involved in a coarse decoding of the emotional value of voices and music, the hippocampus might process more complex vocal and musical emotions, and might have an important role especially for the decoding of musical emotions by providing memory-based and contextual associations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Perirhinal cortex and temporal lobe epilepsy

    PubMed Central

    Biagini, Giuseppe; D'Antuono, Margherita; Benini, Ruba; de Guzman, Philip; Longo, Daniela; Avoli, Massimo

    2013-01-01

    The perirhinal cortex—which is interconnected with several limbic structures and is intimately involved in learning and memory—plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i) highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii) briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii) focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus. PMID:24009554

  9. Neuropsychological and FDG-PET profiles in VGKC autoimmune limbic encephalitis.

    PubMed

    Dodich, Alessandra; Cerami, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Alongi, Pierpaolo; Crespi, Chiara; Canessa, Nicola; Andreetta, Francesca; Falini, Andrea; Cappa, Stefano F; Perani, Daniela

    2016-10-01

    Limbic encephalitis (LE) is characterized by an acute or subacute onset with memory impairments, confusional state, behavioral disorders, variably associated with seizures and dystonic movements. It is due to inflammatory processes that selectively affect the medial temporal lobe structures. Voltage-gate potassium channel (VGKC) autoantibodies are frequently observed. In this study, we assessed at the individual level FDG-PET brain metabolic dysfunctions and neuropsychological profiles in three autoimmune LE cases seropositive for neuronal VGKC-complex autoantibodies. LGI1 and CASPR2 potassium channel complex autoantibody subtyping was performed. Cognitive abilities were evaluated with an in-depth neuropsychological battery focused on episodic memory and affective recognition/processing skills. FDG-PET data were analyzed at single-subject level according to a standardized and validated voxel-based Statistical Parametric Mapping (SPM) method. Patients showed severe episodic memory and fear recognition deficits at the neuropsychological assessment. No disorder of mentalizing processing was present. Variable patterns of increases and decreases of brain glucose metabolism emerged in the limbic structures, highlighting the pathology-driven selective vulnerability of this system. Additional involvement of cortical and subcortical regions, particularly in the sensorimotor system and basal ganglia, was found. Episodic memory and fear recognition deficits characterize the cognitive profile of LE. Commonalities and differences may occur in the brain metabolic patterns. Single-subject voxel-based analysis of FDG-PET imaging could be useful in the early detection of the metabolic correlates of cognitive and non-cognitive deficits characterizing LE condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The temporolimbic system theory of positive schizophrenic symptoms.

    PubMed

    Bogerts, B

    1997-01-01

    This article proposes that subtle structural and functional disturbance of limbic key structures in the medial temporal lobe-especially of the left hippocampal formation and parahippocampal gyrus-can explain the so-called positive symptoms of schizophrenia. After presenting pathophysiological considerations linking limbic dysfunction to schizophrenia, the article reviews evidence from structural, biochemical, and functional studies supporting the theory. Also discussed here are neurodevelopmental and laterality aspects, as well as predictions, questions, and future tasks derived from the theory.

  11. Limbic grey matter changes in early Parkinson's disease.

    PubMed

    Li, Xingfeng; Xing, Yue; Schwarz, Stefan T; Auer, Dorothee P

    2017-05-02

    The purpose of this study was to investigate local and network-related changes of limbic grey matter in early Parkinson's disease (PD) and their inter-relation with non-motor symptom severity. We applied voxel-based morphometric methods in 538 T1 MRI images retrieved from the Parkinson's Progression Markers Initiative website. Grey matter densities and cross-sectional estimates of age-related grey matter change were compared between subjects with early PD (n = 366) and age-matched healthy controls (n = 172) within a regression model, and associations of grey matter density with symptoms were investigated. Structural brain networks were obtained using covariance analysis seeded in regions showing grey matter abnormalities in PD subject group. Patients displayed focally reduced grey matter density in the right amygdala, which was present from the earliest stages of the disease without further advance in mild-moderate disease stages. Right amygdala grey matter density showed negative correlation with autonomic dysfunction and positive with cognitive performance in patients, but no significant interrelations were found with anxiety scores. Patients with PD also demonstrated right amygdala structural disconnection with less structural connectivity of the right amygdala with the cerebellum and thalamus but increased covariance with bilateral temporal cortices compared with controls. Age-related grey matter change was also increased in PD preferentially in the limbic system. In conclusion, detailed brain morphometry in a large group of early PD highlights predominant limbic grey matter deficits with stronger age associations compared with controls and associated altered structural connectivity pattern. This provides in vivo evidence for early limbic grey matter pathology and structural network changes that may reflect extranigral disease spread in PD. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  12. Regional heterogeneity in limbic maturational changes: evidence from integrating cortical thickness, volumetric and diffusion tensor imaging measures.

    PubMed

    Grieve, Stuart M; Korgaonkar, Mayuresh S; Clark, C Richard; Williams, Leanne M

    2011-04-01

    Magnetic resonance imaging (MRI) studies of structural brain development have suggested that the limbic system is relatively preserved in comparison to other brain regions with healthy aging. The goal of this study was to systematically investigate age-related changes of the limbic system using measures of cortical thickness, volumetric and diffusion characteristics. We also investigated if the "relative preservation" concept is consistent across the individual sub-regions of the limbic system. T1 weighted structural MRI and Diffusion Tensor Imaging data from 476 healthy participants from the Brain Resource International Database was used for this study. Age-related changes in grey matter (GM)/white matter (WM) volume, cortical thickness, diffusional characteristics for the pericortical WM and for the fiber tracts associated with the limbic regions were quantified. A regional variability in the aging patterns across the limbic system was present. Four important patterns of age-related changes were highlighted for the limbic sub-regions: 1. early maturation of GM with late loss in the hippocampus and amygdala; 2. an extreme pattern of GM preservation in the entorhinal cortex; 3. a flat pattern of reduced GM loss in the anterior cingulate and the parahippocampus and; 4. accelerated GM loss in the isthmus and posterior cingulate. The GM volumetric data and cortical thickness measures proved to be internally consistent, while the diffusional measures provided complementary data that seem consistent with the GM trends identified. This heterogeneity can be hypothesized to be associated with age-related changes of cognitive function specialized for that region and direct connections to the other brain regions sub-serving these functions. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface

    NASA Astrophysics Data System (ADS)

    Widge, Alik S.; Moritz, Chet T.

    2014-04-01

    Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.

  14. Limbic correlates of fearlessness and disinhibition in incarcerated youth: Exploring the brain-behavior relationship with the Hare Psychopathy Checklist: Youth Version.

    PubMed

    Walters, Glenn D; Kiehl, Kent A

    2015-12-15

    The purpose of this study was to determine whether scores on two temperament dimensions (fearlessness and disinhibition) correlated differentially with gray matter volumes in two limbic regions (amygdala and hippocampus). It was predicted that the fearlessness dimension would correlate with low gray matter volumes in the amygdala and the disinhibition dimension would correlate with low gray matter volumes in the hippocampus after controlling for age, IQ, regular substance use, and total brain volume. Participants were 191 male adolescents (age range=13-19 years) incarcerated in a maximum-security juvenile facility. Structural magnetic resonance imaging (MRI) analysis of the limbic and paralimbic regions of the brain was conducted. The temperament dimensions were estimated with items from the Psychopathy Checklist: Youth Version (PCL: YV: Forth et al., 2003). Analyses showed that the fearlessness dimension correlated negatively with gray matter volumes in the amygdala and the disinhibition dimension correlated negatively with gray matter volumes in the hippocampus but not vice versa. These findings provide preliminary support for the construct validity of the fearlessness and disinhibition temperament dimensions and offer confirmatory evidence for involvement of the amygdala and hippocampus in fear conditioning and behavioral inhibition, respectively. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. A voxel based comparative analysis using magnetization transfer imaging and T1-weighted magnetic resonance imaging in progressive supranuclear palsy

    PubMed Central

    Sandhya, Mangalore; Saini, Jitender; Pasha, Shaik Afsar; Yadav, Ravi; Pal, Pramod Kumar

    2014-01-01

    Aims: In progressive supranuclear palsy (PSP) tissue damage occurs in specific cortical and subcortical regions. Voxel based analysis using T1-weighted images depict quantitative gray matter (GM) atrophy changes. Magnetization transfer (MT) imaging depicts qualitative changes in the brain parenchyma. The purpose of our study was to investigate whether MT imaging could indicate abnormalities in PSP. Settings and Design: A total of 10 patients with PSP (9 men and 1 woman) and 8 controls (5 men and 3 women) were studied with T1-weighted magnetic resonance imaging (MRI) and 3DMT imaging. Voxel based analysis of T1-weighted MRI was performed to investigate brain atrophy while MT was used to study qualitative abnormalities in the brain tissue. We used SPM8 to investigate group differences (with two sample t-test) using the GM and white matter (WM) segmented data. Results: T1-weighted imaging and MT are equally sensitive to detect changes in GM and WM in PSP. Magnetization transfer ratio images and magnetization-prepared rapid acquisition of gradient echo revealed extensive bilateral volume and qualitative changes in the orbitofrontal, prefrontal cortex and limbic lobe and sub cortical GM. The prefrontal structures involved were the rectal gyrus, medial, inferior frontal gyrus (IFG) and middle frontal gyrus (MFG). The anterior cingulate, cingulate gyrus and lingual gyrus of limbic lobe and subcortical structures such as caudate, thalamus, insula and claustrum were also involved. Cerebellar involvement mainly of anterior lobe was also noted. Conclusions: The findings suggest that voxel based MT imaging permits a whole brain unbiased investigation of central nervous system structural integrity in PSP. PMID:25024571

  16. Heritability of the limbic networks

    PubMed Central

    Kawadler, Jamie M.; Dell'Acqua, Flavio; Rijsdijk, Frühling V.; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M.; Murphy, Declan G.; Craig, Michael C.; Catani, Marco

    2016-01-01

    Individual differences in cognitive ability and social behaviour are influenced by the variability in the structure and function of the limbic system. A strong heritability of the limbic cortex has been previously reported, but little is known about how genetic factors influence specific limbic networks. We used diffusion tensor imaging tractography to investigate heritability of different limbic tracts in 52 monozygotic and 34 dizygotic healthy adult twins. We explored the connections that contribute to the activity of three distinct functional limbic networks, namely the dorsal cingulum (‘medial default-mode network’), the ventral cingulum and the fornix (‘hippocampal-diencephalic-retrosplenial network’) and the uncinate fasciculus (‘temporo-amygdala-orbitofrontal network’). Genetic and environmental variances were mapped for multiple tract-specific measures that reflect different aspects of the underlying anatomy. We report the highest heritability for the uncinate fasciculus, a tract that underpins emotion processing, semantic cognition, and social behaviour. High to moderate genetic and shared environmental effects were found for pathways important for social behaviour and memory, for example, fornix, dorsal and ventral cingulum. These findings indicate that within the limbic system inheritance of specific traits may rely on the anatomy of distinct networks and is higher for fronto-temporal pathways dedicated to complex social behaviour and emotional processing. PMID:26714573

  17. [Anti-Ma2-associated encephalitis and paraneoplastic limbic encephalitis].

    PubMed

    Yamamoto, Tomotaka; Tsuji, Shoji

    2010-08-01

    Anti-Ma2-associated encephalitis (or anti-Ma2 encephalitis) is a paraneoplastic neurological syndrome (PNS) characterized by isolated or combined limbic, diencephalic, or brainstem dysfunction. Anti-Ma2 antibodies detected in the serum or cerebrospinal fluid of patients are highly specific for this disease entity and belong to a group of well-characterized onconeuronal antibodies (or classical antibodies). The corresponding antigen, Ma2 is selectively expressed intracellularly in neurons and tumors as is the case with other onconeuronal antigens targeted by classical antibodies. However, in most cases the clinical pictures are different from those of classical PNS and this creates a potential risk of underdiagnosis. Although limbic dysfunction is the most common manifestation in patients with anti-Ma2 encephalitis which is one of the major causes of paraneoplastic limbic encephalitis (LE), it has been reported that less than 30% of the patients with anti-Ma2 LE exhibit clinical presentations typical of the classical description of LE. Of the remaining, many exhibit excessive daytime sleepiness, vertical ophthalmoparesis, or both associated with LE, because of frequent involvement of the diencephalon and/or upper brainstem. Anti-Ma2 LE can also be manifested as a pure psychiatric disturbance such as obsessive-compulsive disorder in a few cases. Some patients develop mesodiencephalic encephalitis with minor involvement of the limbic system, and some may manifest severe hypokinesis. About 40% of the patients with anti-Ma2 antibodies also have antibodies against different epitopes on Ma1, a homologue of Ma2. These patients may have predominant cerebellar and/or brainstem dysfunctions due to more extensive involvement of subtentorial structures. Anti-Ma2 encephalitis is outstanding among other PNS associated with classical antibodies in that the response rate to treatment is relatively high. While it can cause severe neurological deficits or death in a substantial proportion of the patients, approximately one-third show neurological improvement and another 20 - 40% stabilize in response to treatment, including immunotherapy and/or tumor treatment. Patients who have limited CNS involvement and testicular tumors with complete response to therapy are more likely to show neurological improvement. This fact emphasizes the importance of early diagnosis and prompt initiation of therapy. However, it should be noted that even carcinoma in situ, which is difficult to detect can cause severe neurological disorders. In this respect, it is useful to highlight that anti-Ma2 encephalitis is almost always associated with testicular germ cell tumors in men younger than 50 years. We experienced a 40-year-old patient with severe hypokinesis caused by anti-Ma2 encephalitis associated with bilateral intratubular germ-cell neoplasm of the testes. In older men and women, non-small-cell lung cancer is most common but various types of cancers are reported to be associated. In this study,in addition to reviewing the above case we have reviewed the significance of anti-Ma2 antibodies in the diagnosis of anti-Ma2 encephalitis and the clinical features of this disease.

  18. [Forensic neuropsychology at the challenge of the relationship between cognition and emotion in psychopathy].

    PubMed

    Alcázar-Córcoles, M A; Verdejo-García, A; Bouso-Saiz, J C

    The relationship between frontal lobe damage and criminality is especially complex. The neural substrates of psychopathic behavior seem to involve structural and functional abnormalities in the frontal lobes and the limbic system. AIM. To analyze the repercussions that brain structural and functional abnormalities in psychopathic individuals may have for forensic neuropsychology. Consistent evidence indicate that response inhibition problems in psychopathic subjects are linked to structural or functional damage in the frontal cortex. Furthermore, the prefrontal cortex, along with the amygdala and the hippocampus forms the limbic system, which is an important neural substrate of emotion processing; therefore the psychopath's capacity of affective processing could also be impaired. The theoretical frameworks of the somatic marker and mirror neuron hypotheses, along with the empirical study of executive functions may contribute to explain the inability of the psychopathic subjects to feel empathy, which is one of the main inhibitors of violence and antisocial behavior. The relationship between frontal lobe dysfunction and antisocial behavior arises an important legal issue. In order to consider some type of minor liability in the case of psychopaths it is suggested to gather further research data about the relationship between frontal lobe dysfunction and the ability to inhibit antisocial behavior by making an adequate use of empathy and emotional ties.

  19. The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls.

    PubMed

    Soeiro-de-Souza, Márcio Gerhardt; Otaduy, Maria Concepción Garcia; Dias, Carolina Zadres; Bio, Danielle S; Machado-Vieira, Rodrigo; Moreno, Ricardo Alberto

    2012-12-01

    Impairments in facial emotion recognition (FER) have been reported in bipolar disorder (BD) during all mood states. FER has been the focus of functional magnetic resonance imaging studies evaluating differential activation of limbic regions. Recently, the α1-C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene has been described as a risk gene for BD and its Met allele found to increase CACNA1C mRNA expression. In healthy controls, the CACNA1C risk (Met) allele has been reported to increase limbic system activation during emotional stimuli and also to impact on cognitive function. The aim of this study was to investigate the impact of CACNA1C genotype on FER scores and limbic system morphology in subjects with BD and healthy controls. Thirty-nine euthymic BD I subjects and 40 healthy controls were submitted to a FER recognition test battery and genotyped for CACNA1C. Subjects were also examined with a 3D 3-Tesla structural imaging protocol. The CACNA1C risk allele for BD was associated to FER impairment in BD, while in controls nothing was observed. The CACNA1C genotype did not impact on amygdala or hippocampus volume neither in BD nor controls. Sample size. The present findings suggest that a polymorphism in calcium channels interferes FER phenotype exclusively in BD and doesn't interfere on limbic structures morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy

    PubMed Central

    Skouras, Stavros; Lohmann, Gabriele

    2018-01-01

    Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with “small-world” properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex—and sensory systems in general—in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions. PMID:29385142

  1. Extra-hippocampal subcortical limbic involvement predicts episodic recall performance in multiple sclerosis.

    PubMed

    Dineen, Robert A; Bradshaw, Christopher M; Constantinescu, Cris S; Auer, Dorothee P

    2012-01-01

    Episodic memory impairment is a common but poorly-understood phenomenon in multiple sclerosis (MS). We aim to establish the relative contributions of reduced integrity of components of the extended hippocampal-diencephalic system to memory performance in MS patients using quantitative neuroimaging. 34 patients with relapsing-remitting MS and 24 healthy age-matched controls underwent 3 T MRI including diffusion tensor imaging and 3-D T1-weighted volume acquisition. Manual fornix regions-of-interest were used to derive fornix fractional anisotropy (FA). Normalized hippocampal, mammillary body and thalamic volumes were derived by manual segmentation. MS subjects underwent visual recall, verbal recall, verbal recognition and verbal fluency assessment. Significant differences between MS patients and controls were found for fornix FA (0.38 vs. 0.46, means adjusted for age and fornix volume, P<.0005) and mammillary body volumes (age-adjusted means 0.114 ml vs. 0.126 ml, P<.023). Multivariate regression analysis identified fornix FA and mammillary bodies as predictor of visual recall (R(2) = .31, P = .003, P = .006), and thalamic volume as predictive of verbal recall (R(2) = .37, P<.0005). No limbic measures predicted verbal recognition or verbal fluency. These findings indicate that structural and ultrastructural alterations in subcortical limbic components beyond the hippocampus predict performance of episodic recall in MS patients with mild memory dysfunction.

  2. Effects of normal aging and Alzheimer's disease on emotional memory.

    PubMed

    Kensinger, Elizabeth A; Brierley, Barbara; Medford, Nick; Growdon, John H; Corkin, Suzanne

    2002-06-01

    Recall is typically better for emotional than for neutral stimuli. This enhancement is believed to rely on limbic regions. Memory is also better for neutral stimuli embedded in an emotional context. The neural substrate supporting this effect has not been thoroughly investigated but may include frontal lobe, as well as limbic circuits. Alzheimer's disease (AD) results in atrophy of limbic structures, whereas normal aging relatively spares limbic regions but affects prefrontal areas. The authors hypothesized that AD would reduce all enhancement effects, whereas aging would disproportionately affect enhancement based on emotional context. The results confirmed the authors' hypotheses: Young and older adults, but not AD patients, showed better memory for emotional versus neutral pictures and words. Older adults and AD patients showed no benefit from emotional context, whereas young adults remembered more items embedded in an emotional versus neutral context.

  3. Role of the limbic system in dependence on drugs.

    PubMed

    Rodríguez de Fonseca, F; Navarro, M

    1998-08-01

    The limbic system is a group of structurally and functionally related areas of the brain that provides the anatomical substrate for emotions and motivated behaviour, including the circuitry for the stress response and reward-related events. This system is strongly implicated in drug abuse from the pleasure and/or positive side associated with acute exposure to the dysphoria and craving associated with withdrawal. The contribution of the main cortical and subcortical elements of the limbic system to drug dependence is briefly reviewed in the present work with a focus on the role of the extended amygdala and its connections as well as on the peripheral feedback signals mediated by adrenal glucocorticoids. The elucidation of the neuroadaptive responses of the limbic system to chronic drug exposure will undoubtedly help to design rational strategies for the treatment of addiction.

  4. Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry.

    PubMed

    Miquel, Marta; Vazquez-Sanroman, Dolores; Carbo-Gas, María; Gil-Miravet, Isis; Sanchis-Segura, Carla; Carulli, Daniela; Manzo, Jorge; Coria-Avila, Genaro A

    2016-01-01

    Addiction involves alterations in multiple brain regions that are associated with functions such as memory, motivation and executive control. Indeed, it is now well accepted that addictive drugs produce long-lasting molecular and structural plasticity changes in corticostriatal-limbic loops. However, there are brain regions that might be relevant to addiction other than the prefrontal cortex, amygdala, hippocampus and basal ganglia. In addition to these circuits, a growing amount of data suggests the involvement of the cerebellum in many of the brain functions affected in addicts, though this region has been overlooked, traditionally, in the addiction field. Therefore, in the present review we provide seven arguments as to why we should consider the cerebellum in drug addiction. We present and discuss compelling evidence about the effects of drugs of abuse on cerebellar plasticity, the involvement of the cerebellum in drug-induced cue-related memories, and several findings showing that the instrumental memory and executive functions also recruit the cerebellar circuitry. In addition, a hypothetical model of the cerebellum's role relative to other areas within corticostriatal-limbic networks is also provided. Our goal is not to review animal and human studies exhaustively but to support the inclusion of cerebellar alterations as a part of the physiopathology of addiction disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Modulating Emotional Experience Using Electrical Stimulation of the Medial-Prefrontal Cortex: A Preliminary tDCS-fMRI Study.

    PubMed

    Abend, Rany; Sar-El, Roy; Gonen, Tal; Jalon, Itamar; Vaisvaser, Sharon; Bar-Haim, Yair; Hendler, Talma

    2018-05-09

    Implicit regulation of emotions involves medial-prefrontal cortex (mPFC) regions exerting regulatory control over limbic structures. Diminished regulation relates to aberrant mPFC functionality and psychopathology. Establishing means of modulating mPFC functionality could benefit research on emotion and its dysregulation. Here, we tested the capacity of transcranial direct current stimulation (tDCS) targeting mPFC to modulate subjective emotional states by facilitating implicit emotion regulation. Stimulation was applied concurrently with functional magnetic resonance imaging to validate its neurobehavioral effect. Sixteen participants were each scanned twice, counterbalancing active and sham tDCS application, while undergoing negative mood induction (clips featuring negative vs. neutral contents). Effects of stimulation on emotional experience were assessed using subjective and neural measures. Subjectively, active stimulation led to significant reduction in reported intensity of experienced emotions to negatively valenced (p = 0.005) clips but not to neutral clips (p > 0.99). Active stimulation further mitigated a rise in stress levels from pre- to post-induction (sham: p = 0.004; active: p = 0.15). Neurally, stimulation increased activation in mPFC regions associated with implicit emotion regulation (ventromedial-prefrontal cortex; subgenual anterior-cingulate cortex, sgACC), and in ventral striatum, a core limbic structure (all ps < 0.05). Stimulation also altered functional connectivity (assessed using whole-brain psycho-physiological interaction) between these regions, and with additional limbic regions. Stimulation-induced sgACC activation correlated with reported emotion intensity and depressive symptoms (rs > 0.64, ps < 0.018), suggesting individual differences in stimulation responsivity. Results of this study indicate the potential capacity of tDCS to facilitate brain activation in mPFC regions underlying implicit regulation of emotion and accordingly modulate subjective emotional experiences. © 2018 International Neuromodulation Society.

  6. Limbic encephalitis following immunotherapy against metastatic malignant melanoma

    PubMed Central

    Salam, Sharfaraz; Lavin, Timothy; Turan, Ayse

    2016-01-01

    Novel immunotherapies are increasingly being used to treat malignant melanoma. The use of such agents has been associated with triggering autoimmunity. However, there has been a paucity in reports of limbic encephalitis associated with these immunotherapies. Pembrolizumab, a monoclonal antibody against programmed cell death antigen (PD-1), is currently being trialled in the UK to treat malignant melanoma. We report a unique case of antibody-negative limbic encephalitis presenting 1 year after starting pembrolizumab, in the context of malignant melanoma. The patient presented with progressive cognitive decline. MRI of the brain revealed signal change within the limbic structures. Cerebrospinal fluid studies confirmed evidence of inflammation with raised white cell count and protein. We were able to prevent further progression of symptoms by stopping pembrolizumab and treating the patient instead with steroids. We advocate considering autoimmune neuroinflammation as a differential for neurological disorders presenting in patients receiving PD-1 antagonist treatment and immunotherapy in general. PMID:27009198

  7. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus.

    PubMed

    Kraus, Kari Suzanne; Canlon, Barbara

    2012-06-01

    Acoustic experience such as sound, noise, or absence of sound induces structural or functional changes in the central auditory system but can also affect limbic regions such as the amygdala and hippocampus. The amygdala is particularly sensitive to sound with valence or meaning, such as vocalizations, crying or music. The amygdala plays a central role in auditory fear conditioning, regulation of the acoustic startle response and can modulate auditory cortex plasticity. A stressful acoustic stimulus, such as noise, causes amygdala-mediated release of stress hormones via the HPA-axis, which may have negative effects on health, as well as on the central nervous system. On the contrary, short-term exposure to stress hormones elicits positive effects such as hearing protection. The hippocampus can affect auditory processing by adding a temporal dimension, as well as being able to mediate novelty detection via theta wave phase-locking. Noise exposure affects hippocampal neurogenesis and LTP in a manner that affects structural plasticity, learning and memory. Tinnitus, typically induced by hearing malfunctions, is associated with emotional stress, depression and anatomical changes of the hippocampus. In turn, the limbic system may play a role in the generation as well as the suppression of tinnitus indicating that the limbic system may be essential for tinnitus treatment. A further understanding of auditory-limbic interactions will contribute to future treatment strategies of tinnitus and noise trauma. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Aberrant paralimbic gray matter in criminal psychopathy.

    PubMed

    Ermer, Elsa; Cope, Lora M; Nyalakanti, Prashanth K; Calhoun, Vince D; Kiehl, Kent A

    2012-08-01

    Psychopaths impose large costs on society, as they are frequently habitual, violent criminals. The pervasive nature of emotional and behavioral symptoms in psychopathy suggests that several associated brain regions may contribute to the disorder. Studies employing a variety of methods have converged on a set of brain regions in paralimbic cortex and limbic areas that appear to be dysfunctional in psychopathy. The present study further tests this hypothesis by investigating structural abnormalities using voxel-based morphometry in a sample of incarcerated men (N=296). Psychopathy was associated with decreased regional gray matter in several paralimbic and limbic areas, including bilateral parahippocampal, amygdala, and hippocampal regions, bilateral temporal pole, posterior cingulate cortex, and orbitofrontal cortex. The consistent identification of paralimbic cortex and limbic structures in psychopathy across diverse methodologies strengthens the interpretation that these regions are crucial for understanding neural dysfunction in psychopathy. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  9. Anti Ma2-associated myeloradiculopathy: expanding the phenotype of anti-Ma2 associated paraneoplastic syndromes

    PubMed Central

    Murphy, Sinead M; Khan, Usman; Alifrangis, Constantine; Hazell, Steven; Hrouda, David; Blake, Julian; Ball, Joanna; Gabriel, Carolyn; Markarian, Pierre; Rees, Jeremy; Karim, Abid; Seckl, Michael J; Lunn, Michael P; Reilly, Mary M

    2013-01-01

    Anti-Ma2 associated paraneoplastic syndrome usually presents as limbic encephalitis in association with testicular tumours.1, 2 Only four patients have been reported with involvement outside the CNS, two of whom also had limbic or brainstem encephalitis.2, 3 We report a man with anti- Ma2 associated myeloradiculopathy and previous testicular cancer whose neurological syndrome stabilised and anti-Ma2 titres fell following orchidectomy of a microscopically normal testis. PMID:21205983

  10. Self-reference, emotion inhibition and somatosensory disturbance: preliminary investigation of network perturbations in conversion disorder.

    PubMed

    Monsa, R; Peer, M; Arzy, S

    2018-06-01

    Conversion disorder (CD), or functional neurological disorder, is manifested as a neurological disturbance that is not macroscopically visible on clinical structural neuroimaging and is instead ascribed to underlying psychological stress. Known for many years in neuropsychiatry, a comprehensive explanation of the way in which psychological stress leads to a neurological deficit of a structural-like origin is still lacking. We applied whole-brain network-based data-driven analyses on resting-state functional magnetic resonance imaging, recorded in seven patients with acute-onset, stroke-like CD with unilateral paresis and hypoesthesia as compared with 15 age-matched healthy controls. We used a clustering analysis to measure functional connectivity (FC) strength within 10 different brain networks, as well as between these networks. Finally, we tested FC of specific brain regions that are known to be involved in CD. We found a significant increase in FC strength only within the default-mode network (DMN), which manages self-referential processing. Examination of inter-connectivity between networks showed a structure of disturbed connectivity, which included decreased connectivity between the DMN and limbic/salience network, increased connectivity between the limbic/salience network and body-related temporo-parieto-occipital junction network, decreased connectivity between the temporo-parieto-occipital junction and memory-related medial temporal lobe, and decreased connectivity between the medial temporal lobe and sensorimotor network. Region-specific FC analysis showed increased connectivity between the hippocampus and DMN. These preliminary results of disturbances in brain networks related to memory, emotions and self-referential processing, and networks involved in motor planning and execution, suggest a role of these cognitive functions in the psychopathology of CD. © 2018 EAN.

  11. Neural signatures of cognitive and emotional biases in depression

    PubMed Central

    Fossati, Philippe

    2008-01-01

    Functional brain imaging studies suggest that depression is a system-level disorder affecting discrete but functionally linked cortical and limbic structures, with abnormalities in the anterior cingulate, lateral, ami medial prefrontal cortex, amygdala, ami hippocampus. Within this circuitry, abnormal corticolimbic interactions underlie cognitive deficits ami emotional impairment in depression. Depression involves biases toward processing negative emotional information and abnormal self-focus in response to emotional stimuli. These biases in depression could reflect excessive analytical self-focus in depression, as well as impaired cognitive control of emotional response to negative stimuli. By combining structural and functional investigations, brain imaging studies mav help to generate novel antidepressant treatments that regulate structural and factional plasticity within the neural network regulating mood and affective behavior.

  12. Colour or shape: examination of neural processes underlying mental flexibility in posttraumatic stress disorder.

    PubMed

    Pang, E W; Sedge, P; Grodecki, R; Robertson, A; MacDonald, M J; Jetly, R; Shek, P N; Taylor, M J

    2014-08-05

    Posttraumatic stress disorder (PTSD) is a mental disorder that stems from exposure to one or more traumatic events. While PTSD is thought to result from a dysregulation of emotional neurocircuitry, neurocognitive difficulties are frequently reported. Mental flexibility is a core executive function that involves the ability to shift and adapt to new information. It is essential for appropriate social-cognitive behaviours. Magnetoencephalography (MEG), a neuroimaging modality with high spatial and temporal resolution, has been used to track the progression of brain activation during tasks of mental flexibility called set-shifting. We hypothesized that the sensitivity of MEG would be able to capture the abnormal neurocircuitry implicated in PTSD and this would negatively impact brain regions involved in set-shifting. Twenty-two soldiers with PTSD and 24 matched control soldiers completed a colour-shape set-shifting task. MEG data were recorded and source localized to identify significant brain regions involved in the task. Activation latencies were obtained by analysing the time course of activation in each region. The control group showed a sequence of activity that involved dorsolateral frontal cortex, insula and posterior parietal cortices. The soldiers with PTSD showed these activations but they were interrupted by activations in paralimbic regions. This is consistent with models of PTSD that suggest dysfunctional neurocircuitry is driven by hyper-reactive limbic areas that are not appropriately modulated by prefrontal cortical control regions. This is the first study identifying the timing and location of atypical neural responses in PTSD with set-shifting and supports the model that hyperactive limbic structures negatively impact cognitive function.

  13. Limbic system seizures and aggressive behavior (superkindling effects).

    PubMed

    Andy, O J; Velamati, S

    1978-01-01

    This study was done to further analyze the neural mechanisms underlying aggressive behavior associated with psychomotor or temporal lobe seizures. The studies revealed that superkindling the aggressive system by sequential stimulations at seizure-inducing thresholds, of two or more sites in the limbic, hypothalamic, and basal ganglia structures facilitated the production of aggressive seizures. Aggressive behavior in the freely moving cat was evaluated in relation to the occurrence of hissing and growling during stimulation, after-discharge and postictal period. The behavior was correlated with the frequency of the elicited seizures and the seizure durations. Aggression did develop as a component behavioral manifestation of the limbic (psychomotor) seizure. Development of aggressive seizures was facilitated by "priming" the aggressive system. Optimum levels of aggressive behavior occurred with seizures of medium duration. Catecholamine blockers tended to attentuate the occurrence of aggression, whereas the agonist tended to facilitate it. Once the aggressive system was rendered hyperexcitable, exteroceptive stimuli also evoked aggressive attack behavior. It was concluded that repeatedly recurring limbic system seizures through superkindling mechanisms can eventually render the limbic-basal ganglia-preoptico-hypothalamic aggressive system hyper-responsive to both recurring seizures and to exteroceptive stimuli with resulting aggressive behavior with or without an accompanying seizure.

  14. EEG-confirmed epileptic activity in a cat with VGKC-complex/LGI1 antibody-associated limbic encephalitis.

    PubMed

    Pakozdy, Akos; Glantschnigg, Ursula; Leschnik, Michael; Hechinger, Harald; Moloney, Teresa; Lang, Bethan; Halasz, Peter; Vincent, Angela

    2014-03-01

    A 5-year-old, female client-owned cat presented with acute onset of focal epileptic seizures with orofacial twitching and behavioural changes. Magnetic resonance imaging showed bilateral temporal lobe hyperintensities and the EEG was consistent with ictal epileptic seizure activity. After antiepileptic and additional corticosteroid treatment, the cat recovered and by 10 months of follow-up was seizure-free without any problem. Retrospectively, antibodies to LGI1, a component of the voltage-gated potassium channel-complex, were identified. Feline focal seizures with orofacial involvement have been increasingly recognised in client-owned cats, and autoimmune limbic encephalitis was recently suggested as a possible aetiology. This is the first report of EEG, MRI and long-term follow-up of this condition in cats which is similar to human limbic encephalitis.

  15. Carbachol-induced network oscillations in an in vitro limbic system brain slice.

    PubMed

    Lévesque, Maxime; Cataldi, Mauro; Chen, Li-Yuan; Hamidi, Shabnam; Avoli, Massimo

    2017-04-21

    We employed simultaneous field potential recordings from CA3, subiculum and entorhinal cortex in an in vitro brain slice preparation to understand the involvement of these limbic areas in the generation of the field potential oscillations that are induced by bath application of the muscarinic receptor agonist carbachol. Regularly spaced oscillations that mainly presented at theta frequency range (5-12Hz) occurred synchronously in all three structures in the presence of carbachol. These oscillations, which disappeared when slices were perfused with pirenzepine or with glutamatergic receptor antagonists, were categorized as short (<4s) and long (>4s) with short events oscillating at higher frequencies than long events. Field oscillations were highly synchronized between regions and latency analysis revealed that they often initiated in the entorhinal cortex later than in the other two structures. Blocking GABA A receptors modified the activity patterns of both short and long oscillations and decreased their coherence in the theta frequency range. Finally, blocking KCC2 activity disclosed a pattern of recurrent short oscillations. Our results suggest that in the presence of carbachol both subiculum and CA3 most often drive theta generators in the entorhinal cortex and that these oscillations are influenced but not abolished by altering GABA A receptor signaling. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Childhood maltreatment moderates the effect of combat exposure on cingulum structural integrity

    PubMed Central

    BANIHASHEMI, LAYLA; WALLACE, MEREDITH L.; SHEU, LEI K.; LEE, MICHAEL C.; GIANAROS, PETER J.; MACKENZIE, ROBERT P.; INSANA, SALVATORE P.; GERMAIN, ANNE; HERRINGA, RYAN J.

    2017-01-01

    Limbic white matter pathways link emotion, cognition, and behavior and are potentially malleable to the influences of traumatic events throughout development. However, the impact of interactions between childhood and later life trauma on limbic white matter pathways has yet to be examined. Here, we examined whether childhood maltreatment moderated the effect of combat exposure on diffusion tensor imaging measures within a sample of military veterans (N = 28). We examined five limbic tracts of interest: two components of the cingulum (cingulum, cingulate gyrus, and cingulum hippocampus [CGH]), the uncinate fasciculus, the fornix/stria terminalis, and the anterior limb of the internal capsule. Using effect sizes, clinically meaningful moderator effects were found only within the CGH. Greater combat exposure was associated with decreased CGH fractional anisotropy (overall structural integrity) and increased CGH radial diffusivity (perpendicular water diffusivity) among individuals with more severe childhood maltreatment. Our findings provide preliminary evidence of the moderating effect of childhood maltreatment on the relationship between combat exposure and CGH structural integrity. These differences in CGH structural integrity could have maladaptive implications for emotion and memory, as well as provide a potential mechanism by which childhood maltreatment induces vulnerability to later life trauma exposure. PMID:29162178

  17. Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia.

    PubMed

    Yang, Yaling; Raine, Adrian; Han, Chen-Bo; Schug, Robert A; Toga, Arthur W; Narr, Katherine L

    2010-04-30

    Evidence has accumulated to suggest that individuals with schizophrenia are at increased risk for violent offending. Furthermore, converging evidence suggests that abnormalities in the fronto-limbic system, including the prefrontal cortex, the hippocampus, and the parahippocampal gyrus, may contribute towards both neuropsychological disturbances in schizophrenia and violent behavior. Since the behavioral and clinical consequences of disturbed fronto-limbic circuitry appear to differ in schizophrenia and violence, it may be argued that patients with schizophrenia who exhibit violent behavior would demonstrate different structural abnormalities compared to their non-violent counterparts. However, the neurobiological basis underlying homicide offenders with schizophrenia remains unclear and little is known regarding the cross-cultural applicability of the findings. Using a 2 x 2 factorial design on a total Chinese sample of 92 males and females, we found reduced gray matter volume in the hippocampus and parahippocampal gyrus in murderers with schizophrenia, in the parahippocampal gyrus in murderers without schizophrenia, and in the prefrontal cortex in non-violent schizophrenia compared to normal controls. Results provide initial evidence demonstrating cross-cultural generalizability of prior fronto-limbic findings on violent schizophrenia. Future studies examining subtle morphological changes in frontal and limbic structures in association with clinical and behavioral characteristics may help further clarify the neurobiological basis of violent behavior. Copyright @ 2009 Elsevier Ireland Ltd. All rights reserved.

  18. Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia

    PubMed Central

    Raine, Adrian; Han, Chen-Bo; Schug, Robert A.; Toga, Arthur W.; Narr, Katherine L.

    2010-01-01

    Evidence has accumulated to suggest that individuals with schizophrenia are at increased risk for violent offending. Furthermore, converging evidence suggests that abnormalities in the fronto-limbic system, including the prefrontal cortex, hippocampus, and the parahippocampal gyrus, may contribute towards both neuropsychological disturbances in schizophrenia and violent behavior. Since the behavioral and clinical consequences of disturbed fronto-limbic circuitry appear to differ in schizophrenia and violence, it may be argued that patients with schizophrenia who exhibit violent behavior would demonstrate different structural abnormalities compared to their non-violent counterparts. However, the neurobiological basis underlying homicide offenders with schizophrenia remains unclear and little is known regarding the cross-cultural applicability of the findings. Using a 2 × 2 factorial design on a total Chinese sample of 92 males and females, we found reduced gray matter volume in the hippocampus and parahippocampal gyrus in murderers with schizophrenia, in the parahippocampal gyrus in murderers without schizophrenia, and in the prefrontal cortex in non-violent schizophrenia compared to normal controls. Results provide initial evidence demonstrating cross-cultural generalizability of prior fronto-limbic findings on violent schizophrenia. Future studies examining subtle morphological changes in frontal and limbic structures in association with clinical and behavioral characteristics may help further clarify the neurobiological basis of violent behavior. PMID:20227253

  19. Differences in graph theory functional connectivity in left and right temporal lobe epilepsy.

    PubMed

    Chiang, Sharon; Stern, John M; Engel, Jerome; Levin, Harvey S; Haneef, Zulfi

    2014-12-01

    To investigate lateralized differences in limbic system functional connectivity between left and right temporal lobe epilepsy (TLE) using graph theory. Interictal resting state fMRI was performed in 14 left TLE patients, 11 right TLE patients, and 12 controls. Graph theory analysis of 10 bilateral limbic regions of interest was conducted. Changes in edgewise functional connectivity, network topology, and regional topology were quantified, and then left and right TLE were compared. Limbic edgewise functional connectivity was predominantly reduced in both left and right TLE. More regional connections were reduced in right TLE, most prominently involving reduced interhemispheric connectivity between the bilateral insula and bilateral hippocampi. A smaller number of limbic connections were increased in TLE, more so in left than in right TLE. Topologically, the most pronounced change was a reduction in average network betweenness centrality and concurrent increase in left hippocampal betweenness centrality in right TLE. In contrast, left TLE exhibited a weak trend toward increased right hippocampal betweenness centrality, with no change in average network betweenness centrality. Limbic functional connectivity is predominantly reduced in both left and right TLE, with more pronounced reductions in right TLE. In contrast, left TLE exhibits both edgewise and topological changes that suggest a tendency toward reorganization. Network changes in TLE and lateralized differences thereof may have important diagnostic and prognostic implications. Published by Elsevier B.V.

  20. Nicotine Modulates Multiple Regions in the Limbic Stress Network Regulating Activation of Hypophysiotrophic Neurons in Hypothalamic Paraventricular Nucleus

    PubMed Central

    Yu, Guoliang; Sharp, Burt M.

    2012-01-01

    Nicotine intake affects CNS responses to stressors. We reported that nicotine self-administration (SA) augmented the hypothalamo-pituitary-adrenal (HPA) stress response, in part due to altered neurotransmission and neuropeptide expression within hypothalamic paraventricular nucleus (PVN). Limbic-PVN interactions involving medial prefrontal cortex, amygdala, bed nucleus of the stria terminalis (BST) greatly impact the HPA stress response. Therefore, we investigated the effects of nicotine SA on stress-induced neuronal activation in limbic-PVN network, using c-Fos protein immunohistochemistry and retrograde tracing. Nicotine decreased stress-induced c-Fos in prelimbic cortex (PrL), anteroventral BST (avBST), and peri-PVN; but increased c-Fos induction in medial amygdala (MeA), locus coeruleus, and PVN. Fluoro-gold (FG) was injected into avBST or PVN, since GABAergic neurons in avBST projecting to PVN corticotrophin-releasing factor (CRF) neurons relay information from both PrL glutamatergic and MeA GABAergic neurons. The stress-induced c-Fos expression in retrograde-labeled FG+ neurons was decreased in PrL by nicotine, but increased in MeA, and also reduced in avBST. Therefore, within limbic-PVN network, nicotine SA exerts selective regional effects on neuronal activation by stress. These findings expand the mechanistic framework by demonstrating altered limbic-BST-PVN interactions underlying the disinhibition of PVN CRF neurons, an essential component of the amplified HPA response to stress by nicotine. PMID:22578217

  1. Neural mechanisms of genetic risk for impulsivity and violence in humans.

    PubMed

    Meyer-Lindenberg, Andreas; Buckholtz, Joshua W; Kolachana, Bhaskar; R Hariri, Ahmad; Pezawas, Lukas; Blasi, Giuseppe; Wabnitz, Ashley; Honea, Robyn; Verchinski, Beth; Callicott, Joseph H; Egan, Michael; Mattay, Venkata; Weinberger, Daniel R

    2006-04-18

    Neurobiological factors contributing to violence in humans remain poorly understood. One approach to this question is examining allelic variation in the X-linked monoamine oxidase A (MAOA) gene, previously associated with impulsive aggression in animals and humans. Here, we have studied the impact of a common functional polymorphism in MAOA on brain structure and function assessed with MRI in a large sample of healthy human volunteers. We show that the low expression variant, associated with increased risk of violent behavior, predicted pronounced limbic volume reductions and hyperresponsive amygdala during emotional arousal, with diminished reactivity of regulatory prefrontal regions, compared with the high expression allele. In men, the low expression allele is also associated with changes in orbitofrontal volume, amygdala and hippocampus hyperreactivity during aversive recall, and impaired cingulate activation during cognitive inhibition. Our data identify differences in limbic circuitry for emotion regulation and cognitive control that may be involved in the association of MAOA with impulsive aggression, suggest neural systems-level effects of X-inactivation in human brain, and point toward potential targets for a biological approach toward violence.

  2. Neurochemical background and approaches in the understanding of motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.

    1982-01-01

    The problems and nature of space motion sickness were defined. The neurochemical and neurophysiological bases of vestibular system function and of the expression of motion sickness wre reviewed. Emphasis was given to the elucidation of the neuropharmacological mechanisms underlying the effects of scopolamine and amphetamine on motion sickness. Characterization of the ascending reticular activating system and the limbic system provided clues to the etiology of the side effects of scopolamine. The interrelationship between central cholinergic pathways and the peripheral (autonomic) expression of motion sickness was described. A correlation between the stress of excessive motion and a variety of hormonal responses to that stress was also detailed. The cholinergic system is involved in the efferent modulation of the vestibular hair cells, as an afferent modulator of the vestibular nuclei, in the activation of cortical and limbic structures, in the expression of motion sickness symptoms and most likely underscores a number of the hormonal changes that occur in stressful motion environments. The role of lecithin in the regulation of the levels of neurotransmitters was characterized as a possible means by which cholinergic neurochemistry can be modulated.

  3. Neurocircuitry of Mood Disorders

    PubMed Central

    Price, Joseph L; Drevets, Wayne C

    2010-01-01

    This review begins with a brief historical overview of attempts in the first half of the 20th century to discern brain systems that underlie emotion and emotional behavior. These early studies identified the amygdala, hippocampus, and other parts of what was termed the ‘limbic' system as central parts of the emotional brain. Detailed connectional data on this system began to be obtained in the 1970s and 1980s, as more effective neuroanatomical techniques based on axonal transport became available. In the last 15 years these methods have been applied extensively to the limbic system and prefrontal cortex of monkeys, and much more specific circuits have been defined. In particular, a system has been described that links the medial prefrontal cortex and a few related cortical areas to the amygdala, the ventral striatum and pallidum, the medial thalamus, the hypothalamus, and the periaqueductal gray and other parts of the brainstem. A large body of human data from functional and structural imaging, as well as analysis of lesions and histological material indicates that this system is centrally involved in mood disorders. PMID:19693001

  4. Alterations of Brain Structural Network in Parkinson's Disease With and Without Rapid Eye Movement Sleep Behavior Disorder.

    PubMed

    Guo, Tao; Guan, Xiaojun; Zeng, Qiaoling; Xuan, Min; Gu, Quanquan; Huang, Peiyu; Xu, Xiaojun; Zhang, Minming

    2018-01-01

    Rapid eye movement sleep behavior disorder (RBD) has a strong association with alpha synucleinpathies such as Parkinson's disease (PD) and PD patients with RBD tend to have a poorer prognosis. However, we still know little about the pathogenesis of RBD in PD. Therefore, we aim to detect the alterations of structural correlation network (SCN) in PD patients with and without RBD. A total of 191 PD patients, including 51 patients with possible RBD (pRBD) and 140 patients with non-possible RBD, and 76 normal controls were included in the present study. Structural brain networks were constructed by thresholding gray matter volume correlation matrices of 116 regions and analyzed using graph theoretical approaches. There was no difference in global properties among the three groups. Significant enhanced regional nodal measures in limbic system, frontal-temporal regions, and occipital regions and decreased nodal measures in cerebellum were found in PD patients with pRBD (PD-pRBD) compared with PD patients without pRBD. Besides, nodes in frontal lobe, temporal lobe, and limbic system were served as hubs in both two PD groups, and PD-pRBD exhibited additionally recruited hubs in limbic regions. Based on the SCN analysis, we found PD-pRBD exhibited a reorganization of nodal properties as well as the remapping of the hub distribution in whole brain especially in limbic system, which may shed light to the pathophysiology of PD with RBD.

  5. Structural and functional connectivity changes in the brain associated with shyness but not with social anxiety.

    PubMed

    Yang, Xun; Kendrick, Keith Maurice; Wu, Qizhu; Chen, Taolin; Lama, Sunima; Cheng, Bochao; Li, Shiguang; Huang, Xiaoqi; Gong, Qiyong

    2013-01-01

    Shyness and social anxiety are correlated to some extent and both are associated with hyper-responsivity to social stimuli in the frontal cortex and limbic system. However to date no studies have investigated whether common structural and functional connectivity differences in the brain may contribute to these traits. We addressed this issue in a cohort of 61 healthy adult subjects. Subjects were first assessed for their levels of shyness (Cheek and Buss Shyness scale) and social anxiety (Liebowitz Social Anxiety scale) and trait anxiety. They were then given MRI scans and voxel-based morphometry and seed-based, resting-state functional connectivity analysis investigated correlations with shyness and anxiety scores. Shyness scores were positively correlated with gray matter density in the cerebellum, bilateral superior temporal gyri and parahippocampal gyri and right insula. Functional connectivity correlations with shyness were found between the superior temporal gyrus, parahippocampal gyrus and the frontal gyri, between the insula and precentral gyrus and inferior parietal lobule, and between the cerebellum and precuneus. Additional correlations were found for amygdala connectivity with the medial frontal gyrus, superior frontal gyrus and inferior parietal lobule, despite the absence of any structural correlation. By contrast no structural or functional connectivity measures correlated with social or trait anxiety. Our findings show that shyness is specifically associated with structural and functional connectivity changes in cortical and limbic regions involved with processing social stimuli. These associations are not found with social or trait anxiety in healthy subjects despite some behavioral correlations with shyness.

  6. Clinical analysis of anti-Ma2-associated encephalitis.

    PubMed

    Dalmau, Josep; Graus, Francesc; Villarejo, Alberto; Posner, Jerome B; Blumenthal, Deborah; Thiessen, Brian; Saiz, Albert; Meneses, Patricio; Rosenfeld, Myrna R

    2004-08-01

    Increasing experience indicates that anti-Ma2-associated encephalitis differs from classical paraneoplastic limbic or brainstem encephalitis, and therefore may be unrecognized. To facilitate its diagnosis we report a comprehensive clinical analysis of 38 patients with anti-Ma2 encephalitis. Thirty-four (89%) patients presented with isolated or combined limbic, diencephalic or brainstem dysfunction, and four with other syndromes. Considering the clinical and MRI follow-up, 95% of the patients developed limbic, diencephalic or brainstem encephalopathy. Only 26% had classical limbic encephalitis. Excessive daytime sleepiness affected 32% of the patients, sometimes with narcolepsy-cataplexy and low CSF hypocretin. Additional hormonal or MRI abnormalities indicated diencephalic-hypothalamic involvement in 34% of the patients. Eye movement abnormalities were prominent in 92% of the patients with brainstem dysfunction, but those with additional limbic or diencephalic deficits were most affected; 60% of these patients had vertical gaze paresis that sometimes evolved to total external ophthalmoplegia. Three patients developed atypical parkinsonism, and two a severe hypokinetic syndrome with a tendency to eye closure and dramatic reduction of verbal output. Neurological symptoms preceded the tumour diagnosis in 62% of the patients. Brain MRI abnormalities were present in 74% of all patients and 89% of those with limbic or diencephalic dysfunction. Among the 34 patients with cancer, 53% had testicular germ-cell tumours. Two patients without evidence of cancer had testicular microcalcification and one cryptorchidism, risk factors for testicular germ-cell tumours. After neurological syndrome development, 17 of 33 patients received oncological treatment (nine also immunotherapy), 10 immunotherapy alone, and six no treatment. Overall, 33% of the patients had neurological improvement, three with complete recovery; 21% had long-term stabilization, and 46% deteriorated. Features significantly associated with improvement or stabilization included, male gender, age <45 years, testicular tumour with complete response to treatment, absence of anti-Ma1 antibodies and limited CNS involvement. Immunosuppression was not found to be associated with improvement but was clearly effective in some patients. Fifteen patients (10 women, five men) had additional antibodies to Ma1. These patients were more likely to have tumours other than testicular cancer and to develop ataxia, and had a worse prognosis than patients with only anti-Ma2 antibodies (two women, 21 men); 67% of deceased patients had anti-Ma1 antibodies. Anti-Ma2 encephalitis (with or without anti-Ma1 antibodies) should be suspected in patients with limbic, diencephalic or brainstem dysfunction, MRI abnormalities in these regions, and inflammatory changes in the CSF. In young male patients, the primary tumour is usually in the testis, in other patients the leading neoplasm is lung cancer.

  7. Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study

    PubMed Central

    Holschneider, Daniel P.; Wang, Zhuo; Pang, Raina D.

    2014-01-01

    Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [14C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas–findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture. PMID:24966831

  8. Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study.

    PubMed

    Holschneider, Daniel P; Wang, Zhuo; Pang, Raina D

    2014-01-01

    Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [(14)C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas-findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture.

  9. Common modulation of limbic network activation underlies musical emotions as they unfold.

    PubMed

    Singer, Neomi; Jacoby, Nori; Lin, Tamar; Raz, Gal; Shpigelman, Lavi; Gilam, Gadi; Granot, Roni Y; Hendler, Talma

    2016-11-01

    Music is a powerful means for communicating emotions among individuals. Here we reveal that this continuous stream of affective information is commonly represented in the brains of different listeners and that particular musical attributes mediate this link. We examined participants' brain responses to two naturalistic musical pieces using functional Magnetic Resonance imaging (fMRI). Following scanning, as participants listened to the musical pieces for a second time, they continuously indicated their emotional experience on scales of valence and arousal. These continuous reports were used along with a detailed annotation of the musical features, to predict a novel index of Dynamic Common Activation (DCA) derived from ten large-scale data-driven functional networks. We found an association between the unfolding music-induced emotionality and the DCA modulation within a vast network of limbic regions. The limbic-DCA modulation further corresponded with continuous changes in two temporal musical features: beat-strength and tempo. Remarkably, this "collective limbic sensitivity" to temporal features was found to mediate the link between limbic-DCA and the reported emotionality. An additional association with the emotional experience was found in a left fronto-parietal network, but only among a sub-group of participants with a high level of musical experience (>5years). These findings may indicate two processing-levels underlying the unfolding of common music emotionality; (1) a widely shared core-affective process that is confined to a limbic network and mediated by temporal regularities in music and (2) an experience based process that is rooted in a left fronto-parietal network that may involve functioning of the 'mirror-neuron system'. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders.

    PubMed

    Paul, Evan D; Lowry, Christopher A

    2013-12-01

    Over 20 years ago, Deakin and Graeff hypothesized about the role of different serotonergic pathways in controlling the behavioral and physiologic responses to aversive stimuli, and how compromise of these pathways could lead to specific symptoms of anxiety and affective disorders. A growing body of evidence suggests these serotonergic pathways arise from topographically organized subpopulations of serotonergic neurons located in the dorsal and median raphe nuclei. We argue that serotonergic neurons in the dorsal/caudal parts of the dorsal raphe nucleus project to forebrain limbic regions involved in stress/conflict anxiety-related processes, which may be relevant for anxiety and affective disorders. Serotonergic neurons in the "lateral wings" of the dorsal raphe nucleus provide inhibitory control over structures controlling fight-or-flight responses. Dysfunction of this pathway could be relevant for panic disorder. Finally, serotonergic neurons in the median raphe nucleus, and the developmentally and functionally-related interfascicular part of the dorsal raphe nucleus, give rise to forebrain limbic projections that are involved in tolerance and coping with aversive stimuli, which could be important for affective disorders like depression. Elucidating the mechanisms through which stress activates these topographically and functionally distinct serotonergic pathways, and how dysfunction of these pathways leads to symptoms of neuropsychiatric disorders, may lead to the development of novel approaches to both the prevention and treatment of anxiety and affective disorders.

  11. Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy

    PubMed Central

    de Curtis, Marco; Gnatkovsky, Vadym; Gotman, Jean; Köhling, Rüdiger; Lévesque, Maxime; Manseau, Frédéric; Shiri, Zahra; Williams, Sylvain

    2016-01-01

    Low-voltage fast (LVF) and hypersynchronous (HYP) patterns are the seizure-onset patterns most frequently observed in intracranial EEG recordings from mesial temporal lobe epilepsy (MTLE) patients. Both patterns also occur in models of MTLE in vivo and in vitro, and these studies have highlighted the predominant involvement of distinct neuronal network/neurotransmitter receptor signaling in each of them. First, LVF-onset seizures in epileptic rodents can originate from several limbic structures, frequently spread, and are associated with high-frequency oscillations in the ripple band (80–200 Hz), whereas HYP onset seizures initiate in the hippocampus and tend to remain focal with predominant fast ripples (250–500 Hz). Second, in vitro intracellular recordings from principal cells in limbic areas indicate that pharmacologically induced seizure-like discharges with LVF onset are initiated by a synchronous inhibitory event or by a hyperpolarizing inhibitory postsynaptic potential barrage; in contrast, HYP onset is associated with a progressive impairment of inhibition and concomitant unrestrained enhancement of excitation. Finally, in vitro optogenetic experiments show that, under comparable experimental conditions (i.e., 4-aminopyridine application), the initiation of LVF- or HYP-onset seizures depends on the preponderant involvement of interneuronal or principal cell networks, respectively. Overall, these data may provide insight to delineate better therapeutic targets in the treatment of patients presenting with MTLE and, perhaps, with other epileptic disorders as well. PMID:27075542

  12. Individual differences in local gray and white matter volumes reflect differences in temperament and character: a voxel-based morphometry study in healthy young females.

    PubMed

    Van Schuerbeek, Peter; Baeken, Chris; De Raedt, Rudi; De Mey, Johan; Luypaert, Rob

    2011-01-31

    The psychobiological personality model of Cloninger distinguishes four heritable temperament traits (harm avoidance (HA), novelty seeking (NS), reward dependence (RD) and persistence (P)) and three character traits (self-directedness (SD), cooperativeness (CO) and self-transcendence (ST)) which develop during lifetime. Prior research already showed that individual differences in temperament are reflected in structural variances in specific brain areas. In this study, we used voxel-based morphometry (VBM) to correlate the different temperament and character traits with local gray and white matter volumes (GMV and WMV) in young healthy female volunteers. We found correlations between the temperament traits and GMV and WMV in the frontal, temporal and limbic regions involved in controlling and generating the corresponding behavior as proposed in Cloninger's theory: anxious for HA, impulsive for NS, reward-directed for RD and goal-directed for P. The character traits correlated with GMV and WMV in the frontal, temporal and limbic regions involved in the corresponding cognitive tasks: self-reflection for SD, mentalizing and empathizing with others for CO and religious belief for ST. This study shows that individual variations in brain morphology can be related to the temperament and character dimensions, and lends support to the hypothesis of a neurobiological basis of personality traits. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Pathological Joking or Witzelsucht Revisited.

    PubMed

    Granadillo, Elias D; Mendez, Mario F

    2016-01-01

    Humor, or the perception or elicitation of mirth and funniness, is distinguishable from laughter and can be differentially disturbed by neuropsychiatric disease. The authors describe two patients with constant joking, or Witzelsucht, in the absence of pseudobulbar affect and review the literature on pathological humor. These patients had involvement of frontal structures, impaired appreciation of nonsimple humor, and a compulsion for disinhibited joking. Current neuroscience suggests that impaired humor integration from right lateral frontal injury and disinhibition from orbitofrontal damage results in disinhibited humor, preferentially activating limbic and subcortical reward centers. Additional frontal-subcortical circuit dysfunction may promote pathological joking as a compulsion.

  14. PATHOLOGICAL JOKING OR WITZELSUCHT REVISITED

    PubMed Central

    Granadillo, Elias; Mendez, Mario F.

    2018-01-01

    Humor, or the perception or elicitation of mirth and funniness, is distinguishable from laughter and can be differentially disturbed by neuropsychiatric disease. We present two patients with constant joking, or Witzelsucht, in the absence of pseudobulbar affect and review the literature on pathological humor. These patients had involvement of frontal structures, impaired appreciation of non-simple humor, and a compulsion for disinhibited joking. Current neuroscience suggests impaired humor integration from right lateral frontal injury and disinhibition from orbitofrontal damage results in disinhibited humor preferentially activating limbic and subcortical reward centers. Additional frontal-subcortical circuit dysfunction may promote pathological joking as a compulsion. PMID:26900737

  15. Wired for behaviors: from development to function of innate limbic system circuitry

    PubMed Central

    Sokolowski, Katie; Corbin, Joshua G.

    2012-01-01

    The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional, or motivational salience, which includes innate behaviors such as mating, aggression, and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents), and is then processed in the brain by a set of delineated structures that primarily includes the amygdala and hypothalamus. While the basic neuroanatomy of these connections is well-established, much remains unknown about how information is processed within innate circuits and how genetic hierarchies regulate development and function of these circuits. Utilizing innovative technologies including channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent studies have begun to answer these central questions. In this article we review the current understanding of how limbic circuits regulate sexually dimorphic behaviors and how these circuits are established and shaped during pre- and post-natal development. We also discuss how understanding developmental processes of innate circuit formation may inform behavioral alterations observed in neurodevelopmental disorders, such as autism spectrum disorders, which are characterized by limbic system dysfunction. PMID:22557946

  16. Lingual and fusiform gyri in visual processing: a clinico-pathologic study of superior altitudinal hemianopia.

    PubMed Central

    Bogousslavsky, J; Miklossy, J; Deruaz, J P; Assal, G; Regli, F

    1987-01-01

    A macular-sparing superior altitudinal hemianopia with no visuo-psychic disturbance, except impaired visual learning, was associated with bilateral ischaemic necrosis of the lingual gyrus and only partial involvement of the fusiform gyrus on the left side. It is suggested that bilateral destruction of the lingual gyrus alone is not sufficient to affect complex visual processing. The fusiform gyrus probably has a critical role in colour integration, visuo-spatial processing, facial recognition and corresponding visual imagery. Involvement of the occipitotemporal projection system deep to the lingual gyri probably explained visual memory dysfunction, by a visuo-limbic disconnection. Impaired verbal memory may have been due to posterior involvement of the parahippocampal gyrus and underlying white matter, which may have disconnected the intact speech areas from the left medial temporal structures. Images PMID:3585386

  17. Nicotine modulates multiple regions in the limbic stress network regulating activation of hypophysiotrophic neurons in hypothalamic paraventricular nucleus.

    PubMed

    Yu, Guoliang; Sharp, Burt M

    2012-08-01

    Nicotine intake affects CNS responses to stressors. We reported that nicotine self-administration (SA) augmented the hypothalamo-pituitary-adrenal (HPA) stress response, in part because of the altered neurotransmission and neuropeptide expression within hypothalamic paraventricular nucleus (PVN). Limbic-PVN interactions involving medial prefrontal cortex, amygdala, and bed nucleus of the stria terminalis (BST) greatly impact the HPA stress response. Therefore, we investigated the effects of nicotine SA on stress-induced neuronal activation in limbic-PVN network, using c-Fos protein immunohistochemistry and retrograde tracing. Nicotine decreased stress-induced c-Fos in prelimbic cortex (PrL), anteroventral BST (avBST), and peri-PVN, but increased c-Fos induction in medial amygdala (MeA), locus coeruleus, and PVN. Fluoro-gold (FG) was injected into avBST or PVN, as GABAergic neurons in avBST projecting to PVN corticotrophin-releasing factor neurons relay information from both PrL glutamatergic and MeA GABAergic neurons. The stress-induced c-Fos expression in retrograde-labeled FG+ neurons was decreased in PrL by nicotine, but increased in MeA, and also reduced in avBST. Therefore, within limbic-PVN network, nicotine SA exerts selective regional effects on neuronal activation by stress. These findings expand the mechanistic framework by demonstrating altered limbic-BST-PVN interactions underlying the disinhibition of PVN corticotrophin-releasing factor neurons, an essential component of the amplified HPA response to stress by nicotine. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  18. Bipolar disorder: a neural network perspective on a disorder of emotion and motivation.

    PubMed

    Wessa, Michèle; Kanske, Philipp; Linke, Julia

    2014-01-01

    Bipolar disorder (BD) is a severe, chronic disease with a heritability of 60-80%. BD is frequently misdiagnosed due to phenomenological overlap with other psychopathologies, an important issue that calls for the identification of biological and psychological vulnerability and disease markers. Altered structural and functional connectivity, mainly between limbic and prefrontal brain areas, have been proposed to underlie emotional and motivational dysregulation in BD and might represent relevant vulnerability and disease markers. In the present laboratory review we discuss functional and structural neuroimaging findings on emotional and motivational dysregulation from our research group in BD patients and healthy individuals at risk to develop BD. As a main result of our studies, we observed altered orbitofrontal and limbic activity and reduced connectivity between dorsal prefrontal and limbic brain regions, as well as reduced integrity of fiber tracts connecting prefrontal and subcortical brain structures in BD patients and high-risk individuals. Our results provide novel insights into pathophysiological mechanisms of bipolar disorder. The current laboratory review provides a specific view of our group on altered brain connectivity and underlying psychological processes in bipolar disorder based on our own work, integrating relevant findings from others. Thereby we attempt to advance neuropsychobiological models of BD.

  19. The neuropsychology of development hemispheric laterality, limbic language, and the origin of thought.

    PubMed

    Joseph, R

    1982-01-01

    Discussed evidence and assumptions that concern hemispheric laterality and asymmetrical functional representation. It is hypothesized that the asymmetrical linguistic-motor vs. sensory-spatial-affective representation of function may be a result of differential rates of cortical, subcortical and spinal motor-sensory maturation. Evidence with regard to embryological and early postnatal neurological development is reviewed. It is argued that motor areas mature before sensory and that the left hemisphere develops prior to the right, such that the left hemisphere gains a competitive advantage in the acquisition of motor representation, whereas the later maturing right has an advantage in the establishment of sensory-affective synaptic representation, including that of limbic mediation. The influences of these differing maturational events on cognitive and psychic functioning are examined, particularly with regard to limbic influences on the development of language, thought, and mental imagery, and the effects of early emotional experience on later behavior. Thinking is viewed in part as a left hemisphere internalization of egocentric language, the internalization of which corresponds to the increasing maturation of intra-cortical and subcortical structures and fiber pathways, and the myelination of the callosal connections that subserve information transfer between the hemispheres. It is argued that thought is a means of organizing, interpreting, and explaining impulses that arise in the non-linguistic portions of the nervous system so that the language dependent regions may achieve understanding. In addition, the neurodynamics and mechanisms involved in the mislabeling, misinterpretation, and inhibition of impulses, desires, and emotional expression are discussed in relation to disturbances in psychic functioning.

  20. Right Limbic FDG-PET Hypometabolism Correlates with Emotion Recognition and Attribution in Probable Behavioral Variant of Frontotemporal Dementia Patients

    PubMed Central

    Cerami, Chiara; Dodich, Alessandra; Iannaccone, Sandro; Marcone, Alessandra; Lettieri, Giada; Crespi, Chiara; Gianolli, Luigi; Cappa, Stefano F.; Perani, Daniela

    2015-01-01

    The behavioural variant of frontotemporal dementia (bvFTD) is a rare disease mainly affecting the social brain. FDG-PET fronto-temporal hypometabolism is a supportive feature for the diagnosis. It may also provide specific functional metabolic signatures for altered socio-emotional processing. In this study, we evaluated the emotion recognition and attribution deficits and FDG-PET cerebral metabolic patterns at the group and individual levels in a sample of sporadic bvFTD patients, exploring the cognitive-functional correlations. Seventeen probable mild bvFTD patients (10 male and 7 female; age 67.8±9.9) were administered standardized and validated version of social cognition tasks assessing the recognition of basic emotions and the attribution of emotions and intentions (i.e., Ekman 60-Faces test-Ek60F and Story-based Empathy task-SET). FDG-PET was analysed using an optimized voxel-based SPM method at the single-subject and group levels. Severe deficits of emotion recognition and processing characterized the bvFTD condition. At the group level, metabolic dysfunction in the right amygdala, temporal pole, and middle cingulate cortex was highly correlated to the emotional recognition and attribution performances. At the single-subject level, however, heterogeneous impairments of social cognition tasks emerged, and different metabolic patterns, involving limbic structures and prefrontal cortices, were also observed. The derangement of a right limbic network is associated with altered socio-emotional processing in bvFTD patients, but different hypometabolic FDG-PET patterns and heterogeneous performances on social tasks at an individual level exist. PMID:26513651

  1. Consciousness and epilepsy: why are complex-partial seizures complex?

    PubMed Central

    Englot, Dario J.; Blumenfeld, Hal

    2010-01-01

    Why do complex-partial seizures in temporal lobe epilepsy (TLE) cause a loss of consciousness? Abnormal function of the medial temporal lobe is expected to cause memory loss, but it is unclear why profoundly impaired consciousness is so common in temporal lobe seizures. Recent exciting advances in behavioral, electrophysiological, and neuroimaging techniques spanning both human patients and animal models may allow new insights into this old question. While behavioral automatisms are often associated with diminished consciousness during temporal lobe seizures, impaired consciousness without ictal motor activity has also been described. Some have argued that electrographic lateralization of seizure activity to the left temporal lobe is most likely to cause impaired consciousness, but the evidence remains equivocal. Other data correlates ictal consciousness in TLE with bilateral temporal lobe involvement of seizure spiking. Nevertheless, it remains unclear why bilateral temporal seizures should impair responsiveness. Recent evidence has shown that impaired consciousness during temporal lobe seizures is correlated with large-amplitude slow EEG activity and neuroimaging signal decreases in the frontal and parietal association cortices. This abnormal decreased function in the neocortex contrasts with fast polyspike activity and elevated cerebral blood flow in limbic and other subcortical structures ictally. Our laboratory has thus proposed the “network inhibition hypothesis,” in which seizure activity propagates to subcortical regions necessary for cortical activation, allowing the cortex to descend into an inhibited state of unconsciousness during complex-partial temporal lobe seizures. Supporting this hypothesis, recent rat studies during partial limbic seizures have shown that behavioral arrest is associated with frontal cortical slow waves, decreased neuronal firing, and hypometabolism. Animal studies further demonstrate that cortical deactivation and behavioral changes depend on seizure spread to subcortical structures including the lateral septum. Understanding the contributions of network inhibition to impaired consciousness in TLE is an important goal, as recurrent limbic seizures often result in cortical dysfunction during and between epileptic events that adversely affects patients’ quality of life. PMID:19818900

  2. The changing landscape of functional brain networks for face processing in typical development.

    PubMed

    Joseph, Jane E; Swearingen, Joshua E; Clark, Jonathan D; Benca, Chelsie E; Collins, Heather R; Corbly, Christine R; Gathers, Ann D; Bhatt, Ramesh S

    2012-11-15

    Greater expertise for faces in adults than in children may be achieved by a dynamic interplay of functional segregation and integration of brain regions throughout development. The present study examined developmental changes in face network functional connectivity in children (5-12 years) and adults (18-43 years) during face-viewing using a graph-theory approach. A face-specific developmental change involved connectivity of the right occipital face area. During childhood, this node increased in strength and within-module clustering based on positive connectivity. These changes reflect an important role of the ROFA in segregation of function during childhood. In addition, strength and diversity of connections within a module that included primary visual areas (left and right calcarine) and limbic regions (left hippocampus and right inferior orbitofrontal cortex) increased from childhood to adulthood, reflecting increased visuo-limbic integration. This integration was pronounced for faces but also emerged for natural objects. Taken together, the primary face-specific developmental changes involved segregation of a posterior visual module during childhood, possibly implicated in early stage perceptual face processing, and greater integration of visuo-limbic connections from childhood to adulthood, which may reflect processing related to development of perceptual expertise for individuation of faces and other visually homogenous categories. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Neural correlates of conscious self-regulation of emotion.

    PubMed

    Beauregard, M; Lévesque, J; Bourgouin, P

    2001-09-15

    A fundamental question about the relationship between cognition and emotion concerns the neural substrate underlying emotional self-regulation. To address this issue, brain activation was measured in normal male subjects while they either responded in a normal manner to erotic film excerpts or voluntarily attempted to inhibit the sexual arousal induced by viewing erotic stimuli. Results demonstrated that the sexual arousal experienced, in response to the erotic film excerpts, was associated with activation in "limbic" and paralimbic structures, such as the right amygdala, right anterior temporal pole, and hypothalamus. In addition, the attempted inhibition of the sexual arousal generated by viewing the erotic stimuli was associated with activation of the right superior frontal gyrus and right anterior cingulate gyrus. No activation was found in limbic areas. These findings reinforce the view that emotional self-regulation is normally implemented by a neural circuit comprising various prefrontal regions and subcortical limbic structures. They also suggest that humans have the capacity to influence the electrochemical dynamics of their brains, by voluntarily changing the nature of the mind processes unfolding in the psychological space.

  4. Fronto-limbic effective connectivity as possible predictor of antidepressant response to SSRI administration.

    PubMed

    Vai, Benedetta; Bulgarelli, Chiara; Godlewska, Beata R; Cowen, Philip J; Benedetti, Francesco; Harmer, Catherine J

    2016-12-01

    The timely selection of the optimal treatment for depressed patients is critical to improve remission rates. The detection of pre-treatment variables able to predict differential treatment response may provide novel approaches for treatment selection. Selective serotonin reuptake inhibitors (SSRIs) modulate the fronto-limbic functional response and connectivity, an effect preceding the overt clinical antidepressant effects. Here we investigated whether the cortico-limbic connectivity associated with emotional bias measured before SSRI administration predicts the efficacy of antidepressant treatment in MDD patients. fMRI and Dynamic Causal Modeling (DCM) were combined to study if effective connectivity might differentiate healthy controls (HC) and patients affected by major depression who later responded (RMDD, n=21), or failed to respond (nRMDD, n=12), to 6 weeks of escitalopram administration. Sixteen DCMs exploring connectivity between anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (VLPFC), Amygdala (Amy), and fusiform gyrus (FG) were constructed. Analyses revealed that nRMDD had reduced endogenous connectivity from Amy to VLPFC and to ACC, with an increased connectivity and modulation of the ACC to Amy connectivity when processing of fearful emotional stimuli compared to HC. RMDD and HC did not significantly differ among themselves. Pre-treatment effective connectivity in fronto-limbic circuitry could be an important factor affecting antidepressant response, and highlight the mechanisms which may be involved in recovery from depression. These results suggest that fronto-limbic connectivity might provide a neural biomarker to predict the clinical outcome to SSRIs administration in major depression. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  5. Synchronous inhibitory potentials precede seizure-like events in acute models of focal limbic seizures.

    PubMed

    Uva, Laura; Breschi, Gian Luca; Gnatkovsky, Vadym; Taverna, Stefano; de Curtis, Marco

    2015-02-18

    Interictal spikes in models of focal seizures and epilepsies are sustained by the synchronous activation of glutamatergic and GABAergic networks. The nature of population spikes associated with seizure initiation (pre-ictal spikes; PSs) is still undetermined. We analyzed the networks involved in the generation of both interictal and PSs in acute models of limbic cortex ictogenesis induced by pharmacological manipulations. Simultaneous extracellular and intracellular recordings from both principal cells and interneurons were performed in the medial entorhinal cortex of the in vitro isolated guinea pig brain during focal interictal and ictal discharges induced in the limbic network by intracortical and brief arterial infusions of either bicuculline methiodide (BMI) or 4-aminopyridine (4AP). Local application of BMI in the entorhinal cortex did not induce seizure-like events (SLEs), but did generate periodic interictal spikes sensitive to the glutamatergic non-NMDA receptor antagonist DNQX. Unlike local applications, arterial perfusion of either BMI or 4AP induced focal limbic SLEs. PSs just ahead of SLE were associated with hyperpolarizing potentials coupled with a complete blockade of firing in principal cells and burst discharges in putative interneurons. Interictal population spikes recorded from principal neurons between two SLEs correlated with a depolarizing potential. We demonstrate in two models of acute limbic SLE that PS events are different from interictal spikes and are sustained by synchronous activation of inhibitory networks. Our findings support a prominent role of synchronous network inhibition in the initiation of a focal seizure. Copyright © 2015 the authors 0270-6474/15/353048-08$15.00/0.

  6. Cortico-limbic connectivity in MAOA-L carriers is vulnerable to acute tryptophan depletion.

    PubMed

    Eisner, Patrick; Klasen, Martin; Wolf, Dhana; Zerres, Klaus; Eggermann, Thomas; Eisert, Albrecht; Zvyagintsev, Mikhail; Sarkheil, Pegah; Mathiak, Krystyna A; Zepf, Florian; Mathiak, Klaus

    2017-03-01

    A gene-environment interaction between expression genotypes of the monoamine oxidase A (MAOA) and adverse childhood experience increases the risk of antisocial behavior. However, the neural underpinnings of this interaction remain uninvestigated. A cortico-limbic circuit involving the prefrontal cortex (PFC) and the amygdala is central to the suppression of aggressive impulses and is modulated by serotonin (5-HT). MAOA genotypes may modulate the vulnerability of this circuit and increase the risk for emotion regulation deficits after specific life events. Acute tryptophan depletion (ATD) challenges 5-HT regulation and may identify vulnerable neuronal circuits, contributing to the gene-environment interaction. Functional magnetic resonance imaging measured the resting-state state activity in 64 healthy males in a double-blind, placebo-controlled study. Cortical maps of amygdala correlation identified the impact of ATD and its interaction with low- (MAOA-L) and high-expression variants (MAOA-H) of MAOA on cortico-limbic connectivity. Across all Regions of Interest (ROIs) exhibiting an ATD effect on cortico-limbic connectivity, MAOA-L carriers were more susceptible to ATD than MAOA-H carriers. In particular, the MAOA-L group exhibited a larger reduction of amygdala connectivity with the right prefrontal cortex and a larger increase of amygdala connectivity with the insula and dorsal PCC. MAOA-L carriers were more susceptable to a central 5-HT challenge in cortico-limbic networks. Such vulnerability of the cortical serotonergic system may contribute to the emergence of antisocial behavior after systemic challenges, observed as gene-environment interaction. Hum Brain Mapp 38:1622-1635, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Cholangiocarcinoma associated with limbic encephalitis and early cerebral abnormalities detected by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography: a case report.

    PubMed

    Schmidt, Sergio L; Schmidt, Juliana J; Tolentino, Julio C; Ferreira, Carlos G; de Almeida, Sergio A; Alvarenga, Regina P; Simoes, Eunice N; Schmidt, Guilherme J; Canedo, Nathalie H S; Chimelli, Leila

    2016-07-20

    Limbic encephalitis was originally described as a rare clinical neuropathological entity involving seizures and neuropsychological disturbances. In this report, we describe cerebral patterns visualized by positron emission tomography in a patient with limbic encephalitis and cholangiocarcinoma. To our knowledge, there is no other description in the literature of cerebral positron emission tomography findings in the setting of limbic encephalitis and subsequent diagnosis of cholangiocarcinoma. We describe a case of a 77-year-old Caucasian man who exhibited persistent cognitive changes 2 years before his death. A cerebral scan obtained at that time by 2-deoxy-2-[fluorine-18]fluoro- D -glucose integrated with computed tomography-positron emission tomography showed low radiotracer uptake in the frontal and temporal lobes. Cerebrospinal fluid analysis indicated the presence of voltage-gated potassium channel antibodies. Three months before the patient's death, a lymph node biopsy indicated a cholangiocarcinoma, and a new cerebral scan obtained by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography showed an increment in the severity of metabolic deficit in the frontal and parietal lobes, as well as hypometabolism involving the temporal lobes. Two months before the patient's death, cerebral metastases were detected on a contrast-enhanced computed tomographic scan. Postmortem examination revealed a cholangiocarcinoma with multiple metastases including the lungs and lymph nodes. The patient's brain weighed 1300 g, and mild cortical atrophy, ex vacuo dilation of the ventricles, and mild focal thickening of the cerebellar leptomeninges, which were infiltrated by neoplastic epithelial cells, were observed. These findings support the need for continued vigilance in malignancy surveillance in patients with limbic encephalitis and early cerebral positron emission tomographic scan abnormalities. The difficulty in early diagnosis of small tumors, such as a cholangiocarcinoma, is discussed in the context of the clinical utility of early cerebral hypometabolism detected by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography in patients with rapidly progressive dementia.

  8. Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: implications for the neural substrates of emotion regulation.

    PubMed

    Albaugh, Matthew D; Ducharme, Simon; Collins, D Louis; Botteron, Kelly N; Althoff, Robert R; Evans, Alan C; Karama, Sherif; Hudziak, James J

    2013-05-01

    Recent functional connectivity studies have demonstrated that, in resting humans, activity in a dorsally-situated neocortical network is inversely associated with activity in the amygdalae. Similarly, in human neuroimaging studies, aspects of emotion regulation have been associated with increased activity in dorsolateral, dorsomedial, orbital and ventromedial prefrontal regions, as well as concomitant decreases in amygdalar activity. These findings indicate the presence of two countervailing systems in the human brain that are reciprocally related: a dorsally-situated cognitive control network, and a ventrally-situated limbic network. We investigated the extent to which this functional reciprocity between limbic and dorsal neocortical regions is recapitulated from a purely structural standpoint. Specifically, we hypothesized that amygdalar volume would be related to cerebral cortical thickness in cortical regions implicated in aspects of emotion regulation. In 297 typically developing youths (162 females, 135 males; 572 MRIs), the relationship between cortical thickness and amygdalar volume was characterized. Amygdalar volume was found to be inversely associated with thickness in bilateral dorsolateral and dorsomedial prefrontal, inferior parietal, as well as bilateral orbital and ventromedial prefrontal cortices. Our findings are in line with previous work demonstrating that a predominantly dorsally-centered neocortical network is reciprocally related to core limbic structures such as the amygdalae. Future research may benefit from investigating the extent to which such cortical-limbic morphometric relations are qualified by the presence of mood and anxiety psychopathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Sex differences of gray matter morphology in cortico-limbic-striatal neural system in major depressive disorder.

    PubMed

    Kong, Lingtao; Chen, Kaiyuan; Womer, Fay; Jiang, Wenyan; Luo, Xingguang; Driesen, Naomi; Liu, Jie; Blumberg, Hilary; Tang, Yanqing; Xu, Ke; Wang, Fei

    2013-06-01

    Sex differences are observed in both epidemiological and clinical aspects of major depressive disorder (MDD). The cortico-limbic-striatal neural system, including the prefrontal cortex, amygdala, hippocampus, and striatum, have shown sexually dimorphic morphological features and have been implicated in the dysfunctional regulation of mood and emotion in MDD. In this study, we utilized a whole-brain, voxel-based approach to examine sex differences in the regional distribution of gray matter (GM) morphological abnormalities in medication-naïve participants with MDD. Participants included 29 medication-naïve individuals with MDD (16 females and 13 males) and 33 healthy controls (HC) (17 females and 16 males). Gray matter morphology of the cortico-limbic-striatal neural system was examined using voxel-based morphometry analyzes of high-resolution structural magnetic resonance imaging scans. The main effect of diagnosis and interaction effect of diagnosis by sex on GM morphology were statistically significant (p < 0.05, corrected) in the left ventral prefrontal cortex, right amygdala, right hippocampus and bilateral caudate when comparing the MDD and HC groups. Posthoc analyzes showed that females with MDD had significant GM decreases in limbic regions (p < 0.05, corrected), compared to female HC; while males with MDD demonstrated significant GM reduction in striatal regions, (p < 0.05, corrected), compared to HC males. The observed sex-related patterns of abnormalities within the cortico-limbic-strial neural system, such as predominant prefrontal-limbic abnormalities in MDD females vs. predominant prefrontal-striatal abnormalities in MDD males, suggest differences in neural circuitry that may mediate sex differences in the clinical presentation of MDD and potential targets for sex-differentiated treatment of the disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Neurobiology of emotions: an update.

    PubMed

    Esperidião-Antonio, Vanderson; Majeski-Colombo, Marilia; Toledo-Monteverde, Diana; Moraes-Martins, Glaciele; Fernandes, Juliana José; Bauchiglioni de Assis, Marjorie; Montenegro, Stefânia; Siqueira-Batista, Rodrigo

    2017-06-01

    The 'nature' of emotions is one of the archaic themes of Western thought, thematized in different cultural manifestations - such as art, science, philosophy, myths and religion -, since Ancient times. In the last decades, the advances in neurosciences have permitted the construction of hypotheses that explain emotions, especially through the studies involving the limbic system. To present an updated discussion about the neurobiology of processes relating to emotions - focusing (1) on the main neural structures that relate to emotions, (2) the paths and circuits of greater relevance, (3) the implicated neurotransmitters, (4) the connections that possess neurovegetative control and (5) the discussion about the main emotions - is the objective of this present article.

  11. Clinically Anxious Individuals Show Disrupted Feedback between Inferior Frontal Gyrus and Prefrontal-Limbic Control Circuit.

    PubMed

    Cha, Jiook; DeDora, Daniel; Nedic, Sanja; Ide, Jaime; Greenberg, Tsafrir; Hajcak, Greg; Mujica-Parodi, Lilianne Rivka

    2016-04-27

    Clinical anxiety is associated with generalization of conditioned fear, in which innocuous stimuli elicit alarm. Using Pavlovian fear conditioning (electric shock), we quantify generalization as the degree to which subjects' neurobiological responses track perceptual similarity gradients to a conditioned stimulus. Previous studies show that the ventromedial prefrontal cortex (vmPFC) inversely and ventral tegmental area directly track the gradient of perceptual similarity to the conditioned stimulus in healthy individuals, whereas clinically anxious individuals fail to discriminate. Here, we extend this work by identifying specific functional roles within the prefrontal-limbic circuit. We analyzed fMRI time-series acquired from 57 human subjects during a fear generalization task using entropic measures of circuit-wide regulation and feedback (power spectrum scale invariance/autocorrelation), in combination with structural (diffusion MRI-probabilistic tractography) and functional (stochastic dynamic causal modeling) measures of prefrontal-limbic connectivity within the circuit. Group comparison and correlations with anxiety severity across 57 subjects revealed dysregulatory dynamic signatures within the inferior frontal gyrus (IFG), which our prior work has linked to impaired feedback within the circuit. Bayesian model selection then identified a fully connected prefrontal-limbic model comprising the IFG, vmPFC, and amygdala. Dysregulatory IFG dynamics were associated with weaker reciprocal excitatory connectivity between the IFG and the vmPFC. The vmPFC exhibited inhibitory influence on the amygdala. Our current results, combined with our previous work across a threat-perception spectrum of 137 subjects and a meta-analysis of 366 fMRI studies, dissociate distinct roles for three prefrontal-limbic regions, wherein the IFG provides evaluation of stimulus meaning, which then informs the vmPFC in inhibiting the amygdala. Affective neuroscience has generally treated prefrontal regions (orbitofrontal cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex) equivalently as inhibitory components of the prefrontal-limbic system. Yet research across the anxiety spectrum suggests that the inferior frontal gyrus may have a more complex role in emotion regulation, as this region shows abnormal function in disorders of both hyperarousal and hypoarousal. Using entropic measures of circuit-wide regulation and feedback, in combination with measures of structural and functional connectivity, we dissociate distinct roles for three prefrontal-limbic regions, wherein the inferior frontal gyrus provides evaluation of stimulus meaning, which then informs the ventromedial prefrontal cortex in inhibiting the amygdala. This reconfiguration coheres with studies of conceptual disambiguation also implicating the inferior frontal gyrus. Copyright © 2016 the authors 0270-6474/16/364708-11$15.00/0.

  12. The glass ceiling: A biological phenomenon.

    PubMed

    Schulpen, Tom W J

    2017-09-01

    Many brilliant and ambitious young women lose their drive for top careers after childbirth. New maternal impulses are at odds with their original ambitions and for many mothers stress and frustration will be the result as they have to combine child care with workweeks of 60-80h to reach or remain at the top. Pregnancy hormones modify the female's brain as has been demonstrated already for decades in animals. This brain plasticity due to adult neurogenesis in the so called maternal circuitry of the limbic system is long-lasting and perhaps lifelong. In humans hormonal and neuro-imaging studies show ample evidence for fundamental and long lasting pregnancy induced brain changes, not only in the limbic system, but also in the cortical networks like theory of mind and mirror neuron system. Recent research shows pronounced and long lasting brain changes in several of these areas. It can be concluded that there exists a maternal brain that drives mother's behaviour and priorities. Research in men shows that the more fathers are involved in raising their children, the more caring behaviour they develop. Structural anatomical changes are found in neural regions involved in parental motivation. These studies show that brain plasticity in fathers is experience dependent. In Nordic countries, a policy of paid paternal leave followed by a flexible shared parental leave, stimulates fatherly behaviour. This might reduce men's eagerness for top careers, thus creating better opportunities for women. Demolition of women's glass ceiling starts with the father. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Grey matter alterations in migraine: A systematic review and meta-analysis.

    PubMed

    Jia, Zhihua; Yu, Shengyuan

    2017-01-01

    To summarize and meta-analyze studies on changes in grey matter (GM) in patients with migraine. We aimed to determine whether there are concordant structural changes in the foci, whether structural changes are concordant with functional changes, and provide further understanding of the anatomy and biology of migraine. We searched PubMed and Embase for relevant articles published between January 1985 and November 2015, and examined the references within relevant primary articles. Following exclusion of unsuitable studies, meta-analysis were performed using activation likelihood estimation (ALE). Eight clinical studies were analyzed for structural changes, containing a total of 390 subjects (191 patients and 199 controls). Five functional studies were enrolled, containing 93 patients and 96 controls. ALE showed that the migraineurs had concordant decreases in the GM volume (GMV) in the bilateral inferior frontal gyri, the right precentral gyrus, the left middle frontal gyrus and the left cingulate gyrus. GMV decreases in right claustrum, left cingulated gyrus, right anterior cingulate, amygdala and left parahippocampal gyrus are related to estimated frequency of headache attack . Activation was found in the somatosensory, cingulate, limbic lobe, basal ganglia and midbrain in migraine patients. GM changes in migraineurs may indicate the mechanism of pain processing and associated symptoms. Changes in the frontal gyrus may predispose a person to pain conditions. The limbic regions may be accumulated damage due to the repetitive occurrence of pain-related processes. Increased activation in precentral gyrus and cingulate opposed to GMV decrease might suggest increased effort duo to disorganization of these areas and/or the use of compensatory strategies involving pain processing in migraine. Knowledge of these structural and functional changes may be useful for monitoring disease progression as well as for therapeutic interventions.

  14. Differential glutamatergic modulation of monoamine release in the limbic lobe by selective anticonvulsant ionotropic and metabotropic glutamate receptor ligands.

    PubMed

    Smolders, I

    2005-01-01

    Several researchers are currently trying to unravel neurobiological relationships between epilepsy and depression. After all, these disorders often develop in the same vulnerable brain regions and the importance of comorbid depression and epilepsy is still underscored. Facilitation of central serotonin (5-HT), dopamine (DA) and noradrenaline (NAD) release seems to be associated with both anticonvulsant and antidepressant effects. We show that selective ionotropic and metabotropic glutamate receptor ligands with anticonvulsant properties differentially modulate NAD, DA and 5-HT in rat limbic lobe structures.

  15. Neuroanatomical abnormalities in chronic tinnitus in the human brain

    PubMed Central

    Adjamian, Peyman; Hall, Deborah A.; Palmer, Alan R.; Allan, Thomas W.; Langers, Dave R.M.

    2014-01-01

    In this paper, we review studies that have investigated brain morphology in chronic tinnitus in order to better understand the underlying pathophysiology of the disorder. Current consensus is that tinnitus is a disorder involving a distributed network of peripheral and central pathways in the nervous system. However, the precise mechanism remains elusive and it is unclear which structures are involved. Given that brain structure and function are highly related, identification of anatomical differences may shed light upon the mechanism of tinnitus generation and maintenance. We discuss anatomical changes in the auditory cortex, the limbic system, and prefrontal cortex, among others. Specifically, we discuss the gating mechanism of tinnitus and evaluate the evidence in support of the model from studies of brain anatomy. Although individual studies claim significant effects related to tinnitus, outcomes are divergent and even contradictory across studies. Moreover, results are often confounded by the presence of hearing loss. We conclude that, at present, the overall evidence for structural abnormalities specifically related to tinnitus is poor. As this area of research is expanding, we identify some key considerations for research design and propose strategies for future research. PMID:24892904

  16. Limbic hyperconnectivity in the vegetative state.

    PubMed

    Di Perri, Carol; Bastianello, Stefano; Bartsch, Andreas J; Pistarini, Caterina; Maggioni, Giorgio; Magrassi, Lorenzo; Imberti, Roberto; Pichiecchio, Anna; Vitali, Paolo; Laureys, Steven; Di Salle, Francesco

    2013-10-15

    To investigate functional connectivity between the default mode network (DMN) and other networks in disorders of consciousness. We analyzed MRI data from 11 patients in a vegetative state and 7 patients in a minimally conscious state along with age- and sex-matched healthy control subjects. MRI data analysis included nonlinear spatial normalization to compensate for disease-related anatomical distortions. We studied brain connectivity data from resting-state MRI temporal series, combining noninferential (independent component analysis) and inferential (seed-based general linear model) methods. In DMN hypoconnectivity conditions, a patient's DMN functional connectivity shifts and paradoxically increases in limbic structures, including the orbitofrontal cortex, insula, hypothalamus, and the ventral tegmental area. Concurrently with DMN hypoconnectivity, we report limbic hyperconnectivity in patients in vegetative and minimally conscious states. This hyperconnectivity may reflect the persistent engagement of residual neural activity in self-reinforcing neural loops, which, in turn, could disrupt normal patterns of connectivity.

  17. Failure to Recover from Proactive Semantic Interference and Abnormal Limbic Connectivity in Asymptomatic, Middle-Aged Offspring of Patients with Late-Onset Alzheimer's Disease.

    PubMed

    Sánchez, Stella M; Abulafia, Carolina; Duarte-Abritta, Barbara; de Guevara, M Soledad Ladrón; Castro, Mariana N; Drucaroff, Lucas; Sevlever, Gustavo; Nemeroff, Charles B; Vigo, Daniel E; Loewenstein, David A; Villarreal, Mirta F; Guinjoan, Salvador M

    2017-01-01

    We have obtained previous evidence of limbic dysfunction in middle-aged, asymptomatic offspring of late-onset Alzheimer's disease (LOAD) patients, and failure to recover from proactive semantic interference has been shown to be a sensitive cognitive test in other groups at risk for LOAD. To assess the effects of specific proactive semantic interference deficits as they relate to functional magnetic resonance imaging (fMRI) neocortical and limbic functional connectivity in middle aged offspring of individuals with LOAD (O-LOAD) and age-equivalent controls. We examined 21 O-LOAD and 20 controls without family history of neurodegenerative disorders (CS) on traditional measures of cognitive functioning and the LASSI-L, a novel semantic interference test uniquely sensitive to the failure to recover from proactive interference (frPSI). Cognitive tests then were correlated to fMRI connectivity of seeds located in entorhinal cortex and anterodorsal thalamic nuclei among O-LOAD and CS participants. Relative to CS, O-LOAD participants evidenced lower connectivity between entorhinal cortex and orbitofrontal, anterior cingulate, and anterior temporal cortex. In the offspring of LOAD patients, LASSI-L measures of frPSI were inversely associated with connectivity between anterodorsal thalamus and contralateral posterior cingulate. Intrusions on the task related to frPSI were inversely correlated with a widespread connectivity network involving hippocampal, insular, posterior cingulate, and dorsolateral prefrontal cortices, along with precunei and anterior thalamus in this group. Different patterns of connectivity associated with frPSI were observed among controls. The present results suggest that both semantic interference deficits and connectivity abnormalities might reflect limbic circuit dysfunction as a very early clinical signature of LOAD pathology, as previously demonstrated for other limbic phenotypes, such as sleep and circadian alterations.

  18. Stimulation of subgenual cingulate area decreases limbic top-down effect on ventral visual stream: A DBS-EEG pilot study.

    PubMed

    Kibleur, Astrid; Polosan, Mircea; Favre, Pauline; Rudrauf, David; Bougerol, Thierry; Chabardès, Stéphan; David, Olivier

    2017-02-01

    Deep brain stimulation (DBS) of the subgenual cingulate gyrus (area CG25) is beneficial in treatment resistant depression. Though the mechanisms of action of Cg25 DBS remain largely unknown, it is commonly believed that Cg25 DBS modulates limbic activity of large networks to achieve thymic regulation of patients. To investigate how emotional attention is influenced by Cg25 DBS, we assessed behavioral and electroencephalographic (EEG) responses to an emotional Stroop task in 5 patients during ON and OFF stimulation conditions. Using EEG source localization, we found that the main effect of DBS was a reduction of neuronal responses in limbic regions (temporal pole, medial prefrontal and posterior cingulate cortices) and in ventral visual areas involved in face processing. In the dynamic causal modeling (DCM) approach, the changes of the evoked response amplitudes are assumed to be due to changes of long range connectivity induced by Cg25 DBS. Here, using a simplified neural mass model that did not take explicitly into account the cytoarchitecture of the considered brain regions, we showed that the remote action of Cg25 DBS could be explained by a reduced top-down effective connectivity of the amygdalo-temporo-polar complex. Overall, our results thus indicate that Cg25 DBS during the emotional Stroop task causes a decrease of top-down limbic influence on the ventral visual stream itself, rather than a modulation of prefrontal cognitive processes only. Tuning down limbic excitability in relation to sensory processing might be one of the biological mechanisms through which Cg25 DBS produces positive clinical outcome in the treatment of resistant depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The hippocampus is an integral part of the temporal limbic system during emotional processing. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    NASA Astrophysics Data System (ADS)

    Trost, Wiebke; Frühholz, Sascha

    2015-06-01

    The proposed quartet theory of human emotions by Koelsch and colleagues [1] identifies four different affect systems to be involved in the processing of particular types of emotions. Moreover, the theory integrates both basic emotions and more complex emotion concepts, which include also aesthetic emotions such as musical emotions. The authors identify a particular brain system for each kind of emotion type, also by contrasting them to brain structures that are generally involved in emotion processing irrespective of the type of emotion. A brain system that has been less regarded in emotion theories, but which represents one of the four systems of the quartet to induce attachment related emotions, is the hippocampus.

  20. SOBP Is Mutated in Syndromic and Nonsyndromic Intellectual Disability and Is Highly Expressed in the Brain Limbic System

    PubMed Central

    Birk, Efrat; Har-Zahav, Adi; Manzini, Chiara M.; Pasmanik-Chor, Metsada; Kornreich, Liora; Walsh, Christopher A.; Noben-Trauth, Konrad; Albin, Adi; Simon, Amos J.; Colleaux, Laurence; Morad, Yair; Rainshtein, Limor; Tischfield, David J.; Wang, Peter; Magal, Nurit; Maya, Idit; Shoshani, Noa; Rechavi, Gideon; Gothelf, Doron; Maydan, Gal; Shohat, Mordechai; Basel-Vanagaite, Lina

    2010-01-01

    Intellectual disability (ID) affects 1%–3% of the general population. We recently reported on a family with autosomal-recessive mental retardation with anterior maxillary protrusion and strabismus (MRAMS) syndrome. One of the reported patients with ID did not have dysmorphic features but did have temporal lobe epilepsy and psychosis. We report on the identification of a truncating mutation in the SOBP that is responsible for causing both syndromic and nonsyndromic ID in the same family. The protein encoded by the SOBP, sine oculis binding protein ortholog, is a nuclear zinc finger protein. In mice, Sobp (also known as Jxc1) is critical for patterning of the organ of Corti; one of our patients has a subclinical cochlear hearing loss but no gross cochlear abnormalities. In situ RNA expression studies in postnatal mouse brain showed strong expression in the limbic system at the time interval of active synaptogenesis. The limbic system regulates learning, memory, and affective behavior, but limbic circuitry expression of other genes mutated in ID is unusual. By comparing the protein content of the +/jc to jc/jc mice brains with the use of proteomics, we detected 24 proteins with greater than 1.5-fold differences in expression, including two interacting proteins, dynamin and pacsin1. This study shows mutated SOBP involvement in syndromic and nonsyndromic ID with psychosis in humans. PMID:21035105

  1. Targeted transcranial theta-burst stimulation alters fronto-insular network and prefrontal GABA.

    PubMed

    Iwabuchi, Sarina J; Raschke, Felix; Auer, Dorothee P; Liddle, Peter F; Lankappa, Sudheer T; Palaniyappan, Lena

    2017-02-01

    Repetitive transcranial magnetic stimulation (rTMS) has been used worldwide to treat depression. However, the exact physiological effects are not well understood. Pathophysiology of depression involves crucial limbic structures (e.g. insula), and it is still not clear if these structures can be modulated through neurostimulation of surface regions (e.g. dorsolateral prefrontal cortex, DLPFC), and whether rTMS-induced excitatory/inhibitory transmission alterations relate to fronto-limbic connectivity changes. Therefore, we sought proof-of-concept for neuromodulation of insula via prefrontal intermittent theta-burst stimulation (iTBS), and how these effects relate to GABAergic and glutamatergic systems. In 27 healthy controls, we employed a single-blind crossover randomised-controlled trial comparing placebo and real iTBS using resting-state functional MRI and magnetic resonance spectroscopy. Granger causal analysis was seeded from right anterior insula (rAI) to locate individualized left DLPFC rTMS targets. Effective connectivity coefficients within rAI and DLPFC were calculated, and levels of GABA/Glx, GABA/Cr and Glx/Cr in DLPFC and anterior cingulate voxels were also measured. ITBS significantly dampened fronto-insular connectivity and reduced GABA/Glx in both voxels. GABA/Glx had a significant mediating effect on iTBS-induced changes in DLPFC-to-rAI connectivity. We demonstrate modulation of the rAI using targeted iTBS through alterations of excitatory/inhibitory interactions, which may underlie therapeutic effects of rTMS, offering promise for rTMS treatment optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The consolidation of inhibitory avoidance memory in mice depends on the intensity of the aversive stimulus: The involvement of the amygdala, dorsal hippocampus and medial prefrontal cortex.

    PubMed

    Canto-de-Souza, L; Mattioli, R

    2016-04-01

    Several studies using inhibitory avoidance models have demonstrated the importance of limbic structures, such as the amygdala, dorsal hippocampus and medial prefrontal cortex, in the consolidation of emotional memory. However, we aimed to investigate the role of the amygdala (AMG), dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) of mice in the consolidation of step-down inhibitory avoidance and whether this avoidance would be conditioned relative to the intensity of the aversive stimulus. To test this, we bilaterally infused anisomycin (ANI-40μg/μl, a protein synthesis inhibitor) into one of these three brain areas in mice. These mice were then exposed to one of two different intensities (moderate: 0.5mA or intense: 1.5mA) in a step-down inhibitory avoidance task. We found that consolidation of both of the aversive experiences was mPFC dependent, while the AMG and DH were only required for the consolidation of the intense experience. We suggest that in moderately aversive situations, which do not represent a severe physical risk to the individual, the consolidation of aversive experiences does not depend on protein synthesis in the AMG or the DH, but only the mPFC. However, for intense aversive stimuli all three of these limbic structures are essential for the consolidation of the experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Altered morphology of the nucleus accumbens in persistent developmental stuttering.

    PubMed

    Neef, Nicole E; Bütfering, Christoph; Auer, Tibor; Metzger, F Luise; Euler, Harald A; Frahm, Jens; Paulus, Walter; Sommer, Martin

    2018-03-01

    Neuroimaging studies in persistent developmental stuttering repeatedly report altered basal ganglia functions. Together with thalamus and cerebellum, these structures mediate sensorimotor functions and thus represent a plausible link between stuttering and neuroanatomy. However, stuttering is a complex, multifactorial disorder. Besides sensorimotor functions, emotional and social-motivational factors constitute major aspects of the disorder. Here, we investigated cortical and subcortical gray matter regions to study whether persistent developmental stuttering is also linked to alterations of limbic structures. The study included 33 right-handed participants who stutter and 34 right-handed control participants matched for sex, age, and education. Structural images were acquired using magnetic resonance imaging to estimate volumetric characteristics of the nucleus accumbens, hippocampus, amygdala, pallidum, putamen, caudate nucleus, and thalamus. Volumetric comparisons and vertex-based shape comparisons revealed structural differences. The right nucleus accumbens was larger in participants who stutter compared to controls. Recent theories of basal ganglia functions suggest that the nucleus accumbens is a motivation-to-movement interface. A speaker intends to reach communicative goals, but stuttering can derail these efforts. It is therefore highly plausible to find alterations in the motivation-to-movement interface in stuttering. While behavioral studies of stuttering sought to find links between the limbic and sensorimotor system, we provide the first neuroimaging evidence of alterations in the limbic system. Thus, our findings might initialize a unified neurobiological framework of persistent developmental stuttering that integrates sensorimotor and social-motivational neuroanatomical circuitries. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Long-Term Effects of Acute Stress on the Prefrontal-Limbic System in the Healthy Adult

    PubMed Central

    Wei, Dongtao; Du, Xue; Zhang, Qinglin; Liu, Guangyuan; Qiu, Jiang

    2017-01-01

    Most people are exposed to at least one traumatic event during the course of their lives, but large numbers of people do not develop posttraumatic stress disorders. Although previous studies have shown that repeated and chronic stress change the brain’s structure and function, few studies have focused on the long-term effects of acute stressful exposure in a nonclinical sample, especially the morphology and functional connectivity changes in brain regions implicated in emotional reactivity and emotion regulation. Forty-one months after the 5/12 Wenchuan earthquake, we investigated the effects of trauma exposure on the structure and functional connectivity of the brains of trauma-exposed healthy individuals compared with healthy controls matched for age, sex, and education. We then used machine-learning algorithms with the brain structural features to distinguish between the two groups at an individual level. In the trauma-exposed healthy individuals, our results showed greater gray matter density in prefrontal-limbic brain systems, including the dorsal anterior cingulate cortex, medial prefrontal cortex, amygdala and hippocampus, than in the controls. Further analysis showed stronger amygdala-hippocampus functional connectivity in the trauma-exposed healthy compared to the controls. Our findings revealed that survival of traumatic experiences, without developing PTSD, was associated with greater gray matter density in the prefrontal-limbic systems related to emotional regulation. PMID:28045980

  5. Violence, mental illness, and the brain – A brief history of psychosurgery: Part 2 – From the limbic system and cingulotomy to deep brain stimulation

    PubMed Central

    Faria, Miguel A.

    2013-01-01

    Knowledge of neuroscience flourished during and in the wake of the era of frontal lobotomy, as a byproduct of psychosurgery in the late 1930s and 1940s, revealing fascinating neural pathways and neurophysiologic mechanisms of the limbic system for the formulation of emotions, memory, and human behavior. The creation of the Klüver-Bucy syndrome in monkeys opened new horizons in the pursuit of knowledge in human behavior and neuropathology. In the 1950s specialized functional neurosurgery was developed in association with stereotactic neurosurgery; deep brain electrodes were implanted for more precise recording of brain electrical activity in the evaluation and treatment of intractable mental disorders, including schizophrenia, “pathologic aggression,” and psychomotor seizures in temporal lobe epilepsy. Psychosurgical procedures involved deep brain stimulation of the limbic system, as well as ablative procedures, such as cingulotomy and thalamotomy. The history of these developments up to the 21st century will continue in this three-part essay-editorial, exclusively researched and written for the readers of Surgical Neurology International. PMID:23776761

  6. The Subthalamic Nucleus, Limbic Function, and Impulse Control.

    PubMed

    Rossi, P Justin; Gunduz, Aysegul; Okun, Michael S

    2015-12-01

    It has been well documented that deep brain stimulation (DBS) of the subthalamic nucleus (STN) to address some of the disabling motor symptoms of Parkinson's disease (PD) can evoke unintended effects, especially on non-motor behavior. This observation has catalyzed more than a decade of research concentrated on establishing trends and identifying potential mechanisms for these non-motor effects. While many issues remain unresolved, the collective result of many research studies and clinical observations has been a general recognition of the role of the STN in mediating limbic function. In particular, the STN has been implicated in impulse control and the related construct of valence processing. A better understanding of STN involvement in these phenomena could have important implications for treating impulse control disorders (ICDs). ICDs affect up to 40% of PD patients on dopamine agonist therapy and approximately 15% of PD patients overall. ICDs have been reported to be associated with STN DBS. In this paper we will focus on impulse control and review pre-clinical, clinical, behavioral, imaging, and electrophysiological studies pertaining to the limbic function of the STN.

  7. Comparing Neural Correlates of REM Sleep in Posttraumatic Stress Disorder and Depression: A Neuroimaging Study

    PubMed Central

    Ebdlahad, Sommer; Nofzinger, Eric A.; James, Jeffrey A.; Buysse, Daniel J.; Price, Julie C.; Germain, Anne

    2013-01-01

    Rapid eye movement (REM) sleep disturbances predict poor clinical outcomes in posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). In MDD, REM sleep is characterized by activation of limbic and paralimbic brain regions compared to wakefulness. The neural correlates of PTSD during REM sleep remain scarcely explored, and comparisons of PTSD and MDD have not been conducted. The present study sought to compare brain activity patterns during wakefulness and REM sleep in 13 adults with PTSD and 12 adults with MDD using [18F]-fluoro-2-deoxy-D-glucose positron emission tomography (PET). PTSD was associated with greater increases in relative regional cerebral metabolic rate of glucose (rCMRglc) in limbic and paralimbic structures in REM sleep compared to wakefulness. Post-hoc comparisons indicated that MDD was associated with greater limbic and paralimbic rCMRglc during wakefulness but not REM sleep compared to PTSD. Our findings suggest that PTSD is associated with increased REM sleep limbic and paralimbic metabolism, whereas MDD is associated with wake and REM hypermetabolism in these areas. These observations suggest that PTSD and MDD disrupt REM sleep through different neurobiological processes. Optimal sleep treatments between the two disorders may differ: REM-specific therapy may be more effective in PTSD. PMID:24367137

  8. The neural correlates of regulating another person's emotions: an exploratory fMRI study

    PubMed Central

    Hallam, Glyn P.; Webb, Thomas L.; Sheeran, Paschal; Miles, Eleanor; Niven, Karen; Wilkinson, Iain D.; Hunter, Michael D.; Woodruff, Peter W. R.; Totterdell, Peter; Farrow, Tom F. D.

    2014-01-01

    Studies investigating the neurophysiological basis of intrapersonal emotion regulation (control of one's own emotional experience) report that the frontal cortex exerts a modulatory effect on limbic structures such as the amygdala and insula. However, no imaging study to date has examined the neurophysiological processes involved in interpersonal emotion regulation, where the goal is explicitly to regulate another person's emotion. Twenty healthy participants (10 males) underwent fMRI while regulating their own or another person's emotions. Intrapersonal and interpersonal emotion regulation tasks recruited an overlapping network of brain regions including bilateral lateral frontal cortex, pre-supplementary motor area, and left temporo-parietal junction. Activations unique to the interpersonal condition suggest that both affective (emotional simulation) and cognitive (mentalizing) aspects of empathy may be involved in the process of interpersonal emotion regulation. These findings provide an initial insight into the neural correlates of regulating another person's emotions and may be relevant to understanding mental health issues that involve problems with social interaction. PMID:24936178

  9. Dreaming and cognition in patients with frontotemporal dysfunction.

    PubMed

    Paiva, Teresa; Bugalho, Paulo; Bentes, Carla

    2011-12-01

    Individuals with Parkinson's disease (PD) and temporal lobe epilepsy (TLE) have hallucinations and mild cognitive dysfunction. The objective of this work was to study dreams in PD and TLE patients using a common functional model of dream production involving the limbic and paralimbic structures. Dreams were characterised in early-stage PD (19 males) and TLE patients (52) with dream diaries classified by the Hall van de Castle system and were compared with matched controls. In PD, there were significant differences between patients' dreams and those of controls: animals, physical aggression, and a befriender were more common in patients, and aggressor and bodily misfortunes were less common. The dreams of patients with frontal dysfunction showed more aggressive features. TLE patients had lower recall than PD patients and a higher proportion of dreams involving family and familiar settings, lower proportions involving success, and a higher incidence of frontal dysfunction. The dreams of PD and TLE patients share important features. Copyright © 2011. Published by Elsevier Inc.

  10. Differentially categorized structural brain hubs are involved in different microstructural, functional, and cognitive characteristics and contribute to individual identification.

    PubMed

    Wang, Xindi; Lin, Qixiang; Xia, Mingrui; He, Yong

    2018-04-01

    Very little is known regarding whether structural hubs of human brain networks that enable efficient information communication may be classified into different categories. Using three multimodal neuroimaging data sets, we construct individual structural brain networks and further identify hub regions based on eight widely used graph-nodal metrics, followed by comprehensive characteristics and reproducibility analyses. We show the three categories of structural hubs in the brain network, namely, aggregated, distributed, and connector hubs. Spatially, these distinct categories of hubs are primarily located in the default-mode system and additionally in the visual and limbic systems for aggregated hubs, in the frontoparietal system for distributed hubs, and in the sensorimotor and ventral attention systems for connector hubs. These categorized hubs exhibit various distinct characteristics to support their differentiated roles, involving microstructural organization, wiring costs, topological vulnerability, functional modular integration, and cognitive flexibility; moreover, these characteristics are better in the hubs than nonhubs. Finally, all three categories of hubs display high across-session spatial similarities and act as structural fingerprints with high predictive rates (100%, 100%, and 84.2%) for individual identification. Collectively, we highlight three categories of brain hubs with differential microstructural, functional and, cognitive associations, which shed light on topological mechanisms of the human connectome. © 2018 Wiley Periodicals, Inc.

  11. Suspected limbic encephalitis and seizure in cats associated with voltage-gated potassium channel (VGKC) complex antibody.

    PubMed

    Pakozdy, A; Halasz, P; Klang, A; Bauer, J; Leschnik, M; Tichy, A; Thalhammer, J G; Lang, B; Vincent, A

    2013-01-01

    Treatment-resistant complex partial seizures (CPS) with orofacial involvement recently were reported in cats in association with hippocampal pathology. The features had some similarity to those described in humans with limbic encephalitis and voltage-gated potassium channel (VGKC) complex antibody. The purpose of this pilot study was to evaluate cats with CPS and orofacial involvement for the presence of VGKC-complex antibody. Client-owned cats with acute orofacial CPS and control cats were investigated. Prospective study. Serum was collected from 14 cats in the acute stage of the disease and compared with 19 controls. VGKC-complex antibodies were determined by routine immunoprecipitation and by binding to leucine-rich glioma inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2), the 2 main targets of VGKC-complex antibodies in humans. Five of the 14 affected cats, but none of the 19 controls, had VGKC-complex antibody concentrations above the cut-off concentration (>100 pmol/L) based on control samples and similar to those found in humans. Antibodies in 4 cats were directed against LGI1, and none were directed against CASPR2. Follow-up sera were available for 5 cats in remission and all antibody concentrations were within the reference range. Our study suggests that an autoimmune limbic encephalitis exists in cats and that VGKC-complex/LGI1 antibodies may play a role in this disorder, as they are thought to in humans. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  12. Developmental effects of androgens in the human brain.

    PubMed

    Nguyen, T-V

    2018-02-01

    Neuroendocrine theories of brain development posit that androgens play a crucial role in sex-specific cortical growth, although little is known about the differential effects of testosterone and dehydroepiandrosterone (DHEA) on cortico-limbic development and cognition during adolescence. In this context, the National Institutes of Health Study of Normal Brain Development, a longitudinal study of typically developing children and adolescents aged 4-24 years (n=433), offers a unique opportunity to examine the developmental effects of androgens on cortico-limbic maturation and cognition. Using data from this sample, our group found that higher testosterone levels were associated with left-sided decreases in cortical thickness (CTh) in post-pubertal boys, particularly in the prefrontal cortex, compared to right-sided increases in CTh in somatosensory areas in pre-pubertal girls. Prefrontal-amygdala and prefrontal-hippocampal structural covariance (considered to reflect structural connectivity) also varied according to testosterone levels, with the testosterone-related brain phenotype predicting higher aggression levels and lower executive function, particularly in boys. By contrast, DHEA was associated with a pre-pubertal increase in CTh of several regions involved in cognitive control in both boys and girls. Covariance within several cortico-amygdalar structural networks also varied as a function of DHEA levels, with the DHEA-related brain phenotype predicting improvements in visual attention in both boys and girls. DHEA-related cortico-hippocampal structural covariance, on the other hand, predicted higher scores on a test of working memory. Interestingly, there were significant interactions between testosterone and DHEA, such that DHEA tended to mitigate the anti-proliferative effects of testosterone on brain structure. In sum, testosterone-related effects on the developing brain may lead to detrimental effects on cortical functions (ie, higher aggression and lower executive function), whereas DHEA-related effects may optimise cortical functions (ie, better attention and working memory), perhaps by decreasing the influence of amygdalar and hippocampal afferents on cortical functions. © 2017 British Society for Neuroendocrinology.

  13. Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers.

    PubMed

    London, Edythe D; Berman, Steven M; Voytek, Bradley; Simon, Sara L; Mandelkern, Mark A; Monterosso, John; Thompson, Paul M; Brody, Arthur L; Geaga, Jennifer A; Hong, Michael S; Hayashi, Kiralee M; Rawson, Richard A; Ling, Walter

    2005-11-15

    Methamphetamine (MA) abusers have cognitive deficits, abnormal metabolic activity and structural deficits in limbic and paralimbic cortices, and reduced hippocampal volume. The links between cognitive impairment and these cerebral abnormalities are not established. We assessed cerebral glucose metabolism with [F-18]fluorodeoxyglucose positron emission tomography in 17 abstinent (4 to 7 days) methamphetamine users and 16 control subjects performing an auditory vigilance task and obtained structural magnetic resonance brain scans. Regional brain radioactivity served as a marker for relative glucose metabolism. Error rates on the task were related to regional radioactivity and hippocampal morphology. Methamphetamine users had higher error rates than control subjects on the vigilance task. The groups showed different relationships between error rates and relative activity in the anterior and middle cingulate gyrus and the insula. Whereas the MA user group showed negative correlations involving these regions, the control group showed positive correlations involving the cingulate cortex. Across groups, hippocampal metabolic and structural measures were negatively correlated with error rates. Dysfunction in the cingulate and insular cortices of recently abstinent MA abusers contribute to impaired vigilance and other cognitive functions requiring sustained attention. Hippocampal integrity predicts task performance in methamphetamine users as well as control subjects.

  14. Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method

    PubMed Central

    Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang

    2017-01-01

    Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions. PMID:28588470

  15. Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method.

    PubMed

    Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang

    2017-01-01

    Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions.

  16. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager

    PubMed Central

    Langille, Megan M.; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition. PMID:26019428

  17. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager.

    PubMed

    Langille, Megan M; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  18. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Wang, G.; Volkow, N.D.

    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and {sup 18}FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo andmore » once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction.« less

  19. Methylphenidate Attenuates Limbic Brain Inhibition after Cocaine-Cues Exposure in Cocaine Abusers

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Tomasi, Dardo; Telang, Frank; Fowler, Joanna S.; Pradhan, Kith; Jayne, Millard; Logan, Jean; Goldstein, Rita Z.; Alia-Klein, Nelly; Wong, Christopher

    2010-01-01

    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and 18FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2–5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction. PMID:20634975

  20. Frontal glutamate and reward processing in adolescence and adulthood.

    PubMed

    Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen

    2015-11-01

    The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.

  1. Kisspeptin modulates sexual and emotional brain processing in humans.

    PubMed

    Comninos, Alexander N; Wall, Matthew B; Demetriou, Lysia; Shah, Amar J; Clarke, Sophie A; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M; Jayasena, Channa N; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Lundanes, Elsa; Wilson, Steven Ray; Brown, Rachel C; Thomas, Sarah A; Bloom, Stephen R; Dhillo, Waljit S

    2017-02-01

    Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin's enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).

  2. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits.

    PubMed

    Dautan, Daniel; Souza, Albert S; Huerta-Ocampo, Icnelia; Valencia, Miguel; Assous, Maxime; Witten, Ilana B; Deisseroth, Karl; Tepper, James M; Bolam, J Paul; Gerdjikov, Todor V; Mena-Segovia, Juan

    2016-08-01

    Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures that are associated with either movement or reward. Whereas cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. We used optogenetics and in vivo juxtacellular recording and labeling to examine the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhanced the bursting activity of mesolimbic dopamine neurons that were excited by aversive stimulation. In contrast, PPN cholinergic axons activated and changed the discharge properties of VTA neurons that were integrated in distinct functional circuits and were inhibited by aversive stimulation. Although both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate the neurons involved in different reward circuits.

  3. Musical Creativity “Revealed” in Brain Structure: Interplay between Motor, Default Mode, and Limbic Networks

    PubMed Central

    Bashwiner, David M.; Wertz, Christopher J.; Flores, Ranee A.; Jung, Rex E.

    2016-01-01

    Creative behaviors are among the most complex that humans engage in, involving not only highly intricate, domain-specific knowledge and skill, but also domain-general processing styles and the affective drive to create. This study presents structural imaging data indicating that musically creative people (as indicated by self-report) have greater cortical surface area or volume in a) regions associated with domain-specific higher-cognitive motor activity and sound processing (dorsal premotor cortex, supplementary and pre-supplementary motor areas, and planum temporale), b) domain-general creative-ideation regions associated with the default mode network (dorsomedial prefrontal cortex, middle temporal gyrus, and temporal pole), and c) emotion-related regions (orbitofrontal cortex, temporal pole, and amygdala). These findings suggest that domain-specific musical expertise, default-mode cognitive processing style, and intensity of emotional experience might all coordinate to motivate and facilitate the drive to create music. PMID:26888383

  4. Revealing the cerebello-ponto-hypothalamic pathway in the human brain.

    PubMed

    Kamali, Arash; Karbasian, Niloofar; Rabiei, Pejman; Cano, Andres; Riascos, Roy F; Tandon, Nitin; Arevalo, Octavio; Ocasio, Laura; Younes, Kyan; Khayat-Khoei, Mahsa; Mirbagheri, Saeedeh; Hasan, Khader M

    2018-06-11

    The cerebellum is shown to be involved in some limbic functions of the human brain such as emotion and affect. The major connection of the cerebellum with the limbic system is known to be through the cerebello-hypothalamic pathways. The consensus is that the projections from the cerebellar nuclei to the limbic system, and particularly the hypothalamus, or from the hypothalamus to the cerebellar nuclei, are through multisynaptic pathways in the bulbar reticular formation. The detailed anatomy of the pathways responsible for mediating these responses, however, is yet to be determined. Diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of the cerebello-ponto-hypothalamic (CPH) pathway. This study aimed to investigate the utility of high-spatial-resolution diffusion tensor tractography for mapping the trajectory of the CPH tract in the human brain. Fifteen healthy adults were studied. We delineated, for the first time, the detailed trajectory of the CPH tract of the human brain in fifteen normal adult subjects using high-spatial-resolution diffusion tensor tractography. We further revealed the close relationship of the CPH tract with the optic tract, temporo-pontine tract, amygdalofugal tract and the fornix in the human brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. On whether mirror neurons play a significant role in processing affective prosody.

    PubMed

    Ramachandra, Vijayachandra

    2009-02-01

    Several behavioral and neuroimaging studies have indicated that both right and left cortical structures and a few subcortical ones are involved in processing affective prosody. Recent investigations have shown that the mirror neuron system plays a crucial role in several higher-level functions such as empathy, theory of mind, language, etc., but no studies so far link the mirror neuron system with affective prosody. In this paper is a speculation that the mirror neuron system, which serves as a common neural substrate for different higher-level functions, may play a significant role in processing affective prosody via its connections with the limbic lobe. Actual research must apply electrophysiological and neuroimaging techniques to assess whether the mirror neuron systems underly affective prosody in humans.

  6. Neural correlates of corporate camaraderie and teamwork.

    PubMed

    Levine, Catherine

    2007-11-01

    Corporate citizenship creates an ethical and professional accountability among the employee, the organization, and the outside market. Teamwork is an essential part of this corporate accountability because it increases communication and confidence within the organization and promotes camaraderie and goal completion. Cognitive neuroscience research has been able to localize socialization to various areas of the limbic system, which includes, among other structures, the hypothalamus and amygdala, and is associated with the prefrontal cortex. These neurocortical areas can be monitored while set tasks are performed experimentally or observed naturally. Within the framework of cognitive neuroscience, one can evaluate the neural architecture involved in various states of organizational behavior. One can then use this framework as an overlay in the corporate environment to track project completion and profitability.

  7. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens.

    PubMed

    Ross, Erika K; Kim, Joo Pyung; Settell, Megan L; Han, Seong Rok; Blaha, Charles D; Min, Hoon-Ki; Lee, Kendall H

    2016-03-01

    Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimer's disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc, involving excitatory glutamatergic input, and that the medial limbic and corticolimbic circuits interact in a functional loop. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Brain structural alterations associated with young women with subthreshold depression

    PubMed Central

    Li, Haijiang; Wei, Dongtao; Sun, Jiangzhou; Chen, Qunlin; Zhang, Qinglin; Qiu, Jiang

    2015-01-01

    Neuroanatomical abnormalities in patients with major depression disorder (MDD) have been attracted great research attention. However, the structural alterations associated with subthreshold depression (StD) remain unclear and, therefore, require further investigation. In this study, 42 young women with StD, and 30 matched non-depressed controls (NCs) were identified based on two-time Beck Depression Inventory scores. Whole-brain voxel-based morphometry (VBM) and region of interest method were used to investigate altered gray matter volume (GMV) and white matter volume (WMV) among a non-clinical sample of young women with StD. VBM results indicated that young women with StD showed significantly decreased GMV in the right inferior parietal lobule than NCs; increased GMV in the amygdala, posterior cingulate cortex, and precuneus; and increased WMV in the posterior cingulate cortex and precuneus. Together, structural alterations in specific brain regions, which are known to be involved in the fronto-limbic circuits implicated in depression may precede the occurrence of depressive episodes and influence the development of MDD. PMID:25982857

  9. Sex differences in structural brain asymmetry predict overt aggression in early adolescents.

    PubMed

    Visser, Troy A W; Ohan, Jeneva L; Whittle, Sarah; Yücel, Murat; Simmons, Julian G; Allen, Nicholas B

    2014-04-01

    The devastating social, emotional and economic consequences of human aggression are laid bare nightly on newscasts around the world. Aggression is principally mediated by neural circuitry comprising multiple areas of the prefrontal cortex and limbic system, including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), amygdala and hippocampus. A striking characteristic of these regions is their structural asymmetry about the midline (i.e. left vs right hemisphere). Variations in these asymmetries have been linked to clinical disorders characterized by aggression and the rate of aggressive behavior in psychiatric patients. Here, we show for the first time that structural asymmetries in prefrontal cortical areas are also linked to aggression in a normal population of early adolescents. Our findings indicate a relationship between parent reports of aggressive behavior in adolescents and structural asymmetries in the limbic and paralimbic ACC and OFC, and moreover, that this relationship varies by sex. Furthermore, while there was no relationship between aggression and structural asymmetries in the amygdala or hippocampus, hippocampal volumes did predict aggression in females. Taken together, the results suggest that structural asymmetries in the prefrontal cortex may influence human aggression, and that the anatomical basis of aggression varies substantially by sex.

  10. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle.

    PubMed

    Boccardi, Marina; Bocchetta, Martina; Aronen, Hannu J; Repo-Tiihonen, Eila; Vaurio, Olli; Thompson, Paul M; Tiihonen, Jari; Frisoni, Giovanni B

    2013-01-01

    Psychopathy has been associated with increased putamen and striatum volumes. The nucleus accumbens - a key structure in reversal learning, less effective in psychopathy - has not yet received specific attention. Moreover, basal ganglia morphology has never been explored. We examined the morphology of the caudate, putamen and accumbens, manually segmented from magnetic resonance images of 26 offenders (age: 32.5 ± 8.4) with medium-high psychopathy (mean PCL-R=30 ± 5) and 25 healthy controls (age: 34.6 ± 10.8). Local differences were statistically modeled using a surface-based radial distance mapping method (p<0.05; multiple comparisons correction through permutation tests). In psychopathy, the caudate and putamen had normal global volume, but different morphology, significant after correction for multiple comparisons, for the right dorsal putamen (permutation test: p=0.02). The volume of the nucleus accumbens was 13% smaller in psychopathy (p corrected for multiple comparisons <0.006). The atypical morphology consisted of predominant anterior hypotrophy bilaterally (10-30%). Caudate and putamen local morphology displayed negative correlation with the lifestyle factor of the PCL-R (permutation test: p=0.05 and 0.03). From these data, psychopathy appears to be associated with an atypical striatal morphology, with highly significant global and local differences of the accumbens. This is consistent with the clinical syndrome and with theories of limbic involvement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Integration of transcriptomic and cytoarchitectonic data implicates a role for MAOA and TAC1 in the limbic-cortical network.

    PubMed

    Bludau, Sebastian; Mühleisen, Thomas W; Eickhoff, Simon B; Hawrylycz, Michael J; Cichon, Sven; Amunts, Katrin

    2018-06-01

    Decoding the chain from genes to cognition requires detailed insights how areas with specific gene activities and microanatomical architectures contribute to brain function and dysfunction. The Allen Human Brain Atlas contains regional gene expression data, while the JuBrain Atlas offers three-dimensional cytoarchitectonic maps reflecting interindividual variability. To date, an integrated framework that combines the analytical benefits of both scientific platforms towards a multi-level brain atlas of adult humans was not available. We have, therefore, developed JuGEx, a new method for integrating tissue transcriptome and cytoarchitectonic segregation. We investigated differential gene expression in two JuBrain areas of the frontal pole that we have structurally and functionally characterized in previous studies. Our results show a significant upregulation of MAOA and TAC1 in the medial area frontopolaris which is a node in the limbic-cortical network and known to be susceptible for gray matter loss and behavioral dysfunction in patients with depression. The MAOA gene encodes an enzyme which is involved in the catabolism of dopamine, norepinephrine, serotonin, and other monoaminergic neurotransmitters. The TAC1 locus generates hormones that play a role in neuron excitations and behavioral responses. Overall, JuGEx provides a new tool for the scientific community that empowers research from basic, cognitive and clinical neuroscience in brain regions and disease models with regard to gene expression.

  12. Hyporesponsive Reward Anticipation in the Basal Ganglia following Severe Institutional Deprivation Early in Life

    ERIC Educational Resources Information Center

    Mehta, Mitul A.; Gore-Langton, Emma; Golembo, Nicole; Colvert, Emma; Williams, Steven C. R.; Sonuga-Barke, Edmund

    2010-01-01

    Severe deprivation in the first few years of life is associated with multiple difficulties in cognition and behavior. However, the brain basis for these difficulties is poorly understood. Structural and functional neuroimaging studies have implicated limbic system structures as dysfunctional, and one functional imaging study in a heterogeneous…

  13. Limbic Justice—Amygdala Involvement in Immediate Rejection in the Ultimatum Game

    PubMed Central

    Fransson, Peter; Petrovic, Predrag; Johannesson, Magnus; Ingvar, Martin

    2011-01-01

    Imaging studies have revealed a putative neural account of emotional bias in decision making. However, it has been difficult in previous studies to identify the causal role of the different sub-regions involved in decision making. The Ultimatum Game (UG) is a game to study the punishment of norm-violating behavior. In a previous influential paper on UG it was suggested that frontal insular cortex has a pivotal role in the rejection response. This view has not been reconciled with a vast literature that attributes a crucial role in emotional decision making to a subcortical structure (i.e., amygdala). In this study we propose an anatomy-informed model that may join these views. We also present a design that detects the functional anatomical response to unfair proposals in a subcortical network that mediates rapid reactive responses. We used a functional MRI paradigm to study the early components of decision making and challenged our paradigm with the introduction of a pharmacological intervention to perturb the elicited behavioral and neural response. Benzodiazepine treatment decreased the rejection rate (from 37.6% to 19.0%) concomitantly with a diminished amygdala response to unfair proposals, and this in spite of an unchanged feeling of unfairness and unchanged insular response. In the control group, rejection was directly linked to an increase in amygdala activity. These results allow a functional anatomical detection of the early neural components of rejection associated with the initial reactive emotional response. Thus, the act of immediate rejection seems to be mediated by the limbic system and is not solely driven by cortical processes, as previously suggested. Our results also prompt an ethical discussion as we demonstrated that a commonly used drug influences core functions in the human brain that underlie individual autonomy and economic decision making. PMID:21559322

  14. Induction of innate immune genes in brain create the neurobiology of addiction.

    PubMed

    Crews, F T; Zou, Jian; Qin, Liya

    2011-06-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Induction of Innate Immune Genes in Brain Create the Neurobiology of Addiction

    PubMed Central

    Crews, FT; Zou, Jian; Qin, Liya

    2013-01-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. PMID:21402143

  16. Autobiographical memory in semantic dementia: implication for theories of limbic-neocortical interaction in remote memory.

    PubMed

    McKinnon, Margaret C; Black, Sandra E; Miller, Bruce; Moscovitch, Morris; Levine, Brian

    2006-01-01

    We examined autobiographical memory performance in two patients with semantic dementia using a novel measure, the Autobiographical Interview [Levine, Svoboda, Hay, Winocur, & Moscovitch (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689], that is capable of dissociating episodic and personal semantic recall under varying levels of retrieval support. Earlier reports indicated that patients with semantic dementia demonstrate autobiographical episodic memory loss following a "reverse gradient" by which recent memories are preserved relative to remote memories. We found limited evidence for this pattern at conditions of low retrieval support. When structured probing was provided, patients' autobiographical memory performance was similar to that of controls. Retesting of one patient after 1 year indicated that retrieval support was insufficient to bolster performance following progressive prefrontal volume loss, as documented with quantified structural neuroimaging. These findings are discussed in relation to theories of limbic-neocortical interaction in autobiographical memory.

  17. Examining the effect of psychopathic traits on gray matter volume in a community substance abuse sample.

    PubMed

    Cope, Lora M; Shane, Matthew S; Segall, Judith M; Nyalakanti, Prashanth K; Stevens, Michael C; Pearlson, Godfrey D; Calhoun, Vince D; Kiehl, Kent A

    2012-11-30

    Psychopathy is believed to be associated with brain abnormalities in both paralimbic (i.e., orbitofrontal cortex, insula, temporal pole, parahippocampal gyrus, posterior cingulate) and limbic (i.e., amygdala, hippocampus, anterior cingulate) regions. Recent structural imaging studies in both community and prison samples are beginning to support this view. Sixty-six participants, recruited from community corrections centers, were administered the Hare psychopathy checklist-revised (PCL-R), and underwent magnetic resonance imaging (MRI). Voxel-based morphometry was used to test the hypothesis that psychopathic traits would be associated with gray matter reductions in limbic and paralimbic regions. Effects of lifetime drug and alcohol use on gray matter volume were covaried. Psychopathic traits were negatively associated with gray matter volumes in right insula and right hippocampus. Additionally, psychopathic traits were positively associated with gray matter volumes in bilateral orbital frontal cortex and right anterior cingulate. Exploratory regression analyses indicated that gray matter volumes within right hippocampus and left orbital frontal cortex combined to explain 21.8% of the variance in psychopathy scores. These results support the notion that psychopathic traits are associated with abnormal limbic and paralimbic gray matter volume. Furthermore, gray matter increases in areas shown to be functionally impaired suggest that the structure-function relationship may be more nuanced than previously thought. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Chronic stress disrupts neural coherence between cortico-limbic structures.

    PubMed

    Oliveira, João Filipe; Dias, Nuno Sérgio; Correia, Mariana; Gama-Pereira, Filipa; Sardinha, Vanessa Morais; Lima, Ana; Oliveira, Ana Filipa; Jacinto, Luís Ricardo; Ferreira, Daniela Silva; Silva, Ana Maria; Reis, Joana Santos; Cerqueira, João José; Sousa, Nuno

    2013-01-01

    Chronic stress impairs cognitive function, namely on tasks that rely on the integrity of cortico-limbic networks. To unravel the functional impact of progressive stress in cortico-limbic networks we measured neural activity and spectral coherences between the ventral hippocampus (vHIP) and the medial prefrontal cortex (mPFC) in rats subjected to short term stress (STS) and chronic unpredictable stress (CUS). CUS exposure consistently disrupted the spectral coherence between both areas for a wide range of frequencies, whereas STS exposure failed to trigger such effect. The chronic stress-induced coherence decrease correlated inversely with the vHIP power spectrum, but not with the mPFC power spectrum, which supports the view that hippocampal dysfunction is the primary event after stress exposure. Importantly, we additionally show that the variations in vHIP-to-mPFC coherence and power spectrum in the vHIP correlated with stress-induced behavioral deficits in a spatial reference memory task. Altogether, these findings result in an innovative readout to measure, and follow, the functional events that underlie the stress-induced reference memory impairments.

  19. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miletich, R.S.

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period,more » phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.« less

  20. Neurobiology of Aggression and Violence

    PubMed Central

    Siever, Larry J.

    2014-01-01

    Acts of violence account for an estimated 1.43 million deaths worldwide annually. While violence can occur in many contexts, individual acts of aggression account for the majority of instances. In some individuals, repetitive acts of aggression are grounded in an underlying neurobiological susceptibility that is just beginning to be understood. The failure of “top-down” control systems in the prefrontal cortex to modulate aggressive acts that are triggered by anger provoking stimuli appears to play an important role. An imbalance between prefrontal regulatory influences and hyper-responsivity of the amygdala and other limbic regions involved in affective evaluation are implicated. Insufficient serotonergic facilitation of “top-down” control, excessive catecholaminergic stimulation, and subcortical imbalances of glutamatergic/ gabaminergic systems as well as pathology in neuropeptide systems involved in the regulation of affiliative behavior may contribute to abnormalities in this circuitry. Thus, pharmacological interventions such as mood stabilizers, which dampen limbic irritability, or selective serotonin reuptake inhibitors (SSRIs), which may enhance “top-down” control, as well as psychosocial interventions to develop alternative coping skills and reinforce reflective delays may be therapeutic. PMID:18346997

  1. Kisspeptin modulates sexual and emotional brain processing in humans

    PubMed Central

    Comninos, Alexander N.; Wall, Matthew B.; Demetriou, Lysia; Shah, Amar J.; Clarke, Sophie A.; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K.; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M.; Jayasena, Channa N.; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A.; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Wilson, Steven Ray; Brown, Rachel C.; Thomas, Sarah A.; Bloom, Stephen R.; Dhillo, Waljit S.

    2017-01-01

    BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC). PMID:28112678

  2. The semiology of febrile seizures: Focal features are frequent.

    PubMed

    Takasu, Michihiko; Kubota, Tetsuo; Tsuji, Takeshi; Kurahashi, Hirokazu; Numoto, Shingo; Watanabe, Kazuyoshi; Okumura, Akihisa

    2017-08-01

    To clarify the semiology of febrile seizures (FS) and to determine the frequency of FS with symptoms suggestive of focal onset. FS symptoms in children were reported within 24h of seizure onset by the parents using a structured questionnaire consisting principally of closed-ended questions. We focused on events at seizure commencement, including changes in behavior and facial expression, and ocular and oral symptoms. We also investigated the autonomic and motor symptoms developing during seizures. The presence or absence of focal and limbic features was determined for each patient. The associations of certain focal and limbic features with patient characteristics were assessed. Information was obtained on FS in 106 children. Various events were recorded at seizure commencement. Behavioral changes were observed in 35 children, changes in facial expression in 53, ocular symptoms in 78, and oral symptoms in 90. In terms of events during seizures, autonomic symptoms were recognized in 78, and convulsive motor symptoms were recognized in 68 children. Focal features were evident in 81 children; 38 children had two or more such features. Limbic features were observed in 44 children, 9 of whom had two or more such features. There was no significant relationship between any patient characteristic and the numbers of focal or limbic features. The semiology of FS varied widely among children, and symptoms suggestive of focal onset were frequent. FS of focal onset may be more common than is generally thought. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Distinct white matter integrity in glutamic acid decarboxylase and voltage-gated potassium channel-complex antibody-associated limbic encephalitis.

    PubMed

    Wagner, Jan; Schoene-Bake, Jan-Christoph; Witt, Juri-Alexander; Helmstaedter, Christoph; Malter, Michael P; Stoecker, Winfried; Probst, Christian; Weber, Bernd; Elger, Christian E

    2016-03-01

    Autoantibodies against glutamic acid decarboxylase (GAD) and the voltage-gated potassium channel (VGKC) complex are associated with distinct subtypes of limbic encephalitis regarding clinical presentation, response to therapy, and outcome. The aim of this study was to investigate white matter changes in these two limbic encephalitis subtypes by means of diffusion tensor imaging (DTI). Diffusion data were obtained in 14 patients with GAD antibodies and 16 patients with VGKC-complex antibodies and compared with age- and gender-matched control groups. Voxelwise statistical analysis was carried out using tract-based spatial statistics. The results were furthermore compared with those of 15 patients with unilateral histologically confirmed hippocampal sclerosis and correlated with verbal and figural memory performance. We found widespread changes of fractional anisotropy and all diffusivity parameters in GAD-associated limbic encephalitis, whereas no changes were found in VGKC-complex-associated limbic encephalitis. The changes observed in the GAD group were even more extensive when compared against those of the hippocampal sclerosis group, although the disease duration was markedly shorter in patients with GAD antibodies. Correlation analysis revealed areas with a trend toward a negative correlation of diffusivity parameters with figural memory performance located mainly in the right temporal lobe in the GAD group as well. The present study provides further evidence that, depending on the associated antibody, limbic encephalitis features clearly distinct imaging characteristics by showing widespread white matter changes in GAD-associated limbic encephalitis and preserved white matter integrity in VGKC-complex-associated limbic encephalitis. Furthermore, our results contribute to a better understanding of the specific pathophysiologic properties in these two subforms of limbic encephalitis by revealing that patients with GAD antibodies show widespread affections of white matter across various regions of the brain. In contrast to this, the inflammatory process seems to be more localized in VGKC-complex-associated limbic encephalitis, primarily affecting mesiotemporal gray matter. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  4. Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.

    PubMed

    Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís

    2015-11-01

    Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with psychopathy. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. IgG and complement deposition and neuronal loss in cats and humans with epilepsy and voltage-gated potassium channel complex antibodies.

    PubMed

    Klang, Andrea; Schmidt, Peter; Kneissl, Sibylle; Bagó, Zoltán; Vincent, Angela; Lang, Bethan; Moloney, Teresa; Bien, Christian G; Halász, Péter; Bauer, Jan; Pákozdy, Akos

    2014-05-01

    Voltage-gated potassium channel complex (VGKC-complex) antibody (Ab) encephalitis is a well-recognized form of limbic encephalitis in humans, usually occurring in the absence of an underlying tumor. The patients have a subacute onset of seizures, magnetic resonance imaging findings suggestive of hippocampal inflammation, and high serum titers of Abs against proteins of the VGKC-complex, particularly leucine-rich, glioma-inactivated 1 (LGI1). Most patients are diagnosed promptly and recover substantially with immunotherapies; consequently, neuropathological data are limited. We have recently shown that feline complex partial cluster seizures with orofacial involvement (FEPSO) in cats can also be associated with Abs against VGKC-complexes/LGI1. Here we examined the brains of cats with FEPSO and compared the neuropathological findings with those in a human with VGKC-complex-Ab limbic encephalitis. Similar to humans, cats with VGKC-complex-Ab and FEPSO have hippocampal lesions with only moderate T-cell infiltrates but with marked IgG infiltration and complement C9neo deposition on hippocampal neurons, associated with neuronal loss. These findings provide further evidence that FEPSO is a feline form of VGKC-complex-Ab limbic encephalitis and provide a model for increasing understanding of the human disease.

  6. Prefrontal vulnerabilities and whole brain connectivity in aging and depression.

    PubMed

    Lamar, Melissa; Charlton, Rebecca A; Ajilore, Olusola; Zhang, Aifeng; Yang, Shaolin; Barrick, Thomas R; Rhodes, Emma; Kumar, Anand

    2013-07-01

    Studies exploring the underpinnings of age-related neurodegeneration suggest fronto-limbic alterations that are increasingly vulnerable in the presence of disease including late life depression. Less work has assessed the impact of this specific vulnerability on widespread brain circuitry. Seventy-nine older adults (healthy controls=45; late life depression=34) completed translational tasks shown in non-human primates to rely on fronto-limbic networks involving dorsolateral (Self-Ordered Pointing Task) or orbitofrontal (Object Alternation Task) cortices. A sub-sample of participants also completed diffusion tensor imaging for white matter tract quantification (uncinate and cingulum bundle; n=58) and whole brain tract-based spatial statistics (n=62). Despite task associations to specific white matter tracts across both groups, only healthy controls demonstrated significant correlations between widespread tract integrity and cognition. Thus, increasing Object Alternation Task errors were associated with decreasing fractional anisotropy in the uncinate in late life depression; however, only in healthy controls was the uncinate incorporated into a larger network of white matter vulnerability associating fractional anisotropy with Object Alternation Task errors using whole brain tract-based spatial statistics. It appears that the whole brain impact of specific fronto-limbic vulnerabilities in aging may be eclipsed in the presence of disease-specific neuropathology like that seen in late life depression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Portraying emotions at their unfolding: a multilayered approach for probing dynamics of neural networks.

    PubMed

    Raz, Gal; Winetraub, Yonatan; Jacob, Yael; Kinreich, Sivan; Maron-Katz, Adi; Shaham, Galit; Podlipsky, Ilana; Gilam, Gadi; Soreq, Eyal; Hendler, Talma

    2012-04-02

    Dynamic functional integration of distinct neural systems plays a pivotal role in emotional experience. We introduce a novel approach for studying emotion-related changes in the interactions within and between networks using fMRI. It is based on continuous computation of a network cohesion index (NCI), which is sensitive to both strength and variability of signal correlations between pre-defined regions. The regions encompass three clusters (namely limbic, medial prefrontal cortex (mPFC) and cognitive), each previously was shown to be involved in emotional processing. Two sadness-inducing film excerpts were viewed passively, and comparisons between viewer's rated sadness, parasympathetic, and inter-NCI and intra-NCI were obtained. Limbic intra-NCI was associated with reported sadness in both movies. However, the correlation between the parasympathetic-index, the rated sadness and the limbic-NCI occurred in only one movie, possibly related to a "deactivated" pattern of sadness. In this film, rated sadness intensity also correlated with the mPFC intra-NCI, possibly reflecting temporal correspondence between sadness and sympathy. Further, only for this movie, we found an association between sadness rating and the mPFC-limbic inter-NCI time courses. To the contrary, in the other film in which sadness was reported to commingle with horror and anger, dramatic events coincided with disintegration of these networks. Together, this may point to a difference between the cinematic experiences with regard to inter-network dynamics related to emotional regulation. These findings demonstrate the advantage of a multi-layered dynamic analysis for elucidating the uniqueness of emotional experiences with regard to an unguided processing of continuous and complex stimulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. A locus on mouse Ch10 influences susceptibility to limbic seizure severity: fine mapping and in silico candidate gene analysis

    PubMed Central

    Winawer, Melodie R.; Klassen, Tara L.; Teed, Sarah; Shipman, Marissa; Leung, Emily H.; Palmer, Abraham A.

    2014-01-01

    Identification of genes contributing to mouse seizure susceptibility can reveal novel genes or pathways that provide insight into human epilepsy. Using mouse chromosome substitution strains and interval-specific congenic strains (ISCS), we previously identified an interval conferring pilocarpine-induced limbic seizure susceptibility on distal mouse Chromosome 10 (Ch10). We narrowed the region by generating subcongenics with smaller A/J Ch10 segments on a C57BL/6J (B6) background and tested them with pilocarpine. We also tested pilocarpine susceptible congenics for 6Hz ECT, another model of limbic seizure susceptibility, to determine whether the susceptibility locus might have a broad effect on neuronal hyperexcitability across more than one mode of limbic seizure induction. ISCS Line 1, which contained the distal 2.7 Mb segment from A/J (starting at rs29382217), was more susceptible to both pilocarpine and ECT. Line 2, which was a subcongenic of Line1 (starting at rs13480828), was not susceptible; thus defining a 1.0 Mb critical region that was unique to Line1. Bioinformatic approaches identified 52 human orthologues within the unique Line 1 susceptibility region, the majority syntenic to human Ch12. Applying an epilepsy network analysis of known and suspected excitability genes and examination of interstrain genomic and brain expression differences revealed novel candidates within the region. These include Stat2, which plays a role in hippocampal GABA receptor expression after status epilepticus, and novel candidates Pan2, Cdk2, Gls2, and Cs, which are involved in neural cell differentiation, cellular remodeling, and embryonic development. Our strategy may facilitate discovery of novel human epilepsy genes. PMID:24373497

  9. [Dream in the land of paradoxical sleep].

    PubMed

    Pire, E; Herman, G; Cambron, L; Maquet, P; Poirrier, R

    2008-01-01

    Paradoxical sleep (PS or REM sleep) is traditionally a matter for neurophysiology, a science of the brain. Dream is associated with neuropsychology and sciences of the mind. The relationships between sleep and dream are better understood in the light of new methodologies in both domains, particularly those of basic neurosciences which elucidate the mechanisms underlying SP and functional imaging techniques. Data from these approaches are placed here in the perspective of rather old clinical observations in human cerebral lesions and in the phylogeny of vertebrates, in order to support a theory of dream. Dreams may be seen as a living marker of a cognitivo-emotional process, called here "eidictic process", involving posterior brain and limbic structures, keeping up during wakefulness, but subjected, at that time, to the leading role of a cognitivo-rational process, called here "thought process". The last one is of instrumental origin in human beings. It involves prefrontal cortices (executive tasks) and frontal/parietal cortices (attention) in the brain. Some clinical implications of the theory are illustrated.

  10. Neuroticism is linked to microstructural left-right asymmetry of fronto-limbic fibre tracts in adolescents with opposite effects in boys and girls.

    PubMed

    Madsen, Kathrine Skak; Jernigan, Terry L; Vestergaard, Martin; Mortensen, Erik Lykke; Baaré, William F C

    2018-06-01

    Neuroticism is a fundamental personality trait that reflects a tendency to experience heightened negative affect and susceptibility to stress. Negative emotionality has been associated with fronto-limbic brain structures and connecting fibre tracts. The major fibre tracts connecting the frontal and limbic brain regions are the cingulum bundle and uncinate fasciculus. We previously found that healthy adults with higher neuroticism scores had decreased left relative to right fractional anisotropy (FA) of the cingulum. Both cingulum and uncinate fasciculus FA increases throughout childhood and into early adulthood. Since adolescence is associated with an increased incidence of anxiety and mood disorders, for which neuroticism is a known risk factor, the question arises whether the association between neuroticism and fronto-limbic white matter microstructure asymmetry is already present in children and adolescents or whether such relationship emerges during this age period. To address this question, we assessed 72 typically-developing 10-to-15 year-olds with diffusion-weighted imaging on a 3 T magnetic resonance scanner. Neuroticism was assessed with the Junior Eysenck Personality Questionnaire. FA and parallel and perpendicular diffusivity measures were extracted for cingulum, uncinate fasciculus as well as the white matter underlying the ventromedial prefrontal cortex. Higher neuroticism scores were associated with decreased left relative to right cingulum FA in boys, while in girls, higher neuroticism scores were associated with increased left relative to right cingulum and ventromedial prefrontal white matter FA, indicating that there are sex differences in the neural correlates of neuroticism. Our findings suggest that the link between neuroticism and frontal-limbic white matter microstructure asymmetry likely predates early adolescence. Future studies need to elucidate the significance of the observed sex differences in the neural correlates of neuroticism. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Neurobiology of Wisdom?: A Literature Overview

    PubMed Central

    Meeks, Thomas W.; Jeste, Dilip V.

    2013-01-01

    Context Wisdom is a unique psychological trait noted since antiquity, long discussed in humanities disciplines, recently operationalized by psychology and sociology researchers, but largely unexamined in psychiatry or biology. Objective We discuss recent neurobiological studies related to subcomponents of wisdom identified from several published definitions/descriptions of wisdom by clinical investigators in the field – i.e., prosocial attitudes/behaviors, social decision-making/pragmatic knowledge of life, emotional homeostasis, reflection/self-understanding, value relativism/tolerance, and acknowledgement of and dealing effectively with uncertainty. Design Literature overview focusing primarily on neuroimaging/brain localization and secondarily on neurotransmitters, including their genetic determinants. Results Functional neuroimaging permits exploration of neural correlates of complex psychological attributes such as those proposed to comprise wisdom. The prefrontal cortex figures prominently in several wisdom subcomponents (e.g., emotional regulation, decision-making, value relativism), primarily via top-down regulation of limbic and striatal regions. The lateral prefrontal cortex facilitates calculated, reason-based decision-making, whereas the medial prefrontal cortex is implicated in emotional valence and prosocial attitudes/behaviors. Reward neurocircuitry (ventral striatum, nucleus accumbens) also appears important for promoting prosocial attitudes/behaviors. Monoaminergic activity (especially dopaminergic and serotonergic), influenced by several genetic polymorphisms, is critical to certain subcomponents of wisdom such as emotional regulation (including impulse control), decision-making, and prosocial behaviors. Conclusions We have proposed a speculative model of the neurobiology of wisdom involving fronto-striatal and fronto-limbic circuits and monoaminergic pathways. Wisdom may involve optimal balance between functions of phylogenetically more primitive brain regions (limbic system) and newer ones (prefrontal cortex). Limitations of the putative model are stressed. It is hoped that this review will stimulate further research in characterization, assessment, neurobiology, and interventions related to wisdom. PMID:19349305

  12. Maternal Neural Responses to Infant Cries and Faces: Relationships with Substance Use

    PubMed Central

    Landi, Nicole; Montoya, Jessica; Kober, Hedy; Rutherford, Helena J. V.; Mencl, W. Einar; Worhunsky, Patrick D.; Potenza, Marc N.; Mayes, Linda C.

    2011-01-01

    Substance abuse in pregnant and recently post-partum women is a major public health concern because of effects on the infant and on the ability of the adult to care for the infant. In addition to the negative health effects of teratogenic substances on fetal development, substance use can contribute to difficulties associated with the social and behavioral aspects of parenting. Neural circuits associated with parenting behavior overlap with circuits involved in addiction (e.g., frontal, striatal, and limbic systems) and thus may be co-opted for the craving/reward cycle associated with substance use and abuse and be less available for parenting. The current study investigates the degree to which neural circuits associated with parenting are disrupted in mothers who are substance-using. Specifically, we used functional magnetic resonance imaging to examine the neural response to emotional infant cues (faces and cries) in substance-using compared to non-using mothers. In response to both faces (of varying emotional valence) and cries (of varying distress levels), substance-using mothers evidenced reduced neural activation in regions that have been previously implicated in reward and motivation as well as regions involved in cognitive control. Specifically, in response to faces, substance users showed reduced activation in prefrontal regions, including the dorsolateral and ventromedial prefrontal cortices, as well as visual processing (occipital lobes) and limbic regions (parahippocampus and amygdala). Similarly, in response to infant cries, substance-using mothers showed reduced activation relative to non-using mothers in prefrontal regions, auditory sensory processing regions, insula and limbic regions (parahippocampus and amygdala). These findings suggest that infant stimuli may be less salient for substance-using mothers, and such reduced saliency may impair developing infant-caregiver attachment and the ability of mothers to respond appropriately to their infants. PMID:21720537

  13. Limbic encephalitis and antibodies to Ma2: a paraneoplastic presentation of breast cancer

    PubMed Central

    Sutton, I.; Winer, J.; Rowlands, D.; Dalmau, J.

    2000-01-01

    A patient with atypical medullary breast cancer is described who presented with symptoms of limbic encephalitis. The patient's serum and CSF contained antibodies that reacted with the nervous system and the tumour. These antibodies recognised Ma2, a neuronal protein related to paraneoplastic limbic and brainstem encephalitis in men with testicular tumours. This report highlights the importance of testing for paraneoplastic antineuronal antibodies in cases of unexplained limbic encephalitis and suggests screening for breast cancer in women with antibodies predominantly directed to Ma2.

 PMID:10896708

  14. Limbic encephalitis and antibodies to Ma2: a paraneoplastic presentation of breast cancer.

    PubMed

    Sutton, I; Winer, J; Rowlands, D; Dalmau, J

    2000-08-01

    A patient with atypical medullary breast cancer is described who presented with symptoms of limbic encephalitis. The patient's serum and CSF contained antibodies that reacted with the nervous system and the tumour. These antibodies recognised Ma2, a neuronal protein related to paraneoplastic limbic and brainstem encephalitis in men with testicular tumours. This report highlights the importance of testing for paraneoplastic antineuronal antibodies in cases of unexplained limbic encephalitis and suggests screening for breast cancer in women with antibodies predominantly directed to Ma2.

  15. Amygdala hypersensitivity in response to emotional faces in Tourette's patients.

    PubMed

    Neuner, Irene; Kellermann, Thilo; Stöcker, Tony; Kircher, Tilo; Habel, Ute; Shah, Jon N; Schneider, Frank

    2010-10-01

    Tourette's syndrome is characterised by motor and vocal tics as well as a high level of impulsivity and emotional dysregulation. Neuroimaging studies point to structural changes of the basal ganglia, prefrontal cortex and parts of the limbic system. However, there is no link between behavioural symptoms and the structural changes in the amygdala. One aspect of daily social interaction is the perception of emotional facial expressions, closely linked to amgydala function. We therefore investigated via fMRI the implicit discrimination of six emotional facial expressions in 19 adult Tourette's patients. In comparison to healthy control group, Tourette's patients showed significantly higher amygdala activation, especially pronounced for fearful, angry and neutral expressions. The BOLD-activity of the left amygdala correlated negatively with the personality trait extraversion. We will discuss these findings as a result of either deficient frontal inhibition due to structural changes or a desynchronization in the interaction of the cortico-striato-thalamo-cortical network within structures of the limbic system. Our data show an altered pattern of implicit emotion discrimination and emphasize the need to consider motor and non-motor symptoms in Tourette's syndrome in the choice of both behavioural and pharmacological treatment.

  16. Right fronto-limbic atrophy is associated with reduced empathy in refractory unilateral mesial temporal lobe epilepsy.

    PubMed

    Toller, Gianina; Adhimoolam, Babu; Rankin, Katherine P; Huppertz, Hans-Jürgen; Kurthen, Martin; Jokeit, Hennric

    2015-11-01

    Refractory mesial temporal lobe epilepsy (MTLE) is the most frequent focal epilepsy and is often accompanied by deficits in social cognition including emotion recognition, theory of mind, and empathy. Consistent with the neuronal networks that are crucial for normal social-cognitive processing, these impairments have been associated with functional changes in fronto-temporal regions. However, although atrophy in unilateral MTLE also affects regions of the temporal and frontal lobes that underlie social cognition, little is known about the structural correlates of social-cognitive deficits in refractory MTLE. In the present study, a psychometrically validated empathy questionnaire was combined with whole-brain voxel-based morphometry (VBM) to investigate the relationship between self-reported affective and cognitive empathy and gray matter volume in 55 subjects (13 patients with right MTLE, 9 patients with left MTLE, and 33 healthy controls). Consistent with the brain regions underlying social cognition, our results show that lower affective and cognitive empathy was associated with smaller volume in predominantly right fronto-limbic regions, including the right hippocampus, parahippocampal gyrus, thalamus, fusiform gyrus, inferior temporal gyrus, dorsomedial and dorsolateral prefrontal cortices, and in the bilateral midbrain. The only region that was associated with both affective and cognitive empathy was the right mesial temporal lobe. These findings indicate that patients with right MTLE are at increased risk for reduced empathy towards others' internal states and they shed new light on the structural correlates of impaired social cognition frequently accompanying refractory MTLE. In line with previous evidence from patients with neurodegenerative disease and stroke, the present study suggests that empathy depends upon the integrity of right fronto-limbic and brainstem regions and highlights the importance of the right mesial temporal lobe and midbrain structures for human empathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Brain Regions Associated With Internalizing and Externalizing Psychiatric Symptoms in Patients With Penetrating Traumatic Brain Injury.

    PubMed

    Huey, Edward D; Lee, Seonjoo; Lieberman, Jeffrey A; Devanand, D P; Brickman, Adam M; Raymont, Vanessa; Krueger, Frank; Grafman, Jordan

    2016-01-01

    A factor structure underlying DSM-IV diagnoses has been previously reported in neurologically intact patients. The authors determined the brain regions associated with factors underlying DSM-IV diagnoses and compared the ability of DSM-IV diagnoses, factor scores, and self-report measures to account for the neuroanatomical findings in patients with penetrating brain injuries. This prospective cohort study included 254 Vietnam War veterans: 199 with penetrating brain injuries and 55 matched control participants. Measures include DSM-IV diagnoses (from a Structured Clinical Interview for DSM), self-report measures of depression and anxiety, and CT scans. Factors underlying DSM-IV diagnoses were determined using an exploratory factor analysis and correlated with percent of brain regions affected. The ability of the factor scores, DSM-IV diagnoses, and the self-report psychiatric measures to account for the anatomical variance was compared with multiple regressions. Internalizing and externalizing factors were identified in these brain-injured patients. Damage to the left amygdala and bilateral basal ganglia was associated with lower internalizing factor scores, and damage to the left medial orbitofrontal cortex (OFC) with higher, and bilateral hippocampi with lower, externalizing factor scores. Factor scores best predicted left amygdala and bilateral hippocampal involvement, whereas DSM-IV diagnoses best predicted bilateral basal ganglia and left OFC involvement. Damage to the limbic areas involved in the processing of emotional and reward information, including structures involved in the National Institute of Mental Health's Research Domain Criteria Negative Valence Domain, influences the development of internalizing and externalizing psychiatric symptoms. Self-report measures underperformed DSM-IV and factor scores in predicting neuroanatomical findings.

  18. The Striatum and Subthalamic Nucleus as Independent and Collaborative Structures in Motor Control

    PubMed Central

    Tewari, Alia; Jog, Rachna; Jog, Mandar S.

    2016-01-01

    The striatum and the subthalamic nucleus (STN) are two separate input structures into the basal ganglia (BG). Accordingly, research to date has primarily focused on the distinct roles of these structures in motor control and cognition, often through investigation of Parkinson’s disease (PD). Both structures are divided into sensorimotor, associative, and limbic subdivisions based on cortical connectivity. The more recent discovery of the STN as an input structure into the BG drives comparison of these two structures and their respective roles in cognition and motor control. This review compares the role of the striatum and STN in motor response inhibition and execution, competing motor programs, feedback based learning, and response planning. Through comparison, it is found that the striatum and STN have highly independent roles in motor control but also collaborate in order to execute desired actions. There is also the possibility that inhibition or activation of one of these structures indirectly contributes to the function of other connected anatomical structures. Both structures contribute to selective motor response inhibition, which forms the basis of many tasks, but the STN additionally contributes to global inhibition through the hyperdirect pathway. Research is warranted on the functional connectivity of the network for inhibition involving the rIFG, preSMA, striatum, and STN. PMID:26973474

  19. Neurodevelopmental marker for limbic maldevelopment in antisocial personality disorder and psychopathy.

    PubMed

    Raine, Adrian; Lee, Lydia; Yang, Yaling; Colletti, Patrick

    2010-09-01

    Antisocial personality disorder and psychopathy have been hypothesised to have a neurodevelopmental basis, but this proposition has not been formally tested. This study tests the hypothesis that individuals with cavum septum pellucidum (CSP), a marker of limbic neural maldevelopment, will show higher levels of psychopathy and antisocial personality. Cavum septum pellucidum was assessed using anatomical magnetic resonance imaging in a community sample. Those with CSP (n = 19) were compared with those lacking CSP (n = 68) on antisocial personality, psychopathy and criminal offending. Those with CSP had significantly higher levels of antisocial personality, psychopathy, arrests and convictions compared with controls. The pervasiveness of this association was indicated by the fact that those lacking a diagnosis of antisocial personality disorder, but who were charged or convicted for an offence, had a more extensive CSP than non-antisocial controls. Results could not be attributed to prior trauma exposure, head injury, demographic factors or comorbid psychiatric conditions. Our findings appear to be the first to provide evidence for a neurodevelopmental brain abnormality in those with antisocial personality disorder and psychopathy, and support the hypothesis that early maldevelopment of limbic and septal structures predisposes to the spectrum of antisocial behaviours.

  20. Oxidative metabolism of limbic structures after acute administration of diazepam, alprazolam and zolpidem.

    PubMed

    González-Pardo, Héctor; Conejo, Nélida M; Arias, Jorge L

    2006-08-30

    The effects of acute administration of two benzodiazepines and a non-benzodiazepine hypnotic on behavior and brain metabolism were evaluated in rats. After testing the behavioral action of the benzodiazepines on the open field and the elevated plus-maze, the effects of the three drugs on neuronal metabolism of particular limbic regions were measured using cytochrome c oxidase (CO) histochemistry. Diazepam (5 mg/kg i.p.) and alprazolam (0.5 mg/kg i.p.) induced clear anxiolytic effects and a decrease in locomotion, whereas zolpidem (2 mg/kg i.p.) caused an intense hypnotic effect. The anxiolytic effects of alprazolam were distinguishable from diazepam due to the pharmacological and clinical profile of this triazolobenzodiazepine. CO activity decreased significantly in almost all the limbic regions evaluated after zolpidem administration. However, significant prominent decreases in CO activity were found after diazepam treatment in the medial mammillary nucleus, anteroventral thalamus, cingulate cortex, dentate gyrus and basolateral amygdala. Alprazolam caused similar decreases in CO activity, with the exception of the prelimbic and cingulate cortices, where significant increases were detected. In agreement with previous studies using other functional mapping techniques, our results indicate that particular benzodiazepines and non-benzodiazepine hypnotics induce selective changes in brain oxidative metabolism.

  1. Neurodevelopmental marker for limbic maldevelopment in antisocial personality disorder and psychopathy

    PubMed Central

    Raine, Adrian; Lee, Lydia; Yang, Yaling; Colletti, Patrick

    2010-01-01

    Background Antisocial personality disorder and psychopathy have been hypothesised to have a neurodevelopmental basis, but this proposition has not been formally tested. Aims This study tests the hypothesis that individuals with cavum septum pellucidum (CSP), a marker of limbic neural maldevelopment, will show higher levels of psychopathy and antisocial personality. Method Cavum septum pellucidum was assessed using anatomical magnetic resonance imaging in a community sample. Those with CSP (n = 19) were compared with those lacking CSP (n = 68) on antisocial personality, psychopathy and criminal offending. Results Those with CSP had significantly higher levels of antisocial personality, psychopathy, arrests and convictions compared with controls. The pervasiveness of this association was indicated by the fact that those lacking a diagnosis of antisocial personality disorder, but who were charged or convicted for an offence, had a more extensive CSP than non-antisocial controls. Results could not be attributed to prior trauma exposure, head injury, demographic factors or comorbid psychiatric conditions. Conclusions Our findings appear to be the first to provide evidence for a neurodevelopmental brain abnormality in those with antisocial personality disorder and psychopathy, and support the hypothesis that early maldevelopment of limbic and septal structures predisposes to the spectrum of antisocial behaviours. PMID:20807962

  2. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans

    PubMed Central

    Rabinak, Christine A.; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R.; Liberzon, Israel; Phan, K. Luan

    2013-01-01

    Pre-extinction administration of ∆9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely involves via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 hours after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders. PMID:24055595

  3. The functional and structural neural basis of individual differences in loss aversion.

    PubMed

    Canessa, Nicola; Crespi, Chiara; Motterlini, Matteo; Baud-Bovy, Gabriel; Chierchia, Gabriele; Pantaleo, Giuseppe; Tettamanti, Marco; Cappa, Stefano F

    2013-09-04

    Decision making under risk entails the anticipation of prospective outcomes, typically leading to the greater sensitivity to losses than gains known as loss aversion. Previous studies on the neural bases of choice-outcome anticipation and loss aversion provided inconsistent results, showing either bidirectional mesolimbic responses of activation for gains and deactivation for losses, or a specific amygdala involvement in processing losses. Here we focused on loss aversion with the aim to address interindividual differences in the neural bases of choice-outcome anticipation. Fifty-six healthy human participants accepted or rejected 104 mixed gambles offering equal (50%) chances of gaining or losing different amounts of money while their brain activity was measured with functional magnetic resonance imaging (fMRI). We report both bidirectional and gain/loss-specific responses while evaluating risky gambles, with amygdala and posterior insula specifically tracking the magnitude of potential losses. At the individual level, loss aversion was reflected both in limbic fMRI responses and in gray matter volume in a structural amygdala-thalamus-striatum network, in which the volume of the "output" centromedial amygdala nuclei mediating avoidance behavior was negatively correlated with monetary performance. We conclude that outcome anticipation and ensuing loss aversion involve multiple neural systems, showing functional and structural individual variability directly related to the actual financial outcomes of choices. By supporting the simultaneous involvement of both appetitive and aversive processing in economic decision making, these results contribute to the interpretation of existing inconsistencies on the neural bases of anticipating choice outcomes.

  4. Prolonged Febrile Seizures in the Immature Rat Model Enhance Hippocampal Excitability Long Term

    PubMed Central

    Dube, Celine; Chen, Kang; Eghbal-Ahmadi, Mariam; Brunson, Kristen; Soltesz, Ivan; Baram, Tallie Z.

    2011-01-01

    Febrile seizures (FSs) constitute the most prevalent seizure type during childhood. Whether prolonged FSs alter limbic excitability, leading to spontaneous seizures (temporal lobe epilepsy) during adulthood, has been controversial. Recent data indicate that, in the immature rat model, prolonged FSs induce transient structural changes of some hippocampal pyramidal neurons and long-term functional changes of hippocampal circuitry. However, whether these neuroanatomical and electrophysiological changes promote hippocampal excitability and lead to epilepsy has remained unknown. By using in vivo and in vitro approaches, we determined that prolonged hyperthermia-induced seizures in immature rats caused long-term enhanced susceptibility to limbic convulsants that lasted to adulthood. Thus, extensive hippocampal electroencephalographic and behavioral monitoring failed to demonstrate spontaneous seizures in adult rats that had experienced hyperthermic seizures during infancy. However, 100% of animals developed hippocampal seizures after systemic administration of a low dose of kainate, and most progressed to status epilepticus. Conversely, a minority of normothermic and hyperthermic controls had (brief) seizures, none developing status epilepticus. In vitro, spontaneous epileptiform discharges were not observed in hippocampal-entorhinal cortex slices derived from either control or experimental groups. However, Schaeffer collateral stimulation induced prolonged, self-sustaining, status epilepticus-like discharges exclusively in slices from experimental rats. These data indicate that hyperthermic seizures in the immature rat model of FSs do not cause spontaneous limbic seizures during adulthood. However, they reduce thresholds to chemical convulsants in vivo and electrical stimulation in vitro, indicating persistent enhancement of limbic excitability that may facilitate the development of epilepsy. PMID:10716253

  5. Graph Theoretical Analysis of BOLD Functional Connectivity during Human Sleep without EEG Monitoring.

    PubMed

    Lv, Jun; Liu, Dongdong; Ma, Jing; Wang, Xiaoying; Zhang, Jue

    2015-01-01

    Functional brain networks of human have been revealed to have small-world properties by both analyzing electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) time series. In our study, by using graph theoretical analysis, we attempted to investigate the changes of paralimbic-limbic cortex between wake and sleep states. Ten healthy young people were recruited to our experiment. Data from 2 subjects were excluded for the reason that they had not fallen asleep during the experiment. For each subject, blood oxygen level dependency (BOLD) images were acquired to analyze brain network, and peripheral pulse signals were obtained continuously to identify if the subject was in sleep periods. Results of fMRI showed that brain networks exhibited stronger small-world characteristics during sleep state as compared to wake state, which was in consistent with previous studies using EEG synchronization. Moreover, we observed that compared with wake state, paralimbic-limbic cortex had less connectivity with neocortical system and centrencephalic structure in sleep. In conclusion, this is the first study, to our knowledge, has observed that small-world properties of brain functional networks altered when human sleeps without EEG synchronization. Moreover, we speculate that paralimbic-limbic cortex organization owns an efficient defense mechanism responsible for suppressing the external environment interference when humans sleep, which is consistent with the hypothesis that the paralimbic-limbic cortex may be functionally disconnected from brain regions which directly mediate their interactions with the external environment. Our findings also provide a reasonable explanation why stable sleep exhibits homeostasis which is far less susceptible to outside world.

  6. Effects of chronic alcohol consumption on neuronal function in the non-human primate BNST

    EPA Science Inventory

    Alterations in hypothalamic–pituitary–adrenal axis function contribute to many of the adverse behavioral effects of chronic voluntary alcohol drinking, including alcohol dependence and mood disorders; limbic brain structures such as the bed nucleus of the stria termin...

  7. Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence.

    PubMed

    Lee, Tae-Ho; Telzer, Eva H

    2016-08-01

    Recent developmental brain imaging studies have demonstrated that negatively coupled prefrontal-limbic circuitry implicates the maturation of brain development in adolescents. Using resting-state functional magnetic resonance imaging (rs-fMRI) and independent component analysis (ICA), the present study examined functional network coupling between prefrontal and limbic systems and links to self-control and substance use onset in adolescents. Results suggest that negative network coupling (anti-correlated temporal dynamics) between the right fronto-parietal and limbic resting state networks is associated with greater self-control and later substance use onset in adolescents. These findings increase our understanding of the developmental importance of prefrontal-limbic circuitry for adolescent substance use at the resting-state network level. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Repetitive behaviors in autism are linked to imbalance of corticostriatal connectivity: a functional connectivity MRI study.

    PubMed

    Abbott, Angela E; Linke, Annika C; Nair, Aarti; Jahedi, Afrooz; Alba, Laura A; Keown, Christopher L; Fishman, Inna; Müller, Ralph-Axel

    2018-01-01

    The neural underpinnings of repetitive behaviors (RBs) in autism spectrum disorders (ASDs), ranging from cognitive to motor characteristics, remain unknown. We assessed RB symptomatology in 50 ASD and 52 typically developing (TD) children and adolescents (ages 8-17 years), examining intrinsic functional connectivity (iFC) of corticostriatal circuitry, which is important for reward-based learning and integration of emotional, cognitive and motor processing, and considered impaired in ASDs. Connectivity analyses were performed for three functionally distinct striatal seeds (limbic, frontoparietal and motor). Functional connectivity with cortical regions of interest was assessed for corticostriatal circuit connectivity indices and ratios, testing the balance of connectivity between circuits. Results showed corticostriatal overconnectivity of limbic and frontoparietal seeds, but underconnectivity of motor seeds. Correlations with RBs were found for connectivity between the striatal motor seeds and cortical motor clusters from the whole-brain analysis, and for frontoparietal/limbic and motor/limbic connectivity ratios. Division of ASD participants into high (n = 17) and low RB subgroups (n = 19) showed reduced frontoparietal/limbic and motor/limbic circuit ratios for high RB compared to low RB and TD groups in the right hemisphere. Results suggest an association between RBs and an imbalance of corticostriatal iFC in ASD, being increased for limbic, but reduced for frontoparietal and motor circuits. © The Author (2017). Published by Oxford University Press.

  9. Repetitive behaviors in autism are linked to imbalance of corticostriatal connectivity: a functional connectivity MRI study

    PubMed Central

    Abbott, Angela E; Linke, Annika C; Nair, Aarti; Jahedi, Afrooz; Alba, Laura A; Keown, Christopher L; Fishman, Inna

    2018-01-01

    Abstract The neural underpinnings of repetitive behaviors (RBs) in autism spectrum disorders (ASDs), ranging from cognitive to motor characteristics, remain unknown. We assessed RB symptomatology in 50 ASD and 52 typically developing (TD) children and adolescents (ages 8–17 years), examining intrinsic functional connectivity (iFC) of corticostriatal circuitry, which is important for reward-based learning and integration of emotional, cognitive and motor processing, and considered impaired in ASDs. Connectivity analyses were performed for three functionally distinct striatal seeds (limbic, frontoparietal and motor). Functional connectivity with cortical regions of interest was assessed for corticostriatal circuit connectivity indices and ratios, testing the balance of connectivity between circuits. Results showed corticostriatal overconnectivity of limbic and frontoparietal seeds, but underconnectivity of motor seeds. Correlations with RBs were found for connectivity between the striatal motor seeds and cortical motor clusters from the whole-brain analysis, and for frontoparietal/limbic and motor/limbic connectivity ratios. Division of ASD participants into high (n = 17) and low RB subgroups (n = 19) showed reduced frontoparietal/limbic and motor/limbic circuit ratios for high RB compared to low RB and TD groups in the right hemisphere. Results suggest an association between RBs and an imbalance of corticostriatal iFC in ASD, being increased for limbic, but reduced for frontoparietal and motor circuits. PMID:29177509

  10. Review. Neurobiology of nicotine dependence.

    PubMed

    Markou, Athina

    2008-10-12

    Nicotine is a psychoactive ingredient in tobacco that significantly contributes to the harmful tobacco smoking habit. Nicotine dependence is more prevalent than dependence on any other substance. Preclinical research in animal models of the various aspects of nicotine dependence suggests a critical role of glutamate, gamma-aminobutyric acid (GABA), cholinergic and dopamine neurotransmitter interactions in the ventral tegmental area and possibly other brain sites, such as the central nucleus of the amygdala and the prefrontal cortex, in the effects of nicotine. Specifically, decreasing glutamate transmission or increasing GABA transmission with pharmacological manipulations decreased the rewarding effects of nicotine and cue-induced reinstatement of nicotine seeking. Furthermore, early nicotine withdrawal is characterized by decreased function of presynaptic inhibitory metabotropic glutamate 2/3 receptors and increased expression of postsynaptic glutamate receptor subunits in limbic and frontal brain sites, while protracted abstinence may be associated with increased glutamate response to stimuli associated with nicotine administration. Finally, adaptations in nicotinic acetylcholine receptor function are also involved in nicotine dependence. These neuroadaptations probably develop to counteract the decreased glutamate and cholinergic transmission that is hypothesized to characterize early nicotine withdrawal. In conclusion, glutamate, GABA and cholinergic transmission in limbic and frontal brain sites are critically involved in nicotine dependence.

  11. Sex dimorphism in a mediatory role of the posterior midcingulate cortex in the association between anxiety and pain sensitivity.

    PubMed

    Kisler, Lee-Bareket; Granovsky, Yelena; Sinai, Alon; Sprecher, Elliot; Shamay-Tsoory, Simone; Weissman-Fogel, Irit

    2016-11-01

    Behavioral studies found greater pain sensitivity in females that vanishes fully or partially when controlling for the emotional state. Furthermore, pain-related brain activation hints at the role of limbic structures in sex differences in pain processing. We aimed to investigate the role of pain-related limbic structures in mediating the relation between subjects' affective state (i.e., anxiety) and pain. Contact heat-evoked potentials (CHEPs) were recorded in 26 healthy subjects (13 males) simultaneously with innocuous (42 °C) baseline and target noxious (52 °C) series of stimuli administered to the left non-dominant volar forearm. The N2 and P2 components were analyzed, and their generators' activity was estimated using standardized low-resolution brain electromagnetic tomography. Thereafter, structural equation modeling (SEM) was applied separately for females and males, examining the mediatory role of the CHEPs' limbic structures generators [posterior midcingulate cortex (pMCC), insula, amygdala, and hippocampus] in the anxiety-pain sensitivity association. Females exhibited greater P2 amplitudes that were highly associated with larger pMCC activity (r = 0.910, p < 0.001). This correlation was also evident in males, though with less strength (r = 0.578, p = 0.039). Moreover, the P2 amplitudes were associated both in females (r = 0.645, p = 0.017) and males (r = 0.608, p = 0.028) with the activity of the amygdala\\hippocampus\\insula. SEM revealed that the relationship between state anxiety and pain ratings was only in females fully mediated via the effect of the pMCC on the P2 amplitude. These findings suggest that sexual dimorphism in anxiety-related brain activity may explain the differences found in CHEPs and the sex-related association between anxiety and pain.

  12. Trans-Modulation of the Somatostatin Type 2A Receptor Trafficking by Insulin-Regulated Aminopeptidase Decreases Limbic Seizures.

    PubMed

    De Bundel, Dimitri; Fafouri, Assia; Csaba, Zsolt; Loyens, Ellen; Lebon, Sophie; El Ghouzzi, Vincent; Peineau, Stéphane; Vodjdani, Guilan; Kiagiadaki, Foteini; Aourz, Najat; Coppens, Jessica; Walrave, Laura; Portelli, Jeanelle; Vanderheyden, Patrick; Chai, Siew Yeen; Thermos, Kyriaki; Bernard, Véronique; Collingridge, Graham; Auvin, Stéphane; Gressens, Pierre; Smolders, Ilse; Dournaud, Pascal

    2015-08-26

    Within the hippocampus, the major somatostatin (SRIF) receptor subtype, the sst2A receptor, is localized at postsynaptic sites of the principal neurons where it modulates neuronal activity. Following agonist exposure, this receptor rapidly internalizes and recycles slowly through the trans-Golgi network. In epilepsy, a high and chronic release of somatostatin occurs, which provokes, in both rat and human tissue, a decrease in the density of this inhibitory receptor at the cell surface. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. In addition, IRAP ligands display anticonvulsive properties. We therefore sought to assess by in vitro and in vivo experiments in hippocampal rat tissue whether IRAP ligands could regulate the trafficking of the sst2A receptor and, consequently, modulate limbic seizures. Using pharmacological and cell biological approaches, we demonstrate that IRAP ligands accelerate the recycling of the sst2A receptor that has internalized in neurons in vitro or in vivo. Most importantly, because IRAP ligands increase the density of this inhibitory receptor at the plasma membrane, they also potentiate the neuropeptide SRIF inhibitory effects on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures and possibly for other neurological conditions in which downregulation of G-protein-coupled receptors occurs. The somatostatin type 2A receptor (sst2A) is localized on principal hippocampal neurons and displays anticonvulsant properties. Following agonist exposure, however, this receptor rapidly internalizes and recycles slowly. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. We therefore assessed by in vitro and in vivo experiments whether IRAP could regulate the trafficking of this receptor. We demonstrate that IRAP ligands accelerate sst2A recycling in hippocampal neurons. Because IRAP ligands increase the density of sst2A receptors at the plasma membrane, they also potentiate the effects of this inhibitory receptor on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures. Copyright © 2015 the authors 0270-6474/15/3511961-16$15.00/0.

  13. Functional connectivity pattern during rest within the episodic memory network in association with episodic memory performance in bipolar disorder.

    PubMed

    Oertel-Knöchel, Viola; Reinke, Britta; Matura, Silke; Prvulovic, David; Linden, David E J; van de Ven, Vincent

    2015-02-28

    In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Effects of morphine on brain plasticity.

    PubMed

    Beltrán-Campos, V; Silva-Vera, M; García-Campos, M L; Díaz-Cintra, S

    2015-04-01

    Morphine shares with other opiates and drugs of abuse the ability to modify the plasticity of brain areas that regulate the morphology of dendrites and spines, which are the primary sites of excitatory synapses in regions of the brain involved in incentive motivation, rewards, and learning. In this review we discuss the impact of morphine use during the prenatal period of brain development and its long-term consequences in murines, and then link those consequences to similar effects occurring in human neonates and adults. Repeated exposure to morphine as treatment for pain in terminally ill patients produces long-term changes in the density of postsynaptic sites (dendrites and spines) in sensitive areas of the brain, such as the prefrontal cortex, the limbic system (hippocampus, amygdala), and caudate nuclei and nucleus accumbens. This article reviews the cellular mechanisms and receptors involved, primarily dopaminergic and glutamatergic receptors, as well as synaptic plasticity brought about by changes in dendritic spines in these areas. The actions of morphine on both developing and adult brains produce alterations in the plasticity of excitatory postsynaptic sites of the brain areas involved in limbic system functions (reward and learning). Doctors need further studies on plasticity in dendrites and spines and on signaling molecules, such as calcium, in order to improve treatments for addiction. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  15. Hypothermia in VGKC antibody-associated limbic encephalitis.

    PubMed

    Jacob, S; Irani, S R; Rajabally, Y A; Grubneac, A; Walters, R J; Yazaki, M; Clover, L; Vincent, A

    2008-02-01

    Voltage-gated potassium channel antibody (VGKC-Ab)-associated limbic encephalitis (LE) is a recently described syndrome that broadens the spectrum of immunotherapy-responsive central nervous system disorders. Limbic encephalitis is typically characterised by a sub-acute onset of disorientation, amnesia and seizures, but the clinical spectrum is not yet fully defined and the syndrome could be under-diagnosed. We here describe the clinical profile of four patients with VGKC-Ab-associated LE who had intermittent, episodic hypothermia. One of the patients also described a prodrome of severe neuropathic pain preceding the development of limbic symptoms. Both of these novel symptoms responded well to immunosuppressive therapy, with concurrent amelioration of amnesia/seizures.

  16. Treatment of VGKC complex antibody-associated limbic encephalitis: a systematic review.

    PubMed

    Radja, Guirindhra Koumar; Cavanna, Andrea Eugenio

    2013-01-01

    Limbic encephalitis is an autoimmune neuropsychiatric condition characterized by subacute cognitive symptoms, seizures, and affective changes. Although limbic encephalitis is usually caused by an immune reaction secondary to neoplasms, different types of potentially treatable non-paraneoplastic limbic encephalitis (nPLE) have recently been described. In particular, published studies have reported variable responses to immunosuppressive therapy in Voltage-Gated Potassium Channel (VGKC) complex antibody-associated nPLE. This systematic literature review found that the most significant improvements were reported by patients presenting with affective symptoms and consistent neuroradiological changes. In these patients, improved clinical outcomes correlated with the largest decreases in antibody titers.

  17. Visuoperceptive region atrophy independent of cognitive status in patients with Parkinson's disease with hallucinations.

    PubMed

    Goldman, Jennifer G; Stebbins, Glenn T; Dinh, Vy; Bernard, Bryan; Merkitch, Doug; deToledo-Morrell, Leyla; Goetz, Christopher G

    2014-03-01

    Visual hallucinations are frequent, disabling complications of advanced Parkinson's disease, but their neuroanatomical basis is incompletely understood. Previous structural brain magnetic resonance imaging studies suggest volume loss in the mesial temporal lobe and limbic regions in subjects with Parkinson's disease with visual hallucinations, relative to those without visual hallucinations. However, these studies have not always controlled for the presence of cognitive impairment or dementia, which are common co-morbidities of hallucinations in Parkinson's disease and whose neuroanatomical substrates may involve mesial temporal lobe and limbic regions. Therefore, we used structural magnetic resonance imaging to examine grey matter atrophy patterns associated with visual hallucinations, comparing Parkinson's disease hallucinators to Parkinson's disease non-hallucinators of comparable cognitive function. We studied 50 subjects with Parkinson's disease: 25 classified as current and chronic visual hallucinators and 25 as non-hallucinators, who were matched for cognitive status (demented or non-demented) and age (± 3 years). Subjects underwent (i) clinical evaluations; and (ii) brain MRI scans analysed using whole-brain voxel-based morphometry techniques. Clinically, the Parkinson's disease hallucinators did not differ in their cognitive classification or performance in any of the five assessed cognitive domains, compared with the non-hallucinators. The Parkinson's disease groups also did not differ significantly in age, motor severity, medication use or duration of disease. On imaging analyses, the hallucinators, all of whom experienced visual hallucinations, exhibited grey matter atrophy with significant voxel-wise differences in the cuneus, lingual and fusiform gyri, middle occipital lobe, inferior parietal lobule, and also cingulate, paracentral, and precentral gyri, compared with the non-hallucinators. Grey matter atrophy in the hallucinators occurred predominantly in brain regions responsible for processing visuoperceptual information including the ventral 'what' and dorsal 'where' pathways, which are important in object and facial recognition and identification of spatial locations of objects, respectively. Furthermore, the structural brain changes seen on magnetic resonance imaging occurred independently of cognitive function and age. Our findings suggest that when hallucinators and non-hallucinators are similar in their cognitive performance, the neural networks involving visuoperceptual pathways, rather than the mesial temporal lobe regions, distinctively contribute to the pathophysiology of visual hallucinations and may explain their predominantly visual nature in Parkinson's disease. Identification of distinct structural MRI differences associated with hallucinations in Parkinson's disease may permit earlier detection of at-risk patients and ultimately, development of therapies specifically targeting hallucinations and visuoperceptive functions.

  18. Visuoperceptive region atrophy independent of cognitive status in patients with Parkinson’s disease with hallucinations

    PubMed Central

    Stebbins, Glenn T.; Dinh, Vy; Bernard, Bryan; Merkitch, Doug; deToledo-Morrell, Leyla; Goetz, Christopher G.

    2014-01-01

    Visual hallucinations are frequent, disabling complications of advanced Parkinson’s disease, but their neuroanatomical basis is incompletely understood. Previous structural brain magnetic resonance imaging studies suggest volume loss in the mesial temporal lobe and limbic regions in subjects with Parkinson’s disease with visual hallucinations, relative to those without visual hallucinations. However, these studies have not always controlled for the presence of cognitive impairment or dementia, which are common co-morbidities of hallucinations in Parkinson’s disease and whose neuroanatomical substrates may involve mesial temporal lobe and limbic regions. Therefore, we used structural magnetic resonance imaging to examine grey matter atrophy patterns associated with visual hallucinations, comparing Parkinson’s disease hallucinators to Parkinson’s disease non-hallucinators of comparable cognitive function. We studied 50 subjects with Parkinson’s disease: 25 classified as current and chronic visual hallucinators and 25 as non-hallucinators, who were matched for cognitive status (demented or non-demented) and age (±3 years). Subjects underwent (i) clinical evaluations; and (ii) brain MRI scans analysed using whole-brain voxel-based morphometry techniques. Clinically, the Parkinson’s disease hallucinators did not differ in their cognitive classification or performance in any of the five assessed cognitive domains, compared with the non-hallucinators. The Parkinson’s disease groups also did not differ significantly in age, motor severity, medication use or duration of disease. On imaging analyses, the hallucinators, all of whom experienced visual hallucinations, exhibited grey matter atrophy with significant voxel-wise differences in the cuneus, lingual and fusiform gyri, middle occipital lobe, inferior parietal lobule, and also cingulate, paracentral, and precentral gyri, compared with the non-hallucinators. Grey matter atrophy in the hallucinators occurred predominantly in brain regions responsible for processing visuoperceptual information including the ventral ‘what’ and dorsal ‘where’ pathways, which are important in object and facial recognition and identification of spatial locations of objects, respectively. Furthermore, the structural brain changes seen on magnetic resonance imaging occurred independently of cognitive function and age. Our findings suggest that when hallucinators and non-hallucinators are similar in their cognitive performance, the neural networks involving visuoperceptual pathways, rather than the mesial temporal lobe regions, distinctively contribute to the pathophysiology of visual hallucinations and may explain their predominantly visual nature in Parkinson’s disease. Identification of distinct structural MRI differences associated with hallucinations in Parkinson’s disease may permit earlier detection of at-risk patients and ultimately, development of therapies specifically targeting hallucinations and visuoperceptive functions. PMID:24480486

  19. Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder.

    PubMed

    Posner, Jonathan; Marsh, Rachel; Maia, Tiago V; Peterson, Bradley S; Gruber, Allison; Simpson, H Blair

    2014-06-01

    Cortico-striato-thalamo-cortical (CSTC) loops project from the cortex to the striatum, then from the striatum to the thalamus via the globus pallidus, and finally from the thalamus back to the cortex again. These loops have been implicated in Obsessive-Compulsive Disorder (OCD) with particular focus on the limbic CSTC loop, which encompasses the orbitofrontal and anterior cingulate cortices, as well as the ventral striatum. Resting state functional-connectivity MRI (rs-fcMRI) studies, which examine temporal correlations in neural activity across brain regions at rest, have examined CSTC loop connectivity in patients with OCD and suggest hyperconnectivity within these loops in medicated adults with OCD. We used rs-fcMRI to examine functional connectivity within CSTC loops in unmedicated adults with OCD (n = 23) versus healthy controls (HCs) (n = 20). Contrary to prior rs-fcMRI studies in OCD patients on medications that report hyperconnectivity in the limbic CSTC loop, we found that compared with HCs, unmedicated OCD participants had reduced connectivity within the limbic CSTC loop. Exploratory analyses revealed that reduced connectivity within the limbic CSTC loop correlated with OCD symptom severity in the OCD group. Our finding of limbic loop hypoconnectivity in unmedicted OCD patients highlights the potential confounding effects of antidepressants on connectivity measures and the value of future examinations of the effects of pharmacological and/or behavioral treatments on limbic CSTC loop connectivity. Copyright © 2013 Wiley Periodicals, Inc.

  20. Aberrant Paralimbic Gray Matter in Incarcerated Male Adolescents with Psychopathic Traits

    ERIC Educational Resources Information Center

    Ermer, Elsa; Cope, Lora M.; Nyalakanti, Prashanth K.; Calhoun, Vince D.; Kiehl, Kent A.

    2013-01-01

    Objective: To investigate the relationship between brain structure and psychopathic traits in maximum-security incarcerated male adolescents, and to examine whether the associations between brain volumes in paralimbic and limbic regions and psychopathic traits observed in incarcerated adult men extend to an independent sample of incarcerated male…

  1. Structural covariance of neostriatal and limbic regions in patients with obsessive-compulsive disorder.

    PubMed

    Subirà, Marta; Cano, Marta; de Wit, Stella J; Alonso, Pino; Cardoner, Narcís; Hoexter, Marcelo Q; Kwon, Jun Soo; Nakamae, Takashi; Lochner, Christine; Sato, João R; Jung, Wi Hoon; Narumoto, Jin; Stein, Dan J; Pujol, Jesus; Mataix-Cols, David; Veltman, Dick J; Menchón, José M; van den Heuvel, Odile A; Soriano-Mas, Carles

    2016-03-01

    Frontostriatal and frontoamygdalar connectivity alterations in patients with obsessive-compulsive disorder (OCD) have been typically described in functional neuroimaging studies. However, structural covariance, or volumetric correlations across distant brain regions, also provides network-level information. Altered structural covariance has been described in patients with different psychiatric disorders, including OCD, but to our knowledge, alterations within frontostriatal and frontoamygdalar circuits have not been explored. We performed a mega-analysis pooling structural MRI scans from the Obsessive-compulsive Brain Imaging Consortium and assessed whole-brain voxel-wise structural covariance of 4 striatal regions (dorsal and ventral caudate nucleus, and dorsal-caudal and ventral-rostral putamen) and 2 amygdalar nuclei (basolateral and centromedial-superficial). Images were preprocessed with the standard pipeline of voxel-based morphometry studies using Statistical Parametric Mapping software. Our analyses involved 329 patients with OCD and 316 healthy controls. Patients showed increased structural covariance between the left ventral-rostral putamen and the left inferior frontal gyrus/frontal operculum region. This finding had a significant interaction with age; the association held only in the subgroup of older participants. Patients with OCD also showed increased structural covariance between the right centromedial-superficial amygdala and the ventromedial prefrontal cortex. This was a cross-sectional study. Because this is a multisite data set analysis, participant recruitment and image acquisition were performed in different centres. Most patients were taking medication, and treatment protocols differed across centres. Our results provide evidence for structural network-level alterations in patients with OCD involving 2 frontosubcortical circuits of relevance for the disorder and indicate that structural covariance contributes to fully characterizing brain alterations in patients with psychiatric disorders.

  2. Neural substrates of decision-making.

    PubMed

    Broche-Pérez, Y; Herrera Jiménez, L F; Omar-Martínez, E

    2016-06-01

    Decision-making is the process of selecting a course of action from among 2 or more alternatives by considering the potential outcomes of selecting each option and estimating its consequences in the short, medium and long term. The prefrontal cortex (PFC) has traditionally been considered the key neural structure in decision-making process. However, new studies support the hypothesis that describes a complex neural network including both cortical and subcortical structures. The aim of this review is to summarise evidence on the anatomical structures underlying the decision-making process, considering new findings that support the existence of a complex neural network that gives rise to this complex neuropsychological process. Current evidence shows that the cortical structures involved in decision-making include the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and dorsolateral prefrontal cortex (DLPFC). This process is assisted by subcortical structures including the amygdala, thalamus, and cerebellum. Findings to date show that both cortical and subcortical brain regions contribute to the decision-making process. The neural basis of decision-making is a complex neural network of cortico-cortical and cortico-subcortical connections which includes subareas of the PFC, limbic structures, and the cerebellum. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Compulsive sexual behavior: Prefrontal and limbic volume and interactions.

    PubMed

    Schmidt, Casper; Morris, Laurel S; Kvamme, Timo L; Hall, Paula; Birchard, Thaddeus; Voon, Valerie

    2017-03-01

    Compulsive sexual behaviors (CSB) are relatively common and associated with significant personal and social dysfunction. The underlying neurobiology is still poorly understood. The present study examines brain volumes and resting state functional connectivity in CSB compared with matched healthy volunteers (HV). Structural MRI (MPRAGE) data were collected in 92 subjects (23 CSB males and 69 age-matched male HV) and analyzed using voxel-based morphometry. Resting state functional MRI data using multi-echo planar sequence and independent components analysis (ME-ICA) were collected in 68 subjects (23 CSB subjects and 45 age-matched HV). CSB subjects showed greater left amygdala gray matter volumes (small volume corrected, Bonferroni adjusted P < 0.01) and reduced resting state functional connectivity between the left amygdala seed and bilateral dorsolateral prefrontal cortex (whole brain, cluster corrected FWE P < 0.05) compared with HV. CSB is associated with elevated volumes in limbic regions relevant to motivational salience and emotion processing, and impaired functional connectivity between prefrontal control regulatory and limbic regions. Future studies should aim to assess longitudinal measures to investigate whether these findings are risk factors that predate the onset of the behaviors or are consequences of the behaviors. Hum Brain Mapp 38:1182-1190, 2017. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study.

    PubMed

    Koutsouleris, Nikolaos; Gaser, Christian; Jäger, Markus; Bottlender, Ronald; Frodl, Thomas; Holzinger, Silvia; Schmitt, Gisela J E; Zetzsche, Thomas; Burgermeister, Bernhard; Scheuerecker, Johanna; Born, Christine; Reiser, Maximilian; Möller, Hans-Jürgen; Meisenzahl, Eva M

    2008-02-15

    Structural neuroimaging has substantially advanced the neurobiological research of schizophrenia by describing a range of focal brain alterations as possible neuroanatomical underpinnings of the disease. Despite this progress, a considerable heterogeneity of structural findings persists that may reflect the phenomenological diversity of schizophrenia. It is unclear whether the range of possible clinical disease manifestations relates to a core structural brain deficit or to distinct structural correlates. Therefore, gray matter density (GMD) differences between 175 schizophrenic patients (SZ) and 177 matched healthy control subjects (HC) were examined in a three-step approach using cross-sectional and conjunctional voxel-based morphometry (VBM): (1) analysis of structural alterations irrespective of symptomatology; (2) subdivision of the patient sample according to a three-dimensional factor model of the PANSS and investigation of structural differences between these subsamples and healthy controls; (3) analysis of a common pattern of structural alterations present in all patient subsamples compared to healthy controls. Significant GMD reductions in patients compared to controls were identified within the prefrontal, limbic, paralimbic, temporal and thalamic regions. The disorganized symptom dimension was associated with bilateral alterations in temporal, insular and medial prefrontal cortices. Positive symptoms were associated with left-pronounced alterations in perisylvian regions and extended thalamic GMD losses. Negative symptoms were linked to the most extended alterations within orbitofrontal, medial prefrontal, lateral prefrontal and temporal cortices as well as limbic and subcortical structures. Thus, structural heterogeneity in schizophrenia may relate to specific patterns of GMD reductions that possibly share a common prefrontal-perisylvian pattern of structural brain alterations.

  5. Ventral pallidum roles in reward and motivation.

    PubMed

    Smith, Kyle S; Tindell, Amy J; Aldridge, J Wayne; Berridge, Kent C

    2009-01-23

    In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that (1) an intact ventral pallidum is necessary for normal reward and motivation, (2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and (3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important 'limbic final common pathway' for mesocorticolimbic processing of many rewards.

  6. The Role of Protein Synthesis and Monoamines in the Production of Long-Term Potentiation in the Rat Hippocampal Slice

    DTIC Science & Technology

    1985-04-01

    ability may be a first step in understanding how learning takes place. The hippocampus is a cortical structure which has fascinated researchers for...some time. It is a discrete and very organized part of the limbic system, and is one of the earliest cortical structures to evolve. One fact stands...and Mcilwain, 1966; Yamamoto, 1972]. Since the hippocampus is a lamellar structure , thin (300-500~) slices cut perpendicular to the axis of the

  7. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder

    PubMed Central

    McDonald, Colm

    2015-01-01

    Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies. PMID:26412064

  8. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder.

    PubMed

    McDonald, Colm

    2015-01-01

    Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies.

  9. Cumulative adversity and smaller gray matter volume in medial prefrontal, anterior cingulate, and insula regions.

    PubMed

    Ansell, Emily B; Rando, Kenneth; Tuit, Keri; Guarnaccia, Joseph; Sinha, Rajita

    2012-07-01

    Cumulative adversity and stress are associated with risk of psychiatric disorders. While basic science studies show repeated and chronic stress effects on prefrontal and limbic neurons, human studies examining cumulative stress and effects on brain morphology are rare. Thus, we assessed whether cumulative adversity is associated with differences in gray matter volume, particularly in regions regulating emotion, self-control, and top-down processing in a community sample. One hundred three healthy community participants, aged 18 to 48 and 68% male, completed interview assessment of cumulative adversity and a structural magnetic resonance imaging protocol. Whole-brain voxel-based-morphometry analysis was performed adjusting for age, gender, and total intracranial volume. Cumulative adversity was associated with smaller volume in medial prefrontal cortex (PFC), insular cortex, and subgenual anterior cingulate regions (familywise error corrected, p < .001). Recent stressful life events were associated with smaller volume in two clusters: the medial PFC and the right insula. Life trauma was associated with smaller volume in the medial PFC, anterior cingulate, and subgenual regions. The interaction of greater subjective chronic stress and greater cumulative life events was associated with smaller volume in the orbitofrontal cortex, insula, and anterior and subgenual cingulate regions. Current results demonstrate that increasing cumulative exposure to adverse life events is associated with smaller gray matter volume in key prefrontal and limbic regions involved in stress, emotion and reward regulation, and impulse control. These differences found in community participants may serve to mediate vulnerability to depression, addiction, and other stress-related psychopathology. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Cumulative Adversity and Smaller Gray Matter Volume in Medial Prefrontal, Anterior Cingulate, and Insula Regions

    PubMed Central

    Ansell, Emily B.; Rando, Kenneth; Tuit, Keri; Guarnaccia, Joseph; Sinha, Rajita

    2012-01-01

    Background Cumulative adversity and stress are associated with risk of psychiatric disorders. While basic science studies show repeated and chronic stress effects on prefrontal and limbic neurons, human studies examining cumulative stress and effects on brain morphology are rare. Thus, we assessed whether cumulative adversity is associated with differences in gray matter volume, particularly in regions regulating emotion, self-control, and top-down processing in a community sample. Methods One hundred three healthy community participants, aged 18 to 48 and 68% male, completed interview assessment of cumulative adversity and a structural magnetic resonance imaging protocol. Whole-brain voxel-based-morphometry analysis was performed adjusting for age, gender, and total intracranial volume. Results Cumulative adversity was associated with smaller volume in medial prefrontal cortex (PFC), insular cortex, and subgenual anterior cingulate regions (familywise error corrected, p <.001). Recent stressful life events were associated with smaller volume in two clusters: the medial PFC and the right insula. Life trauma was associated with smaller volume in the medial PFC, anterior cingulate, and subgenual regions. The interaction of greater subjective chronic stress and greater cumulative life events was associated with smaller volume in the orbitofrontal cortex, insula, and anterior and subgenual cingulate regions. Conclusions Current results demonstrate that increasing cumulative exposure to adverse life events is associated with smaller gray matter volume in key prefrontal and limbic regions involved in stress, emotion and reward regulation, and impulse control. These differences found in community participants may serve to mediate vulnerability to depression, addiction, and other stress-related psychopathology. PMID:22218286

  11. Multiple White Matter Volume Reductions in Patients with Panic Disorder: Relationships between Orbitofrontal Gyrus Volume and Symptom Severity and Social Dysfunction

    PubMed Central

    Konishi, Jun; Asami, Takeshi; Hayano, Fumi; Yoshimi, Asuka; Hayasaka, Shunsuke; Fukushima, Hiroshi; Whitford, Thomas J.; Inoue, Tomio; Hirayasu, Yoshio

    2014-01-01

    Numerous brain regions are believed to be involved in the neuropathology of panic disorder (PD) including fronto-limbic regions, thalamus, brain stem, and cerebellum. However, while several previous studies have demonstrated volumetric gray matter reductions in these brain regions, there have been no studies evaluating volumetric white matter changes in the fiber bundles connecting these regions. In addition, although patients with PD typically exhibit social, interpersonal and occupational dysfunction, the neuropathologies underlying these dysfunctions remain unclear. A voxel-based morphometry study was conducted to evaluate differences in regional white matter volume between 40 patients with PD and 40 healthy control subjects (HC). Correlation analyses were performed between the regional white matter volumes and patients' scores on the Panic Disorder Severity Scale (PDSS) and the Global Assessment of Functioning (GAF). Patients with PD demonstrated significant volumetric reductions in widespread white matter regions including fronto-limbic, thalamo-cortical and cerebellar pathways (p<0.05, FDR corrected). Furthermore, there was a significant negative relationship between right orbitofrontal gyrus (OFG) white matter volume and the severity of patients' clinical symptoms, as assessed with the PDSS. A significant positive relationship was also observed between patients' right OFG volumes and their scores on the GAF. Our results suggest that volumetric reductions in widespread white matter regions may play an important role in the pathology of PD. In particular, our results suggest that structural white matter abnormalities in the right OFG may contribute to the social, personal and occupational dysfunction typically experienced by patients with PD. PMID:24663245

  12. Hippocampus and Amygdala Morphology in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Plessen, Kerstin J.; Bansal, Ravi; Zhu, Hongtu; Whiteman, Ronald; Amat, Jose; Quackenbush, Georgette A.; Martin, Laura; Durkin, Kathleen; Blair, Clancy; Royal, Jason; Hugdahl, Kenneth; Peterson, Bradley S.

    2008-01-01

    Context Limbic structures are implicated in the genesis of attention-deficit/hyperactivity disorder (ADHD) by the presence of mood and cognitive disturbances in affected individuals and by elevated rates of mood disorders in family members of probands with ADHD. Objective To study the morphology of the hippocampus and amygdala in children with ADHD. Design A cross-sectional case-control study of the hippocampus and amygdala using anatomical magnetic resonance imaging. Settings University research institute. Patients One hundred fourteen individuals aged 6 to 18 years, 51 with combined-type ADHD and 63 healthy controls. Main Outcome Measures Volumes and measures of surface morphology for the hippocampus and amygdala. Results The hippocampus was larger bilaterally in the ADHD group than in the control group (t=3.35; P<.002). Detailed surface analyses of the hippocampus further localized these differences to an enlarged head of the hippocampus in the ADHD group. Although conventional measures did not detect significant differences in amygdalar volumes, surface analyses indicated the presence of reduced size bilaterally over the area of the basolateral complex. Correlations with prefrontal measures suggested abnormal connectivity between the amygdala and prefrontal cortex in the ADHD group. Enlarged subregions of the hippocampus tended to accompany fewer symptoms. Conclusions The enlarged hippocampus in children and adolescents with ADHD may represent a compensatory response to the presence of disturbances in the perception of time, temporal processing (eg, delay aversion), and stimulus seeking associated with ADHD. Disrupted connections between the amygdala and orbitofrontal cortex may contribute to behavioral disinhibition. Our findings suggest involvement of the limbic system in the pathophysiology of ADHD. PMID:16818869

  13. Methylphenidate administration determines enduring changes in neuroglial network in rats.

    PubMed

    Cavaliere, Carlo; Cirillo, Giovanni; Bianco, Maria Rosaria; Adriani, Walter; De Simone, Antonietta; Leo, Damiana; Perrone-Capano, Carla; Papa, Michele

    2012-01-01

    Repeated exposure to psychostimulant drugs induces complex molecular and structural modifications in discrete brain regions of the meso-cortico-limbic system. This structural remodeling is thought to underlie neurobehavioral adaptive responses. Administration to adolescent rats of methylphenidate (MPH), commonly used in attention deficit and hyperactivity disorder (ADHD), triggers alterations of reward-based behavior paralleled by persistent and plastic synaptic changes of neuronal and glial markers within key areas of the reward circuits. By immunohistochemistry, we observe a marked increase of glial fibrillary acidic protein (GFAP) and neuronal nitric oxide synthase (nNOS) expression and a down-regulation of glial glutamate transporter GLAST in dorso-lateral and ventro-medial striatum. Using electron microscopy, we find in the prefrontal cortex a significant reduction of the synaptic active zone length, paralleled by an increase of dendritic spines. We demonstrate that in limbic areas the MPH-induced reactive astrocytosis affects the glial glutamatergic uptake system that in turn could determine glutamate receptor sensitization. These processes could be sustained by NO production and synaptic rearrangement and contribute to MPH neuroglial induced rewiring. Copyright © 2011. Published by Elsevier B.V.

  14. Cortical functional connectivity decodes subconscious, task-irrelevant threat-related emotion processing

    PubMed Central

    Pantazatos, Spiro P.; Talati, Ardesheer; Pavlidis, Paul; Hirsch, Joy

    2012-01-01

    It is currently unclear to what extent cortical structures are required for and engaged during subconscious processing of biologically salient affective stimuli (i.e. the ‘low-road’ vs. ‘many-roads’ hypotheses). Here we show that cortical-cortical and cortical-subcortical functional connectivity (FC) contain substantially more information, relative to subcortical-subcortical FC (i.e. ‘subcortical alarm’ and other limbic regions), that predicts subliminal fearful face processing within individuals using training data from separate subjects. A plot of classification accuracy vs. number of selected whole-brain FC features revealed 92% accuracy when learning was based on the top 8 features from each training set. The most informative FC was between right amygdala and precuneus, which increased during subliminal fear conditions, while left and right amygdala FC decreased, suggesting a bilateral decoupling of this key limbic region during processing of subliminal fear-related stimuli. Other informative FC included angular gyrus, middle temporal gyrus and cerebellum. These findings identify FC that decodes subliminally perceived, task-irrelevant affective stimuli, and suggest that cortical structures are actively engaged by and appear to be essential for subliminal fear processing. PMID:22484206

  15. Cortical functional connectivity decodes subconscious, task-irrelevant threat-related emotion processing.

    PubMed

    Pantazatos, Spiro P; Talati, Ardesheer; Pavlidis, Paul; Hirsch, Joy

    2012-07-16

    It is currently unclear to what extent cortical structures are required for and engaged during subconscious processing of biologically salient affective stimuli (i.e. the 'low-road' vs. 'many-roads' hypotheses). Here we show that cortical-cortical and cortical-subcortical functional connectivity (FC) contain substantially more information, relative to subcortical-subcortical FC (i.e. 'subcortical alarm' and other limbic regions), that predicts subliminal fearful face processing within individuals using training data from separate subjects. A plot of classification accuracy vs. number of selected whole-brain FC features revealed 92% accuracy when learning was based on the top 8 features from each training set. The most informative FC was between right amygdala and precuneus, which increased during subliminal fear conditions, while left and right amygdala FC decreased, suggesting a bilateral decoupling of this key limbic region during processing of subliminal fear-related stimuli. Other informative FC included angular gyrus, middle temporal gyrus and cerebellum. These findings identify FC that decodes subliminally perceived, task-irrelevant affective stimuli, and suggest that cortical structures are actively engaged by and appear to be essential for subliminal fear processing. Published by Elsevier Inc.

  16. [Comparative study of effects of cortical nucleus of amygdala and pyriform cortex on activity of bulbar respiratory neurons in cats].

    PubMed

    Nersesian, L B; Eganova, V S; Pogosian, N L; Avetisian, I N

    2011-01-01

    Comparative microelectrophysiological study of character and peculiarities of effects of the cortical nucleus of amygdala and of the periamygdalar area of pyriform cortex on impulse activity was performed on the same single functionally identified respiratory medullar neurons. A high reactivity of bulbar respiratory neurons on stimulation is established in both studied limbic structures. There is established the qualitatively different character of their response reactions at stimulation of the cortical amygdala nucleus and the periamygdalar cortex. The cortical amygdala nucleus has been shown to produce on the activity of medullar respiratory neurons both facilitating and inhibitory action with predominance of the activating one (without topographical orderliness). The effect of periamygdalar cortex at stimulation of various parts was characterized by topographic differentiation. The suppressing reactions of neurons in the majority of cases were recorded at stimulation of the rostral area of periamygdalar cortex, whereas the excitatory reactions--at stimulation of its caudal part. Functional organization of respiratory control of the studied limbic system structures is discussed.

  17. Relationship between body mass index and hippocampal glutamate/glutamine in bipolar disorder.

    PubMed

    Bond, David J; da Silveira, Leonardo Evangelista; MacMillan, Erin L; Torres, Ivan J; Lang, Donna J; Su, Wayne; Honer, William G; Lam, Raymond W; Yatham, Lakshmi N

    2016-02-01

    We previously reported that patients with early-stage bipolar disorder, but not healthy comparison controls, had body mass index (BMI)-related volume reductions in limbic brain areas, suggesting that the structural brain changes characteristic of bipolar disorder were more pronounced with increased weight. To determine whether the most consistently reported neurochemical abnormality in bipolar disorder, increased glutamate/glutamine (Glx), was also more prominent with higher BMI. We used single-voxel proton magnetic resonance spectroscopy to measure hippocampal Glx in 51 patients with first-episode mania (mean BMI = 24.1) and 28 healthy controls (mean BMI = 23.3). In patients, but not healthy controls, linear regression demonstrated that higher BMI predicted greater Glx. Factorial ANCOVA showed a significant BMI × diagnosis interaction, confirming a distinct effect of weight on Glx in patients. Together with our volumetric studies, these results suggest that higher BMI is associated with more pronounced structural and neurochemical limbic brain changes in bipolar disorder, even in early-stage patients with low obesity rates. © The Royal College of Psychiatrists 2016.

  18. Autoimmune Encephalitis: Pathophysiology and Imaging Review of an Overlooked Diagnosis.

    PubMed

    Kelley, B P; Patel, S C; Marin, H L; Corrigan, J J; Mitsias, P D; Griffith, B

    2017-06-01

    Autoimmune encephalitis is a relatively new category of immune-mediated disease involving the central nervous system that demonstrates a widely variable spectrum of clinical presentations, ranging from the relatively mild or insidious onset of cognitive impairment to more complex forms of encephalopathy with refractory seizure. Due to its diverse clinical features, which can mimic a variety of other pathologic processes, autoimmune encephalitis presents a diagnostic challenge to clinicians. Imaging findings in patients with these disorders can also be quite variable, but recognizing characteristic findings within limbic structures suggestive of autoimmune encephalitis can be a key step in alerting clinicians to the potential diagnosis and ensuring a prompt and appropriate clinical work-up. In this article, we review antibody-mediated encephalitis and its various subtypes with a specific emphasis on the role of neuroimaging in the diagnostic work-up. © 2017 by American Journal of Neuroradiology.

  19. Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: a pilot study.

    PubMed

    Hanlon, Colleen A; Canterberry, Melanie; Taylor, Joseph J; DeVries, William; Li, Xingbao; Brown, Truman R; George, Mark S

    2013-01-01

    The prefrontal cortex (PFC) is an anatomically and functionally heterogeneous area which influences cognitive and limbic processing through connectivity to subcortical targets. As proposed by Alexander et al. (1986) the lateral and medial aspects of the PFC project to distinct areas of the striatum in parallel but functionally distinct circuits. The purpose of this preliminary study was to determine if we could differentially and consistently activate these lateral and medial cortical-subcortical circuits involved in executive and limbic processing though interleaved transcranial magnetic stimulation (TMS) in the MR environment. Seventeen healthy individuals received interleaved TMS-BOLD imaging with the coil positioned over the dorsolateral (EEG: F3) and ventromedial PFC (EEG: FP1). BOLD signal change was calculated in the areas directly stimulated by the coil and in subcortical regions with afferent and efferent connectivity to the TMS target areas. Additionally, five individuals were tested on two occasions to determine test-retest reliability. Region of interest analysis revealed that TMS at both prefrontal sites led to significant BOLD signal increases in the cortex under the coil, in the striatum, and the thalamus, but not in the visual cortex (negative control region). There was a significantly larger BOLD signal change in the caudate following medial PFC TMS, relative to lateral TMS. The hippocampus in contrast was significantly more activated by lateral TMS. Post-hoc voxel-based analysis revealed that within the caudate the location of peak activity was in the ventral caudate following medial TMS and the dorsal caudate following lateral TMS. Test-retest reliability data revealed consistent BOLD responses to TMS within each individual but a large variation between individuals. These data demonstrate that, through an optimized TMS/BOLD sequence over two unique prefrontal targets, it is possible to selectively interrogate the patency of these established cortical-subcortical networks in healthy individuals, and potentially patient populations.

  20. Speech Disfluency-dependent Amygdala Activity in Adults Who Stutter: Neuroimaging of Interpersonal Communication in MRI Scanner Environment.

    PubMed

    Toyomura, Akira; Fujii, Tetsunoshin; Yokosawa, Koichi; Kuriki, Shinya

    2018-03-15

    Affective states, such as anticipatory anxiety, critically influence speech communication behavior in adults who stutter. However, there is currently little evidence regarding the involvement of the limbic system in speech disfluency during interpersonal communication. We designed this neuroimaging study and experimental procedure to sample neural activity during interpersonal communication between human participants, and to investigate the relationship between the amygdala activity and speech disfluency. Participants were required to engage in live communication with a stranger of the opposite sex in the MRI scanner environment. In the gaze condition, the stranger gazed at the participant without speaking, while in the live conversation condition, the stranger asked questions that the participant was required to answer. The stranger continued to gaze silently at the participant while the participant answered. Adults who stutter reported significantly higher discomfort than fluent controls during the experiment. Activity in the right amygdala, a key anatomical region in the limbic system involved in emotion, was significantly correlated with stuttering occurrences in adults who stutter. Right amygdala activity from pooled data of all participants also showed a significant correlation with discomfort level during the experiment. Activity in the prefrontal cortex, which forms emotion regulation neural circuitry with the amygdala, was decreased in adults who stutter than in fluent controls. This is the first study to demonstrate that amygdala activity during interpersonal communication is involved in disfluent speech in adults who stutter. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Independent Epileptiform Discharge Patterns in the Olfactory and Limbic Areas of the In Vitro Isolated Guinea Pig Brain During 4-Aminopyridine Treatment

    PubMed Central

    Carriero, Giovanni; Uva, Laura; Gnatkovsky, Vadym; Avoli, Massimo; de Curtis, Marco

    2016-01-01

    In vitro studies performed on brain slices demonstrate that the potassium channel blocker 4-aminopyridine (4AP, 50 μM) discloses electrographic seizure activity and interictal discharges. These epileptiform patterns have been further analyzed here in a isolated whole guinea pig brain in vitro by using field potential recordings in olfactory and limbic structures. In 8 of 13 experiments runs of fast oscillatory activity (fast runs, FRs) in the piriform cortex (PC) propagated to the lateral entorhinal cortex (EC), hippocampus and occasionally to the medial EC. Early and late FRs were asynchronous in the hemispheres showed different duration [1.78 ± 0.51 and 27.95 ± 4.55 (SD) s, respectively], frequency of occurrence (1.82 ± 0.49 and 34.16 ± 6.03 s) and frequency content (20–40 vs. 40–60 Hz). Preictal spikes independent from the FRs appeared in the hippocampus/EC and developed into ictal-like discharges that did not propagate to the PC. Ictal-like activity consisted of fast activity with onset either in the hippocampus (n = 6) or in the mEC (n = 2), followed by irregular spiking and sequences of diffusely synchronous bursts. Perfusion of the N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid (100 μM) did not prevent FRs, increased the duration of limbic ictal-like discharges and favored their propagation to olfactory structures. The AMPA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (50 μM) blocked ictal-like events and reduced FRs. In conclusion, 4AP-induced epileptiform activities are asynchronous and independent in olfactory and hippocampal-entorhinal regions. Epileptiform discharges in the isolated guinea pig brain show different pharmacological properties compared with rodent in vitro slices. PMID:20220076

  2. Aberrant topological patterns of brain structural network in temporal lobe epilepsy.

    PubMed

    Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William

    2015-12-01

    Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of cortical/subcortical morphology. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  3. Loss of Autonoetic Awareness of Recent Autobiographical Episodes and Accelerated Long-Term Forgetting in a Patient with Previously Unrecognized Glutamic Acid Decarboxylase Antibody Related Limbic Encephalitis.

    PubMed

    Witt, Juri-Alexander; Vogt, Viola Lara; Widman, Guido; Langen, Karl-Josef; Elger, Christian Erich; Helmstaedter, Christoph

    2015-01-01

    We describe a 35-year-old male patient presenting with depressed mood and emotional instability, who complained about severe anterograde and retrograde memory deficits characterized by accelerated long-term forgetting and loss of autonoetic awareness regarding autobiographical memories of the last 3 years. Months before he had experienced two breakdowns of unknown etiology giving rise to the differential diagnosis of epileptic seizures after various practitioners and clinics had suggested different etiologies such as a psychosomatic condition, burnout, depression, or dissociative amnesia. Neuropsychological assessment indicated selectively impaired figural memory performance. Extended diagnostics confirmed accelerated forgetting of previously learned and retrievable verbal material. Structural imaging showed bilateral swelling and signal alterations of temporomesial structures (left >right). Video-EEG monitoring revealed a left temporal epileptic focus and subclincal seizure, but no overt seizures. Antibody tests in serum and liquor were positive for glutamic acid decarboxylase antibodies. These findings led to the diagnosis of glutamic acid decarboxylase antibody related limbic encephalitis. Monthly steroid pulses over 6 months led to recovery of subjective memory and to intermediate improvement but subsequent worsening of objective memory performance. During the course of treatment, the patient reported de novo paroxysmal non-responsive states. Thus, antiepileptic treatment was started and the patient finally became seizure free. At the last visit, vocational reintegration was successfully in progress. In conclusion, amygdala swelling, retrograde biographic memory impairment, accelerated long-term forgetting, and emotional instability may serve as indicators of limbic encephalitis, even in the absence of overt epileptic seizures. The monitoring of such patients calls for a standardized and concerted multilevel diagnostic approach with repeated assessments.

  4. Overwhelming remembrance of things past: Proust portrays limbic kindling by external stimulus--literary genius can presage neurobiological patterns of puzzling behavior.

    PubMed

    Pontius, A A

    1993-10-01

    Proust detailed inexplicable behavior long before the neurobiologists Goddard and McIntyre in 1972 demonstrated that intermittent repetition of harmless stimuli can cause "kindling" of a seizure (with or without motor convulsions). Such brief seizures can occur especially in the evolutionarily old limbic system which mediates basic drives, their concomitant emotions, and certain aspects of memory. It appears that in humans the influence of specific external stimuli that revive the memory of repeated past experiences may "kindle" a transient episode of limbic overactivation. Thereupon the normal balance between the limbic and frontal lobe systems is disturbed (for a few minutes) as are normal human decision making and control of action. Linked with such a transient frontolimbic imbalance is out-of-character behavior, psychosis (hallucinations or delusions), autonomic activation, and severe distortion of affect and of action, culminating in extreme cases in a "Limbic Psychotic Trigger Reaction," as proposed by Pontius in 1981, in motiveless homicidal acts with mostly preserved consciousness and memory for the acts.

  5. Psychosis: Atypical Limbic Epilepsy versus Limbic Hyperexcitability with Onset at Puberty?

    PubMed Central

    Sharp, Frank R.; Hendren, Robert L.

    2009-01-01

    Phencyclidine (PCP), Ketamine (Special K) and MK-801 are non-competitive NMDA antagonists that produce acute psychosis in humans. The psychosis produced by these psychomimetic drugs is indistinguishable from schizophrenia and includes both positive and negative symptoms. This drug-induced psychosis occurs after puberty in humans. This brief review argues that this psychosis is an atypical form of limbic epilepsy based upon MK-801 induced spike-and-wave activity in rats and based upon increased blood flow and metabolism in brain of patients with psychosis caused by these psychomimetics. Moreover, there is a specific limbic thalamcortical psychosis circuit that mediates cell injury in limbic cortex of rodents and may mediate this PCP-induced psychosis in humans. It is proposed that this thalamocortical psychosis circuit develops at puberty and can mediate psychosis at puberty and in adulthood by PCP and ketamine-induced psychosis, and possibly in schizophrenia, bipolar disease and other psychotic states. Finally, based upon this developmentally regulated psychosis-epilepsy related thalamocortical circuitry, it is proposed that anti-epileptic drugs that promote GABAergic mechanisms might decrease the probability of episodic psychosis from any cause. PMID:17416210

  6. Positive parenting predicts the development of adolescent brain structure: a longitudinal study.

    PubMed

    Whittle, Sarah; Simmons, Julian G; Dennison, Meg; Vijayakumar, Nandita; Schwartz, Orli; Yap, Marie B H; Sheeber, Lisa; Allen, Nicholas B

    2014-04-01

    Little work has been conducted that examines the effects of positive environmental experiences on brain development to date. The aim of this study was to prospectively investigate the effects of positive (warm and supportive) maternal behavior on structural brain development during adolescence, using longitudinal structural MRI. Participants were 188 (92 female) adolescents, who were part of a longitudinal adolescent development study that involved mother-adolescent interactions and MRI scans at approximately 12 years old, and follow-up MRI scans approximately 4 years later. FreeSurfer software was used to estimate the volume of limbic-striatal regions (amygdala, hippocampus, caudate, putamen, pallidum, and nucleus accumbens) and the thickness of prefrontal regions (anterior cingulate and orbitofrontal cortices) across both time points. Higher frequency of positive maternal behavior during the interactions predicted attenuated volumetric growth in the right amygdala, and accelerated cortical thinning in the right anterior cingulate (males only) and left and right orbitofrontal cortices, between baseline and follow up. These results have implications for understanding the biological mediators of risk and protective factors for mental disorders that have onset during adolescence. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Ventral Pallidum Roles in Reward and Motivation

    PubMed Central

    Smith, Kyle S.; Tindell, Amy J.; Aldridge, J. Wayne; Berridge, Kent C.

    2008-01-01

    In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that 1) an intact ventral pallidum is necessary for normal reward and motivation, 2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and 3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important ‘limbic final common pathway’ for mesocorticolimbic processing of many rewards. PMID:18955088

  8. Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala

    PubMed Central

    Hirata, Tsutomu; Li, Peijun; Lanuza, Guillermo M.; Cocas, Laura A.; Huntsman, Molly M.; Corbin, Joshua G.

    2009-01-01

    Development of the amygdala, a central structure of the limbic system, remains poorly understood. Using mouse as a model, our studies reveal that two spatially distinct and early specified telencephalic progenitor pools marked by the homeodomain transcription factor Dbx1 are major sources of neuronal cell diversity in the mature amygdala. We find that Dbx1+ cells of the ventral pallium (VP) generate excitatory neurons of the basolateral complex and cortical amygdala nuclei. Moreover, Dbx1-derived cells comprise a novel migratory stream that emanates from the preoptic area (POA), a ventral telencephalic domain adjacent to the diencephalic border. The Dbx1+ POA-derived population migrates specifically to the amygdala, and as defined by both immunochemical and electrophysiological criteria, generates a unique subclass of inhibitory neurons in the medial amygdala nucleus. Thus, this POA-derived population represents a novel progenitor pool dedicated to the limbic system. PMID:19136974

  9. Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala.

    PubMed

    Hirata, Tsutomu; Li, Peijun; Lanuza, Guillermo M; Cocas, Laura A; Huntsman, Molly M; Corbin, Joshua G

    2009-02-01

    The development of the amygdala, a central structure of the limbic system, remains poorly understood. We found that two spatially distinct and early-specified telencephalic progenitor pools marked by the homeodomain transcription factor Dbx1 are major sources of neuronal cell diversity in the mature mouse amygdala. We found that Dbx1-positive cells of the ventral pallium generate the excitatory neurons of the basolateral complex and cortical amygdala nuclei. Moreover, Dbx1-derived cells comprise a previously unknown migratory stream that emanates from the preoptic area (POA), a ventral telencephalic domain adjacent to the diencephalic border. The Dbx1-positive, POA-derived population migrated specifically to the amygdala and, as defined by both immunochemical and electrophysiological criteria, generated a unique subclass of inhibitory neurons in the medial amygdala nucleus. Thus, this POA-derived population represents a previously unknown progenitor pool dedicated to the limbic system.

  10. Uncovering the role of the insula in non-motor symptoms of Parkinson’s disease

    PubMed Central

    Christopher, Leigh; Koshimori, Yuko; Lang, Anthony E.; Criaud, Marion

    2014-01-01

    Patients with Parkinson’s disease experience a range of non-motor symptoms, including cognitive impairment, behavioural changes, somatosensory and autonomic disturbances. The insula, which was once thought to be primarily a limbic cortical structure, is now known to be highly involved in integrating somatosensory, autonomic and cognitive-affective information to guide behaviour. Thus, it acts as a central hub for processing relevant information related to the state of the body as well as cognitive and mood states. Despite these crucial functions, the insula has been largely overlooked as a potential key region in contributing to non-motor symptoms of Parkinson’s disease. The insula is affected in Parkinson’s disease by alpha-synuclein deposition, disruptions in normal neurotransmitter function, alterations in connectivity as well as metabolic and structural changes. Although research focusing on the role of the insula in Parkinson’s disease is scarce, there is evidence from neuroimaging studies linking the insula to cognitive decline, behavioural abnormalities and somatosensory disturbances. Here, we review imaging studies that provide insight into the potential role of the insula in Parkinson’s disease non-motor symptoms. PMID:24736308

  11. Structural brain differences in emotional processing and regulation areas between male batterers and other criminals: A preliminary study.

    PubMed

    Verdejo-Román, Juan; Bueso-Izquierdo, Natalia; Daugherty, Julia C; Pérez-García, Miguel; Hidalgo-Ruzzante, Natalia

    2018-05-31

    Poor emotion processing is thought to influence violent behaviors among male batterers in abusive relationships. Nevertheless, little is known about the neural mechanisms of emotion processing in this population. With the objective of better understanding brain structure and its relation to emotion processing in male batterers, the present study compares the cortical grey matter thickness of male batterers to that of other criminals in brain areas related to emotion. Differences among these brain areas were also compared to an emotional perception task. An MRI study and an emotional perception assessment was conducted with 21 male batterers and 20 men convicted of crimes other than Intimate Partner Violence (IPV). Results demonstrated that batterers' had significantly thinner cortices in prefrontal (orbitofrontal), midline (anterior and posterior cingulate) and limbic (insula, parahipocampal) brain regions. The thickness of the dorsal posterior cingulate cortex in the batterer group correlated with scores on the emotional perception task. These findings shed light on a neuroscientific approach to analyzing violent behavior perpetrated by male batterers, leading to a better understanding of the underlying mechanisms involved in IPV.

  12. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease

    PubMed Central

    Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C.; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia

    2011-01-01

    Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were more prominent in patients with myotonic dystrophy type 1 with less white matter affection (early disease stages), contrary to patients with myotonic dystrophy type 2. Thus, depression in myotonic dystrophies might be a reactive adjustment disorder rather than a direct consequence of structural brain damage. Associations of white matter affection with age/disease duration as well as patterns of cerebral water diffusion parameters pointed towards an ongoing process of myelin destruction and/or axonal loss in our cross-sectional study design. Our data suggest that both myotonic dystrophy types 1 and 2 are serious white matter diseases with prominent callosal body and limbic system affection. White matter changes dominated the extent of grey matter changes, which might argue against Wallerian degeneration as the major cause of white matter affection in myotonic dystrophies. PMID:22131273

  13. Decreased gray matter volume in the left hippocampus and bilateral calcarine cortex in coal mine flood disaster survivors with recent onset PTSD.

    PubMed

    Zhang, Jian; Tan, Qingrong; Yin, Hong; Zhang, Xiaoliang; Huan, Yi; Tang, Lihua; Wang, Huaihai; Xu, Junqing; Li, Lingjiang

    2011-05-31

    Although limbic structure changes have been found in chronic and recent onset post-traumatic stress disorder (PTSD) patients, there are few studies about brain structure changes in recent onset PTSD patients after a single extreme and prolonged trauma. In the current study, 20 coal mine flood disaster survivors underwent magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) and region of interest (ROI) techniques were used to detect the gray matter and white matter volume changes in 10 survivors with recent onset PTSD and 10 survivors without PTSD. The correlation between the Clinician-Administered PTSD Scale (CAPS) and gray matter density in the ROI was also studied. Compared with survivors without PTSD, survivors with PTSD had significantly decreased gray matter volume and density in left anterior hippocampus, left parahippocampal gyrus, and bilateral calcarine cortex. The CAPS score correlated negatively with the gray matter density in bilateral calcarine cortex and left hippocampus in coal mine disaster survivors. Our study suggests that the gray matter volume and density of limbic structure decreased in recent onset PTSD patients who were exposed to extreme trauma. PTSD symptom severity was associated with gray matter density in calcarine cortex and hippocampus. 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Brain structural network topological alterations of the left prefrontal and limbic cortex in psychogenic erectile dysfunction.

    PubMed

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-05-01

    Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.

  15. [Neuroarchitecture of musical emotions].

    PubMed

    Sel, Alejandra; Calvo-Merino, Beatriz

    2013-03-01

    The emotional response to music, or musical emotion, is a universal response that draws on diverse psychological processes implemented in a large array of neural structures and mechanisms. Studies using electroencephalography, functional magnetic resonance, lesions and individuals with extent musical training have begun to elucidate some of these mechanisms. The objective of this article is reviewing the most relevant studies that have tried to identify the neural correlates of musical emotion from the more automatic to the more complex processes, and to understand how these correlates interact in the brain. The article describes how the presentation of music perceived as emotional is associated with a rapid autonomic response in thalamic and subthalamic structures, accompanied by changes in the electrodermal and endocrine responses. It also explains how musical emotion processing activates auditory cortex, as well as a series of limbic and paralimbic structures, such as the amygdala, the anterior cingulate cortex or the hippocampus, demonstrating the relevant contribution of the limbic system to musical emotion. Further, it is detailed how musical emotion depends to a great extent on semantic and syntactic process carried out in temporal and parietofrontal areas, respectively. Some of the recent works demonstrating that musical emotion highly relies on emotional simulation are also mentioned. Finally, a summary of these studies, their limitations, and suggestions for further research on the neuroarchitecture of musical emotion are given.

  16. Neural control of chronic stress adaptation

    PubMed Central

    Herman, James P.

    2013-01-01

    Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process. PMID:23964212

  17. Diminished fronto-limbic functional connectivity in child sexual offenders.

    PubMed

    Kneer, Jonas; Borchardt, Viola; Kärgel, Christian; Sinke, Christopher; Massau, Claudia; Tenbergen, Gilian; Ponseti, Jorge; Walter, Henrik; Beier, Klaus M; Schiffer, Boris; Schiltz, Kolja; Walter, Martin; Kruger, Tillmann H C

    2018-02-22

    Child sexual abuse and neglect have been related to an increased risk for the development of a wide range of behavioral, psychological, and sexual problems and increased rates of suicidal behavior. Contrary to the large amount of research focusing on the negative mental health consequences of child sexual abuse, very little is known about the characteristics of child sexual offenders and the neuronal underpinnings contributing to child sexual offending. This study investigates differences in resting state functional connectivity (rs-FC) between non-pedophilic child sexual offenders (N = 20; CSO-P) and matched healthy controls (N = 20; HC) using a seed-based approach. The focus of this investigation of rs-FC in CSO-P was put on prefrontal and limbic regions highly relevant for emotional and behavioral processing. Results revealed a significant reduction of rs-FC between the right centromedial amygdala and the left dorsolateral prefrontal cortex in child sexual offenders compared to controls. Given that, in the healthy brain, there is a strong top-down inhibitory control of prefrontal over limbic structures, these results suggest that diminished rs-FC between the amygdala and the dorsolateral prefrontal cortex and may foster sexual deviance and sexual offending. A profound understanding of these concepts should contribute to a better understanding of the occurrence of child sexual offending, as well as further development of more differentiated and effective interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Decisional impulsivity and the associative-limbic subthalamic nucleus in obsessive-compulsive disorder: stimulation and connectivity

    PubMed Central

    Voon, Valerie; Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea

    2017-01-01

    Abstract Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized within the anterior and ventral subthalamic nucleus. We further show that evidence accumulation is associated with anterior associative-limbic subthalamic nucleus and right dorsolateral prefrontal functional connectivity in healthy controls, a region implicated in decision-making under uncertainty. Together, our findings highlight specificity of the anterior associative-limbic subthalamic nucleus in decisional impulsivity. Given increasing interest in the potential for subthalamic stimulation in psychiatric disorders and the neuropsychiatric symptoms of Parkinson’s disease, these findings have clinical implications for behavioural symptoms and cognitive effects as a function of localization of subthalamic stimulation. PMID:28040671

  19. Decisional impulsivity and the associative-limbic subthalamic nucleus in obsessive-compulsive disorder: stimulation and connectivity.

    PubMed

    Voon, Valerie; Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea

    2017-02-01

    Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized within the anterior and ventral subthalamic nucleus. We further show that evidence accumulation is associated with anterior associative-limbic subthalamic nucleus and right dorsolateral prefrontal functional connectivity in healthy controls, a region implicated in decision-making under uncertainty. Together, our findings highlight specificity of the anterior associative-limbic subthalamic nucleus in decisional impulsivity. Given increasing interest in the potential for subthalamic stimulation in psychiatric disorders and the neuropsychiatric symptoms of Parkinson's disease, these findings have clinical implications for behavioural symptoms and cognitive effects as a function of localization of subthalamic stimulation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  20. Impaired cortico-limbic functional connectivity in schizophrenia patients during emotion processing.

    PubMed

    Comte, Magali; Zendjidjian, Xavier Y; Coull, Jennifer T; Cancel, Aïda; Boutet, Claire; Schneider, Fabien C; Sage, Thierry; Lazerges, Pierre-Emmanuel; Jaafari, Nematollah; Ibrahim, El Chérif; Azorin, Jean-Michel; Blin, Olivier; Fakra, Eric

    2017-10-23

    Functional dysconnection is increasingly recognized as a core pathological feature in schizophrenia. Aberrant interactions between regions of the cortico-limbic circuit may underpin the abnormal emotional processing associated with this illness. We used a functional magnetic resonance imaging (fMRI) paradigm designed to dissociate the various components of the cortico-limbic circuit (i.e. a ventral automatic circuit that is intertwined with a dorsal cognitive circuit), in order to explore bottom-up appraisal as well as top-down control during emotion processing. In schizophrenia patients compared to healthy controls, bottom-up processes were associated with reduced interaction between the amygdala and both the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC). Contrariwise, top-down control processes led to stronger connectivity between the ventral affective and the dorsal cognitive circuits, i.e. heightened interactions between the ventral ACC and the DLPFC as well as between dorsal and ventral ACC. These findings offer a comprehensive view of the cortico-limbic dysfunction in schizophrenia. They confirm previous results of impaired propagation of information between the amygdala and the prefrontal cortex and suggest a defective functional segregation in the dorsal cognitive part of the cortico-limbic circuit. © The Author (2017). Published by Oxford University Press.

  1. Impaired cortico-limbic functional connectivity in schizophrenia patients during emotion processing

    PubMed Central

    Comte, Magali; Zendjidjian, Xavier Y; Coull, Jennifer T; Cancel, Aïda; Boutet, Claire; Schneider, Fabien C; Sage, Thierry; Lazerges, Pierre-Emmanuel; Jaafari, Nematollah; Ibrahim, El Chérif; Azorin, Jean-Michel; Blin, Olivier; Fakra, Eric

    2018-01-01

    Abstract Functional dysconnection is increasingly recognized as a core pathological feature in schizophrenia. Aberrant interactions between regions of the cortico-limbic circuit may underpin the abnormal emotional processing associated with this illness. We used a functional magnetic resonance imaging paradigm designed to dissociate the various components of the cortico-limbic circuit (i.e. a ventral automatic circuit that is intertwined with a dorsal cognitive circuit), to explore bottom-up appraisal as well as top-down control during emotion processing. In schizophrenia patients compared with healthy controls, bottom-up processes were associated with reduced interaction between the amygdala and both the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex. Contrariwise, top-down control processes led to stronger connectivity between the ventral affective and the dorsal cognitive circuits, i.e. heightened interactions between the ventral ACC and the dorsolateral prefrontal cortex as well as between dorsal and ventral ACC. These findings offer a comprehensive view of the cortico-limbic dysfunction in schizophrenia. They confirm previous results of impaired propagation of information between the amygdala and the prefrontal cortex and suggest a defective functional segregation in the dorsal cognitive part of the cortico-limbic circuit. PMID:29069508

  2. Local Brain Activity Differences Between Herpes Zoster and Postherpetic Neuralgia Patients: A Resting-State Functional MRI Study.

    PubMed

    Cao, Song; Li, Ying; Deng, Wenwen; Qin, Bangyong; Zhang, Yi; Xie, Peng; Yuan, Jie; Yu, Buwei; Yu, Tian

    2017-07-01

    Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), both of which are painful diseases. PHN patients suffer chronic pain and emotional disorders. Previous studies showed that the PHN brain displayed abnormal activity and structural change, but the difference in brain activity between HZ and PHN is still not known. To identify regional brain activity changes in HZ and PHN brains with resting-state functional magnetic resonance imaging (rs-fMRI) technique, and to observe the differences between HZ and PHN patients. Observational study. University hospital. Regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) methods were employed to analysis resting-state brain activity. Seventy-three age and gender matched patients (50 HZ, 23 PHN) and 55 healthy controls were enrolled. ReHo and fALFF changes were analyzed to detect the functional abnormality in HZ and PHN brains. Compared with healthy controls, HZ and PHN patients exhibited abnormal ReHo and fALFF values in classic pain-related brain regions (such as the frontal lobe, thalamus, insular, and cerebellum) as well as the brainstem, limbic lobe, and temporal lobe. When HZ developed to PHN, the activity in the vast area of the cerebellum significantly increased while that of some regions in the occipital lobe, temporal lobe, parietal lobe, and limbic lobe showed an apparent decrease. (a) Relatively short pain duration (mean 12.2 months) and small sample size (n = 23) for PHN group. (b) Comparisons at different time points (with paired t-tests) for each patient may minimize individual differences. HZ and PHN induced local brain activity changed in the pain matrix, brainstem, and limbic system. HZ chronification induced functional change in the cerebellum, occipital lobe, temporal lobe, parietal lobe, and limbic lobe. These brain activity changes may be correlated with HZ-PHN transition. Herpes zoster, postherpetic neuralgia, resting-state fMRI (rs-fMRI), regional homogeneity (ReHo), fractional aptitude of low-frequency fluctuation (fALFF).

  3. A Functional MRI Study of Happy and Sad Emotions in Music with and without Lyrics.

    PubMed

    Brattico, Elvira; Alluri, Vinoo; Bogert, Brigitte; Jacobsen, Thomas; Vartiainen, Nuutti; Nieminen, Sirke; Tervaniemi, Mari

    2011-01-01

    Musical emotions, such as happiness and sadness, have been investigated using instrumental music devoid of linguistic content. However, pop and rock, the most common musical genres, utilize lyrics for conveying emotions. Using participants' self-selected musical excerpts, we studied their behavior and brain responses to elucidate how lyrics interact with musical emotion processing, as reflected by emotion recognition and activation of limbic areas involved in affective experience. We extracted samples from subjects' selections of sad and happy pieces and sorted them according to the presence of lyrics. Acoustic feature analysis showed that music with lyrics differed from music without lyrics in spectral centroid, a feature related to perceptual brightness, whereas sad music with lyrics did not diverge from happy music without lyrics, indicating the role of other factors in emotion classification. Behavioral ratings revealed that happy music without lyrics induced stronger positive emotions than happy music with lyrics. We also acquired functional magnetic resonance imaging data while subjects performed affective tasks regarding the music. First, using ecological and acoustically variable stimuli, we broadened previous findings about the brain processing of musical emotions and of songs versus instrumental music. Additionally, contrasts between sad music with versus without lyrics recruited the parahippocampal gyrus, the amygdala, the claustrum, the putamen, the precentral gyrus, the medial and inferior frontal gyri (including Broca's area), and the auditory cortex, while the reverse contrast produced no activations. Happy music without lyrics activated structures of the limbic system and the right pars opercularis of the inferior frontal gyrus, whereas auditory regions alone responded to happy music with lyrics. These findings point to the role of acoustic cues for the experience of happiness in music and to the importance of lyrics for sad musical emotions.

  4. fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity.

    PubMed

    Paret, Christian; Ruf, Matthias; Gerchen, Martin Fungisai; Kluetsch, Rosemarie; Demirakca, Traute; Jungkunz, Martin; Bertsch, Katja; Schmahl, Christian; Ende, Gabriele

    2016-01-15

    Down-regulation of the amygdala with real-time fMRI neurofeedback (rtfMRI NF) potentially allows targeting brain circuits of emotion processing and may involve prefrontal-limbic networks underlying effective emotion regulation. Little research has been dedicated to the effect of rtfMRI NF on the functional connectivity of the amygdala and connectivity patterns in amygdala down-regulation with neurofeedback have not been addressed yet. Using psychophysiological interaction analysis of fMRI data, we present evidence that voluntary amygdala down-regulation by rtfMRI NF while viewing aversive pictures was associated with increased connectivity of the right amygdala with the ventromedial prefrontal cortex (vmPFC) in healthy subjects (N=16). In contrast, a control group (N=16) receiving sham feedback did not alter amygdala connectivity (Group×Condition t-contrast: p<.05 at cluster-level). Task-dependent increases in amygdala-vmPFC connectivity were predicted by picture arousal (β=.59, p<.05). A dynamic causal modeling analysis with Bayesian model selection aimed at further characterizing the underlying causal structure and favored a bottom-up model assuming predominant information flow from the amygdala to the vmPFC (xp=.90). The results were complemented by the observation of task-dependent alterations in functional connectivity of the vmPFC with the visual cortex and the ventrolateral PFC in the experimental group (Condition t-contrast: p<.05 at cluster-level). Taken together, the results underscore the potential of amygdala fMRI neurofeedback to influence functional connectivity in key networks of emotion processing and regulation. This may be beneficial for patients suffering from severe emotion dysregulation by improving neural self-regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. On the interaction between sad mood and cognitive control: the effect of induced sadness on electrophysiological modulations underlying Stroop conflict processing.

    PubMed

    Nixon, Elena; Liddle, Peter F; Nixon, Neil L; Liotti, Mario

    2013-03-01

    The present study employed high-density ERPs to examine the effect of induced sad mood on the spatiotemporal correlates of conflict monitoring and resolution in a colour-word Stroop interference task. Neuroimaging evidence and dipole modelling implicates the involvement of the anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) regions in conflict-laden interference control. On the basis that these structures have been found to mediate emotion-cognition interactions in negative mood states, it was predicted that Stroop-related cognitive control, which relies heavily on anterior neural sources, would be affected by effective sad mood provocation. Healthy participants (N=14) were induced into transient sadness via use of autobiographical sad scripts, a well-validated mood induction technique (Liotti et al., 2000a, 2002). In accord with previous research, interference effects were shown at both baseline and sad states while Stroop conflict was associated with early (N450) and late (Late Positive Component; LPC) electrophysiological modulations at both states. Sad mood induction attenuated the N450 effect in line with our expectation that it would be susceptible to modulation by mood, given its purported anterior limbic source. The LPC effect was displayed at the typical posterior lateral sites but, as predicted, was not affected by sad mood. However, frontocentral LPC activity-presumably generated from an additional anterior limbic source-was affected at sad state, hinting a role in conflict monitoring. Although the neurophysiological underpinnings of interference control are yet to be clarified, this study provided further insight into emotion-cognition interactions as indexed by Stroop conflict-laden processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Gender differences in alpha-[(11)C]MTrp brain trapping, an index of serotonin synthesis, in medication-free individuals with major depressive disorder: a positron emission tomography study.

    PubMed

    Frey, Benicio N; Skelin, Ivan; Sakai, Yojiro; Nishikawa, Masami; Diksic, Mirko

    2010-08-30

    Women are at higher risk than men for developing major depressive disorder (MDD), but the mechanisms underlying this higher risk are unknown. Here, we report proportionally normalized alpha-[(11)C]methyl-L-tryptophan brain trapping constant (alpha-[(11)C]MTrp K*(N)), an index of serotonin synthesis, in 25 medication-free individuals with MDD and in 25 gender- and age-matched healthy subjects who were studied using positron emission tomography (PET). Comparisons of alpha-[(11)C]MTrp K*(N) values between the men and women were conducted at the voxel and cluster levels using Statistical Parametric Mapping 2 (SPM2) analysis. In addition, the alpha-[(11)C]MTrp K*(N) values on both sides of the brain were extracted and compared to identify the left to right differences, as well as the gender differences. Women with MDD displayed higher alpha-[(11)C]MTrp K*(N) than men in the inferior frontal gyrus, anterior cingulate cortex (ACC), parahippocampal gyrus, precuneus, superior parietal lobule, and occipital lingual gyrus. In a matched group of normal subjects the gender differences were opposite from those found in MDD patients. Significant hemispheric differences in fronto-limbic structures between men and women with MDD were also observed. The K*(N) extracted from the volumes identified in MDD patients and in male and female normal subjects suggested no significant differences between males and females. In conclusion, depressed women have higher serotonin synthesis in multiple regions of the prefrontal cortex and limbic system involved with mood regulation, as compared with depressed men. Gender differences in brain serotonin synthesis may be related to higher risk for MDD in women. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  7. A Functional MRI Study of Happy and Sad Emotions in Music with and without Lyrics

    PubMed Central

    Brattico, Elvira; Alluri, Vinoo; Bogert, Brigitte; Jacobsen, Thomas; Vartiainen, Nuutti; Nieminen, Sirke; Tervaniemi, Mari

    2011-01-01

    Musical emotions, such as happiness and sadness, have been investigated using instrumental music devoid of linguistic content. However, pop and rock, the most common musical genres, utilize lyrics for conveying emotions. Using participants’ self-selected musical excerpts, we studied their behavior and brain responses to elucidate how lyrics interact with musical emotion processing, as reflected by emotion recognition and activation of limbic areas involved in affective experience. We extracted samples from subjects’ selections of sad and happy pieces and sorted them according to the presence of lyrics. Acoustic feature analysis showed that music with lyrics differed from music without lyrics in spectral centroid, a feature related to perceptual brightness, whereas sad music with lyrics did not diverge from happy music without lyrics, indicating the role of other factors in emotion classification. Behavioral ratings revealed that happy music without lyrics induced stronger positive emotions than happy music with lyrics. We also acquired functional magnetic resonance imaging data while subjects performed affective tasks regarding the music. First, using ecological and acoustically variable stimuli, we broadened previous findings about the brain processing of musical emotions and of songs versus instrumental music. Additionally, contrasts between sad music with versus without lyrics recruited the parahippocampal gyrus, the amygdala, the claustrum, the putamen, the precentral gyrus, the medial and inferior frontal gyri (including Broca’s area), and the auditory cortex, while the reverse contrast produced no activations. Happy music without lyrics activated structures of the limbic system and the right pars opercularis of the inferior frontal gyrus, whereas auditory regions alone responded to happy music with lyrics. These findings point to the role of acoustic cues for the experience of happiness in music and to the importance of lyrics for sad musical emotions. PMID:22144968

  8. Sex differences in effective fronto-limbic connectivity during negative emotion processing.

    PubMed

    Lungu, Ovidiu; Potvin, Stéphane; Tikàsz, Andràs; Mendrek, Adrianna

    2015-12-01

    In view of the greater prevalence of depression and anxiety disorders in women than in men, functional magnetic resonance imaging (fMRI) studies have examined sex-differences in brain activations during emotion processing. Comparatively, sex-differences in brain connectivity received little attention, despite evidence for important fronto-limbic connections during emotion processing across sexes. Here, we investigated sex-differences in fronto-limbic connectivity during negative emotion processing. Forty-six healthy individuals (25 women, 21 men) viewed negative, positive and neutral images during an fMRI session. Effective connectivity between significantly activated regions was examined using Granger causality and psychophysical interaction analyses. Sex steroid hormones and feminine-masculine traits were also measured. Subjective ratings of negative emotional images were higher in women than in men. Across sexes, significant activations were observed in the dorso-medial prefrontal cortex (dmPFC) and the right amygdala. Granger connectivity from right amygdala was significantly greater than that from dmPFC during the 'high negative' condition, an effect driven by men. Magnitude of this effect correlated negatively with highly negative image ratings and feminine traits and positively with testosterone levels. These results highlight critical sex differences in brain connectivity during negative emotion processing and point to the fact that both biological (sex steroid hormones) and psychosocial (gender role and identity) variables contribute to them. As the dmPFC is involved in social cognition and action planning, and the amygdala-in threat detection, the connectivity results suggest that compared to women, men have a more evaluative, rather than purely affective, brain response during negative emotion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. [[superscript 3]H]-Flunitrazepam-Labeled Benzodiazepine Binding Sites in the Hippocampal Formation in Autism: A Multiple Concentration Autoradiographic Study

    ERIC Educational Resources Information Center

    Guptill, Jeffrey T.; Booker, Anne B.; Gibbs, Terrell T.; Kemper, Thomas L.; Bauman, Margaret L.; Blatt, Gene J.

    2007-01-01

    Increasing evidence indicates that the GABAergic system in cerebellar and limbic structures is affected in autism. We extended our previous study that found reduced [[superscript 3]H] flunitrazepam-labeled benzodiazepine sites in the autistic hippocampus to determine whether this reduction was due to a decrease in binding site number (B [subscript…

  10. Effects of adrenal cortex hormones on limbic structures: some experimental and clinical correlations related to depression.

    PubMed Central

    Dubrovsky, B

    1993-01-01

    Cushing's disorder and depression present overlapping although not identical psychological symptomatology. In turn, a subset of patients with affective disorders present with hypercortisolemia and disturbances, specifically disinhibition, of the hypothalamic hypophysio adrenal axis (HHAA). Memory disturbances, in particular, biasing toward negative contents, overlapping sleep abnormalities (marked reduction of stages 3 and 4) increased fatigue and loss of energy, attentional deficits and irritability, are just part of the common symptomatology presented by patients with both Cushing's disorder and depression. All of these behavioral manifestations are known to be affected by adrenal steroid hormones. There is consensus that hippocampal structures are a main target for adrenal steroid hormones; hence, these neural regions are some of the most likely mediators of the effects of corticoadrenal steroids on behavior. This paper proposes that an imbalance of adrenal steroids and their metabolites may play a fundamental role in the psychophysiopathology of Cushing's and depressive disorders. The imbalance of these hormones, especially at limbic sites, could distort mood and memory content affecting cognition based on recollection and present experiences. Reestablishing an adrenal balance could therefore be considered as a therapeutic aid in a subset of depressive disorders. PMID:8461280

  11. Impulsive aggression and response inhibition in attention-deficit/hyperactivity disorder and disruptive behavioral disorders: Findings from a systematic review.

    PubMed

    Puiu, Andrei A; Wudarczyk, Olga; Goerlich, Katharina S; Votinov, Mikhail; Herpertz-Dahlmann, Beate; Turetsky, Bruce; Konrad, Kerstin

    2018-04-22

    Although impulsive aggression (IA) and dysfunctional response inhibition (RI) are hallmarks of attention-deficit/hyperactivity disorder (ADHD) and disrupted behavioral disorders (DBDs), little is known about their shared and distinct deviant neural mechanisms. Here, we selectively reviewed s/fMRI ADHD and DBD studies to identify disorder-specific and shared IA and RI aberrant neural mechanisms. In ADHD, deviant prefrontal and cingulate functional activity was associated with increased IA. Structural alterations were most pronounced in the cingulate cortex. Subjects with DBDs showed marked cortico-subcortical dysfunctions. ADHD and DBDs share similar cortico-limbic structural and functional alterations. RI deficits in ADHD highlighted hypoactivity in the dorso/ventro-lateral PFC, insula, and striatum, while the paralimbic system was primarily dysfunctional in DBDs. Across disorders, extensively altered cortico-limbic dysfunctions underlie IA, while RI was mostly associated with aberrant prefrontal activity. Control network deficits were evidenced across clinical phenotypes in IA and RI. Dysfunctions at any level within these cortico-subcortical projections lead to deficient cognitive-affective control by ascribing emotional salience to otherwise irrelevant stimuli. The clinical implications of these findings are discussed. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Paraneoplastic limbic encephalitis presenting as acute viral encephalitis.

    PubMed

    Kararizou, E; Markou, I; Zalonis, I; Gkiatas, K; Triantafyllou, N; Kararizos, G; Likomanos, D; Zambelis, T; Vassilopoulos, D

    2005-11-01

    To describe a case of limbic encephalitis which initially presented as viral limbic encephalitis and during the clinical evaluation a renal carcinoma was diagnosed. Patient with history of peripheral paresis of right facial nerve, 1 month after symptoms appearance and treatment, developed fever, vomiting, grand mal seizure, decreased level of consciousness, confusion, hallucinations and agitation. The patient initially presented a clinical picture of viral LE. which confirmed by CSF. MRI brain showed areas with pathological intensity signal in the region of limbic system unilateral. During the clinical evaluation a renal carcinoma was discovered and a nephrectomy has been performed. Although PLE typically presents as a chronic or subacute disease, it may be fulminant and clinically indistinguishable from an acute HSVE. This association pose the problem of a possible relation between this two syndromes and the correct diagnosis is very important, because there are effective treatments.

  13. Exposure to smoking cues during an emotion recognition task can modulate limbic fMRI activation in cigarette smokers.

    PubMed

    Artiges, Eric; Ricalens, Emmanuel; Berthoz, Sylvie; Krebs, Marie-Odile; Penttilä, Jani; Trichard, Christian; Martinot, Jean-Luc

    2009-09-01

    Smoking cues (SCs) refer to smoking-associated environmental stimuli that may trigger craving and withdrawal symptoms, and predispose to relapse in smokers. Although previous brain imaging studies have explored neural responses to SCs, no study has characterized the effects of SCs on cerebral activity in smokers engaged in an attention-demanding cognitive task that is unrelated to smoking. Thirteen tobacco smokers and a demographically matched group of 13 healthy non-smokers participated in a fast event-related functional magnetic resonance imaging (fMRI) study that involved a visual task integrating SCs and neutral cues (NCs) during emotion recognition trials requiring a high level of attention. No significant SC-induced alterations were detected in smokers' behavioural performance. fMRI results show that non-smokers exhibited no difference between SC and NC trials; in contrast, smokers showed SC-induced widespread deactivations in a limbic, paralimbic and striatal network classically involved in addiction, and activation in the right dorsolateral prefrontal cortex. In addition, a correlation between deactivation of the right insula and the severity of smoking dependence (Fagerström test) was detected in smokers. These results suggest that the neural reactivity of smokers to SCs can be modified in the context of a cognitive challenge. This could reflect smokers' ability to inhibit cue-induced craving and may help in smoking cessation.

  14. Chemosensory danger detection in the human brain: Body odor communicating aggression modulates limbic system activation.

    PubMed

    Mutic, Smiljana; Brünner, Yvonne F; Rodriguez-Raecke, Rea; Wiesmann, Martin; Freiherr, Jessica

    2017-05-01

    Although the sense of smell is involved in numerous survival functions, the processing of body odor emitted by dangerous individuals is far from understood. The aim of the study was to explore how human fight chemosignals communicating aggression can alter brain activation related to an attentional bias and danger detection. While the anterior cingulate cortex (ACC) was seen involved in processing threat-related emotional information, danger detection and error evaluation, it still remains unknown whether human chemosignals communicating aggression can potentially modulate this activation. In the fMRI experiment, healthy male and female normosmic odor recipients (n=18) completed a higher-order processing task (emotional Stroop task with the word categories anger, anxiety, happiness and neutral) while exposed to aggression and exercise chemosignals (collected from a different group of healthy male donors; n=16). Our results provide first evidence that aggression chemosignals induce a time-sensitive attentional bias in chemosensory danger detection and modulate limbic system activation. During exposure to aggression chemosignals compared to exercise chemosignals, functional imaging data indicates an enhancement of thalamus, hypothalamus and insula activation (p<.05, FWE-corrected). Together with the thalamus, the ACC was seen activated in response to threat-related words (p<.001). Chemosensory priming and habituation to body odor signals are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Neural activity related to emotional and empathic deficits in subjects with post-traumatic stress disorder who survived the L'Aquila (Central Italy) 2009 earthquake].

    PubMed

    Mazza, Monica; Pino, Maria Chiara; Tempesta, Daniela; Catalucci, Alessia; Masciocchi, Carlo; Ferrara, Michele

    2016-01-01

    Post-Traumatic Stress Disorder (PTSD) is a chronic anxiety disorder. The continued efforts to control the distressing memories by traumatized individuals, together with the reduction of responsiveness to the outside world, are called Emotional Numbing (EN). The EN is one of the central symptoms in PTSD and it plays an integral role not only in the development and maintenance of post-traumatic symptomatology, but also in the disability of emotional regulation. This disorder shows an abnormal response of cortical and limbic regions which are normally involved in understanding emotions since the very earliest stages of the development of processing ability. Patients with PTSD exhibit exaggerated brain responses to emotionally negative stimuli. Identifying the neural correlates of emotion regulation in these subjects is important for elucidating the neural circuitry involved in emotional and empathic dysfunction. We showed that PTSD patients, all survivors of the L'Aquila 2009 earthquake, have a higher sensitivity to negative emotion and lower empathy levels. These emotional and empathic deficits are accompanied by neural brain functional correlates. Indeed PTSD subjects exhibit functional abnormalities in brain regions that are involved in stress regulation and emotional responses. The reduced activation of the frontal areas and a stronger activation of the limbic areas when responding to emotional stimuli could lead the subjects to enact coping strategies aimed at protecting themselves from the re-experience of pain related to traumatic events. This would result in a dysfunctional hyperactivation of subcortical areas, which may cause emotional distress and, consequently, impaired social relationships often reported by PTSD patients.

  16. Previous exposure to (+/-) 3,4-methylenedioxymethamphetamine produces long-lasting alteration in limbic brain excitability measured by electroencephalogram spectrum analysis, brain metabolism and seizure susceptibility.

    PubMed

    Giorgi, F S; Pizzanelli, C; Ferrucci, M; Lazzeri, G; Faetti, M; Giusiani, M; Pontarelli, F; Busceti, C L; Murri, L; Fornai, F

    2005-01-01

    Seizures represent the most common neurological emergency in ecstasy abusers; however, no study addressed whether (+/-) 3,4-methylenedioxymethamphetamine ("ecstasy") per se might produce long-lasting alterations in brain excitability related to a pro-convulsant effect. C57 Black mice were treated with three regimens of (+/-) 3,4-methylenedioxymethamphetamine (5mg/kg x 2 for 1, 2 or three consecutive days). Following the last dose of (+/-) 3,4-methylenedioxymethamphetamine, during a time interval of 8 weeks, the following procedures were carried out: 1) cortical electroencephalographic recordings, including power-spectrum analysis; 2) administration of sub-threshold doses of kainate; 3) measurement of regional [(14)C]2-deoxyglucose uptake; 4) monoamine assay. We demonstrate that all mice pre-treated with (+/-) 3,4-methylenedioxymethamphetamine showed long-lasting encephalographic changes with frequencies peaking at 3-4.5 Hz at the power-spectrum analysis. This is concomitant with latent brain hyperexcitability within selected limbic brain regions, as shown by seizure facilitation and long-lasting latent metabolic hyperactivity which can be unraveled by phasic glutamate stimulation. This study sheds new light into the brain targets of (+/-) 3,4-methylenedioxymethamphetamine and discloses the occurrence of (+/-) 3,4-methylenedioxymethamphetamine-induced latent hyperexcitability within limbic areas, while it might provide a model to study in controlled experimental conditions limbic seizures and status epilepticus in C57 Black mice. Persistent changes produced by (+/-) 3,4-methylenedioxymethamphetamine in limbic brain excitability might be responsible for seizures and limbic-related disorders in chronic (+/-) 3,4-methylenedioxymethamphetamine abusers.

  17. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications.

    PubMed

    Goldstein, Rita Z; Volkow, Nora D

    2011-10-20

    The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will.

  18. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications

    PubMed Central

    Goldstein, Rita Z.; Volkow, Nora D.

    2012-01-01

    The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will. PMID:22011681

  19. A novel approach to PTSD modeling in rats reveals alternating patterns of limbic activity in different types of stress reaction.

    PubMed

    Ritov, G; Boltyansky, B; Richter-Levin, G

    2016-05-01

    Human reactions to trauma exposure are extremely diverse, with some individuals exhibiting only time-limited distress and others qualifying for posttraumatic stress disorder diagnosis (PTSD). Furthermore, whereas most PTSD patients mainly display fear-based symptoms, a minority of patients display a co-morbid anhedonic phenotype. We employed an individual profiling approach to model these intriguing facets of the psychiatric condition in underwater-trauma exposed rats. Based on long-term assessments of anxiety-like and anhedonic behaviors, our analysis uncovered three separate phenotypes of stress response; an anxious, fear-based (38%), a co-morbid, fear-anhedonic (15%), and an exposed-unaffected group (47%). Immunohistochemical assessments for cellular activation (c-Fos) and activation of inhibition (c-Fos+GAD67) revealed a differential involvement of limbic regions and distinct co-activity patterns for each of these phenotypes, validating the behavioral categorization. In accordance with recent neurocognitive hypotheses for posttraumatic depression, we show that enhanced pretrauma anxiety predicts the progression of posttraumatic anhedonia only in the fear-anhedonic phenotype.

  20. [Proposal for a physiologic concept of thought based on the results of stereotaxic psychosurgery].

    PubMed

    Nádvorník, P; Pogády, J; Bernadic, M

    2003-05-01

    Authors have fifty years long experience with psychostereotactic surgery. On the bases of 209 operations of different types of mentally ill patients, authors built their own physiological conception of the central nervous system function. The new conception is described using block operators of thinking at the level of hypothalamus, limbic system, and neocortex in the hierarchic order. The basic physiological hypothalamic block contains two operators: stimulus evaluation and decision to act. Both operators together form reasonable, objective substantiation of thinking, which is transformed into psychological, subjective description at higher cerebral levels. New operator is added to the block diagram at the level of the limbic system: the choice of response base on experience stored in the high capacity memory. Vast neocortical memory creates a model of the individual world and it enables a new operator to be involved: prediction of the future events. Thinking, originally based on concrete images, is using abstract terms, subjected to the principles of grammar. Physiological basis of thinking enables the convergence of subjective and objective.

  1. Paraneoplastic limbic encephalitis and possible narcolepsy in a patient with testicular cancer: case study.

    PubMed Central

    Landolfi, Joseph C.; Nadkarni, Mangala

    2003-01-01

    We describe a patient who presented with a clinical syndrome of limbic encephalitis, narcolepsy, and cataplexy. The anti-Ma2 antibody was positive. Although there was no mass on imaging, orchiectomy was performed in this patient, and testicular carcinoma was found. This is the first known case of limbic encephalitis and anti-Ma2 antibody to be associated with cataplexy and possible narcolepsy. Neurological symptoms precede the diagnosis of cancer in 50% of patients with paraneoplastic syndromes, and clinicians are therefore strongly advised to evaluate patients with neurological symptoms for this condition. PMID:12816728

  2. Diffusion Imaging of Auditory and Auditory-Limbic Connectivity in Tinnitus: Preliminary Evidence and Methodological Challenges

    PubMed Central

    Seydell-Greenwald, Anna; Raven, Erika P.; Leaver, Amber M.; Turesky, Ted K.; Rauschecker, Josef P.

    2014-01-01

    Subjective tinnitus, or “ringing in the ears,” is perceived by 10 to 15 percent of the adult population and causes significant suffering in a subset of patients. While it was originally thought of as a purely auditory phenomenon, there is increasing evidence that the limbic system influences whether and how tinnitus is perceived, far beyond merely determining the patient's emotional reaction to the phantom sound. Based on functional imaging and electrophysiological data, recent articles frame tinnitus as a “network problem” arising from abnormalities in auditory-limbic interactions. Diffusion-weighted magnetic resonance imaging is a noninvasive method for investigating anatomical connections in vivo. It thus has the potential to provide anatomical evidence for the proposed changes in auditory-limbic connectivity. However, the few diffusion imaging studies of tinnitus performed to date have inconsistent results. In the present paper, we briefly summarize the results of previous studies, aiming to reconcile their results. After detailing analysis methods, we then report findings from a new dataset. We conclude that while there is some evidence for tinnitus-related increases in auditory and auditory-limbic connectivity that counteract hearing-loss related decreases in auditory connectivity, these results should be considered preliminary until several technical challenges have been overcome. PMID:25050181

  3. The contribution of small vessel disease to subtypes of Alzheimer's disease: a study on cerebrospinal fluid and imaging biomarkers.

    PubMed

    Ferreira, Daniel; Shams, Sara; Cavallin, Lena; Viitanen, Matti; Martola, Juha; Granberg, Tobias; Shams, Mana; Aspelin, Peter; Kristoffersen-Wiberg, Maria; Nordberg, Agneta; Wahlund, Lars-Olof; Westman, Eric

    2018-05-30

    We investigated whether subtypes of Alzheimer's disease (AD), that is, typical, limbic-predominant, hippocampal-sparing, and minimal atrophy AD, had a specific signature of small vessel disease and neurodegeneration. Four hundred twenty-three clinically diagnosed AD patients were included (161 typical, 121 limbic-predominant, 70 hippocampal-sparing, 71 minimal atrophy). One hundred fifty-six fulfilled a biomarkers-based AD diagnosis. White matter hyperintensities and cerebral microbleeds (CMB) had the highest prevalence in limbic-predominant AD, and the lowest prevalence in minimal atrophy AD. CMB existed evenly in lobar and deep brain areas in limbic-predominant, typical, and hippocampal-sparing AD. In minimal atrophy AD, CMB were mainly located in brain lobar areas. Perivascular spaces in the centrum semiovale were more prevalent in typical AD. Small vessel disease contributed to the prediction of Mini-Mental State Examination. Minimal atrophy AD showed highly pathological levels of cerebrospinal fluid Aß 1-42 , total tau, and phosphorylated tau, in the absence of overt brain atrophy. Cerebral amyloid angiopathy seems to have a stronger contribution to hippocampal-sparing and minimal atrophy AD, whereas hypertensive arteriopathy may have a stronger contribution to typical and limbic-predominant AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Acute behavioral and EEG effects of NW-1015 on electrically-induced afterdischarge in conscious monkeys.

    PubMed

    Fariello, R G; Maj, R; Marrari, P; Beard, D; Algate, C; Salvati, P

    2000-03-01

    NW-1015 is a novel Na+ and Ca2+ channel blocker with broad spectrum anticonvulsant activity and an excellent safety margin. As the compound also shows sigma-1 receptor ligand properties it was deemed important to determine whether it possesses anticonvulsant properties in primates without causing behavioral and EEG abnormalities. Thus, the effects of NW-1015 on limbic electrically-induced afterdischarge (AD) were evaluated in four cynomolgus monkeys, and its activity compared to a single effective dose of phenytoin (PHT). The four male cynomolgus monkeys were chronically implanted for EEG recordings, from cortex and limbic structures. AD was induced in limbic areas by electrical stimulation. The effects of NW-1015 on the duration and the behavioral component of the AD were randomly tested at doses from 25 to 75 mg/kg and compared with the effects of PHT 50 mg/kg. Similarly to PHT, 50 mg/kg of NW-1015 significantly shortened the EEG AD and almost abolished AD elicited behavioral seizure. Only the behavioral effects of AD were reduced after administration of 25 mg/kg p.o. NW-1015 did not cause EEG or interictal behavioral alterations at doses up to 75 mg/kg p.o. These data further confirm the broad-spectrum anticonvulsant activity and a good safety profile of NW-1015 even in a primate model of complex partial seizures and suggest that its affinity for sigma-1 receptors is behaviorally irrelevant.

  5. Autobiographical Planning and the Brain: Activation and Its Modulation by Qualitative Features.

    PubMed

    Spreng, R Nathan; Gerlach, Kathy D; Turner, Gary R; Schacter, Daniel L

    2015-11-01

    To engage in purposeful behavior, it is important to make plans, which organize subsequent actions. Most studies of planning involve "look-ahead" puzzle tasks that are unrelated to personal goals. We developed a task to assess autobiographical planning, which involves the formulation of personal plans in response to real-world goals, and examined autobiographical planning in 63 adults during fMRI scanning. Autobiographical planning was found to engage the default network, including medial-temporal lobe and midline structures, and executive control regions in lateral pFC and parietal cortex and caudate. To examine how specific qualitative features of autobiographical plans modulate neural activity, we performed parametric modulation analyses. Ratings of plan detail, novelty, temporal distance, ease of plan formulation, difficulty in goal completion, and confidence in goal accomplishment were used as covariates in six hierarchical linear regression models. This modeling procedure removed shared variance among the ratings, allowing us to determine the independent relationship between ratings of interest and trial-wise BOLD signal. We found that specific autobiographical planning, describing a detailed, achievable, and actionable planning process for attaining a clearly envisioned future, recruited both default and frontoparietal brain regions. In contrast, abstract autobiographical planning, plans that were constructed from more generalized semantic or affective representations of a less tangible and distant future, involved interactions among default, sensory perceptual, and limbic brain structures. Specific qualities of autobiographical plans are important predictors of default and frontoparietal control network engagement during plan formation and reflect the contribution of mnemonic and executive control processes to autobiographical planning.

  6. Herpes zoster chronification to postherpetic neuralgia induces brain activity and grey matter volume change

    PubMed Central

    Cao, Song; Qin, Bangyong; Zhang, Yi; Yuan, Jie; Fu, Bao; Xie, Peng; Song, Ganjun; Li, Ying; Yu, Tian

    2018-01-01

    Objective: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), which is a chronic neuropathic pain (NP). Whether the chronification from HZ to PHN induced brain functional or structural change is unknown and no study compared the changes of the same brains of patients who transited from HZ to PHN. We minimized individual differences and observed whether the chronification of HZ to PHN induces functional and pain duration dependent grey matter volume (GMV) change in HZ-PHN patients. Methods: To minimize individual differences induced error, we enrolled 12 patients with a transition from HZ to PHN. The functional and structural changes of their brains between the two states were identified with resting-state functional MRI (rs-fMRI) technique (i.e., the regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) method) and the voxel based morphometry (VBM) technology respectively. The correlations between MRI parameters (i.e., ΔReHo, ΔfALFF and ΔVBM) and Δpain duration were analyzed too. Results: Compared with HZ brains, PHN brains exhibited abnormal ReHo, fALFF and VBM values in pain matrix (the frontal lobe, parietal lobe, thalamus, limbic lobe and cerebellum) as well as the occipital lobe and temporal lobe. Nevertheless, the activity of vast area of cerebellum and frontal lobe significantly increased while that of occipital lobe and limbic lobe showed apparent decrease when HZ developed to PHN. In addition, PHN brain showed decreased GMV in the frontal lobe, the parietal lobe and the occipital lobe but increased in the cerebellum and the temporal lobe. Correlation analyses showed that some of the ReHo, fALFF and VBM differential areas (such as the cerebellum posterior lobe, the thalamus extra-nuclear and the middle temporal gyrus) correlated well with Δpain duration. Conclusions: HZ chronification induced functional and structural change in cerebellum, occipital lobe, temporal lobe, parietal lobe and limbic lobe. These changes may be correlated with HZ-PHN chronification. In addition, these changes could be reasons of refractory chronic pain of PHN. PMID:29423004

  7. Factor analysis of regional brain activation in bipolar and healthy individuals reveals a consistent modular structure.

    PubMed

    Fleck, David E; Welge, Jeffrey A; Eliassen, James C; Adler, Caleb M; DelBello, Melissa P; Strakowski, Stephen M

    2018-07-01

    The neurophysiological substrates of cognition and emotion, as seen with fMRI, are generally explained using modular structures. The present study was designed to probe the modular structure of cognitive-emotional processing in bipolar and healthy individuals using factor analysis and compare the results with current conceptions of the neurophysiology of bipolar disorder. Exploratory factor analysis was used to assess patterns of covariation among brain regions-of-interest activated during the Continuous Performance Task with Emotional and Neutral Distractors in healthy and bipolar individuals without a priori constraints on the number or composition of latent factors. Results indicated a common cognitive-emotional network consisting of prefrontal, medial temporal, limbic, parietal, anterior cingulate and posterior cingulate modules. However, reduced brain activation to emotional stimuli in the frontal, medial temporal and limbic modules was apparent in the bipolar relative to the healthy group, potentially accounting for emotional dysregulation in bipolar disorder. This study is limited by a relatively small sample size recruited at a single site. The results have yet to be validated on a larger independent sample. Although the modular structure of cognitive-emotional processing is similar in bipolar and healthy individuals, activation in response to emotional/neutral cues varies. These findings are not only consistent with recent conceptions of mood regulation in bipolar disorder, but also suggest that regional activation can be considered within tighter modular structures without compromising data interpretation. This demonstration may serve as a template for data reduction in future region-of-interest analyses to increase statistical power. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The anatomy of extended limbic pathways in Asperger syndrome: a preliminary diffusion tensor imaging tractography study.

    PubMed

    Pugliese, Luca; Catani, Marco; Ameis, Stephanie; Dell'Acqua, Flavio; Thiebaut de Schotten, Michel; Murphy, Clodagh; Robertson, Dene; Deeley, Quinton; Daly, Eileen; Murphy, Declan G M

    2009-08-15

    It has been suggested that people with autistic spectrum disorder (ASD) have altered development (and connectivity) of limbic circuits. However, direct evidence of anatomical differences specific to white matter pathways underlying social behaviour and emotions in ASD is lacking. We used Diffusion Tensor Imaging Tractography to compare, in vivo, the microstructural integrity and age-related differences in the extended limbic pathways between subjects with Asperger syndrome and healthy controls. Twenty-four males with Asperger syndrome (mean age 23+/-12 years, age range: 9-54 years) and 42 age-matched male controls (mean age 25+/-10 years, age range: 9-54 years) were studied. We quantified tract-specific diffusivity measurements as indirect indexes of microstructural integrity (e.g. fractional anisotropy, FA; mean diffusivity, MD) and tract volume (e.g. number of streamlines) of the main limbic tracts. The dissected limbic pathways included the inferior longitudinal fasciculus, inferior frontal occipital fasciculus, uncinate, cingulum and fornix. There were no significant between-group differences in FA and MD. However, compared to healthy controls, individuals with Asperger syndrome had a significantly higher number of streamlines in the right (p=.003) and left (p=.03) cingulum, and in the right (p=.03) and left (p=.04) inferior longitudinal fasciculus. In contrast, people with Asperger syndrome had a significantly lower number of streamlines in the right uncinate (p=.02). Within each group there were significant age-related differences in MD and number of streamlines, but not FA. However, the only significant age-related between-group difference was in mean diffusivity of the left uncinate fasciculus (Z(obs)=2.05) (p=.02). Our preliminary findings suggest that people with Asperger syndrome have significant differences in the anatomy, and maturation, of some (but not all) limbic tracts.

  9. The surface of the eye--a superficial entity with deep repercussions.

    PubMed

    Potop, Vasile; Dumitrache, Marieta; Ciocalteu, Alina

    2009-01-01

    The surface of the eye is an anatomical and functional entity with a relatively recent delimitation but with significant therapeutic and diagnostic consequences. The pathology of the conjunctive and cornea must be approached by looking at the interrelations between the two tissues that are so different anatomically and functionally but in the same time form a unit in structuring the eye's surface. There are two major categories of relations between the two tissues: one of them is mediated by lachrymal secretion, a process whose complexity is not yet fully understood, and the other is germinal, referring to the stem cells located at the limbus which become epithelial cornea cells that can fixate lachrymal fluid. Imbalances in the quantity and quality of lachrymal secretion can be compensated, up to a certain point, by artificial products, but in severe cases only specially prepared autologous serum can compensate the deficit. The limbic deficits that affect stem cells require complex therapeutic procedures like limbic cell transplant, using an amniotic membrane or autologous serum.

  10. Long-Term Occupational Stress Is Associated with Regional Reductions in Brain Tissue Volumes

    PubMed Central

    Blix, Eva; Perski, Aleksander; Berglund, Hans; Savic, Ivanka

    2013-01-01

    There are increasing reports of cognitive and psychological declines related to occupational stress in subjects without psychiatric premorbidity or major life trauma. The underlying neurobiology is unknown, and many question the notion that the described disabilities represent a medical condition. Using PET we recently found that persons suffering from chronic occupational stress had limbic reductions in the 5-HT1A receptor binding potential. Here we examine whether chronic work-related stress is also associated with changes in brain structure. We performed MRI-based voxel-based morphometry and structural volumetry in stressed subjects and unstressed controls focusing on gray (GM) and white matter (WM) volumes, and the volumes of hippocampus, caudate, and putamen – structures known to be susceptible to neurotoxic changes. Stressed subjects exhibited significant reductions in the GM volumes of the anterior cingulate cortex and the dorsolateral prefrontal cortex. Furthermore, their caudate and putamen volumes were reduced, and the volumes correlated inversely to the degree of perceived stress. Our results add to previous data on chronic psychosocial stress, and indicate a morphological involvement of the frontostriatal circuits. The present findings of morphological changes in these regions confirm our previous conclusion that symptoms from occupational stress merit careful investigations and targeted treatment. PMID:23776438

  11. EMDR therapy for PTSD after motor vehicle accidents: meta-analytic evidence for specific treatment

    PubMed Central

    Boccia, Maddalena; Piccardi, Laura; Cordellieri, Pierluigi; Guariglia, Cecilia; Giannini, Anna Maria

    2015-01-01

    Motor vehicle accident (MVA) victims may suffer both acute and post-traumatic stress disorders (PTSD). With PTSD affecting social, interpersonal and occupational functioning, clinicians as well as the National Institute of Health are very interested in identifying the most effective psychological treatment to reduce PTSD. From research findings, eye movement desensitization and reprocessing (EMDR) therapy is considered as one of the effective treatment of PTSD. In this paper, we present the results of a meta-analysis of fMRI studies on PTSD after MVA through activation likelihood estimation. We found that PTSD following MVA is characterized by neural modifications in the anterior cingulate cortex (ACC), a cerebral structure involved in fear-conditioning mechanisms. Basing on previous findings in both humans and animals, which demonstrate that desensitization techniques and extinction protocols act on the limbic system, the effectiveness of EMDR and of cognitive behavioral therapies (CBT) may be related to the fact that during these therapies the ACC is stimulated by desensitization. PMID:25954183

  12. Hippocampal TNFα Signaling Contributes to Seizure Generation in an Infection-Induced Mouse Model of Limbic Epilepsy.

    PubMed

    Patel, Dipan C; Wallis, Glenna; Dahle, E Jill; McElroy, Pallavi B; Thomson, Kyle E; Tesi, Raymond J; Szymkowski, David E; West, Peter J; Smeal, Roy M; Patel, Manisha; Fujinami, Robert S; White, H Steve; Wilcox, Karen S

    2017-01-01

    Central nervous system infection can induce epilepsy that is often refractory to established antiseizure drugs. Previous studies in the Theiler's murine encephalomyelitis virus (TMEV)-induced mouse model of limbic epilepsy have demonstrated the importance of inflammation, especially that mediated by tumor necrosis factor-α (TNFα), in the development of acute seizures. TNFα modulates glutamate receptor trafficking via TNF receptor 1 (TNFR1) to cause increased excitatory synaptic transmission. Therefore, we hypothesized that an increase in TNFα signaling after TMEV infection might contribute to acute seizures. We found a significant increase in both mRNA and protein levels of TNFα and the protein expression ratio of TNF receptors (TNFR1:TNFR2) in the hippocampus, a brain region most likely involved in seizure initiation, after TMEV infection, which suggests that TNFα signaling, predominantly through TNFR1, may contribute to limbic hyperexcitability. An increase in hippocampal cell-surface glutamate receptor expression was also observed during acute seizures. Although pharmacological inhibition of TNFR1-mediated signaling had no effect on acute seizures, several lines of genetically modified animals deficient in either TNFα or TNFRs had robust changes in seizure incidence and severity after TMEV infection. TNFR2 -/- mice were highly susceptible to developing acute seizures, suggesting that TNFR2-mediated signaling may provide beneficial effects during the acute seizure period. Taken together, the present results suggest that inflammation in the hippocampus, caused predominantly by TNFα signaling, contributes to hyperexcitability and acute seizures after TMEV infection. Pharmacotherapies designed to suppress TNFR1-mediated or augment TNFR2-mediated effects of TNFα may provide antiseizure and disease-modifying effects after central nervous system infection.

  13. Decrease of lymphoproliferative response by amphetamine is mediated by dopamine from the nucleus accumbens: influence on splenic met-enkephalin levels.

    PubMed

    Assis, María Amparo; Valdomero, Analía; García-Keller, Constanza; Sotomayor, Claudia; Cancela, Liliana Marina

    2011-05-01

    Despite the mesocorticolimbic dopaminergic pathway being one of the main substrates underlying stimulating and reinforcing effects induced by psychostimulant drugs, there is little information regarding its role in their effects at the immune level. We have previously demonstrated that acute exposure to amphetamine (5 mg/kg, i.p.) induced an inhibitory effect on the splenic T-cell proliferative response, along with an increase in the methionine(met)-enkephalin content at limbic and immune levels, 4 days after drug administration. In this study, we investigated if a possible dopamine mechanism underlies these amphetamine-induced effects by administering D1 and D2 dopaminergic antagonists or a dopaminergic terminal neurotoxin before the drug. Pre-treatment with either SCH-23390 (0.1 mg/kg, i.p.) or raclopride (0.1 mg/kg, i.p.), a D1 or D2 dopaminergic receptor antagonist, respectively, abrogated the effects of amphetamine on the lymphoproliferative response and on met-enkephalin levels of the spleen. The amphetamine-induced increase in limbic met-enkephalin content was suppressed by SCH-23390 but not by raclopride pre-treatment. Finally, an intra-accumbens 6-hydroxy-dopamine injection administered 2 weeks previously prevented amphetamine-induced effects on the lymphoproliferative response and on met-enkephalin levels in the prefrontal cortex and spleen. These findings strongly suggest that D1 and D2 dopaminergic receptors are involved in amphetamine-induced effects at immune level as regards the lymphoproliferative response and the changes in spleen met-enkephalin content, whereas limbic met-enkephalin levels were modulated only by the D1 dopaminergic receptors. In addition, this study showed that a mesolimbic component modulated amphetamine-induced effects on the immune response, as previously shown at a behavioral level. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures.

    PubMed

    Chen, Kang; Neu, Axel; Howard, Allyson L; Földy, Csaba; Echegoyen, Julio; Hilgenberg, Lutz; Smith, Martin; Mackie, Ken; Soltesz, Ivan

    2007-01-03

    Depolarization-induced suppression of inhibition (DSI) is an endocannabinoid-mediated short-term plasticity mechanism that couples postsynaptic Ca2+ rises to decreased presynaptic GABA release. Whether the gain of this retrograde synaptic mechanism is subject to long-term modulation by glutamatergic excitatory inputs is not known. Here, we demonstrate that activity-dependent long-term DSI potentiation takes place in hippocampal slices after tetanic stimulation of Schaffer collateral synapses. This activity-dependent, long-term plasticity of endocannabinoid signaling was specific to GABAergic synapses, as it occurred without increases in the depolarization-induced suppression of excitation. Induction of tetanus-induced DSI potentiation in vitro required a complex pathway involving AMPA/kainate and metabotropic glutamate receptor as well as CB1 receptor activation. Because DSI potentiation has been suggested to play a role in persistent limbic hyperexcitability after prolonged seizures in the developing brain, we used these mechanistic insights into activity-dependent DSI potentiation to test whether interference with the induction of DSI potentiation prevents seizure-induced long-term hyperexcitability. The results showed that the in vitro, tetanus-induced DSI potentiation was occluded by previous in vivo fever-induced (febrile) seizures, indicating a common pathway. Accordingly, application of CB1 receptor antagonists during febrile seizures in vivo blocked the seizure-induced persistent DSI potentiation, abolished the seizure-induced upregulation of CB1 receptors, and prevented the emergence of long-term limbic hyperexcitability. These results reveal a new form of activity-dependent, long-term plasticity of endocannabinoid signaling at perisomatic GABAergic synapses, and demonstrate that blocking the induction of this plasticity abolishes the long-term effects of prolonged febrile seizures in the developing brain.

  15. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol

    PubMed Central

    Kirkham, Tim C; Williams, Claire M; Fezza, Filomena; Marzo, Vincenzo Di

    2002-01-01

    Endocannabinoids are implicated in appetite and body weight regulation. In rodents, anandamide stimulates eating by actions at central CB1 receptors, and hypothalamic endocannabinoids may be under the negative control of leptin. However, changes to brain endocannabinoid levels in direct relation to feeding or changing nutritional status have not been investigated.We measured anandamide and 2-arachidonoyl glycerol (2-AG) levels in feeding-associated brain regions of rats, during fasting, feeding of a palatable food, or after satiation. Endocannabinoid levels were compared to those in rats fed ad libitum, at a point in their daily cycle when motivation to eat was absent. Fasting increased levels of anandamide and 2-AG in the limbic forebrain and, to a lesser extent, of 2-AG in the hypothalamus. By contrast, hypothalamic 2-AG declined as animals ate. No changes were detected in satiated rats. Endocannabinoid levels in the cerebellum, a control region not directly involved in the control of food intake, were unaffected by any manipulation.As 2-AG was most sensitive to variation during feeding, and to leptin regulation in a previous study, we examined the behavioural effects of 2-AG when injected into the nucleus accumbens shell, a limbic forebrain area strongly linked to eating motivation. 2-AG potently, and dose-dependently, stimulated feeding. This effect was attenuated by the CB1 receptor antagonist SR141716.These findings provide the first direct evidence of altered brain levels of endocannabinoids, and of 2-AG in particular, during fasting and feeding. The nature of these effects supports a role for endocannabinoids in the control of appetitive motivation. PMID:12055133

  16. Hippocampal TNFα Signaling Contributes to Seizure Generation in an Infection-Induced Mouse Model of Limbic Epilepsy

    PubMed Central

    Patel, Dipan C.; Wallis, Glenna; Dahle, E. Jill; McElroy, Pallavi B.; Thomson, Kyle E.; West, Peter J.; Smeal, Roy M.; Patel, Manisha; Fujinami, Robert S.; White, H. Steve

    2017-01-01

    Abstract Central nervous system infection can induce epilepsy that is often refractory to established antiseizure drugs. Previous studies in the Theiler’s murine encephalomyelitis virus (TMEV)-induced mouse model of limbic epilepsy have demonstrated the importance of inflammation, especially that mediated by tumor necrosis factor-α (TNFα), in the development of acute seizures. TNFα modulates glutamate receptor trafficking via TNF receptor 1 (TNFR1) to cause increased excitatory synaptic transmission. Therefore, we hypothesized that an increase in TNFα signaling after TMEV infection might contribute to acute seizures. We found a significant increase in both mRNA and protein levels of TNFα and the protein expression ratio of TNF receptors (TNFR1:TNFR2) in the hippocampus, a brain region most likely involved in seizure initiation, after TMEV infection, which suggests that TNFα signaling, predominantly through TNFR1, may contribute to limbic hyperexcitability. An increase in hippocampal cell-surface glutamate receptor expression was also observed during acute seizures. Although pharmacological inhibition of TNFR1-mediated signaling had no effect on acute seizures, several lines of genetically modified animals deficient in either TNFα or TNFRs had robust changes in seizure incidence and severity after TMEV infection. TNFR2–/– mice were highly susceptible to developing acute seizures, suggesting that TNFR2-mediated signaling may provide beneficial effects during the acute seizure period. Taken together, the present results suggest that inflammation in the hippocampus, caused predominantly by TNFα signaling, contributes to hyperexcitability and acute seizures after TMEV infection. Pharmacotherapies designed to suppress TNFR1-mediated or augment TNFR2-mediated effects of TNFα may provide antiseizure and disease-modifying effects after central nervous system infection. PMID:28497109

  17. Graph theory findings in the pathophysiology of temporal lobe epilepsy

    PubMed Central

    Chiang, Sharon; Haneef, Zulfi

    2014-01-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. PMID:24831083

  18. Impulsivity, aggression and brain structure in high and low lethality suicide attempters with borderline personality disorder.

    PubMed

    Soloff, Paul; White, Richard; Diwadkar, Vaibhav A

    2014-06-30

    Impulsivity and aggressiveness are trait dispositions associated with the vulnerability to suicidal behavior across diagnoses. They are associated with structural and functional abnormalities in brain networks involved in regulation of mood, impulse and behavior. They are also core characteristics of borderline personality disorder (BPD), a disorder defined, in part, by recurrent suicidal behavior. We assessed the relationships between personality traits, brain structure and lethality of suicide attempts in 51 BPD attempters using multiple regression analyses on structural MRI data. BPD was diagnosed by the Diagnostic Interview for Borderline Patients-revised, impulsivity by the Barratt Impulsiveness Scale (BIS), aggression by the Brown-Goodwin Lifetime History of Aggression (LHA), and high lethality by a score of 4 or more on the Lethality Rating Scale (LRS). Sixteen High Lethality attempters were compared to 35 Low Lethality attempters, with no significant differences noted in gender, co-morbidity, childhood abuse, BIS or LHA scores. Degree of medical lethality (LRS) was negatively related to gray matter volumes across multiple fronto-temporal-limbic regions. Effects of impulsivity and aggression on gray matter volumes discriminated High from Low Lethality attempters and differed markedly within lethality groups. Lethality of suicide attempts in BPD may be related to the mediation of these personality traits by specific neural networks. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Altered intrinsic functional brain architecture in female patients with bulimia nervosa

    PubMed Central

    Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun’Ai; Correll, Christoph U.; Mitchell, Philip B.; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei

    2017-01-01

    Background Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. Methods We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. Results We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. Limitations We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Conclusion Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa. PMID:28949286

  20. Altered intrinsic functional brain architecture in female patients with bulimia nervosa.

    PubMed

    Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun'Ai; Correll, Christoph U; Mitchell, Philip B; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei

    2017-11-01

    Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa.

  1. TRIMETHYLTIN, A SELECTIVE LIMBIC SYSTEM NEUROTOXICANT, IMPAIRS RADIAL-ARM MAZE PERFORMANCE

    EPA Science Inventory

    Rats were trained for fifteen sessions in an automated eight arm radial maze prior to treatment with 6 mg/kg trimethyltin chloride. This compound is a neurotoxicant which primarily damages the limbic system, in particular pyramidal cells in the CA3 region of the hippocampus. Foll...

  2. Loss of hippocampal serine protease BSP1/neuropsin predisposes to global seizure activity.

    PubMed

    Davies, B; Kearns, I R; Ure, J; Davies, C H; Lathe, R

    2001-09-15

    Serine proteases in the adult CNS contribute both to activity-dependent structural changes accompanying learning and to the regulation of excitotoxic cell death. Brain serine protease 1 (BSP1)/neuropsin is a trypsin-like serine protease exclusively expressed, within the CNS, in the hippocampus and associated limbic structures. To explore the role of this enzyme, we have used gene targeting to disrupt this gene in mice. Mutant mice were viable and overtly normal; they displayed normal hippocampal long-term synaptic potentiation (LTP) and exhibited no deficits in spatial navigation (water maze). Nevertheless, electrophysiological studies revealed that the hippocampus of mice lacking this specifically expressed protease possessed an increased susceptibility for hyperexcitability (polyspiking) in response to repetitive afferent stimulation. Furthermore, seizure activity on kainic acid administration was markedly increased in mutant mice and was accompanied by heightened immediate early gene (c-fos) expression throughout the brain. In view of the regional selectivity of BSP1/neuropsin brain expression, the observed phenotype may selectively reflect limbic function, further implicating the hippocampus and amygdala in controlling cortical activation. Within the hippocampus, our data suggest that BSP1/neuropsin, unlike other serine proteases, has little effect on physiological synaptic remodeling and instead plays a role in limiting neuronal hyperexcitability induced by epileptogenic insult.

  3. Neural correlates of stress-induced and cue-induced drug craving: influences of sex and cocaine dependence.

    PubMed

    Potenza, Marc N; Hong, Kwang-ik Adam; Lacadie, Cheryl M; Fulbright, Robert K; Tuit, Keri L; Sinha, Rajita

    2012-04-01

    Although stress and drug cue exposure each increase drug craving and contribute to relapse in cocaine dependence, no previous research has directly examined the neural correlates of stress-induced and drug cue-induced craving in cocaine-dependent women and men relative to comparison subjects. Functional MRI was used to assess responses to individualized scripts for stress, drug/alcohol cue and neutral-relaxing-imagery conditions in 30 abstinent cocaine-dependent individuals (16 women, 14 men) and 36 healthy recreational-drinking comparison subjects (18 women, 18 men). Significant three-way interactions between diagnostic group, sex, and script condition were observed in multiple brain regions including the striatum, insula, and anterior and posterior cingulate. Within women, group-by-condition interactions were observed involving these regions and were attributable to relatively increased regional activations in cocaine-dependent women during the stress and, to a lesser extent, neutral-relaxing conditions. Within men, group main effects were observed involving these same regions, with cocaine-dependent men demonstrating relatively increased activation across conditions, with the main contributions from the drug and neutral-relaxing conditions. In men and women, subjective drug-induced craving measures correlated positively with corticostriatal-limbic activations. In cocaine dependence, corticostriatal-limbic hyperactivity appears to be linked to stress cues in women, drug cues in men, and neutral-relaxing conditions in both. These findings suggest that sex should be taken into account in the selection of therapies in the treatment of addiction, particularly those targeting stress reduction.

  4. Limbic and corpus callosum aberrations in adolescents with bipolar disorder: a tract-based spatial statistics analysis.

    PubMed

    Barnea-Goraly, Naama; Chang, Kiki D; Karchemskiy, Asya; Howe, Meghan E; Reiss, Allan L

    2009-08-01

    Bipolar disorder (BD) is a common and debilitating condition, often beginning in adolescence. Converging evidence from genetic and neuroimaging studies indicates that white matter abnormalities may be involved in BD. In this study, we investigated white matter structure in adolescents with familial bipolar disorder using diffusion tensor imaging (DTI) and a whole brain analysis. We analyzed DTI images using tract-based spatial statistics (TBSS), a whole-brain voxel-by-voxel analysis, to investigate white matter structure in 21 adolescents with BD, who also were offspring of at least one parent with BD, and 18 age- and IQ-matched control subjects. Fractional anisotropy (FA; a measure of diffusion anisotropy), trace values (average diffusivity), and apparent diffusion coefficient (ADC; a measure of overall diffusivity) were used as variables in this analysis. In a post hoc analysis, we correlated between FA values, behavioral measures, and medication exposure. Adolescents with BD had lower FA values than control subjects in the fornix, the left mid-posterior cingulate gyrus, throughout the corpus callosum, in fibers extending from the fornix to the thalamus, and in parietal and occipital corona radiata bilaterally. There were no significant between-group differences in trace or ADC values and no significant correlation between behavioral measures, medication exposure, and FA values. Significant white matter tract alterations in adolescents with BD were observed in regions involved in emotional, behavioral, and cognitive regulation. These results suggest that alterations in white matter are present early in the course of disease in familial BD.

  5. The Application of Electro- and Magneto-Encephalography in Tinnitus Research – Methods and Interpretations

    PubMed Central

    Adjamian, Peyman

    2014-01-01

    In recent years, there has been a significant increase in the use of electroencephalography (EEG) and magnetoencephalography (MEG) to investigate changes in oscillatory brain activity associated with tinnitus with many conflicting results. Current view of the underlying mechanism of tinnitus is that it results from changes in brain activity in various structures of the brain as a consequence of sensory deprivation. This in turn gives rise to increased spontaneous activity and/or synchrony in the auditory centers but also involves modulation from non-auditory processes from structures of the limbic and paralimbic system. Some of the neural changes associated with tinnitus may be assessed non-invasively in human beings with MEG and EEG (M/EEG) in ways, which are superior to animal studies and other non-invasive imaging techniques. However, both MEG and EEG have their limitations and research results can be misinterpreted without appropriate consideration of these limitations. In this article, I intend to provide a brief review of these techniques, describe what the recorded signals reflect in terms of the underlying neural activity, and their strengths and limitations. I also discuss some pertinent methodological issues involved in tinnitus-related studies and conclude with suggestions to minimize possible discrepancies between results. The overall message is that while MEG and EEG are extremely useful techniques, the interpretation of results from tinnitus studies requires much caution given the individual variability in oscillatory activity and the limits of these techniques. PMID:25431567

  6. Preferential suppression of limbic Fos expression by intermittent hypoxia in obese diabetic mice.

    PubMed

    Mukai, Takahiro; Nagao, Yuki; Nishioka, Satoshi; Hayashi, Tetsuya; Shimizu, Saki; Ono, Asuka; Sakagami, Yoshihisa; Watanabe, Sho; Ueda, Yoko; Hara, Madoka; Tokudome, Kentaro; Kato, Ryuji; Matsumura, Yasuo; Ohno, Yukihiro

    2013-12-01

    Sleep apnea (SA) causes not only sleep disturbances, but also neurocognitive impairments and/or psychoemotional disorders. Here, we studied the effects of intermittent hypoxia (IH) on forebrain Fos expression using obese diabetic db/db mice to explore the pathophysiological alterations in neural activities and the brain regions related to SA syndrome. Male db/db mice were exposed to IH stimuli (repetitive 6-min cycles of 1min with 5% oxygen followed by 5min with 21% oxygen) for 8h (80 cycles) per day or normoxic condition (control group) for 14 days. Fos protein expression was immunohistochemically examined a day after the last IH exposure. Mapping analysis revealed a significant reduction of Fos expression by IH in limbic and paralimbic structures, including the cingulate and piriform cortices, the core part of the nucleus accumbens and most parts of the amygdala (i.e., the basolateral and basomedial amygdaloid nuclei, cortical amygdaloid area and medial amygdaloid nucleus). In the brain stem regions, Fos expression was region-specifically reduced in the ventral tegmental area while other regions including the striatum, thalamus and hypothalamus, were relatively resistant against IH. In addition, db/db mice exposed to IH showed a trend of sedative and/or depressive behavioral signs in the open field and forced swim tests. The present results illustrate that SA in the obese diabetic model causes neural suppression preferentially in the limbic and paralimbic regions, which may be related to the neuropsychological disturbances associated with SA. Copyright © 2013. Published by Elsevier Ireland Ltd.

  7. Molecular and Cellular Sex Differences at the Intersection of Stress and Arousal

    PubMed Central

    Valentino, Rita J.; Reyes, Beverly; Van Bockstaele, Elisabeth; Bangasser, Debra

    2011-01-01

    Elucidating the mechanisms underlying sex biases in the prevalence and severity of diseases can advance our understanding of their pathophysiological basis and serve as a guide for developing treatments. A well-established sex difference in psychiatry is the higher incidence of mood and anxiety disorders in females. These disorders share stress as a potential etiological contributor and hyperarousal as a core symptom, suggesting that the distinction between sexes lies at the intersection of stress and arousal systems. This review focuses on the link between the stress axis and the brain norepinephrine arousal system as a key point at which sex differences occur and are translated to differences in the expression of mood disorders. Evidence for a circuit designed to relay emotion-related information via the limbic corticotropin-releasing factor (CRF) system to the locus coeruleus (LC)–norepinephrine arousal system is reviewed. This is followed by recent novel findings of sex differences in CRF receptor signaling and trafficking that would result in an enhanced arousal response and a compromised ability to adapt to chronic stress in females. Finally, we discuss evidence for sex differences in LC dendritic structure that allow for increased receipt and processing of limbic information in females compared to males. Together these complementary sets of data suggest that in females, the LC arousal system is poised to process more limbic information and to respond to some of this information in an enhanced manner compared to males. The clinical and therapeutic considerations arising from this perspective are discussed. PMID:21712048

  8. Altered connections on the road to psychopathy.

    PubMed

    Craig, M C; Catani, M; Deeley, Q; Latham, R; Daly, E; Kanaan, R; Picchioni, M; McGuire, P K; Fahy, T; Murphy, D G M

    2009-10-01

    Psychopathy is strongly associated with serious criminal behaviour (for example, rape and murder) and recidivism. However, the biological basis of psychopathy remains poorly understood. Earlier studies suggested that dysfunction of the amygdala and/or orbitofrontal cortex (OFC) may underpin psychopathy. Nobody, however, has ever studied the white matter connections (such as the uncinate fasciculus (UF)) linking these structures in psychopaths. Therefore, we used in vivo diffusion tensor magnetic resonance imaging (DT-MRI) tractography to analyse the microstructural integrity of the UF in psychopaths (defined by a Psychopathy Checklist Revised (PCL-R) score of > or = 25) with convictions that included attempted murder, manslaughter, multiple rape with strangulation and false imprisonment. We report significantly reduced fractional anisotropy (FA) (P<0.003), an indirect measure of microstructural integrity, in the UF of psychopaths compared with age- and IQ-matched controls. We also found, within psychopaths, a correlation between measures of antisocial behaviour and anatomical differences in the UF. To confirm that these findings were specific to the limbic amygdala-OFC network, we also studied two 'non-limbic' control tracts connecting the posterior visual and auditory areas to the amygdala and the OFC, and found no significant between-group differences. Lastly, to determine that our findings in UF could not be totally explained by non-specific confounds, we carried out a post hoc comparison with a psychiatric control group with a past history of drug abuse and institutionalization. Our findings remained significant. Taken together, these results suggest that abnormalities in a specific amygdala-OFC limbic network underpin the neurobiological basis of psychopathy.

  9. Faciobrachial dystonic seizures result from fronto-temporo-basalganglial network involvement.

    PubMed

    Iyer, Rajesh Shankar; Ramakrishnan, T C R; Karunakaran; Shinto, Ajit; Kamaleshwaran, Koramadai Karuppuswamy

    2017-01-01

    •Faciobrachial dystonic seizures (FBDS) are caused by autoantibodies to leucine-rich glioma-inactivated1 proteins, a component of the voltage-gated potassium channel complex (VGKC-complex) and precede the clinical presentation of limbic encephalitis.•The exact pathophysiology of FBDS is not known and whether they are seizures or movement disorder is still debated.•We suggest the fronto-temporo-basal ganglia network involving the medial frontal and temporal regions along with the corpus striatum and substantia nigra being responsible for the clinical phenomenon of FBDS.•The varied clinical, electrical and imaging features of FBDS in our cases and in the literature are best explained by involvement of this network.•Entrainment from any part of this network will result in similar clinical expression of FBDS, whereas other electro-clinical associations and duration depends on the extent of involvement of the network.

  10. The Basolateral Amygdala and Nucleus Accumbens Core Mediate Dissociable Aspects of Drug Memory Reconsolidation

    ERIC Educational Resources Information Center

    Theberge, Florence R. M.; Milton, Amy L.; Belin, David; Lee, Jonathan L. C.; Everitt, Barry J.

    2010-01-01

    A distributed limbic-corticostriatal circuitry is implicated in cue-induced drug craving and relapse. Exposure to drug-paired cues not only precipitates relapse, but also triggers the reactivation and reconsolidation of the cue-drug memory. However, the limbic cortical-striatal circuitry underlying drug memory reconsolidation is unclear. The aim…

  11. [Anti-Ma2, anti-NMDA-receptor and anti-GluRε2 limbic encephalitis with testicular seminoma: short-term memory disturbance].

    PubMed

    Kubota, Akihiro; Tajima, Takashi; Narukawa, Shinya; Yamazato, Masamizu; Fukaura, Hikoaki; Takahashi, Yukitoshi; Tanaka, Keiko; Shimizu, Jun; Nomura, Kyoichi

    2012-01-01

    A 36-year-old man presented with cognitive impairment and disturbance of short-term memory functions with character change. Cerebrospinal fluid analysis revealed no abnormalities; however, brain MRI revealed high-signal intensity from bilateral hippocampus lesions on fluid attenuated inversion recovery (FLAIR) images and T(2) weighted images. The 18F-fluorodeoxyglucose PET demonstrated high glucose uptake in the bilateral hippocampus lesions. He was diagnosed as limbic encephalitis, and was administered high-dose intravenous methylprednisolone and immune adsorption plasma therapy followed by intravenous immunoglobulin therapy. MRI abnormalities improved after treatment but recent memory disturbance remained. Ma2 antibody, NMDA-receptor antibody, and GluRε2 antibody were positive. Eleven months atter the onset of disease, the tumor was identified in left testicle by ultrasound and removed the tumor. The pathological findings were seminoma. We experienced a case of paraneoplastic limbic encephalitis associated with seminoma with short-term memory disturbance. The occurrence of paraneoplastic limbic encephalitis with antibodies against cell membrane (NMDA-receptor antibody and GluRε2 antibody) and intracellular (Ma2 antibody) is rare even in the literature.

  12. Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures.

    PubMed

    Thyrion, Lisa; Raedt, Robrecht; Portelli, Jeanelle; Van Loo, Pieter; Wadman, Wytse J; Glorieux, Griet; Lambrecht, Bart N; Janssens, Sophie; Vonck, Kristl; Boon, Paul

    2016-03-01

    Recent evidence points at an important role of endogenous cell-damage induced pro-inflammatory molecules in the generation of epileptic seizures. Uric acid, under the form of monosodium urate crystals, has shown to have pro-inflammatory properties in the body, but less is known about its role in seizure generation. This study aimed to unravel the contribution of uric acid to seizure generation in a mouse model for acute limbic seizures. We measured extracellular levels of uric acid in the brain and modulated them using complementary pharmacological and genetic tools. Local extracellular uric acid levels increased three to four times during acute limbic seizures and peaked between 50 and 100 min after kainic acid infusion. Manipulating uric acid levels through administration of allopurinol or knock-out of urate oxidase significantly altered the number of generalized seizures, decreasing and increasing them by a twofold respectively. Taken together, our results consistently show that uric acid is released during limbic seizures and suggest that uric acid facilitates seizure generalization. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A neurophysiologic model for aggressive behavior in the cat.

    PubMed

    Andy, O J; Giurintano, L P; Giurintano, S L

    1978-01-01

    A neurophysiologic model for aggressive behavior in the cat is proposed. Stimulus-bound and seizure-bound aggression was evaluated in relation to limbic and basal ganglia induced seizures (after-discharges). Electrically induced limbic and basal ganglia after-discharges were used because they are known to implicate septohypothalamic sites from which aggression can be elicited by direct stimulation. The occurrence of behavioral aggression is correlated with the discharge characteristics of a single discharging system and with two interacting discharging systems. Aggression is composed of autonomic and somato-motor components which poses relatively low and high thresholds, respectively, for their activation. Aggression occurring during a combined septum and amygdala discharge was more intense and prolonged than with a septum discharge alone. Participation of a slow frequency discharging basal ganglia system activated seizure-bound aggression in an otherwise nonaggressive limbic seizure. The limbic and basal ganglia stimulations and after-discharges lowered the excitability threshold of the aggression system and made it more vulnerable to being activated by external stimuli, such as visual and auditory stimuli. These observations are reminiscent of patients with aggressive behavior associated with psychomotor seizures.

  14. Systematic review of the neural basis of social cognition in patients with mood disorders.

    PubMed

    Cusi, Andrée M; Nazarov, Anthony; Holshausen, Katherine; Macqueen, Glenda M; McKinnon, Margaret C

    2012-05-01

    This review integrates neuroimaging studies of 2 domains of social cognition--emotion comprehension and theory of mind (ToM)--in patients with major depressive disorder and bipolar disorder. The influence of key clinical and method variables on patterns of neural activation during social cognitive processing is also examined. Studies were identified using PsycINFO and PubMed (January 1967 to May 2011). The search terms were "fMRI," "emotion comprehension," "emotion perception," "affect comprehension," "affect perception," "facial expression," "prosody," "theory of mind," "mentalizing" and "empathy" in combination with "major depressive disorder," "bipolar disorder," "major depression," "unipolar depression," "clinical depression" and "mania." Taken together, neuroimaging studies of social cognition in patients with mood disorders reveal enhanced activation in limbic and emotion-related structures and attenuated activity within frontal regions associated with emotion regulation and higher cognitive functions. These results reveal an overall lack of inhibition by higher-order cognitive structures on limbic and emotion-related structures during social cognitive processing in patients with mood disorders. Critically, key variables, including illness burden, symptom severity, comorbidity, medication status and cognitive load may moderate this pattern of neural activation. Studies that did not include control tasks or a comparator group were included in this review. Further work is needed to examine the contribution of key moderator variables and to further elucidate the neural networks underlying altered social cognition in patients with mood disorders. The neural networks under lying higher-order social cognitive processes, including empathy, remain unexplored in patients with mood disorders.

  15. A voxel-based lesion study on facial emotion recognition after penetrating brain injury

    PubMed Central

    Dal Monte, Olga; Solomon, Jeffrey M.; Schintu, Selene; Knutson, Kristine M.; Strenziok, Maren; Pardini, Matteo; Leopold, Anne; Raymont, Vanessa; Grafman, Jordan

    2013-01-01

    The ability to read emotions in the face of another person is an important social skill that can be impaired in subjects with traumatic brain injury (TBI). To determine the brain regions that modulate facial emotion recognition, we conducted a whole-brain analysis using a well-validated facial emotion recognition task and voxel-based lesion symptom mapping (VLSM) in a large sample of patients with focal penetrating TBIs (pTBIs). Our results revealed that individuals with pTBI performed significantly worse than normal controls in recognizing unpleasant emotions. VLSM mapping results showed that impairment in facial emotion recognition was due to damage in a bilateral fronto-temporo-limbic network, including medial prefrontal cortex (PFC), anterior cingulate cortex, left insula and temporal areas. Beside those common areas, damage to the bilateral and anterior regions of PFC led to impairment in recognizing unpleasant emotions, whereas bilateral posterior PFC and left temporal areas led to impairment in recognizing pleasant emotions. Our findings add empirical evidence that the ability to read pleasant and unpleasant emotions in other people's faces is a complex process involving not only a common network that includes bilateral fronto-temporo-limbic lobes, but also other regions depending on emotional valence. PMID:22496440

  16. Caspr2 antibody limbic encephalitis is associated with Hashimoto thyroiditis and thymoma.

    PubMed

    Lee, Chih-Hong; Lin, Jainn-Jim; Lin, Kun-Ju; Chang, Bao-Luen; Hsieh, Hsiang-Yao; Chen, Wei-Hsun; Lin, Kuang-Lin; Fung, Hon-Chung; Wu, Tony

    2014-06-15

    Contactin-associated protein 2 (Caspr2) antibody is a neuronal surface antibody (NSAb) capable of causing disorders involving central and peripheral nervous systems (PNS). Thymoma can be found in patients with Caspr2 antibodies and is most frequently associated with PNS symptoms. Myasthenia gravis can be found in these patients, but Hashimoto thyroiditis (HT) has not been reported. A 76-year-old woman presented with sub-acute-onset changes in mental status. Further investigations revealed thymoma and HT. The presence of NSAb was tested by immunofluorescence on human embryonic kidney-293 cells. Treatment included corticosteroids, azathioprine, thyroxine, plasmapheresis, and thymectomy. Caspr2 antibody was positive in serum but absent in CSF. Brain magnetic resonance imaging (MRI) showed diffuse cortical atrophy, but did not change significantly after treatments. Brain positron emission tomography (PET) revealed diffuse hypometabolism over the cerebral cortex. The patient's mental status only partially improved. In Caspr2 antibody-associated syndromes, thymoma can occur in patients presenting only with LE, and HT can be an accompanying disease. Brain MRI and PET may not show specific lesions in limbic area. Patients with Caspr2 antibodies and thymoma may not have good prognosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. [Update on Herpes Simplex Encephalitis].

    PubMed

    Kuroda, Hiroshi

    2015-07-01

    Herpes simplex encephalitis (HSE), which is caused by the herpes simplex virus (HSV), is a severe neuro-infectious disease characterized by high mortality and morbidity. We reviewed the pathomechanism, diagnosis, and treatment of HSE based on recent progress in the field. The highlighted mechanism of HSE in this review is immune-mediated tissue damage caused by host immunity. Major symptoms of HSE include psychiatric alteration, Klüver-Bucy syndrome, and amnesia, caused by frequent involvement of the limbic system. An important differential diagnosis of HSE is autoimmune limbic encephalitis, including anti-N-methyl-D-aspartate receptor encephalitis, and anti-voltage-gated K+ channel encephalitis. HSE is definitely diagnosed based on the detection of HSV-DNA by polymerase chain reaction and/or the detection of HSV-IgG antibody in the cerebrospinal fluid (CSF). Repeated CSF examinations are required for the accurate diagnosis of HSE. Acyclovir (ACV) plays a central role in the treatment of HSE, and its early initiation is essential for good outcome in patients with HSE. Acute administration of corticosteroids for HSE is controversial; a randomized, double-blind, placebo-controlled trial to investigate the efficacy of add-on corticosteroids to ACV is ongoing.

  18. Altered brain response to reward and punishment in adolescents with Anorexia Nervosa

    PubMed Central

    Bischoff-Grethe, Amanda; McCurdy, Danyale; Grenesko-Stevens, Emily; (Zoe) Irvine, Laura E.; Wagner, Angela; Yau, Wai-Ying Wendy; Fennema-Notestine, Christine; Wierenga, Christina E.; Fudge, Julie L.; Delgado, Mauricio R.; Kaye, Walter H.

    2013-01-01

    Adults recovered from anorexia nervosa (AN) have altered reward modulation within striatal limbic regions associated with the emotional significance of stimuli, and executive regions concerned with planning and consequences. We hypothesized that adolescents with AN would show similar disturbed reward modulation within the striatum and the anterior cingulate cortex, a region connected to the striatum and involved in reward-guided action selection. Using functional magnetic resonance imaging, twenty-two adolescent females (10 restricting-type AN, 12 healthy volunteers) performed a monetary guessing task. Time series data associated with monetary wins and losses within striatal and cingulate regions of interest were subjected to a linear mixed effects analysis. All participants responded more strongly to wins versus losses in limbic and anterior executive striatal territories. However, AN participants exhibited an exaggerated response to losses compared to wins in posterior executive and sensorimotor striatal regions, suggesting altered function in circuitry responsible for coding the affective context of stimuli and action selection based upon these valuations. As AN individuals are particularly sensitive to criticism, failure, and making mistakes, these findings may reflect the neural processes responsible for a bias in those with AN to exaggerate negative consequences. PMID:24148909

  19. Altered brain response to reward and punishment in adolescents with Anorexia nervosa.

    PubMed

    Bischoff-Grethe, Amanda; McCurdy, Danyale; Grenesko-Stevens, Emily; Irvine, Laura E Zoe; Wagner, Angela; Yau, Wai-Ying Wendy; Fennema-Notestine, Christine; Wierenga, Christina E; Fudge, Julie L; Delgado, Mauricio R; Kaye, Walter H

    2013-12-30

    Adults recovered from Anorexia nervosa (AN) have altered reward modulation within striatal limbic regions associated with the emotional significance of stimuli, and executive regions concerned with planning and consequences. We hypothesized that adolescents with AN would show similar disturbed reward modulation within the striatum and the anterior cingulate cortex, a region connected to the striatum and involved in reward-guided action selection. Using functional magnetic resonance imaging, twenty-two adolescent females (10 restricting-type AN, 12 healthy volunteers) performed a monetary guessing task. Time series data associated with monetary wins and losses within striatal and cingulate regions of interest were subjected to a linear mixed effects analysis. All participants responded more strongly to wins versus losses in limbic and anterior executive striatal territories. However, AN participants exhibited an exaggerated response to losses compared to wins in posterior executive and sensorimotor striatal regions, suggesting altered function in circuitry responsible for coding the affective context of stimuli and action selection based upon these valuations. As AN individuals are particularly sensitive to criticism, failure, and making mistakes, these findings may reflect the neural processes responsible for a bias in those with AN to exaggerate negative consequences. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Neural correlates of social exclusion across ages: A coordinate-based meta-analysis of functional MRI studies.

    PubMed

    Vijayakumar, Nandita; Cheng, Theresa W; Pfeifer, Jennifer H

    2017-06-01

    Given the recent surge in functional neuroimaging studies on social exclusion, the current study employed activation likelihood estimation (ALE) based meta-analyses to identify brain regions that have consistently been implicated across different experimental paradigms used to investigate exclusion. We also examined the neural correlates underlying Cyberball, the most commonly used paradigm to study exclusion, as well as differences in exclusion-related activation between developing (7-18 years of age, from pre-adolescence up to late adolescence) and emerging adult (broadly defined as undergraduates, including late adolescence and young adulthood) samples. Results revealed involvement of the bilateral medial prefrontal and posterior cingulate cortices, right precuneus and left ventrolateral prefrontal cortex across the different paradigms used to examine social exclusion; similar activation patterns were identified when restricting the analysis to Cyberball studies. Investigations into age-related effects revealed that ventrolateral prefrontal activations identified in the full sample were driven by (i.e. present in) developmental samples, while medial prefrontal activations were driven by emerging adult samples. In addition, the right ventral striatum was implicated in exclusion, but only in developmental samples. Subtraction analysis revealed significantly greater activation likelihood in striatal and ventrolateral prefrontal clusters in the developmental samples as compared to emerging adults, though the opposite contrast failed to identify any significant regions. Findings integrate the knowledge accrued from functional neuroimaging studies on social exclusion to date, highlighting involvement of lateral prefrontal regions implicated in regulation and midline structures involved in social cognitive and self-evaluative processes across experimental paradigms and ages, as well as limbic structures in developing samples specifically. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Intrahippocampal Pathways Involved in Learning/Memory Mechanisms are Affected by Intracerebral Infusions of Amyloid-β25-35 Peptide and Hydrated Fullerene C60 in Rats.

    PubMed

    Gordon, Rita; Podolski, Igor; Makarova, Ekaterina; Deev, Alexander; Mugantseva, Ekaterina; Khutsyan, Sergey; Sengpiel, Frank; Murashev, Arkady; Vorobyov, Vasily

    2017-01-01

    Primary memory impairments associated with increased level of amyloid-β (Aβ) in the brain have been shown to be linked, partially, with early pathological changes in the entorhinal cortex (EC) which spread on the whole limbic system. While the hippocampus is known to play a key role in learning and memory mechanisms, it is as yet unclear how its structures are involved in the EC pathology. In this study, changes in memory and neuronal morphology in male Wistar rats intrahippocampally injected with Aβ25-35 were correlated on days 14 and 45 after the injection to reveal specific cognitive-structural associations. The main focus was on the dentate gyrus (DG) and hippocampal areas of CA1 and CA3 because of their involvement in afferent flows from EC to the hippocampus through tri-synaptic (EC → DG → CA3 → CA1) and/or mono-synaptic (EC → CA1) pathways. Evident memory impairments were observed at both time points after Aβ25-35 injection. However, on day 14, populations of morphological intact neurons were decreased in CA3 and, drastically, in CA1, and the DG supramedial bundle was significantly damaged. On day 45, this bundle largely and CA1 neurons partially recovered, whereas CA3 neurons remained damaged. We suggest that Aβ25-35 primarily affects the tri-synaptic pathway, destroying the granular cells in the DG supramedial area and neurons in CA3 and, through the Schaffer collaterals, in CA1. Intrahippocampal pretreatment with hydrated fullerene C60 allows the neurons and their connections to survive the amyloidosis, thus supporting the memory mechanisms.

  2. The anatomy of cognitive impairment in amyotrophic lateral sclerosis: more than frontal lobe dysfunction.

    PubMed

    Tsermentseli, Stella; Leigh, P Nigel; Goldstein, Laura H

    2012-02-01

    Cognitive and behavioural impairments accompanying amyotrophic lateral sclerosis (ALS) have been reported since the early 20th century. Typically, these changes can be associated with a dysexecutive syndrome or manifest as a frontotemporal dementia (FTD). Although the nature of specific frontotemporal dysfunction in ALS remains to be refined, as with the clinical presentation, there is likely to be significant heterogeneity. This article will review the current state of knowledge regarding the neuropathological and neuroanatomical basis for cognitive dysfunction in ALS. Neuropathological findings suggest that ALS does not selectively affect the frontotemporal network but rather is part of a broad clinico-pathological spectrum now known as TAR-DNA binding protein (TDP)-43 proteinopathies. Functional neuroimaging has supported neuropsychological findings of frontotemporal dysfunction but has also implied the involvement of somatosensory areas. Structural neuroimaging has not been able to establish a specific hypothesis of extra-motor cortical atrophy beyond the combination of various frontal, temporal and limbic areas. The finding of reduction in the integrity of white matter in the frontal, temporal and parietal lobes including long association fibers suggests that subcortical involvement may underlie both cognitive and functional changes in ALS. Future perspectives for further investigations are highlighted. Copyright © 2011 Elsevier Srl. All rights reserved.

  3. Hippocampus and amygdala morphology in adults with attention-deficit hyperactivity disorder

    PubMed Central

    Perlov, Evgeniy; Philipsen, Alexandra; Tebartz van Elst, Ludger; Ebert, Dieter; Henning, Juergen; Maier, Simon; Bubl, Emanuel; Hesslinger, Bernd

    2008-01-01

    Objective Attention-deficit hyperactivity disorder (ADHD) in adulthood is a serious health problem with a prevalence of up to 4%. Limbic structures have been implicated in the genesis of ADHD; it has been suggested that they mediate mood and cognitive disturbances in affected individuals. Recently, a large study involving children and adolescents with ADHD reported bilateral enlargement of the hippocampus and indirect evidence of amygdala volume loss in this patient sample. We sought to test the hypothesis that, like in pediatric patients, there might be hippocampus and amygdala volume abnormalities in adult patients with ADHD. Methods We studied 27 adult patients with ADHD and 27 group-matched healthy volunteers using a 1.5 T magnetic resonance imaging scanner. We manually obtained morphometric measurements of the regions mentioned. Results In contrast to previous findings in children and adolescents, we found no significant differences in hippocampus and amygdala volumes among adults with and without the disorder. Conclusion Findings of hippocampus enlargement and amygdala volume loss are not very stable across different samples of patients with ADHD. Contradictory findings may be related to the different locations of alterations along the complex circuits responsible for the different symptoms of ADHD. Further studies involving larger samples of adult patients with ADHD and using multimodal designs are needed. PMID:18982173

  4. Are Amygdalar Volume Alterations in Children with Tourette Syndrome Due to ADHD Comorbidity?

    ERIC Educational Resources Information Center

    Ludolph, Andrea G.; Pinkhardt, Elmar H.; van Elst, Ludger Tebartz; Libal, Gerhard; Ludolph, Albert C.; Fegert, Jorg M.; Kassubek, Jan

    2008-01-01

    Recent studies have shown that changes in the basal ganglia circuitry and limbic loops may play an important role both in Tourette syndrome (TS) and attention-deficit-hyperactivity disorder (ADHD). This study aimed to investigate in vivo possible morphological alterations of the amygdala as a key component of the limbic system. Amygdalar and total…

  5. Limbic and prefrontal responses to facial emotion expressions in depersonalization.

    PubMed

    Lemche, Erwin; Surguladze, Simon A; Giampietro, Vincent P; Anilkumar, Ananthapadmanabha; Brammer, Michael J; Sierra, Mauricio; Chitnis, Xavier; Williams, Steven C R; Gasston, David; Joraschky, Peter; David, Anthony S; Phillips, Mary L

    2007-03-26

    Depersonalization disorder, characterized by emotional detachment, has been associated with increased prefrontal cortical and decreased autonomic activity to emotional stimuli. Event-related fMRI with simultaneous measurements of skin conductance levels occurred in nine depersonalization disorder patients and 12 normal controls to neutral, mild and intense happy and sad facial expressions. Patients, but not controls, showed decreases in subcortical limbic activity to increasingly intense happy and sad facial expressions, respectively. For both happy and sad expressions, negative correlations between skin conductance measures in bilateral dorsal prefrontal cortices occurred only in depersonalization disorder patients. Abnormal decreases in limbic activity to increasingly intense emotional expressions, and increases in dorsal prefrontal cortical activity to emotionally arousing stimuli may underlie the emotional detachment of depersonalization disorder.

  6. Stress and the developing adolescent brain.

    PubMed

    Eiland, L; Romeo, R D

    2013-09-26

    Adolescence is a time of continued brain maturation, particularly in limbic and cortical regions, which undoubtedly plays a role in the physiological and emotional changes coincident with adolescence. An emerging line of research has indicated that stressors experienced during this crucial developmental stage may affect the trajectory of this neural maturation and contribute to the increase in psychological morbidities, such as anxiety and depression, often observed during adolescence. In this review, we discuss the short- and long-term effects of periadolescent stress exposure on the structure and function of the brain. More specifically, we examine how stress at prepubertal and early adolescent stages of development affects the morphological plasticity of limbic and cortical brain regions, as well as the enduring effects of adolescent stress exposure on these brain regions in adulthood. We suggest that, due to a number of converging factors during this period of maturation, the adolescent brain may be particularly sensitive to stress-induced neurobehavioral dysfunctions with important consequences on an individual's immediate and long-term health and well-being. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Influence of lesions of the limbic-hypothalamic system on adrenocortical responses to daily repeated heat exposures in rabbits.

    PubMed

    Seto, K; Kaba, H; Saito, H; Edashige, N; Kawakami, M

    1983-07-01

    The effects of lesions in the basal medial hypothalamus and limbic structure upon the responses of adrenocorticoids formation in adrenal slices of rabbits to daily repeated heat exposures has been investigated. (1) The adrenocortical responses to heat exposure on the 1st day were decreased by lesions in the periventricular arcuate nucleus (ARC), ventromedial hypothalamus (VMH), stria terminalis (ST) and dorsal fornix (FX). (2) There were no effects of heat exposure on the 10th day upon the adrenocorticoid formation in either the sham-lesioned rabbits or the rabbits with the lesions of ARC, VMH and ST. (3) In rabbits with the FX lesions, the adrenocorticoids formation was significantly increased by heat exposure on the 10th day. (4) These results suggested that the basal medial hypothalamus, amygdala (AMYG)-ST system and dorsal hippocampus (HPC)-FX system participated in the mechanisms of adrenocortical responses to heat exposure on the 1st day, but only the HPC-FX system played some roles in complete disappearance process of adrenocortical responses to heat exposure by repetition of exposures.

  8. The surface of the eye – a superficial entity with deep repercussions

    PubMed Central

    Potop, Vasile; Dumitrache, Marieta; Ciocalteu, Alina

    2009-01-01

    The surface of the eye is an anatomical and functional entity with a relatively recent delimitation but with significant therapeutic and diagnostic consequences. The pathology of the conjunctive and cornea must be approached by looking at the interrelations between the two tissues that are so different anatomically and functionally but in the same time form a unit in structuring the eye’s surface. There are two major categories of relations between the two tissues: one of them is mediated by lachrymal secretion, a process whose complexity is not yet fully understood, and the other is germinal, referring to the stem cells located at the limbus which become epithelial cornea cells that can fixate lachrymal fluid. Imbalances in the quantity and quality of lachrymal secretion can be compensated, up to a certain point, by artificial products, but in severe cases only specially prepared autologous serum can compensate the deficit. The limbic deficits that affect stem cells require complex therapeutic procedures like limbic cell transplant, using an amniotic membrane or autologous serum. PMID:20108493

  9. Poor Brain Growth in Extremely Preterm Neonates Long Before the Onset of Autism Spectrum Disorder Symptoms.

    PubMed

    Padilla, Nelly; Eklöf, Eva; Mårtensson, Gustaf E; Bölte, Sven; Lagercrantz, Hugo; Ådén, Ulrika

    2017-02-01

    Preterm infants face an increased risk of autism spectrum disorder (ASD). The relationship between autism during childhood and early brain development remains unexplored. We studied 84 preterm children born at <27 weeks of gestation, who underwent neonatal magnetic resonance imaging (MRI) at term and were screened for ASD at 6.5 years. Full-scale intelligence quotient was measured and neonatal morbidities were recorded. Structural brain morphometric studies were performed in 33 infants with high-quality MRI and no evidence of focal brain lesions. Twenty-three (27.4%) of the children tested ASD positive and 61 (72.6%) tested ASD negative. The ASD-positive group had a significantly higher frequency of neonatal complications than the ASD-negative group. In the subgroup of 33 children, the ASD infants had reduced volumes in the temporal, occipital, insular, and limbic regions and in the brain areas involved in social/behavior and salience integration. This study shows that the neonatal MRI scans of extremely preterm children, subsequently diagnosed with ASD at 6.5 years, showed brain structural alterations, localized in the regions that play a key role in the core features of autism. Early detection of these structural alterations may allow the early identification and intervention of children at risk of ASD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Different patterns of local field potentials from limbic DBS targets in patients with major depressive and obsessive compulsive disorder

    PubMed Central

    Neumann, W-J; Huebl, J; Brücke, C; Gabriëls, L; Bajbouj, M; Merkl, A; Schneider, G-H; Nuttin, B; Brown, P; Kühn, AA

    2016-01-01

    The role of distinct limbic areas in emotion regulation has been largely inferred from neuroimaging studies. Recently, the opportunity for intracranial recordings from limbic areas has arisen in patients undergoing deep brain stimulation (DBS) for neuropsychiatric disorders including major depressive disorder (MDD) and obsessive compulsive disorder (OCD). Here we test the hypothesis that distinct temporal patterns of local field potential (LFP) activity in the human limbic system reflect disease state and symptom severity in MDD and OCD patients. To this end, we recorded LFPs via implanted DBS electrodes from the bed nucleus of stria terminalis (BNST area) in 12 patients (5 OCD, 7 MDD) and from the subgenual cingulate cortex in 7 MDD patients (CG25 area). We found a distinct pattern of oscillatory activity with significantly higher α-power in MDD compared with OCD in the BNST area (broad α-band 8–14 Hz; P<0.01) and a similar level of α-activity in the CG25 area as in the BNST area in MDD patients. The mean α-power correlated with severity of depressive symptoms as assessed by the Beck depression inventory in MDD (n = 14, r = 0.55, P = 0.042) but not with severity of obsessive compulsive symptoms in OCD. Here we show larger α-band activity in MDD patients compared with OCD recorded from intracranial DBS targets. Our results suggest that α-activity in the limbic system may be a signature of symptom severity in MDD and may serve as a potential state biomarker for closed loop DBS in MDD. PMID:24514569

  11. Bilateral limbic system destruction in man

    PubMed Central

    Feinstein, Justin S.; Rudrauf, David; Khalsa, Sahib S.; Cassell, Martin D.; Bruss, Joel; Grabowski, Thomas J.; Tranel, Daniel

    2010-01-01

    We report here a case study of a rare neurological patient with bilateral brain damage encompassing a substantial portion of the so-called “limbic system.” The patient, Roger, has been studied in our laboratory for over 14 years and the current article presents his complete neuroanatomical and neuropsychological profiles. The brain damage occurred in 1980 following an episode of herpes simplex encephalitis. The amount of destroyed neural tissue is extensive and includes bilateral damage to core limbic and paralimbic regions, including the hippocampus, amygdala, parahippocampal gyrus, temporal poles, orbitofrontal cortex, basal forebrain, anterior cingulate cortex, and insular cortex. The right hemisphere is more extensively affected than the left, although the lesions are largely bilateral. Despite the magnitude of his brain damage, Roger has a normal IQ, average to above average attention, working memory, and executive functioning skills, and very good speech and language abilities. In fact, his only obvious presenting deficits are a dense global amnesia and a severe anosmia and ageusia. Roger's case presents a rare opportunity to advance our understanding of the critical functions underlying the human limbic system, and the neuropsychological and neuroanatomical data presented here provide a critical foundation for such investigations. PMID:19763994

  12. Orbitofrontal and limbic signatures of empathic concern and intentional harm in the behavioral variant frontotemporal dementia.

    PubMed

    Baez, Sandra; Morales, Juan P; Slachevsky, Andrea; Torralva, Teresa; Matus, Cristian; Manes, Facundo; Ibanez, Agustin

    2016-02-01

    Perceiving and evaluating intentional harms in an interpersonal context engages both cognitive and emotional domains. This process involves inference of intentions, moral judgment, and, crucially, empathy towards others' suffering. This latter skill is notably impaired in behavioral variant frontotemporal dementia (bvFTD). However, the relationship between regional brain atrophy in bvFTD and deficits in the above-mentioned abilities is not well understood. The present study investigated how gray matter (GM) atrophy in bvFTD patients correlates with the perception and evaluation of harmful actions (attribution of intentionality, evaluation of harmful behavior, empathic concern, and moral judgment). First, we compared the behavioral performance of 26 bvFTD patients and 23 healthy controls on an experimental task (ET) indexing intentionality, empathy, and moral cognition during evaluation of harmful actions. Second, we compared GM volume in patients and controls using voxel-based morphometry (VBM). Third, we examined brain regions where atrophy might be associated with specific impairments in the patient group. Finally, we explored whether the patients' deficits in intentionality comprehension and empathic concern could be partially explained by regional GM atrophy or impairments in other relevant factors, such as executive functions (EFs). In bvFTD patients, atrophy of limbic structures (amygdala and anterior paracingulate cortex--APC) was related to impairments in intentionality comprehension, while atrophy of the orbitofrontal cortex (OFC) was associated with empathic concern deficits. Intentionality comprehension impairments were predicted by EFs and orbitofrontal atrophy predicted deficits in empathic concern. Thus, although the perception and evaluation of harmful actions are variously compromised in bvFTD, deficits in empathic concern may be central to this syndrome as they are associated with one of the earliest atrophied region. More generally, our results shed light on social cognition deficits in bvFTD and may have important clinical implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Association of enhanced limbic response to threat with decreased cortical facial recognition memory response in schizophrenia

    PubMed Central

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Loughead, James; Ruparel, Kosha; Valdez, Jeffrey N.; Siegel, Steven J.; Kohler, Christian G.; Gur, Raquel E.; Gur, Ruben C.

    2014-01-01

    Objective Recognition memory of faces is impaired in patients with schizophrenia, as is the neural processing of threat-related signals, but how these deficits interact to produce symptoms is unclear. Here we used an affective face recognition paradigm to examine possible interactions between cognitive and affective neural systems in schizophrenia. Methods fMRI (3T) BOLD response was examined in 21 controls and 16 patients during a two-choice recognition task using images of human faces. Each target face had previously been displayed with a threatening or non-threatening affect, but here were displayed with neutral affect. Responses to successful recognition and for the effect of previously threatening vs. non-threatening affect were evaluated, and correlations with total BPRS examined. Functional connectivity analyses examined the relationship between activation in the amygdala and cortical regions involved in recognition memory. Results Patients performed the task more slowly than controls. Controls recruited the expected cortical regions to a greater degree than patients, and patients with more severe symptoms demonstrated proportionally less recruitment. Increased symptoms were also correlated with augmented amygdala and orbitofrontal cortex response to threatening faces. Controls exhibited a negative correlation between activity in the amygdala and cortical regions involved in cognition, while patients showed a weakening of that relationship. Conclusions Increased symptoms were related to an enhanced threat response in limbic regions and a diminished recognition memory response in cortical regions, supporting a link between two brain systems often examined in isolation. This finding suggests that abnormal processing of threat-related signals in the environment may exacerbate cognitive impairment in schizophrenia. PMID:20194482

  14. Area 4 has layer IV in adult primates

    PubMed Central

    García-Cabezas, Miguel Ángel; Barbas, Helen

    2014-01-01

    There are opposing views about the status of layer IV in primary motor cortex (area 4). Cajal described a layer IV in area 4 of adult humans. In contrast, Brodmann found layer IV in development but not in adult primates and called area 4 ‘agranular’. We addressed this issue in rhesus monkeys using the neural marker SMI-32, which labels neurons in lower layer III and upper V, but not in layer IV. SMI-32 delineated a central unlabeled cortical stripe in area 4 that corresponds to layer IV, which was populated with small interneurons also found in layer IV in ‘granular’ areas (such as area 46). We distinguished layer IV interneurons from projection neurons in the layers above and below using cellular criteria. The commonly used term ‘agranular’ for area 4 is also used for the phylogenetically ancient limbic cortices, confusing areas that differ markedly in laminar structure. This issue pertains to the systematic variation in the architecture across cortices, traced from limbic cortices through areas with increasingly more elaborate laminar structure. The principle of systematic variation can be used to predict laminar patterns of connections across cortical systems. This principle places area 4 and agranular anterior cingulate cortices at opposite poles of the graded laminar differentiation of motor cortices. The status of layer IV in area 4 thus pertains to core organizational features of the cortex, its connections and evolution. PMID:24735460

  15. Lithium-methomyl induced seizures in rats: A new model of status epilepticus?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Rafal M.; Blaszczak, Piotr; Dekundy, Andrzej

    2007-03-15

    Behavioral, electroencephalographic (EEG) and neuropathological effects of methomyl, a carbamate insecticide reversibly inhibiting acetylcholinesterase activity, were studied in naive or lithium chloride (24 h, 3 mEq/kg, s.c.) pretreated male Wistar rats. In naive animals, methomyl with equal potency produced motor limbic seizures and fatal status epilepticus. Thus, the CD50 values (50% convulsant dose) for these seizure endpoints were almost equal to the LD50 (50% lethal dose) of methomyl (13 mg/kg). Lithium pretreated rats were much more susceptible to convulsant, but not lethal effect of methomyl. CD50 values of methomyl for motor limbic seizures and status epilepticus were reduced by lithiummore » pretreatment to 3.7 mg/kg (a 3.5-fold decrease) and 5.2 mg/kg (a 2.5-fold decrease), respectively. In contrast, lithium pretreatment resulted in only 1.3-fold decrease of LD50 value of methomyl (9.9 mg/kg). Moreover, lithium-methomyl treated animals developed a long-lasting status epilepticus, which was not associated with imminent lethality observed in methomyl-only treated rats. Scopolamine (10 mg/kg) or diazepam (10 mg/kg) protected all lithium-methomyl treated rats from convulsions and lethality. Cortical and hippocampal EEG recordings revealed typical epileptic discharges that were consistent with behavioral seizures observed in lithium-methomyl treated rats. In addition, convulsions induced by lithium-methomyl treatment were associated with widespread neurodegeneration of limbic structures. Our observations indicate that lithium pretreatment results in separation between convulsant and lethal effects of methomyl in rats. As such, seizures induced by lithium-methomyl administration may be an alternative to lithium-pilocarpine model of status epilepticus, which is associated with high lethality.« less

  16. Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies

    PubMed Central

    Kober, Hedy; Barrett, Lisa Feldman; Joseph, Josh; Bliss-Moreau, Eliza; Lindquist, Kristen; Wager, Tor D.

    2009-01-01

    We performed an updated quantitative meta-analysis of 162 neuroimaging studies of emotion using a novel multi-level kernel-based approach, focusing on locating brain regions consistently activated in emotional tasks and their functional organization into distributed functional groups, independent of semantically defined emotion category labels (e.g., “anger,” “fear”). Such brain-based analyses are critical if our ways of labeling emotions are to be evaluated and revised based on consistency with brain data. Consistent activations were limited to specific cortical sub-regions, including multiple functional areas within medial, orbital, and inferior lateral frontal cortices. Consistent with a wealth of animal literature, multiple subcortical activations were identified, including amygdala, ventral striatum, thalamus, hypothalamus, and periaqueductal gray. We used multivariate parcellation and clustering techniques to identify groups of co-activated brain regions across studies. These analyses identified six distributed functional groups, including medial and lateral frontal groups, two posterior cortical groups, and paralimbic and core limbic/brainstem groups. These functional groups provide information on potential organization of brain regions into large-scale networks. Specific follow-up analyses focused on amygdala, periaqueductal gray (PAG), and hypothalamic (Hy) activations, and identified frontal cortical areas co-activated with these core limbic structures. While multiple areas of frontal cortex co-activated with amygdala sub-regions, a specific region of dorsomedial prefrontal cortex (dmPFC, Brodmann’s Area 9/32) was the only area co-activated with both PAG and Hy. Subsequent mediation analyses were consistent with a pathway from dmPFC through PAG to Hy. These results suggest that medial frontal areas are more closely associated with core limbic activation than their lateral counterparts, and that dmPFC may play a particularly important role in the cognitive generation of emotional states. PMID:18579414

  17. Molecular and cellular sex differences at the intersection of stress and arousal.

    PubMed

    Valentino, Rita J; Reyes, Beverly; Van Bockstaele, Elisabeth; Bangasser, Debra

    2012-01-01

    Elucidating the mechanisms underlying sex biases in the prevalence and severity of diseases can advance our understanding of their pathophysiological basis and serve as a guide for developing treatments. A well-established sex difference in psychiatry is the higher incidence of mood and anxiety disorders in females. These disorders share stress as a potential etiological contributor and hyperarousal as a core symptom, suggesting that the distinction between sexes lies at the intersection of stress and arousal systems. This review focuses on the link between the stress axis and the brain norepinephrine arousal system as a key point at which sex differences occur and are translated to differences in the expression of mood disorders. Evidence for a circuit designed to relay emotion-related information via the limbic corticotropin-releasing factor (CRF) system to the locus coeruleus (LC)-norepinephrine arousal system is reviewed. This is followed by recent novel findings of sex differences in CRF receptor signaling and trafficking that would result in an enhanced arousal response and a compromised ability to adapt to chronic stress in females. Finally, we discuss the evidence for sex differences in LC dendritic structure that allow for an increased receipt and processing of limbic information in females compared to males. Together these complementary sets of data suggest that in females, the LC arousal system is poised to process more limbic information and to respond to some of this information in an enhanced manner compared to males. The clinical and therapeutic considerations arising from this perspective are discussed. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review

    PubMed Central

    Gudayol-Ferré, Esteve; Peró-Cebollero, Maribel; González-Garrido, Andrés A.; Guàrdia-Olmos, Joan

    2015-01-01

    Depression is a mental illness that presents alterations in brain connectivity in the Default Mode Network (DMN), the Affective Network (AN) and other cortical-limbic networks, and the Cognitive Control Network (CCN), among others. In recent years the interest in the possible effect of the different antidepressant treatments on functional connectivity has increased substantially. The goal of this paper is to conduct a systematic review of the studies on the relationship between the treatment of depression and brain connectivity. Nineteen studies were found in a systematic review on this topic. In all of them, there was improvement of the clinical symptoms after antidepressant treatment. In 18 out of the 19 studies, clinical improvement was associated to changes in brain connectivity. It seems that both DMN and the connectivity between cortical and limbic structures consistently changes after antidepressant treatment. However, the current evidence does not allow us to assure that the treatment of depression leads to changes in the CCN. In this regard, some papers report a positive correlation between changes in brain connectivity and improvement of depressive symptomatology, particularly when they measure cortical-limbic connectivity, whereas the changes in DMN do not significantly correlate with clinical improvement. Finally, some papers suggest that changes in connectivity after antidepressant treatment might be partly related to the mechanisms of action of the treatment administered. This effect has been observed in two studies with stimulation treatment (one with rTMS and one with ECT), and in two papers that administered three different pharmacological treatments. Our review allows us to make a series of recommendations that might guide future researchers exploring the effect of anti-depression treatments on brain connectivity. PMID:26578927

  19. Early life stress and trauma and enhanced limbic activation to emotionally valenced faces in depressed and healthy children.

    PubMed

    Suzuki, Hideo; Luby, Joan L; Botteron, Kelly N; Dietrich, Rachel; McAvoy, Mark P; Barch, Deanna M

    2014-07-01

    Previous studies have examined the relationships between structural brain characteristics and early life stress in adults. However, there is limited evidence for functional brain variation associated with early life stress in children. We hypothesized that early life stress and trauma would be associated with increased functional brain activation response to negative emotional faces in children with and without a history of depression. Psychiatric diagnosis and life events in children (starting at age 3-5 years) were assessed in a longitudinal study. A follow-up magnetic resonance imaging (MRI) study acquired data (N = 115 at ages 7-12, 51% girls) on functional brain response to fearful, sad, and happy faces relative to neutral faces. We used a region-of-interest mask within cortico-limbic areas and conducted regression analyses and repeated-measures analysis of covariance. Greater activation responses to fearful, sad, and happy faces in the amygdala and its neighboring regions were found in children with greater life stress. Moreover, an association between life stress and left hippocampal and globus pallidus activity depended on children's diagnostic status. Finally, all children with greater life trauma showed greater bilateral amygdala and cingulate activity specific to sad faces but not the other emotional faces, although right amygdala activity was moderated by psychiatric status. These findings suggest that limbic hyperactivity may be a biomarker of early life stress and trauma in children and may have implications in the risk trajectory for depression and other stress-related disorders. However, this pattern varied based on emotion type and history of psychopathology. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Sensitivity of the prefrontal GABAergic system to chronic stress in male and female mice: Relevance for sex differences in stress-related disorders.

    PubMed

    Shepard, Ryan; Page, Chloe E; Coutellier, Laurence

    2016-09-22

    Stress-induced modifications of the prefrontal cortex (PFC) are believed to contribute to the onset of mood disorders, such as depression and anxiety, which are more prevalent in women. In depression, the PFC is hypoactive; however the origin of this hypoactivity remains unclear. Possibly, stress could impact the prefrontal GABAergic inhibitory system that, as a result, impairs the functioning of downstream limbic structures controlling emotions. Preclinical evidence indicates that the female PFC is more sensitive to the effects of stress. These findings suggest that exposure to stress could lead to sex-specific alterations in prefrontal GABAergic signaling, which contribute to sex-specific abnormal functioning of limbic regions. These limbic changes could promote the onset of depressive and anxiety behaviors in a sex-specific manner, providing a possible mechanism mediating sex differences in the clinical presentation of stress-related mood disorders. We addressed this hypothesis using a mouse model of stress-induced depressive-like behaviors: the unpredictable chronic mild stress (UCMS) paradigm. We observed changes in prefrontal GABAergic signaling after exposure to UCMS most predominantly in females. Increased parvalbumin (PV) expression and decreased prefrontal neuronal activity were correlated in females with severe emotionality deficit following UCMS, and with altered activity of the amygdala. In males, small changes in emotionality following UCMS were associated with minor changes in prefrontal PV expression, and with hypoactivity of the nucleus accumbens. Our data suggest that prefrontal hypoactivity observed in stress-related mood disorders could result from stress-induced increases in PV expression, particularly in females. This increased vulnerability of the female prefrontal PV system to stress could underlie sex differences in the prevalence and symptomatology of stress-related mood disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. An initial MRI picture of limbic encephalitis in subacute sclerosing panencephalitis.

    PubMed

    Lebon, Sébastien; Maeder, Philippe; Maeder-Ingvar, Malin; Poloni, Claudia; Mayor-Dubois, Claire; Roulet-Perez, Eliane; Jeannet, Pierre-Yves

    2011-11-01

    Subacute sclerosing panencephalitis (SSPE) is a rare and severe long-term complication of measles. Hallmarks of this entity include progressive cognitive decline, myoclonia, a generalized periodic pattern on EEG and deep white matter abnormalities on MRI. However, imaging can be normal in early stages. We report herein the case of a previously healthy 13-years-old girl with an unusual radiological presentation. She presented with unilateral myoclonia, cognitive decline with memory impairment and a first brain MRI with swelling of both hippocampi mimicking limbic encephalitis. Measles antibodies were positive in CSF and the EEG showed slow periodic complexes. This unusual radiological presentation has never been described in SSPE. Relationship between virus and limbic system are discussed. Copyright © 2011 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies.

    PubMed

    Zhang, Jinsheng

    2013-01-01

    Brain stimulation is an important method used to modulate neural activity and suppress tinnitus. Several auditory and non-auditory brain regions have been targeted for stimulation. This paper reviews recent progress on auditory cortex (AC) stimulation to suppress tinnitus and its underlying neural mechanisms and stimulation strategies. At the same time, the author provides his opinions and hypotheses on both animal and human models. The author also proposes a medial geniculate body (MGB)-thalamic reticular nucleus (TRN)-Gating mechanism to reflect tinnitus-related neural information coming from upstream and downstream projection structures. The upstream structures include the lower auditory brainstem and midbrain structures. The downstream structures include the AC and certain limbic centers. Both upstream and downstream information is involved in a dynamic gating mechanism in the MGB together with the TRN. When abnormal gating occurs at the thalamic level, the spilled-out information interacts with the AC to generate tinnitus. The tinnitus signals at the MGB-TRN-Gating may be modulated by different forms of stimulations including brain stimulation. Each stimulation acts as a gain modulator to control the level of tinnitus signals at the MGB-TRN-Gate. This hypothesis may explain why different types of stimulation can induce tinnitus suppression. Depending on the tinnitus etiology, MGB-TRN-Gating may be different in levels and dynamics, which cause variability in tinnitus suppression induced by different gain controllers. This may explain why the induced suppression of tinnitus by one type of stimulation varies across individual patients. Copyright © 2012. Published by Elsevier B.V.

  3. Brain circuitries involved in emotional interference task in major depression disorder.

    PubMed

    Chechko, Natalia; Augustin, Marc; Zvyagintsev, Michael; Schneider, Frank; Habel, Ute; Kellermann, Thilo

    2013-07-01

    Emotional and non-emotional Stroop are frequently applied to study major depressive disorder (MDD). The versions of emotional Stroop used in previous studies were not, unlike the ones employed in the present study, based on semantic incongruence, making it difficult to compare the tasks. We used functional magnetic resonance imaging (fMRI) to study the neural and behavioral responses of 18 healthy subjects and 18 subjects with MDD to emotional and non-emotional word-face Stroop tasks based on semantic incompatibility between targets and distractors. In both groups, the distractors triggered significant amounts of interference conflict. A between-groups comparison revealed hypoactivation in MDD during emotional task in areas supporting conflict resolution (lateral prefrontal cortex, parietal and extrastriate cortices) paralleled by increased response in the right amygdala. Response in the amygdala, however, did not vary between conflicting and non-conflicting trials. While in the emotional (compared to non-emotional) task healthy controls showed considerably stronger involvement of networks related to conflict resolution, in patients, the processing differences between the two conflict types were negligible. The patients group was inhomogeneous in terms of medication and clinical characteristics. The number of female participants was higher, due to which gender effects could not be studied or excluded. Whilst healthy controls seemed able to adjust the involvement of the network supporting conflict resolution based on conflict demand, patients appeared to lack this capability. The reduced cortical involvement coupled with increased response of limbic structures might underlie the maladjustment vis-à-vis new demands in depressed mood. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Neuroanatomical Differences between Men and Women in Help-Seeking Coping Strategy

    PubMed Central

    Li, Hai-Jiang; Sun, Jiang-Zhou; Zhang, Qing-Lin; Wei, Dong-Tao; Li, Wen-Fu; Jackson, Todd; Hitchman, Glenn; Qiu, Jiang

    2014-01-01

    Help seeking (HS) is a core coping strategy that is directed towards obtaining support, advice, or assistance as means of managing stress. Women have been found to use more HS than men. Neural correlates of sex differences have also been reported in prefrontal-limbic system (PLS) regions that are linked to stress and coping, yet structural differences between men and women relating to HS in the PLS are still unknown. Thus, the association between gray matter volume (GMV) and HS was investigated using voxel-based morphometry (VBM) in a large healthy sample (126 men and 156 women). Results indicated women reported more HS than men did. VBM results showed that the relation between HS scores and GMV differed between men and women in regions of the bilateral orbitofrontal cortex extending to the subgenual anterior cingulate cortex(OFC/sgACC). Among women, higher HS scores were associated with smaller GMV in these areas while a positive correlation between GMV and HS scores was observed among men. These results remained significant after controlling for general intelligence, stress, anxiety and depression. Thus, this study suggested that structural differences between men and women are correlated to characteristic brain regions known to be involved in the PLS which is considered critical in stress regulation. PMID:25027617

  5. How demanding is the brain on a reversal task under day and night conditions?

    PubMed

    Arias, N; Fidalgo, C; Méndez, M; Arias, J L

    2015-07-23

    Reversal learning has been studied as the process of learning to inhibit previously rewarded actions. These behavioral studies are usually performed during the day, when animals are in their daily period rest. However, how day or night affects spatial reversal learning and the brain regions involved in the learning process are still unknown. We conducted two experiments using the Morris Water Maze under different light-conditions: naïve group (CN, n=8), day group (DY, n=8), control DY group (CDY, n=8) night group (NG, n=8), and control NG group (CNG, n=7). Distance covered, velocity and latencies to reach the platform were examined. After completing these tasks, cytochrome c-oxidase activity (CO) in several brain limbic system structures was compared between groups. There were no behavioral differences in the time of day when the animals were trained. However, the metabolic brain consumption was higher in rats trained in the day condition. This CO increase was supported by the prefrontal cortex, thalamus, dorsal and ventral striatum, hippocampus and entorhinal cortex, revealing their role in the performance of the spatial reversal learning task. Finally, the orbitofrontal cortex has been revealed as a key structure in reversal learning execution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Graph theory findings in the pathophysiology of temporal lobe epilepsy.

    PubMed

    Chiang, Sharon; Haneef, Zulfi

    2014-07-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Uncovering the role of the insula in non-motor symptoms of Parkinson's disease.

    PubMed

    Christopher, Leigh; Koshimori, Yuko; Lang, Anthony E; Criaud, Marion; Strafella, Antonio P

    2014-08-01

    Patients with Parkinson's disease experience a range of non-motor symptoms, including cognitive impairment, behavioural changes, somatosensory and autonomic disturbances. The insula, which was once thought to be primarily a limbic cortical structure, is now known to be highly involved in integrating somatosensory, autonomic and cognitive-affective information to guide behaviour. Thus, it acts as a central hub for processing relevant information related to the state of the body as well as cognitive and mood states. Despite these crucial functions, the insula has been largely overlooked as a potential key region in contributing to non-motor symptoms of Parkinson's disease. The insula is affected in Parkinson's disease by alpha-synuclein deposition, disruptions in normal neurotransmitter function, alterations in connectivity as well as metabolic and structural changes. Although research focusing on the role of the insula in Parkinson's disease is scarce, there is evidence from neuroimaging studies linking the insula to cognitive decline, behavioural abnormalities and somatosensory disturbances. Here, we review imaging studies that provide insight into the potential role of the insula in Parkinson's disease non-motor symptoms. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. GAL3 receptor KO mice exhibit an anxiety-like phenotype

    PubMed Central

    Brunner, Susanne M.; Farzi, Aitak; Locker, Felix; Holub, Barbara S.; Drexel, Meinrad; Reichmann, Florian; Lang, Andreas A.; Mayr, Johannes A.; Vilches, Jorge J.; Navarro, Xavier; Lang, Roland; Sperk, Günther; Holzer, Peter; Kofler, Barbara

    2014-01-01

    The neuropeptide galanin (GAL) is widely distributed in the central and peripheral nervous systems. It is a modulator of various physiological and pathological processes, and it mediates its effects via three G protein-coupled receptors (GAL1–3 receptors). A role for GAL as a modulator of mood and anxiety was suggested, because GAL and its receptors are highly expressed in limbic brain structures of rodents. In recent years, numerous studies of animal models have suggested an involvement of GAL and GAL1 and GAL2 receptors in anxiety- and depression-related behavior. However, to date, there is sparse literature implicating GAL3 receptors in behavioral functions. Therefore, we studied the behavior of GAL3 receptor-deficient (GAL3-KO) mice to elucidate whether GAL3 receptors are involved in mediating behavior-associated actions of GAL. The GAL3-KO mouse line exhibited normal breeding and physical development. In addition to behavioral tests, phenotypic characterization included analysis of hematology, amino acid profiles, metabolism, and sudomotor function. In contrast to WT littermates, male GAL3-KO mice exhibited an anxiety-like phenotype in the elevated plus maze, open field, and light/dark box tests, and they were less socially affiliated than WT animals to a stranger mouse in a social interaction test. In conclusion, our data suggest involvement of GAL3 receptors in GAL-mediated effects on mood, anxiety, and behavior, making it a possible target for alternative treatment strategies for mood disorders. PMID:24782539

  9. Function and Dysfunction of Prefrontal Brain Circuitry in Alcoholic Korsakoff’s Syndrome

    PubMed Central

    Oscar-Berman, Marlene

    2013-01-01

    The signature symptom of alcohol-induced persisting amnestic disorder, more commonly referred to as alcoholic Korsakoff’s syndrome (KS), is anterograde amnesia, or memory loss for recent events, and until the mid 20th Century, the putative brain damage was considered to be in diencephalic and medial temporal lobe structures. Overall intelligence, as measured by standardized IQ tests, usually remains intact. Preservation of IQ occurs because memories formed before the onset of prolonged heavy drinking — the types of information and abilities tapped by intelligence tests — remain relatively well preserved compared with memories recently acquired. However, clinical and experimental evidence has shown that neurobehavioral dysfunction in alcoholic patients with KS does include nonmnemonic abilities, and further brain damage involves extensive frontal and limbic circuitries. Among the abnormalities are confabulation, disruption of elements of executive functioning and cognitive control, and emotional impairments. Here, we discuss the relationship between neurobehavioral impairments in KS and alcoholism-related brain damage. More specifically, we examine the role of damage to prefrontal brain systems in the neuropsychological profile of alcoholic KS. PMID:22538385

  10. Ultra-slow mechanical stimulation of olfactory epithelium modulates consciousness by slowing cerebral rhythms in humans.

    PubMed

    Piarulli, A; Zaccaro, A; Laurino, M; Menicucci, D; De Vito, A; Bruschini, L; Berrettini, S; Bergamasco, M; Laureys, S; Gemignani, A

    2018-04-26

    The coupling between respiration and neural activity within olfactory areas and hippocampus has recently been unambiguously demonstrated, its neurophysiological basis sustained by the well-assessed mechanical sensitivity of the olfactory epithelium. We herein hypothesize that this coupling reverberates to the whole brain, possibly modulating the subject's behavior and state of consciousness. The olfactory epithelium of 12 healthy subjects was stimulated with periodical odorless air-delivery (frequency 0.05 Hz, 8 s on, 12 off). Cortical electrical activity (High Density-EEG) and perceived state of consciousness have been studied. The stimulation induced i) an enhancement of delta-theta EEG activity over the whole cortex mainly involving the Limbic System and Default Mode Network structures, ii) a reversal of the overall information flow directionality from wake-like postero-anterior to NREM sleep-like antero-posterior, iii) the perception of having experienced an Altered State of Consciousness. These findings could shed further light via a neurophenomenological approach on the links between respiration, cerebral activity and subjective experience, suggesting a plausible neurophysiological basis for interpreting altered states of consciousness induced by respiration-based meditative practices.

  11. Preserved and Impaired Emotional Memory in Alzheimer’s Disease

    PubMed Central

    Klein-Koerkamp, Yanica; Baciu, Monica; Hot, Pascal

    2012-01-01

    Patients with early atrophy of both limbic structures involved in memory and emotion processing in Alzheimer’s disease (AD) provide a unique clinical population for investigating how emotion is able to modulate retention processes. This review focuses on the emotional enhancement effect (EEE), defined as the improvement of memory for emotional events compared with neutral ones. The assessment of the EEE for different memory systems in AD suggests that the EEE could be preserved under specific retrieval instructions. The first part of this review examines these data in light of compelling evidence that the amygdala can modulate processes of hippocampus-dependent memory. We argue that the EEE could be a useful paradigm to reduce impairment in episodic memory tasks. In the second part, we discuss theoretical consequences of the findings in favor of an EEE, according to which a compensatory mechanism in patients with AD solicits greater amygdala functioning or additional networks, even when amygdala atrophy is present. These considerations emphasize the relevance of investigating patients with AD to understand the relationship between emotion and memory processes. PMID:23049516

  12. Multisensory connections of monkey auditory cerebral cortex

    PubMed Central

    Smiley, John F.; Falchier, Arnaud

    2009-01-01

    Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628

  13. The von Economo neurons in fronto-insular and anterior cingulate cortex

    PubMed Central

    Allman, John M.; Tetreault, Nicole A.; Hakeem, Atiya Y.; Manaye, Kebreten F.; Semendeferi, Katerina; Erwin, Joseph M.; Park, Soyoung; Goubert, Virginie; Hof, Patrick R.

    2011-01-01

    The von Economo neurons (VENs) are large bipolar neurons located in fronto-insular cortex (FI) and anterior limbic area (LA) in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week post conception, with numbers increasing during the first eight months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of fronto-temporal dementia implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993

  14. Emotional Intent Modulates The Neural Substrates Of Creativity: An fMRI Study of Emotionally Targeted Improvisation in Jazz Musicians.

    PubMed

    McPherson, Malinda J; Barrett, Frederick S; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J

    2016-01-04

    Emotion is a primary motivator for creative behaviors, yet the interaction between the neural systems involved in creativity and those involved in emotion has not been studied. In the current study, we addressed this gap by using fMRI to examine piano improvisation in response to emotional cues. We showed twelve professional jazz pianists photographs of an actress representing a positive, negative or ambiguous emotion. Using a non-ferromagnetic thirty-five key keyboard, the pianists improvised music that they felt represented the emotion expressed in the photographs. Here we show that activity in prefrontal and other brain networks involved in creativity is highly modulated by emotional context. Furthermore, emotional intent directly modulated functional connectivity of limbic and paralimbic areas such as the amygdala and insula. These findings suggest that emotion and creativity are tightly linked, and that the neural mechanisms underlying creativity may depend on emotional state.

  15. Subcortical grey matter changes in untreated, early stage Parkinson's disease without dementia.

    PubMed

    Lee, Hye Mi; Kwon, Kyum-Yil; Kim, Min-Jik; Jang, Ji-Wan; Suh, Sang-Il; Koh, Seong-Beom; Kim, Ji Hyun

    2014-06-01

    Previous MRI studies have investigated cortical or subcortical grey matter changes in patients with Parkinson's disease (PD), yielding inconsistent findings between the studies. We therefore sought to determine whether focal cortical or subcortical grey matter changes may be present from the early disease stage. We recruited 49 untreated, early stage PD patients without dementia and 53 control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetry and shape analysis were used to assess volume changes and shape deformation of the subcortical grey matter structures, respectively. Voxel-based morphometry showed neither reductions nor increases in grey matter volume in patients compared to controls. Compared to controls, PD patients had significant reductions in adjusted volumes of putamen, nucleus accumbens, and hippocampus (corrected p < 0.05). Vertex-based shape analysis showed regionally contracted area on the posterolateral and ventromedial putamen bilaterally in PD patients (corrected p < 0.05). No correlations were found between cortical and subcortical grey matter and clinical variables representing disease duration and severity. Our results suggest that untreated, early stage PD without dementia is associated with volume reduction and shape deformation of subcortical grey matter, but not with cortical grey matter reduction. Our findings of structural changes in the posterolateral putamen and ventromedial putamen/nucleus accumbens could provide neuroanatomical basis for the involvement of motor and limbic striatum, further implicating motor and non-motor symptoms in PD, respectively. Early hippocampal involvement might be related to the risk for developing dementia in PD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Spontaneous brain activity in chronic smokers revealed by fractional amplitude of low frequency fluctuation analysis: a resting state functional magnetic resonance imaging study.

    PubMed

    Chu, Shuilian; Xiao, Dan; Wang, Shuangkun; Peng, Peng; Xie, Teng; He, Yong; Wang, Chen

    2014-01-01

    Nicotine is primarily rsponsible for the highly addictive properties of cigarettes. Similar to other substances, nicotine dependence is related to many important brain regions, particular in mesolimbic reward circuit. This study was to further reveal the alteration of brain function activity during resting state in chronic smokers by fractional amplitude of low frequency fluctuation (fALFF) based on functional magnetic resonance imaging (fMRI), in order to provide the evidence of neurobiological mechanism of smoking. This case control study involved twenty healthy smokers and nineteen healthy nonsmokers recruited by advertisement. Sociodemographic, smoking related characteristics and fMRI images were collected and the data analyzed. Compared with nonsmokers, smokers showed fALFF increased significantly in the left middle occipital gyrus, left limbic lobe and left cerebellum posterior lobe but decreases in the right middle frontal gyrus, right superior temporal gyrus, right extra nuclear, left postcentral gyrus and left cerebellum anterior lobe (cluster size >100 voxels). Compared with light smokers (pack years ≤ 20), heavy smokers (pack years >20) showed fALFF increased significantly in the right superior temporal gyrus, right precentral gyrus, and right occipital lobe/cuneus but decreased in the right/left limbic lobe/cingulate gyrus, right/left frontal lobe/sub gyral, right/left cerebellum posterior lobe (cluster size >50 voxels). Compared with nonsevere nicotine dependent smokers (Fagerstrőm test for nicotine dependence, score ≤ 6), severe nicotine dependent smokers (score >6) showed fALFF increased significantly in the right/left middle frontal gyrus, right superior frontal gyrus and left inferior parietal lobule but decreased in the left limbic lobe/cingulate gyrus (cluster size >25 voxels). In smokers during rest, the activity of addiction related regions were increased and the activity of smoking feeling, memory, related regions were also changed. The resting state activity changes in many regions were associated with the cumulative amount of nicotine intake and the severity of nicotine dependence.

  17. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    PubMed

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The effects of amphetamine exposure on juvenile rats on the neuronal morphology of the limbic system at prepubertal, pubertal and postpubertal ages.

    PubMed

    Tendilla-Beltrán, Hiram; Arroyo-García, Luis Enrique; Diaz, Alfonso; Camacho-Abrego, Israel; de la Cruz, Fidel; Rodríguez-Moreno, Antonio; Flores, Gonzalo

    2016-11-01

    Amphetamines (AMPH) are psychostimulants widely used for therapy as well as for recreational purposes. Previous results of our group showed that AMPH exposure in pregnant rats induces physiological and behavioral changes in the offspring at prepubertal and postpubertal ages. In addition, several reports have shown that AMPH are capable of modifying the morphology of neurons in some regions of the limbic system. These modifications can cause some psychiatric conditions. However, it is still unclear if there are changes to behavioral and morphological levels when low doses of AMPH are administered at a juvenile age. The aim of this study was to assess the effect of AMPH administration (1mg/kg) in Sprague-Dawley rats (postnatal day, PD21-PD35) on locomotor activity in a novel environment and compare the neuronal morphology of limbic system areas at three different ages: prepubertal (PD 36), pubertal (PD50) and postpubertal (PD 62). We found that AMPH altered locomotor activity in the prepubertal group, but did not have an effect on the other two age groups. The Golgi-Cox staining method was used to describe the neural morphology of five limbic regions: (Layers 3 and 5) the medial prefrontal cortex (mPFC), the dorsal and ventral hippocampus, the nucleus accumbens and the amygdala, showing that AMPH induced changes at pubertal ages in arborization and spine density of these neurons, but interestingly these changes did not persist at postpubertal ages. Our findings suggest that even early-life AMPH exposure does not induce long-term behavioral and morphological changes, however it causes alterations at pubertal ages in the limbic system networks, a stage of life strongly associated with the development of substance abuse behaviors. Copyright © 2016. Published by Elsevier B.V.

  19. SPECT and PET analysis of subthalamic stimulation in Parkinson's disease: analysis using a manual segmentation.

    PubMed

    Haegelen, Claire; García-Lorenzo, Daniel; Le Jeune, Florence; Péron, Julie; Gibaud, Bernard; Riffaud, Laurent; Brassier, Gilles; Barillot, Christian; Vérin, Marc; Morandi, Xavier

    2010-03-01

    The subthalamic nucleus (STN) has become an effective target of deep-brain stimulation (DBS) in severely disabled patients with advanced Parkinson's disease (PD). Clinical studies have reported DBS-induced adverse effects on cognitive functions, mood, emotion and behavior. STN DBS seems to interfere with the limbic functions of the basal ganglia, but the limbic effects of STN DBS are controversial. We measured prospectively resting regional cerebral metabolism (rCMb) with 18-fluorodeoxyglucose and PET, and resting regional cerebral blood flow (rCBF) with HMPAO and SPECT in six patients with Parkinson's disease. We compared PET and SPECT 1 month before and 3 months after STN DBS. On cerebral MRI, 13 regions of interest (ROI) were manually delineated slice by slice in frontal and limbic lobes. We obtained mean rCBF and rCMb values for each ROI and the whole brain. We normalized rCBF and rCMB values to ones for the whole brain volume, which we compared before and following STN DBS. No significant difference emerged in the SPECT analysis. PET analysis revealed a significant decrease in rCMb following STN DBS in the superior frontal gyri and left and right dorsolateral prefrontal cortex (p < 0.05). A non-significant decrease in rCMb in the left anterior cingulate gyrus appeared following STN DBS (p = 0.075). Our prospective SPECT and PET study revealed significantly decreased glucose metabolism of the two superior frontal gyri without any attendant perfusion changes following STN DBS. These results suggest that STN DBS may change medial prefrontal function and therefore the integration of limbic information, either by disrupting emotional processes within the STN, or by hampering the normal function of a limbic circuit.

  20. [Oxytocin: the hormone of love, trust and social bond. Clinical use in autism and social phobia].

    PubMed

    Martin-Du Pan, R C

    2012-03-21

    Oxytocin, an octapeptide synthesized in the hypothalamus, stimulates milk election and uterine contractions. In the brain this hormone acts as a neuropeptide. It could inhibit through the GABAergic system the activity of limbic amygdala, which is involved in the response to fear. Oxytocin could also induce the protective behaviour of the mother towards its offspring through the dopaminergic system. In mankind, oxytocin plays a role in trust, empathy, generosity, stress and sexuality. Clinical studies are testing potential benefits of oxytocin administration in autism, depression and social phobia. Results are still preliminary.

  1. Decreased sound tolerance: hyperacusis, misophonia, diplacousis, and polyacousis.

    PubMed

    Jastreboff, Pawel J; Jastreboff, Margaret M

    2015-01-01

    Definitions, potential mechanisms, and treatments for decreased sound tolerance, hyperacusis, misophonia, and diplacousis are presented with an emphasis on the associated physiologic and neurophysiological processes and principles. A distinction is made between subjects who experience these conditions versus patients who suffer from them. The role of the limbic and autonomic nervous systems and other brain systems involved in cases of bothersome decreased sound tolerance is stressed. The neurophysiological model of tinnitus is outlined with respect to how it may contribute to our understanding of these phenomena and their treatment. © 2015 Elsevier B.V. All rights reserved.

  2. Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs.

    PubMed

    Gremel, C M; Lovinger, D M

    2017-01-01

    The mammalian forebrain is characterized by the presence of several parallel cortico-basal ganglia circuits that shape the learning and control of actions. Among these are the associative, limbic and sensorimotor circuits. The function of all of these circuits has now been implicated in responses to drugs of abuse, as well as drug seeking and drug taking. While the limbic circuit has been most widely examined, key roles for the other two circuits in control of goal-directed and habitual instrumental actions related to drugs of abuse have been shown. In this review we describe the three circuits and effects of acute and chronic drug exposure on circuit physiology. Our main emphasis is on drug actions in dorsal striatal components of the associative and sensorimotor circuits. We then review key findings that have implicated these circuits in drug seeking and taking behaviors, as well as drug use disorders. Finally, we consider different models describing how the three cortico-basal ganglia circuits become involved in drug-related behaviors. This topic has implications for drug use disorders and addiction, as treatments that target the balance between the different circuits may be useful for reducing excessive substance use. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Acupuncture analgesia involves modulation of pain-induced gamma oscillations and cortical network connectivity.

    PubMed

    Hauck, Michael; Schröder, Sven; Meyer-Hamme, Gesa; Lorenz, Jürgen; Friedrichs, Sunja; Nolte, Guido; Gerloff, Christian; Engel, Andreas K

    2017-11-24

    Recent studies support the view that cortical sensory, limbic and executive networks and the autonomic nervous system might interact in distinct manners under the influence of acupuncture to modulate pain. We performed a double-blind crossover design study to investigate subjective ratings, EEG and ECG following experimental laser pain under the influence of sham and verum acupuncture in 26 healthy volunteers. We analyzed neuronal oscillations and inter-regional coherence in the gamma band of 128-channel-EEG recordings as well as heart rate variability (HRV) on two experimental days. Pain ratings and pain-induced gamma oscillations together with vagally-mediated power in the high-frequency bandwidth (vmHF) of HRV decreased significantly stronger during verum than sham acupuncture. Gamma oscillations were localized in the prefrontal cortex (PFC), mid-cingulate cortex (MCC), primary somatosensory cortex and insula. Reductions of pain ratings and vmHF-power were significantly correlated with increase of connectivity between the insula and MCC. In contrast, connectivity between left and right PFC and between PFC and insula correlated positively with vmHF-power without a relationship to acupuncture analgesia. Overall, these findings highlight the influence of the insula in integrating activity in limbic-saliency networks with vagally mediated homeostatic control to mediate antinociception under the influence of acupuncture.

  4. Regulatory processes of hunger motivated behavior.

    PubMed

    Lénárd, L; Karádi, Z

    2012-01-01

    While food intake and body weight are under homeostatic regulation, eating is a highly motivated and reinforced behavior that induces feelings of gratification and pleasure. The chemical senses (taste and odor) and their evaluation are essential to these functions. Brainstem and limbic glucose-monitoring (GM) neurons receiving neurochemical information from the periphery and from the local brain milieu are important controlling hunger motivation, and brain gut peptides have a modulatory role on this function. The hypothalamic and limbic forebrain areas are responsible for evaluation of reward quality and related emotions. They are innervated by the mesolimbic dopaminergic system (MLDS) and majority of GM neurons are also influenced by dopamine. Via dopamine release, the MLDS plays an essential role in rewarding-reinforcing processes of feeding and addiction. The GM network and the MLDS in the limbic system represent essential elements in the neural substrate of motivation.

  5. Limbic encephalitis presenting as a post-partum psychiatric condition.

    PubMed

    Gotkine, Marc; Ben-Hur, Tamir; Vincent, Angela; Vaknin-Dembinsky, Adi

    2011-09-15

    We describe a woman who presented with a psychiatric disorder post-partum and subsequently developed seizures and cognitive dysfunction prompting further investigation. A diagnosis of limbic encephalitis (LE) was made and antibodies to voltage-gated potassium channel complex (VGKC) detected. These antibodies are found in many non-paraneoplastic patients with LE. Although antibody-mediated conditions tend to present or relapse post-partum, VGKC-LE in the post-partum period has not been described. Case report. Clinical and imaging data were consistent with limbic encephalitis. High titres of anti-VGKC-complex antibodies confirmed the diagnosis of VGKC-LE. The similarities between the psychiatric symptomatology of VGKC-LE and post-partum psychiatric disorders raise the possibility that some instances of post-partum psychiatric conditions are manifestations of immune-mediated, non-paraneoplastic LE. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Pathophysiological Alterations In The Basolateral Amygdala And Neurodegeneration Of Limbic Structures During Epileptogenesis Induced By Status Epilepticus

    DTIC Science & Technology

    2009-02-05

    Crestani F, Martin JR, Möhler H, and Rudolph U (2000) Mechanism of action of the hypnotic zolpidem in vivo. Br J Pharmacol 131:1251–56...epilepsy laterality and reproductive hormone levels in women. Epilepsy Behav 4:407-13. Houser CR (1990) Granule cell dispersion in the dentate gyrus of...cortex from epileptic patients. Neurobiol Dis 8:459- 68. Kostarczyk EM (1986) The amygdala and male reproductive functions. I. Anatomical and

  7. Emotional processing in anterior cingulate and medial prefrontal cortex

    PubMed Central

    Etkin, Amit; Egner, Tobias; Kalisch, Raffael

    2010-01-01

    Negative emotional stimuli activate a broad network, including the medial prefrontal (mPFC) and anterior cingulate (ACC) cortices. An early influential view dichotomized these regions into dorsal-caudal “cognitive” and ventral-rostral “affective” subdivisions. In this review, we examine a wealth of recent research on negative emotions in animals and humans, using the example of fear/anxiety, and conclude that, contrary to the traditional dichotomy, both subdivisions make key contributions to emotional processing. Specifically, dorsal-caudal regions of the ACC/mPFC are involved in appraisal and expression of negative emotion, while ventral-rostral portions of the ACC/mPFC have a regulatory role with respect to limbic regions involved in generating emotional responses. Moreover, this new framework is broadly consistent with emerging data on other negative and positive emotions. PMID:21167765

  8. [VGKC antibodies associated with limbic encephalitis].

    PubMed

    Soeder, B M; Urbach, H; Elger, C E; Bien, C G; Beyenburg, S

    2005-06-01

    Since the initial description of limbic encephalitis (LE) in 1960/1968, several subforms of this clinico-neuropathological syndrome have been identified. The best known is paraneoplastic LE. However, non-paraneoplastic forms have been reported, too. Very recently, autoantibodies against voltage-gated potassium channels have been described in association with LE. The diagnostic workup of such a case and the apparently typical good response to long-term immunotherapy of this LE subform are described.

  9. From Serpent to CEO: Improving First-Term Security Forces Airman Performance Through Neuroscience Education

    DTIC Science & Technology

    2017-06-09

    full ability to inhibit ANS and limbic response are prone to be impulsive, 25 unintentional, or hesitant when faced with high -threat decisions...graduate degrees in Criminal Justice, a Graduate Certificate in Organizational Leadership, and a current American Society for Industrial Security...experience and full ability to inhibit ANS and limbic response are prone to be impulsive, unintentional, or hesitant when faced with high -threat

  10. Autoimmune limbic encephalitis with anti-contactin-associated protein-like 2 antibody secondary to pembrolizumab therapy.

    PubMed

    Brown, Michael P; Hissaria, Pravin; Hsieh, Amy Hc; Kneebone, Christopher; Vallat, Wilson

    2017-04-15

    Immune checkpoint inhibitors such as Pembrolizumab are used to restore antitumour immune response. It is important to be vigilant of immune mediated adverse events related to such therapy. We report a case of autoimmune limbic encephalitis with Contactin-Associated Protein-like 2 (CASPR2) antibody secondary to Pembrolizumab therapy for metastatic melanoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Self-averaging in complex brain neuron signals

    NASA Astrophysics Data System (ADS)

    Bershadskii, A.; Dremencov, E.; Fukayama, D.; Yadid, G.

    2002-12-01

    Nonlinear statistical properties of Ventral Tegmental Area (VTA) of limbic brain are studied in vivo. VTA plays key role in generation of pleasure and in development of psychological drug addiction. It is shown that spiking time-series of the VTA dopaminergic neurons exhibit long-range correlations with self-averaging behavior. This specific VTA phenomenon has no relation to VTA rewarding function. Last result reveals complex role of VTA in limbic brain.

  12. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study.

    PubMed

    Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng

    2017-07-07

    Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.

  13. An fMRI study of the brain responses of traumatized mothers to viewing their toddlers during separation and play.

    PubMed

    Schechter, Daniel S; Moser, Dominik A; Wang, Zhishun; Marsh, Rachel; Hao, XueJun; Duan, Yunsuo; Yu, Shan; Gunter, Benjamin; Murphy, David; McCaw, Jaime; Kangarlu, Alayar; Willheim, Erica; Myers, Michael M; Hofer, Myron A; Peterson, Bradley S

    2012-11-01

    This study tested whether mothers with interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) vs healthy controls (HC) would show greater limbic and less frontocortical activity when viewing young children during separation compared to quiet play. Mothers of 20 children (12-42 months) participated: 11 IPV-PTSD mothers and 9 HC with no PTSD. During fMRI, mothers watched epochs of play and separation from their own and unfamiliar children. The study focused on comparison of PTSD mothers vs HC viewing children in separation vs play, and viewing own vs unfamiliar children in separation. Both groups showed distinct patterns of brain activation in response to viewing children in separation vs play. PTSD mothers showed greater limbic and less frontocortical activity (BA10) than HC. PTSD mothers also reported feeling more stressed than HC when watching own and unfamiliar children during separation. Their self-reported stress was associated with greater limbic and less frontocortical activity. Both groups also showed distinct patterns of brain activation in response to viewing their own vs unfamiliar children during separation. PTSD mothers' may not have access to frontocortical regulation of limbic response upon seeing own and unfamiliar children in separation. This converges with previously reported associations of maternal IPV-PTSD and atypical caregiving behavior following separation.

  14. Limbic striatal dopamine D2/3 receptor availability is associated with non-planning impulsivity in healthy adults after exclusion of potential dissimulators.

    PubMed

    Reeves, Suzanne J; Polling, Catherine; Stokes, Paul R A; Lappin, Julia M; Shotbolt, Paul P; Mehta, Mitul A; Howes, Oliver D; Egerton, Alice

    2012-04-30

    Positron emission tomography (PET) studies have reported an association between reduced striatal dopamine D2/3 receptor availability and higher scores on self-report measures of trait impulsivity in healthy adults. However, impulsivity is a multi-faceted construct, and it is unclear which aspect(s) of impulsivity might be driving these associations. The current study aimed to investigate the relationship between limbic (ventral) striatal D2/3 receptor availability and individual components of impulsivity (attentional, motor and non-planning) using the Barratt Impulsiveness Scale (BIS-11) and [(11)C]raclopride PET in 23 healthy volunteers. A partial correlational analysis showed a significant association between non-planning impulsiveness (lack of forethought or 'futuring') and limbic D2/3 receptor availability, which was only apparent after the exclusion of potential dissimulators (indexed by high scores on impression management). Our findings suggest that non-planning impulsiveness is associated with individual variation in limbic striatal D2/3 receptor availability and that different facets of impulsivity may have specific neurochemical correlates. Future studies that combine D2/3 receptor imaging with behavioral measures of impulsivity are required to further elucidate the precise relationship between individual components of trait impulsivity and brain dopaminergic function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. [Autoimmune Associated Encephalitis and Dementia].

    PubMed

    Watanabe, Osamu

    2016-04-01

    Antibodies against various neural surface antigens induce cognitive impairments. Anti-VGKC (voltage gated potassium channel) complex antibodies are well known as one of the causative autoantibodies. An anti-VGKC antibody was identified as the autoantibody in acquired neuromyotonia (Isaacs' syndrome), which causes muscle cramps and difficulty in opening the palm of the hands. However, this antibody also tests positive in autoimmune limbic encephalitis, which has a subacute progress and causes poor memory or epilepsy attacks. Typical cases have a distinctive adult-onset, frequent, brief dystonic seizure semiology that predominantly affects the arms and ipsilateral face. It has now been termed faciobrachial dystonic seizures. In recent years, the true target antigens of the anti-VGKC antibody of this VGKC limbic encephalitis have been recognized as leucine rich glioma inactivated protein (LGI)-1 and others. These antibodies to amnesia-related LGI-1 in limbic encephalitis neutralize the LGI-1-ADAM22 (an anchor protein) interaction and reduce synaptic AMPA receptors. There have been reports of limbic encephalitis associated with anti-VGKC complex antibodies mimicking Creutzfeldt-Jakob disease (CJD). Less than 2% of the patients with sporadic CJD (sCJD) develop serum anti-VGKC complex antibodies and, when positive, only at low titres. Low titres of these antibodies occur only rarely in suspected patients with sCJD, and when present, should be interpreted with caution.

  16. The effects of a virtual reality treatment program for online gaming addiction.

    PubMed

    Park, Sung Yong; Kim, Sun Mi; Roh, Sungwon; Soh, Min-Ah; Lee, Sang Hoon; Kim, Hyungjin; Lee, Young Sik; Han, Doug Hyun

    2016-06-01

    Neuroimaging studies have demonstrated dysfunction in the brain reward circuit in individuals with online gaming addiction (OGA). We hypothesized that virtual reality therapy (VRT) for OGA would improve the functional connectivity (FC) of the cortico-striatal-limbic circuit by stimulating the limbic system. Twenty-four adults with OGA were randomly assigned to a cognitive behavior therapy (CBT) group or VRT group. Before and after the four-week treatment period, the severity of OGA was evaluated with Young's Internet Addiction Scale (YIAS). Using functional magnetic resonance imaging, the amplitude of low-frequency fluctuation (ALFF) and FC from the posterior cingulate cortex (PCC) seed to other brain areas were evaluated. Twelve casual game users were also recruited and underwent only baseline assessment. After treatment, both CBT and VRT groups showed reductions in YIAS scores. At baseline, the OGA group showed a smaller ALFF within the right middle frontal gyrus and reduced FC in the cortico-striatal-limbic circuit. In the VRT group, connectivity from the PCC seed to the left middle frontal and bilateral temporal lobe increased after VRT. VRT seemed to reduce the severity of OGA, showing effects similar to CBT, and enhanced the balance of the cortico-striatal-limbic circuit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Neurobiology of wisdom: a literature overview.

    PubMed

    Meeks, Thomas W; Jeste, Dilip V

    2009-04-01

    Wisdom is a unique psychological trait noted since antiquity, long discussed in humanities disciplines, recently operationalized by psychology and sociology researchers, but largely unexamined in psychiatry or biology. To discuss recent neurobiological studies related to subcomponents of wisdom identified from several published definitions/descriptions of wisdom by clinical investigators in the field, ie, prosocial attitudes/behaviors, social decision making/pragmatic knowledge of life, emotional homeostasis, reflection/self-understanding, value relativism/tolerance, and acknowledgment of and dealing effectively with uncertainty. Literature focusing primarily on neuroimaging/brain localization and secondarily on neurotransmitters, including their genetic determinants. Studies involving functional neuroimaging or neurotransmitter functioning, examining human (rather than animal) subjects, and identified via a PubMed search using keywords from any of the 6 proposed subcomponents of wisdom were included. Studies were reviewed by both of us, and data considered to be potentially relevant to the neurobiology of wisdom were extracted. Functional neuroimaging permits exploration of neural correlates of complex psychological attributes such as those proposed to comprise wisdom. The prefrontal cortex figures prominently in several wisdom subcomponents (eg, emotional regulation, decision making, value relativism), primarily via top-down regulation of limbic and striatal regions. The lateral prefrontal cortex facilitates calculated, reason-based decision making, whereas the medial prefrontal cortex is implicated in emotional valence and prosocial attitudes/behaviors. Reward neurocircuitry (ventral striatum, nucleus accumbens) also appears important for promoting prosocial attitudes/behaviors. Monoaminergic activity (especially dopaminergic and serotonergic), influenced by several genetic polymorphisms, is critical to certain subcomponents of wisdom such as emotional regulation (including impulse control), decision making, and prosocial behaviors. We have proposed a speculative model of the neurobiology of wisdom involving frontostriatal and frontolimbic circuits and monoaminergic pathways. Wisdom may involve optimal balance between functions of phylogenetically more primitive brain regions (limbic system) and newer ones (prefrontal cortex). Limitations of the putative model are stressed. It is hoped that this review will stimulate further research in characterization, assessment, neurobiology, and interventions related to wisdom.

  18. Understanding heterogeneity in grey matter research of adults with childhood maltreatment-A meta-analysis and review.

    PubMed

    Paquola, Casey; Bennett, Maxwell R; Lagopoulos, Jim

    2016-10-01

    Childhood trauma has been associated with long term effects on prefrontal-limbic grey matter. A literature search was conducted to identify structural magnetic resonance imaging studies of adults with a history of childhood trauma. We performed three meta-analyses. Hedges' g effect sizes were calculated for each study providing hippocampal or amygdala volumes of trauma and non-trauma groups. Seed based differential mapping was utilised to synthesise whole brain voxel based morphometry (VBM) studies. A total of 38 articles (17 hippocampus, 13 amygdala, 19 whole brain VBM) were included in the meta-analyses. Trauma cohorts exhibited smaller hippocampus and amygdala volumes bilaterally. The most robust findings of the whole brain VBM meta-analysis were reduced grey matter in the right dorsolateral prefrontal cortex and right hippocampus amongst adults with a history of childhood trauma. Subgroup analyses and meta-regressions showed results were moderated by age, gender, the cohort's psychiatric health and the study's definition of childhood trauma. We provide evidence of abnormal grey matter in prefrontal-limbic brain regions of adults with a history of childhood maltreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Beyond stereotypes of adolescent risk taking: Placing the adolescent brain in developmental context☆

    PubMed Central

    Romer, Daniel; Reyna, Valerie F.; Satterthwaite, Theodore D.

    2017-01-01

    Recent neuroscience models of adolescent brain development attribute the morbidity and mortality of this period to structural and functional imbalances between more fully developed limbic regions that subserve reward and emotion as opposed to those that enable cognitive control. We challenge this interpretation of adolescent development by distinguishing risk-taking that peaks during adolescence (sensation seeking and impulsive action) from risk taking that declines monotonically from childhood to adulthood (impulsive choice and other decisions under known risk). Sensation seeking is primarily motivated by exploration of the environment under ambiguous risk contexts, while impulsive action, which is likely to be maladaptive, is more characteristic of a subset of youth with weak control over limbic motivation. Risk taking that declines monotonically from childhood to adulthood occurs primarily under conditions of known risks and reflects increases in executive function as well as aversion to risk based on increases in gist-based reasoning. We propose an alternative Lifespan Wisdom Model that highlights the importance of experience gained through exploration during adolescence. We propose, therefore, that brain models that recognize the adaptive roles that cognition and experience play during adolescence provide a more complete and helpful picture of this period of development. PMID:28777995

  20. Interaction between basal ganglia and limbic circuits in learning and memory processes.

    PubMed

    Calabresi, Paolo; Picconi, Barbara; Tozzi, Alessandro; Ghiglieri, Veronica

    2016-01-01

    Hippocampus and striatum play distinctive roles in memory processes since declarative and non-declarative memory systems may act independently. However, hippocampus and striatum can also be engaged to function in parallel as part of a dynamic system to integrate previous experience and adjust behavioral responses. In these structures the formation, storage, and retrieval of memory require a synaptic mechanism that is able to integrate multiple signals and to translate them into persistent molecular traces at both the corticostriatal and hippocampal/limbic synapses. The best cellular candidate for this complex synthesis is represented by long-term potentiation (LTP). A common feature of LTP expressed in these two memory systems is the critical requirement of convergence and coincidence of glutamatergic and dopaminergic inputs to the dendritic spines of the neurons expressing this form of synaptic plasticity. In experimental models of Parkinson's disease abnormal accumulation of α-synuclein affects these two memory systems by altering two major synaptic mechanisms underlying cognitive functions in cholinergic striatal neurons, likely implicated in basal ganglia dependent operative memory, and in the CA1 hippocampal region, playing a central function in episodic/declarative memory processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [The Influence of the Functioning of Brain Regulatory Systems onto the Voluntary Regulation of Cognitive Performance in Children. Report 2. Neuropsychological and Electrophysiological Assessment of Brain Regulatory Functions in Children Aged 10-12 with Learning Difficulties].

    PubMed

    Semenova, O A; Machinskaya, R I

    2015-01-01

    A total number of 172 children aged 10-12 were electrophysiologically and neuropsychologically assessed in order to analyze the influence of the functioning of brain regulatory systems onto the voluntary regulation of cognitive performance during the preteen years. EEG patterns associated with the nonoptimal functioning of brain regulatory systems, particularly fronto-thalamic, limbic and fronto-striatal structures were significantly more often observed in children with learning and behavioral difficulties, as compared to the control group. Neuropsychological assessment showed that the nonoptimal functioning of different brain regulatory systems specifically affect the voluntary regulation of cognitive performance. Children with EEG patterns of fronto-thalamic nonoptimal functioning demonstrated poor voluntary regulation such as impulsiveness and difficulties in continuing the same algorithms. Children with EEG patterns of limbic nonoptimal functioning showed a less pronounced executive dysfunction manifested only in poor switching between program units within a task. Children with EEG patterns of fronto-striatal nonoptimal functioning struggled with such executive dysfunctions as motor and tactile perseverations and emotional-motivational deviations such as poor motivation and communicative skills.

  2. Treatment responsive GABA(B)-receptor limbic encephalitis presenting as new-onset super-refractory status epilepticus (NORSE) in a deployed U.S. soldier.

    PubMed

    Hainsworth, Jeffrey Brian; Shishido, Akira; Theeler, Brett James; Carroll, Craig Grason; Fasano, Rebecca Ellen

    2014-12-01

    A 23-year-old, previously healthy, deployed U.S. soldier presented with bilateral temporal lobe seizures recalcitrant to multiple antiepileptic drugs and anti-seizure anaesthetic agents. He received methylprednisolone, intravenous immunoglobulins, plasma exchange, and rituximab for presumed autoimmune encephalitis before achieving seizure freedom. Six weeks after presentation, the aetiology of his refractory seizures was found to be due to autoantibodies targeting the anti-GABA(B)-receptor. This case is noteworthy for being the first reported case of anti-GABA(B)-receptor limbic encephalitis presenting with new-onset refractory status epilepticus (NORSE), a clinical syndrome that often carries a grave prognosis and in which a treatable aetiology is often never discovered. Our case also supports testing for GABA-receptor autoantibodies and the upfront use of multi-modal immunotherapy in patients presenting with limbic encephalitis and new refractory seizures.

  3. The volumetric and shape changes of the putamen and thalamus in first episode, untreated major depressive disorder.

    PubMed

    Lu, Yi; Liang, Hongmin; Han, Dan; Mo, Yin; Li, Zongfang; Cheng, Yuqi; Xu, Xiufeng; Shen, Zonglin; Tan, Chunyan; Zhao, Wei; Zhu, Yun; Sun, Xuejin

    2016-01-01

    Previous MRI studies confirmed abnormalities in the limbic-cortical-striatal-pallidal-thalamic (LCSPT) network or limbic-cortico-striatal-thalamic-cortical (LCSTC) circuits in patients with major depressive disorder (MDD), but few studies have investigated the subcortical structural abnormalities. Therefore, we sought to determine whether focal subcortical grey matter (GM) changes might be present in MDD at an early stage. We recruited 30 first episode, untreated patients with major depressive disorder (MDD) and 26 healthy control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetric and shape analyses were used to assess volume and shape changes of the subcortical GM structures, respectively. In addition, probabilistic tractography methods were used to demonstrate the relationship between the subcortical and the cortical GM. Compared to healthy controls, MDD patients had significant volume reductions in the bilateral putamen and left thalamus (FWE-corrected, p < 0.05). Meanwhile, the vertex-based shape analysis showed regionally contracted areas on the dorsolateral and ventromedial aspects of the bilateral putamen, and on the dorsal and ventral aspects of left thalamus in MDD patients (FWE-corrected, p < 0.05). Additionally, a negative correlation was found between local atrophy in the dorsal aspects of the left thalamus and clinical variables representing severity. Furthermore, probabilistic tractography demonstrated that the area of shape deformation of the bilateral putamen and left thalamus have connections with the frontal and temporal lobes, which were found to be related to major depression. Our results suggested that structural abnormalities in the putamen and thalamus might be present in the early stages of MDD, which support the role of subcortical structure in the pathophysiology of MDD. Meanwhile, the present study showed that these subcortical structural abnormalities might be the potential trait markers of MDD.

  4. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders.

    PubMed

    Arnsten, Amy F T; Rubia, Katya

    2012-04-01

    This article aims to review basic and clinical studies outlining the roles of prefrontal cortical (PFC) networks in the behavior and cognitive functions that are compromised in childhood neurodevelopmental disorders and how these map into the neuroimaging evidence of circuit abnormalities in these disorders. Studies of animals, normally developing children, and patients with neurodevelopmental disorders were reviewed, with focus on neuroimaging studies. The PFC provides "top-down" regulation of attention, inhibition/cognitive control, motivation, and emotion through connections with posterior cortical and subcortical structures. Dorsolateral and inferior PFC regulate attention and cognitive/inhibitory control, whereas orbital and ventromedial structures regulate motivation and affect. PFC circuitries are very sensitive to their neurochemical environment, and small changes in the underlying neurotransmitter systems, e.g. by medications, can produce large effects on mediated function. Neuroimaging studies of children with neurodevelopmental disorders show altered brain structure and function in distinctive circuits respecting this organization. Children with attention-deficit/hyperactivity disorder show prominent abnormalities in the inferior PFC and its connections to striatal, cerebellar, and parietal regions, whereas children with conduct disorder show alterations in the paralimbic system, comprising ventromedial, lateral orbitofrontal, and superior temporal cortices together with specific underlying limbic regions, regulating motivation and emotion control. Children with major depressive disorder show alterations in ventral orbital and limbic activity, particularly in the left hemisphere, mediating emotions. Finally, children with obsessive-compulsive disorder appear to have a dysregulation in orbito-fronto-striatal inhibitory control pathways, but also deficits in dorsolateral fronto-parietal systems of attention. Altogether, there is a good correspondence between anatomical circuitry mediating compromised functions and patterns of brain structure and function changes in children with neuropsychiatric disorders. Medications may optimize the neurochemical environment in PFC and associated circuitries, and improve structure and function. Copyright © 2012 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Neural circuits of emotion regulation: a comparison of mindfulness-based and cognitive reappraisal strategies.

    PubMed

    Opialla, Sarah; Lutz, Jacqueline; Scherpiet, Sigrid; Hittmeyer, Anna; Jäncke, Lutz; Rufer, Michael; Grosse Holtforth, Martin; Herwig, Uwe; Brühl, Annette B

    2015-02-01

    Dealing with one's emotions is a core skill in everyday life. Effective cognitive control strategies have been shown to be neurobiologically represented in prefrontal structures regulating limbic regions. In addition to cognitive strategies, mindfulness-associated methods are increasingly applied in psychotherapy. We compared the neurobiological mechanisms of these two strategies, i.e. cognitive reappraisal and mindfulness, during both the cued expectation and perception of negative and potentially negative emotional pictures. Fifty-three healthy participants were examined with functional magnetic resonance imaging (47 participants included in analysis). Twenty-four subjects applied mindfulness, 23 used cognitive reappraisal. On the neurofunctional level, both strategies were associated with comparable activity of the medial prefrontal cortex and the amygdala. When expecting negative versus neutral stimuli, the mindfulness group showed stronger activations in ventro- and dorsolateral prefrontal cortex, supramarginal gyrus as well as in the left insula. During the perception of negative versus neutral stimuli, the two groups only differed in an increased activity in the caudate in the cognitive group. Altogether, both strategies recruited overlapping brain regions known to be involved in emotion regulation. This result suggests that common neural circuits are involved in the emotion regulation by mindfulness-based and cognitive reappraisal strategies. Identifying differential activations being associated with the two strategies in this study might be one step towards a better understanding of differential mechanisms of change underlying frequently used psychotherapeutic interventions.

  6. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction.

    PubMed

    Belin, David; Jonkman, Sietse; Dickinson, Anthony; Robbins, Trevor W; Everitt, Barry J

    2009-04-12

    In this review we discuss the evidence that drug addiction, defined as a maladaptive compulsive habit, results from the progressive subversion by addictive drugs of striatum-dependent operant and Pavlovian learning mechanisms that are usually involved in the control over behaviour by stimuli associated with natural reinforcement. Although mainly organized through segregated parallel cortico-striato-pallido-thalamo-cortical loops involved in motor or emotional functions, the basal ganglia, and especially the striatum, are key mediators of the modulation of behavioural responses, under the control of both action-outcome and stimulus-response mechanisms, by incentive motivational processes and Pavlovian associations. Here we suggest that protracted exposure to addictive drugs recruits serial and dopamine-dependent, striato-nigro-striatal ascending spirals from the nucleus accumbens to more dorsal regions of the striatum that underlie a shift from action-outcome to stimulus-response mechanisms in the control over drug seeking. When this progressive ventral to dorsal striatum shift is combined with drug-associated Pavlovian influences from limbic structures such as the amygdala and the orbitofrontal cortex, drug seeking behaviour becomes established as an incentive habit. This instantiation of implicit sub-cortical processing of drug-associated stimuli and instrumental responding might be a key mechanism underlying the development of compulsive drug seeking and the high vulnerability to relapse which are hallmarks of drug addiction.

  7. Association of enhanced limbic response to threat with decreased cortical facial recognition memory response in schizophrenia.

    PubMed

    Satterthwaite, Theodore D; Wolf, Daniel H; Loughead, James; Ruparel, Kosha; Valdez, Jeffrey N; Siegel, Steven J; Kohler, Christian G; Gur, Raquel E; Gur, Ruben C

    2010-04-01

    Recognition memory of faces is impaired in patients with schizophrenia, as is the neural processing of threat-related signals, but how these deficits interact to produce symptoms is unclear. The authors used an affective face recognition paradigm to examine possible interactions between cognitive and affective neural systems in schizophrenia. Blood-oxygen-level-dependent response was examined by means of functional magnetic resonance imaging (3 Tesla) in healthy comparison subjects (N=21) and in patients with schizophrenia (N=12) or schizoaffective disorder, depressed type (N=4), during a two-choice recognition task that used images of human faces. Each target face, previously displayed with a threatening or nonthreatening affect, was displayed with neutral affect. Responses to successful recognition and responses to the effect of previously threatening versus nonthreatening affect were evaluated, and correlations with symptom severity (total Brief Psychiatric Rating Scale score) were examined. Functional connectivity analyses examined the relationship between activation in the amygdala and cortical regions involved in recognition memory. Patients performed the task more slowly than healthy comparison subjects. Comparison subjects recruited the expected cortical regions to a greater degree than patients, and patients with more severe symptoms demonstrated proportionally less recruitment. Increased symptoms were also correlated with augmented amygdala and orbitofrontal cortex response to threatening faces. Comparison subjects exhibited a negative correlation between activity in the amygdala and cortical regions involved in cognition, while patients showed weakening of this relationship. Increased symptoms were related to an enhanced threat response in limbic regions and a diminished recognition memory response in cortical regions, supporting a link between these two brain systems that are often examined in isolation. This finding suggests that abnormal processing of threat-related signals in the environment may exacerbate cognitive impairment in schizophrenia.

  8. DNA methylation of the serotonin transporter gene (SLC6A4) is associated with brain function involved in processing emotional stimuli.

    PubMed

    Frodl, Thomas; Szyf, Moshe; Carballedo, Angela; Ly, Victoria; Dymov, Sergiy; Vaisheva, Farida; Morris, Derek; Fahey, Ciara; Meaney, James; Gill, Michael; Booij, Linda

    2015-09-01

    The aim of the present study was to investigate the association of fMRI blood oxygen-level dependent (BOLD) reactivity with the level of epigenetic methylation of SLC6A4 in blood DNA from a sample of healthy participants and patients with major depressive disorder (MDD). We investigated patients with MDD and healthy controls using fMRI and an emotional attention-shifting task. We assessed site-specific DNA methylation of a previously characterized SLC6A4 region in peripheral blood DNA using pyrosequencing. Our study involved 25 patients with MDD and 35 healthy controls. Activation in the anterior insula elicited by negative emotional content was significantly positively associated with the degree of SLC6A4 methylation. Significantly negative associations were observed between activation in the posterior insula and the degree of SLC6A4 methylation when judging the geometry of pictures after seeing negative in contrast to positive emotional stimuli. Healthy controls with a high degree of SLC6A4 methylation depicted significantly more activity elicited by positive stimuli in limbic regions and more activity elicited by negative stimuli in limbic as well as cognitive control regions than those with a low degree of SLC6A4 methylation. It is impossible to measure methylation directly in the brain and thus we assessed peripheral methylation of SLC6A4. Since the association was cross-sectional, no conclusion about cause and effect can be drawn. Our study provides further support to the hypothesis that particular DNA methylation states that are associated with brain function during emotion processing are detectable in the periphery.

  9. Smile and laughter elicited by electrical stimulation of the frontal operculum.

    PubMed

    Caruana, F; Gozzo, F; Pelliccia, V; Cossu, M; Avanzini, P

    2016-08-01

    Laughter and smile are typical expressions of mirth and fundamental means of social communication. Despite their general interest, the current knowledge about the brain regions involved in the production of these expressions is still very limited, and the principal insights come from electrical stimulation (ES) studies in patients, in which, nevertheless, laughter or smile have been elicited very rarely. Previous studies showed that laughter is evoked by the stimulation of nodes of an emotional network encompassing the anterior cingulate, the superior frontal and basal temporal cortex. A common feature of these stimulation studies is that the facial expression was always accompanied by motor awareness and often by mirth, in line with the affective functions attributed to these regions. Little is known, in contrast, on the neural basis of the voluntary motor control of this expression. The objective of this study was to investigate the effect of ES of the frontal operculum (FO), which is considered a crucial node for the linkage of the voluntary motor system for emotional expression and limbic emotional network. We report the case of ES applied to the frontal operculum (FO) in four patients with drug-resistant focal epilepsy undergoing stereo-electroencephalographic (SEEG) implantation of intracerebral electrodes. In all patients, ES applied to the FO produced laughter or smile. Interestingly, in one patient, the production of a smiling expression was also clearly accompanied by the lack of motor awareness. Since the lack of motor awareness has been previously observed only after the stimulation of the voluntary motor network, we speculate that FO is involved in the voluntary control of facial expressions, and is placed at the interface with the emotional network, gating limbic information to the motor system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of cue-exposure treatment on neural cue reactivity in alcohol dependence: a randomized trial.

    PubMed

    Vollstädt-Klein, Sabine; Loeber, Sabine; Kirsch, Martina; Bach, Patrick; Richter, Anne; Bühler, Mira; von der Goltz, Christoph; Hermann, Derik; Mann, Karl; Kiefer, Falk

    2011-06-01

    In alcohol-dependent patients, alcohol-associated cues elicit brain activation in mesocorticolimbic networks involved in relapse mechanisms. Cue-exposure based extinction training (CET) has been shown to be efficacious in the treatment of alcoholism; however, it has remained unexplored whether CET mediates its therapeutic effects via changes of activity in mesolimbic networks in response to alcohol cues. In this study, we assessed CET treatment effects on cue-induced responses using functional magnetic resonance imaging (fMRI). In a randomized controlled trial, abstinent alcohol-dependent patients were randomly assigned to a CET group (n = 15) or a control group (n = 15). All patients underwent an extended detoxification treatment comprising medically supervised detoxification, health education, and supportive therapy. The CET patients additionally received nine CET sessions over 3 weeks, exposing the patient to his/her preferred alcoholic beverage. Cue-induced fMRI activation to alcohol cues was measured at pretreatment and posttreatment. Compared with pretreatment, fMRI cue-reactivity reduction was greater in the CET relative to the control group, especially in the anterior cingulate gyrus and the insula, as well as limbic and frontal regions. Before treatment, increased cue-induced fMRI activation was found in limbic and reward-related brain regions and in visual areas. After treatment, the CET group showed less activation than the control group in the left ventral striatum. The study provides first evidence that an exposure-based psychotherapeutic intervention in the treatment of alcoholism impacts on brain areas relevant for addiction memory and attentional focus to alcohol-associated cues and affects mesocorticolimbic reward pathways suggested to be pathophysiologically involved in addiction. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice.

    PubMed

    Ter Horst, Judith P; van der Mark, Maaike; Kentrop, Jiska; Arp, Marit; van der Veen, Rixt; de Kloet, E Ronald; Oitzl, Melly S

    2014-01-01

    Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MR(CaMKCre) mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  12. Altered structural network architecture is predictive of the presence of psychotic symptoms in patients with 22q11.2 deletion syndrome.

    PubMed

    Padula, Maria C; Scariati, Elisa; Schaer, Marie; Sandini, Corrado; Ottet, Marie Christine; Schneider, Maude; Van De Ville, Dimitri; Eliez, Stephan

    2017-01-01

    22q11.2 deletion syndrome (22q11DS) represents a homogeneous model of schizophrenia particularly suitable for the search of neural biomarkers of psychosis. Impairments in structural connectivity related to the presence of psychotic symptoms have been reported in patients with 22q11DS. However, the relationships between connectivity changes in patients with different symptomatic profiles are still largely unknown and warrant further investigations. In this study, we used structural connectivity to discriminate patients with 22q11DS with ( N  = 31) and without ( N  = 31) attenuated positive psychotic symptoms. Different structural connectivity measures were used, including the number of streamlines connecting pairs of brain regions, graph theoretical measures, and diffusion measures. We used univariate group comparisons as well as predictive multivariate approaches. The univariate comparison of connectivity measures between patients with or without attenuated positive psychotic symptoms did not give significant results. However, the multivariate prediction revealed that altered structural network architecture discriminates patient subtypes (accuracy = 67.7%). Among the regions contributing to the classification we found the anterior cingulate cortex, which is known to be associated to the presence of psychotic symptoms in patients with 22q11DS. Furthermore, a significant discrimination (accuracy = 64%) was obtained with fractional anisotropy and radial diffusivity in the left inferior longitudinal fasciculus and the right cingulate gyrus. Our results point to alterations in structural network architecture and white matter microstructure in patients with 22q11DS with attenuated positive symptoms, mainly involving connections of the limbic system. These alterations may therefore represent a potential biomarker for an increased risk of psychosis that should be further tested in longitudinal studies.

  13. Ontogenesis of the angiotensin II (ANGII) receptor system in the duck brain.

    PubMed

    Müller, A R; Gerstberger, R

    1994-03-18

    The ontogenetic development of the central nervous angiotensin II (ANGII) receptor system in the duck was studied at embryonic days E20 and E27 and at postnatal days P3 and P14 by computerized semiquantitative autoradiography employing the receptor antagonist 125I[1Sar,8Ile]ANGII as radioligand. For circumventricular structures involved in the sensing of brain-intrinsic (AV3V region) or blood-borne (subfornical organ, SFO) ANGII, binding sites for 125I[1Sar,8Ile]ANGII were first detectable at E27, with a steady rise in binding density up to P14. The choroid plexus of the lateral (PCVL) and third (PCVIII) cerebral ventricles responsible for cerebrospinal fluid (CSF) production were endowed with maximal ANGII receptor densities at E20 with subsequent reduction to constant medium (PCVIII) or low (PCVL) values. Besides the choroid plexus, the magnocellular paraventricular nucleus (PVN) was the only structure presenting ANGII specific binding sites at E20, although at low density. As for the SFO and AV3V region, labelling of ANGII binding sites in the PVN increased continuously during development to high values at P14. Nuclear components of the limbic system (archistriatum, amygdala and habenular complex) did not reveal specific labelling by the radioligand at E20 with constant, moderate binding densities evaluated for E27, P3 and P14. In the duck brain, functionally related structures exhibited a homogeneous ontogenetic development of their ANGII receptor system.

  14. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei.

    PubMed

    Feng, Li; Motelow, Joshua E; Ma, Chanthia; Biche, William; McCafferty, Cian; Smith, Nicholas; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro; Blumenfeld, Hal

    2017-11-22

    The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal maintenance, but its precise seizure-associated functions are not known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectively participate in seizure propagation, impaired level of conscious arousal, and altered relay of information to the cortex during focal limbic seizures. These very different activity patterns within the thalamus may help explain why focal temporal lobe seizures often disrupt widespread network function, and can help guide future treatments aimed at restoring normal thalamocortical network activity and cognition. Copyright © 2017 the authors 0270-6474/17/3711441-14$15.00/0.

  15. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei

    PubMed Central

    Feng, Li; Motelow, Joshua E.; Ma, Chanthia; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro

    2017-01-01

    The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal maintenance, but its precise seizure-associated functions are not known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectively participate in seizure propagation, impaired level of conscious arousal, and altered relay of information to the cortex during focal limbic seizures. These very different activity patterns within the thalamus may help explain why focal temporal lobe seizures often disrupt widespread network function, and can help guide future treatments aimed at restoring normal thalamocortical network activity and cognition. PMID:29066556

  16. The brain anatomy of attention-deficit/hyperactivity disorder in young adults - a magnetic resonance imaging study.

    PubMed

    Gehricke, Jean-G; Kruggel, Frithjof; Thampipop, Tanyaporn; Alejo, Sharina Dyan; Tatos, Erik; Fallon, James; Muftuler, L Tugan

    2017-01-01

    This is one of the first studies to examine the structural brain anatomy and connectivity associated with an ADHD diagnosis and child as well as adult ADHD symptoms in young adults. It was hypothesized that an adult ADHD diagnosis and in particular childhood symptoms, are associated with widespread changes in the brain macro- and microstructure, which can be used to develop a morphometric biomarker for ADHD. Voxel-wise linear regression models were used to examine structural and diffusion-weighted MRI data in 72 participants (31 young adults with ADHD and 41 controls without ADHD) in relation to diagnosis and the number of self-reported child and adult symptoms. Findings revealed significant associations between ADHD diagnosis and widespread changes to the maturation of white matter fiber bundles and gray matter density in the brain, such as structural shape changes (incomplete maturation) of the middle and superior temporal gyrus, and fronto-basal portions of both frontal lobes. ADHD symptoms in childhood showed the strongest association with brain macro- and microstructural abnormalities. At the brain circuitry level, the superior longitudinal fasciculus (SLF) and cortico-limbic areas are dysfunctional in individuals with ADHD. The morphometric findings predicted an ADHD diagnosis correctly up to 83% of all cases. An adult ADHD diagnosis and in particular childhood symptoms are associated with widespread micro- and macrostructural changes. The SLF and cortico-limbic findings suggest complex audio-visual, motivational, and emotional dysfunctions associated with ADHD in young adults. The sensitivity of the morphometric findings in predicting an ADHD diagnosis was sufficient, which indicates that MRI-based assessments are a promising strategy for the development of a biomarker.

  17. Systematic review of the neural basis of social cognition in patients with mood disorders

    PubMed Central

    Cusi, Andrée M.; Nazarov, Anthony; Holshausen, Katherine; MacQueen, Glenda M.; McKinnon, Margaret C.

    2012-01-01

    Background This review integrates neuroimaging studies of 2 domains of social cognition — emotion comprehension and theory of mind (ToM) — in patients with major depressive disorder and bipolar disorder. The influence of key clinical and method variables on patterns of neural activation during social cognitive processing is also examined. Methods Studies were identified using PsycINFO and PubMed (January 1967 to May 2011). The search terms were “fMRI,” “emotion comprehension,” “emotion perception,” “affect comprehension,” “affect perception,” “facial expression,” “prosody,” “theory of mind,” “mentalizing” and “empathy” in combination with “major depressive disorder,” “bipolar disorder,” “major depression,” “unipolar depression,” “clinical depression” and “mania.” Results Taken together, neuroimaging studies of social cognition in patients with mood disorders reveal enhanced activation in limbic and emotion-related structures and attenuated activity within frontal regions associated with emotion regulation and higher cognitive functions. These results reveal an overall lack of inhibition by higher-order cognitive structures on limbic and emotion-related structures during social cognitive processing in patients with mood disorders. Critically, key variables, including illness burden, symptom severity, comorbidity, medication status and cognitive load may moderate this pattern of neural activation. Limitations Studies that did not include control tasks or a comparator group were included in this review. Conclusion Further work is needed to examine the contribution of key moderator variables and to further elucidate the neural networks underlying altered social cognition in patients with mood disorders. The neural networks underlying higher-order social cognitive processes, including empathy, remain unexplored in patients with mood disorders. PMID:22297065

  18. Corticostriatal connectivity fingerprints: Probability maps based on resting-state functional connectivity.

    PubMed

    Jaspers, Ellen; Balsters, Joshua H; Kassraian Fard, Pegah; Mantini, Dante; Wenderoth, Nicole

    2017-03-01

    Over the last decade, structure-function relationships have begun to encompass networks of brain areas rather than individual structures. For example, corticostriatal circuits have been associated with sensorimotor, limbic, and cognitive information processing, and damage to these circuits has been shown to produce unique behavioral outcomes in Autism, Parkinson's Disease, Schizophrenia and healthy ageing. However, it remains an open question how abnormal or absent connectivity can be detected at the individual level. Here, we provide a method for clustering gross morphological structures into subregions with unique functional connectivity fingerprints, and generate network probability maps usable as a baseline to compare individual cases against. We used connectivity metrics derived from resting-state fMRI (N = 100), in conjunction with hierarchical clustering methods, to parcellate the striatum into functionally distinct clusters. We identified three highly reproducible striatal subregions, across both hemispheres and in an independent replication dataset (N = 100) (dice-similarity values 0.40-1.00). Each striatal seed region resulted in a highly reproducible distinct connectivity fingerprint: the putamen showed predominant connectivity with cortical and cerebellar sensorimotor and language processing areas; the ventromedial striatum cluster had a distinct limbic connectivity pattern; the caudate showed predominant connectivity with the thalamus, frontal and occipital areas, and the cerebellum. Our corticostriatal probability maps agree with existing connectivity data in humans and non-human primates, and showed a high degree of replication. We believe that these maps offer an efficient tool to further advance hypothesis driven research and provide important guidance when investigating deviant connectivity in neurological patient populations suffering from e.g., stroke or cerebral palsy. Hum Brain Mapp 38:1478-1491, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. The brain anatomy of attention-deficit/hyperactivity disorder in young adults – a magnetic resonance imaging study

    PubMed Central

    Kruggel, Frithjof; Thampipop, Tanyaporn; Alejo, Sharina Dyan; Tatos, Erik; Fallon, James; Muftuler, L. Tugan

    2017-01-01

    Background This is one of the first studies to examine the structural brain anatomy and connectivity associated with an ADHD diagnosis and child as well as adult ADHD symptoms in young adults. It was hypothesized that an adult ADHD diagnosis and in particular childhood symptoms, are associated with widespread changes in the brain macro- and microstructure, which can be used to develop a morphometric biomarker for ADHD. Methods Voxel-wise linear regression models were used to examine structural and diffusion-weighted MRI data in 72 participants (31 young adults with ADHD and 41 controls without ADHD) in relation to diagnosis and the number of self-reported child and adult symptoms. Results Findings revealed significant associations between ADHD diagnosis and widespread changes to the maturation of white matter fiber bundles and gray matter density in the brain, such as structural shape changes (incomplete maturation) of the middle and superior temporal gyrus, and fronto-basal portions of both frontal lobes. ADHD symptoms in childhood showed the strongest association with brain macro- and microstructural abnormalities. At the brain circuitry level, the superior longitudinal fasciculus (SLF) and cortico-limbic areas are dysfunctional in individuals with ADHD. The morphometric findings predicted an ADHD diagnosis correctly up to 83% of all cases. Conclusion An adult ADHD diagnosis and in particular childhood symptoms are associated with widespread micro- and macrostructural changes. The SLF and cortico-limbic findings suggest complex audio-visual, motivational, and emotional dysfunctions associated with ADHD in young adults. The sensitivity of the morphometric findings in predicting an ADHD diagnosis was sufficient, which indicates that MRI-based assessments are a promising strategy for the development of a biomarker. PMID:28406942

  20. An fMRI study of the brain responses of traumatized mothers to viewing their toddlers during separation and play

    PubMed Central

    Moser, Dominik A.; Wang, Zhishun; Marsh, Rachel; Hao, XueJun; Duan, Yunsuo; Yu, Shan; Gunter, Benjamin; Murphy, David; McCaw, Jaime; Kangarlu, Alayar; Willheim, Erica; Myers, Michael M.; Hofer, Myron A.; Peterson, Bradley S.

    2012-01-01

    This study tested whether mothers with interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) vs healthy controls (HC) would show greater limbic and less frontocortical activity when viewing young children during separation compared to quiet play. Mothers of 20 children (12–42 months) participated: 11 IPV-PTSD mothers and 9 HC with no PTSD. During fMRI, mothers watched epochs of play and separation from their own and unfamiliar children. The study focused on comparison of PTSD mothers vs HC viewing children in separation vs play, and viewing own vs unfamiliar children in separation. Both groups showed distinct patterns of brain activation in response to viewing children in separation vs play. PTSD mothers showed greater limbic and less frontocortical activity (BA10) than HC. PTSD mothers also reported feeling more stressed than HC when watching own and unfamiliar children during separation. Their self-reported stress was associated with greater limbic and less frontocortical activity. Both groups also showed distinct patterns of brain activation in response to viewing their own vs unfamiliar children during separation. PTSD mothers’ may not have access to frontocortical regulation of limbic response upon seeing own and unfamiliar children in separation. This converges with previously reported associations of maternal IPV-PTSD and atypical caregiving behavior following separation. PMID:22021653

  1. Functional neuroimaging of emotional processing in women with polycystic ovary syndrome: a case-control pilot study

    PubMed Central

    Marsh, Courtney A.; Berent-Spillson, Alison; Love, Tiffany; Persad, Carol C.; Pop-Busui, Rodica; Zubieta, Jon-Kar; Smith, Yolanda R.

    2013-01-01

    Objective To evaluate emotional processing in women with insulin-resistant polycystic ovary syndrome (IR-PCOS) and its relationship to glucose regulation and the mu-opioid system. Design Case-control pilot. Setting Tertiary referring medical center. Patient(s) Seven women with IR-PCOS and five non-insulin-resistant controls, aged 21–40 years, recruited from the general population. Intervention(s) Sixteen weeks of metformin (1,500 mg/day) in women with IR-PCOS. Main Outcome Measure(s) Assessment of mood, metabolic function, and neuronal activation during an emotional task using functional magnetic resonance imaging (fMRI), and mu-opioid receptor availability using positive emission tomography (PET). Result(s) We found that insulin-resistant PCOS patients [1] had greater limbic activation during an emotion task than controls (n = 5); [2] trended toward decreased positive affect and increased trait anxiety; [3] after metformin treatment, had limbic activation that no longer differed from controls; and [4] had positive correlations between fMRI limbic activation during emotional processing and mu-opioid binding potential. Conclusion(s) Patients with IR-PCOS had greater regional activation during an emotion task than the controls, although this resolved with metformin therapy. Alterations in mu-opioid neurotransmission may underlie limbic system activity and mood disorders in IR-PCOS. Clinical Trial Registration Number NCT00670800. PMID:23557757

  2. An iontophoretic survey of opioid peptide actions in the rat limbic system: in search of opiate epileptogenic mechanisms.

    PubMed

    French, E D; Siggins, G R

    1980-10-01

    Iontophoretic and micropressure drug application and lesion techniques were used to investigate the cellular source of rat limbic system epileptiform responses to opioid peptides [19]. Iontophoretically applied morphine, methionine enkephalin or beta-endorphin inhibited the spontaneous or glutamate-activated firing of the great majority of single neurons in medial and lateral septum, amygdala and cingulate cortex. These inhibitions in firing were antagonized by iontophoresis of naloxone. In contrast to inhibitory effects in other limbic areas, morphine and the opioid peptides predominantly excited CA1 and CA3 pyramidal neurons in a naloxone-sensitive manner, as previously reported [36]. On rare occasions, iontophoretically applied beta-endorphin evoked repetitive waveforms similar to interictal population EPSPs or spikes. Micropressure application of opiates and peptides also excited hippocampal neurons indicating such responses were not current-induced artefacts. The possible role of the excitatory cholinergic septal hippocampal pathway in the facilitatory response of hippocampal units to the opiates was tested with iontophoretically applied atropine and scopolamine, or lesions of septal nuclei. None of these manipulations reduced the opioid-induced excitations; rather, septal lesions enhanced excitatory and epileptiform responses to the opiates. These results support the hypothesis that opiate-evoked epileptiform activity in the limbic system arises from enhanced pyramidal cell activity in the hippocampal formation, probably by a non-cholinergic mechanism.

  3. Norepinephrine-gamma-aminobutyric acid (GABA) interaction in limbic stress circuits: effects of reboxetine on GABAergic neurons.

    PubMed

    Herman, James P; Renda, Andrew; Bodie, Bryan

    2003-01-15

    Reboxetine is a selective norepinephrine (NE) reuptake inhibitor that exerts significant antidepressant action. The current study assessed norepinephrine-gamma-aminobutyric acid (GABA)-ergic mechanisms in reboxetine action, examining glutamic acid decarboxylase (GAD) mRNA expression in limbic neurocircuits following reboxetine within the context of chronic stress. Male rats received 25 mg/kg reboxetine/day, p.o. Reboxetine and vehicle animals were exposed to 1 week of variable stress exposure or handling. Behavioral responses to stress (open field) were tested on day 7, and animals were killed on day 8 to assess neuroendocrine stress responses and limbic GAD65/67 mRNA regulation (in situ hybridization). Reboxetine significantly decreased behavioral reactivity in the open field. Reboxetine administration did not affect expression of GAD65/67 mRNA in handled rats; however, administration to stressed animals reduced GAD67 (but not GAD65) mRNA in the medial amygdaloid nucleus, posteromedial bed nucleus of the stria terminalis, and dentate gyrus. In contrast, GAD65 mRNA expression was increased by reboxetine in the lateral septum of stressed animals. Norepinephrine pathways appear to modulate synthesis of GABA in central limbic stress circuits. Decreases in GABA synthetic capacity suggest reduced activation of stress-excitatory pathways and enhanced activation of stress-inhibitory circuits, and is consistent with a role for GABA in the antidepressant efficacy of NE reuptake inhibitors.

  4. Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates

    PubMed Central

    Ances, Beau M.; Vitaliani, Roberta; Taylor, Robert A.; Liebeskind, David S.; Voloschin, Alfredo; Houghton, David J.; Galetta, Steven L.; Dichter, Marc; Alavi, Abass; Rosenfeld, Myrna R.; Dalmau, Josep

    2007-01-01

    We report seven patients, six from a single institution, who developed subacute limbic encephalitis initially considered of uncertain aetiology. Four patients presented with symptoms of hippocampal dysfunction (i.e. severe short-term memory loss) and three with extensive limbic dysfunction (i.e. confusion, seizures and suspected psychosis). Brain MRI and [18F]fluorodeoxyglucose (FDG)-PET complemented each other but did not overlap in 50% of the patients. Combining both tests, all patients had temporal lobe abnormalities, five with additional areas involved. In one patient, FDG hyperactivity in the brainstem that was normal on MRI correlated with central hypoventilation; in another case, hyperactivity in the cerebellum anticipated ataxia. All patients had abnormal CSF: six pleocytosis, six had increased protein concentration, and three of five examined had oligoclonal bands. A tumour was identified and removed in four patients (mediastinal teratoma, thymoma, thymic carcinoma and thyroid cancer) and not treated in one (ovarian teratoma). An immunohistochemical technique that facilitates the detection of antibodies to cell surface or synaptic proteins demonstrated that six patients had antibodies to the neuropil of hippocampus or cerebellum, and one to intraneuronal antigens. Only one of the neuropil antibodies corresponded to voltage-gated potassium channel (VGKC) antibodies; the other five (two with identical specificity) reacted with antigens concentrated in areas of high dendritic density or synaptic-enriched regions of the hippocampus or cerebellum. Preliminary characterization of these antigens indicates that they are diverse and expressed on the neuronal cell membrane and dendrites; they do not co-localize with VGKCs, but partially co-localize with spinophilin. A target autoantigen in one of the patients co-localizes with a cell surface protein involved in hippocampal dendritic development. All patients except the one with antibodies to intracellular antigens had dramatic clinical and neuroimaging responses to immunotherapy or tumour resection; two patients had neurological relapse and improved with immunotherapy. Overall, the phenotype associated with the novel neuropil antibodies includes dominant behavioural and psychiatric symptoms and seizures that often interfere with the evaluation of cognition and memory, and brain MRI or FDG-PET abnormalities less frequently restricted to the medial temporal lobes than in patients with classical paraneoplastic or VGKC antibodies. When compared with patients with VGKC antibodies, patients with these novel antibodies are more likely to have CSF inflammatory abnormalities and systemic tumours (teratoma and thymoma), and they do not develop SIADH-like hyponatraemia. Although most autoantigens await characterization, all share intense expression by the neuropil of hippocampus, with patterns of immunolabelling characteristic enough to suggest the diagnosis of these disorders and predict response to treatment. PMID:15888538

  5. The effects of lithium and anticonvulsants on brain structure in bipolar disorder.

    PubMed

    Germaná, C; Kempton, M J; Sarnicola, A; Christodoulou, T; Haldane, M; Hadjulis, M; Girardi, P; Tatarelli, R; Frangou, S

    2010-12-01

    To investigate the effect of lithium, anticonvulsants and antipsychotics on brain structure in bipolar disorder (BD). A cross-sectional structural brain magnetic resonance imaging study of 74 remitted patients with BD, aged 18-65, who were receiving long-term prophylactic treatment with lithium or anticonvulsants or antipsychotics. Global and regional grey matter, white matter, and cerebrospinal fluid volumes were compared between treatment groups. Grey matter in the subgenual anterior cingulate gyrus on the right (extending into the hypothalamus) and in the postcentral gyrus, the hippocampus/amygdale complex and the insula on the left was greater in BD patients on lithium treatment compared to all other treatment groups. Lithium treatment in BD has a significant effect on brain structure particularly in limbic/paralimbic regions associated with emotional processing. © 2010 John Wiley & Sons A/S.

  6. Can understanding the neurobiology of body dysmorphic disorder (BDD) inform treatment?

    PubMed

    Rossell, Susan L; Harrison, Ben J; Castle, David

    2015-08-01

    We aim to provide a clinically focused review of the neurobiological literature in body dysmorphic disorder (BDD), with a focus on structural and functional neuroimaging. There has been a recent influx of studies examining the underlying neurobiology of BDD using structural and functional neuroimaging methods. Despite obvious symptom similarities with obsessive-compulsive disorder (OCD), no study to date has directly compared the two groups using neuroimaging techniques. Studies have established that there are limbic and visual cortex abnormalities in BDD, in contrast to fronto-striatal differences in OCD. Such data suggests affect or visual training maybe useful in BDD. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  7. Cocaine cue-induced dopamine release in amygdala and hippocampus: a high-resolution PET [¹⁸F]fallypride study in cocaine dependent participants.

    PubMed

    Fotros, Aryandokht; Casey, Kevin F; Larcher, Kevin; Verhaeghe, Jeroen A J; Cox, Sylvia M L; Gravel, Paul; Reader, Andrew J; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco

    2013-08-01

    Drug-related cues are potent triggers for relapse in people with cocaine dependence. Dopamine (DA) release within a limbic network of striatum, amygdala and hippocampus has been implicated in animal studies, but in humans it has only been possible to measure effects in the striatum. The objective here was to measure drug cue-induced DA release in the amygdala and hippocampus using high-resolution PET with [(18)F]fallypride. Twelve cocaine-dependent volunteers (mean age: 39.6 ± 8.0 years; years of cocaine use: 15.9 ± 7.4) underwent two [(18)F]fallypride high-resolution research tomography-PET scans, one with exposure to neutral cues and one with cocaine cues. [(18)F]Fallypride non-displaceable-binding potential (BPND) values were derived for five regions of interest (ROI; amygdala, hippocampus, ventral limbic striatum, associative striatum, and sensorimotor striatum). Subjective responses to the cues were measured with visual analog scales and grouped using principal component analysis. Drug cue exposure significantly decreased BPND values in all five ROI in subjects who had a high-, but not low-, craving response (limbic striatum: p=0.019, associative striatum: p=0.008, sensorimotor striatum: p=0.004, amygdala: p=0.040, and right hippocampus: p=0.025). Individual differences in the cue-induced craving response predicted the magnitude of [(18)F]fallypride responses within the striatum (ventral limbic: r=0.581, p=0.048; associative: r=0.589, p=0.044; sensorimotor: r=0.675, p=0.016). To our knowledge this study provides the first evidence of drug cue-induced DA release in the amygdala and hippocampus in humans. The preferential induction of DA release among high-craving responders suggests that these aspects of the limbic reward network might contribute to drug-seeking behavior.

  8. [Intensity of pentose phosphate metabolism of carbohydrates in various brain areas in normal and starved animals].

    PubMed

    Kerimov, B F

    2002-01-01

    The activities of key enzymes of pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G-6 PD) and 6-phosphogluconate dehydrogenase (6-PGD), were studied in cytoplasmatic fractions of brain cortical (limbic, orbital, sensorimotor cortex) and subcortical (myelencefalon, mesencefalon, hypothalamus) structures of rats subjected to starvation for 1, 2, 3, 5 and 7 days. Short-term starvation (1-3 days) caused activation of 6-GPD and 6-PGD both in cortical and subcortical structures. Long-term starvation for 5-7 days caused a decrease of activities of the pentose phosphate pathway enzymes in all studied structures. It is suggested that enzymes of pentose phosphate pathway in nervous tissues are functionally and metabolically related to glutathione system and during starvation they indirectly participate in the regulation lipid peroxidation processes.

  9. Convergence of semantics and emotional expression within the IFG pars orbitalis.

    PubMed

    Belyk, Michel; Brown, Steven; Lim, Jessica; Kotz, Sonja A

    2017-08-01

    Humans communicate through a combination of linguistic and emotional channels, including propositional speech, writing, sign language, music, but also prosodic, facial, and gestural expression. These channels can be interpreted separately or they can be integrated to multimodally convey complex meanings. Neural models of the perception of semantics and emotion include nodes for both functions in the inferior frontal gyrus pars orbitalis (IFGorb). However, it is not known whether this convergence involves a common functional zone or instead specialized subregions that process semantics and emotion separately. To address this, we performed Kernel Density Estimation meta-analyses of published neuroimaging studies of the perception of semantics or emotion that reported activation in the IFGorb. The results demonstrated that the IFGorb contains two zones with distinct functional profiles. A lateral zone, situated immediately ventral to Broca's area, was implicated in both semantics and emotion. Another zone, deep within the ventral frontal operculum, was engaged almost exclusively by studies of emotion. Follow-up analysis using Meta-Analytic Connectivity Modeling demonstrated that both zones were frequently co-activated with a common network of sensory, motor, and limbic structures, although the lateral zone had a greater association with prefrontal cortical areas involved in executive function. The status of the lateral IFGorb as a point of convergence between the networks for processing semantic and emotional content across modalities of communication is intriguing since this structure is preserved across primates with limited semantic abilities. Hence, the IFGorb may have initially evolved to support the comprehension of emotional signals, being later co-opted to support semantic communication in humans by forming new connections with brain regions that formed the human semantic network. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Stimulation of the basolateral amygdala improves the acquisition of a motor skill.

    PubMed

    Bergado, Jorge A; Rojas, Yeneissy; Capdevila, Vladimir; González, Odalys; Almaguer-Melian, William

    2006-01-01

    We have previously shown that the stimulation of limbic structures related to affective life such as the amygdale can improve and reinforce neural plastic processes related to hippocampus-dependent forms of explicit memory, as spatial memory and LTP. We now assessed whether this effect is restricted to the mentioned structure and memory type, or represents a more general form of modulatory influence. Young, male Sprague Dawley rats were implanted stereotactically with one electrode in the basolateral amygdala (BLA) and trained to acquire a motor skill using their right anterior limb. A group of animals received 3 trains of 15 impulses at the BLA 15 minutes after each daily training session. A second group of implanted animals was handled in the same way, but not stimulated, while a third group was not implanted. After reaching the training criterion the left motor cortex was mapped by the observation of the movements induced by stimuli applied in discrete points of the cortex. Cortical representation of the anterior limb was increased in all trained animals, showing that the motor cortex is involved in the acquisition of the new skill. Animals receiving stimulation of the BLA showed similar cortical changes, but learned faster than non-stimulated controls. Reinforcement of neural plasticity by the activation of the amygdala is not restricted to hippocampus-dependent explicit memory, but it might represent a universal mechanism to modulate plasticity.

  11. Long-term potentiation in the dentate gyrus in freely moving rats is reinforced by intraventricular application of norepinephrine, but not oxotremorine.

    PubMed

    Almaguer-Melian, William; Rojas-Reyes, Yeneissy; Alvare, Armando; Rosillo, Juan C; Frey, Julietta U; Bergado, Jorge A

    2005-01-01

    Growing evidence suggests that processes of synaptic plasticity, such as long-term potentiation (LTP) occurring in one synaptic population, can be modulated by consolidating afferents from other brain structures. We have previously shown that an early-LTP lasting less than 4 h (E-LTP) in the dentate gyrus can be prolonged by stimulating the basolateral amygdala, the septum or the locus coeruleus within a specific time window. Pharmacological experiments have suggested that noradregeneric (NE) and/or cholinergic systems might be involved in these effects. We have therefore investigated whether the direct intraventricular application of agonists for NE- or muscarinic receptors is able to modulate synaptic plasticity. E-LTP was induced at the dentate gyrus of freely moving rats using a mild tetanization protocol that induces only an E-LTP. NE or oxotremorine (OXO) were applied icv 10 min after the tetanus. Results show that low doses of NE (1.5 and 5 nM) effectively prolong LTP. A higher dose (50 nM) was not effective. None of the OXO doses employed (5, 25, and 50 nM) showed similar effects. These results stress the importance of transmitter-specific modulatory influences on the time course of synaptic plasticity, in particular NE whose application mimics the reinforcing effect of directly stimulating limbic structures on LTP.

  12. Changes in Prefrontal-Limbic Function in Major Depression after 15 Months of Long-Term Psychotherapy

    PubMed Central

    Buchheim, Anna; Viviani, Roberto; Kessler, Henrik; Kächele, Horst; Cierpka, Manfred; Roth, Gerhard; George, Carol; Kernberg, Otto F.; Bruns, Georg; Taubner, Svenja

    2012-01-01

    Neuroimaging studies of depression have demonstrated treatment-specific changes involving the limbic system and regulatory regions in the prefrontal cortex. While these studies have examined the effect of short-term, interpersonal or cognitive-behavioural psychotherapy, the effect of long-term, psychodynamic intervention has never been assessed. Here, we investigated recurrently depressed (DSM-IV) unmedicated outpatients (N = 16) and control participants matched for sex, age, and education (N = 17) before and after 15 months of psychodynamic psychotherapy. Participants were scanned at two time points, during which presentations of attachment-related scenes with neutral descriptions alternated with descriptions containing personal core sentences previously extracted from an attachment interview. Outcome measure was the interaction of the signal difference between personal and neutral presentations with group and time, and its association with symptom improvement during therapy. Signal associated with processing personalized attachment material varied in patients from baseline to endpoint, but not in healthy controls. Patients showed a higher activation in the left anterior hippocampus/amygdala, subgenual cingulate, and medial prefrontal cortex before treatment and a reduction in these areas after 15 months. This reduction was associated with improvement in depressiveness specifically, and in the medial prefrontal cortex with symptom improvement more generally. This is the first study documenting neurobiological changes in circuits implicated in emotional reactivity and control after long-term psychodynamic psychotherapy. PMID:22470470

  13. Reduced functional connectivity to the frontal cortex during processing of social cues in autism spectrum disorder.

    PubMed

    Hoffmann, Elgin; Brück, Carolin; Kreifelts, Benjamin; Ethofer, Thomas; Wildgruber, Dirk

    2016-08-01

    People diagnosed with autism spectrum disorder (ASD) characteristically present with severe difficulties in interpreting every-day social signals. Currently it is assumed that these difficulties might have neurobiological correlates in alterations in activation as well as in connectivity in and between regions of the social perception network suggested to govern the processing of social cues. In this study, we conducted functional magnetic resonance imaging (fMRI)-based activation and connectivity analyses focusing on face-, voice-, and audiovisual-processing brain regions as the most important subareas of the social perception network. Results revealed alterations in connectivity among regions involved in the processing of social stimuli in ASD subjects compared to typically developed (TD) controls-specifically, a reduced connectivity between the left temporal voice area (TVA) and the superior and medial frontal gyrus. Alterations in connectivity, moreover, were correlated with the severity of autistic traits: correlation analysis indicated that the connectivity between the left TVA and the limbic lobe, anterior cingulate and the medial frontal gyrus as well as between the right TVA and the frontal lobe, anterior cingulate, limbic lobe and the caudate decreased with increasing symptom severity. As these frontal regions are understood to play an important role in interpreting and mentalizing social signals, the observed underconnectivity might be construed as playing a role in social impairments in ASD.

  14. [The clinical phenomenology of Rett's syndrome].

    PubMed

    Calderón-González, R; Calderón-Sepulveda, R F; Treviño-Welsh, J

    1999-01-01

    The work was done to facilitate the clinical diagnosis and understanding of Rett syndrome (RS) by grouping the symptoms and signs in areas of neurological disfunction. This is a retrospective, longitudinal and observational study of 30 young females whose clinical manifestations were grouped using a modified Fitzgerald et al. scale for motor and behavior evaluation of patients with RS. All patients were videotaped at least during one or several appointments during their follow-up for a period of 1 to 10 years. All patients and videotapes were reviewed independently by the three authors. We followed the clinical diagnostic criteria of classic RS, and grouped the symptoms and signs in 12 groups of clinical phenomenology that represented specific areas of central or peripheral nervous system involvement: 1) dementia syndrome (fronto-temporo-parietal and limbic dysfunction); 2) extrapyramidal syndrome (basal ganglia dysfunction); 3) respiratory function disorders (brain stem reticular system disfunction); 4) sleep disorders (reticular system and limbic dysfunction); 5) epilepsy (cortico-subcortical paroxysmal bioelectrical dysfunction); 6) lower motor neuron syndrome (neuropathic dysfunction and/or peripheral neuropathy); 7) body growth retardation; 8) tonic-postural skeletal deformities; 9) deficit of pain sensation (nociceptive deficit); 10) pseudobulbar dysfunction; 11) autonomic dysfunction and 12) others (microcephaly and bruxism). In clinical practice, we recommend the use of this grouping of symptoms and signs because it makes facilities the clinical study, definition of areas of dysfunction and diagnosis of the patient with RS.

  15. The neural circuitry of visual artistic production and appreciation: A proposition.

    PubMed

    Chakravarty, Ambar

    2012-04-01

    The nondominant inferior parietal lobule is probably a major "store house" of artistic creativity. The ventromedial prefrontal lobe (VMPFL) is supposed to be involved in creative cognition and the dorsolateral prefrontal lobe (DLPFL) in creative output. The conceptual ventral and dorsal visual system pathways likely represent the inferior and superior longitudinal fasciculi. During artistic production, conceptualization is conceived in the VMPFL and the executive part is operated through the DLFPL. The latter transfers the concept to the visual brain through the superior longitudinal fasciculus (SLF), relaying on its path to the parietal cortex. The conceptualization at VMPFL is influenced by activity from the anterior temporal lobe through the uncinate fasciculus and limbic system pathways. The final visual image formed in the visual brain is subsequently transferred back to the DLPFL through the SLF and then handed over to the motor cortex for execution. During art appreciation, the image at the visual brain is transferred to the frontal lobe through the SLF and there it is matched with emotional and memory inputs from the anterior temporal lobe transmitted through the uncinate fasiculus. Beauty is perceived at the VMPFL and transferred through the uncinate fasciculus to the hippocampo-amygdaloid complex in the anterior temporal lobe. The limbic system (Papez circuit) is activated and emotion of appreciation is evoked. It is postulated that in practice the entire circuitry is activated simultaneously.

  16. Implication of mGlu5 receptor in the enhancement of morphine-induced hyperlocomotion under chronic treatment with zolpidem.

    PubMed

    Shibasaki, Masahiro; Ishii, Kazunori; Masukawa, Daiki; Ando, Koji; Ikekubo, Yuiko; Ishikawa, Yutori; Shibasaki, Yumiko; Mori, Tomohisa; Suzuki, Tsutomu

    2014-09-05

    Long-term exposure to zolpidem induces drug dependence, and it is well known that the balance between the GABAergic and glutamatergic systems plays a critical role in maintaining the neuronal network. In the present study, we investigated the interaction between GABAA receptor α1 subunit and mGlu5 receptor in the limbic forebrain including the N.Acc. after treatment with zolpidem for 7 days. mGlu5 receptor protein levels were significantly increased after treatment with zolpidem for 7 days, and this change was accompanied by the up-regulation of phospholipase Cβ1 and calcium/calmodulin-dependent protein kinase IIα, which are downstream of mGlu5 receptor in the limbic forebrain. To confirm that mGlu5 receptor is directly involved in dopamine-related behavior in mice following chronic treatment with zolpidem, we measured morphine-induced hyperlocomotion after chronic treatment with zolpidem in the presence or absence of an mGlu5 receptor antagonist. Although chronic treatment with zolpidem significantly enhanced morphine-induced hyperlocomotion, this enhancement of morphine-induced hyperlocomotion was suppressed by treating it with the mGlu5 receptor antagonist MPEP. These results suggest that chronic treatment with zolpidem caused neural plasticity in response to activation of the mesolimbic dopaminergic system accompanied by an increase in mGlu5 receptor. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Tinnitus retraining therapy: a different view on tinnitus.

    PubMed

    Jastreboff, Pawel J; Jastreboff, Margaret M

    2006-01-01

    Tinnitus retraining therapy (TRT) is a method for treating tinnitus and decreased sound tolerance, based on the neurophysiological model of tinnitus. This model postulates involvement of the limbic and autonomic nervous systems in all cases of clinically significant tinnitus and points out the importance of both conscious and subconscious connections, which are governed by principles of conditioned reflexes. The treatments for tinnitus and misophonia are based on the concept of extinction of these reflexes, labeled as habituation. TRT aims at inducing changes in the mechanisms responsible for transferring signal (i.e., tinnitus, or external sound in the case of misophonia) from the auditory system to the limbic and autonomic nervous systems, and through this, remove signal-induced reactions without attempting to directly attenuate the tinnitus source or tinnitus/misophonia-evoked reactions. As such, TRT is effective for any type of tinnitus regardless of its etiology. TRT consists of: (1) counseling based on the neurophysiological model of tinnitus, and (2) sound therapy (with or without instrumentation). The main role of counseling is to reclassify tinnitus into the category of neutral stimuli. The role of sound therapy is to decrease the strength of the tinnitus signal. It is crucial to assess and treat tinnitus, decreased sound tolerance, and hearing loss simultaneously. Results from various groups have shown that TRT can be an effective method of treatment. Copyright (c) 2006 S. Karger AG, Basel.

  18. The neural circuitry of visual artistic production and appreciation: A proposition

    PubMed Central

    Chakravarty, Ambar

    2012-01-01

    The nondominant inferior parietal lobule is probably a major “store house” of artistic creativity. The ventromedial prefrontal lobe (VMPFL) is supposed to be involved in creative cognition and the dorsolateral prefrontal lobe (DLPFL) in creative output. The conceptual ventral and dorsal visual system pathways likely represent the inferior and superior longitudinal fasciculi. During artistic production, conceptualization is conceived in the VMPFL and the executive part is operated through the DLFPL. The latter transfers the concept to the visual brain through the superior longitudinal fasciculus (SLF), relaying on its path to the parietal cortex. The conceptualization at VMPFL is influenced by activity from the anterior temporal lobe through the uncinate fasciculus and limbic system pathways. The final visual image formed in the visual brain is subsequently transferred back to the DLPFL through the SLF and then handed over to the motor cortex for execution. During art appreciation, the image at the visual brain is transferred to the frontal lobe through the SLF and there it is matched with emotional and memory inputs from the anterior temporal lobe transmitted through the uncinate fasiculus. Beauty is perceived at the VMPFL and transferred through the uncinate fasciculus to the hippocampo–amygdaloid complex in the anterior temporal lobe. The limbic system (Papez circuit) is activated and emotion of appreciation is evoked. It is postulated that in practice the entire circuitry is activated simultaneously. PMID:22566716

  19. Limbic and Basal Ganglia Neuroanatomical Correlates of Gait and Executive Function: Older Adults With Mild Cognitive Impairment and Intact Cognition.

    PubMed

    McGough, Ellen L; Kelly, Valerie E; Weaver, Kurt E; Logsdon, Rebecca G; McCurry, Susan M; Pike, Kenneth C; Grabowski, Thomas J; Teri, Linda

    2018-04-01

    This study aimed to examine differences in spatiotemporal gait parameters between older adults with amnestic mild cognitive impairment and normal cognition and to examine limbic and basal ganglia neural correlates of gait and executive function in older adults without dementia. This was a cross-sectional study of 46 community-dwelling older adults, ages 70-95 yrs, with amnestic mild cognitive impairment (n = 23) and normal cognition (n = 23). Structural magnetic resonance imaging was used to attain volumetric measures of limbic and basal ganglia structures. Quantitative motion analysis was used to measure spatiotemporal parameters of gait. The Trail Making Test was used to assess executive function. During fast-paced walking, older adults with amnestic mild cognitive impairment demonstrated significantly slower gait speed and shorter stride length compared with older adults with normal cognition. Stride length was positively correlated with hippocampal, anterior cingulate, and nucleus accumbens volumes (P < 0.05). Executive function was positively correlated with hippocampal, anterior cingulate, and posterior cingulate volumes (P < 0.05). Compared with older adults with normal cognition, those with amnestic mild cognitive impairment demonstrated slower gait speed and shorter stride length, during fast-paced walking, and lower executive function. Hippocampal and anterior cingulate volumes demonstrated moderate positive correlation with both gait and executive function, after adjusting for age. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss gait performance and cognitive function in older adults with amnestic mild cognitive impairment versus normal cognition, (2) discuss neurocorrelates of gait and executive function in older adults without dementia, and (3) recognize the importance of assessing gait speed and cognitive function in the clinical management of older adults at risk for dementia. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this Journal-based CME activity for a maximum of 0.5 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

  20. Emotions and hemispheric specialization.

    PubMed

    Kyle, N L

    1988-09-01

    Studies of lateralization and specialization of brain function have increased our understanding of emotional processes in the brain. It has been said that the way in which we understand the emotional interrelatedness of brain layers and segments may have important effects on human society. Earlier studies of brain function, especially of limbic effects, suggested a dichotomous state of affairs between the phylogenetically older brain and the newer cortical areas--between affect and cognition. Such concepts are considered here in the light of specialization studies. From the beginning hemispheric laterality research has implicated emotionality and emotional pathology. It also appears that some limbic functions may be mediated in a lateralized fashion. Neuropsychologists have directed much work toward localization of function from its earliest stage; since the 1960s an emphasis has been on "mapping" of cortical functions in terms of psychopathologic disabilities. Various disability groups have been studied in this way, and it may be concluded that neuropsychologic measures are sensitive to changes in cerebral functioning and may have effective lateralizing and localizing ability under specified conditions. Studies of limbic effects in the brain emphasize their importance in emotional behavior but also their interrelatedness with other structures, for example, the frontal and temporal lobes, and particularly the right hemisphere. Studies of commissurotomy (split-brain) patients tend to bear out these relationships. In split-brain subjects the marked reduction in affective verbal and nonverbal behavior reflects the interruption of transcallosal impulses that normally permit emotional infusion of cortical structures to take place. These effects include verbal, visual, and auditory patterns that mediate the ability to decode complex nonverbal patterns and may result in a reduction of "inner speech," that is, symbollexia. They may further lead to a condition of "functional commissurotomy" in psychiatric patients with presumably intact brains. It would also appear that lateralization may be variable in terms of inhibitory and facilitative effects; emotional factors may play a part in this variability in some clinical cases in which functional or reactive features predominate, for example, in alexithymia. Ideas of hemispheric specialization have been extended to other areas of individual and social behavior. Creative ability has been understood by some authors to be a product of the relatively dynamic relationships existing between specialized areas of the brain.(ABSTRACT TRUNCATED AT 400 WORDS)

  1. Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems.

    PubMed

    Everitt, B J; Parkinson, J A; Olmstead, M C; Arroyo, M; Robledo, P; Robbins, T W

    1999-06-29

    Only recently have the functional implications of the organization of the ventral striatum, amygdala, and related limbic-cortical structures, and their neuroanatomical interactions begun to be clarified. Processes of activation and reward have long been associated with the NAcc and its dopamine innervation, but the precise relationships between these constructs have remained elusive. We have sought to enrich our understanding of the special role of the ventral striatum in coordinating the contribution of different functional subsystems to confer flexibility, as well as coherence and vigor, to goal-directed behavior, through different forms of associative learning. Such appetitive behavior comprises many subcomponents, some of which we have isolated in these experiments to reveal that, not surprisingly, the mechanisms by which an animal sequences responding to reach a goal are complex. The data reveal how the different components, pavlovian approach (or sign-tracking), conditioned reinforcement (whereby pavlovian stimuli control goal-directed action), and also more general response-invigorating processes (often called "activation," "stress," or "drive") may be integrated within the ventral striatum through convergent interactions of the amygdala, other limbic cortical structures, and the mesolimbic dopamine system to produce coherent behavior. The position is probably not far different when considering aversively motivated behavior. Although it may be necessary to employ simplified, even abstract, paradigms for isolating these mechanisms, their concerted action can readily be appreciated in an adaptive, functional setting, such as the responding by rats for intravenous cocaine under a second-order schedule of reinforcement. Here, the interactions of primary reinforcement, psychomotor activation, pavlovian conditioning, and the control that drug cues exert over the integrated drug-seeking response can be seen to operate both serially and concurrently. The power of our analytic techniques for understanding complex motivated behavior has been evident for some time. However, the crucial point is that we are now able to map these components with increasing certainty onto discrete amygdaloid, and other limbic cortical-ventral striatal subsystems. The neural dissection of these mechanisms also serves an important theoretical purpose in helping to validate the various hypothetical constructs and further developing theory. Major challenges remain, not the least of which is an understanding of the operation of the ventral striatum together with its dopaminergic innervation and its interactions with the basolateral amygdala, hippocampal formation, and prefrontal cortex at a more mechanistic, neuronal level.

  2. Emotional Intent Modulates The Neural Substrates Of Creativity: An fMRI Study of Emotionally Targeted Improvisation in Jazz Musicians

    PubMed Central

    McPherson, Malinda J.; Barrett, Frederick S.; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J.

    2016-01-01

    Emotion is a primary motivator for creative behaviors, yet the interaction between the neural systems involved in creativity and those involved in emotion has not been studied. In the current study, we addressed this gap by using fMRI to examine piano improvisation in response to emotional cues. We showed twelve professional jazz pianists photographs of an actress representing a positive, negative or ambiguous emotion. Using a non-ferromagnetic thirty-five key keyboard, the pianists improvised music that they felt represented the emotion expressed in the photographs. Here we show that activity in prefrontal and other brain networks involved in creativity is highly modulated by emotional context. Furthermore, emotional intent directly modulated functional connectivity of limbic and paralimbic areas such as the amygdala and insula. These findings suggest that emotion and creativity are tightly linked, and that the neural mechanisms underlying creativity may depend on emotional state. PMID:26725925

  3. LORETA functional imaging in antipsychotic-naive and olanzapine-, clozapine- and risperidone-treated patients with schizophrenia.

    PubMed

    Tislerova, Barbora; Brunovsky, Martin; Horacek, Jiri; Novak, Tomas; Kopecek, Miloslav; Mohr, Pavel; Krajca, Vladimír

    2008-01-01

    The aim of our study was to detect changes in the distribution of electrical brain activity in schizophrenic patients who were antipsychotic naive and those who received treatment with clozapine, olanzapine or risperidone. We included 41 subjects with schizophrenia (antipsychotic naive = 11; clozapine = 8; olanzapine = 10; risperidone = 12) and 20 healthy controls. Low-resolution brain electromagnetic tomography was computed from 19-channel electroencephalography for the frequency bands delta, theta, alpha-1, alpha-2, beta-1, beta-2 and beta-3. We compared antipsychotic-naive subjects with healthy controls and medicated patients. (1) Comparing antipsychotic-naive subjects and controls we found a general increase in the slow delta and theta frequencies over the fronto-temporo-occipital cortex, particularly in the temporolimbic structures, an increase in alpha-1 and alpha-2 in the temporal cortex and an increase in beta-1 and beta-2 in the temporo-occipital and posterior limbic structures. (2) Comparing patients who received clozapine and those who were antipsychotic naive, we found an increase in delta and theta frequencies in the anterior cingulate and medial frontal cortex, and a decrease in alpha-1 and beta-2 in the occipital structures. (3) Comparing patients taking olanzapine with those who were antipsychotic naive, there was an increase in theta frequencies in the anterior cingulum, a decrease in alpha-1, beta-2 and beta-3 in the occipital cortex and posterior limbic structures, and a decrease in beta-3 in the frontotemporal cortex and anterior cingulum. (4) In patients taking risperidone, we found no significant changes from those who were antipsychotic naive. Our results in antipsychotic-naive patients are in agreement with existing functional findings. Changes in those taking clozapine and olanzapine versus those who were antipsychotic naive suggest a compensatory mechanism in the neurobiological substrate for schizophrenia. The lack of difference in risperidone patients versus antipsychotic-naive subjects may relate to risperidone's different pharmacodynamic mechanism. Copyright 2008 S. Karger AG, Basel.

  4. Motivational Modulation of Rhythms of the Expression of the Clock Protein PER2 in the Limbic Forebrain.

    PubMed

    Amir, Shimon; Stewart, Jane

    2009-05-15

    Key molecular components of the mammalian circadian clock are expressed rhythmically in many brain areas and peripheral tissues in mammals. Here we review findings from our work on rhythms of expression of the clock protein Period2 (PER2) in four regions of the limbic forebrain known to be important in the regulation of motivational and emotional states. These regions include the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), the central nucleus of the amygdala (CEA), the basolateral amygdala (BLA), and the dentate gyrus (DG). Daily rhythms in the expression of PER2 in these regions are controlled by the master circadian pacemaker, the suprachiasmatic nucleus (SCN), but, importantly, they are also sensitive to homeostatic perturbations and to hormonal states that directly influence motivated behavior. Thus, circadian information from the SCN and homeostatic signals are integrated in these regions of the limbic forebrain to affect the temporal organization of motivational and emotional processes.

  5. Diurnal cortisol amplitude and fronto-limbic activity in response to stressful stimuli

    PubMed Central

    Cunningham-Bussel, Amy C.; Root, James C.; Butler, Tracy; Tuescher, Oliver; Pan, Hong; Epstein, Jane; Weisholtz, Daniel S.; Pavony, Michelle; Silverman, Michael E.; Goldstein, Martin S.; Altemus, Margaret; Cloitre, Marylene; LeDoux, Joseph; McEwen, Bruce; Stern, Emily; Silbersweig, David

    2014-01-01

    Summary The development and exacerbation of many psychiatric and neurologic conditions are associated with dysregulation of the hypothalamic pituitary adrenal (HPA) axis as measured by aberrant levels of cortisol secretion. Here we report on the relationship between the amplitude of diurnal cortisol secretion, measured across 3 typical days in 18 healthy individuals, and blood oxygen level dependant (BOLD) response in limbic fear/stress circuits, elicited by in-scanner presentation of emotionally negative stimuli, specifically, images of the World Trade Center (WTC) attack. Results indicate that subjects who secrete a greater amplitude of cortisol diurnally demonstrate less brain activation in limbic regions, including the amygdala and hippocampus/parahippocampus, and hypothalamus during exposure to traumatic WTC-related images. Such initial findings can begin to link our understanding, in humans, of the relationship between the diurnal amplitude of a hormone integral to the stress response, and those neuroanatomical regions that are implicated as both modulating and being modulated by that response. PMID:19135805

  6. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    PubMed

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Dysregulation of prefrontal cortex-mediated slow evolving limbic dynamics drives stress-induced emotional pathology

    PubMed Central

    Hultman, Rainbo; Mague, Stephen D.; Li, Qiang; Katz, Brittany M.; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K.; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D.; Dzirasa, Kafui

    2016-01-01

    Summary Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (<1Hz) dynamics across these networks, and PFC dysfunction is implicated in stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social-defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. PMID:27346529

  8. Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley.

    PubMed

    Richard, Jocelyn M; Castro, Daniel C; Difeliceantonio, Alexandra G; Robinson, Mike J F; Berridge, Kent C

    2013-11-01

    Ann Kelley was a scientific pioneer in reward neuroscience. Her many notable discoveries included demonstrations of accumbens/striatal circuitry roles in eating behavior and in food reward, explorations of limbic interactions with hypothalamic regulatory circuits, and additional interactions of motivation circuits with learning functions. Ann Kelley's accomplishments inspired other researchers to follow in her footsteps, including our own laboratory group. Here we describe results from several lines of our research that sprang in part from earlier findings by Kelley and colleagues. We describe hedonic hotspots for generating intense pleasure 'liking', separate identities of 'wanting' versus 'liking' systems, a novel role for dorsal neostriatum in generating motivation to eat, a limbic keyboard mechanism in nucleus accumbens for generating intense desire versus intense dread, and dynamic limbic transformations of learned memories into motivation. We describe how origins for each of these themes can be traced to fundamental contributions by Ann Kelley. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Reward deficiency and anti-reward in pain chronification.

    PubMed

    Borsook, D; Linnman, C; Faria, V; Strassman, A M; Becerra, L; Elman, I

    2016-09-01

    Converging lines of evidence suggest that the pathophysiology of pain is mediated to a substantial degree via allostatic neuroadaptations in reward- and stress-related brain circuits. Thus, reward deficiency (RD) represents a within-system neuroadaptation to pain-induced protracted activation of the reward circuits that leads to depletion-like hypodopaminergia, clinically manifested anhedonia, and diminished motivation for natural reinforcers. Anti-reward (AR) conversely pertains to a between-systems neuroadaptation involving over-recruitment of key limbic structures (e.g., the central and basolateral amygdala nuclei, the bed nucleus of the stria terminalis, the lateral tegmental noradrenergic nuclei of the brain stem, the hippocampus and the habenula) responsible for massive outpouring of stressogenic neurochemicals (e.g., norepinephrine, corticotropin releasing factor, vasopressin, hypocretin, and substance P) giving rise to such negative affective states as anxiety, fear and depression. We propose here the Combined Reward deficiency and Anti-reward Model (CReAM), in which biopsychosocial variables modulating brain reward, motivation and stress functions can interact in a 'downward spiral' fashion to exacerbate the intensity, chronicity and comorbidities of chronic pain syndromes (i.e., pain chronification). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Cholinergic regulation of fear learning and extinction.

    PubMed

    Wilson, Marlene A; Fadel, Jim R

    2017-03-01

    Cholinergic activation regulates cognitive function, particularly long-term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue-conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Amygdala in action: relaying biological and social significance to autobiographical memory.

    PubMed

    Markowitsch, Hans J; Staniloiu, Angelica

    2011-03-01

    The human amygdala is strongly embedded in numerous other structures of the limbic system, but is also a hub for a multitude of other brain regions it is connected with. Its major involvement in various kinds of integrative sensory and emotional functions makes it a cornerstone for self-relevant biological and social appraisals of the environment and consequently also for the processing of autobiographical events. Given its contribution to the integration of emotion, perception and cognition (including memory for past autobiographical events) the amygdala also forges the establishment and maintenance of an integrated self. Damage or disturbances of amygdalar connectivity may therefore lead to disconnection syndromes, in which the synchronous processing of affective and cognitive aspects of memory is impaired. We will provide support for this thesis by reviewing data from patients with a rare experiment of nature - Urbach-Wiethe disease - as well as other conditions associated with amygdala abnormalities. With respect to memory processing, we propose that the amygdala's role is to charge cues so that mnemonic events of a specific emotional significance can be successfully searched within the appropriate neural nets and re-activated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Common limbic and frontal-striatal disturbances in patients with obsessive compulsive disorder, panic disorder and hypochondriasis.

    PubMed

    van den Heuvel, O A; Mataix-Cols, D; Zwitser, G; Cath, D C; van der Werf, Y D; Groenewegen, H J; van Balkom, A J L M; Veltman, D J

    2011-11-01

    Direct comparisons of brain function between obsessive compulsive disorder (OCD) and other anxiety or OCD spectrum disorders are rare. This study aimed to investigate the specificity of altered frontal-striatal and limbic activations during planning in OCD, a prototypical anxiety disorder (panic disorder) and a putative OCD spectrum disorder (hypochondriasis). The Tower of London task, a 'frontal-striatal' task, was used during functional magnetic resonance imaging measurements in 50 unmedicated patients, diagnosed with OCD (n=22), panic disorder (n=14) or hypochondriasis (n=14), and in 22 healthy subjects. Blood oxygen level-dependent (BOLD) signal changes were calculated for contrasts of interest (planning versus baseline and task load effects). Moreover, correlations between BOLD responses and both task performance and state anxiety were analysed. Overall, patients showed a decreased recruitment of the precuneus, caudate nucleus, globus pallidus and thalamus, compared with healthy controls. There were no statistically significant differences in brain activation between the three patient groups. State anxiety was negatively correlated with dorsal frontal-striatal activation. Task performance was positively correlated with dorsal frontal-striatal recruitment and negatively correlated with limbic and ventral frontal-striatal recruitment. Multiple regression models showed that adequate task performance was best explained by independent contributions from dorsolateral prefrontal cortex (positive correlation) and amygdala (negative correlation), even after controlling for state anxiety. Patients with OCD, panic disorder and hypochondriasis share similar alterations in frontal-striatal brain regions during a planning task, presumably partly related to increased limbic activation.

  13. Limbic encephalitis associated with anti-voltage-gated potassium channel complex antibodies as a cause of adult-onset mesial temporal lobe epilepsy.

    PubMed

    Toyota, Tomoko; Akamatsu, Naoki; Tsuji, Sadatoshi; Nishizawa, Shigeru

    2014-06-01

    Recently, some reports have indicated that limbic encephalitis associated with anti-voltage-gated potassium channel complex antibodies (VGKC-Ab) is a cause of adult-onset mesial temporal lobe epilepsy (MTLE). We report a 53-year-old woman who had her first epileptic seizure at the age of 50 years old. Examination by 3-Tesla brain MRI revealed left hippocampal high signal intensity and swelling on fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging at 2 months after her first seizure. The patient received intravenous methylprednisolone and carbamazepine 300 mg/day. One month later, MRI revealed improvement of her left hippocampal abnormalities. Thereafter, she had no seizures, however, three years after her first seizure, EEG revealed a seizure pattern in the left temporal region. Brain MRI revealed left hippocampal high signal intensity and brain fluorodeoxyglucose positron emission tomography revealed hypermetabolism. Her serum VGKC-Ab levels were 118 pM(normal < 100 pM). Intravenous methylprednisolone therapy was reinitiated. Two months later, her hippocampal abnormalities had improved and 3 months later her VGKC-Ab levels decreased to 4.4 pM. Remission of the epileptic seizures was also observed. This MTLE in the middle age was considered as limbic encephalitis associated with anti- VGKC-Ab. In cases of unexplained adult-onset MTLE, limbic encephalitis associated with anti-VGKC-Ab, which responds well to immunotherapy, should be considered in the differential diagnosis.

  14. Positive reinforcement modulates fronto-limbic systems subserving emotional interference in adolescents.

    PubMed

    Ladouceur, Cecile D; Schlund, Michael W; Segreti, Anna-Maria

    2018-02-15

    Fronto-limbic systems play an important role in supporting resistance to emotional distraction to promote goal-directed behavior. Despite evidence that alterations in the functioning of these systems are implicated in developmental trajectories of psychopathology, most studies have been conducted in adults. This study examined the functioning of fronto-limbic systems subserving emotional interference in adolescents and whether differential reinforcement of correct responding can modulate these neural systems in ways that could promote resistance to emotional distraction. Fourteen healthy adolescents (ages 9-15) completed an emotional delayed working memory task during fMRI with emotional distracters (none, neutral, negative) while positive reinforcement (i.e., monetary reward) was provided for correct responses under some conditions. Adolescents showed slightly reduced behavioral performance and greater activation in amygdala and prefrontal cortical regions (ventrolateral, ventromedial, dorsolateral) on correct trials with negative distracters compared to those with no or neutral distracters. Positive reinforcement yielded an overall improvement in accuracy and reaction times and counteracted the effects of negative distracters as evidenced by significant reductions in activation in key fronto-limbic regions. The present findings extend results on emotional interference from adults to adolescents and suggest that positive reinforcement could be used to potentially promote insulation from emotional distraction. A challenge for the future will be to build upon these findings for constructing reinforcement-based attention training programs that could be used to reduce emotional attention biases in anxious youth. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Impaired modulation of attention and emotion in schizophrenia.

    PubMed

    Dichter, Gabriel S; Bellion, Carolyn; Casp, Michael; Belger, Aysenil

    2010-05-01

    Fronto-limbic interactions facilitate the generation of task-relevant responses while inhibiting interference from emotionally distracting information. Schizophrenia is associated with deficits in both executive attention and affective regulation. This study aims to elucidate the neural correlates of emotion-attention regulation and shifting in schizophrenia. We employed functional magnetic resonance imaging to probe the fronto-limbic regions in 16 adults with schizophrenia and 13 matched adults with no history of psychiatric illness. Subjects performed a forced-choice visual oddball task where they detected infrequent target circles embedded in a series of infrequent nontarget aversive and neutral pictures and frequent squares. In control participants, target events activated a dorsal frontoparietal network, whereas these regions were deactivated by aversive stimuli. Conversely, ventral frontolimbic brain regions were activated by aversive stimuli and deactivated by target events. In the patient group, regional hemodynamic timecourses revealed not only reduced activation to target and aversive events in dorsal executive and ventral limbic regions, respectively, but also reduced deactivation to target and aversive stimuli in ventral and dorsal regions, respectively, relative to the control group. Patients further showed reduced spatial extent of activation in the right inferior frontal gyrus during the target and aversive conditions. Activation of the anterior cingulate to aversive images was inversely related to severity of avolition and anhedonia symptoms in the schizophrenia group. These results suggest both frontal and limbic dysfunction in schizophrenia as well as aberrant reciprocal inhibitions between these regions during attention-emotion modulation in this disorder.

  16. White matter correlates of anxiety sensitivity in panic disorder.

    PubMed

    Kim, Min-Kyoung; Kim, Borah; Kiu Choi, Tai; Lee, Sang-Hyuk

    2017-01-01

    Anxiety sensitivity (AS) refers to a fear of anxiety-related sensations and is a dispositional variable especially elevated in patients with panic disorder (PD). Although several functional imaging studies of AS in patients with PD have suggested the presence of altered neural activity in paralimbic areas such as the insula, no study has investigated white matter (WM) alterations in patients with PD in relation to AS. The objective of this study was to investigate the WM correlates of AS in patients with PD. One-hundred and twelve right-handed patients with PD and 48 healthy control (HC) subjects were enrolled in this study. The Anxiety Sensitivity Inventory-Revised (ASI-R), the Panic Disorder Severity Scale (PDSS), the Albany Panic and Phobia Questionnaire (APPQ), the Beck Anxiety Inventory (BAI), and the Beck Depression Inventory (BDI) were administered. Tract-based spatial statistics were used for diffusion tensor magnetic resonance imaging analysis. Among the patients with PD, the ASI-R total scores were significantly correlated with the fractional anisotropy values of the WM regions near the insula, the splenium of the corpus callosum, the tapetum, the fornix/stria terminalis, the posterior limb of the internal capsule, the retrolenticular part of the internal capsule, the posterior thalamic radiation, the sagittal striatum, and the posterior corona radiata located in temporo-parieto-limbic regions and are involved in interoceptive processing (p<0.01; threshold-free cluster enhancement [TFCE]-corrected). These WM regions were also significantly correlated with the APPQ interoceptive avoidance subscale and BDI scores in patients with PD (p<0.01, TFCE-corrected). Correlation analysis among the HC subjects revealed no significant findings. There has been no comparative study on the structural neural correlates of AS in PD. The current study suggests that the WM correlates of AS in patients with PD may be associated with the insula and the adjacent temporo-parieto-limbic WM regions, which may play important roles in interoceptive processing in the brain and in depression in PD. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. High frequency oscillations are associated with cognitive processing in human recognition memory.

    PubMed

    Kucewicz, Michal T; Cimbalnik, Jan; Matsumoto, Joseph Y; Brinkmann, Benjamin H; Bower, Mark R; Vasoli, Vincent; Sulc, Vlastimil; Meyer, Fred; Marsh, W R; Stead, S M; Worrell, Gregory A

    2014-08-01

    High frequency oscillations are associated with normal brain function, but also increasingly recognized as potential biomarkers of the epileptogenic brain. Their role in human cognition has been predominantly studied in classical gamma frequencies (30-100 Hz), which reflect neuronal network coordination involved in attention, learning and memory. Invasive brain recordings in animals and humans demonstrate that physiological oscillations extend beyond the gamma frequency range, but their function in human cognitive processing has not been fully elucidated. Here we investigate high frequency oscillations spanning the high gamma (50-125 Hz), ripple (125-250 Hz) and fast ripple (250-500 Hz) frequency bands using intracranial recordings from 12 patients (five males and seven females, age 21-63 years) during memory encoding and recall of a series of affectively charged images. Presentation of the images induced high frequency oscillations in all three studied bands within the primary visual, limbic and higher order cortical regions in a sequence consistent with the visual processing stream. These induced oscillations were detected on individual electrodes localized in the amygdala, hippocampus and specific neocortical areas, revealing discrete oscillations of characteristic frequency, duration and latency from image presentation. Memory encoding and recall significantly modulated the number of induced high gamma, ripple and fast ripple detections in the studied structures, which was greater in the primary sensory areas during the encoding (Wilcoxon rank sum test, P = 0.002) and in the higher-order cortical association areas during the recall (Wilcoxon rank sum test, P = 0.001) of memorized images. Furthermore, the induced high gamma, ripple and fast ripple responses discriminated the encoded and the affectively charged images. In summary, our results show that high frequency oscillations, spanning a wide range of frequencies, are associated with memory processing and generated along distributed cortical and limbic brain regions. These findings support an important role for fast network synchronization in human cognition and extend our understanding of normal physiological brain activity during memory processing. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Limbic-Auditory Interactions of Tinnitus: An Evaluation Using Diffusion Tensor Imaging.

    PubMed

    Gunbey, H P; Gunbey, E; Aslan, K; Bulut, T; Unal, A; Incesu, L

    2017-06-01

    Tinnitus is defined as an imaginary subjective perception in the absence of an external sound. Convergent evidence proposes that tinnitus perception includes auditory, attentional and emotional components. The aim of this study was to investigate the thalamic, auditory and limbic interactions associated with tinnitus-related distress by Diffusion Tensor Imaging (DTI). A total of 36 tinnitus patients, 20 healthy controls underwent an audiological examination, as well as a magnetic resonance imaging protocol including structural and DTI sequences. All participants completed the Tinnitus Handicap Inventory (THI) and Visual Analog Scales (VAS) related with tinnitus. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were obtained for the auditory cortex (AC), inferior colliculus (IC), lateral lemniscus (LL), medial geniculate body (MGB), thalamic reticular nucleus (TRN), amygdala (AMG), hippocampus (HIP), parahippocampus (PHIP) and prefrontal cortex (PFC). In tinnitus patients the FA values of IC, MGB, TRN, AMG, HIP decreased and the ADC values of IC, MGB, TRN, AMG, PHIP increased significantly. The contralateral IC-LL and bilateral MGB FA values correlated negatively with hearing loss. A negative relation was found between the AMG-HIP FA values and THI and VAS scores. Bilateral ADC values of PHIP and PFC significantly correlated with the attention deficiency-VAS scores. In conclusion, this is the first DTI study to investigate the grey matter structures related to tinnitus perception and the significant correlation of FA and ADC with clinical parameters suggests that DTI can provide helpful information for tinnitus. Magnifying the microstructures in DTI can help evaluate the three faces of tinnitus nature: hearing, emotion and attention.

  19. Differentiating prenatal exposure to methamphetamine and alcohol versus alcohol and not methamphetamine using tensor based brain morphometry and discriminant analysis

    PubMed Central

    Sowell, Elizabeth R.; Leow, Alex D.; Bookheimer, Susan Y.; Smith, Lynne M.; O’Connor, Mary J.; Kan, Eric; Rosso, Carly; Houston, Suzanne; Dinov, Ivo D.; Thompson, Paul M.

    2010-01-01

    Here we investigate the effects of prenatal exposure to methamphetamine (MA) on local brain volume using magnetic resonance imaging. Because many who use MA during pregnancy also use alcohol, a known teratogen, we examined whether local brain volumes differed among 61 children (ages 5 to 15), 21 with prenatal MA exposure, 18 with concomitant prenatal alcohol exposure (the MAA group), 13 with heavy prenatal alcohol but not MA exposure (ALC group), and 27 unexposed controls (CON group). Volume reductions were observed in both exposure groups relative to controls in striatal and thalamic regions bilaterally, and right prefrontal and left occipitoparietal cortices. Striatal volume reductions were more severe in the MAA group than in the ALC group, and within the MAA group, a negative correlation between full-scale IQ (FSIQ) scores and caudate volume was observed. Limbic structures including the anterior and posterior cingulate, the inferior frontal gyrus (IFG) and ventral and lateral temporal lobes bilaterally were increased in volume in both exposure groups. Further, cingulate and right IFG volume increases were more pronounced in the MAA than ALC group. Discriminant function analyses using local volume measurements and FSIQ were used to predict group membership, yielding factor scores that correctly classified 72% of participants in jackknife analyses. These findings suggest that striatal and limbic structures, known to be sites of neurotoxicity in adult MA abusers, may be more vulnerable to prenatal MA exposure than alcohol exposure, and that more severe striatal damage is associated with more severe cognitive deficit. PMID:20237258

  20. A Systematic and Meta-analytic Review of Neural Correlates of Functional Outcome in Schizophrenia.

    PubMed

    Wojtalik, Jessica A; Smith, Matthew J; Keshavan, Matcheri S; Eack, Shaun M

    2017-10-21

    Individuals with schizophrenia are burdened with impairments in functional outcome, despite existing interventions. The lack of understanding of the neurobiological correlates supporting adaptive function in the disorder is a significant barrier to developing more effective treatments. This research conducted a systematic and meta-analytic review of all peer-reviewed studies examining brain-functional outcome relationships in schizophrenia. A total of 53 (37 structural and 16 functional) brain imaging studies examining the neural correlates of functional outcome across 1631 individuals with schizophrenia were identified from literature searches in relevant databases occurring between January, 1968 and December, 2016. Study characteristics and results representing brain-functional outcome relationships were systematically extracted, reviewed, and meta-analyzed. Results indicated that better functional outcome was associated with greater fronto-limbic and whole brain volumes, smaller ventricles, and greater activation, especially during social cognitive processing. Thematic observations revealed that the dorsolateral prefrontal cortex, anterior cingulate, posterior cingulate, parahippocampal gyrus, superior temporal sulcus, and cerebellum may have role in functioning. The neural basis of functional outcome and disability is infrequently studied in schizophrenia. While existing evidence is limited and heterogeneous, these findings suggest that the structural and functional integrity of fronto-limbic brain regions is consistently related to functional outcome in individuals with schizophrenia. Further research is needed to understand the mechanisms and directionality of these relationships, and the potential for identifying neural targets to support functional improvement. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes

    PubMed Central

    Bonilha, Leonardo

    2015-01-01

    Medically intractable temporal lobe epilepsy (TLE) remains a serious health problem. Across treatment centers, up to 40% of patients with TLE will continue to experience persistent postoperative seizures at 2-year follow-up. It is unknown why such a large number of patients continue to experience seizures despite being suitable candidates for resective surgery. Preoperative quantitative MRI techniques may provide useful information on why some patients continue to experience disabling seizures, and may have the potential to develop prognostic markers of surgical outcome. In this article, we provide an overview of how quantitative MRI morphometric and diffusion tensor imaging (DTI) data have improved the understanding of brain structural alterations in patients with refractory TLE. We subsequently review the studies that have applied quantitative structural imaging techniques to identify the neuroanatomical factors that are most strongly related to a poor postoperative prognosis. In summary, quantitative imaging studies strongly suggest that TLE is a disorder affecting a network of neurobiological systems, characterized by multiple and inter-related limbic and extra-limbic network abnormalities. The relationship between brain alterations and postoperative outcome are less consistent, but there is emerging evidence suggesting that seizures are less likely to remit with surgery when presurgical abnormalities are observed in the connectivity supporting brain regions serving as network nodes located outside the resected temporal lobe. Future work, possibly harnessing the potential from multimodal imaging approaches, may further elucidate the etiology of persistent postoperative seizures in patients with refractory TLE. Furthermore, quantitative imaging techniques may be explored to provide individualized measures of postoperative seizure freedom outcome. PMID:25853080

  2. Beyond stereotypes of adolescent risk taking: Placing the adolescent brain in developmental context.

    PubMed

    Romer, Daniel; Reyna, Valerie F; Satterthwaite, Theodore D

    2017-10-01

    Recent neuroscience models of adolescent brain development attribute the morbidity and mortality of this period to structural and functional imbalances between more fully developed limbic regions that subserve reward and emotion as opposed to those that enable cognitive control. We challenge this interpretation of adolescent development by distinguishing risk-taking that peaks during adolescence (sensation seeking and impulsive action) from risk taking that declines monotonically from childhood to adulthood (impulsive choice and other decisions under known risk). Sensation seeking is primarily motivated by exploration of the environment under ambiguous risk contexts, while impulsive action, which is likely to be maladaptive, is more characteristic of a subset of youth with weak control over limbic motivation. Risk taking that declines monotonically from childhood to adulthood occurs primarily under conditions of known risks and reflects increases in executive function as well as aversion to risk based on increases in gist-based reasoning. We propose an alternative Life-span Wisdom Model that highlights the importance of experience gained through exploration during adolescence. We propose, therefore, that brain models that recognize the adaptive roles that cognition and experience play during adolescence provide a more complete and helpful picture of this period of development. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis.

    PubMed

    Urbach, H; Rauer, S; Mader, I; Paus, S; Wagner, J; Malter, M P; Prüss, H; Lewerenz, J; Kassubek, J; Hegen, H; Auer, M; Deisenhammer, F; Ufer, F; Bien, C G; Baumgartner, A

    2015-12-01

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE.

  4. Shared effects of the clusterin gene on the default mode network among individuals at risk for Alzheimer's disease.

    PubMed

    Ye, Qing; Su, Fan; Shu, Hao; Gong, Liang; Xie, Chun-Ming; Zhou, Hong; Zhang, Zhi-Jun; Bai, Feng

    2017-05-01

    To explore the common effects of the clusterin (CLU) rs11136000 variant on the default mode network (DMN) in amnestic mild cognitive impairment (aMCI) subjects and remitted geriatric depression (RGD) subjects. Fifty-one aMCI subjects, 38 RGD subjects, and 64 cognitively normal elderly subjects underwent resting-state fMRI scans and neuropsychological tests at both baseline and a 35-month follow-up. Posterior cingulate cortex seed-based functional connectivity (FC) analysis was used to obtain the DMN patterns. A CLU gene×disease×time interaction for aMCI subjects was mainly detected in the core cortical midline structures of the DMN, and the interaction for RGD subjects was mainly detected in the limbic system. However, they overlapped in two frontal regions, where consistent effects of the CLU gene on FC alterations were found between aMCI and RGD groups. Furthermore, the alterations of FC with frontal, parietal, and limbic regions compensated for episodic memory impairments in CLU-CT/TT carriers, while no such compensation was found in CLU-CC carriers. The CLU gene could consistently affect the DMN FC with frontal regions among individuals at risk for Alzheimer's disease, and the CLU-T allele was associated with more compensatory neural processes in DMN changes. © 2017 John Wiley & Sons Ltd.

  5. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, R.F.; Lear, J.L.

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost frommore » the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.« less

  6. Is the spatial distribution of brain lesions associated with closed-head injury in children predictive of subsequent development of posttraumatic stress disorder?

    NASA Technical Reports Server (NTRS)

    Herskovits, Edward H.; Gerring, Joan P.; Davatzikos, Christos; Bryan, R. Nick

    2002-01-01

    PURPOSE: To determine whether there is an association between the spatial distributions of lesions detected at magnetic resonance (MR) imaging of the brain in children, adolescents, and young adults after closed-head injury (CHI) and development of the reexperiencing symptoms of posttraumatic stress disorder (PTSD). MATERIALS AND METHODS: Data obtained in 94 subjects without a history of PTSD as determined by parental interview were analyzed. MR images were obtained 3 months after CHI. Lesions were manually delineated and registered to the Talairach coordinate system. Mann-Whitney analysis of lesion distribution and PTSD status at 1 year (again, as determined by parental interview) was performed, consisting of an analysis of lesion distribution versus the major symptoms of PTSD: reexperiencing, hyperarousal, and avoidance. RESULTS: Of the 94 subjects, 41 met the PTSD reexperiencing criterion and nine met all three PTSD criteria. Subjects who met the reexperiencing criterion had fewer lesions in limbic system structures (eg, the cingulum) on the right than did subjects who did not meet this criterion (Mann-Whitney, P =.003). CONCLUSION: Lesions induced by CHI in the limbic system on the right may inhibit subsequent manifestation of PTSD reexperiencing symptoms in children, adolescents, and young adults. Copyright RSNA, 2002.

  7. Atrial Fibrillation: The Science behind Its Defiance

    PubMed Central

    Czick, Maureen E.; Shapter, Christine L.; Silverman, David I.

    2016-01-01

    Atrial fibrillation (AF) is the most prevalent arrhythmia in the world, due both to its tenacious treatment resistance, and to the tremendous number of risk factors that set the stage for the atria to fibrillate. Cardiopulmonary, behavioral, and psychological risk factors generate electrical and structural alterations of the atria that promote reentry and wavebreak. These culminate in fibrillation once atrial ectopic beats set the arrhythmia process in motion. There is growing evidence that chronic stress can physically alter the emotion centers of the limbic system, changing their input to the hypothalamic-limbic-autonomic network that regulates autonomic outflow. This leads to imbalance of the parasympathetic and sympathetic nervous systems, most often in favor of sympathetic overactivation. Autonomic imbalance acts as a driving force behind the atrial ectopy and reentry that promote AF. Careful study of AF pathophysiology can illuminate the means that enable AF to elude both pharmacological control and surgical cure, by revealing ways in which antiarrhythmic drugs and surgical and ablation procedures may paradoxically promote fibrillation. Understanding AF pathophysiology can also help clarify the mechanisms by which emerging modalities aiming to correct autonomic imbalance, such as renal sympathetic denervation, may offer potential to better control this arrhythmia. Finally, growing evidence supports lifestyle modification approaches as adjuncts to improve AF control. PMID:27699086

  8. What neurophysiological recordings tell us about cognitive and behavioral functions of the human subthalamic nucleus.

    PubMed

    Marceglia, Sara; Fumagalli, Manuela; Priori, Alberto

    2011-01-01

    The behavioral implications of deep brain stimulation (DBS) observed in Parkinson's disease patients provided evidence for a possible nonexclusively motor role of the subthalamic nucleus (STN) in basal ganglia circuitry. Basal ganglia pathophysiology can be studied directly by the analysis of neural rhythms measured in local field potentials recorded through DBS electrodes. Recent studies demonstrated that specific oscillations in the STN are involved in cognitive and behavioral information processing: action representation is mediated through β oscillations (13-35 Hz); cognitive information related to decision-making processes is mediated through the low-frequency oscillation (5-12 Hz); and limbic and emotional information is mediated through the α oscillation (8-12 Hz). These results revealed an important involvement of STN in decisional processes, cognitive functions, emotion control and conflict that could explain the post-DBS occurrence of behavioral disturbances.

  9. [The functional state classification and evaluation of the stability level in mental loads based on the factor structure of heart rate variability parameters].

    PubMed

    Mashin, V A; Mashina, M N

    2004-12-01

    In the paper, outcomes of the researches devoted to factor analysis of heart rate variability parameters and definition of the most informative parameters for diagnostics of functional states and an evaluation of level of stability to mental loads, are presented. The factor structure of parameters, which unclude integral level of heart rate variability (1), balance between activity of vagus and brain cortical-limbic systems (2), integrated level of cardiovascular system functioning (3), is substantiated. Factor analysis outcomes have been used for construction of functional state classification, for their differential diagnostics, and for development and check of algorithm for evaluation of the stability level in mental loads.

  10. [The neurobiology of antisocial behaviour].

    PubMed

    Loomans, M M; Tulen, J H M; van Marle, H J C

    2010-01-01

    Neuro-imaging is being used increasingly to provide explanations for antisocial behaviour. To make a neurobiological contribution to the diagnosis of many types of antisocial behaviour. The literature was searched using PubMed and combinations of the keywords 'psychopathy', 'antisocial', 'neurobiology' and 'neuro-anatomy' for the period 1990-2009. Impairments in the prefrontal cortex, amygdala, hippocampus, superior temporal gyrus, corpus callosum and anterior cingulate cortex provide a possible explanation for a large number of the symptoms associated with antisocial behaviour. The concept of psychopathy is connected mainly with impairments in a prefrontal-temporal-limbic system. CONCLUSION Combinations of deficiencies in the associated brain areas and malfunctioning of the communication between the various brain structures seem to play a more important role than deficiencies in the separate brain structures.

  11. Pivotal role of tissue plasminogen activator in the mechanism of action of electroconvulsive therapy.

    PubMed

    Hoirisch-Clapauch, Silvia; Mezzasalma, Marco A U; Nardi, Antonio E

    2014-02-01

    Electroconvulsive therapy is an important treatment option for major depressive disorders, acute mania, mood disorders with psychotic features, and catatonia. Several hypotheses have been proposed as electroconvulsive therapy's mechanism of action. Our hypothesis involves many converging pathways facilitated by increased synthesis and release of tissue-plasminogen activator. Human and animal experiments have shown that tissue-plasminogen activator participates in many mechanisms of action of electroconvulsive therapy or its animal variant, electroconvulsive stimulus, including improved N-methyl-D-aspartate receptor-mediated signaling, activation of both brain-derived neurotrophic factor and vascular endothelial growth factor, increased bioavailability of zinc, purinergic release, and increased mobility of dendritic spines. As a result, tissue-plasminogen activator helps promote neurogenesis in limbic structures, modulates synaptic transmission and plasticity, improves cognitive function, and mediates antidepressant effects. Notably, electroconvulsive therapy seems to influence tissue-plasminogen activator metabolism. For example, electroconvulsive stimulus increases the expression of glutamate decarboxylase 65 isoform in γ-aminobutyric acid-releasing neurons, which enhances the release of tissue-plasminogen activator, and the expression of p11, a protein involved in plasminogen and tissue-plasminogen activator assembling. This paper reviews how electroconvulsive therapy correlates with tissue-plasminogen activator. We suggest that interventions aiming at increasing tissue-plasminogen activator levels or its bioavailability - such as daily aerobic exercises together with a carbohydrate-restricted diet, or normalization of homocysteine levels - be evaluated in controlled studies assessing response and remission duration in patients who undergo electroconvulsive therapy.

  12. Prenatal exposure to maternal and paternal depressive symptoms and white matter microstructure in children.

    PubMed

    El Marroun, Hanan; Zou, Runyu; Muetzel, Ryan L; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Tiemeier, Henning

    2018-04-01

    Prenatal maternal depression has been associated with multiple problems in offspring involving affect, cognition, and neuroendocrine functioning. This suggests that prenatal depression influences neurodevelopment. However, the underlying neurodevelopmental mechanism remains unclear. We prospectively assessed whether maternal depressive symptoms during pregnancy and at the child's age 3 years are related to white matter microstructure in 690 children. The association of paternal depressive symptoms with childhood white matter microstructure was assessed to evaluate genetic or familial confounding. Parental depressive symptoms were measured using the Brief Symptom Inventory. In children aged 6-9 years, we used diffusion tensor imaging to assess white matter microstructure characteristics including fractional anisotropy (FA) and mean diffusivity (MD). Exposure to maternal depressive symptoms during pregnancy was associated with higher MD in the uncinate fasciculus and to lower FA and higher MD in the cingulum bundle. No associations of maternal depressive symptoms at the child's age of 3 years with white matter characteristics were observed. Paternal depressive symptoms also showed a trend toward significance for a lower FA in the cingulum bundle. Prenatal maternal depressive symptoms were associated with higher MD in the uncinate fasciculus and the cingulum bundle. These structures are part of the limbic system, which is involved in motivation, emotion, learning, and memory. As paternal depressive symptoms were also related to lower FA in the cingulum, the observed effect may partly reflect a genetic predisposition and shared environmental family factors and to a lesser extent a specific intrauterine effect. © 2018 Wiley Periodicals, Inc.

  13. Distribution and cellular localization of imidazoleacetic acid-ribotide, an endogenous ligand at imidazol(in)e and adrenergic receptors, in rat brain

    PubMed Central

    Friedrich, Victor L.; Martinelli, Giorgio P.; Prell, George D.; Holstein, Gay R.

    2007-01-01

    Imidazoleacetic acid-ribotide (IAA-RP) is a putative neurotransmitter/modulator recently discovered in mammalian brain. The present study examines the distribution of IAA-RP in the rat CNS using a highly specific antiserum raised in rabbit against IAA-RP with immunostaining of aldehyde-fixed rat CNS. IAA-RP-immunoreactive neurons were present throughout the neuraxis; neuroglia were not labeled. In each region, only a subset of the neuronal pool was immunostained. In the forebrain, ribotide-immunolabeled neurons were common in neocortex, in hippocampal formation, and in subcortical structures including basal ganglia, thalamus and hypothalamus. Labeling was prominent limbic areas including olfactory bulb, basal forebrain, pyriform cortex and amygdala. In the mid- and hindbrain, immunolabled neurons were concentrated in specific nuclei and, in some areas, in specific subregions of those nuclei. Structures of the motor system, including cranial nerve motor nuclei, precerebellar nuclei, the substantia nigra, and the red nucleus were clearly labeled. Staining was intense in cells and/or puncta in the rostral and caudal ventrolateral medullary reticular formation, nucleus tractus solitarius and the caudal vestibular nuclear complex. Within neurons, the ribotide was found predominantly in somata and dendrites; some myelinated axons and occasional synaptic terminals were also immunostained. These data indicate that IAA-RP contributes to the neurochemical phenotype of many neuronal populations further support our suggestion that, in autonomic structures, the IAA-RP may serve as a chemical mediator in complex circuits involved in blood pressure regulation and, more generally, sympathetic drive. PMID:17210242

  14. Dissociation of functional and anatomical brain abnormalities in unaffected siblings of schizophrenia patients.

    PubMed

    Guo, Wenbin; Song, Yan; Liu, Feng; Zhang, Zhikun; Zhang, Jian; Yu, Miaoyu; Liu, Jianrong; Xiao, Changqing; Liu, Guiying; Zhao, Jingping

    2015-05-01

    Schizophrenia patients and their unaffected siblings share similar brain functional and structural abnormalities. However, no study is engaged to investigate whether and how functional abnormalities are related to structural abnormalities in unaffected siblings. This study was undertaken to examine the association between functional and anatomical abnormalities in unaffected siblings. Forty-six unaffected siblings of schizophrenia patients and 46 age-, sex-, and education-matched healthy controls underwent structural and resting-state functional magnetic resonance imaging scanning. Voxel-based morphometry (VBM), amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were utilized to analyze imaging data. The VBM analysis showed gray matter volume decreases in the fronto-temporal regions (the left middle temporal gyrus and right inferior frontal gyrus, orbital part) and increases in basal ganglia system (the left putamen). Functional abnormalities measured by ALFF and fALFF mainly involved in the fronto-limbic-sensorimotor circuit (decreased ALFF in bilateral middle frontal gyrus and the right middle cingulate gyrus, and decreased fALFF in the right inferior frontal gyrus, orbital part; and increased ALFF in the left fusiform gyrus and left lingual gyrus, and increased fALFF in bilateral calcarine cortex). No significant correlation was found between functional and anatomical abnormalities in the sibling group. A dissociation pattern of brain regions with functional and anatomical abnormalities is observed in unaffected siblings. Our findings suggest that brain functional and anatomical abnormalities might be present independently in unaffected siblings of schizophrenia patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. The psychopath magnetized: insights from brain imaging

    PubMed Central

    Anderson, Nathaniel E.; Kiehl, Kent A.

    2014-01-01

    Psychopaths commit a disproportionate amount of violent crime, and this places a substantial economic and emotional burden on society. Elucidation of the neural correlates of psychopathy may lead to improved management and treatment of the condition. Although some methodological issues remain, the neuroimaging literature is generally converging on a set of brain regions and circuits that are consistently implicated in the condition: the orbitofrontal cortex, amygdala, and the anterior and posterior cingulate and adjacent (para)limbic structures. We discuss these findings in the context of extant theories of psychopathy and highlight the potential legal and policy implications of this body of work. PMID:22177031

  16. Diagnosis, treatment, and neurobiology of autism in children.

    PubMed

    Lainhart, J E; Piven, J

    1995-08-01

    Autism is a developmental neuropsychiatric disorder defined by the presence of social and communicative deficits, restricted and repetitive behaviors and interests, and a characteristic course. Research suggests that hereditary factors play a principal role in the etiology of most cases. A phenotype broader than autism, including milder social and language-based cognitive deficits, appears to be inherited. Although the pathogenesis is unknown, neurobiologic mechanisms clearly underlie the disorder. Neuropathologic studies have demonstrated abnormalities in limbic structures, the cerebellum, and the cortex. New advances in behavioral therapies and pharmacologic treatment are important components of successful multidisciplinary treatment of this disorder.

  17. Methylphenidate and Atomoxetine Inhibit Social Play Behavior through Prefrontal and Subcortical Limbic Mechanisms in Rats

    PubMed Central

    Achterberg, E.J. Marijke; van Kerkhof, Linda W.M.; Damsteegt, Ruth; Trezza, Viviana

    2015-01-01

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD. PMID:25568111

  18. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis

    PubMed Central

    Miller, Thomas D.; Chong, Trevor T.-J.; Aimola Davies, Anne M.; Ng, Tammy W.C.; Johnson, Michael R.; Irani, Sarosh R.; Vincent, Angela; Husain, Masud; Jacob, Saiju; Maddison, Paul; Kennard, Christopher; Gowland, Penny A.

    2017-01-01

    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P < 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (<3 versus >3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans. PMID:28369215

  19. Imaging of odor perception delineates functional disintegration of the limbic circuits in mesial temporal lobe epilepsy.

    PubMed

    Ciumas, Carolina; Lindström, Per; Aoun, Bernard; Savic, Ivanka

    2008-01-15

    Metabolic and neuro-receptor abnormalities within the extrafocal limbic circuits are established in mesial temporal lobe epilepsy (MTLE). However, very little is known about how these circuits process external stimuli. We tested whether odor activation can help delineate limbic functional disintegration in MTLE, and measured cerebral blood flow with PET during birhinal smelling of familiar and unfamiliar odors, using smelling of odorless air as the baseline condition. Patients with MTLE (13 left-sided, 10 right-sided) and 21 controls were investigated. In addition to odor activation, the analysis included functional connectivity, using right and left piriform cortex as seed regions. Healthy controls activated the amygdala, piriform, anterior insular, and cingulate cortices on both sides. Smelling of familiar odors engaged, in addition, the right parahippocampus, and the left Brodmann Area (BA) 44, 45, 47. Patients failed to activate the amygdala, piriform and the anterior insular cortex in the epileptogenic hemisphere. Furthermore, those with left MTLE did not activate the left BA 44, 45 and 47 with familiar odors, which they perceived as less familiar than controls. Congruent with the activation data each seed region was in patients functionally disconnected with the contralateral amygdala+piriform+insular cortex. The functional disintegration in patients exceeded the reduced activation, and included the contralateral temporal neocortex, and in subjects with right MTLE also the right orbitofrontal cortex. Imaging of odor perception may be used to delineate functional disintegration of the limbic networks in MTLE. It shows an altered response in several regions, which may underlie some interictal behavioral problems associated with this condition.

  20. Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training.

    PubMed

    Bystrowska, Beata; Smaga, Irena; Frankowska, Małgorzata; Filip, Małgorzata

    2014-04-03

    Preclinical investigations have demonstrated that drugs of abuse alter the levels of lipid-based signalling molecules, including endocannabinoids (eCBs) and N-acylethanolamines (NAEs), in the rodent brain. In addition, several drugs targeting eCBs and/or NAEs are implicated in reward and/or seeking behaviours related to the stimulation of dopamine systems in the brain. In our study, the brain levels of eCBs (anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and NAEs (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)) were analyzed via an LC-MS/MS method in selected brain structures of rats during cocaine self-administration and after extinction training according to the "yoked" control procedure. Repeated (14days) cocaine (0.5mg/kg/infusion) self-administration and yoked drug delivery resulted in a significant decrease (ca. 52%) in AEA levels in the cerebellum, whereas levels of 2-AG increased in the frontal cortex, the hippocampus and the cerebellum and decreased in the hippocampus and the dorsal striatum. In addition, we detected increases (>150%) in the levels of OEA and PEA in the limbic areas in both cocaine treated groups, as well as an increase in the tissue levels of OEA in the dorsal striatum in only the yoked cocaine group and increases in the tissue levels of PEA in the dorsal striatum (both cocaine groups) and the nucleus accumbens (yoked cocaine group only). Compared to the yoked saline control group, extinction training (10days) resulted in a potent reduction in AEA levels in the frontal cortex, the hippocampus and the nucleus accumbens and in 2-AG levels in the hippocampus, the dorsal striatum and the cerebellum. The decreases in the limbic and subcortical areas were more apparent for rats that self-administered cocaine. Following extinction, there was a region-specific change in the levels of NAEs in rats previously injected with cocaine; a potent increase (ca. 100%) in the levels of OEA and PEA was detected in the prefrontal cortex and the hippocampus, whilst a drop was noted in the striatal areas versus yoked saline yoked animals. Our findings support the previous pharmacological evidence that the eCB system and NAEs are involved in reinforcement and extinction of positively reinforced behaviours and that these lipid-derived molecules may represent promising targets for the development of new treatments for drug addiction. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate

    PubMed Central

    Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian

    2017-01-01

    The central extended amygdala (CEA) has been conceptualized as a ‘macrosystem’ that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the ‘limbic-associative’ striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning. PMID:28220796

  2. Subtle gray matter changes in temporo-parietal cortex associated with cardiovascular risk factors.

    PubMed

    de Toledo Ferraz Alves, Tânia Corrêa; Scazufca, Márcia; Squarzoni, Paula; de Souza Duran, Fábio Luiz; Tamashiro-Duran, Jaqueline Hatsuko; Vallada, Homero P; Andrei, Anna; Wajngarten, Mauricio; Menezes, Paulo R; Busatto, Geraldo F

    2011-01-01

    Vascular risk factors may play an important role in the pathophysiology of Alzheimer's disease (AD). While there is consistent evidence of gray matter (GM) abnormalities in earlier stages of AD, the presence of more subtle GM changes associated with vascular risk factors in the absence of clinically significant vascular events has been scarcely investigated. This study aimed to examine GM changes in elderly subjects with cardiovascular risk factors. We predicted that the presence of cardiovascular risk would be associated with GM abnormalities involving the temporal-parietal cortices and limbic structures. We recruited 248 dementia-free subjects, age range 66-75 years, from the population-based "São Paulo Ageing and Health Study", classified in accordance to their Framingham Coronary Heart Disease Risk (FCHDR) score to undergo an MRI scan. We performed an overall analysis of covariance, controlled to total GM and APOE4 status, to investigate the presence of regional GM abnormalities in association with FCHDR subgroups (high-risk, medium-risk, and low-risk), and followed by post hoc t-test. We also applied a co-relational design in order to investigate the presence of linear progression of the GM vulnerability in association with cardiovascular risk factor. Voxel-based morphometry showed that the presence of cardiovascular risk factors were associated with regional GM loss involving the temporal cortices bilaterally. Those results retained statistical significance after including APOE4 as a covariate of interest. We also observed that there was a negative correlation between FCHDR scores and rGM distribution in the parietal cortex. Subclinical cerebrovascular abnormalities involving GM loss may provide an important link between cardiovascular risk factors and AD.

  3. Comparison of Cognitive Parameters Between Bilateral and Unilateral Hippocampal Sclerosis.

    PubMed

    Vanli Yavuz, Ebru Nur; Bilgiç, Başar; Matur, Zeliha; Bebek, Nerses; Gürses, Candan; Gökyiğit, Ayşen; Öktem, Öget; Baykan, Betül

    2016-09-01

    Recent studies showed that hippocampal sclerosis (HS) patients with unilateral involvement had more diffuse cognitive impairment than expected. Therefore, we aimed to compare the cognitive profiles of bilateral HS (BHS) patients with unilateral HS (UHS) patients. Consecutive patients, diagnosed with epilepsy, who fulfilled two major magnetic resonance imaging (MRI) criteria (T1 atrophy and T2-FLAIR hyperintensity) for HS were included. Standard neuro-psychological test (NPT) battery consisted of the Turkish version of 15-word verbal memory processes test, Wechsler memory scale visual reproduction subtest, forward and backward digit span, phonemic and semantic fluency, and Stroop test were applied; and the groups with right HS, left HS, and bilateral HS were compared statistically. Ninety-one patients, completing the NPT (34 males, 57 females)-16 with BHS, 36 with right HS, and 39 with left HS-were included. Six out of 43 operated patients had BHS. There were no significant differences in education and handedness of the groups. Even though NPT performances of the BHS group were found to be poor compared to UHS subgroups, this was beyond statistical significance. Comparison of BHS with the right HS group showed a significant difference in the learning score of the Verbal Memory Processes Test, but recognition scores were found to be similar in all groups. Compared to the BHS group, both right and left HS groups revealed a significant difference in delayed recall score of the Verbal Memory Processes Test. Although there were no significant differences in the postoperative parameters of the BHS group, UHS subgroups had deficits in many postoperative parameters. Our study revealed that bilateral involvement of the hippocampi was correlated with a poor cognitive performance. Retrieval failure, rather than a total recall problem, in the memory of the patients resembles a more diffuse involvement not only limited to limbic structures.

  4. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate.

    PubMed

    Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian

    2017-07-01

    The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.

  5. Dysregulation of Prefrontal Cortex-Mediated Slow-Evolving Limbic Dynamics Drives Stress-Induced Emotional Pathology.

    PubMed

    Hultman, Rainbo; Mague, Stephen D; Li, Qiang; Katz, Brittany M; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D; Dzirasa, Kafui

    2016-07-20

    Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (<1 Hz) dynamics across these networks, and PFC dysfunction is implicated in stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Capgras syndrome associated with limbic encephalitis in a patient with diffuse large B-cell lymphoma

    PubMed Central

    Soares, Herval Ribeiro; Cavalcante, Wagner Cid Palmeira; Martins, Sebastião Nunes; Smid, Jerusa; Nitrini, Ricardo

    2016-01-01

    ABSTRACT We report the case of a patient with insidious onset and slowly progressive cognitive impairment, behavioral symptoms, temporal lobe seizures and delusional thoughts typical of delusional misidentification syndromes. Clinical presentation along with extensive diagnostic work-up revealed limbic encephalitis secondary to diffuse large B-cell lymphoma. The patient underwent immunotherapy with high-dose corticosteroid but no significant improvement was observed. No specific treatment for lymphoma was performed because the patient died of septic shock following a nosocomial respiratory infection. Delusional misidentification syndromes are an unusual and unique form of cognitive impairment in which a patient consistently misidentifies persons, places, objects, or events. Capgras syndrome is the most common subtype of this disorder, being defined by the recurrent and transient belief that someone close has been substituted by an imposter. These entities are generally associated with neurodegenerative diseases and psychiatric disturbances. Rare reports of associations between misidentification syndromes and autoimmune diseases such as multiple sclerosis have been published, but no papers address a correlation with limbic encephalitis or lymphoma. PMID:29213434

  7. Current hypotheses on the mechanisms of alcoholism.

    PubMed

    Vetreno, R P; Crews, F T

    2014-01-01

    Chronic use of alcohol results in progressive changes to brain and behavior that often lead to the development of alcohol dependence and alcoholism. Although the mechanisms underlying the development of alcoholism remain to be fully elucidated, diminished executive functioning due to hypoactive prefrontal cortex executive control and hyperactive limbic system anxiety and negative emotion might contribute mechanistically to the shift from experimental use to alcoholism and dependence. In the chapter that follows, behavioral deficits associated with cortical dysfunction and neurodegeneration will be related to the behavioral characteristics of alcoholism (e.g., diminished executive function, impulsivity, altered limbic modulation). We will provide evidence that alterations in cyclic AMP-responsive element binding protein (CREB: neurotrophic) and NF-κB (neuroimmune) signaling contribute to the development and persistence of alcoholism. In addition, genetic predispositions and an earlier age of drinking onset will be discussed as contributing factors to the development of alcohol dependence and alcoholism. Overall chronic ethanol-induced neuroimmune gene induction is proposed to alter limbic and frontal neuronal networks contributing to the development and persistence of alcoholism. © 2014 Elsevier B.V. All rights reserved.

  8. Comparing brain activity patterns during spontaneous exploratory and cue-instructed learning using single photon-emission computed tomography (SPECT) imaging of regional cerebral blood flow in freely behaving rats.

    PubMed

    Mannewitz, A; Bock, J; Kreitz, S; Hess, A; Goldschmidt, J; Scheich, H; Braun, Katharina

    2018-05-01

    Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.

  9. An Integrative Perspective on the Role of Dopamine in Schizophrenia

    PubMed Central

    Maia, Tiago V.; Frank, Michael J.

    2017-01-01

    We propose that schizophrenia involves a combination of decreased phasic dopamine responses for relevant stimuli and increased spontaneous phasic dopamine release. Using insights from computational reinforcement-learning models and basic-science studies of the dopamine system, we show that each of these two disturbances contributes to a specific symptom domain and explains a large set of experimental findings associated with that domain. Reduced phasic responses for relevant stimuli help to explain negative symptoms and provide a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with negative symptoms: reduced learning from rewards; blunted activation of the ventral striatum, midbrain, and other limbic regions for rewards and positive prediction errors; blunted activation of the ventral striatum during reward anticipation; blunted autonomic responding for relevant stimuli; blunted neural activation for aversive outcomes and aversive prediction errors; reduced willingness to expend effort for rewards; and psychomotor slowing. Increased spontaneous phasic dopamine release helps to explain positive symptoms and provides a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with positive symptoms: aberrant learning for neutral cues (assessed with behavioral and autonomic responses), and aberrant, increased activation of the ventral striatum, midbrain, and other limbic regions for neutral cues, neutral outcomes, and neutral prediction errors. Taken together, then, these two disturbances explain many findings in schizophrenia. We review evidence supporting their co-occurrence and consider their differential implications for the treatment of positive and negative symptoms. PMID:27452791

  10. Abnormal brain activation during threatening face processing in schizophrenia: A meta-analysis of functional neuroimaging studies.

    PubMed

    Dong, Debo; Wang, Yulin; Jia, Xiaoyan; Li, Yingjia; Chang, Xuebin; Vandekerckhove, Marie; Luo, Cheng; Yao, Dezhong

    2017-11-15

    Impairment of face perception in schizophrenia is a core aspect of social cognitive dysfunction. This impairment is particularly marked in threatening face processing. Identifying reliable neural correlates of the impairment of threatening face processing is crucial for targeting more effective treatments. However, neuroimaging studies have not yet obtained robust conclusions. Through comprehensive literature search, twenty-one whole brain datasets were included in this meta-analysis. Using seed-based d-Mapping, in this voxel-based meta-analysis, we aimed to: 1) establish the most consistent brain dysfunctions related to threating face processing in schizophrenia; 2) address task-type heterogeneity in this impairment; 3) explore the effect of potential demographic or clinical moderator variables on this impairment. Main meta-analysis indicated that patients with chronic schizophrenia demonstrated attenuated activations in limbic emotional system along with compensatory over-activation in medial prefrontal cortex (MPFC) during threatening faces processing. Sub-task analyses revealed under-activations in right amygdala and left fusiform gyrus in both implicit and explicit tasks. The remaining clusters were found to be differently involved in different types of tasks. Moreover, meta-regression analyses showed brain abnormalities in schizophrenia were partly modulated by age, gender, medication and severity of symptoms. Our results highlighted breakdowns in limbic-MPFC circuit in schizophrenia, suggesting general inability to coordinate and contextualize salient threat stimuli. These findings provide potential targets for neurotherapeutic and pharmacological interventions for schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Neural bases of different cognitive strategies for facial affect processing in schizophrenia.

    PubMed

    Fakra, Eric; Salgado-Pineda, Pilar; Delaveau, Pauline; Hariri, Ahmad R; Blin, Olivier

    2008-03-01

    To examine the neural basis and dynamics of facial affect processing in schizophrenic patients as compared to healthy controls. Fourteen schizophrenic patients and fourteen matched controls performed a facial affect identification task during fMRI acquisition. The emotional task included an intuitive emotional condition (matching emotional faces) and a more cognitively demanding condition (labeling emotional faces). Individual analysis for each emotional condition, and second-level t-tests examining both within-, and between-group differences, were carried out using a random effects approach. Psychophysiological interactions (PPI) were tested for variations in functional connectivity between amygdala and other brain regions as a function of changes in experimental conditions (labeling versus matching). During the labeling condition, both groups engaged similar networks. During the matching condition, schizophrenics failed to activate regions of the limbic system implicated in the automatic processing of emotions. PPI revealed an inverse functional connectivity between prefrontal regions and the left amygdala in healthy volunteers but there was no such change in patients. Furthermore, during the matching condition, and compared to controls, patients showed decreased activation of regions involved in holistic face processing (fusiform gyrus) and increased activation of regions associated with feature analysis (inferior parietal cortex, left middle temporal lobe, right precuneus). Our findings suggest that schizophrenic patients invariably adopt a cognitive approach when identifying facial affect. The distributed neocortical network observed during the intuitive condition indicates that patients may resort to feature-based, rather than configuration-based, processing and may constitute a compensatory strategy for limbic dysfunction.

  12. Structural and functional MRI- findings in children and adolescents with antisocial behavior.

    PubMed

    Vloet, Timo D; Konrad, Kerstin; Huebner, Thomas; Herpertz, Sabine; Herpertz-Dahlmann, Beate

    2008-01-01

    The developmental course of children with conduct disorder (CD) is heterogeneous. Especially children who exhibit symptoms early in their lifetimes are characterized by a negative outcome. Neurobiological aspects of CD have been investigated in these children but little is known about structural and functional brain aberrations. We describe the developmental taxonomy of children with CD and focus on those with the early onset subtype. Structural MRI data of these children and antisocial adults are recapitulated. The impact of investigating neurobiological underpinnings of antisocial behavior and how this might contribute to future forensic and psychiatric assessments is discussed. RESULTS/ CONCLUSION: Children display similar structural aberrations of fronto-limbic structures to adults with antisocial behavior, and amygdala dysfunction might be closely related to dysregulated emotions. Though the investigation of biological factors in antisocial subjects has made great progress in recent years, today MRI is still a rather complex, expensive and indistinct method for forensic assessment. (c) 2008 John Wiley & Sons, Ltd.

  13. Effect of enhanced geomagnetic activity on hypothermia and mortality in rats

    NASA Astrophysics Data System (ADS)

    Bureau, Y. R. J.; Persinger, M. A.; Parker, G. H.

    1996-12-01

    The hypothesis was investigated that variability in the severity of limbic seizure-induced hypothermia in rats was affected by ambient geomagnetic activity. Data were obtained in support of this hypothesis. The depth of the hypothermia was significantly ( P < 0.001) reduced if the ambient geomagnetic activity exceeded 35 nT to 40 nT. Mortality during the subsequent 5 days was increased when the geomagnetic activity was > 20 nT. The magnitude of the effect was comparable to the difference between exposure to light or to darkness during the 20 h after the induction of limbic seizures.

  14. Superior limbic keratoconjunctivitis associated with cosmetic soft contact lens wear.

    PubMed

    Fuerst, D J; Sugar, J; Worobec, S

    1983-08-01

    Thirteen patients who wore soft contact lenses were seen with a syndrome consistent with superior limbic keratoconjunctivitis. An irregular epithelial surface, punctate staining with fluorescein, and subepithelial infiltrates were found on the superior aspect of the corneas in association with hyperemia of the superior bulbar conjunctivae. The keratoconjunctivitis persisted as long as 15 months after discontinuation of lens wear. Patch testing with ophthalmic vehicle preservatives, performed on seven patients, failed to show a consistent hypersensitivity to any of the tested compounds, and three patients had used only preservative-free saline for lens care. The etiology of this syndrome is unknown.

  15. Similar increases in extracellular lactic acid in the limbic system during epileptic and/or olfactory stimulation.

    PubMed

    Fornai, F; Bassi, L; Gesi, M; Giorgi, F S; Guerrini, R; Bonaccorsi, I; Alessandrì, M G

    2000-01-01

    Previous studies have shown that physiological stimulation of brain activity increases anaerobic glucose consumption, both in humans and in experimental animals. To investigate this phenomenon further, we measured extracellular lactate levels within different rat brain regions, using microdialysis. Experiments were performed comparing the effects of natural, physiological olfactory stimulation of the limbic system with experimental limbic seizures. Olfactory stimulation was carried out by using different odors (i.e. both conventional odors: 2-isobutyl-3-methoxypyrazine, green pepper essence; thymol; and 2-sec-butylthiazoline, a sexual pheromone). Limbic seizures were either induced by systemic injection of pilocarpine (200-400 mg/kg) or focally elicited by microinfusions of chemoconvulsants (bicuculline 118 pmol and cychlothiazide 1.2 nmol) within the anterior piriform cortex. Seizures induced by systemic pilocarpine tripled lactic acid within the hippocampus, whereas limbic seizures elicited by focal microinfusion of chemoconvulsants within the piriform cortex produced a less pronounced increase in extracellular lactic acid. Increases in extracellular lactate occurring during olfactory stimulation with the sexual pheromone (three times the baseline levels) were non-significantly different from those occurring after systemic pilocarpine. Increases in lactic acid following natural olfactory stimulation were abolished both by olfactory bulbectomy and by the focal microinfusion of tetrodotoxin, while they were significantly attenuated by the local application of the N-methyl-D-aspartate antagonist AP-5. Increases in hippocampal lactate induced by short-lasting stimuli (olfactory stimulation or microinfusion of subthreshold doses of chemoconvulsants, bicuculline 30 pmol) were reproducible after a short delay (1 h) and cumulated when applied sequentially. In contrast, limbic status epilepticus led to a long-lasting refractoriness to additional lactate-raising stimuli and there was no further increase in lactate levels when the olfactory stimulation was produced during status epilepticus. Increases in lactic acid following olfactory stimulation occurred with site specificity in the rhinencephalon (hippocampus, piriform and entorhinal cortex) but not in the dorsal striatum. Site specificity crucially relied on the quality of the stimulus. For instance, other natural stimuli (i.e. tail pinch) produced a similar increase in extracellular lactate in all brain areas under investigation. The major conclusion of this work is that the presentation of an odor known to be a rat pheromone results in lactate production as great as that induced by the systemic convulsant pylocarpine (maximum: 2.286+/-0.195 mM and 1.803+/-0.108 mM, respectively). This supports the notion that the great magnitude of lactate production known to accompany seizures can result from the intensified neural activity per se ("aerobic gycolysis"), not merely from local anoxia or other pathological changes.

  16. Emotional face processing and flat affect in schizophrenia: functional and structural neural correlates.

    PubMed

    Lepage, M; Sergerie, K; Benoit, A; Czechowska, Y; Dickie, E; Armony, J L

    2011-09-01

    There is a general consensus in the literature that schizophrenia causes difficulties with facial emotion perception and discrimination. Functional brain imaging studies have observed reduced limbic activity during facial emotion perception but few studies have examined the relation to flat affect severity. A total of 26 people with schizophrenia and 26 healthy controls took part in this event-related functional magnetic resonance imaging study. Sad, happy and neutral faces were presented in a pseudo-random order and participants indicated the gender of the face presented. Manual segmentation of the amygdala was performed on a structural T1 image. Both the schizophrenia group and the healthy control group rated the emotional valence of facial expressions similarly. Both groups exhibited increased brain activity during the perception of emotional faces relative to neutral ones in multiple brain regions, including multiple prefrontal regions bilaterally, the right amygdala, right cingulate cortex and cuneus. Group comparisons, however, revealed increased activity in the healthy group in the anterior cingulate, right parahippocampal gyrus and multiple visual areas. In schizophrenia, the severity of flat affect correlated significantly with neural activity in several brain areas including the amygdala and parahippocampal region bilaterally. These results suggest that many of the brain regions involved in emotional face perception, including the amygdala, are equally recruited in both schizophrenia and controls, but flat affect can also moderate activity in some other brain regions, notably in the left amygdala and parahippocampal gyrus bilaterally. There were no significant group differences in the volume of the amygdala.

  17. Neuroanatomical Characterization of Child Offspring of Bipolar Parents

    PubMed Central

    Singh, Manpreet K.; DelBello, Melissa P.; Adler, Caleb M.; Stanford, Kevin E.; Strakowski, Stephen M.

    2012-01-01

    Objectives To examine structural differences in selected anterior limbic brain regions between at-risk children of parents with bipolar I disorder and children with healthy parents. We hypothesized that at-risk children would exhibit abnormalities in brain regions that are involved in mood regulation. Methods Children (8–12 years old) of parents with bipolar I disorder (“at-risk”, AR, N=21) and of parents without any DSM-IV Axis I disorder (health controls, HC, N=24) were evaluated using diagnosticassessments and brain magnetic resonance imaging (MRI). Morphometric analyses were used to examine group differences in the prefrontal cortical, thalamic, striatal, and amygdalar volumes. Results Nine (43%) of the AR children met DSM-IV-TR criteria for a non-bipolar mood disorder at the time of assessment. AR and HC children did not demonstrate statistically significant differences across regions of interest [Wilks Lambda = 0.86, F(4,39)=1.64, p=0.18; effect size, (f)=0.19]. Post-hoc analyses of covariance showed the largest relative effect size was contributed by the prefrontal cortex [(f)=0.26]. Conclusions 8 to 12 year old children with a familial risk for mania do not exhibit any statistically significant volumetric differences in the prefrontal cortex, thalamus, striatum, or amygdala as compared to age matched children of parents without any psychopathology. Longitudinal studies examining whether structural changes over time may be associated with vulnerability for developing subsequent bipolar disorder are needed to clarify the underlying pathophysiology of this disorder. PMID:18356766

  18. Chronic alcoholism: insights from neurophysiology.

    PubMed

    Campanella, S; Petit, G; Maurage, P; Kornreich, C; Verbanck, P; Noël, X

    2009-01-01

    Increasing knowledge of the anatomical structures and cellular processes underlying psychiatric disorders may help bridge the gap between clinical signs and basic physiological processes. Accordingly, considerable insight has been gained in recent years into a common psychiatric condition, i.e., chronic alcoholism. We reviewed various physiological parameters that are altered in chronic alcoholic patients compared to healthy individuals--continuous electroencephalogram, oculomotor measures, cognitive event-related potentials and event-related oscillations--to identify links between these physiological parameters, altered cognitive processes and specific clinical symptoms. Alcoholic patients display: (1) high beta and theta power in the resting electroencephalogram, suggesting hyperarousal of their central nervous system; (2) abnormalities in smooth pursuit eye movements, in saccadic inhibition during antisaccade tasks, and in prepulse inhibition, suggesting disturbed attention modulation and abnormal patterns of prefrontal activation that may stem from the same prefrontal "inhibitory" cortical dysfunction; (3) decreased amplitude for cognitive event-related potentials situated along the continuum of information-processing, suggesting that alcoholism is associated with neurophysiological deficits at the level of the sensory cortex and not only disturbances involving associative cortices and limbic structures; and (4) decreased theta, gamma and delta oscillations, suggesting cognitive disinhibition at a functional level. The heterogeneity of alcoholic disorders in terms of symptomatology, course and outcome is the result of various pathophysiological processes that physiological parameters may help to define. These alterations may be related to precise cognitive processes that could be easily monitored neurophysiologically in order to create more homogeneous subgroups of alcoholic individuals.

  19. Role of nitric oxide in pheromone-mediated intraspecific communication in mice.

    PubMed

    Agustín-Pavón, Carmen; Martínez-Ricós, Joana; Martínez-García, Fernando; Lanuza, Enrique

    2009-12-07

    Nitric oxide is known to take part in the control of sexual and agonistic behaviours. This is usually attributed to its role in neural transmission in the hypothalamus and other structures of the limbic system. However, socio-sexual behaviours in rodents are mainly directed by chemical signals detected by the vomeronasal system, and nitric oxide is abundant in key structures along the vomeronasal pathway. Thus, here we check whether pharmacological treatments interfering with nitrergic transmission could affect socio-sexual behaviour by impairing the processing of chemical signals. Treatment with an inhibitor of nitric oxide synthesis (Nomega-Nitro-l-arginine methyl ester hydrochloride, L-NAME, 100mg/kg) blocks the innate preference displayed by female mice for sexual pheromones contained in male-soiled bedding, with a lower dose of the drug (50mg/kg) having no effect. Animals treated with the high dose of L-NAME show no reduction of olfactory discrimination of male urine in a habituation-dishabituation test, thus suggesting that the effect of the drug on the preference for male pheromones is not due to an inability to detect male urine. Alternatively, it may result from an alteration in processing the reinforcing value of pheromones as sexual signals. These results add a new piece of evidence to our understanding of the neurochemistry of intraspecific chemical communication in rodents, and suggest that the role of nitric oxide in socio-sexual behaviours should be re-evaluated taking into account the involvement of this neuromodulator in the processing of chemical signals.

  20. Repeated restraint stress-induced atrophy of glutamatergic pyramidal neurons and decreases in glutamatergic efflux in the rat amygdala are prevented by the antidepressant agomelatine.

    PubMed

    Grillo, C A; Risher, M; Macht, V A; Bumgardner, A L; Hang, A; Gabriel, C; Mocaër, E; Piroli, G G; Fadel, J R; Reagan, L P

    2015-01-22

    Major depressive illness is among the most prevalent neuropsychiatric disorders and is associated with neuroplasticity deficits in limbic structures such as the amygdala. Since exposure to stressful life events is proposed to contribute to depressive illness, our recent studies examined the effects of stress on amygdalar neuroplasticity. These studies determined that repeated stress elicits deficits in glutamatergic activity in the amygdala, neuroplasticity deficits that can be prevented by some but not all antidepressants. In view of these observations, the goal of the current study was to determine the effects of repeated restraint stress (RRS) on the dendritic architecture of pyramidal neurons in the rat basolateral nucleus of the amygdala (CBL), as well as glutamate efflux in the CBL and central nucleus of the amygdala (CMX) via in vivo microdialysis. We also examined the ability of the antidepressant agomelatine to prevent RRS-induced neuroplasticity deficits. Compared with control rats, rats subjected to RRS exhibited atrophy of CBL pyramidal neurons, including decreases in total dendritic length, branch points, and dendritic complexity index. In addition, glutamate efflux was significantly reduced in the CMX of rats subjected to RRS, thereby identifying a potential neurochemical consequence of stress-induced dendritic atrophy of CBL pyramidal neurons. Lastly, an acute stress challenge increased corticosterone (CORT) levels in the CBL, suggesting that stress-induced increases in CORT levels may contribute to the neuroanatomical and neurochemical effects of RRS in the CBL. Importantly, these RRS-induced changes were prevented by daily agomelatine administration. These results demonstrate that the neuroanatomical and neurochemical properties of glutamatergic neurons in the rat amygdala are adversely affected by repeated stress and suggest that the therapeutic effects of agomelatine may include protection of structural and neurochemical plasticity in limbic structures like the amygdala. Published by Elsevier Ltd.

  1. The neural markers of MRI to differentiate depression and panic disorder.

    PubMed

    Lai, Chien-Han

    2018-04-27

    Depression and panic disorder (PD) share the common pathophysiology from the perspectives of neurotransmitters. The relatively high comorbidity between depression and PD contributes to the substantial obstacles to differentiate from depression and PD, especially for the brain pathophysiology. There are significant differences in the diagnostic criteria between depression and PD. However, the paradox of similar pathophysiology and different diagnostic criteria in these two disorders were still the issues needing to be addressed. Therefore the clarification of potential difference in the field of neuroscience and pathophysiology between depression and PD can help the clinicians and scientists to understand more comprehensively about significant differences between depression and PD. The researchers should be curious about the underlying difference of pathophysiology beneath the significant distinction of clinical symptoms. In this review article, I tried to find some evidences for the differences between depression and PD, especially for neural markers revealed by magnetic resonance imaging (MRI). The distinctions of structural and functional alterations in depression and PD are reviewed. From the structural perspectives, PD seems to have less severe gray matter alterations in frontal and temporal lobes than depression. The study of white matter microintegrity reveals more widespread alterations in fronto-limbic circuit of depression patients than PD patients, such as the uncinate fasciculus and anterior thalamic radiation. PD might have a more restrictive pattern of structural alterations when compared to depression. For the functional perspectives, the core site of depression pathophysiology is the anterior subnetwork of resting-state network, such as anterior cingulate cortex, which is not significantly altered in PD. A possibly emerging pattern of fronto-limbic distinction between depression and PD has been revealed by these explorative reports. The future trend for machine learning and pattern recognition might confirm the differentiation pattern between depression and PD based on the explorative results. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Increased hippocampal, thalamus and amygdala volume in long-term lithium-treated bipolar I disorder patients compared with unmedicated patients and healthy subjects.

    PubMed

    López-Jaramillo, Carlos; Vargas, Cristian; Díaz-Zuluaga, Ana M; Palacio, Juan David; Castrillón, Gabriel; Bearden, Carrie; Vieta, Eduard

    2017-02-01

    Magnetic resonance imaging (MRI) studies in bipolar I disorder (BD-I) suggest that lithium is associated with increased volumes of cortico-limbic structures. However, more rigorous control of confounding factors is needed to obtain further support for this hypothesis. The aim of the present study was to assess differences in brain volumes among long-term lithium-treated BD-I patients, unmedicated BD-I patients, and healthy controls. This was a cross-sectional study with 32 euthymic BD-I patients (16 on lithium monotherapy for a mean of 180 months, and 16 receiving no medication for at least the 2 months prior to the study) and 20 healthy controls. Patients were euthymic (Hamilton Depression Rating Scale [HDRS] <6 and Young Mania Rating Scale [YMRS] <7) and had not taken psychotropic medications other than lithium for at least 6 months. Brain images were acquired on a 1.5 Tesla MRI (Phillips, Amsterdam, The Netherlands) and segmented to generate volumetric measures of cortical and subcortical brain areas, ventricles and global brain. Significant differences were found in the volumes of the left amygdala (P=.0003), right amygdala (P=.030), left hippocampus (P=.022), left thalamus (P=.022), and right thalamus (P=.019) in long-term lithium-treated BD-I patients, compared to unmedicated patients and controls, after multivariable adjustment. No differences were observed in global brain volume or in ventricular size among the three groups. Likewise, there was no correlation between serum lithium levels and the increase in size in the described brain areas. The structural differences found among the three groups, and specifically those between long-term lithium-treated and unmedicated BD-I patients, indicate increased limbic structure volumes in lithium-treated patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson's disease.

    PubMed

    Borgonovo, Janina; Allende-Castro, Camilo; Laliena, Almudena; Guerrero, Néstor; Silva, Hernán; Concha, Miguel L

    2017-02-01

    Although Parkinson's Disease (PD) is mostly considered a motor disorder, it can present at early stages as a non-motor pathology. Among the non-motor clinical manifestations, depression shows a high prevalence and can be one of the first clinical signs to appear, even a decade before the onset of motor symptoms. Here, we review the evidence of early dysfunction in neural circuitry associated with depression in the context of PD, focusing on pre-clinical, pre-motor and early motor phases of the disease. In the pre-clinical phase, structural and functional changes in the substantia nigra, basal ganglia and limbic structures are already observed. Some of these changes are linked to motor compensation mechanisms while others correspond to pathological processes common to PD and depression and thus could underlie the appearance of depressive symptoms during the pre-motor phase. Studies of the early motor phase (less than five years post diagnosis) reveal an association between the extent of damage in different monoaminergic systems and the appearance of emotional disorders. We propose that the limbic loop of the basal ganglia and the lateral habenula play key roles in the early genesis of depression in PD. Alterations in the neural circuitry linked with emotional control might be sensitive markers of the ongoing neurodegenerative process and thus may serve to facilitate an early diagnosis of this disease. To take advantage of this, we need to improve the clinical criteria and develop biomarkers to identify depression, which could be used to determine individuals at risk to develop PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Contribution of early environmental stress to alcoholism vulnerability.

    PubMed

    Campbell, Joannalee C; Szumlinski, Karen K; Kippin, Tod E

    2009-11-01

    The most problematic aspects of alcohol abuse disorder are excessive alcohol consumption and the inability to refrain from alcohol consumption during attempted abstinence. The root causes that predispose certain individuals to these problems are poorly understood but are believed to be produced by a combination of genetic and environmental factors. Early environmental trauma alters neurodevelopmental trajectories that can predispose an individual to a number of neuropsychiatric disorders, including substance abuse. Prenatal stress (PNS) is a well-established protocol that produces perturbations in nervous system development, resulting in behavioral alterations that include hyperresponsiveness to stress, novelty, and psychomotor stimulant drugs (e.g., cocaine, amphetamine). Moreover, PNS animals exhibit enduring alterations in basal and cocaine-induced changes in dopamine and glutamate transmission within limbic structures, which exhibit pathology in drug addiction and alcoholism, suggesting that these alterations may contribute to an increased propensity to self-administer large amounts of drugs of abuse or to relapse after periods of drug withdrawal. Given that cocaine and alcohol have actions on common limbic neural substrates (albeit by different mechanisms), we hypothesized that PNS would elevate the motivation for, and consumption of, alcohol. Accordingly, we have found that male C57BL/6J mice subject to PNS exhibit higher operant responding and consume more alcohol during alcohol reinforcement as adults. Alterations in glutamate and dopamine neurotransmission within the forebrain structures appear to contribute to the PNS-induced predisposition to high alcohol intake and are induced by excessive alcohol intake. Accordingly, we are exploring the interactions between neurochemical changes produced by PNS and changes induced by consumption of alcohol in adulthood to model the biological bases of high vulnerability to alcohol abuse.

  5. Contribution of early environmental stress to alcoholism vulnerability

    PubMed Central

    Campbell, Joannalee C.; Szumlinski, Karen K.; Kippin, Tod E.

    2011-01-01

    The most problematic aspects of alcohol abuse disorder are excessive alcohol consumption and the inability to refrain from alcohol consumption during attempted abstinence. The root causes that predispose certain individuals to these problems are poorly understood but are believed to be produced by a combination of genetic and environmental factors. Early environmental trauma alters neurodevelopmental trajectories that can predispose an individual to a number of neuropsychiatric disorders, including substance abuse. Prenatal stress (PNS) is a well-established protocol that produces perturbations in nervous system development, resulting in behavioral alterations that include hyperresponsiveness to stress, novelty, and psychomotor stimulant drugs (e.g., cocaine, amphetamine). Moreover, PNS animals exhibit enduring alterations in basal and cocaine-induced changes in dopamine and glutamate transmission within limbic structures, which exhibit pathology in drug addiction and alcoholism, suggesting that these alterations may contribute to an increased propensity to self-administer large amounts of drugs of abuse or to relapse after periods of drug withdrawal. Given that cocaine and alcohol have actions on common limbic neural substrates (albeit by different mechanisms), we hypothesized that PNS would elevate the motivation for, and consumption of, alcohol. Accordingly, we have found that male C57BL/6J mice subject to PNS exhibit higher operant responding and consume more alcohol during alcohol reinforcement as adults. Alterations in glutamate and dopamine neurotransmission within the forebrain structures appear to contribute to the PNS-induced predisposition to high alcohol intake and are induced by excessive alcohol intake. Accordingly, we are exploring the interactions between neurochemical changes produced by PNS and changes induced by consumption of alcohol in adulthood to model the biological bases of high vulnerability to alcohol abuse. PMID:19913199

  6. Lesion localization of global aphasia without hemiparesis by overlapping of the brain magnetic resonance images

    PubMed Central

    Kim, Woo Jin; Paik, Nam-Jong

    2014-01-01

    Global aphasia without hemiparesis is a striking stroke syndrome involving language impairment without the typically manifested contralateral hemiparesis, which is usually seen in patients with global aphasia following large left perisylvian lesions. The objective of this study is to elucidate the specific areas for lesion localization of global aphasia without hemiparesis by retrospectively studying the brain magnetic resonance images of six patients with global aphasia without hemiparesis to define global aphasia without hemiparesis-related stroke lesions before overlapping the images to visualize the most overlapped area. Talairach coordinates for the most overlapped areas were converted to corresponding anatomical regions. Lesions where the images of more than three patients overlapped were considered significant. The overlapped global aphasia without hemiparesis related stroke lesions of six patients revealed that the significantly involved anatomical lesions were as follows: frontal lobe, sub-gyral, sub-lobar, extra-nuclear, corpus callosum, and inferior frontal gyrus, while caudate, claustrum, middle frontal gyrus, limbic lobe, temporal lobe, superior temporal gyrus, uncus, anterior cingulate, parahippocampal, amygdala, and subcallosal gyrus were seen less significantly involved. This study is the first to demonstrate the heterogeneous anatomical involvement in global aphasia without hemiparesis by overlapping of the brain magnetic resonance images. PMID:25657725

  7. The functional neuroanatomy of bipolar disorder: a consensus model

    PubMed Central

    Strakowski, Stephen M; Adler, Caleb M; Almeida, Jorge; Altshuler, Lori L; Blumberg, Hilary P; Chang, Kiki D; DelBello, Melissa P; Frangou, Sophia; McIntosh, Andrew; Phillips, Mary L; Sussman, Jessika E; Townsend, Jennifer D

    2013-01-01

    Objectives Functional neuroimaging methods have proliferated in recent years, such that functional magnetic resonance imaging, in particular, is now widely used to study bipolar disorder. However, discrepant findings are common. A workgroup was organized by the Department of Psychiatry, University of Cincinnati (Cincinnati, OH, USA) to develop a consensus functional neuroanatomic model of bipolar I disorder based upon the participants’ work as well as that of others. Methods Representatives from several leading bipolar disorder neuroimaging groups were organized to present an overview of their areas of expertise as well as focused reviews of existing data. The workgroup then developed a consensus model of the functional neuroanatomy of bipolar disorder based upon these data. Results Among the participants, a general consensus emerged that bipolar I disorder arises from abnormalities in the structure and function of key emotional control networks in the human brain. Namely, disruption in early development (e.g., white matter connectivity, prefrontal pruning) within brain networks that modulate emotional behavior leads to decreased connectivity among ventral prefrontal networks and limbic brain regions, especially amygdala. This developmental failure to establish healthy ventral prefrontal–limbic modulation underlies the onset of mania and ultimately, with progressive changes throughout these networks over time and with affective episodes, a bipolar course of illness. Conclusions This model provides a potential substrate to guide future investigations and areas needing additional focus are identified. PMID:22631617

  8. Reduced limbic and hypothalamic volumes correlate with bone density in early Alzheimer's disease.

    PubMed

    Loskutova, Natalia; Honea, Robyn A; Brooks, William M; Burns, Jeffrey M

    2010-01-01

    Accelerated bone loss is associated with Alzheimer's disease (AD). Although the central nervous system plays a direct role in regulating bone mass, primarily through the actions of the hypothalamus, there is little work investigating the possible role of neurodegeneration in bone loss. In this cross-sectional study, we examined the association between bone mineral density (BMD) and neuroimaging markers of neurodegeneration (i.e., global and regional measures of brain volume) in early AD and non-demented aging. Fifty-five non-demented and 63 early AD participants underwent standard neurological and neuropsychological assessment, structural MRI scanning, and dual energy x-ray absorptiometry. In early AD, voxel-based morphometry analyses demonstrated that low BMD was associated with low volume in limbic grey matter (GM) including the hypothalamus, cingulate, and parahippocampal gyri and in the left superior temporal gyrus and left inferior parietal cortex. No relationship between BMD and regional GM volume was found in non-demented controls. The hypothesis-driven region of interest analysis further isolating the hypothalamus demonstrated a positive relationship between BMD and hypothalamic volume after controlling for age and gender in the early AD group but not in non-demented controls. These results demonstrate that lower BMD is associated with lower hypothalamic volume in early AD, suggesting that central mechanisms of bone remodeling may be disrupted by neurodegeneration.

  9. Chronic Pain and Chronic Stress: Two Sides of the Same Coin?

    PubMed

    Abdallah, Chadi G; Geha, Paul

    2017-02-01

    Pain and stress share significant conceptual and physiological overlaps. Both phenomena challenge the body's homeostasis and necessitate decision-making to help animals adapt to their environment. In addition, chronic stress and chronic pain share a common behavioral model of failure to extinguish negative memories. Yet, they also have discrepancies such that the final brain endophenotype of posttraumatic stress disorder, depression, and chronic pain appears to be different among the three conditions, and the role of the hypothalamic-pituitary-adrenal axis remains unclear in the physiology of pain. Persistence of either stress or pain is maladaptive and could lead to compromised well-being. In this brief review, we highlight the commonalities and differences between chronic stress and chronic pain, while focusing particularly on the central role of the limbic brain. We assess the current attempts in the field to conceptualize and understand chronic pain, within the context of knowledge gained from the stress literature. The limbic brain-including hippocampus, amygdala, and ventromedial pre-frontal cortex-plays a critical role in learning. These brain areas integrate incoming nociceptive or stress signals with internal state, and generate learning signals necessary for decision-making. Therefore, the physiological and structural remodeling of this learning circuitry is observed in conditions such as chronic pain, depression, and posttraumatic stress disorder, and is also linked to the risk of onset of these conditions.

  10. Opioid neurotoxicity: neuropathologic effects in rats of different fentanyl congeners and the effects of hexamethonium-induced normotension.

    PubMed

    Kofke, W A; Garman, R H; Janosky, J; Rose, M E

    1996-07-01

    We tested the hypotheses that convulsant doses of opioids would produce limbic system damage exacerbated by hexamethonium. Ventilated paralyzed rats received intravenous (IV) isovolumic infusion of fentanyl loading dose (LD) 1000 micrograms/kg, maintenance dose (MD) 40 micrograms.kg-1.min-1 (n = 10), sufentanil LD 400 micrograms/kg, MD 13.3 micrograms.kg-1.min-1 (n = 10), alfentanil LD 1500 micrograms/kg, MD 150 micrograms.kg-1.min-1 (n = 10), or 0.9% saline control LD 4 mliter/kg, MD 4 mliter.kg-1.h-1 (n = 10), with O2/N2 30%/70% during opioid infusion and O2/N2O in controls during saline infusion. Hexamethonium (LD 20 mg/kg, MD 40-120 mg.kg-1.h-1) was given IV during opioid infusion to half of the rats. Cerebral perfusion-fixation with formalin was performed 24 h later, followed by histopathologic assessment. None of the control rats showed any histologic abnormalities. Overall summed neuropathologic severity was worse in opioid treated groups (P = 0.01). Lesions occurred primarily in cortical regions and limbic system structures. When arterial blood pressure was controlled to a lower level with hexamethonium (147 vs 100 mm Hg), rats had less severe lesions (P = 0.02). These data indicate that fentanyl, sufentanil, and alfentanil all can produce histopathologic evidence of brain injury in rats mitigated by hexamethonium.

  11. Positron emission tomography reveals correlations between brain metabolism and mood changes in hyperthyroidism.

    PubMed

    Schreckenberger, M F; Egle, U T; Drecker, S; Buchholz, H G; Weber, M M; Bartenstein, P; Kahaly, G J

    2006-12-01

    Hyperthyroidism is frequently associated with emotional distress. The underlying cerebral processes of the endocrine-induced mood changes are unclear. The objective of this study was to investigate, for the first time, the neuronal correlates of thyrotoxicosis-associated psychic symptoms using positron emission tomography (PET). The study was designed as a cross-sectional trial. The study was performed at joint nuclear medicine and thyroid clinics. Twelve patients with untreated Graves' hyperthyroidism were evaluated. Levels of emotional distress were self-rated by means of the Hospital Anxiety and Depression Scale. Both patients and 20 age- and gender-matched euthyroid controls underwent a brain fluorodeoxyglucose PET scan. Subsequently, the functional relationship between brain metabolism and the psychometric scores was analyzed. Compared with controls and visualized by fluorodeoxyglucose PET, hyperthyroid patients showed a decreased (P < 0.0001) glucose metabolism in the limbic system (uncus and inferior temporal gyrus). Activation foci in the posterior cingulate and in the inferior parietal lobe were correlated with both anxiety and depression scales (P < 0.001). Compared with patients with normal anxiety levels, those with increased anxiety yielded an enhanced glucose metabolism (P < 0.001) in the bilateral sensory association cortex. Serum free T3/free T4 levels negatively correlated with regional glucose metabolism in the medial posterior cingulate. Thyrotoxicosis and associated psychic symptoms are correlated to regional metabolic changes in the main structures of the limbic/paralimbic system.

  12. Kainic acid-induced albumin leak across the blood-brain barrier facilitates epileptiform hyperexcitability in limbic regions.

    PubMed

    Noé, Francesco M; Bellistri, Elisa; Colciaghi, Francesca; Cipelletti, Barbara; Battaglia, Giorgio; de Curtis, Marco; Librizzi, Laura

    2016-06-01

    Systemic administration of kainic acid (KA) is a widely used procedure utilized to develop a model of temporal lobe epilepsy (TLE). Despite its ability to induce status epilepticus (SE) in vivo, KA applied to in vitro preparations induces only interictal-like activity and/or isolated ictal discharges. The possibility that extravasation of the serum protein albumin from the vascular compartment enhances KA-induced brain excitability is investigated here. Epileptiform activity was induced by arterial perfusion of 6 μm KA in the in vitro isolated guinea pig brain preparation. Simultaneous field potential recordings were carried out bilaterally from limbic (CA1, dentate gyrus [DG], and entorhinal cortex) and extralimbic regions (piriform cortex and neocortex). Blood-brain barrier (BBB) breakdown associated with KA-induced epileptiform activity was assessed by parenchymal leakage of intravascular fluorescein-isothiocyanate albumin. Seizure-induced brain inflammation was evaluated by western blot analysis of interleukin (IL)-1β expression in brain tissue. KA infusion caused synchronized activity at 15-30 Hz in limbic (but not extralimbic) cortical areas, associated with a brief, single seizure-like event. A second bolus of KA, 60 min after the induction of the first ictal event, did not further enhance excitability. Perfusion of serum albumin between the two administrations of KA enhanced epileptiform discharges and allowed a recurrent ictal event during the second KA infusion. Our data show that arterial KA administration selectively alters the synchronization of limbic networks. However, KA is not sufficient to generate recurrent seizures unless serum albumin is co-perfused during KA administration. These findings suggest a role of serum albumin in facilitating acute seizure generation. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  13. CB1 Cannabinoid Receptor Expression in the Striatum: Association with Corticostriatal Circuits and Developmental Regulation

    PubMed Central

    Van Waes, Vincent; Beverley, Joel A.; Siman, Homayoun; Tseng, Kuei Y.; Steiner, Heinz

    2012-01-01

    Corticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains). We investigated CB1 receptor expression within specific corticostriatal circuits by mapping CB1 mRNA levels in striatal sectors defined by their cortical inputs in rats. We also assessed changes in CB1 expression in the striatum during development. Our results show that CB1 expression is highest in juveniles (P25) and then progressively decreases toward adolescent (P40) and adult (P70) levels. At every age, CB1 receptors are predominantly expressed in sensorimotor striatal sectors, with considerably lower expression in associative and limbic sectors. Moreover, for most corticostriatal circuits there is an inverse relationship between cortical and striatal expression levels. Thus, striatal sectors with high CB1 expression (sensorimotor sectors) tend to receive inputs from cortical areas with low expression, while striatal sectors with low expression (associative/limbic sectors) receive inputs from cortical regions with higher expression (medial prefrontal cortex). In so far as CB1 mRNA levels reflect receptor function, our findings suggest differential CB1 signaling between different developmental stages and between sensorimotor and associative/limbic circuits. The regional distribution of CB1 receptor expression in the striatum further suggests that, in sensorimotor sectors, CB1 receptors mostly regulate GABA inputs from local axon collaterals of projection neurons, whereas in associative/limbic sectors, CB1 regulation of GABA inputs from interneurons and glutamate inputs may be more important. PMID:22416230

  14. Prevention of status epilepticus-induced brain edema and neuronal cell loss by repeated treatment with high-dose levetiracetam.

    PubMed

    Itoh, Kouichi; Inamine, Moriyoshi; Oshima, Wataru; Kotani, Masaharu; Chiba, Yoichi; Ueno, Masaki; Ishihara, Yasuhiro

    2015-05-22

    The management of status epilepticus (SE) is important to prevent mortality and the development of post-SE symptomatic epilepsy. Acquired epilepsy after an initial brain insult by SE can be experimentally reproduced in the murine model of SE induced by pilocarpine. In the present study, we evaluated the possibility of treatment with a high-dose of levetiracetam in this model. Repeated treatment with high-dose levetiracetam after termination of SE by diazepam significantly prevented the incidence of spontaneous recurrent seizures and mortality for at least 28 days. To determine the brain alterations after SE, magnetic resonance imaging was performed. Both T2-weighted imaging and diffusion-weighted imaging showed changes in the limbic regions. These changes in the limbic regions demonstrated the development of cytotoxic edema three hours after SE, followed by the development of vasogenic edema two days after SE. In the pilocarpine-SE model, the incidence of spontaneous recurrent seizures after SE was strongly associated with neuronal damage within a few hours to days after SE by the development of vasogenic edema via the breakdown of the blood-brain barrier in the limbic regions. High-dose levetiracetam significantly suppressed the parameters in the limbic areas. These data indicate that repeated treatment with high-dose levetiracetam for at least two days after SE termination by diazepam is important for controlling the neuronal damage by preventing brain edema. Therefore, these findings suggest that early treatment with high-dose levetiracetam after SE termination by diazepam may protect against adverse sequelae via the inhibition of neurotoxicity induced by brain edema events. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis.

    PubMed

    Miller, Thomas D; Chong, Trevor T-J; Aimola Davies, Anne M; Ng, Tammy W C; Johnson, Michael R; Irani, Sarosh R; Vincent, Angela; Husain, Masud; Jacob, Saiju; Maddison, Paul; Kennard, Christopher; Gowland, Penny A; Rosenthal, Clive R

    2017-05-01

    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P < 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (<3 versus >3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  16. Topologically convergent and divergent functional connectivity patterns in unmedicated unipolar depression and bipolar disorder.

    PubMed

    Wang, Y; Wang, J; Jia, Y; Zhong, S; Zhong, M; Sun, Y; Niu, M; Zhao, L; Zhao, L; Pan, J; Huang, L; Huang, R

    2017-07-04

    Bipolar disorder (BD), particularly BD II, is frequently misdiagnosed as unipolar depression (UD), leading to inappropriate treatment and poor clinical outcomes. Although depressive symptoms may be expressed similarly in UD and BD, the similarities and differences in the architecture of brain functional networks between the two disorders are still unknown. In this study, we hypothesized that UD and BD II patients would show convergent and divergent patterns of disrupted topological organization of the functional connectome, especially in the default mode network (DMN) and the limbic network. Brain resting-state functional magnetic resonance imaging (fMRI) data were acquired from 32 UD-unmedicated patients, 31 unmedicated BD II patients (current episode depressed) and 43 healthy subjects. Using graph theory, we systematically studied the topological organization of their whole-brain functional networks at the following three levels: whole brain, modularity and node. First, both the UD and BD II patients showed increased characteristic path length and decreased global efficiency compared with the controls. Second, both the UD and BD II patients showed disrupted intramodular connectivity within the DMN and limbic system network. Third, decreased nodal characteristics (nodal strength and nodal efficiency) were found predominantly in brain regions in the DMN, limbic network and cerebellum of both the UD and BD II patients, whereas differences between the UD and BD II patients in the nodal characteristics were also observed in the precuneus and temporal pole. Convergent deficits in the topological organization of the whole brain, DMN and limbic networks may reflect overlapping pathophysiological processes in unipolar and bipolar depression. Our discovery of divergent regional connectivity that supports emotion processing could help to identify biomarkers that will aid in differentiating these disorders.

  17. Topologically convergent and divergent functional connectivity patterns in unmedicated unipolar depression and bipolar disorder

    PubMed Central

    Wang, Y; Wang, J; Jia, Y; Zhong, S; Zhong, M; Sun, Y; Niu, M; Zhao, L; Zhao, L; Pan, J; Huang, L; Huang, R

    2017-01-01

    Bipolar disorder (BD), particularly BD II, is frequently misdiagnosed as unipolar depression (UD), leading to inappropriate treatment and poor clinical outcomes. Although depressive symptoms may be expressed similarly in UD and BD, the similarities and differences in the architecture of brain functional networks between the two disorders are still unknown. In this study, we hypothesized that UD and BD II patients would show convergent and divergent patterns of disrupted topological organization of the functional connectome, especially in the default mode network (DMN) and the limbic network. Brain resting-state functional magnetic resonance imaging (fMRI) data were acquired from 32 UD-unmedicated patients, 31 unmedicated BD II patients (current episode depressed) and 43 healthy subjects. Using graph theory, we systematically studied the topological organization of their whole-brain functional networks at the following three levels: whole brain, modularity and node. First, both the UD and BD II patients showed increased characteristic path length and decreased global efficiency compared with the controls. Second, both the UD and BD II patients showed disrupted intramodular connectivity within the DMN and limbic system network. Third, decreased nodal characteristics (nodal strength and nodal efficiency) were found predominantly in brain regions in the DMN, limbic network and cerebellum of both the UD and BD II patients, whereas differences between the UD and BD II patients in the nodal characteristics were also observed in the precuneus and temporal pole. Convergent deficits in the topological organization of the whole brain, DMN and limbic networks may reflect overlapping pathophysiological processes in unipolar and bipolar depression. Our discovery of divergent regional connectivity that supports emotion processing could help to identify biomarkers that will aid in differentiating these disorders. PMID:28675389

  18. Upbeat nystagmus in anti-Ma2 encephalitis.

    PubMed

    Garcia-Reitboeck, Pablo; Thompson, Graham; Johns, Paul; Al Wahab, Yasir; Omer, Salah; Griffin, Colette

    2014-02-01

    Anti-Ma2 encephalitis is a paraneoplastic disorder characterised by brainstem and/or limbic involvement. Eye movement abnormalities can occur in this condition, often with confusion or somnolence. We describe a patient with progressive oscillopsia (with upbeat nystagmus) and unsteadiness, followed by acute pancreatitis. She did not respond to immunomodulatory treatment and subsequently died of complications related to pancreatitis and sepsis. There was no tumour identified at autopsy, but the anti-Ma2 antibodies in her serum and the discovery of a brainstem-predominant inflammatory infiltrate at autopsy strongly suggest a paraneoplastic disorder. Our case illustrates that upbeat nystagmus can be a predominant feature in anti-Ma2 encephalitis; clinicians should consider testing for anti-Ma2 antibodies in patients with upbeat nystagmus of unknown cause.

  19. Glucose-monitoring neurons in the mediodorsal prefrontal cortex.

    PubMed

    Nagy, Bernadett; Szabó, István; Papp, Szilárd; Takács, Gábor; Szalay, Csaba; Karádi, Zoltán

    2012-03-20

    The mediodorsal prefrontal cortex (mdPFC), a key structure of the limbic neural circuitry, plays important roles in the central regulation of feeding. As an integrant part of the forebrain dopamine (DA) system, it performs complex roles via interconnections with various brain areas where glucose-monitoring (GM) neurons have been identified. The main goal of the present experiments was to examine whether similar GM neurons exist in the mediodorsal prefrontal cortex. To search for such chemosensory cells here, and to estimate their involvement in the DA circuitry, extracellular single neuron activity of the mediodorsal prefrontal cortex of anesthetized Wistar and Sprague-Dawley rats was recorded by means of tungsten wire multibarreled glass microelectrodes during microelectrophoretic administration of d-glucose and DA. One fourth of the neurons tested changed in firing rate in response to glucose, thus, proved to be elements of the forebrain GM neural network. DA responsive neurons in the mdPFC were found to represent similar proportion of all cells; the glucose-excited units were shown to display excitatory whereas the glucose-inhibited neurons were demonstrated to exert mainly inhibitory responses to dopamine. The glucose-monitoring neurons of the mdPFC and their distinct DA sensitivity are suggested to be of particular significance in adaptive processes of the central feeding control. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Differences in gray matter structure correlated to nationalism and patriotism

    PubMed Central

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2016-01-01

    Nationalism and patriotism both entail positive evaluations of one’s nation. However, the former inherently involves derogation of other nations, whereas the latter is independent of comparisons with other nations. We used voxel-based morphometry and psychological measures and determined nationalism and patriotism’s association with gray matter density (rGMD) and their cognitive nature in healthy individuals (433 men and 344 women; age, 20.7 ± 1.9 years) using whole-brain multiple regression analyses and post hoc analyses. We found higher nationalism associated with greater rGMD in (a) areas of the posterior cingulate cortex and greater rGMD in (b) the orbitofrontal cortex, and smaller rGMD in (c) the right amygdala area. Furthermore, we found higher patriotism associated with smaller rGMD in the (d) rostrolateral prefrontal cortex. Post hoc analyses revealed the mean rGMD of the cluster (a) associated with compassion, that of (b) associated with feeling of superiority, that of (c) associated with suicide ideation, and that of (d) associated with quality of life. These results indicate that individual nationalism may be mediated by neurocognitive mechanisms in social-related areas and limbic neural mechanisms, whereas patriotism may be mediated by neurocognitive mechanisms in areas related to well-being. PMID:27418362

  1. Neuroendocrine correlates of sex-role reversal in barred buttonquails

    PubMed Central

    2016-01-01

    Sex differences in brain structure and behaviour are well documented among vertebrates. An excellent model exploring the neural mechanisms of sex differences in behaviour is represented by sex-role-reversed species. In the majority of bird species, males compete over access to mates and resources more strongly than do females. It is thought that the responsible brain regions are therefore more developed in males than in females. Because these behaviours and brain regions are activated by androgens, males usually have increased testosterone levels during breeding. Therefore, in species with sex-role reversal, certain areas of the female brain should be more developed or steroid hormone profiles should be sexually reversed. Here, I studied circulating hormone levels and gene expression of steroid hormone receptors and aromatase in a captive population of barred buttonquails (Turnix suscitator). While females performed courtship and agonistic behaviours, there was no evidence for sexually reversed hormone profiles. However, I found female-biased sex differences in gene expression of androgen receptors in several hypothalamic and limbic brain regions that were already in place at hatching. Such sex differences are not known from non-sex-role-reversed species. These data suggest that increased neural sensitivity to androgens could be involved in the mechanisms mediating sex-role-reversed behaviours. PMID:27881754

  2. A framework for understanding and advancing intertemporal choice research using rodent models

    PubMed Central

    Fobbs, Wambura C.; Mizumori, Sheri J. Y.

    2017-01-01

    Intertemporal choices are common and consequential to private and public life. Thus, there is considerable interest in understanding the neural basis of intertemporal decision making. In this minireview, we briefly describe conceptual and psychological perspectives on intertemporal choice and then provide a comprehensive evaluation of the neural structures and signals that comprise the underlying cortico-limbic-striatal circuit. Even though great advances have been made, our understanding of the neurobiology of intertemporal choice is still in its infancy because of the complex and dynamic nature of this form of decision making. We close by briefly discussing recommendations for the future study of intertemporal choice research. PMID:28065715

  3. Limbic encephalitis associated with systemic lupus erythematosus.

    PubMed

    Kano, O; Arasaki, K; Ikeda, K; Aoyagi, J; Shiraishi, H; Motomura, M; Iwasaki, Y

    2009-12-01

    A 34-year-old woman with systemic lupus erythematosus (SLE) presented with general fatigue, seizures and memory loss. Magnetic resonance imaging of the brain showed a high signal area in the mesial temporal lobe bilaterally. Computed tomography scan of the chest and abdomen and ultrasound of pelvis detected no malignancy and tumour marker, antibodies to antineuronal antibodies (anti-Hu, anti-Ta and anti-Ma) and antibodies to voltage-gated potassium channels were all negative. The present case is limbic encephalitis (LE) associated with SLE and the pathogenesis may include autoimmunity shared. Our experience indicates that the immunologic spectrum of LE will expand to include additional immune mechanisms.

  4. Limbic Encephalitis Manifesting as Selective Amnesia and Seizure-like Activity: A Case Report

    PubMed Central

    Kim, So-Yeon; Um, Yoo Hyun; Lim, Sung Chul

    2018-01-01

    Limbic encephalitis (LE) is characterized by short-term memory loss, disorientation, agitation, seizures, and histopathological evidence of medial temporal lobe inflammation. Leucine-rich, glioma inactivated 1 (LGI-1) is an auto-antigen associated with LE. We report a 37-year-old male patient with LGI-1-related LE who presented with recurrent episodes of selective amnesia, seizure-like activity, confusion, and personality change. His symptoms were significantly improved with steroid therapy. Thorough differential diagnosis with consideration for autoimmune encephalitis should be in patients with presentation of symptoms, such as memory impairment, personality change and seizure-like activity, especially when other neurological diagnoses are excluded. PMID:29397673

  5. Paraneoplastic limbic encephalitis in a patient with extragonadal choriocarcinoma--significance of onconeural antibodies.

    PubMed

    Szkandera, Joanna; Ploner, Ferdin; Bauernhofer, Thomas; Kasparek, Anne-Katrin; Payer, Franz; Balic, Marija; Knechtel, Gudrun; Gerger, Armin; Gallè, Günter; Samonigg, Hellmut; Hofmann, Günter

    2010-01-01

    Paraneoplastic limbic or brainstem encephalitis is considered to be an autoimmune-mediated disorder of the nervous system associated with different types of cancer including germ cell tumors. We report on a 31-year-old patient presenting with eye motility dysfunction, dysarthrophonia, lethargy, depression, slow mentation, disorientation, dysgraphia, and retarded motion sequence. Neurologic tests, brain imaging, and blood chemistry tests failed to determine the cause of the symptoms. Further examinations including ultrasound of the abdomen led to the detection of a retroperitoneal mass. The biopsy of this mass showed fractions of a choriocarcinoma. The patient underwent curative chemotherapy, but although the cancer therapy was successful, the neurologic disorders did not improve. Concurrent examination for anti-Ma2 antibodies in the serum was positive and confirmed the paraneoplastic origin of these symptoms. Patients with symptoms of limbic or brainstem encephalitis, especially young men, should be tested for anti-Ma2 antibodies in the serum to elucidate their origin. The detection of these antibodies supports the diagnosis of a paraneoplastic syndrome, and may lead to the earlier identification of an otherwise hidden extragonadal germ cell tumor. Copyright © 2010 S. Karger AG, Basel.

  6. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system

    PubMed Central

    Lopes, M W; Leal, R B; Guarnieri, R; Schwarzbold, M L; Hoeller, A; Diaz, A P; Boos, G L; Lin, K; Linhares, M N; Nunes, J C; Quevedo, J; Bortolotto, Z A; Markowitsch, H J; Lightman, S L; Walz, R

    2016-01-01

    Glucocorticoids (GC) released during stress response exert feedforward effects in the whole brain, but particularly in the limbic circuits that modulates cognition, emotion and behavior. GC are the most commonly prescribed anti-inflammatory and immunosuppressant medication worldwide and pharmacological GC treatment has been paralleled by the high incidence of acute and chronic neuropsychiatric side effects, which reinforces the brain sensitivity for GC. Synapses can be bi-directionally modifiable via potentiation (long-term potentiation, LTP) or depotentiation (long-term depression, LTD) of synaptic transmission efficacy, and the phosphorylation state of Ser831 and Ser845 sites, in the GluA1 subunit of the glutamate AMPA receptors, are a critical event for these synaptic neuroplasticity events. Through a quasi-randomized controlled study, we show that a single high dexamethasone dose significantly reduces in a dose-dependent manner the levels of GluA1-Ser831 phosphorylation in the amygdala resected during surgery for temporal lobe epilepsy. This is the first report demonstrating GC effects on key markers of synaptic neuroplasticity in the human limbic system. The results contribute to understanding how GC affects the human brain under physiologic and pharmacologic conditions. PMID:27959333

  7. Impaired Frontal-Limbic White Matter Maturation in Children at Risk for Major Depression.

    PubMed

    Hung, Yuwen; Saygin, Zeynep M; Biederman, Joseph; Hirshfeld-Becker, Dina; Uchida, Mai; Doehrmann, Oliver; Han, Michelle; Chai, Xiaoqian J; Kenworthy, Tara; Yarmak, Pavel; Gaillard, Schuyler L; Whitfield-Gabrieli, Susan; Gabrieli, John D E

    2017-09-01

    Depression is among the most common neuropsychiatric disorders. It remains unclear whether brain abnormalities associated with depression reflect the pathological state of the disease or neurobiological traits predisposing individuals to depression. Parental history of depression is a risk factor that more than triples the risk of depression. We compared white matter (WM) microstructure cross-sectionally in 40 children ages 8-14 with versus without parental history of depression (At-Risk vs. Control). There were significant differences in age-related changes of fractional anisotropy (FA) between the groups, localized in the anterior fronto-limbic WM pathways, including the anterior cingulum and the genu of the corpus callosum. Control children exhibited typical increasing FA with age, whereas At-Risk children exhibited atypical decreasing FA with age in these fronto-limbic regions. Furthermore, dorsal cingulate FA significantly correlated with depressive symptoms for At-Risk children. The results suggest maturational WM microstructure differences in mood-regulatory neurocircuitry that may contribute to neurodevelopmental risk for depression. The study provides new insights into neurodevelopmental susceptibility to depression and related disabilities that may promote early preventive intervention approaches. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. FNDC5/irisin, a molecular target for boosting reward-related learning and motivation.

    PubMed

    Zsuga, Judit; Tajti, Gabor; Papp, Csaba; Juhasz, Bela; Gesztelyi, Rudolf

    2016-05-01

    Interventions focusing on the prevention and treatment of chronic non-communicable diseases are on rise. In the current article, we propose that dysfunction of the mesocortico-limbic reward system contributes to the emergence of the WHO-identified risk behaviors (tobacco use, unhealthy diet, physical inactivity and harmful use of alcohol), behaviors that underlie the evolution of major non-communicable diseases (e.g. cardiovascular diseases, cancer, diabetes and chronic respiratory diseases). Given that dopaminergic neurons of the mesocortico-limbic system are tightly associated with reward-related processes and motivation, their dysfunction may fundamentally influence behavior. While nicotine and alcohol alter dopamine neuron function by influencing some receptors, mesocortico-limbic system dysfunction was associated with elevation of metabolic set-point leading to hedonic over-eating. Although there is some empirical evidence, precise molecular mechanism for linking physical inactivity and mesocortico-limbic dysfunction per se seems to be missing; identification of which may contribute to higher success rates for interventions targeting lifestyle changes pertaining to physical activity. In the current article, we compile evidence in support of a link between exercise and the mesocortico-limbic system by elucidating interactions on the axis of muscle - irisin - brain derived neurotrophic factor (BDNF) - and dopaminergic function of the midbrain. Irisin is a contraction-regulated myokine formed primarily in skeletal muscle but also in the brain. Irisin stirred considerable interest, when its ability to induce browning of white adipose tissue parallel to increasing thermogenesis was discovered. Furthermore, it may also play a role in the regulation of behavior given it readily enters the central nervous system, where it induces BDNF expression in several brain areas linked to reward processing, e.g. the ventral tegmental area and the hippocampus. BDNF is a neurotropic factor that increases neuronal dopamine content, modulates dopamine release relevant for neuronal plasticity and increased neuronal survival as well as learning and memory. Further linking BDNF to dopaminergic function is BDNF's ability to activate tropomyosin-related kinase B receptor that shares signalization with presynaptic dopamine-3 receptors in the ventral tegmental area. Summarizing, we propose that the skeletal muscle derived irisin may be the link between physical activity and reward-related processes and motivation. Moreover alteration of this axis may contribute to sedentary lifestyle and subsequent non-communicable diseases. Preclinical and clinical experimental models to test this hypothesis are also proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evoked Potential in Panic Disorder Patients: A Systematic Review.

    PubMed

    Di Giorgio, Luiza Medeiros Wanick; Velasques, Bruna Brandao; Ribeiro, Pedro; Nardi, Antonio Egidio; de Carvalho, Marcele Regine

    2015-01-01

    Researchers have been using the electroencephalogram to better understand the cognitive and neurobiological bases of panic disorder (PD) through the P300 component; this is an electric potential of the cerebral cortex that is generated in response to external sensorial stimuli and which involves more complex neurophysiological processes related to stimulus interpretation; it is then used to investigate possible alterations in the information processing and attention of patients suffering from this disorder. Aiming to verify the results found by experimental articles already published about P300 in PD patients and the information processing differences between PD patients and healthy controls, a systematic review of the PubMed and Institute for Scientific Information databases was conducted. The selection criterion involved those articles, written in English, which referred to an experimental research that focused on the P300 component, with a sample composed of PD (or panic attacks) patients. Seven articles were found that fit the selected criteria. Most of the articles show that these patients suffer from: impaired information processing and attention, an inability to automatically respond to new stimuli, and impaired interpretation of internal and external stimuli related to the disorder. Such impairment may be related to an unspecified dysfunction in the limbic-reticular structures, which would affect: active, focused and short-term attention, working and short-term memory, recognition and decision making. Some limitations were highlighted, such as the use of small samples and possible comorbidity with other disorders, which did not allow clearer results. This research can contribute to understand the neurobiological differences of PD patients and develop treatments based on such evidence.

  10. Lithium and GSK3-β Promoter Gene Variants Influence White Matter Microstructure in Bipolar Disorder

    PubMed Central

    Benedetti, Francesco; Bollettini, Irene; Barberi, Ignazio; Radaelli, Daniele; Poletti, Sara; Locatelli, Clara; Pirovano, Adele; Lorenzi, Cristina; Falini, Andrea; Colombo, Cristina; Smeraldi, Enrico

    2013-01-01

    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections. PMID:22990942

  11. Fractionation of social brain circuits in autism spectrum disorders.

    PubMed

    Gotts, Stephen J; Simmons, W Kyle; Milbury, Lydia A; Wallace, Gregory L; Cox, Robert W; Martin, Alex

    2012-09-01

    Autism spectrum disorders are developmental disorders characterized by impairments in social and communication abilities and repetitive behaviours. Converging neuroscientific evidence has suggested that the neuropathology of autism spectrum disorders is widely distributed, involving impaired connectivity throughout the brain. Here, we evaluate the hypothesis that decreased connectivity in high-functioning adolescents with an autism spectrum disorder relative to typically developing adolescents is concentrated within domain-specific circuits that are specialized for social processing. Using a novel whole-brain connectivity approach in functional magnetic resonance imaging, we found that not only are decreases in connectivity most pronounced between regions of the social brain but also they are selective to connections between limbic-related brain regions involved in affective aspects of social processing from other parts of the social brain that support language and sensorimotor processes. This selective pattern was independently obtained for correlations with measures of social symptom severity, implying a fractionation of the social brain in autism spectrum disorders at the level of whole circuits.

  12. Fractionation of social brain circuits in autism spectrum disorders

    PubMed Central

    Simmons, W. Kyle; Milbury, Lydia A.; Wallace, Gregory L.; Cox, Robert W.; Martin, Alex

    2012-01-01

    Autism spectrum disorders are developmental disorders characterized by impairments in social and communication abilities and repetitive behaviours. Converging neuroscientific evidence has suggested that the neuropathology of autism spectrum disorders is widely distributed, involving impaired connectivity throughout the brain. Here, we evaluate the hypothesis that decreased connectivity in high-functioning adolescents with an autism spectrum disorder relative to typically developing adolescents is concentrated within domain-specific circuits that are specialized for social processing. Using a novel whole-brain connectivity approach in functional magnetic resonance imaging, we found that not only are decreases in connectivity most pronounced between regions of the social brain but also they are selective to connections between limbic-related brain regions involved in affective aspects of social processing from other parts of the social brain that support language and sensorimotor processes. This selective pattern was independently obtained for correlations with measures of social symptom severity, implying a fractionation of the social brain in autism spectrum disorders at the level of whole circuits. PMID:22791801

  13. The effects of gestational stress and Selective Serotonin reuptake inhibitor antidepressant treatment on structural plasticity in the postpartum brain--A translational model for postpartum depression.

    PubMed

    Haim, Achikam; Albin-Brooks, Christopher; Sherer, Morgan; Mills, Emily; Leuner, Benedetta

    2016-01-01

    This article is part of a Special Issue "Parental Care". Postpartum depression (PPD) is a common complication following childbirth experienced by one in every five new mothers. Although the neural basis of PPD remains unknown, previous research in rats has shown that gestational stress, a risk factor for PPD, induces depressive-like behavior during the postpartum period. Moreover, the effect of gestational stress on postpartum mood is accompanied by structural modifications within the nucleus accumbens (NAc) and the medial prefrontal cortex (mPFC)-limbic regions that have been linked to PPD. Mothers diagnosed with PPD are often prescribed selective serotonin reuptake inhibitor (SSRI) antidepressant medications and yet little is known about their effects in models of PPD. Thus, here we investigated whether postpartum administration of Citalopram, an SSRI commonly used to treat PPD, would ameliorate the behavioral and morphological consequences of gestational stress. In addition, we examined the effects of gestational stress and postpartum administration of Citalopram on structural plasticity within the basolateral amygdala (BLA) which together with the mPFC and NAc forms a circuit that is sensitive to stress and is involved in mood regulation. Our results show that postpartum rats treated with Citalopram do not exhibit gestational stress-induced depressive-like behavior in the forced swim test. In addition, Citalopram was effective in reversing gestational stress-induced structural alterations in the postpartum NAc shell and mPFC. We also found that gestational stress increased spine density within the postpartum BLA, an effect which was not reversed by Citalopram treatment. Overall, these data highlight the usefulness of gestational stress as a valid and informative translational model for PPD. Furthermore, they suggest that structural alterations in the mPFC-NAc pathway may underlie stress-induced depressive-like behavior during the postpartum period and provide much needed information on how SSRIs may act in the maternal brain to treat PPD. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The effects of gestational stress and SSRI antidepressant treatment on structural plasticity in the postpartum brain - a translational model for postpartum depression

    PubMed Central

    Haim, Achikam; Albin-Brooks, Christopher; Sherer, Morgan; Mills, Emily; Leuner, Benedetta

    2015-01-01

    Postpartum depression (PPD) is a common complication following childbirth experienced by one in every five new mothers. Although the neural basis of PPD remains unknown previous research in rats has shown that gestational stress, a risk factor for PPD, induces depressive-like behavior during the postpartum period. Moreover, the effect of gestational stress on postpartum mood is accompanied by structural modifications within the nucleus accumbens (NAc) and the medial prefrontal cortex (mPFC) – limbic regions that have been linked to PPD. Mothers diagnosed with PPD are often prescribed selective serotonin reuptake inhibitor (SSRI) antidepressant medications and yet little is known about their effects in models of PPD. Thus, here we investigated whether postpartum administration of Citalopram, an SSRI commonly used to treat PPD, would ameliorate the behavioral and morphological consequences of gestational stress. In addition, we examined the effects of gestational stress and postpartum administration of Citalopram on structural plasticity within the basolateral amygdala (BLA) which together with the mPFC and NAc forms a circuit that is sensitive to stress and is involved in mood regulation. Our results show that postpartum rats treated with Citalopram do not exhibit gestational stress-induced depressive-like behavior in the forced swim test. In addition, Citalopram was effective in reversing gestational stress-induced structural alterations in the postpartum NAc shell and mPFC. We also found that gestational stress increased spine density within the postpartum BLA, an effect which was not reversed by Citalopram treatment. Overall, these data highlight the usefulness of gestational stress as a valid and informative translational model for PPD. Furthermore, they suggest that structural alterations in the mPFC-NAc pathway may underlie stress-induced depressive-like behavior during the postpartum period and provide much needed information on how SSRIs may act in the maternal brain to treat PPD. PMID:25997412

  15. Fronto-limbic novelty processing in acute psychosis: disrupted relationship with memory performance and potential implications for delusions

    PubMed Central

    Schott, Björn H.; Voss, Martin; Wagner, Benjamin; Wüstenberg, Torsten; Düzel, Emrah; Behr, Joachim

    2015-01-01

    Recent concepts have highlighted the role of the hippocampus and adjacent medial temporal lobe (MTL) in positive symptoms like delusions in schizophrenia. In healthy individuals, the MTL is critically involved in the detection and encoding of novel information. Here, we aimed to investigate whether dysfunctional novelty processing by the MTL might constitute a potential neural mechanism contributing to the pathophysiology of delusions, using functional magnetic resonance imaging (fMRI) in 16 unmedicated patients with paranoid schizophrenia and 20 age-matched healthy controls. All patients experienced positive symptoms at time of participation. Participants performed a visual target detection task with complex scene stimuli in which novel and familiar rare stimuli were presented randomly intermixed with a standard and a target picture. Presentation of novel relative to familiar images was associated with hippocampal activation in both patients and healthy controls, but only healthy controls showed a positive relationship between novelty-related hippocampal activation and recognition memory performance after 24 h. Patients, but not controls, showed a robust neural response in the orbitofrontal cortex (OFC) during presentation of novel stimuli. Functional connectivity analysis in the patients further revealed a novelty-related increase of functional connectivity of both the hippocampus and the OFC with the rostral anterior cingulate cortex (rACC) and the ventral striatum (VS). Notably, delusions correlated positively with the difference of the functional connectivity of the hippocampus vs. the OFC with the rACC. Taken together, our results suggest that alterations of fronto-limbic novelty processing may contribute to the pathophysiology of delusions in patients with acute psychosis. PMID:26082697

  16. Altered metabolic activity in the developing brain of rats predisposed to high versus low depression-like behavior

    PubMed Central

    Melendez-Ferro, Miguel; Perez-Costas, Emma; Glover, Matthew E.; Jackson, Nateka L.; Stringfellow, Sara A.; Pugh, Phyllis C.; Fant, Andrew D.; Clinton, Sarah M.

    2016-01-01

    Individual differences in human temperament can increase risk for psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of Cytochrome C Oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes. PMID:26979051

  17. GABAergic neurons in nucleus accumbens are correlated to resilience and vulnerability to chronic stress for major depression

    PubMed Central

    Cui, Shan; Wang, Jin-Hui

    2017-01-01

    Background Major depression, persistent low mood, is one of common psychiatric diseases. Chronic stressful life is believed to be a major risk factor that leads to dysfunctions of the limbic system. However, a large number of the individuals with experiencing chronic stress do not suffer from major depression, called as resilience. Endogenous mechanisms underlying neuronal invulnerability to chronic stress versus major depression are largely unknown. As GABAergic neurons are vulnerable to chronic stress and their impairments is associated with major depression, we have examined whether the invulnerability of GABAergic neurons in the limbic system is involved in resilience. Results GABAergic neurons in the nucleus accumbens from depression-like mice induced by chronic unpredictable mild stress appear the decreases in their GABA release, spiking capability and excitatory input reception, compared with those in resilience mice. The levels of decarboxylase and vesicular GABA transporters decrease in depression-like mice, but not resilience. Materials and Methods Mice were treated by chronic unpredictable mild stress for three weeks. Depression-like behaviors or resilience was confirmed by seeing whether their behaviors change significantly in sucrose preference, Y-maze and forced swimming tests. Mice from controls as well as depression and resilience in response to chronic unpredictable mild stress were studied in terms of GABAergic neuron activity in the nucleus accumbens by cell electrophysiology and protein chemistry. Conclusions The impairment of GABAergic neurons in the nucleus accumbens is associated with major depression. The invulnerability of GABAergic neurons to chronic stress may be one of cellular mechanisms for the resilience to chronic stress. PMID:28415589

  18. Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution

    PubMed Central

    Schmidt, A; Denier, N; Magon, S; Radue, E-W; Huber, C G; Riecher-Rossler, A; Wiesbeck, G A; Lang, U E; Borgwardt, S; Walter, M

    2015-01-01

    Reinforcement signals in the striatum are known to be crucial for mediating the subjective rewarding effects of acute drug intake. It is proposed that these effects may be more involved in early phases of drug addiction, whereas negative reinforcement effects may occur more in later stages of the illness. This study used resting-state functional magnetic resonance imaging to explore whether acute heroin substitution also induced positive reinforcement effects in striatal brain regions of protracted heroin-maintained patients. Using independent component analysis and a dual regression approach, we compared resting-state functional connectivity (rsFC) strengths within the basal ganglia/limbic network across a group of heroin-dependent patients receiving both an acute infusion of heroin and placebo and 20 healthy subjects who received placebo only. Subsequent correlation analyses were performed to test whether the rsFC strength under heroin exposure correlated with the subjective rewarding effect and with plasma concentrations of heroin and its main metabolites morphine. Relative to the placebo treatment in patients, heroin significantly increased rsFC of the left putamen within the basal ganglia/limbic network, the extent of which correlated positively with patients' feelings of rush and with the plasma level of morphine. Furthermore, healthy controls revealed increased rsFC of the posterior cingulate cortex/precuneus in this network relative to the placebo treatment in patients. Our results indicate that acute heroin substitution induces a subjective rewarding effect via increased striatal connectivity in heroin-dependent patients, suggesting that positive reinforcement effects in the striatum still occur after protracted maintenance therapy. PMID:25803496

  19. An Integrative Perspective on the Role of Dopamine in Schizophrenia.

    PubMed

    Maia, Tiago V; Frank, Michael J

    2017-01-01

    We propose that schizophrenia involves a combination of decreased phasic dopamine responses for relevant stimuli and increased spontaneous phasic dopamine release. Using insights from computational reinforcement-learning models and basic-science studies of the dopamine system, we show that each of these two disturbances contributes to a specific symptom domain and explains a large set of experimental findings associated with that domain. Reduced phasic responses for relevant stimuli help to explain negative symptoms and provide a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with negative symptoms: reduced learning from rewards; blunted activation of the ventral striatum, midbrain, and other limbic regions for rewards and positive prediction errors; blunted activation of the ventral striatum during reward anticipation; blunted autonomic responding for relevant stimuli; blunted neural activation for aversive outcomes and aversive prediction errors; reduced willingness to expend effort for rewards; and psychomotor slowing. Increased spontaneous phasic dopamine release helps to explain positive symptoms and provides a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with positive symptoms: aberrant learning for neutral cues (assessed with behavioral and autonomic responses), and aberrant, increased activation of the ventral striatum, midbrain, and other limbic regions for neutral cues, neutral outcomes, and neutral prediction errors. Taken together, then, these two disturbances explain many findings in schizophrenia. We review evidence supporting their co-occurrence and consider their differential implications for the treatment of positive and negative symptoms. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Pubertally born neurons and glia are functionally integrated into limbic and hypothalamic circuits of the male Syrian hamster.

    PubMed

    Mohr, Margaret A; Sisk, Cheryl L

    2013-03-19

    During puberty, the brain goes through extensive remodeling, involving the addition of new neurons and glia to brain regions beyond the canonical neurogenic regions (i.e., dentate gyrus and olfactory bulb), including limbic and hypothalamic cell groups associated with sex-typical behavior. Whether these pubertally born cells become functionally integrated into neural circuits remains unknown. To address this question, we gave male Syrian hamsters daily injections of the cell birthdate marker bromodeoxyuridine throughout puberty (postnatal day 28-49). Half of the animals were housed in enriched environments with access to a running wheel to determine whether enrichment increased the survival of pubertally born cells compared with the control environment. At 4 wk after the last BrdU injection, animals were allowed to interact with a receptive female and were then killed 1 h later. Triple-label immunofluorescence for BrdU, the mature neuron marker neuronal nuclear antigen, and the astrocytic marker glial fibrillary acidic protein revealed that a proportion of pubertally born cells in the medial preoptic area, arcuate nucleus, and medial amygdala differentiate into either mature neurons or astrocytes. Double-label immunofluorescence for BrdU and the protein Fos revealed that a subset of pubertally born cells in these regions is activated during sociosexual behavior, indicative of their functional incorporation into neural circuits. Enrichment affected the survival and activation of pubertally born cells in a brain region-specific manner. These results demonstrate that pubertally born cells located outside of the traditional neurogenic regions differentiate into neurons and glia and become functionally incorporated into neural circuits that subserve sex-typical behaviors.

Top