Sample records for limit equilibrium method

  1. Probing bias reduction to improve comparability of lint cotton water and moisture contents at moisture equilibrium

    USDA-ARS?s Scientific Manuscript database

    The Karl Fischer Titration (KFT) reference method is specific for water in lint cotton and was designed for samples conditioned to moisture equilibrium, thus limiting its biases. There is a standard method for moisture content – weight loss – by oven drying (OD), just not for equilibrium moisture c...

  2. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    PubMed

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  3. Slope Stability Analysis Using Limit Equilibrium Method in Nonlinear Criterion

    PubMed Central

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci, and the parameter of intact rock m i. There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i, F decreases first and then increases. PMID:25147838

  4. Solubility limits in quaternary SnTe-based alloys [Metastability and solubility limits in quaternary SnTe-based alloys guided by combinatorial sputtering

    DOE PAGES

    Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.; ...

    2017-05-09

    Here, the controlled decomposition of metastable alloys is an attractive route to form nanostructured thermoelectric materials with reduced thermal conductivity. The ternary SnTe–MnTe and SnTe–SnSe heterostructural alloys have been demonstrated as promising materials for thermoelectric applications. In this work, the quaternary Sn 1–yMnyTe 1–xSe x phase space serves as a relevant model system to explore how a combination of computational and combinatorial-growth methods can be used to study equilibrium and non-equilibrium solubility limits. Results from first principle calculations indicate low equilibrium solubility for x,y < 0.05 that are in good agreement with results obtained from bulk equilibrium synthesis experiments andmore » predict significantly higher spinodal limits. An experimental screening using sputtered combinatorial thin film sample libraries showed a remarkable increase in non-equilibrium solubility for x,y > 0.2. These theoretical and experimental results were used to guide the bulk synthesis of metastable alloys. The ability to reproduce the non-equilibrium solubility levels in bulk materials indicates that such theoretical calculations and combinatorial growth can inform bulk synthetic routes. Further, the large difference between equilibrium and non-equilibrium solubility limits in Sn 1–yMn yTe 1–xSe x indicates these metastable alloys are attractive in terms of nano-precipitate formation for potential thermoelectric applications.« less

  5. Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delchini, Marc O., E-mail: delchinm@email.tamu.edu; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim, E-mail: jim.morel@tamu.edu

    2015-09-01

    The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The methodmore » of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks.« less

  6. Determining osmotic pressure of drug solutions by air humidity in equilibrium method.

    PubMed

    Zhan, Xiancheng; Li, Hui; Yu, Lan; Wei, Guocui; Li, Chengrong

    2014-06-01

    To establish a new osmotic pressure measuring method with a wide measuring range. The osmotic pressure of drug solutions is determined by measuring the relative air humidity in equilibrium with the solution. The freezing point osmometry is used as a control. The data obtained by the proposed method are comparable to those by the control method, and the measuring range of the proposed method is significantly wider than that of the control method. The proposed method is performed in an isothermal and equilibrium state, so it overcomes the defects of the freezing point and dew point osmometries which result from the heterothermal process in the measurement, and therefore is not limited to diluted solutions.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.

    Here, the controlled decomposition of metastable alloys is an attractive route to form nanostructured thermoelectric materials with reduced thermal conductivity. The ternary SnTe–MnTe and SnTe–SnSe heterostructural alloys have been demonstrated as promising materials for thermoelectric applications. In this work, the quaternary Sn 1–yMnyTe 1–xSe x phase space serves as a relevant model system to explore how a combination of computational and combinatorial-growth methods can be used to study equilibrium and non-equilibrium solubility limits. Results from first principle calculations indicate low equilibrium solubility for x,y < 0.05 that are in good agreement with results obtained from bulk equilibrium synthesis experiments andmore » predict significantly higher spinodal limits. An experimental screening using sputtered combinatorial thin film sample libraries showed a remarkable increase in non-equilibrium solubility for x,y > 0.2. These theoretical and experimental results were used to guide the bulk synthesis of metastable alloys. The ability to reproduce the non-equilibrium solubility levels in bulk materials indicates that such theoretical calculations and combinatorial growth can inform bulk synthetic routes. Further, the large difference between equilibrium and non-equilibrium solubility limits in Sn 1–yMn yTe 1–xSe x indicates these metastable alloys are attractive in terms of nano-precipitate formation for potential thermoelectric applications.« less

  8. Perspective: Maximum caliber is a general variational principle for dynamical systems

    NASA Astrophysics Data System (ADS)

    Dixit, Purushottam D.; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A.

    2018-01-01

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics—such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production—are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  9. Perspective: Maximum caliber is a general variational principle for dynamical systems.

    PubMed

    Dixit, Purushottam D; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A

    2018-01-07

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics-such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production-are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  10. In-vitro Equilibrium Phosphate Binding Study of Sevelamer Carbonate by UV-Vis Spectrophotometry.

    PubMed

    Prasaja, Budi; Syabani, M Maulana; Sari, Endah; Chilmi, Uci; Cahyaningsih, Prawitasari; Kosasih, Theresia Weliana

    2018-06-12

    Sevelamer carbonate is a cross-linked polymeric amine; it is the active ingredient in Renvela ® tablets. US FDA provides recommendation for demonstrating bioequivalence for the development of a generic product of sevelamer carbonte using in-vitro equilibrium binding study. A simple UV-vis spectrophotometry method was developed and validated for quantification of free phosphate to determine the binding parameter constant of sevelamer. The method validation demonstrated the specificity, limit of quantification, accuracy and precision of measurements. The validated method has been successfully used to analyze samples in in-vitro equilibrium binding study for demonstrating bioequivalence. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Equilibrium limit of thermal conduction and boundary scattering in nanostructures.

    PubMed

    Haskins, Justin B; Kınacı, Alper; Sevik, Cem; Çağın, Tahir

    2014-06-28

    Determining the lattice thermal conductivity (κ) of nanostructures is especially challenging in that, aside from the phonon-phonon scattering present in large systems, the scattering of phonons from the system boundary greatly influences heat transport, particularly when system length (L) is less than the average phonon mean free path (MFP). One possible route to modeling κ in these systems is through molecular dynamics (MD) simulations, inherently including both phonon-phonon and phonon-boundary scattering effects in the classical limit. Here, we compare current MD methods for computing κ in nanostructures with both L ⩽ MFP and L ≫ MFP, referred to as mean free path constrained (cMFP) and unconstrained (uMFP), respectively. Using a (10,0) CNT (carbon nanotube) as a benchmark case, we find that while the uMFP limit of κ is well-defined through the use of equilibrium MD and the time-correlation formalism, the standard equilibrium procedure for κ is not appropriate for the treatment of the cMFP limit because of the large influence of boundary scattering. To address this issue, we define an appropriate equilibrium procedure for cMFP systems that, through comparison to high-fidelity non-equilibrium methods, is shown to be the low thermal gradient limit to non-equilibrium results. Further, as a means of predicting κ in systems having L ≫ MFP from cMFP results, we employ an extrapolation procedure based on the phenomenological, boundary scattering inclusive expression of Callaway [Phys. Rev. 113, 1046 (1959)]. Using κ from systems with L ⩽ 3 μm in the extrapolation, we find that the equilibrium uMFP κ of a (10,0) CNT can be predicted within 5%. The equilibrium procedure is then applied to a variety of carbon-based nanostructures, such as graphene flakes (GF), graphene nanoribbons (GNRs), CNTs, and icosahedral fullerenes, to determine the influence of size and environment (suspended versus supported) on κ. Concerning the GF and GNR systems, we find that the supported samples yield consistently lower values of κ and that the phonon-boundary scattering remains dominant at large lengths, with L = 0.4 μm structures exhibiting a third of the periodic result. We finally characterize the effect of shape in CNTs and fullerenes on κ, showing the angular components of conductivity in CNTs and icosahedral fullerenes are similar for a given circumference.

  12. Using Controlled Landslide Initiation Experiments to Test Limit-Equilibrium Analyses of Slope Stability

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Iverson, R. M.; Brien, D. L.; Iverson, N. R.; Lahusen, R. G.; Logan, M.

    2004-12-01

    Most studies of landslide initiation employ limit equilibrium analyses of slope stability. Owing to a lack of detailed data, however, few studies have tested limit-equilibrium predictions against physical measurements of slope failure. We have conducted a series of field-scale, highly controlled landslide initiation experiments at the USGS debris-flow flume in Oregon; these experiments provide exceptional data to test limit equilibrium methods. In each of seven experiments, we attempted to induce failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand placed behind a retaining wall in the 31° sloping flume. We systematically investigated triggering of sliding by groundwater injection, by prolonged moderate-intensity sprinkling, and by bursts of high intensity sprinkling. We also used vibratory compaction to control soil porosity and thereby investigate differences in failure behavior of dense and loose soils. About 50 sensors were monitored at 20 Hz during the experiments, including nests of tiltmeters buried at 7 cm spacing to define subsurface failure geometry, and nests of tensiometers and pore-pressure sensors to define evolving pore-pressure fields. In addition, we performed ancillary laboratory tests to measure soil porosity, shear strength, hydraulic conductivity, and compressibility. In loose soils (porosity of 0.52 to 0.55), abrupt failure typically occurred along the flume bed after substantial soil deformation. In denser soils (porosity of 0.41 to 0.44), gradual failure occurred within the soil prism. All failure surfaces had a maximum length to depth ratio of about 7. In even denser soil (porosity of 0.39), we could not induce failure by sprinkling. The internal friction angle of the soils varied from 28° to 40° with decreasing porosity. We analyzed stability at failure, given the observed pore-pressure conditions just prior to large movement, using a 1-D infinite-slope method and a more complete 2-D Janbu method. Each method provides a static Factor of Safety (FS), and in theory failure occurs when FS ≤ 1. Using the 1-D analysis, all experiments having failure had FS well below 1 (typically 0.5-0.8). Using the 2-D analysis for these same conditions, FS was less than but closer to 1 (typically 0.8-0.9). For the experiment with no failure, the 2-D FS was, reassuringly, > 1. These results indicate that the 2-D Janbu analysis is more accurate than the 1-D infinite-slope method for computing limit-equilibrium slope stability in shallow slides with limited areal extent.

  13. Non-equilibrium dynamics from RPMD and CMD.

    PubMed

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  14. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other between the viscosity and hydrodynamic radii, as potential measures of shape anisotropy. We also find a strong correlation between anisotropy and effective fractal dimension. These observations should provide new practical methods for quantifying the nature of particle clustering in diverse contexts.

  15. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xia, E-mail: cui_xia@iapcm.ac.cn; Yuan, Guang-wei; Shen, Zhi-jun

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-ordermore » accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.« less

  16. Stability Analysis of Landslide on the R1 Expressway by Limit Equilibrium and Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Janták, Viktor

    2017-12-01

    The most difficult problem by designing the superior infrastructure is tracing the expressways and higways in an environment of Quaternary and Neogene complexes of finegrained cohesive and non-cohesive soils. At the last time the typical examples are stability problems on the R1 Nitra - Tekovské Nemce Expressway. The article is focused on the description of reasons of stability loss in the deep earth cut in the 79,000 km of expressway R1, the course of the landslide, slide correction and especially slope-stability assessment before and after the occurrence of slope failures by limit equilibrium and finite elements methods by comparing the behaviour of the slope in the various model situations.

  17. Non-axisymmetric local magnetostatic equilibrium

    DOE PAGES

    Candy, Jefferey M.; Belli, Emily A.

    2015-03-24

    In this study, we outline an approach to the problem of local equilibrium in non-axisymmetric configurations that adheres closely to Miller's original method for axisymmetric plasmas. Importantly, this method is novel in that it allows not only specification of 3D shape, but also explicit specification of the shear in the 3D shape. A spectrally-accurate method for solution of the resulting nonlinear partial differential equations is also developed. We verify the correctness of the spectral method, in the axisymmetric limit, through comparisons with an independent numerical solution. Some analytic results for the two-dimensional case are given, and the connection to Boozermore » coordinates is clarified.« less

  18. Noise-induced extinction for a ratio-dependent predator-prey model with strong Allee effect in prey

    NASA Astrophysics Data System (ADS)

    Mandal, Partha Sarathi

    2018-04-01

    In this paper, we study a stochastically forced ratio-dependent predator-prey model with strong Allee effect in prey population. In the deterministic case, we show that the model exhibits the stable interior equilibrium point or limit cycle corresponding to the co-existence of both species. We investigate a probabilistic mechanism of the noise-induced extinction in a zone of stable interior equilibrium point. Computational methods based on the stochastic sensitivity function technique are applied for the analysis of the dispersion of random states near stable interior equilibrium point. This method allows to construct a confidence domain and estimate the threshold value of the noise intensity for a transition from the coexistence to the extinction.

  19. Phase equilibrium measurements on nine binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilding, W.V.; Giles, N.F.; Wilson, L.C.

    1996-11-01

    Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region existsmore » in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.« less

  20. Dangerous nutrients: evolution of phytoplankton resource uptake subject to virus attack.

    PubMed

    Menge, Duncan N L; Weitz, Joshua S

    2009-03-07

    Phytoplankton need multiple resources to grow and reproduce (such as nitrogen, phosphorus, and iron), but the receptors through which they acquire resources are, in many cases, the same channels through which viruses attack. Therefore, phytoplankton can face a bottom-up vs. top-down tradeoff in receptor allocation: Optimize resource uptake or minimize virus attack? We investigate this top-down vs. bottom-up tradeoff using an evolutionary ecology model of multiple essential resources, specialist viruses that attack through the resource receptors, and a phytoplankton population that can evolve to alter the fraction of receptors used for each resource/virus type. Without viruses present the singular continuously stable strategy is to allocate receptors such that resources are co-limiting, which also minimizes the equilibrium concentrations of both resources. Only one virus type can be present at equilibrium (because phytoplankton, in this model, are a single resource for viruses), and when a virus type is present, it controls the equilibrium phytoplankton population size. Despite this top-down control on equilibrium densities, bottom-up control determines the evolutionary outcome. Regardless of which virus type is present, the allocation strategy that yields co-limitation between the two resources is continuously stable. This is true even when the virus type attacking through the limiting resource channel is present, even though selection for co-limitation in this case decreases the equilibrium phytoplankton population and does not decrease the equilibrium concentration of the limiting resource. Therefore, although moving toward co-limitation and decreasing the equilibrium concentration of the limiting resource often co-occur in models, it is co-limitation, and not necessarily the lowest equilibrium concentration of the limiting resource, that is the result of selection. This result adds to the growing body of literature suggesting that co-limitation at equilibrium is a winning strategy.

  1. Lindemann histograms as a new method to analyse nano-patterns and phases

    NASA Astrophysics Data System (ADS)

    Makey, Ghaith; Ilday, Serim; Tokel, Onur; Ibrahim, Muhamet; Yavuz, Ozgun; Pavlov, Ihor; Gulseren, Oguz; Ilday, Omer

    The detection, observation, and analysis of material phases and atomistic patterns are of great importance for understanding systems exhibiting both equilibrium and far-from-equilibrium dynamics. As such, there is intense research on phase transitions and pattern dynamics in soft matter, statistical and nonlinear physics, and polymer physics. In order to identify phases and nano-patterns, the pair correlation function is commonly used. However, this approach is limited in terms of recognizing competing patterns in dynamic systems, and lacks visualisation capabilities. In order to solve these limitations, we introduce Lindemann histogram quantification as an alternative method to analyse solid, liquid, and gas phases, along with hexagonal, square, and amorphous nano-pattern symmetries. We show that the proposed approach based on Lindemann parameter calculated per particle maps local number densities to material phase or particles pattern. We apply the Lindemann histogram method on dynamical colloidal self-assembly experimental data and identify competing patterns.

  2. Analysis of biomolecular solvation sites by 3D-RISM theory.

    PubMed

    Sindhikara, Daniel J; Hirata, Fumio

    2013-06-06

    We derive, implement, and apply equilibrium solvation site analysis for biomolecules. Our method utilizes 3D-RISM calculations to quickly obtain equilibrium solvent distributions without either necessity of simulation or limits of solvent sampling. Our analysis of these distributions extracts highest likelihood poses of solvent as well as localized entropies, enthalpies, and solvation free energies. We demonstrate our method on a structure of HIV-1 protease where excellent structural and thermodynamic data are available for comparison. Our results, obtained within minutes, show systematic agreement with available experimental data. Further, our results are in good agreement with established simulation-based solvent analysis methods. This method can be used not only for visual analysis of active site solvation but also for virtual screening methods and experimental refinement.

  3. Group Contribution Methods for Phase Equilibrium Calculations.

    PubMed

    Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian

    2015-01-01

    The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.

  4. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Culver, Adrian; Andrei, Natan

    We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.

  5. Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands.

    PubMed

    Valente, Luis M; Phillimore, Albert B; Etienne, Rampal S

    2015-08-01

    Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galápagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Galápagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  6. Equilibrium stochastic dynamics of a Brownian particle in inhomogeneous space: Derivation of an alternative model

    NASA Astrophysics Data System (ADS)

    Bhattacharyay, A.

    2018-03-01

    An alternative equilibrium stochastic dynamics for a Brownian particle in inhomogeneous space is derived. Such a dynamics can model the motion of a complex molecule in its conformation space when in equilibrium with a uniform heat bath. The derivation is done by a simple generalization of the formulation due to Zwanzig for a Brownian particle in homogeneous heat bath. We show that, if the system couples to different number of bath degrees of freedom at different conformations then the alternative model gets derived. We discuss results of an experiment by Faucheux and Libchaber which probably has indicated possible limitation of the Boltzmann distribution as equilibrium distribution of a Brownian particle in inhomogeneous space and propose experimental verification of the present theory using similar methods.

  7. Equilibrium 𝛽-limits in classical stellarators

    NASA Astrophysics Data System (ADS)

    Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.

    2017-12-01

    A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.

  8. Equilibrium β-limits in classical stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.

    Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less

  9. Equilibrium β-limits in classical stellarators

    DOE PAGES

    Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.; ...

    2017-11-17

    Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less

  10. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hanhui; Collaborative Innovation Center of Advanced Aero-Engine, Hangzhou 310027; Liu, Ningning

    2017-05-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, themore » difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.« less

  11. Grain formation in astronomical systems: A critical review of condensation processes

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1978-01-01

    An analysis is presented of the assumption and the applicability of the three theoretical methods for calculating condensations in cosmic clouds where no pre-existing nuclei exist. The three procedures are: thermodynamic equilibrium calculations, nucleation theory, and a kinetic treatment which would take into account the characteristics of each individual collision. Thermodynamics provide detailed results on the composition temperature and composition of the condensate provided the system attains equilibrium. Because of the cosmic abundance mixture of elements, large supersaturations in some cases and low pressures, equilibrium is not expected in astronomical clouds. Nucleation theory, a combination of thermodynamics and kinetics, has the limitations of each scheme. Kinetics, not requiring equilibrium, avoids nearly all the thermodynamics difficulties but requires detailed knowledge of many reactions which thermodynamics avoids. It appears to be the only valid way to treat grain formation in space. A review of experimental studies is given.

  12. A theoretical method for selecting space craft and space suit atmospheres.

    PubMed

    Vann, R D; Torre-Bueno, J R

    1984-12-01

    A theoretical method for selecting space craft and space suit atmospheres assumes that gas bubbles cause decompression sickness and that the risk increases when a critical bubble volume is exceeded. The method is consistent with empirical decompression exposures for humans under conditions of nitrogen equilibrium between the lungs and tissues. Space station atmospheres are selected so that flight crews may decompress immediately from sea level to station pressure without preoxygenation. Bubbles form as a result of this decompression but are less than the critical volume. The bubbles are absorbed during an equilibration period after which immediate transition to suit pressure is possible. Exercise after decompression and incomplete nitrogen equilibrium are shown to increase bubble size, and limit the usefulness of one previously tested stage decompression procedure for the Shuttle. The method might be helpful for evaluating decompression procedures before testing.

  13. Combining MOSCED with molecular simulation free energy calculations or electronic structure calculations to develop an efficient tool for solvent formulation and selection

    NASA Astrophysics Data System (ADS)

    Cox, Courtney E.; Phifer, Jeremy R.; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T.; O'Loughlin, Elizabeth J.; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T.; Paluch, Andrew S.

    2017-02-01

    Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.

  14. Combining MOSCED with molecular simulation free energy calculations or electronic structure calculations to develop an efficient tool for solvent formulation and selection.

    PubMed

    Cox, Courtney E; Phifer, Jeremy R; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T; O'Loughlin, Elizabeth J; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T; Paluch, Andrew S

    2017-02-01

    Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.

  15. A New Methodology for Open Pit Slope Design in Karst-Prone Ground Conditions Based on Integrated Stochastic-Limit Equilibrium Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Cao, Ping; Ma, Guowei; Fan, Wenchen; Meng, Jingjing; Li, Kaihui

    2016-07-01

    Using the Chengmenshan Copper Mine as a case study, a new methodology for open pit slope design in karst-prone ground conditions is presented based on integrated stochastic-limit equilibrium analysis. The numerical modeling and optimization design procedure contain a collection of drill core data, karst cave stochastic model generation, SLIDE simulation and bisection method optimization. Borehole investigations are performed, and the statistical result shows that the length of the karst cave fits a negative exponential distribution model, but the length of carbonatite does not exactly follow any standard distribution. The inverse transform method and acceptance-rejection method are used to reproduce the length of the karst cave and carbonatite, respectively. A code for karst cave stochastic model generation, named KCSMG, is developed. The stability of the rock slope with the karst cave stochastic model is analyzed by combining the KCSMG code and the SLIDE program. This approach is then applied to study the effect of the karst cave on the stability of the open pit slope, and a procedure to optimize the open pit slope angle is presented.

  16. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    PubMed

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Correlation of Risk Analysis Method Results with Numerical and Limit Equilibrium Methods in Overall Slope Stability Analysis of Southern Wall of Chadormalu Iron Open Pit Mine-Iran / Korelacja wyników analizy ryzyka z wynikami obliczeń numerycznych oraz wynikami uzyskanymi w oparciu o metodę równowagi granicznej zastosowanych do badania stabilności wyrobiska pochyłego na południowej ścianie odkrywkowej kopalni rud żelaza w chadormalu w Iranie

    NASA Astrophysics Data System (ADS)

    Ahangari, Kaveh; Paji, Arman Gholinezhad; Behdani, Alireza Siami

    2013-06-01

    Slope stability analysis is one of the most important factors in designing open pit mines. Therefore an optimal slope design that supports both aspects of economy and safety is very significant. There are many different methods in slope stability analysis including empirical, limit equilibrium, block theory, numerical, and probabilistic methods. In this study, to analyze the overall slope stability of southern wall of Chadormalu iron open pit mine three numerical, limit equilibrium and probabilistic methods have been used. Software and methods that is used for analytical investigation in this study are FLAC software for numerical analysis, SLIDE software and circuit failure chart for limit equilibrium analysis and qualitative fault tree and semi-quantitative risk matrix for probabilistic analysis. The results of all above mentioned methods, was a circular failure occurrence in Metasomatite rock zone between 1405 to 1525 m levels. The main factors of failure occurrence in this range were heavily jointing and existing of faults. Safety factors resulted from numerical method; Circular chart method and SLIDE software are 1.16, 1.25 and 1.27 respectively. Regarding instability and safety factors in Metasomatite rock zone, in order to stabilize the given zone, some considerations such as bench angle and height reduction should be planned. In results of risk matrix method this zone was mentioned too as a high risk zone that numerical and limit equilibrium methods confirmed this. Badanie stabilności wyrobiska pochyłego jest jednym z najważniejszych czynników uwzględnianych przy projektowaniu kopalni odkrywkowych. Optymalne zaprojektowanie wyrobiska pochyłego z uwzględnieniem czynników ekonomicznych oraz bezpieczeństwa jest niezmiernie ważne. Istnieje wiele metod badania stabilności wyrobiska pochyłego, między innymi metody empiryczne, metoda równowagi granicznej, teoria bloków oraz metody numeryczne i probabilistyczne. W pracy tej omówiono zastosowanie trzech spośród tych metod: metody numerycznej, równowagi granicznej oraz metody probabilistycznej, do analizy stabilności wyrobiska pochyłego na południowej ścianie kopalni rud żelaza w Chadormalu w Iranie. Oprogramowanie wykorzystane w badaniach analitycznych to pakiet FLAK przy metodzie numerycznej, oprogramowanie SLIDE oraz wykresy kołowe przy metodzie równowagi granicznej oraz jakościowe drzewa określające występowanie uskoków i pół-jakościowe macierze ryzyka przy metodzie probabilistycznej. Wyniki uzyskane w oparciu o trzy wyżej wymienione metody wykazały wystąpienie zawalenia się skał metasomatycznych na poziomie od 1405 do 1525 m. Głównymi czynnikami warunkującymi zawalenie się skał w tym regionie była obecność licznych pęknięć oraz uskoków. Wskaźniki bezpieczeństwa uzyskane przy pomocy metod numerycznych, wykresu kołowego oraz oprogramowanie SLIDE wyniosły kolejno: 1.16, 1.25, 1.27. W odniesieniu do niestabilności w rejonie skał metasomatycznych, aby uczynić tę strefę bardziej stabilną należy uwzględnić takie czynniki jak kąt nachylenia ławy oraz obniżenie wysokości. Analiza przeprowadzona w oparciu o macierze ryzyka wykazała, że strefa ta jest strefą wysokiego ryzyka, zaś wyniki analizy numerycznej oraz wyników uzyskanych przy pomocy metody równowagi granicznej w pełni ten wniosek potwierdziły.

  18. Soft symmetry improvement of two particle irreducible effective actions

    NASA Astrophysics Data System (ADS)

    Brown, Michael J.; Whittingham, Ian B.

    2017-01-01

    Two particle irreducible effective actions (2PIEAs) are valuable nonperturbative techniques in quantum field theory; however, finite truncations of them violate the Ward identities (WIs) of theories with spontaneously broken symmetries. The symmetry improvement (SI) method of Pilaftsis and Teresi attempts to overcome this by imposing the WIs as constraints on the solution; however, the method suffers from the nonexistence of solutions in linear response theory and in certain truncations in equilibrium. Motivated by this, we introduce a new method called soft-symmetry improvement (SSI) which relaxes the constraint. Violations of WIs are allowed but punished in a least-squares implementation of the symmetry improvement idea. A new parameter ξ controls the strength of the constraint. The method interpolates between the unimproved (ξ →∞ ) and SI (ξ →0 ) cases, and the hope is that practically useful solutions can be found for finite ξ . We study the SSI 2PIEA for a scalar O (N ) model in the Hartree-Fock approximation. We find that the method is IR sensitive; the system must be formulated in finite volume V and temperature T =β-1 , and the V β →∞ limit must be taken carefully. Three distinct limits exist. Two are equivalent to the unimproved 2PIEA and SI 2PIEA respectively, and the third is a new limit where the WI is satisfied but the phase transition is strongly first order and solutions can fail to exist depending on ξ . Further, these limits are disconnected from each other; there is no smooth way to interpolate from one to another. These results suggest that any potential advantages of SSI methods, and indeed any application of (S)SI methods out of equilibrium, must occur in finite volume.

  19. An assessment of mean-field mixed semiclassical approaches: Equilibrium populations and algorithm stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellonzi, Nicole; Jain, Amber; Subotnik, Joseph E.

    2016-04-21

    We study several recent mean-field semiclassical dynamics methods, focusing on the ability to recover detailed balance for long time (equilibrium) populations. We focus especially on Miller and Cotton’s [J. Phys. Chem. A 117, 7190 (2013)] suggestion to include both zero point electronic energy and windowing on top of Ehrenfest dynamics. We investigate three regimes: harmonic surfaces with weak electronic coupling, harmonic surfaces with strong electronic coupling, and anharmonic surfaces with weak electronic coupling. In most cases, recent additions to Ehrenfest dynamics are a strong improvement upon mean-field theory. However, for methods that include zero point electronic energy, we show thatmore » anharmonic potential energy surfaces often lead to numerical instabilities, as caused by negative populations and forces. We also show that, though the effect of negative forces can appear hidden in harmonic systems, the resulting equilibrium limits do remain dependent on any windowing and zero point energy parameters.« less

  20. [Simultaneous determination of seven residual solvents in bovis calculus artifactus by headspace gas chromatography].

    PubMed

    Chi, Shuyao; Wu, Dike; Sun, Jinhong; Ye, Ruhan; Wang, Xiaoyan

    2014-05-01

    A headspace gas chromatography (HS-GC) method was developed for the simultaneous determination of seven residual solvents (petroleum ether (60-90 degrees C), acetone, ethyl acetate, methanol, methylene chloride, ethanol and butyl acetate) in bovis calculus artifactus. The DB-WAX capillary column and flame ionization detector (FID) were used for the separation and detection of the residual solvents, and the internal standard method was used for the quantification. The chromatographic conditions, such as equilibrium temperature and equilibrium time, were optimized. Under the optimized conditions, all of the seven residual solvents showed good linear relationships with good correlation coefficients (not less than 0.999 3) in the prescribed concentration range. At three spiked levels, the recoveries for the seven residual solvents were 94.7%-105.2% with the relative standard deviations (RSDs) less than 3.5%. The limits of detection (LODs) of the method were 0.43-5.23 mg/L, and the limits of quantification (LOQs) were 1.25-16.67 mg/L. The method is simple, rapid, sensitive and accurate, and is suitable for the simultaneous determination of the seven residual solvents in bovis calculus artifactus.

  1. Equilibrium figures inside the dark-matter ring and the shapes of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.; Trubitsyna, N. G.; Kireeva, E. N.

    We solve the general problem of the theory of equilibrium figures and analyze two classes of liquid rotating gravitating figures residing inside a gravitating ring or torus. These figures form families of sequences of generalized oblate spheroids and triaxial ellipsoids, which at the lower limit of the tidal parameter α = 0 have the form of the Maclaurin spheroids and the Jacobi ellipsoids. In intermediate cases 0 < α ≤ αmax each new sequence of axisymmetric equilibrium figures has two non-rotating boundary spheroids. At the upper limit αmax/(π Gρ ) = 0.1867 the sequence degenerates into a single non-rotating spheroid with the eccentricity {e cr} ≈ 0.96 corresponding to the flattening limit of elliptical galaxies (E7). We also perform a detailed study of the sequences of generalized triaxial ellipsoids and find bifurcation points of triaxial ellipsoids in the sequences of generalized spheroids. We use this method to explain the shapes of E-galaxies. According to observations, very slowly rotating oblate E-type galaxies are known that have the shapes, which, because of instability, cannot be supported by velocity dispersion anisotropy exclusively. The hypothesis of a massive dark-matter outer ring requires no extreme anisotropy of pressure; it not only explains the shape of these elliptical galaxies, but also sheds new light on the riddle of the ellipticity limit (E7) of elliptical galaxies.

  2. 14 CFR 29.471 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equilibrium. For limit ground loads— (1) The limit ground loads obtained in the landing conditions in this... equilibrium with linear and angular inertia loads in a rational or conservative manner. (b) Critical centers...

  3. Modified Stability Charts for Rock Slopes Based on the Hoek-Brown Failure Criterion / Zmodyfikowane Diagramy Stabilności Skalistych Zboczy Otrzymane W Oparciu O Warunek Wytrzymałości Hoeka-Browna

    NASA Astrophysics Data System (ADS)

    Nekouei, Mahdi; Ahangari, Kaveh

    2013-09-01

    Only an article rendered by Lia et al. in 2008 has represented charts based on Hoek-Brown criterion for rock slopes, however, these charts are not precise and efficient. Because of this problem, a modification is suggested for the mentioned charts in this study. The new charts are calculated according to four methods. Among the methods, one relates to finite element method using Phase2 software. The other three methods are Janbu, Bishop and Fellenius that belong to limit equilibrium method by using Slide software. For each slope angle, the method having high correlation coefficient is selected as the best one. Then, final charts are rendered according to the selected method and its specific equations. Among forty equations, twenty-five ones or 62.5% relate to numerical method and Phase2 software, six ones or 15% belong to Fellenius limit equilibrium, six ones or 15% relate to Bishop limit equilibrium, and three ones or 7.5% belong to Janbu limit equilibrium. In order to validate new charts, slope stability analysis is carried out for several sections of Chadormalu iron ore open pit mine, Iran. The error percentage of new charts in limit equilibrium method using Slide software and in Bishop method for slopes of Chadormalu iron ore mine are rendered and compared. The charts on a basis of Hoek-Brown failure criterion for rock slopes show less than ±4% error. This indicates that these charts are appropriate tools and their safety factor is optimal for rock slopes. Diagramy stabilności skalistych zboczy otrzymane w oparciu o warunek wytrzymałości Hoeka- Browna znaleźć można jedynie w pracy Lia et al. (2008), choć wykresy te nie są absolutnie dokładne i jasne. Dlatego też w niniejszym artykule zaproponowano pewną modyfikację diagramów. Nowe wykresu sporządzono w oparciu o cztery metody. Jedna z metod opiera się na metodzie elementów skończonych i wykorzystuje oprogramowanie Phase2. Pozostałe trzy podejścia to metody Janbu, Bishopa i Felleniusa bazujące na metodzie równowagi granicznej i wykorzystujące oprogramowanie Slide. Dla każdego kąta nachylenia zbocza, wybierana jest metoda najskuteczniejsza, czyli taka która zapewnia wysoki współczynnik korelacji. Następnie sporządzane są wykresy końcowe, zgodnie w wybraną metodą i z wykorzystaniem odpowiednich równań. Spośród 40 równań, 25 z nich (czyli 62.5%) odnosi się do metod numerycznych (oprogramowanie Phase2), sześć równań (15%) należy do metody równowagi granicznej Felleniusa, kolejne sześć równań (15%) ma odniesienie do metody równowagi granicznej Bishopa, zaś trzy równania (7.5%) należą do metody równowagi granicznej Janbu. W celu walidacji nowych diagramów, przeprowadzono analizę stabilności zboczy na kilku wybranych odcinkach kopalni odkrywkowej rud żelaza w Chadormalu, Iran. Następnie porównano otrzymane procentowe wskaźniki niedokładności nowych diagramów uzyskanych za pomocą metody równowagi granicznej i przy wykorzystaniu oprogramowania Slide oraz w metodzie Bishopa obliczone dla zboczy kopalni rud żelaza Chadormalu. Diagramy uzyskane na podstawie warunku stabilności Hoeka-Browna dla zboczy w kopalni dają wskaźnik błędu na poziomie ±4%. Oznacza to, że diagramy takie są odpowiednimi narzędziami a współczynniki bezpieczeństwa dla zboczy skalnych wyliczone na ich podstawie uznać można za optymalne.

  4. Invariants for the generalized Lotka-Volterra equations

    NASA Astrophysics Data System (ADS)

    Cairó, Laurent; Feix, Marc R.; Goedert, Joao

    A generalisation of Lotka-Volterra System is given when self limiting terms are introduced in the model. We use a modification of the Carleman embedding method to find invariants for this system of equations. The position and stability of the equilibrium point and the regression of system under invariant conditions are studied.

  5. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    ERIC Educational Resources Information Center

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  6. Rapid exploration of configuration space with diffusion-map-directed molecular dynamics.

    PubMed

    Zheng, Wenwei; Rohrdanz, Mary A; Clementi, Cecilia

    2013-10-24

    The gap between the time scale of interesting behavior in macromolecular systems and that which our computational resources can afford often limits molecular dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named diffusion-map-directed MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses a diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here, we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems, we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300 K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD.

  7. Rapid Exploration of Configuration Space with Diffusion Map-directed-Molecular Dynamics

    PubMed Central

    Zheng, Wenwei; Rohrdanz, Mary A.; Clementi, Cecilia

    2013-01-01

    The gap between the timescale of interesting behavior in macromolecular systems and that which our computational resources can afford oftentimes limits Molecular Dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named Diffusion Map-directed-MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD. PMID:23865517

  8. Solving nonlinear equilibrium equations of deformable systems by method of embedded polygons

    NASA Astrophysics Data System (ADS)

    Razdolsky, A. G.

    2017-09-01

    Solving of nonlinear algebraic equations is an obligatory stage of studying the equilibrium paths of nonlinear deformable systems. The iterative method for solving a system of nonlinear algebraic equations stated in an explicit or implicit form is developed in the present work. The method consists of constructing a sequence of polygons in Euclidean space that converge into a single point that displays the solution of the system. Polygon vertices are determined on the assumption that individual equations of the system are independent from each other and each of them is a function of only one variable. Initial positions of vertices for each subsequent polygon are specified at the midpoints of certain straight segments determined at the previous iteration. The present algorithm is applied for analytical investigation of the behavior of biaxially compressed nonlinear-elastic beam-column with an open thin-walled cross-section. Numerical examples are made for the I-beam-column on the assumption that its material follows a bilinear stress-strain diagram. A computer program based on the shooting method is developed for solving the problem. The method is reduced to numerical integration of a system of differential equations and to the solution of a system of nonlinear algebraic equations between the boundary values of displacements at the ends of the beam-column. A stress distribution at the beam-column cross-sections is determined by subdividing the cross-section area into many small cells. The equilibrium path for the twisting angle and the lateral displacements tend to the stationary point when the load is increased. Configuration of the path curves reveals that the ultimate load is reached shortly once the maximal normal stresses at the beam-column fall outside the limit of the elastic region. The beam-column has a unique equilibrium state for each value of the load, that is, there are no equilibrium states once the maximum load is reached.

  9. Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis

    PubMed Central

    Wang, Chunyan; Bae, Jin H.; Zhang, David Yu

    2016-01-01

    DNA hybridization thermodynamics is critical for accurate design of oligonucleotides for biotechnology and nanotechnology applications, but parameters currently in use are inaccurately extrapolated based on limited quantitative understanding of thermal behaviours. Here, we present a method to measure the ΔG° of DNA motifs at temperatures and buffer conditions of interest, with significantly better accuracy (6- to 14-fold lower s.e.) than prior methods. The equilibrium constant of a reaction with thermodynamics closely approximating that of a desired motif is numerically calculated from directly observed reactant and product equilibrium concentrations; a DNA catalyst is designed to accelerate equilibration. We measured the ΔG° of terminal fluorophores, single-nucleotide dangles and multinucleotide dangles, in temperatures ranging from 10 to 45 °C. PMID:26782977

  10. The equilibrium constant of complex formation in solution: A study utilizing a dielectric constant method

    NASA Astrophysics Data System (ADS)

    Loh, C. W.

    1980-03-01

    A method was developed for determining equilibrium constants, heat of reaction, and change in free energy and entropy during a 1:1 complex formation in solutions. The measurements were carried out on ternary systems containing two interacting solutes in an inert solvent. The procedures was applied to the investigation of hydrogen bond complex formations in two mixtures systems, phenol and pyridine in carbon tetrachloride, and 4, 5, 6, 7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) and alkyl acetate in styrene. The first mixture system was studied in order to compare the results with those obtained by other methods. Results for the second mixture system indicated strong association between molecules of TTFB and alkyl acetate and suggested that the blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles was due to competition for a limited number of adsorption sites on the membrane surface.

  11. Students' and Teachers' Misapplication of Le Chatelier's Principle: Implications for the Teaching of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Quilez-Pardo, Juan; Solaz-Portoles, Joan Josep

    1995-01-01

    Study of strategies and procedures of 170 students and 40 teachers when solving chemical equilibrium problems found misconceptions emerging through: misapplication of Le Chatelier's Principle, use of rote-learning recall, incorrect control of variables, limited use of chemical equilibrium law, lack of mastery of chemical equilibrium principles,…

  12. Equilibrium Passive Sampling of POP in Lipid-Rich and Lean Fish Tissue: Quality Control Using Performance Reference Compounds.

    PubMed

    Rusina, Tatsiana P; Carlsson, Pernilla; Vrana, Branislav; Smedes, Foppe

    2017-10-03

    Passive sampling is widely used to measure levels of contaminants in various environmental matrices, including fish tissue. Equilibrium passive sampling (EPS) of persistent organic pollutants (POP) in fish tissue has been hitherto limited to application in lipid-rich tissue. We tested several exposure methods to extend EPS applicability to lean tissue. Thin-film polydimethylsiloxane (PDMS) passive samplers were exposed statically to intact fillet and fish homogenate and dynamically by rolling with cut fillet cubes. The release of performance reference compounds (PRC) dosed to passive samplers prior to exposure was used to monitor the exchange process. The sampler-tissue exchange was isotropic, and PRC were shown to be good indicators of sampler-tissue equilibration status. The dynamic exposures demonstrated equilibrium attainment in less than 2 days for all three tested fish species, including lean fish containing 1% lipid. Lipid-based concentrations derived from EPS were in good agreement with lipid-normalized concentrations obtained using conventional solvent extraction. The developed in-tissue EPS method is robust and has potential for application in chemical monitoring of biota and bioaccumulation studies.

  13. A comparison between protein crystals grown with vapor diffusion methods in microgravity and protein crystals using a gel liquid-liquid diffusion ground-based method

    NASA Technical Reports Server (NTRS)

    Miller, Teresa Y.; He, Xiao-Min; Carter, Daniel C.

    1992-01-01

    Crystals of human serum albumin have been successfully grown in a variety of gels using crystallization conditions otherwise equivalent to those utilized in the popular hanging-drop vapor-equilibrium method. Preliminary comparisons of gel grown crystals with crystals grown by the vapor diffusion method via both ground-based and microgravity methods indicate that crystals superior in size and quality may be grown by limiting solutal convection. Preliminary X-ray diffraction statistics are presented.

  14. Bifurcation analysis in SIR epidemic model with treatment

    NASA Astrophysics Data System (ADS)

    Balamuralitharan, S.; Radha, M.

    2018-04-01

    We investigated the bifurcation analysis of nonlinear system of SIR epidemic model with treatment. It is accepted that the treatment is corresponding to the quantity of infective which is below the limit and steady when the quantity of infective achieves the limit. We analyze about the Transcritical bifurcation which occurs at the disease free equilibrium point and Hopf bifurcation which occurs at endemic equilibrium point. Using MATLAB we show the picture of bifurcation at the disease free equilibrium point.

  15. Design of reinforced areas of concrete column using quadratic polynomials

    NASA Astrophysics Data System (ADS)

    Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.

    2017-11-01

    Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.

  16. Determination of Henry`s law constants by equilibrium partitioning in a closed system using a new in situ optical absorbance method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.M.; Balcavage, W.X.; Ramachandran, B.R.

    Currently, a great deal of interest exists in developing quantitative descriptions of the transport behavior for organic chemical compounds in the environment. Transport between water and air is of particular significance in this regard. A new method for measurement of thermodynamic Henry`s law constants (H) is reported. In this method, the optical absorbance of a dilute aqueous solution containing an organic compound is followed with time as the compound partitions into the air above the solution in a sealed vessel. The change in optical absorbance and the vapor to liquid volume ratio of the vessel are then used to calculatemore » the value for H. The concentration of the organic compound in the aqueous and vapor phases need not be known. This method allows the approach to equilibrium to be observed in real time so that attainment of equilibrium is readily apparent. This method works particularly well for water-soluble compounds having low vapor pressures. The applicability of this method is limited to compounds that exhibit significant optical absorbance in the ultraviolet and visible regions of the electromagnetic spectrum. Values for H and their temperature dependencies measured using this new method are reported for methacrolein, methyl vinyl ketone, benzaldehyde, and acetophenone. Values for H are also reported for benzene, toluene, and ethylbenzene at 298 K. All reported H data are compared with previously reported values.« less

  17. Dating human skeletal remains: investigating the viability of measuring the equilibrium between 210Po and 210Pb as a means of estimating the post-mortem interval.

    PubMed

    Swift, B

    1998-11-30

    Estimating the post-mortem interval in skeletal remains is a notoriously difficult task; forensic pathologists often rely heavily upon experience in recognising morphological appearances. Previous techniques have involved measuring physical or chemical changes within the hydroxyapatite matrix, radiocarbon dating and 90Sr dating, though no individual test has been advocated. Within this paper it is proposed that measuring the equilibrium between two naturally occurring radio-isotopes, 210Po and 210Pb, and comparison with post-mortem examination samples would produce a new method of dating human skeletal remains. Possible limitations exist, notably the effect of diagenesis, time limitations and relative cost, though this technique could provide a relatively accurate means of determining the post-mortem interval. It is therefore proposed that a large study be undertaken to provide a calibration scale against which bones uncovered can be dated.

  18. [Developments in preparation and experimental method of solid phase microextraction fibers].

    PubMed

    Yi, Xu; Fu, Yujie

    2004-09-01

    Solid phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which concentrates volatile or nonvolatile compounds from liquid samples or headspace of samples. SPME is compatible with analyte separation and detection by gas chromatography, high performance liquid chromatography, and other instrumental methods. It can provide many advantages, such as wide linear scale, low solvent and sample consumption, short analytical times, low detection limits, simple apparatus, and so on. The theory of SPME is introduced, which includes equilibrium theory and non-equilibrium theory. The novel development of fiber preparation methods and relative experimental techniques are discussed. In addition to commercial fiber preparation, different newly developed fabrication techniques, such as sol-gel, electronic deposition, carbon-base adsorption, high-temperature epoxy immobilization, are presented. Effects of extraction modes, selection of fiber coating, optimization of operating conditions, method sensitivity and precision, and systematical automation, are taken into considerations in the analytical process of SPME. A simple perspective of SPME is proposed at last.

  19. Determination of chlorinated volatile organic compounds in polyamine epichlorohydrin solution by headspace gas chromatography.

    PubMed

    Yan, Ning; Wan, Xiao-Fang; Chai, Xin-Sheng; Chen, Run-Quan

    2017-05-05

    This study demonstrated a headspace gas chromatographic (HS-GC) method for the determination of residual epichlorohydrin (ECH) and the by-product 1,3-dichloro-2-propanol (DCP) in polyamine epichlorohydrin (PAE) solution. It was based on the vapor-liquid phase equilibrium of these analytes at 60°C for 30min in a closed headspace sample vial before GC measurement. It was found that matrix of the PAE solution had the effect on the headspace equilibrium of these species and therefore a standard addition must be applied in the method validation. The results showed that the present method has a good measurement precision (RSD <2.90%) and accuracy (recoveries from 93.6 to 105%), and the limit of quantitation (LOQ) is 3.75mg/L for ECH and 0.8g/L for DCP. The present method is suitable to be used for analyzing the chlorinated volatile organic compounds in the commercial PAE resin solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    DOE PAGES

    Ma, Wen; Senanayake, Sanjaya D.; Herbert, F. William; ...

    2015-03-11

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr 1+, Zr 2+, and Zr 3+ as non-equilibrium oxidation states, in addition to Zr 4+ in the stoichiometric ZrO 2. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr 0 and Zr 4+ at the metal-oxide interface. As a result, themore » presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.« less

  1. Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c3 using continuum electrostatics.

    PubMed Central

    Baptista, A M; Martel, P J; Soares, C M

    1999-01-01

    A new method is presented for simulating the simultaneous binding equilibrium of electrons and protons on protein molecules, which makes it possible to study the full equilibrium thermodynamics of redox and protonation processes, including electron-proton coupling. The simulations using this method reflect directly the pH and electrostatic potential of the environment, thus providing a much closer and realistic connection with experimental parameters than do usual methods. By ignoring the full binding equilibrium, calculations usually overlook the twofold effect that binding fluctuations have on the behavior of redox proteins: first, they affect the energy of the system by creating partially occupied sites; second, they affect its entropy by introducing an additional empty/occupied site disorder (here named occupational entropy). The proposed method is applied to cytochrome c3 of Desulfovibrio vulgaris Hildenborough to study its redox properties and electron-proton coupling (redox-Bohr effect), using a continuum electrostatic method based on the linear Poisson-Boltzmann equation. Unlike previous studies using other methods, the full reduction order of the four hemes at physiological pH is successfully predicted. The sites more strongly involved in the redox-Bohr effect are identified by analysis of their titration curves/surfaces and the shifts of their midpoint redox potentials and pKa values. Site-site couplings are analyzed using statistical correlations, a method much more realistic than the usual analysis based on direct interactions. The site found to be more strongly involved in the redox-Bohr effect is propionate D of heme I, in agreement with previous studies; other likely candidates are His67, the N-terminus, and propionate D of heme IV. Even though the present study is limited to equilibrium conditions, the possible role of binding fluctuations in the concerted transfer of protons and electrons under nonequilibrium conditions is also discussed. The occupational entropy contributions to midpoint redox potentials and pKa values are computed and shown to be significant. PMID:10354425

  2. Quantification of metabotropic glutamate subtype 5 receptors in the brain by an equilibrium method using 18F-SP203.

    PubMed

    Kimura, Yasuyuki; Siméon, Fabrice G; Zoghbi, Sami S; Zhang, Yi; Hatazawa, Jun; Pike, Victor W; Innis, Robert B; Fujita, Masahiro

    2012-02-01

    A new PET ligand, 3-fluoro-5-(2-(2-(18)F-(fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile (18F-SP203) can quantify metabotropic glutamate subtype 5 receptors (mGluR5) in human brain by a bolus injection and kinetic modeling. As an alternative approach to a bolus injection, binding can simply be measured as a ratio of tissue to metabolite-corrected plasma at a single time point under equilibrium conditions achieved by administering the radioligand with a bolus injection followed by a constant infusion. The purpose of this study was to validate the equilibrium method as an alternative to the standard kinetic method for measuring 18F-SP203 binding in the brain. Nine healthy subjects were injected with 18F-SP203 using a bolus plus constant infusion for 300 min. A single ratio of bolus-to-constant infusion (the activity of bolus equaled to that of infusion over 219 min) was applied to all subjects to achieve equilibrium in approximately 120 min. As a measure of ligand binding, we compared total distribution volume (VT) calculated by the equilibrium and kinetic methods in each scan. The equilibrium method calculated VT by the ratio of radioactivity in the brain to the concentration of 18F-SP203 in arterial plasma at 120 min, and the kinetic method calculated VT by a two-tissue compartment model using brain and plasma dynamic data from 0 to 120 min. VT obtained via the equilibrium method was highly correlated with VT obtained via kinetic modeling. Inter-subject variability of VT obtained via the equilibrium method was slightly smaller than VT obtained via the kinetic method. VT obtained via the equilibrium method was ~10% higher than VT obtained via the kinetic method, indicating a small difference between the measurements. Taken together, the results of this study show that using the equilibrium method is an acceptable alternative to the standard kinetic method when using 18F-SP203 to measure mGluR5. Although small differences in the measurements obtained via the equilibrium and kinetic methods exist, both methods consistently measured mGluR5 as indicated by the highly correlated VT values; the equilibrium method was slightly more precise, as indirectly measured by the smaller coefficient of variability across subjects. In addition, when using 18F-SP203, the equilibrium method is more efficient because it requires much less data. Copyright © 2011. Published by Elsevier Inc.

  3. Current Trends in Modeling Research for Turbulent Aerodynamic Flows

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Rumsey, Christopher L.; Manceau, Remi

    2007-01-01

    The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.

  4. Redefining the utility of the three-isotope method

    NASA Astrophysics Data System (ADS)

    Cao, Xiaobin; Bao, Huiming

    2017-09-01

    The equilibrium isotope fractionation factor αeq is a fundamental parameter in the study of stable isotope effects. Experimentally, it has been difficult to establish that a system has attained equilibrium. The three-isotope method, using the initial trajectory of changing isotope ratios (e.g. 16O, 17O, and 18O) to deduce the final equilibrium point of isotope exchange, has long been hailed as the most rigorous experimental approach. However, over the years some researchers have cautioned on the limitations of this method, but the foundation of three-isotope method has not been properly examined and the method is still widely used in calibrating αeq for both traditional and increasingly non-traditional isotope systems today. Here, using water-water and dissolved CO2-water oxygen exchange as model systems, we conduct an isotopologues-specific kinetic analysis of the exchange processes and explore the underlying assumptions and validity of the three-isotope method. We demonstrate that without knowing the detailed exchange kinetics a priori the three-isotope method cannot lead to a reliable αeq. For a two-reservoir exchanging system, α determined by this method may be αeq, kinetic isotope effect, or apparent kinetic isotope effect, which can all bear different values. When multiple reservoirs exist during exchange, the evolving trajectory can be complex and hard to predict. Instead of being a tool for αeq determination, three-isotope method should be used as a tool for studying kinetic isotope effect, apparent kinetic isotope effect, and detailed exchange kinetics in diverse systems.

  5. The method of lines in three dimensional fracture mechanics

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J.; Berke, L.

    1980-01-01

    A review of recent developments in the calculation of design parameters for fracture mechanics by the method of lines (MOL) is presented. Three dimensional elastic and elasto-plastic formulations are examined and results from previous and current research activities are reported. The application of MOL to the appropriate partial differential equations of equilibrium leads to coupled sets of simultaneous ordinary differential equations. Solutions of these equations are obtained by the Peano-Baker and by the recurrance relations methods. The advantages and limitations of both solution methods from the computational standpoint are summarized.

  6. Non-Equilibrium Dynamics with Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Dong, Qiaoyuan

    This work is motivated by the fact that the investigation of non-equilibrium phenomena in strongly correlated electron systems has developed into one of the most active and exciting branches of condensed matter physics as it provides rich new insights that could not be obtained from the study of equilibrium situations. However, a theoretical description of those phenomena is missing. Therefore, in this thesis, we develop a numerical method that can be used to study two minimal models--the Hubbard model and the Anderson impurity model with general parameter range and time dependence. We begin by introducing the theoretical framework and the general features of the Hubbard model. We then describe the dynamical mean field theory (DMFT), which was first invented by Georges in 1992. It provides a feasible way to approach strongly correlated electron systems and reduces the complexity of the calculations via a mapping of lattice models onto quantum impurity models subject to a self-consistency condition. We employ the non-equilibrium extension of DMFT and map the Hubbard model to the single impurity Anderson model (SIAM). Since the fundamental component of the DMFT method is a solver of the single impurity Anderson model, we continue with a description of the formalism to study the real-time dynamics of the impurity model staring at its thermal equilibrium state. We utilize the non-equilibrium strong-coupling perturbation theory and derive semi-analytical approximation methods such as the non-crossing approximation (NCA) and the one-crossing approximation (OCA). We then use the Quantum Monte-Carlo method (QMC) as a numerically exact method and present proper measurements of local observables, current and Green's functions. We perform simulations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibrium times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. However, this bare QMC solver suffers from a dynamical sign problem for long time propagations. To overcome the limitations of this bare treatment, we introduce the "Inchworm algorithm'', based on iteratively reusing the information obtained in previous steps to extend the propagation to longer times and stabilize the calculations. We show that this algorithm greatly reduces the required order for each simulation and re-scales the exponential challenge to quadratic in time. We introduce a method to compute Green's functions, spectral functions, and currents for inchworm Monte Carlo and show how systematic error assessments in real time can be obtained. We illustrate the capabilities of the algorithm with a study of the behavior of quantum impurities after an instantaneous voltage quench from a thermal equilibrium state. We conclude with the applications of the unbiased inchworm impurity solver to DMFT calculations. We employ the methods for a study of the one-band paramagnetic Hubbard model on the Bethe lattice in equilibrium, where the DMFT approximation becomes exact. We begin with a brief introduction of the Mott metal insulator phase diagram. We present the results of both real time Green's functions and spectral functions from our nonequilibrium calculations. We observe the metal-insulator crossover as the on-site interaction is increased and the formation of a quasi-particle peak as the temperature is lowered. We also illustrate the convergence of our algorithms in different aspects.

  7. Out-of-equilibrium relaxation of the thermal Casimir effect in a model polarizable material

    NASA Astrophysics Data System (ADS)

    Dean, David S.; Démery, Vincent; Parsegian, V. Adrian; Podgornik, Rudolf

    2012-03-01

    Relaxation of the thermal Casimir or van der Waals force (the high temperature limit of the Casimir force) for a model dielectric medium is investigated. We start with a model of interacting polarization fields with a dynamics that leads to a frequency dependent dielectric constant of the Debye form. In the static limit, the usual zero frequency Matsubara mode component of the Casimir force is recovered. We then consider the out-of-equilibrium relaxation of the van der Waals force to its equilibrium value when two initially uncorrelated dielectric bodies are brought into sudden proximity. For the interaction between dielectric slabs, it is found that the spatial dependence of the out-of-equilibrium force is the same as the equilibrium one, but it has a time dependent amplitude, or Hamaker coefficient, which increases in time to its equilibrium value. The final relaxation of the force to its equilibrium value is exponential in systems with a single or finite number of polarization field relaxation times. However, in systems, such as those described by the Havriliak-Negami dielectric constant with a broad distribution of relaxation times, we observe a much slower power law decay to the equilibrium value.

  8. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.

    PubMed

    Zhao, Pei; Kim, Sungjin; Chen, Xiao; Einarsson, Erik; Wang, Miao; Song, Yenan; Wang, Hongtao; Chiashi, Shohei; Xiang, Rong; Maruyama, Shigeo

    2014-11-25

    Using ethanol as the carbon source, self-limiting growth of AB-stacked bilayer graphene (BLG) has been achieved on Cu via an equilibrium chemical vapor deposition (CVD) process. We found that during this alcohol catalytic CVD (ACCVD) a source-gas pressure range exists to break the self-limitation of monolayer graphene on Cu, and at a certain equilibrium state it prefers to form uniform BLG with a high surface coverage of ∼94% and AB-stacking ratio of nearly 100%. More importantly, once the BLG is completed, this growth shows a self-limiting manner, and an extended ethanol flow time does not result in additional layers. We investigate the mechanism of this equilibrium BLG growth using isotopically labeled (13)C-ethanol and selective surface aryl functionalization, and results reveal that during the equilibrium ACCVD process a continuous substitution of graphene flakes occurs to the as-formed graphene and the BLG growth follows a layer-by-layer epitaxy mechanism. These phenomena are significantly in contrast to those observed for previously reported BLG growth using methane as precursor.

  9. The relationship between nernst equilibrium variability and the multifractality of interspike intervals in the hippocampus.

    PubMed

    Meier, Stephen R; Lancaster, Jarrett L; Fetterhoff, Dustin; Kraft, Robert A; Hampson, Robert E; Starobin, Joseph M

    2017-04-01

    Spatiotemporal patterns of action potentials are considered to be closely related to information processing in the brain. Auto-generating neurons contributing to these processing tasks are known to cause multifractal behavior in the inter-spike intervals of the output action potentials. In this paper we define a novel relationship between this multifractality and the adaptive Nernst equilibrium in hippocampal neurons. Using this relationship we are able to differentiate between various drugs at varying dosages. Conventional methods limit their ability to account for cellular charge depletion by not including these adaptive Nernst equilibria. Our results provide a new theoretical approach for measuring the effects which drugs have on single-cell dynamics.

  10. A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, J.-S.; Chen, K.-H.; Choi, Y.

    1992-01-01

    A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.

  11. Non-axisymmetric equilibrium reconstruction and suppression of density limit disruptions in a current-carrying stellarator

    NASA Astrophysics Data System (ADS)

    Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.

    2017-10-01

    Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  12. Conjugate Acid-Base Pairs, Free Energy, and the Equilibrium Constant

    ERIC Educational Resources Information Center

    Beach, Darrell H.

    1969-01-01

    Describes a method of calculating the equilibrium constant from free energy data. Values of the equilibrium constants of six Bronsted-Lowry reactions calculated by the author's method and by a conventional textbook method are compared. (LC)

  13. The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.

    PubMed

    Hunjan, Jagtar Singh; Eu, Byung Chan

    2010-04-07

    The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.

  14. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  15. The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma: 1. General Conditions of Equilibrium and Stability for One-Component Charged Gas

    DTIC Science & Technology

    2018-04-01

    systems containing ionized gases. 2. Gibbs Method in the Integral Form As per the Gibbs general methodology , based on the concept of heterogeneous...ARL-TR-8348 ● APR 2018 US Army Research Laboratory The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma: 1...ARL-TR-8348 ● APR 2018 US Army Research Laboratory The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma: 1. General

  16. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.

    PubMed

    Di Staso, G; Clercx, H J H; Succi, S; Toschi, F

    2016-11-13

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  17. Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kolano, Christoph; Helbing, Jan; Kozinski, Mariusz; Sander, Wolfram; Hamm, Peter

    2006-11-01

    X-ray crystallography and nuclear magnetic resonance measurements provide us with atomically resolved structures of an ever-growing number of biomolecules. These static structural snapshots are important to our understanding of biomolecular function, but real biomolecules are dynamic entities that often exploit conformational changes and transient molecular interactions to perform their tasks. Nuclear magnetic resonance methods can follow such structural changes, but only on millisecond timescales under non-equilibrium conditions. Time-resolved X-ray crystallography has recently been used to monitor the photodissociation of CO from myoglobin on a subnanosecond timescale, yet remains challenging to apply more widely. In contrast, two-dimensional infrared spectroscopy, which maps vibrational coupling between molecular groups and hence their relative positions and orientations, is now routinely used to study equilibrium processes on picosecond timescales. Here we show that the extension of this method into the non-equilibrium regime allows us to observe in real time in a short peptide the weakening of an intramolecular hydrogen bond and concomitant opening of a β-turn. We find that the rate of this process is two orders of magnitude faster than the `folding speed limit' established for contact formation between protein side chains.

  18. Detecting temperature fluctuations at equilibrium.

    PubMed

    Dixit, Purushottam D

    2015-05-21

    The Gibbs and the Boltzmann definition of temperature agree only in the macroscopic limit. The ambiguity in identifying the equilibrium temperature of a finite-sized 'small' system exchanging energy with a bath is usually understood as a limitation of conventional statistical mechanics. We interpret this ambiguity as resulting from a stochastically fluctuating temperature coupled with the phase space variables giving rise to a broad temperature distribution. With this ansatz, we develop the equilibrium statistics and dynamics of small systems. Numerical evidence using an analytically tractable model shows that the effects of temperature fluctuations can be detected in the equilibrium and dynamical properties of the phase space of the small system. Our theory generalizes statistical mechanics to small systems relevant in biophysics and nanotechnology.

  19. 3D equilibrium reconstruction with islands

    NASA Astrophysics Data System (ADS)

    Cianciosa, M.; Hirshman, S. P.; Seal, S. K.; Shafer, M. W.

    2018-04-01

    This paper presents the development of a 3D equilibrium reconstruction tool and the results of the first-ever reconstruction of an island equilibrium. The SIESTA non-nested equilibrium solver has been coupled to the V3FIT 3D equilibrium reconstruction code. Computed from a coupled VMEC and SIESTA model, synthetic signals are matched to measured signals by finding an optimal set of equilibrium parameters. By using the normalized pressure in place of normalized flux, non-equilibrium quantities needed by diagnostic signals can be efficiently mapped to the equilibrium. The effectiveness of this tool is demonstrated by reconstructing an island equilibrium of a DIII-D inner wall limited L-mode case with an n = 1 error field applied. Flat spots in Thomson and ECE temperature diagnostics show the reconstructed islands have the correct size and phase. ).

  20. Green's functions in equilibrium and nonequilibrium from real-time bold-line Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.

    2014-03-01

    Green's functions for the Anderson impurity model are obtained within a numerically exact formalism. We investigate the limits of analytical continuation for equilibrium systems, and show that with real time methods even sharp high-energy features can be reliably resolved. Continuing to an Anderson impurity in a junction, we evaluate two-time correlation functions, spectral properties, and transport properties, showing how the correspondence between the spectral function and the differential conductance breaks down when nonequilibrium effects are taken into account. Finally, a long-standing dispute regarding this model has involved the voltage splitting of the Kondo peak, an effect which was predicted over a decade ago by approximate analytical methods but never successfully confirmed by numerics. We settle the issue by demonstrating in an unbiased manner that this splitting indeed occurs. Yad Hanadiv-Rothschild Foundation, TG-DMR120085, TG-DMR130036, NSF CHE-1213247, NSF DMR 1006282, DOE ER 46932.

  1. IONIZATION EQUILIBRIUM TIMESCALES IN COLLISIONAL PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Randall K.; Hughes, John P., E-mail: rsmith@cfa.harvard.ed, E-mail: jph@physics.rutgers.ed

    2010-07-20

    Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai and Hughes and Helfand. In general, the ionization evolution of an element Z inmore » a constant electron temperature plasma is given by a coupled set of Z + 1 first-order differential equations. However, they can be recast as Z uncoupled first-order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of the slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily long time.« less

  2. Energy shift and Casimir-Polder force for an atom out of thermal equilibrium near a dielectric substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Yu, Hongwei

    2014-09-01

    We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43, 1617 (1982), 10.1051/jphys:0198200430110161700; J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], which separates the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment of atoms in the ground and excited states, to the case out of thermal equilibrium, and then we use the generalized formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom. We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state atoms, with special attention devoted to the distinctive features as opposed to thermal equilibrium. In particular, we recover the distinctive behavior of the atom-wall force out of thermal equilibrium at large distances in the low-temperature limit recently found in a different theoretical framework, and furthermore we give a concrete region where this behavior holds.

  3. Generalized non-equilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.

  4. High-temperature partition functions, specific heats and spectral radiative properties of diatomic molecules with an improved calculation of energy levels

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Zhao, J. M.; Liu, L. H.

    2018-05-01

    The level energies of diatomic molecules calculated by the frequently used Dunham expansion will become less accurate for high-lying vibrational and rotational levels. In this paper, the potential curves for the lower-lying electronic states with accurate spectroscopic constants are reconstructed using the Rydberg-Klein-Rees (RKR) method, which are extrapolated to the dissociation limits by fitting of the theoretical potentials, and the rest of the potential curves are obtained from the ab-initio results in the literature. Solving the rotational dependence of the radial Schrödinger equation over the obtained potential curves, we determine the rovibrational level energies, which are then used to calculate the equilibrium and non-equilibrium thermodynamic properties of N2, N2+, NO, O2, CN, C2, CO and CO+. The partition functions and the specific heats are systematically validated by available data in the literature. Finally, we calculate the radiative source strengths of diatomic molecules in thermodynamic equilibrium, which agree well with the available values in the literature. The spectral radiative intensities for some diatomic molecules in thermodynamic non-equilibrium are calculated and validated by available experimental data.

  5. Physics of Magnetospheric Variability

    NASA Astrophysics Data System (ADS)

    Vasyliūnas, Vytenis M.

    2011-01-01

    Many widely used methods for describing and understanding the magnetosphere are based on balance conditions for quasi-static equilibrium (this is particularly true of the classical theory of magnetosphere/ionosphere coupling, which in addition presupposes the equilibrium to be stable); they may therefore be of limited applicability for dealing with time-variable phenomena as well as for determining cause-effect relations. The large-scale variability of the magnetosphere can be produced both by changing external (solar-wind) conditions and by non-equilibrium internal dynamics. Its developments are governed by the basic equations of physics, especially Maxwell's equations combined with the unique constraints of large-scale plasma; the requirement of charge quasi-neutrality constrains the electric field to be determined by plasma dynamics (generalized Ohm's law) and the electric current to match the existing curl of the magnetic field. The structure and dynamics of the ionosphere/magnetosphere/solar-wind system can then be described in terms of three interrelated processes: (1) stress equilibrium and disequilibrium, (2) magnetic flux transport, (3) energy conversion and dissipation. This provides a framework for a unified formulation of settled as well as of controversial issues concerning, e.g., magnetospheric substorms and magnetic storms.

  6. Monte Carlo calculations of LR115 detector response to 222Rn in the presence of 220Rn.

    PubMed

    Nikezić, D; Yu, K N

    2000-04-01

    The sensitivities (in m) of bare LR115 detectors and detectors in diffusion chambers to 222Rn and 220Rn chains are calculated by the Monte Carlo method. The partial sensitivities of bare detectors to the 222Rn chain are larger than those to the 220Rn chain, which is due to the higher energies of alpha particles in the 220Rn chain and the upper energy limit for detection for the LR115 detector. However, the total sensitivities are approximately equal because 220Rn is always in equilibrium with its first progeny, which is not the case for the 222Rn chain. The total sensitivity of bare LR115 detectors to 222Rn chain depends linearly on the equilibrium factor. The overestimation in 222Rn measurements with bare detectors caused by 220Rn in air can reach 10% in normal environmental conditions. An analytical relationship between the equilibrium factor and the ratio between track densities on the bare detector and the detector enclosed in chamber is given in the last part of the paper. This ratio is also affected by 220Rn, which can disturb the determination of the equilibrium factor.

  7. 3D equilibrium reconstruction with islands

    DOE PAGES

    Cianciosa, M.; Hirshman, S. P.; Seal, S. K.; ...

    2018-02-15

    This study presents the development of a 3D equilibrium reconstruction tool and the results of the first-ever reconstruction of an island equilibrium. The SIESTA non-nested equilibrium solver has been coupled to the V3FIT 3D equilibrium reconstruction code. Computed from a coupled VMEC and SIESTA model, synthetic signals are matched to measured signals by finding an optimal set of equilibrium parameters. By using the normalized pressure in place of normalized flux, non-equilibrium quantities needed by diagnostic signals can be efficiently mapped to the equilibrium. The effectiveness of this tool is demonstrated by reconstructing an island equilibrium of a DIII-D inner wallmore » limited L-mode case with an n = 1 error field applied. Finally, flat spots in Thomson and ECE temperature diagnostics show the reconstructed islands have the correct size and phase.« less

  8. 3D equilibrium reconstruction with islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cianciosa, M.; Hirshman, S. P.; Seal, S. K.

    This study presents the development of a 3D equilibrium reconstruction tool and the results of the first-ever reconstruction of an island equilibrium. The SIESTA non-nested equilibrium solver has been coupled to the V3FIT 3D equilibrium reconstruction code. Computed from a coupled VMEC and SIESTA model, synthetic signals are matched to measured signals by finding an optimal set of equilibrium parameters. By using the normalized pressure in place of normalized flux, non-equilibrium quantities needed by diagnostic signals can be efficiently mapped to the equilibrium. The effectiveness of this tool is demonstrated by reconstructing an island equilibrium of a DIII-D inner wallmore » limited L-mode case with an n = 1 error field applied. Finally, flat spots in Thomson and ECE temperature diagnostics show the reconstructed islands have the correct size and phase.« less

  9. Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.

    2008-01-01

    Most submarine gas hydrates are located within the two-phase equilibrium region of hydrate and interstitial water with pressures (P) ranging from 8 to 60 MPa and temperatures (T) from 275 to 293 K. However, current measurements of solubilities of methane in equilibrium with hydrate in the absence of a vapor phase are limited below 20 MPa and 283.15 K, and the differences among these data are up to 30%. When these data were extrapolated to other P-T conditions, it leads to large and poorly known uncertainties. In this study, in situ Raman spectroscopy was used to measure methane concentrations in pure water in equilibrium with sI (structure one) methane hydrate, in the absence of a vapor phase, at temperatures from 276.6 to 294.6 (??0.3) K and pressures at 10, 20, 30 and 40 (??0.4%) MPa. The relationship among concentration of methane in water in equilibrium with hydrate, in mole fraction [X(CH4)], the temperature in K, and pressure in MPa was derived as: X(CH4) = exp [11.0464 + 0.023267 P - (4886.0 + 8.0158 P)/T]. Both the standard enthalpy and entropy of hydrate dissolution at the studied T-P conditions increase slightly with increasing pressure, ranging from 41.29 to 43.29 kJ/mol and from 0.1272 to 0.1330 kJ/K ?? mol, respectively. When compared with traditional sampling and analytical methods, the advantages of our method include: (1) the use of in situ Raman signals for methane concentration measurements eliminates possible uncertainty caused by sampling and ex situ analysis, (2) it is simple and efficient, and (3) high-pressure data can be obtained safely. ?? 2007 Elsevier Ltd. All rights reserved.

  10. Reprint of : Scattering theory approach to bosonization of non-equilibrium mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Eugene V.

    2016-08-01

    Between many prominent contributions of Markus Büttiker to mesoscopic physics, the scattering theory approach to the electron transport and noise stands out for its elegance, simplicity, universality, and popularity between theorists working in this field. It offers an efficient way to theoretically investigate open electron systems far from equilibrium. However, this method is limited to situations where interactions between electrons can be ignored, or considered perturbatively. Fortunately, this is the case in a broad class of metallic systems, which are commonly described by the Fermi liquid theory. Yet, there exist another broad class of electron systems of reduced dimensionality, the so-called Tomonaga-Luttinger liquids, where interactions are effectively strong and cannot be neglected even at low energies. Nevertheless, strong interactions can be accounted exactly using the bosonization technique, which utilizes the free-bosonic character of collective excitations in these systems. In the present work, we use this fact in order to develop the scattering theory approach to the bosonization of open quasi-one dimensional electron systems far from equilibrium.

  11. Scattering theory approach to bosonization of non-equilibrium mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Eugene V.

    2016-03-01

    Between many prominent contributions of Markus Büttiker to mesoscopic physics, the scattering theory approach to the electron transport and noise stands out for its elegance, simplicity, universality, and popularity between theorists working in this field. It offers an efficient way to theoretically investigate open electron systems far from equilibrium. However, this method is limited to situations where interactions between electrons can be ignored, or considered perturbatively. Fortunately, this is the case in a broad class of metallic systems, which are commonly described by the Fermi liquid theory. Yet, there exist another broad class of electron systems of reduced dimensionality, the so-called Tomonaga-Luttinger liquids, where interactions are effectively strong and cannot be neglected even at low energies. Nevertheless, strong interactions can be accounted exactly using the bosonization technique, which utilizes the free-bosonic character of collective excitations in these systems. In the present work, we use this fact in order to develop the scattering theory approach to the bosonization of open quasi-one dimensional electron systems far from equilibrium.

  12. Potential-based dynamical reweighting for Markov state models of protein dynamics.

    PubMed

    Weber, Jeffrey K; Pande, Vijay S

    2015-06-09

    As simulators attempt to replicate the dynamics of large cellular components in silico, problems related to sampling slow, glassy degrees of freedom in molecular systems will be amplified manyfold. It is tempting to augment simulation techniques with external biases to overcome such barriers with ease; biased simulations, however, offer little utility unless equilibrium properties of interest (both kinetic and thermodynamic) can be recovered from the data generated. In this Article, we present a general scheme that harnesses the power of Markov state models (MSMs) to extract equilibrium kinetic properties from molecular dynamics trajectories collected on biased potential energy surfaces. We first validate our reweighting protocol on a simple two-well potential, and we proceed to test our method on potential-biased simulations of the Trp-cage miniprotein. In both cases, we find that equilibrium populations, time scales, and dynamical processes are reliably reproduced as compared to gold standard, unbiased data sets. We go on to discuss the limitations of our dynamical reweighting approach, and we suggest auspicious target systems for further application.

  13. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states

    NASA Astrophysics Data System (ADS)

    de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.

  14. Application of the equilibrium spin technique to a typical low-wing general aviation design

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Barlow, J. B.

    1979-01-01

    A graphical implementation of the equilibrium technique for obtaining spin modes from rotary balance data is presented. Using this technique, spin modes were computed for the NASA Low-Wing General Aviation Aircraft. The computed angles of attack are within 10 degrees of the NASA spin tunnel results. The method also provides information on the dynamic nature of spin modes. This technique offers the capability of providing a great deal of information on spin modes and recovery, using data from a single experimental installation. Such a technique could be utilized in the preliminary design phase in order to provide basic information on aircraft spin and recovery characteristics. Results, advantages and limitations of the application of this technique are discussed.

  15. Equilibrium sampling by reweighting nonequilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  16. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    PubMed

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  17. Experimental determination of iron isotope fractionations among Fe aq 2 + -FeSaq-Mackinawite at low temperatures: Implications for the rock record

    NASA Astrophysics Data System (ADS)

    Wu, Lingling; Druschel, Greg; Findlay, Alyssa; Beard, Brian L.; Johnson, Clark M.

    2012-07-01

    The Fe isotope fractionation factors among aqueous ferrous iron (Fe aq 2 +), aqueous FeS clusters (FeSaq), and nanoparticulate mackinawite under neutral and mildly acidic and alkaline pH conditions have been determined using the three-isotope method. Combined voltammetric analysis and geochemical modeling were used to determine the Fe speciation in the experimental systems. The equilibrium 56Fe/54Fe fractionation factor at 20 °C and pH 7 has been determined to be -0.32 ± 0.29 (2σ)‰ between Fe aq 2 + (minor FeSaq also present in the experiment) and mackinawite. This fractionation factor was essentially constant when pH was changed to 6 or 8. When equal molarity of HS- and Fe aq 2 + were added to the system, however, the isotopic fractionation at pH 7 changed to -0.64 ± 0.36 (2σ)‰, correlating with a significant increase in the proportion of FeHS+ and FeSaq. These results highlight a more important role of aqueous Fe-S speciation in the equilibrium Fe isotope fractionation factor than recognized in previous studies. The isotopic fractionation remained constant when temperature was increased from 20 °C to 35 °C for fractionation factors between Fe aq 2 + , and mackinawite and between dominantly FeHS+ and mackinawite. Synthesis experiments similar to those of Butler et al. (2005) and Guilbaud et al. (2010) at pH 4 show consistent results: over time, the aqueous Fe-mackinawite fractionation decreases but even after 38 days of aging the fractionation factor is far from the equilibrium value inferred using the three-isotope method. In contrast, at near-neutral pH the fractionation factor for the synthesis experiment reached the equilibrium value in 38 days. These differences are best explained by noting that at low pH the FeS mackinawite particles coarsen more rapidly via particle aggregation, which limits isotopic exchange, whereas at higher pH mackinawite aggregation is limited, and Fe isotope exchange occurs more rapidly, converging on the equilibrium value. These results suggest that mackinawite formed in natural environments at near-neutral or alkaline pH are unlikely to retain kinetic isotope fractionations, but are more likely to reflect equilibrium isotope compositions. This in turn has important implications for interpreting iron isotope compositions of Fe sulfides in natural systems.

  18. Computational methods for reactive transport modeling: A Gibbs energy minimization approach for multiphase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg

    2016-02-01

    We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.

  19. Locating Critical Circular and Unconstrained Failure Surface in Slope Stability Analysis with Tailored Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Pasik, Tomasz; van der Meij, Raymond

    2017-12-01

    This article presents an efficient search method for representative circular and unconstrained slip surfaces with the use of the tailored genetic algorithm. Searches for unconstrained slip planes with rigid equilibrium methods are yet uncommon in engineering practice, and little publications regarding truly free slip planes exist. The proposed method presents an effective procedure being the result of the right combination of initial population type, selection, crossover and mutation method. The procedure needs little computational effort to find the optimum, unconstrained slip plane. The methodology described in this paper is implemented using Mathematica. The implementation, along with further explanations, is fully presented so the results can be reproduced. Sample slope stability calculations are performed for four cases, along with a detailed result interpretation. Two cases are compared with analyses described in earlier publications. The remaining two are practical cases of slope stability analyses of dikes in Netherlands. These four cases show the benefits of analyzing slope stability with a rigid equilibrium method combined with a genetic algorithm. The paper concludes by describing possibilities and limitations of using the genetic algorithm in the context of the slope stability problem.

  20. Dissociative diffusion mechanism in vacancy-rich materials according to mass action kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep

    We conducted two sets of diffusion-reaction numerical simulations using a finite difference method (FDM) in order to investigate fast impurity diffusion via interstitial sites in vacancy-rich materials such as Cu(In,Ga)Se 2 (CIGS) and Cu 2ZnSn(S, Se) 4 (CZTSSe or CZTS) via the dissociative diffusion mechanism where the interstitial diffuser ultimately reacts with a vacancy to produce a substitutional. The first set of simulations extends the standard interstitial-limited dissociative diffusion theory to vacancy-rich material conditions where vacancies are annihilated in large amounts, introducing non-equilibrium vacancy concentration profiles. The second simulation set explores the vacancy-limited dissociative diffusion where impurity incorporation increases themore » equilibrium vacancy concentration. In addition to diffusion profiles of varying concentrations and shapes that were obtained in all simulations, some of the profiles can be fitted with the constant- and limited-source solutions of Fick’s second law despite the non-equilibrium condition induced by the interstitial-vacancy reaction. The first set of simulations reveals that the dissociative diffusion coefficient in vacancy-rich materials is inversely proportional to the initial vacancy concentration. In the second set of numerical simulations, impurity-induced changes in the vacancy concentration lead to distinctive diffusion profile shapes. The simulation results are also compared with published data of impurity diffusion in CIGS. And according to the characteristic properties of diffusion profiles from the two set of simulations, experimental detection of the dissociative diffusion mechanism in vacancy-rich materials may be possible.« less

  1. Dissociative diffusion mechanism in vacancy-rich materials according to mass action kinetics

    DOE PAGES

    Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep; ...

    2016-05-13

    We conducted two sets of diffusion-reaction numerical simulations using a finite difference method (FDM) in order to investigate fast impurity diffusion via interstitial sites in vacancy-rich materials such as Cu(In,Ga)Se 2 (CIGS) and Cu 2ZnSn(S, Se) 4 (CZTSSe or CZTS) via the dissociative diffusion mechanism where the interstitial diffuser ultimately reacts with a vacancy to produce a substitutional. The first set of simulations extends the standard interstitial-limited dissociative diffusion theory to vacancy-rich material conditions where vacancies are annihilated in large amounts, introducing non-equilibrium vacancy concentration profiles. The second simulation set explores the vacancy-limited dissociative diffusion where impurity incorporation increases themore » equilibrium vacancy concentration. In addition to diffusion profiles of varying concentrations and shapes that were obtained in all simulations, some of the profiles can be fitted with the constant- and limited-source solutions of Fick’s second law despite the non-equilibrium condition induced by the interstitial-vacancy reaction. The first set of simulations reveals that the dissociative diffusion coefficient in vacancy-rich materials is inversely proportional to the initial vacancy concentration. In the second set of numerical simulations, impurity-induced changes in the vacancy concentration lead to distinctive diffusion profile shapes. The simulation results are also compared with published data of impurity diffusion in CIGS. And according to the characteristic properties of diffusion profiles from the two set of simulations, experimental detection of the dissociative diffusion mechanism in vacancy-rich materials may be possible.« less

  2. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    NASA Astrophysics Data System (ADS)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  3. Magnetism of new metastable cobalt-nitride compounds.

    PubMed

    Balasubramanian, Balamurugan; Zhao, Xin; Valloppilly, Shah R; Beniwal, Sumit; Skomski, Ralph; Sarella, Anandakumar; Jin, Yunlong; Li, Xingzhong; Xu, Xiaoshan; Cao, Huibo; Wang, Haohan; Enders, Axel; Wang, Cai-Zhuang; Ho, Kai-Ming; Sellmyer, David J

    2018-06-06

    The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co-N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic-structure calculations. Conventional wisdom is that the interstitial or substitutional solubility of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not produce materials with significant magnetization and anisotropy. By contrast, our experiments identify new Co-N compounds with favorable magnetic properties including hexagonal Co3N nanoparticles with a high saturation magnetic polarization (Js = 1.28 T or 12.8 kG) and an appreciable uniaxial magnetocrystalline anisotropy (K1 = 1.01 MJ m-3 or 10.1 Mergs per cm3). This research provides a pathway for uncovering new magnetic compounds with computational efficiency beyond the existing materials database, which is significant for future technologies.

  4. Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography.

    PubMed

    Jia, Lijuan; Ma, Jiakai; Shi, Qiuyi; Long, Chao

    2017-01-03

    Hyper-cross-linked polymeric resin (HPR) represents a class of predominantly microporous adsorbents and has good adsorption performance toward VOCs. However, adsorption equilibrium of VOCs onto HPR are limited. In this research, a novel method for predicting adsorption capacities of VOCs on HPR at environmentally relevant temperatures and concentrations using inverse gas chromatography data was proposed. Adsorption equilibrium of six VOCs (n-pentane, n-hexane, dichloromethane, acetone, benzene, 1, 2-dichloroethane) onto HPR in the temperature range of 403-443 K were measured by inverse gas chromatography (IGC). Adsorption capacities at environmentally relevant temperatures (293-328 K) and concentrations (P/P s = 0.1-0.7) were predicted using Dubinin-Radushkevich (DR) equation based on Polany's theory. Taking consideration of the swelling properties of HPR, the volume swelling ratio (r) was introduced and r·V micro was used instead of V micro determined by N 2 adsorption data at 77 K as the parameter q 0 (limiting micropore volume) of the DR equation. The results showed that the adsorption capacities of VOCs at environmentally relevant temperatures and concentrations can be predicted effectively using IGC data, the root-mean-square errors between the predicted and experimental data was below 9.63%. The results are meaningful because they allow accurate prediction of adsorption capacities of adsorbents more quickly and conveniently using IGC data.

  5. Stresses and elastic constants of crystalline sodium, from molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, S.K.

    1985-02-01

    The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the resultsmore » to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs.« less

  6. Complex Nonlinear Dynamic System of Oligopolies Price Game with Heterogeneous Players Under Noise

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Yaguang

    A nonlinear four oligopolies price game with heterogeneous players, that are boundedly rational and adaptive, is built using two different special demand costs. Based on the theory of complex discrete dynamical system, the stability and the existing equilibrium point are investigated. The complex dynamic behavior is presented via bifurcation diagrams, the Lyapunov exponents to show equilibrium state, bifurcation and chaos with the variation in parameters. As disturbance is ubiquitous in economic systems, this paper focuses on the analysis of delay feedback control method under noise circumstances. Stable dynamics is confirmed to depend mainly on the low price adjustment speed, and if all four players have limited opportunities to stabilize the market, the new adaptive player facing profits of scale are found to be higher than the incumbents of bounded rational.

  7. The Navy/NASA Engine Program (NNEP89): Interfacing the program for the calculation of complex Chemical Equilibrium Compositions (CEC)

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford

    1991-01-01

    The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.

  8. Entropic lattice Boltzmann model for compressible flows.

    PubMed

    Frapolli, N; Chikatamarla, S S; Karlin, I V

    2015-12-01

    We present a lattice Boltzmann model (LBM) that covers the entire range of fluid flows, from low Mach weakly compressible to transonic and supersonic flows. One of the most restrictive limitations of the lattice Boltzmann method, the low Mach number limit, is overcome here by three fundamental changes to the LBM scheme: use of an appropriately chosen multispeed lattice, accurate evaluation of the equilibrium, and the entropic relaxation for the collision. The range of applications is demonstrated through the simulation of a bow shock in front of an airfoil and the simulation of decaying compressible turbulence with shocklets.

  9. Population and prehistory II: Space-limited human populations in constant environments

    PubMed Central

    Puleston, Cedric O.; Tuljapurkar, Shripad

    2010-01-01

    We present a population model to examine the forces that determined the quality and quantity of human life in early agricultural societies where cultivable area is limited. The model is driven by the non-linear and interdependent relationships between the age distribution of a population, its behavior and technology, and the nature of its environment. The common currency in the model is the production of food, on which age-specific rates of birth and death depend. There is a single nontrivial equilibrium population at which productivity balances caloric needs. One of the most powerful controls on equilibrium hunger level is fertility control. Gains against hunger are accompanied by decreases in population size. Increasing worker productivity does increase equilibrium population size but does not improve welfare at equilibrium. As a case study we apply the model to the population of a Polynesian valley before European contact. PMID:18598711

  10. Population and prehistory II: space-limited human populations in constant environments.

    PubMed

    Puleston, Cedric O; Tuljapurkar, Shripad

    2008-09-01

    We present a population model to examine the forces that determined the quality and quantity of human life in early agricultural societies where cultivable area is limited. The model is driven by the non-linear and interdependent relationships between the age distribution of a population, its behavior and technology, and the nature of its environment. The common currency in the model is the production of food, on which age-specific rates of birth and death depend. There is a single non-trivial equilibrium population at which productivity balances caloric needs. One of the most powerful controls on equilibrium hunger level is fertility control. Gains against hunger are accompanied by decreases in population size. Increasing worker productivity does increase equilibrium population size but does not improve welfare at equilibrium. As a case study we apply the model to the population of a Polynesian valley before European contact.

  11. Unbiased Rare Event Sampling in Spatial Stochastic Systems Biology Models Using a Weighted Ensemble of Trajectories

    PubMed Central

    Donovan, Rory M.; Tapia, Jose-Juan; Sullivan, Devin P.; Faeder, James R.; Murphy, Robert F.; Dittrich, Markus; Zuckerman, Daniel M.

    2016-01-01

    The long-term goal of connecting scales in biological simulation can be facilitated by scale-agnostic methods. We demonstrate that the weighted ensemble (WE) strategy, initially developed for molecular simulations, applies effectively to spatially resolved cell-scale simulations. The WE approach runs an ensemble of parallel trajectories with assigned weights and uses a statistical resampling strategy of replicating and pruning trajectories to focus computational effort on difficult-to-sample regions. The method can also generate unbiased estimates of non-equilibrium and equilibrium observables, sometimes with significantly less aggregate computing time than would be possible using standard parallelization. Here, we use WE to orchestrate particle-based kinetic Monte Carlo simulations, which include spatial geometry (e.g., of organelles, plasma membrane) and biochemical interactions among mobile molecular species. We study a series of models exhibiting spatial, temporal and biochemical complexity and show that although WE has important limitations, it can achieve performance significantly exceeding standard parallel simulation—by orders of magnitude for some observables. PMID:26845334

  12. Wide reflective equilibrium as a method of justification in bioethics.

    PubMed

    Nichols, Peter

    2012-10-01

    Carson Strong has recently argued that wide reflective equilibrium (WRE) is an unacceptable method of justification in bioethics. In its place, Strong recommends a methodology in which certain foundational moral judgments play a central role in the justification of moral beliefs, and coherence plays a limited justificatory role in that the rest of our judgments are made to cohere with these foundational judgments. In this paper, I argue that Strong's chief criticisms of WRE are unsuccessful and that his proposed alternative is in fact just another version of WRE. In the course of doing so, I specify which theses are central to WRE and which are not, and thus, provide a response to an additional objection, advanced by Peter Singer, that WRE is vacuous. I conclude by arguing that there may be better prospects for advancing the debate regarding methodology in bioethics if we focus on restricted epistemic and methodological theses rather than broad approaches, such as WRE, that come in many different varieties.

  13. Thermodynamics of enzyme-catalyzed esterifications: II. Levulinic acid esterification with short-chain alcohols.

    PubMed

    Altuntepe, Emrah; Emel'yanenko, Vladimir N; Forster-Rotgers, Maximilian; Sadowski, Gabriele; Verevkin, Sergey P; Held, Christoph

    2017-10-01

    Levulinic acid was esterified with methanol, ethanol, and 1-butanol with the final goal to predict the maximum yield of these equilibrium-limited reactions as function of medium composition. In a first step, standard reaction data (standard Gibbs energy of reaction Δ R g 0 ) were determined from experimental formation properties. Unexpectedly, these Δ R g 0 values strongly deviated from data obtained with classical group contribution methods that are typically used if experimental standard data is not available. In a second step, reaction equilibrium concentrations obtained from esterification catalyzed by Novozym 435 at 323.15 K were measured, and the corresponding activity coefficients of the reacting agents were predicted with perturbed-chain statistical associating fluid theory (PC-SAFT). The so-obtained thermodynamic activities were used to determine Δ R g 0 at 323.15 K. These results could be used to cross-validate Δ R g 0 from experimental formation data. In a third step, reaction-equilibrium experiments showed that equilibrium position of the reactions under consideration depends strongly on the concentration of water and on the ratio of levulinic acid: alcohol in the initial reaction mixtures. The maximum yield of the esters was calculated using Δ R g 0 data from this work and activity coefficients of the reacting agents predicted with PC-SAFT for varying feed composition of the reaction mixtures. The use of the new Δ R g 0 data combined with PC-SAFT allowed good agreement to the measured yields, while predictions based on Δ R g 0 values obtained with group contribution methods showed high deviations to experimental yields.

  14. Students' and teachers' misapplication of le chatelier's principle: Implications for the teaching of chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Quílez-Pardo, Juan; Solaz-Portolés, Joan Josep

    The aim of this article was to study the reasons, strategies, and procedures that both students and teachers use to solve some chemical equilibrium questions and problems. Inappropriate conceptions on teaching and a lack of knowledge regarding the limited usefulness of Le Chatelier's principle, with its vague and ambiguous formulation and textbook presentation, may be some of the sources of misconceptions about the prediction of the effect of changing conditions on chemical equilibrium. To diagnose misconceptions and their possible sources, a written test was developed and administered to 170 1st-year university chemistry students. A chemical equilibrium problem, relating to the students' test, was solved by 40 chemistry teachers. First, we ascertained that teacher's conceptions might influence the problem-solving strategies of the learner. Based on this first aspect, our discussion also concerns students' and teachers' misconceptions related to the Le Chatelier's principle. Misconceptions emerged through: (a) misapplication and misunderstanding of Le Chatelier's principle; (b) use of rote-learning recall and algorithmic procedures; (c) incorrect control of the variables involved; (d) limited use of the chemical equilibrium law; (e) a lack of mastery of chemical equilibrium principles and difficulty in transferring such principles to new situations. To avoid chemical equilibrium misconceptions, a specific pattern of conceptual and methodological change may be considered.Received: 16 November 1993; Revised: 21 September 1994;

  15. Near-equilibrium dumb-bell-shaped figures for cohesionless small bodies

    NASA Astrophysics Data System (ADS)

    Descamps, Pascal

    2016-02-01

    In a previous paper (Descamps, P. [2015]. Icarus 245, 64-79), we developed a specific method aimed to retrieve the main physical characteristics (shape, density, surface scattering properties) of highly elongated bodies from their rotational lightcurves through the use of dumb-bell-shaped equilibrium figures. The present work is a test of this method. For that purpose we introduce near-equilibrium dumb-bell-shaped figures which are base dumb-bell equilibrium shapes modulated by lognormal statistics. Such synthetic irregular models are used to generate lightcurves from which our method is successfully applied. Shape statistical parameters of such near-equilibrium dumb-bell-shaped objects are in good agreement with those calculated for example for the Asteroid (216) Kleopatra from its dog-bone radar model. It may suggest that such bilobed and elongated asteroids can be approached by equilibrium figures perturbed be the interplay with a substantial internal friction modeled by a Gaussian random sphere.

  16. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics

    NASA Astrophysics Data System (ADS)

    Miao, Linling; Young, Charles D.; Sing, Charles E.

    2017-07-01

    Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.

  17. Analysis of rainfall-induced slope instability using a field of local factor of safety

    USGS Publications Warehouse

    Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.

    2012-01-01

    Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.

  18. BOOK REVIEW: Relativistic Figures of Equilibrium

    NASA Astrophysics Data System (ADS)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting losing material, and the black hole transition, where rotating fluids are seen to approach black holes for suitable limits of their parameters. As the authors themselves mention, one of the emphasis of this book is placed 'on the rigorous treatment of simple models instead of trying to describe real objects with their many complex facets...'. After discussing constant density models both in Newtonian theory (the Maclaurin spheroids) and in the non-rotating relativistic case (the Schwarzschild interior model), the book concentrates on the so-called rigidly rotating disc of dust. Chapter two is mainly devoted to deriving this model and presenting its physical properties. The derivation is based in the so-called inverse scattering method of integrable systems and on a thorough knowledge of the theory of integration on Riemann surfaces. The details, which take up about one fifth of the whole length, are difficult to follow for any reader without a previous mastering of the techniques involved. For the expert, however, this part of the book is very useful because it brings together all the steps required for the complete determination of the solution. After the derivation of the disc of dust, the physical properties of the resulting one-parameter family of solutions are described, including its multipole moment structure, the existence of ergospheres, the Newtonian limit or the motion of test particles. Of particular interest is the transition from the disc of dust to the extreme black hole configuration corresponding to the limit when the parameter describing the fluid approaches its upper end. After this chapter devoted to exact models, the book looks at the problem from a completely different point of view, namely by using numerical methods. This tool has proven to be fundamental for a proper study of this physical problem. This book concentrates on the so-called pseudo-spectral methods and the use of multidomains adapted to the different regions of the spacetime with qualitatively different behaviours. The presentation of the main ideas behind this method is very clear and accessible even to the non-expert. The book then is devoted to presenting both qualitative and quantitative results for a number of models with different equations of state. The case treated more in depth is the constant density case, but results for polytropic equations of state as well as a degenerate ideal gas of neutrons and strange quark matter are also presented. The emphasis is put on the exploration of the parameter space for a fixed equation of state. This is done by studying the various limiting cases involved, namely the non-rotating limit, the Newtonian limit, the mass-shedding limit, the infinite central pressure limit, the transition from one rotating body to several bodies, the black hole limit and the disc limit. The emerging picture in the constant density case is a division of the parameter space into an infinite number of classes, all connected through the Maclaurin spheroids and approaching the limiting case of a Maclaurin disc of dust, which in turn is the Newtonian limit of the relativistic disc of dust. Although the phase space of solutions differs for other equations of state, the main feature of having classes of solutions remains. Despite the inherent complexity and variety of possible behaviours, the authors manage to describe the results in a very lucid manner, and the resulting picture emerges very clearly. The presentation also includes many well-chosen figures, which clarify greatly the understanding of the results and makes this chapter very informative indeed. Furthermore, the book has a related webpage (http://www.tpi.uni-jena.de/gravity/relastro/rfe/) where the source codes for calculating various figures of equilibrium are publicly available. Besides considering single fluids, configurations where a central and very compact object is surrounded by a ring of fluid are also treated to some extent. The central object may be a Newtonian point mass, a black hole or a rotating disc of dust. Special emphasis is put in studying the Komar mass of the central object, which is shown to be negative in several circumstances. The book ends with a very brief description of stability of rotating configurations and a number of appendices summarizing some of the more technical material needed for the main body. In summary, this book is a very valuable tool for anybody wishing to learn more about relativistic rotating bodies in equilibrium. The combination of exact analytic results and numerical methods makes it of particular interest, as both aspects are important in this field and their combined use gives rise to a much deeper understanding of the subject. The book contains many results and in general it is pleasant to read, the most arid part being the derivation of the disk of dust solution. The book is perhaps excessively brief at some places, but overall it is an excellent reference on this topic.

  19. MODEL-INDEPENDENT LIMITS ON THE LINE-OF-SIGHT DEPTH OF CLUSTERS OF GALAXIES USING X-RAY AND SUNYAEV-ZEL'DOVICH DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdavi, Andisheh; Chang Weihan

    2011-07-01

    We derive a model-independent expression for the minimum line-of-sight extent of the hot plasma in a cluster of galaxies. The only inputs are the 1-5 keV X-ray surface brightness and the Comptonization from Sunyaev-Zel'dovich (SZ) data. No a priori assumptions regarding equilibrium or geometry are required. The method applies when the X-ray emitting material has temperatures anywhere between 0.3 keV and 20 keV and metallicities between 0 and twice solar-conditions fulfilled by nearly all intracluster plasma. Using this method, joint APEX-SZ and Chandra X-ray Observatory data on the Bullet Cluster yield a lower limit of 400 {+-} 56 kpc onmore » the half-pressure depth of the main component, limiting it to being at least spherical, if not cigar-shaped primarily along the line of sight.« less

  20. Prediction of HR/BP response to the spontaneous breathing trial by fluctuation dissipation theory

    NASA Astrophysics Data System (ADS)

    Chen, Man

    2014-03-01

    We applied the non-equilibrium fluctuation dissipation theorem to predict how critically-ill patients respond to treatment, based on both heart rate data and blood pressure data collected by standard hospital monitoring devices. The non-equilibrium fluctuation dissipation theorem relates the response of a system to a perturbation to the fluctuations in the stationary state of the system. It is shown that the response of patients to a standard procedure performed on patients, the spontaneous breathing trial (SBT), can be predicted by the non-equilibrium fluctuation dissipation approach. We classify patients into different groups according to the patients' characteristics. For each patient group, we extend the fluctuation dissipation theorem to predict interactions between blood pressure and beat-to-beat dynamics of heart rate in response to a perturbation (SBT), We also extract the form of the perturbation function directly from the physiological data, which may help to reduce the prediction error. We note this method is not limited to the analysis of the heart rate dynamics, but also can be applied to analyze the response of other physiological signals to other clinical interventions.

  1. Unitarity limits on the mass and radius of dark matter particles

    NASA Technical Reports Server (NTRS)

    Griest, Kim; Kamionkowski, Marc

    1989-01-01

    Using partial wave unitarity and the observed density of the Universe, it is show that a stable elementary particle which was once in thermal equilibrium cannot have a mass greater than 340 TeV. An extended object which was once in thermal equilibrium cannot have a radius less than 7.5 x 10(exp -7) fm. A lower limit to the relic abundance of such particles is also found.

  2. Dynamic Disorder in Quasi-Equilibrium Enzymatic Systems

    PubMed Central

    Chaudhury, Srabanti; Igoshin, Oleg A.

    2010-01-01

    Conformations and catalytic rates of enzymes fluctuate over a wide range of timescales. Despite these fluctuations, there exist some limiting cases in which the enzymatic catalytic rate follows the macroscopic rate equation such as the Michaelis-Menten law. In this paper we investigate the applicability of macroscopic rate laws for fluctuating enzyme systems in which catalytic transitions are slower than ligand binding-dissociation reactions. In this quasi-equilibrium limit, for an arbitrary reaction scheme we show that the catalytic rate has the same dependence on ligand concentrations as obtained from mass-action kinetics even in the presence of slow conformational fluctuations. These results indicate that the timescale of conformational dynamics – no matter how slow – will not affect the enzymatic rate in quasi-equilibrium limit. Our numerical results for two enzyme-catalyzed reaction schemes involving multiple substrates and inhibitors further support our general theory. PMID:20808776

  3. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  4. Automating the implementation of an equilibrium profile model for glacier reconstruction in a GIS environment

    NASA Astrophysics Data System (ADS)

    Frew, Craig R.; Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Hughes, Philip D.; Ivy-Ochs, Susan; Lukas, Sven; Renssen, Hans; Ribolini, Adriano

    2014-05-01

    Reconstruction of glacier equilibrium line altitudes (ELAs) associated with advance stages of former ice masses is widely used as a tool for palaeoclimatic reconstruction. This requires an accurate reconstruction of palaeo-glacier surface hypsometry, based on mapping of available ice-marginal landform evidence. Classically, the approach used to define ice-surface elevations, using such evidence, follows the 'cartographic method', whereby contours are estimated based on an 'understanding' of the typical surface form of contemporary ice masses. This method introduces inherent uncertainties in the palaeoclimatic interpretation of reconstructed ELAs, especially where the upper limits of glaciation are less well constrained and/or the age of such features in relation to terminal moraine sequences is unknown. An alternative approach is to use equilibrium profile models to define ice surface elevations. Such models are tuned, generally using basal shear stress, in order to generate an ice surface that reaches 'target elevations' defined by geomorphology. In areas where there are no geomorphological constraints for the former ice surface, the reconstruction is undertaken using glaciologiaclly representative values for basal shear stress. Numerical reconstructions have been shown to produce glaciologically "realistic" ice surface geometries, allowing for more objective and robust comparative studies at local to regional scales. User-friendly tools for the calculation of equilibrium profiles are presently available in the literature. Despite this, their use is not yet widespread, perhaps owing to the difficult and time consuming nature of acquiring the necessary inputs from contour maps or digital elevation models. Here we describe a tool for automatically reconstructing palaeo-glacier surface geometry using an equilibrium profile equation implemented in ArcGIS. The only necessary inputs for this tool are 1) a suitable digital elevation model and 2) mapped outlines of the former glacier terminus position (usually a frontal moraine system) and any relevant geomorphological constraints on ice surface elevation (e.g. lateral moraines, trimlines etc.). This provides a standardised method for glacier reconstruction that can be applied rapidly and systematically to large geomorphological datasets.

  5. Using a Spreadsheet Scroll Bar to Solve Equilibrium Concentrations

    ERIC Educational Resources Information Center

    Raviolo, Andres

    2012-01-01

    A simple, conceptual method is described for using the spreadsheet scroll bar to find the composition of a system at chemical equilibrium. Simulation of any kind of chemical equilibrium can be carried out using this method, and the effects of different disturbances can be predicted. This simulation, which can be used in general chemistry…

  6. CFD analysis of laboratory scale phase equilibrium cell operation

    NASA Astrophysics Data System (ADS)

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  7. CFD analysis of laboratory scale phase equilibrium cell operation.

    PubMed

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  8. Simple method for the selection of the appropriate food simulant for the evaluation of a specific food/packaging interaction.

    PubMed

    Hernández-Muñoz, P; Catalá, R; Gavara, R

    2002-01-01

    Knowledge of the extent of food/packaging interactions is essential to provide assurance of food quality and shelf life, especially in migration and sorption processes that commonly reach equilibrium during the lifetime of a commercial packaged foodstuff. The limits of sorption and migration must be measured in the presence of the specific food or an appropriate food simulant. The partition equilibrium of food aroma compounds between plastic films and foods or food simulants (K(A,P/L) has been characterized. Two polymers (LLDPE and PET), three organic compounds (ethyl caproate, hexanal and 2-phenylethanol), four food products with varying fat content (milk cream, mayonnaise, margarine and oil) and three simulants (ethanol 95%, n-heptane and isooctane) were selectedfor study. The results show the effect of the aroma compound volatility, and polarity, as well as its compatibility with the polymer and the food or food simulant. Equilibrium constants for the organic compound between the polymers and a gaseous phase (K(A,P/V)) as well as between the food (or food simulant) and a gaseous phase (K(A,L/V)) were also determined. An approach is presented to estimate K(A,P/V) from the binary equilibrium constants K(A,P/V) and K(A,L/V). Calculated results were shown to describe experimental data very well and indicated that compatibility between the aroma and the food or food simulant is the main contributing factor to the partition equilibrium describing the extent of food/packaging interactions. Therefore, the measurement of liquid/vapour equilibrium can be regarded as a powerful tool to compare the effectiveness of food simulants as substitutes of a particular food product and can be used as a guide for the selection of the appropriate simulant.

  9. Markov state models from short non-equilibrium simulations—Analysis and correction of estimation bias

    NASA Astrophysics Data System (ADS)

    Nüske, Feliks; Wu, Hao; Prinz, Jan-Hendrik; Wehmeyer, Christoph; Clementi, Cecilia; Noé, Frank

    2017-03-01

    Many state-of-the-art methods for the thermodynamic and kinetic characterization of large and complex biomolecular systems by simulation rely on ensemble approaches, where data from large numbers of relatively short trajectories are integrated. In this context, Markov state models (MSMs) are extremely popular because they can be used to compute stationary quantities and long-time kinetics from ensembles of short simulations, provided that these short simulations are in "local equilibrium" within the MSM states. However, over the last 15 years since the inception of MSMs, it has been controversially discussed and not yet been answered how deviations from local equilibrium can be detected, whether these deviations induce a practical bias in MSM estimation, and how to correct for them. In this paper, we address these issues: We systematically analyze the estimation of MSMs from short non-equilibrium simulations, and we provide an expression for the error between unbiased transition probabilities and the expected estimate from many short simulations. We show that the unbiased MSM estimate can be obtained even from relatively short non-equilibrium simulations in the limit of long lag times and good discretization. Further, we exploit observable operator model (OOM) theory to derive an unbiased estimator for the MSM transition matrix that corrects for the effect of starting out of equilibrium, even when short lag times are used. Finally, we show how the OOM framework can be used to estimate the exact eigenvalues or relaxation time scales of the system without estimating an MSM transition matrix, which allows us to practically assess the discretization quality of the MSM. Applications to model systems and molecular dynamics simulation data of alanine dipeptide are included for illustration. The improved MSM estimator is implemented in PyEMMA of version 2.3.

  10. Stellar equilibrium configurations of white dwarfs in the f( R, T) gravity

    NASA Astrophysics Data System (ADS)

    Carvalho, G. A.; Lobato, R. V.; Moraes, P. H. R. S.; Arbañil, José D. V.; Otoniel, E.; Marinho, R. M.; Malheiro, M.

    2017-12-01

    In this work we investigate the equilibrium configurations of white dwarfs in a modified gravity theory, namely, f( R, T) gravity, for which R and T stand for the Ricci scalar and trace of the energy-momentum tensor, respectively. Considering the functional form f(R,T)=R+2λ T, with λ being a constant, we obtain the hydrostatic equilibrium equation for the theory. Some physical properties of white dwarfs, such as: mass, radius, pressure and energy density, as well as their dependence on the parameter λ are derived. More massive and larger white dwarfs are found for negative values of λ when it decreases. The equilibrium configurations predict a maximum mass limit for white dwarfs slightly above the Chandrasekhar limit, with larger radii and lower central densities when compared to standard gravity outcomes. The most important effect of f( R, T) theory for massive white dwarfs is the increase of the radius in comparison with GR and also f( R) results. By comparing our results with some observational data of massive white dwarfs we also find a lower limit for λ , namely, λ >- 3× 10^{-4}.

  11. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    PubMed

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapair

  12. The present state and future directions of PDF methods

    NASA Technical Reports Server (NTRS)

    Pope, S. B.

    1992-01-01

    The objectives of the workshop are presented in viewgraph format, as is this entire article. The objectives are to discuss the present status and the future direction of various levels of engineering turbulence modeling related to Computational Fluid Dynamics (CFD) computations for propulsion; to assure that combustion is an essential part of propulsion; and to discuss Probability Density Function (PDF) methods for turbulent combustion. Essential to the integration of turbulent combustion models is the development of turbulent model, chemical kinetics, and numerical method. Some turbulent combustion models typically used in industry are the k-epsilon turbulent model, the equilibrium/mixing limited combustion, and the finite volume codes.

  13. Nystagmus as a Sign of Labyrinthine Disorders-Three-Dimensional Analysis of Nystagmus-

    PubMed Central

    2008-01-01

    In order to diagnose the pathological condition of vertiginous patients, a detailed observation of nystagmus in addition to examination of body equilibrium and other neurotological tests are essential. How to precisely record the eye movements is one of the goals of the researchers and clinicians who are interested in the analysis of eye movements for a long time. For considering that, one has to think about the optimal method for recording eye movements. In this review, the author introduced a new method, that is, an analysis of vestibular induced eye movements in three-dimensions and discussed the advantages and limitations of this method. PMID:19434275

  14. Solubility limits in quaternary SnTe-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.

    2017-01-01

    A combined theoretical and experimental approach was used to determine the equilibrium as well as non-equilibrium solubility lines in the quaternary Sn 1-yMn yTe 1-xSe xalloy space, revealing a large area of accessible metastable phase space.

  15. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Larsson, Johan

    2013-01-01

    A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.

  16. The physicist's companion to current fluctuations: one-dimensional bulk-driven lattice gases

    NASA Astrophysics Data System (ADS)

    Lazarescu, Alexandre

    2015-12-01

    One of the main features of statistical systems out of equilibrium is the currents they exhibit in their stationary state: microscopic currents of probability between configurations, which translate into macroscopic currents of mass, charge, etc. Understanding the general behaviour of these currents is an important step towards building a universal framework for non-equilibrium steady states akin to the Gibbs-Boltzmann distribution for equilibrium systems. In this review, we consider one-dimensional bulk-driven particle gases, and in particular the asymmetric simple exclusion process (ASEP) with open boundaries, which is one of the most popular models of one-dimensional transport. We focus, in particular, on the current of particles flowing through the system in its steady state, and on its fluctuations. We show how one can obtain the complete statistics of that current, through its large deviation function, by combining results from various methods: exact calculation of the cumulants of the current, using the integrability of the model; direct diagonalization of a biased process in the limits of very high or low current; hydrodynamic description of the model in the continuous limit using the macroscopic fluctuation theory. We give a pedagogical account of these techniques, starting with a quick introduction to the necessary mathematical tools, as well as a short overview of the existing works relating to the ASEP. We conclude by drawing the complete dynamical phase diagram of the current. We also remark on a few possible generalizations of these results.

  17. Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids

    NASA Astrophysics Data System (ADS)

    Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk

    2018-03-01

    The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.

  18. Equilibium and Stability of Spherical Vlasov Systems

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.; Chacon, L.; Finn, J. M.

    2002-04-01

    Collisionless systems with inverse square interaction potentials and possible background confining potentials are considered for the case of spherical symmetry and in the Vlasov limit. The equilibrium is the most general, with single-particle distribution function dependence on both total energy E and total angular momentum L. A new formulation of the full integral-equation stability problem is developed. For a general spherical harmonic perturbation potential, the 3D stability problem is reduced to a 2D problem in an arbitrary central plane of motion, then to a small number of coupled 1D problems involving only the radius. Normal modes depend only on the total mode number l, as is shown directly by this new formulation, with all m degenerate. This method has been used for the Coulomb (repulsive) case.[1] An equilibrium family with uniform central (electron) density is found, and the low-frequency response computed to show that these solutions may provide stable confinement of a massive second (ion) species. These methods may be applied to a particle bunch in the beam frame, and some stability results appropriate to this case are presented. Application to the gravitational (attractive) case is also described, and some initial analytic results are presented. [1] D. C. Barnes, L. Chacón, J. M. Finn, “Equilibrium and Low-frequency Stability of a Uniform Density, Collisionless, Spherical Vlasov System,” submitted to Phys. of Plasmas (2002).

  19. Equilibrium Molecular Thermodynamics from Kirkwood Sampling

    PubMed Central

    2015-01-01

    We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys.2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte Carlo moves. Using this method, equilibrium distributions corresponding to different temperatures and potential energy functions can be generated from a given set of low-order correlations. Since Kirkwood samples are generated independently, this method is ideally suited for massively parallel distributed computing. The second approach is a variant of reservoir replica exchange, where Kirkwood sampling is used to construct a reservoir of conformations, which exchanges conformations with the replicas performing equilibrium sampling corresponding to different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide. PMID:25915525

  20. Free energy landscape from path-sampling: application to the structural transition in LJ38

    NASA Astrophysics Data System (ADS)

    Adjanor, G.; Athènes, M.; Calvo, F.

    2006-09-01

    We introduce a path-sampling scheme that allows equilibrium state-ensemble averages to be computed by means of a biased distribution of non-equilibrium paths. This non-equilibrium method is applied to the case of the 38-atom Lennard-Jones atomic cluster, which has a double-funnel energy landscape. We calculate the free energy profile along the Q4 bond orientational order parameter. At high or moderate temperature the results obtained using the non-equilibrium approach are consistent with those obtained using conventional equilibrium methods, including parallel tempering and Wang-Landau Monte Carlo simulations. At lower temperatures, the non-equilibrium approach becomes more efficient in exploring the relevant inherent structures. In particular, the free energy agrees with the predictions of the harmonic superposition approximation.

  1. Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction–diffusion systems

    NASA Astrophysics Data System (ADS)

    Fellner, Klemens; Tang, Bao Quoc

    2018-06-01

    The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.

  2. Modelling interactions of toxicants and density dependence in wildlife populations

    USGS Publications Warehouse

    Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2013-01-01

    1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to toxicant impacts until a critical threshold is crossed. In our study population, toxicant-induced changes were observed in the equilibrium number of nonbreeding rather than breeding birds, suggesting that monitoring efforts including both life stages are needed to timely detect population declines. Further, by combining quantitative exposure–response relationships with a wildlife demographic model, we provided a method to quantify critical toxicant thresholds for wildlife population persistence.

  3. A first principles calculation and statistical mechanics modeling of defects in Al-H system

    NASA Astrophysics Data System (ADS)

    Ji, Min; Wang, Cai-Zhuang; Ho, Kai-Ming

    2007-03-01

    The behavior of defects and hydrogen in Al was investigated by first principles calculations and statistical mechanics modeling. The formation energy of different defects in Al+H system such as Al vacancy, H in institution and multiple H in Al vacancy were calculated by first principles method. Defect concentration in thermodynamical equilibrium was studied by total free energy calculation including configuration entropy and defect-defect interaction from low concentration limit to hydride limit. In our grand canonical ensemble model, hydrogen chemical potential under different environment plays an important role in determing the defect concentration and properties in Al-H system.

  4. Pdf prediction of supersonic hydrogen flames

    NASA Technical Reports Server (NTRS)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  5. A symmetrical method to obtain shear moduli from microrheology.

    PubMed

    Nishi, Kengo; Kilfoil, Maria L; Schmidt, Christoph F; MacKintosh, F C

    2018-05-16

    Passive microrheology typically deduces shear elastic loss and storage moduli from displacement time series or mean-squared displacements (MSD) of thermally fluctuating probe particles in equilibrium materials. Common data analysis methods use either Kramers-Kronig (KK) transformation or functional fitting to calculate frequency-dependent loss and storage moduli. We propose a new analysis method for passive microrheology that avoids the limitations of both of these approaches. In this method, we determine both real and imaginary components of the complex, frequency-dependent response function χ(ω) = χ'(ω) + iχ''(ω) as direct integral transforms of the MSD of thermal particle motion. This procedure significantly improves the high-frequency fidelity of χ(ω) relative to the use of KK transformation, which has been shown to lead to artifacts in χ'(ω). We test our method on both model and experimental data. Experiments were performed on solutions of worm-like micelles and dilute collagen solutions. While the present method agrees well with established KK-based methods at low frequencies, we demonstrate significant improvement at high frequencies using our symmetric analysis method, up to almost the fundamental Nyquist limit.

  6. Behavior and impact of sulfur incorporation in Zinc Oxysulfide alloy grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ma, Jingrui; Tang, Kun; Mao, Haoyuan; Ye, Jiandong; Zhu, Shunming; Xu, Zhonghua; Yao, Zhengrong; Gu, Shulin; Zheng, Youdou

    2018-03-01

    Highly mismatched ZnO1-xSx:N alloy films with various x were deposited on c-plane sapphire substrates by a near-equilibrium method, metal-organic chemical vapor deposition. The sulfur concentration in the films could be tuned by changing the flow rate of H2S during the growth process. The films that could maintain single phase have an upper limit for x ∼ 0.15, which is smaller than the x values obtained from other non-equilibrium-grown samples (x ∼ 0.23). When x > 0.15, phases other than the wurtzite ZnO (W-ZnO) one appeared. Those phases were ascribed to the sulfur-diluted W-ZnO like phase, low x W-ZnO like phase, and high x W-ZnS like phase. The S contents in different phase has been determined by using Vegard's law and the X-ray photoelectron spectroscopy. Meanwhile, the compositional dependence of the bandgap energy in the ZnO1-xSx alloyed material has been investigated and studied comparing with other reported results. The dispersed bowing parameter b and the mechanism of the phase separation in samples grown by both the near-equilibrium method and the non-equilibrium one have also been discussed based on the difference of the atomic radius and electronegativity of the oxygen and sulfur atoms. Furthermore, the Raman and photoluminescence spectra have shown that the sulfur incorporation may suppress zinc interstitials related defects, while the oxygen vacancies related defects may be easily formed at the same time. These results indicate that ZnO1-xSx films could be beneficial to the realization of p-type doping in ZnO, although no obvious p-type characteristic has been attained in the work yet.

  7. Three-stage stochastic pump: Another type of Onsager-Casimir symmetry and results far from equilibrium

    NASA Astrophysics Data System (ADS)

    Rosas, Alexandre; Van den Broeck, Christian; Lindenberg, Katja

    2018-06-01

    The stochastic thermodynamic analysis of a time-periodic single particle pump sequentially exposed to three thermochemical reservoirs is presented. The analysis provides explicit results for flux, thermodynamic force, entropy production, work, and heat. These results apply near equilibrium as well as far from equilibrium. In the linear response regime, a different type of Onsager-Casimir symmetry is uncovered. The Onsager matrix becomes symmetric in the limit of zero dissipation.

  8. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  9. Accurate determination of residual acrylic acid in superabsorbent polymer of hygiene products by headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Jiang, Ran

    2017-02-17

    This work reports on a method for the determination of residual acrylic acid (AA) in the superabsorbent polymers for hygiene products by headspace analysis. It was based on water extraction for the polymer sample at a room temperature for 50min. Then, the AA in the extractant reacted with bicarbonate solution in a closed headspace sample vial, from which the carbon dioxide generated from the reaction (within 20min at 70°C) was detected by gas chromatography (GC). It was found that there is adsorption partition equilibrium of AA between solid-liquid phases. Therefore, an equation for calculating the total AA content in the original polymers sample was derived based on the above phase equilibrium. The results show that the HS-GC method has good precision (RSD<2.51%) and good accuracy (recoveries from 93 to 105%); the limit of quantification (LOQ) was 373mg/kg. The present method is rapid, accurate, and suitable for determining total residual acrylic acid in a wide variety of applications from processing of superabsorbent polymer to commercial products quality control. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Determination of xanthohumol in beer based on cloud point extraction coupled with high performance liquid chromatography.

    PubMed

    Chen, Ligang; Zhao, Qi; Jin, Haiyan; Zhang, Xiaopan; Xu, Yang; Yu, Aimin; Zhang, Hanqi; Ding, Lan

    2010-04-15

    A method based on coupling of cloud point extraction (CPE) with high performance liquid chromatography separation and ultraviolet detection was developed for determination of xanthohumol in beer. The nonionic surfactant Triton X-114 was chosen as the extraction medium. The parameters affecting the CPE were evaluated and optimized. The highest extraction yield of xanthohumol was obtained with 2.5% of Triton X-114 (v/v) at pH 5.0, 15% of sodium chloride (w/v), 70 degrees C of equilibrium temperature and 10 min of equilibrium time. Under these conditions, the limit of detection of xanthohumol is 0.003 mg L(-1). The intra- and inter-day precisions expressed as relative standard deviations are 4.6% and 6.3%, respectively. The proposed method was successfully applied for determination of xanthohumol in various beer samples. The contents of xanthohumol in these samples are in the range of 0.052-0.628 mg L(-1), and the recoveries ranging from 90.7% to 101.9% were obtained. The developed method was demonstrated to be efficient, green, rapid and inexpensive for extraction and determination of xanthohumol in beer. (c) 2010 Elsevier B.V. All rights reserved.

  11. Semiconductor material and method for enhancing solubility of a dopant therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Rubia, Tomas Diaz; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2003-09-09

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  12. A Semiconductor Material And Method For Enhancing Solubility Of A Dopant Therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2005-03-29

    A method for enhancing the equilibrium solubility of boron ad indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  13. A rapid method for the computation of equilibrium chemical composition of air to 15000 K

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.; Erickson, Wayne D.

    1988-01-01

    A rapid computational method has been developed to determine the chemical composition of equilibrium air to 15000 K. Eleven chemically reacting species, i.e., O2, N2, O, NO, N, NO+, e-, N+, O+, Ar, and Ar+ are included. The method involves combining algebraically seven nonlinear equilibrium equations and four linear elemental mass balance and charge neutrality equations. Computational speeds for determining the equilibrium chemical composition are significantly faster than the often used free energy minimization procedure. Data are also included from which the thermodynamic properties of air can be computed. A listing of the computer program together with a set of sample results are included.

  14. Method for enhancing the solubility of boron and indium in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2002-01-01

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  15. Chemical Equilibrium and Polynomial Equations: Beware of Roots.

    ERIC Educational Resources Information Center

    Smith, William R.; Missen, Ronald W.

    1989-01-01

    Describes two easily applied mathematical theorems, Budan's rule and Rolle's theorem, that in addition to Descartes's rule of signs and intermediate-value theorem, are useful in chemical equilibrium. Provides examples that illustrate the use of all four theorems. Discusses limitations of the polynomial equation representation of chemical…

  16. Assessing bioavailability of DDT and metabolites in marine sediments using solid-phase microextraction with performance reference compounds.

    PubMed

    Bao, Lian-Jun; Jia, Fang; Crago, J; Zeng, Eddy Y; Schlenk, D; Gan, Jay

    2013-09-01

    Solid-phase microextraction (SPME) has often been used to estimate the freely dissolved concentration (Cfree ) of organic contaminants in sediments. A significant limitation in the application of SPME for Cfree measurement is the requirement for attaining equilibrium partition, which is often difficult for strongly hydrophobic compounds such as DDT. A method was developed using SPME with stable isotope-labeled analogues as performance reference compounds (PRCs) to measure Cfree of DDT and metabolites (DDTs) in marine sediments. Six (13) C-labeled or deuterated PRCs were impregnated into polydimethylsiloxane (PDMS) fiber before use. Desorption of PRCs from PDMS fibers and absorption of DDTs from sediment were isotropic in a range of sediments evaluated ex situ under well-mixed conditions. When applied to a historically contaminated marine sediment from a Superfund site, the PRC-SPME method yielded Cfree values identical to those found by using a conventional equilibrium SPME approach (Eq-SPME), whereas the time for mixing was reduced from 9 d to only 9 h. The PRC-SPME method was further evaluated against bioaccumulation of DDTs by Neanthes arenaceodentata in the contaminated sediment with or without amendment of activated carbon or sand. Strong correlations were consistently found between the derived equilibrium concentrations on the fiber and lipid-normalized tissue residues for DDTs in the worms. Results from the present study clearly demonstrated the feasibility of coupling PRCs with SPME sampling to greatly shorten sampling time, thus affording much improved flexibility in the use of SPME for bioavailability evaluation. Copyright © 2013 SETAC.

  17. Assessing Bioavailability of DDT and Metabolites in Marine Sediments using Solid-Phase Microextraction with Performance Reference Compounds

    PubMed Central

    Bao, Lian-Jun; Jia, Fang; Crago, J.; Zeng, Eddy Y.; Schlenk, D.; Gan, Jay

    2014-01-01

    Solid-phase microextraction (SPME) has often been used to estimate the freely dissolved concentration (Cfree) of organic contaminants in sediments. A significant limitation in the application of SPME for Cfree measurement is the requirement for attaining equilibrium partition, which is often difficult for strongly hydrophobic compounds such as DDT. A method was developed using SPME with stable isotope-labeled analogues as performance reference compounds (PRCs) to measure Cfree of DDT and metabolites (DDTs) in marine sediments. Six 13C-labeled or deuterated PRCs were impregnated into polydimethylsiloxane (PDMS) fiber before use. Desorption of PRCs from PDMS fibers and absorption of DDTs from sediment were isotropic in a range of sediments evaluated ex situ under well-mixed conditions. When applied to a historically contaminated marine sediment from a Superfund site, the PRC-SPME method yielded Cfree values identical to those found by using a conventional equilibrium SPME approach (Eq-SPME), wherease the time for mixing was reduced from 9 d to only 9 h. The PRC-SPME method was further evaluated against bioaccumulation of DDTs by Neanthes arenaceodentata in the contaminated sediment with or without amendment of activated carbon or sand. Strong correlations were consistently found between the derived equilibrium concentrations on the fiber and lipid-normalized tissue residues for DDTs in the worms. Results from the present study clearly demonstrated the feasibility of coupling PRCs with SPME sampling to greatly shorten sampling time, thus affording much improved flexibility in the use of SPME for bioavailability evaluation. Environ Toxicol Chem 2013;32:1946–1953. PMID:23661411

  18. Acceleration of Convergence to Equilibrium in Markov Chains by Breaking Detailed Balance

    NASA Astrophysics Data System (ADS)

    Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes

    2017-07-01

    We analyse and interpret the effects of breaking detailed balance on the convergence to equilibrium of conservative interacting particle systems and their hydrodynamic scaling limits. For finite systems of interacting particles, we review existing results showing that irreversible processes converge faster to their steady state than reversible ones. We show how this behaviour appears in the hydrodynamic limit of such processes, as described by macroscopic fluctuation theory, and we provide a quantitative expression for the acceleration of convergence in this setting. We give a geometrical interpretation of this acceleration, in terms of currents that are antisymmetric under time-reversal and orthogonal to the free energy gradient, which act to drive the system away from states where (reversible) gradient-descent dynamics result in slow convergence to equilibrium.

  19. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in themore » non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.« less

  20. A two-dimensional, TVD numerical scheme for inviscid, high Mach number flows in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Eberhardt, S.; Palmer, G.

    1986-01-01

    A new algorithm has been developed for hypervelocity flows in chemical equilibrium. Solutions have been achieved for Mach numbers up to 15 with no adverse effect on convergence. Two methods of coupling an equilibrium chemistry package have been tested, with the simpler method proving to be more robust. Improvements in boundary conditions are still required for a production-quality code.

  1. Ehrenfest's Lottery--Time and Entropy Maximization

    ERIC Educational Resources Information Center

    Ashbaugh, Henry S.

    2010-01-01

    Successful teaching of the Second Law of Thermodynamics suffers from limited simple examples linking equilibrium to entropy maximization. I describe a thought experiment connecting entropy to a lottery that mixes marbles amongst a collection of urns. This mixing obeys diffusion-like dynamics. Equilibrium is achieved when the marble distribution is…

  2. Confronting the Gaia and NLTE spectroscopic parallaxes for the FGK stars

    NASA Astrophysics Data System (ADS)

    Sitnova, Tatyana; Mashonkina, Lyudmila; Pakhomov, Yury

    2018-04-01

    The understanding of the chemical evolution of the Galaxy relies on the stellar chemical composition. Accurate atmospheric parameters is a prerequisite of determination of accurate chemical abundances. For late type stars with known distance, surface gravity (log g) can be calculated from well-known relation between stellar mass, T eff, and absolute bolometric magnitude. This method weakly depends on model atmospheres, and provides reliable log g. However, accurate distances are available for limited number of stars. Another way to determine log g for cool stars is based on ionisation equilibrium, i.e. consistent abundances from lines of neutral and ionised species. In this study we determine atmospheric parameters moving step-by-step from well-studied nearby dwarfs to ultra-metal poor (UMP) giants. In each sample, we select stars with the most reliable T eff based on photometry and the distance-based log g, and compare with spectroscopic gravity calculated taking into account deviations from local thermodinamic equilibrium (LTE). After that, we apply spectroscopic method of log g determination to other stars of the sample with unknown distances.

  3. An analysis of numerical convergence in discrete velocity gas dynamics for internal flows

    NASA Astrophysics Data System (ADS)

    Sekaran, Aarthi; Varghese, Philip; Goldstein, David

    2018-07-01

    The Discrete Velocity Method (DVM) for solving the Boltzmann equation has significant advantages in the modeling of non-equilibrium and near equilibrium flows as compared to other methods in terms of reduced statistical noise, faster solutions and the ability to handle transient flows. Yet the DVM performance for rarefied flow in complex, small-scale geometries, in microelectromechanical (MEMS) devices for instance, is yet to be studied in detail. The present study focuses on the performance of the DVM for locally large Knudsen number flows of argon around sharp corners and other sources for discontinuities in the distribution function. Our analysis details the nature of the solution for some benchmark cases and introduces the concept of solution convergence for the transport terms in the discrete velocity Boltzmann equation. The limiting effects of the velocity space discretization are also investigated and the constraints on obtaining a robust, consistent solution are derived. We propose techniques to maintain solution convergence and demonstrate the implementation of a specific strategy and its effect on the fidelity of the solution for some benchmark cases.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jeong

    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method ismore » a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. The phase-field approach allows calculating, spontaneously, the non-equilibrium growth effects of alloys and the associated time-dependent growth dynamics, without making the assumptions that solute partitioning is an explicit function of velocity, as is the current convention. In the research described here, by utilizing the phase-field model in the thin-interface limit, incorporating the anti-trapping current term, more quantitatively valid interface kinetics and solute diffusion across the interface are calculated. In order to sufficiently resolve the physical length scales (i.e. interface thickness and diffusion boundary length), grid spacings are continually adjusted in calculations. The full trajectories of transient planar growth dynamics under rapid directional solidification conditions with different pulling velocities are described. As a validation of a model, the predicted steady state conditions are consistent with the analytic approach for rapid growth. It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar front when the effect of the non-equilibrium solute partitioning at the interface becomes signi ficant. This is consistent with the previous linear stability analysis for the non-equilibrium interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics was able to be simulated using continually adjusting grid spacings. This oscillatory dynamics including instantaneous jump of interface velocities are consistent with a previous phenomenological model by and a numerical investigation, which may cause the formation of banded structures. Additionally, the selection of the steady state growth dynamics in the highly undercooled melt is demonstrated. The transition of the growth morphology, interface velocity selection, and solute trapping phenomenon with increasing melt supersaturations was described by the phase-field simulation. The tip selection for the dendritic growth was consistent with Ivantsov's function, and the non-equilibrium chemical partitioning behavior shows good qualitative agreement with the Aziz's solute trapping model even though the model parameter(V D) remains as an arbitrary constant. This work is able to show the possibility of comprehensive description of rapid alloy growth over the entire time-dependent non-equilibrium phenomenon.« less

  5. Flash Points of Secondary Alcohol and n-Alkane Mixtures.

    PubMed

    Esina, Zoya N; Miroshnikov, Alexander M; Korchuganova, Margarita R

    2015-11-19

    The flash point is one of the most important characteristics used to assess the ignition hazard of mixtures of flammable liquids. To determine the flash points of mixtures of secondary alcohols with n-alkanes, it is necessary to calculate the activity coefficients. In this paper, we use a model that allows us to obtain enthalpy of fusion and enthalpy of vaporization data of the pure components to calculate the liquid-solid equilibrium (LSE) and vapor-liquid equilibrium (VLE). Enthalpy of fusion and enthalpy of vaporization data of secondary alcohols in the literature are limited; thus, the prediction of these characteristics was performed using the method of thermodynamic similarity. Additionally, the empirical models provided the critical temperatures and boiling temperatures of the secondary alcohols. The modeled melting enthalpy and enthalpy of vaporization as well as the calculated LSE and VLE flash points were determined for the secondary alcohol and n-alkane mixtures.

  6. An alternative extragradient projection method for quasi-equilibrium problems.

    PubMed

    Chen, Haibin; Wang, Yiju; Xu, Yi

    2018-01-01

    For the quasi-equilibrium problem where the players' costs and their strategies both depend on the rival's decisions, an alternative extragradient projection method for solving it is designed. Different from the classical extragradient projection method whose generated sequence has the contraction property with respect to the solution set, the newly designed method possesses an expansion property with respect to a given initial point. The global convergence of the method is established under the assumptions of pseudomonotonicity of the equilibrium function and of continuity of the underlying multi-valued mapping. Furthermore, we show that the generated sequence converges to the nearest point in the solution set to the initial point. Numerical experiments show the efficiency of the method.

  7. An Investigation of Spinup Dynamics of Axial Gyrostats Using Elliptic Integrals and the Method of Averaging

    DTIC Science & Technology

    1991-01-01

    is a gyrostat near one of the five libration points . She identified the equilibria and determined their stability regions. Also, Mavraga- nis [71] has...defines a family of periodic orbits , depending on how close the all-spun motion is to an equilibrium point of the equations of motion for a single...determined by the relationship between the mission orbit and the object the platform is supposed to track. As a limiting case, one might wish to point

  8. Computation of the unsteady facilitated transport of oxygen in hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1990-01-01

    The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.

  9. Predicting paddlefish roe yields using an extension of the Beverton–Holt equilibrium yield-per-recruit model

    USGS Publications Warehouse

    Colvin, M.E.; Bettoli, Phillip William; Scholten, G.D.

    2013-01-01

    Equilibrium yield models predict the total biomass removed from an exploited stock; however, traditional yield models must be modified to simulate roe yields because a linear relationship between age (or length) and mature ovary weight does not typically exist. We extended the traditional Beverton-Holt equilibrium yield model to predict roe yields of Paddlefish Polyodon spathula in Kentucky Lake, Tennessee-Kentucky, as a function of varying conditional fishing mortality rates (10-70%), conditional natural mortality rates (cm; 9% and 18%), and four minimum size limits ranging from 864 to 1,016mm eye-to-fork length. These results were then compared to a biomass-based yield assessment. Analysis of roe yields indicated the potential for growth overfishing at lower exploitation rates and smaller minimum length limits than were suggested by the biomass-based assessment. Patterns of biomass and roe yields in relation to exploitation rates were similar regardless of the simulated value of cm, thus indicating that the results were insensitive to changes in cm. Our results also suggested that higher minimum length limits would increase roe yield and reduce the potential for growth overfishing and recruitment overfishing at the simulated cm values. Biomass-based equilibrium yield assessments are commonly used to assess the effects of harvest on other caviar-based fisheries; however, our analysis demonstrates that such assessments likely underestimate the probability and severity of growth overfishing when roe is targeted. Therefore, equilibrium roe yield-per-recruit models should also be considered to guide the management process for caviar-producing fish species.

  10. Approaches to the Treatment of Equilibrium Perturbations

    NASA Astrophysics Data System (ADS)

    Canagaratna, Sebastian G.

    2003-10-01

    Perturbations from equilibrium are treated in the textbooks by a combination of Le Châtelier's principle, the comparison of the equilibrium constant K with the reaction quotient Q,and the kinetic approach. Each of these methods is briefly reviewed. This is followed by derivations of the variation of the equilibrium value of the extent of reaction, ξeq, with various parameters on which it depends. Near equilibrium this relationship can be represented by a straight line. The equilibrium system can be regarded as moving on this line as the parameter is varied. The slope of the line depends on quantities like enthalpy of reaction, volume of reaction and so forth. The derivation shows that these quantities pertain to the equilibrium system, not the standard state. Also, the derivation makes clear what kind of assumptions underlie our conclusions. The derivation of these relations involves knowledge of thermodynamics that is well within the grasp of junior level physical chemistry students. The conclusions that follow from the derived relations are given as subsidiary rules in the form of the slope of ξeq, with T, p, et cetera. The rules are used to develop a visual way of predicting the direction of shift of a perturbed system. This method can be used to supplement one of the other methods even at the introductory level.

  11. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position.

    PubMed

    Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan

    2017-05-01

    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.

  12. Non-equilibrium flow and sediment transport distribution over mobile river dunes

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Naqshband, S.; McElroy, B. J.

    2017-12-01

    Flow and sediment transport are key processes in the morphodynamics of river dunes. During floods in several rivers (e.g., the Elkhorn, Missouri, Niobrara, and Rio Grande), dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This morphological evolution of dunes to upper stage plane bed is the strongest bed-form adjustment during non-equilibrium flows and is associated with a significant change in hydraulic roughness and water levels. Detailed experimental investigations, however, have mostly focused on fixed dunes limited to equilibrium flow and bed conditions that are rare in natural channels. Our understanding of the underlying sedimentary processes that result into the washing out of dunes is therefore very limited. In the present study, using the Acoustic Concentration and Velocity Profiler (ACVP), we were able to quantify flow structure and sediment transport distribution over mobile non-equilibrium dunes. Under these non-equilibrium flow conditions average dune heights were decreasing while dune lengths were increasing. Preliminary results suggest that this morphological behaviour is due to a positive phase lag between sediment transport maximum and topographic maximum leading to a larger erosion on the dune stoss side compared to deposition on dune lee side.

  13. Should the Equilibrium Point Hypothesis (EPH) be Considered a Scientific Theory?

    PubMed Central

    Sainburg, Robert L.

    2017-01-01

    The purpose of this commentary is to discuss factors that limit consideration of the equilibrium point hypothesis as a scientific theory. The EPH describes control of motor neuron threshold through the variable lambda, which corresponds to a unique referent configuration for a muscle, joint, or combination of joints. One of the most compelling features of the equilibrium point hypothesis is the integration of posture and movement control into a single mechanism. While the essential core of the hypothesis is based upon spinal circuitry interacting with peripheral mechanics, the proponents have extended the theory to include the higher-level processes that generate lambda, and in doing so, imposed an injunction against the supraspinal nervous system modeling, computing, or predicting dynamics. This limitation contradicts evidence that humans take account of body and environmental dynamics in motor selection, motor control, and motor adaptation processes. A number of unresolved limitations to the EPH have been debated in the literature for many years, including whether muscle resistance to displacement, measured during movement, is adequate to support this form of control, violations in equifinality predictions, spinal circuits that alter the proposed invariant characteristic for muscles, and limitations in the description of how the complexity of spinal circuitry might be integrated to yield a unique and stable equilibrium position for a given motor neuron threshold. In addition, an important empirical limitation of EPH is the measurement of the invariant characteristic, which needs to be done under a constant central state. While there is no question that the EPH is an elegant and generative hypothesis for motor control research, the claim that this hypothesis has reached the status of a scientific theory is premature. PMID:25386681

  14. Should the Equilibrium Point Hypothesis (EPH) be Considered a Scientific Theory?

    PubMed

    Sainburg, Robert L

    2015-04-01

    The purpose of this commentary is to discuss factors that limit consideration of the equilibrium point hypothesis as a scientific theory. The EPH describes control of motor neuron threshold through the variable lambda, which corresponds to a unique referent configuration for a muscle, joint, or combination of joints. One of the most compelling features of the equilibrium point hypothesis is the integration of posture and movement control into a single mechanism. While the essential core of the hypothesis is based upon spinal circuitry interacting with peripheral mechanics, the proponents have extended the theory to include the higher-level processes that generate lambda, and in doing so, imposed an injunction against the supraspinal nervous system modeling, computing, or predicting dynamics. This limitation contradicts evidence that humans take account of body and environmental dynamics in motor selection, motor control, and motor adaptation processes. A number of unresolved limitations to the EPH have been debated in the literature for many years, including whether muscle resistance to displacement, measured during movement, is adequate to support this form of control, violations in equifinality predictions, spinal circuits that alter the proposed invariant characteristic for muscles, and limitations in the description of how the complexity of spinal circuitry might be integrated to yield a unique and stable equilibrium position for a given motor neuron threshold. In addition, an important empirical limitation of EPH is the measurement of the invariant characteristic, which needs to be done under a constant central state. While there is no question that the EPH is an elegant and generative hypothesis for motor control research, the claim that this hypothesis has reached the status of a scientific theory is premature.

  15. Torque equilibrium attitude control for Skylab reentry

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1979-01-01

    All the available torque equilibrium attitudes (most were useless from the standpoint of lack of electrical power) and the equilibrium seeking method are presented, as well as the actual successful application during the 3 weeks prior to Skylab reentry.

  16. The long-term dissolution characteristics of a residually trapped BTX mixture in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rixey, W.G.

    1996-12-31

    A mass transfer limited model is presented to describe the long-term dissolution of organic compounds from a benzene, toluene, and xylenes (BTX) mixture residually trapped in a sandy soil. The model is an extension of a previously presented equilibrium dissolution model which takes into consideration mass transfer limitations that develop later in the leaching process and is similar to that presented by Borden and Kao for modeling BTX dissolution from residually trapped gasoline. The residual nonaqueous phase liquid (NAPL) is divided into multiple regions: one region which undergoes equilibrium dissolution and additional regions in which mass transfer is progressively limited.more » Application of the model to BTX column effluent data indicates that the initial dissolution (exponential decay region) of BTX can be effectively described by equilibrium dissolution. When applied to later dissolution times (Asymptotic region) a multiple-region model is required to rationalize the data for all three components. This explanation of the observed tailing in leaching experiments form residually trapped hydrocarbons if offered as an alternative to the explanation of tailing due to rate-limited desorption from soils. 16 refs., 5 figs., 2 tabs.« less

  17. Out-of-equilibrium dynamics driven by localized time-dependent perturbations at quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Pelissetto, Andrea; Rossini, Davide; Vicari, Ettore

    2018-03-01

    We investigate the quantum dynamics of many-body systems subject to local (i.e., restricted to a limited space region) time-dependent perturbations. If the system crosses a quantum phase transition, an off-equilibrium behavior is observed, even for a very slow driving. We show that, close to the transition, time-dependent quantities obey scaling laws. In first-order transitions, the scaling behavior is universal, and some scaling functions can be computed exactly. For continuous transitions, the scaling laws are controlled by the standard critical exponents and by the renormalization-group dimension of the perturbation at the transition. Our protocol can be implemented in existing relatively small quantum simulators, paving the way for a quantitative probe of the universal off-equilibrium scaling behavior, without the need to manipulate systems close to the thermodynamic limit.

  18. An Evaluation of the Venous Equilibrium Model for Hepatic Clearance using Isolated Perfused Rainbow Trout Livers

    EPA Science Inventory

    The venous equilibrium model is widely used to describe hepatic clearance (CLH) of chemicals metabolized by the liver. If chemical delivery to the tissue does not limit CLH, this model predicts that CLH will approximately equal the product of intrinsic metabolic clearance and a t...

  19. Nuclear cardiology. I - Radionuclide angiographic assessment of left ventricular contraction: uses, limitations and future directions. II - The role of myocardial perfusion imaging using thallium-201 in diagnosis of coronary heart disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodenheimer, M.M.; Banka, V.S.; Helfant, R.H.

    1980-01-01

    The current status of radionuclide angiography is reviewed. First pass and gated equilibrium methods for determining left ventricular contraction are compared. Some clinical applications of radionuclide angiography are then examined, including the detection of discrete versus diffuse asynergy and the assessment of myocardial infarction. The second part of this work reviews the uses and limitations of thallium-201 perfusion imaging in the diagnosis of the acute and chronic manifestations of coronary heart disease. Theoretical and technical considerations of thallium-201 imaging are reviewed along with the clinical implications of the technique.

  20. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Culver, Adrian; Andrei, Natan

    We calculate the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t =0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. The solution describes the non-equilibrium steady state of the system. We use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, yielding the I-V characteristic. The calculation is non-perturbative and exact. Research supported by NSF Grant DMR 1410583.

  1. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    PubMed

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  2. Non-Equilibrium Turbulence and Two-Equation Modeling

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    2011-01-01

    Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.

  3. Non-equilibrium quantum heat machines

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  4. Experimental determination of thermodynamic equilibrium in biocatalytic transamination.

    PubMed

    Tufvesson, Pär; Jensen, Jacob S; Kroutil, Wolfgang; Woodley, John M

    2012-08-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones. Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore, in this communication we suggest a simple experimental methodology which we hope will stimulate more accurate determination of thermodynamic equilibria when reporting the results of transaminase-catalyzed reactions in order to increase understanding of the relationship between substrate and product molecular structure on reaction thermodynamics. Copyright © 2012 Wiley Periodicals, Inc.

  5. Species-Specific Thiol-Disulfide Equilibrium Constant: A Tool To Characterize Redox Transitions of Biological Importance.

    PubMed

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-08-13

    Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  6. The Thermal Equilibrium Solution of a Generic Bipolar Quantum Hydrodynamic Model

    NASA Astrophysics Data System (ADS)

    Unterreiter, Andreas

    The thermal equilibrium state of a bipolar, isothermic quantum fluid confined to a bounded domain ,d = 1,2 or d = 3 is entirely described by the particle densities n, p, minimizing the energy where G1,2 are strictly convex real valued functions, . It is shown that this variational problem has a unique minimizer in and some regularity results are proven. The semi-classical limit is carried out recovering the minimizer of the limiting functional. The subsequent zero space charge limit leads to extensions of the classical boundary conditions. Due to the lack of regularity the asymptotics can not be settled on Sobolev embedding arguments. The limit is carried out by means of a compactness-by-convexity principle.

  7. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    PubMed

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is found to be a Lyapunov functional of the deterministic spatially dependent system. Therefore, the intrinsic potential landscape can characterize the global stability of the deterministic system. The relative entropy functional of the stochastic spatially dependent non-equilibrium system is found to be the Lyapunov functional of the stochastic dynamics of the system. Therefore, the relative entropy functional quantifies the global stability of the stochastic system with finite fluctuations. Our theory offers an alternative general approach to other field-theoretic techniques, to study the global stability and dynamics of spatially dependent non-equilibrium field systems. It can be applied to many physical, chemical, and biological spatially dependent non-equilibrium systems.

  8. Slope Stability Analysis of Waste Dump in Sandstone Open Pit Osielec

    NASA Astrophysics Data System (ADS)

    Adamczyk, Justyna; Cała, Marek; Flisiak, Jerzy; Kolano, Malwina; Kowalski, Michał

    2013-03-01

    This paper presents the slope stability analysis for the current as well as projected (final) geometry of waste dump Sandstone Open Pit "Osielec". For the stability analysis six sections were selected. Then, the final geometry of the waste dump was designed and the stability analysis was conducted. On the basis of the analysis results the opportunities to improve the stability of the object were identified. The next issue addressed in the paper was to determine the proportion of the mixture containing mining and processing wastes, for which the waste dump remains stable. Stability calculations were carried out using Janbu method, which belongs to the limit equilibrium methods.

  9. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position

    PubMed Central

    Zhou, Wenjie; Wei, Xuesong; Wang, Leqin

    2017-01-01

    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method—twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length. PMID:28572997

  10. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: A new method of interpolation and analysis of errors

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2004-01-01

    This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.

  11. Stochastic thermodynamics of quantum maps with and without equilibrium.

    PubMed

    Barra, Felipe; Lledó, Cristóbal

    2017-11-01

    We study stochastic thermodynamics for a quantum system of interest whose dynamics is described by a completely positive trace-preserving (CPTP) map as a result of its interaction with a thermal bath. We define CPTP maps with equilibrium as CPTP maps with an invariant state such that the entropy production due to the action of the map on the invariant state vanishes. Thermal maps are a subgroup of CPTP maps with equilibrium. In general, for CPTP maps, the thermodynamic quantities, such as the entropy production or work performed on the system, depend on the combined state of the system plus its environment. We show that these quantities can be written in terms of system properties for maps with equilibrium. The relations that we obtain are valid for arbitrary coupling strengths between the system and the thermal bath. The fluctuations of thermodynamic quantities are considered in the framework of a two-point measurement scheme. We derive the entropy production fluctuation theorem for general maps and a fluctuation relation for the stochastic work on a system that starts in the Gibbs state. Some simplifications for the probability distributions in the case of maps with equilibrium are presented. We illustrate our results by considering spin 1/2 systems under thermal maps, nonthermal maps with equilibrium, maps with nonequilibrium steady states, and concatenations of them. Finally, and as an important application, we consider a particular limit in which the concatenation of maps generates a continuous time evolution in Lindblad form for the system of interest, and we show that the concept of maps with and without equilibrium translates into Lindblad equations with and without quantum detailed balance, respectively. The consequences for the thermodynamic quantities in this limit are discussed.

  12. Stochastic thermodynamics of quantum maps with and without equilibrium

    NASA Astrophysics Data System (ADS)

    Barra, Felipe; Lledó, Cristóbal

    2017-11-01

    We study stochastic thermodynamics for a quantum system of interest whose dynamics is described by a completely positive trace-preserving (CPTP) map as a result of its interaction with a thermal bath. We define CPTP maps with equilibrium as CPTP maps with an invariant state such that the entropy production due to the action of the map on the invariant state vanishes. Thermal maps are a subgroup of CPTP maps with equilibrium. In general, for CPTP maps, the thermodynamic quantities, such as the entropy production or work performed on the system, depend on the combined state of the system plus its environment. We show that these quantities can be written in terms of system properties for maps with equilibrium. The relations that we obtain are valid for arbitrary coupling strengths between the system and the thermal bath. The fluctuations of thermodynamic quantities are considered in the framework of a two-point measurement scheme. We derive the entropy production fluctuation theorem for general maps and a fluctuation relation for the stochastic work on a system that starts in the Gibbs state. Some simplifications for the probability distributions in the case of maps with equilibrium are presented. We illustrate our results by considering spin 1/2 systems under thermal maps, nonthermal maps with equilibrium, maps with nonequilibrium steady states, and concatenations of them. Finally, and as an important application, we consider a particular limit in which the concatenation of maps generates a continuous time evolution in Lindblad form for the system of interest, and we show that the concept of maps with and without equilibrium translates into Lindblad equations with and without quantum detailed balance, respectively. The consequences for the thermodynamic quantities in this limit are discussed.

  13. Thermodynamic Bethe ansatz for non-equilibrium steady states: exact energy current and fluctuations in integrable QFT

    NASA Astrophysics Data System (ADS)

    Castro-Alvaredo, Olalla; Chen, Yixiong; Doyon, Benjamin; Hoogeveen, Marianne

    2014-03-01

    We evaluate the exact energy current and scaled cumulant generating function (related to the large-deviation function) in non-equilibrium steady states with energy flow, in any integrable model of relativistic quantum field theory (IQFT) with diagonal scattering. Our derivations are based on various recent results of Bernard and Doyon. The steady states are built by connecting homogeneously two infinite halves of the system thermalized at different temperatures Tl, Tr, and waiting for a long time. We evaluate the current J(Tl, Tr) using the exact QFT density matrix describing these non-equilibrium steady states and using Zamolodchikov’s method of the thermodynamic Bethe ansatz (TBA). The scaled cumulant generating function is obtained from the extended fluctuation relations which hold in integrable models. We verify our formula in particular by showing that the conformal field theory (CFT) result is obtained in the high-temperature limit. We analyze numerically our non-equilibrium steady-state TBA equations for three models: the sinh-Gordon model, the roaming trajectories model, and the sine-Gordon model at a particular reflectionless point. Based on the numerics, we conjecture that an infinite family of non-equilibrium c-functions, associated with the scaled cumulants, can be defined, which we interpret physically. We study the full scaled distribution function and find that it can be described by a set of independent Poisson processes. Finally, we show that the ‘additivity’ property of the current, which is known to hold in CFT and was proposed to hold more generally, does not hold in general IQFT—that is, J(Tl, Tr) is not of the form f(Tl) - f(Tr).

  14. Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon.

    PubMed

    Kumar, K Vasanth; Sivanesan, S

    2005-08-31

    Comparison analysis of linear least square method and non-linear method for estimating the isotherm parameters was made using the experimental equilibrium data of safranin onto activated carbon at two different solution temperatures 305 and 313 K. Equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm equations. All the three isotherm equations showed a better fit to the experimental equilibrium data. The results showed that non-linear method could be a better way to obtain the isotherm parameters. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity.

  15. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE PAGES

    Winnick, Matthew J.; Maher, Kate

    2018-01-27

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO 2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.« less

  16. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnick, Matthew J.; Maher, Kate

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO 2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.« less

  17. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    NASA Astrophysics Data System (ADS)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.

  18. On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Godoy, William F.; DesJardin, Paul E.

    2010-05-01

    The application of flux limiters to the discrete ordinates method (DOM), SN, for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to "exact" solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.

  19. Rawls's Wide Reflective Equilibrium as a Method for Engaged Interdisciplinary Collaboration: Potentials and Limitations for the Context of Technological Risks.

    PubMed

    Doorn, Neelke; Taebi, Behnam

    2018-05-01

    The introduction of new technologies in society is sometimes met with public resistance. Supported by public policy calls for "upstream engagement" and "responsible innovation," recent years have seen a notable rise in attempts to attune research and innovation processes to societal needs, so that stakeholders' concerns are taken into account in the design phase of technology. Both within the social sciences and in the ethics of technology, we see many interdisciplinary collaborations being initiated that aim to address tensions between various normative expectations about science and engineering and the actual outcomes. However, despite pleas to integrate social science research into the ethics of technology, effective normative models for assessing technologies are still scarce. Rawls's wide reflective equilibrium (WRE) is often mentioned as a promising approach to integrate insights from the social sciences in the normative analysis of concrete cases, but an in-depth discussion of how this would work in practice is still lacking. In this article, we explore to what extent the WRE method can be used in the context of technology development. Using cases in engineering and technology development, we discuss three issues that are currently neglected in the applied ethics literature on WRE. The first issue concerns the operationalization of abstract background theories to moral principles. The second issue concerns the inclusiveness of the method and the demand for openness. The third issue is how to establish whether or not an equilibrium has been reached. These issues should be taken into account when applying the methods to real-world cases involving technological risks. Applying the WRE method in the context of engaged interdisciplinary collaboration requires sensitivity for issues of power and representativeness to properly deal with the dynamics between the technical and normative researchers involved as well as society at large.

  20. Equilibrium and Effective Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Rugenstein, M.; Bloch-Johnson, J.

    2016-12-01

    Atmosphere-ocean general circulation models, as well as the real world, take thousands of years to equilibrate to CO2 induced radiative perturbations. Equilibrium climate sensitivity - a fully equilibrated 2xCO2 perturbation - has been used for decades as a benchmark in model intercomparisons, as a test of our understanding of the climate system and paleo proxies, and to predict or project future climate change. Computational costs and limited time lead to the widespread practice of extrapolating equilibrium conditions from just a few decades of coupled simulations. The most common workaround is the "effective climate sensitivity" - defined through an extrapolation of a 150 year abrupt2xCO2 simulation, including the assumption of linear climate feedbacks. The definitions of effective and equilibrium climate sensitivity are often mixed up and used equivalently, and it is argued that "transient climate sensitivity" is the more relevant measure for predicting the next decades. We present an ongoing model intercomparison, the "LongRunMIP", to study century and millennia time scales of AOGCM equilibration and the linearity assumptions around feedback analysis. As a true ensemble of opportunity, there is no protocol and the only condition to participate is a coupled model simulation of any stabilizing scenario simulating more than 1000 years. Many of the submitted simulations took several years to conduct. As of July 2016 the contribution comprises 27 scenario simulations of 13 different models originating from 7 modeling centers, each between 1000 and 6000 years. To contribute, please contact the authors as soon as possible We present preliminary results, discussing differences between effective and equilibrium climate sensitivity, the usefulness of transient climate sensitivity, extrapolation methods, and the state of the coupled climate system close to equilibrium. Caption for the Figure below: Evolution of temperature anomaly and radiative imbalance of 22 simulations with 12 models (color indicates the model). 20 year moving average.

  1. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, R.F.

    1996-02-27

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.

  2. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, Richard F.

    1996-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.

  3. Local Nash equilibrium in social networks.

    PubMed

    Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong

    2014-08-29

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  4. Local Nash Equilibrium in Social Networks

    PubMed Central

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong

    2014-01-01

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures. PMID:25169150

  5. Local Nash Equilibrium in Social Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong

    2014-08-01

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  6. Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan; Jenkins, James T.; Burns, Joseph A.

    2009-03-01

    Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study — for static and dynamical situations — the equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes are compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield criterion. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. We first collapse our dynamical approach to its statical limit to derive regions in spin-shape parameter space that allow equilibrium solutions to exist. At present, only a graphical illustration of these solutions for a prolate ellipsoid following the Drucker-Prager failure law is available [Sharma, I., Jenkins, J.T., Burns, J.A., 2005a. Bull. Am. Astron. Soc. 37, 643; Sharma, I., Jenkins, J.T., Burns, J.A., 2005b. Equilibrium shapes of ellipsoidal soil asteroids. In: García-Rojo, R., Hermann, H.J., McNamara, S. (Eds.), Proceedings of the 5th International Conference on Micromechanics of Granular Media, vol. 1. A.A. Balkema, UK; Holsapple, K.A., 2007. Icarus 187, 500-509]. Here, we obtain the equilibrium landscapes for general triaxial ellipsoids, as well as provide the requisite governing formulae. In addition, we demonstrate that it may be possible to better interpret the results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361] within the context of a Drucker-Prager material. The graphical result for prolate ellipsoids in the static limit is the same as those of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] because, when worked out, his final equations will match ours. This is because, though the formalisms to reach these expressions differ, in statics, at the lowest level of approximation, volume-averaging and the approach of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] coincide. We note that the approach applied here was obtained independently [Sharma, I., Jenkins, J.T., Burns, J.A., 2003. Bull. Am. Astron. Soc. 35, 1034; Sharma, I., 2004. Rotational Dynamics of Deformable Ellipsoids with Applications to Asteroids. Ph.D. thesis, Cornell University] and it provides a general, though approximate, framework that is amenable to systematic improvements and is flexible enough to incorporate the dynamical effects of a changing shape, different rheologies and complex rotational histories. To demonstrate our technique, we investigate the non-equilibrium dynamics of rigid-plastic, spinning, prolate asteroids to examine the simultaneous histories of shape and spin rate for rubble piles. We have succeeded in recovering most results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361], who obtained equilibrium shapes by studying numerically the passage into equilibrium of aggregates containing discrete, interacting, frictionless, spherical particles. Our mainly analytical approach aids in understanding and quantifying previous numerical simulations.

  7. Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit. V. The two-term atom

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2017-11-01

    Context. In previous papers of this series, we presented a formalism able to account for both statistical equilibrium of a multilevel atom and coherent and incoherent scatterings (partial redistribution). Aims: This paper provides theoretical expressions of the redistribution function for the two-term atom. This redistribution function includes both coherent (RII) and incoherent (RIII) scattering contributions with their branching ratios. Methods: The expressions were derived by applying the formalism outlined above. The statistical equilibrium equation for the atomic density matrix is first formally solved in the case of the two-term atom with unpolarized and infinitely sharp lower levels. Then the redistribution function is derived by substituting this solution for the expression of the emissivity. Results: Expressions are provided for both magnetic and non-magnetic cases. Atomic fine structure is taken into account. Expressions are also separately provided under zero and non-zero hyperfine structure. Conclusions: Redistribution functions are widely used in radiative transfer codes. In our formulation, collisional transitions between Zeeman sublevels within an atomic level (depolarizing collisions effect) are taken into account when possible (I.e., in the non-magnetic case). However, the need for a formal solution of the statistical equilibrium as a preliminary step prevents us from taking into account collisional transfers between the levels of the upper term. Accounting for these collisional transfers could be done via a numerical solution of the statistical equilibrium equation system.

  8. Solid-phase Microextraction (SPME) with Stable Isotope Calibration for Measuring Bioavailability of Hydrophobic Organic Contaminants

    PubMed Central

    Cui, Xinyi; Bao, Lianjun; Gan, Jay

    2014-01-01

    Solid-phase microextraction (SPME) is a biomimetic tool ideally suited for measuring bioavailability of hydrophobic organic compounds (HOCs) in sediment and soil matrices. However, conventional SPME sampling requires the attainment of equilibrium between the fiber and sample matrix, which may take weeks or months, greatly limiting its applicability. In this study, we explored the preloading of polydimethylsiloxane fiber with stable isotope labeled analogs (SI-SPME) to circumvent the need for long sampling time, and evaluated the performance of SI-SPME against the conventional equilibrium SPME (Eq-SPME) using a range of sediments and conditions. Desorption of stable isotope-labeled analogs and absorption of PCB-52, PCB-153, bifenthrin and cis-permethrin were isotropic, validating the assumption for SI-SPME. Highly reproducible preloading was achieved using acetone-water (1:4, v/v) as the carrier. Compared to Eq-SPME that required weeks or even months, the fiber concentrations (Cf) under equilibrium could be reliably estimated by SI-SPME in 1 d under agitated conditions or 20 d under static conditions in spiked sediments. The Cf values predicted by SI-SPME were statistically identical to those determined by Eq-SPME. The SI-SPME method was further applied successfully to field sediments contaminated with PCB 52, PCB 153, and bifenthrin. The increasing availability of stable isotope labeled standards and mass spectrometry nowadays makes SI-SPME highly feasible, allowing the use of SPME under non-equilibrium conditions with much shorter or flexible sampling time. PMID:23930601

  9. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    PubMed

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  10. An improved lattice Boltzmann scheme for multiphase fluid with multi-range interactions

    NASA Astrophysics Data System (ADS)

    Maquignon, Nicolas; Duchateau, Julien; Roussel, Gilles; Rousselle, François; Renaud, Christophe

    2014-10-01

    Modeling of fluids with liquid to gas phase transition has become important for understanding many environmental or industrial processes. Such simulations need new techniques, because traditional solvers are often limited. The Lattice Boltzmann Model (LBM) allows simulate complex fluids, because its mesoscopic nature gives possibility to incorporate additional physics in comparison to usual methods. In this work, an improved lattice Boltzmann model for phase transition flow will be introduced. First, the state of art for Shan & Chen [1] [2] (SC) type of LBM will be reminded. Then, link to real thermodynamics will be established with Maxwell equal areas construction. Convergence to isothermal liquid vapor equilibrium will be shown and discussed. Inclusion of an equation of state for real fluid and better incorporation of force term is presented [4] [5]. Multi-range interactions have been used for SC model [8], but it hasn't been yet applied to real fluid with non-ideal equation of state. In this work, we evaluate this model when it is applied to real liquid-vapor equilibrium. We show that important differences are found for evaluation of gas density. In order to recover thermodynamic consistency, we use a new scheme for calculation of force term, which is a combination of multi range model and numerical weighting used by Gong & Cheng [6] [7]. We show the superiority of our new model by studying convergence to equilibrium values over a large temperature range. We prove that spurious velocities remaining at equilibrium are decreased.

  11. An improved lattice Boltzmann scheme for multiphase fluid with multi-range interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maquignon, Nicolas; Duchateau, Julien; Roussel, Gilles

    2014-10-06

    Modeling of fluids with liquid to gas phase transition has become important for understanding many environmental or industrial processes. Such simulations need new techniques, because traditional solvers are often limited. The Lattice Boltzmann Model (LBM) allows simulate complex fluids, because its mesoscopic nature gives possibility to incorporate additional physics in comparison to usual methods. In this work, an improved lattice Boltzmann model for phase transition flow will be introduced. First, the state of art for Shan and Chen (SC) type of LBM will be reminded. Then, link to real thermodynamics will be established with Maxwell equal areas construction. Convergence tomore » isothermal liquid vapor equilibrium will be shown and discussed. Inclusion of an equation of state for real fluid and better incorporation of force term is presented. Multi-range interactions have been used for SC model, but it hasn't been yet applied to real fluid with non-ideal equation of state. In this work, we evaluate this model when it is applied to real liquid-vapor equilibrium. We show that important differences are found for evaluation of gas density. In order to recover thermodynamic consistency, we use a new scheme for calculation of force term, which is a combination of multi range model and numerical weighting used by Gong and Cheng. We show the superiority of our new model by studying convergence to equilibrium values over a large temperature range. We prove that spurious velocities remaining at equilibrium are decreased.« less

  12. Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics

    PubMed Central

    Kreula, J. M.; Clark, S. R.; Jaksch, D.

    2016-01-01

    We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673

  13. Non-equilibrium phase transitions in a driven-dissipative system of interacting bosons

    NASA Astrophysics Data System (ADS)

    Young, Jeremy T.; Foss-Feig, Michael; Gorshkov, Alexey V.; Maghrebi, Mohammad F.

    2017-04-01

    Atomic, molecular, and optical systems provide unique opportunities to study simple models of driven-dissipative many-body quantum systems. Typically, one is interested in the resultant steady state, but the non-equilibrium nature of the physics involved presents several problems in understanding its behavior theoretically. Recently, it has been shown that in many of these models, it is possible to map the steady-state phase transitions onto classical equilibrium phase transitions. In the language of Keldysh field theory, this relation typically only becomes apparent after integrating out massive fields near the critical point, leaving behind a single massless field undergoing near-equilibrium dynamics. In this talk, we study a driven-dissipative XXZ bosonic model and discover critical points at which two fields become gapless. Each critical point separates three different possible phases: a uniform phase, an anti-ferromagnetic phase, and a limit cycle phase. Furthermore, a description in terms of an equilibrium phase transition does not seem possible, so the associated phase transitions appear to be inherently non-equilibrium.

  14. Direct measurement of the Einstein relation in a macroscopic, non-equilibrium system of chaotic surface waves

    NASA Astrophysics Data System (ADS)

    Welch, Kyle; Liebman-Pelaez, Alexander; Corwin, Eric

    Equilibrium statistical mechanics is traditionally limited to thermal systems. Can it be applied to athermal, non-equilibrium systems that nonetheless satisfy the basic criteria of steady-state chaos and isotropy? We answer this question using a macroscopic system of chaotic surface waves which is, by all measures, non-equilibrium. The waves are generated in a dish of water that is vertically oscillated above a critical amplitude. We have constructed a rheometer that actively measures the drag imparted by the waves on a buoyant particle, a quantity entirely divorced in origin from the drag imparted by the fluid in which the particle floats. We also perform a separate, passive measurement, extracting a diffusion constant and effective temperature. Having directly measured all three properties (temperature, diffusion constant, and drag coefficient) we go on to show that our macroscopic, non-equilibrium case is wholly consistent with the Einstein relation, a classic result for equilibrium thermal systems.

  15. Stability and Bifurcation Analysis of a Three-Species Food Chain Model with Fear

    NASA Astrophysics Data System (ADS)

    Panday, Pijush; Pal, Nikhil; Samanta, Sudip; Chattopadhyay, Joydev

    In the present paper, we investigate the impact of fear in a tri-trophic food chain model. We propose a three-species food chain model, where the growth rate of middle predator is reduced due to the cost of fear of top predator, and the growth rate of prey is suppressed due to the cost of fear of middle predator. Mathematical properties such as equilibrium analysis, stability analysis, bifurcation analysis and persistence have been investigated. We also describe the global stability analysis of the equilibrium points. Our numerical simulations reveal that cost of fear in basal prey may exhibit bistability by producing unstable limit cycles, however, fear in middle predator can replace unstable limit cycles by a stable limit cycle or a stable interior equilibrium. We observe that fear can stabilize the system from chaos to stable focus through the period-halving phenomenon. We conclude that chaotic dynamics can be controlled by the fear factors. We apply basic tools of nonlinear dynamics such as Poincaré section and maximum Lyapunov exponent to identify the chaotic behavior of the system.

  16. Critical viewpoints on the methods of realizing the metal freezing points of the ITS-90

    NASA Astrophysics Data System (ADS)

    Ma, C. K.

    1995-08-01

    The time-honored method for realizing the freezing point tf of a metal (in practice necessarily a dilute alloy) is that of continuous, slow freezing where the plateau temperature (which is the result of solidifying material's being so pure that its phase-transition temperature is observably constant) is measured. The freezing point being an equilibrium temperature, Ancsin considers this method to be inappropriate in principle: equilibrium between the solid and liquid phases cannot be achieved while the solid is being cooled to dispose of the releasing latent heat and while it is accreting at the expense of the liquid. In place of the continuous freezing method he has employed the pulse-heating method (in which the sample is allowed to approach equilibrium after each heat pulse) in his study of Ag; his measurements suggest that freezing can produce non-negligible errors. Here we examine both methods and conclude that the freezing method, employing an inside solid-liquid interface thermally isolated by an outside interface, can provide realizations of the highest accuracy; in either method, perturbation, by inducing solid-liquid phase transition continuously or intermittently, is essential for detecting equilibrium thermally. The respective merits and disadvantages of these two methods and also of the inner-melt method are discussed. We conclude that in a freezing-point measurement what is being measured is in effect the however minutely varying phase transition, and nonconstitutional equilibrium, temperature ti at the solid-liquid interface. The objective is then to measure the ti that is the best measure of tf, which is, normally, the plateau temperature.

  17. SDVSRM - a new SSRM based technique featuring dynamically adjusted, scanner synchronized sample voltages for measurement of actively operated devices.

    PubMed

    Doering, Stefan; Wachowiak, Andre; Roetz, Hagen; Eckl, Stefan; Mikolajick, Thomas

    2018-06-01

    Scanning spreading resistance microscopy (SSRM) with its high spatial resolution and high dynamic signal range is a powerful tool for two-dimensional characterization of semiconductor dopant areas. However, the application of the method is limited to devices in equilibrium condition, as the investigation of actively operated devices would imply potential differences within the device, whereas SSRM relies on a constant voltage difference between sample surface and probe tip. Furthermore, the standard preparation includes short circuiting of all device components, limiting applications to devices in equilibrium condition. In this work scanning dynamic voltage spreading resistance microscopy (SDVSRM), a new SSRM based two pass atomic force microscopy (AFM) technique is introduced, overcoming these limitations. Instead of short circuiting the samples during preparation, wire bond devices are used allowing for active control of the individual device components. SDVSRM consists of two passes. In the first pass the local sample surface voltage dependent on the dc biases applied to the components of the actively driven device is measured as in scanning voltage microscopy (SVM). The local spreading resistance is measured within the second pass, in which the afore obtained local surface voltage is used to dynamically adjust the terminal voltages of the device under test. This is done in a way that the local potential difference across the nano-electrical contact matches the software set SSRM measurement voltage, and at the same time, the internal voltage differences within the device under test are maintained. In this work the proof of the concept could be demonstrated by obtaining spreading resistance data of an actively driven photodiode test device. SDVSRM adds a higher level of flexibility in general to SSRM, as occurring differences in cross section surface voltage are taken into account. These differences are immanent for actively driven devices, but can also be present at standard, short circuited samples. Therefore, SDVSRM could improve the characterization under equilibrium conditions as well. Copyright © 2018. Published by Elsevier B.V.

  18. 40 CFR 63.1571 - How and when do I conduct a performance test or other initial compliance demonstration?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the option in paragraph (a)(1)(iii) in § 63.1564 (Ni lb/hr), and you use continuous parameter monitoring systems, you must establish an operating limit for the equilibrium catalyst Ni concentration based on the laboratory analysis of the equilibrium catalyst Ni concentration from the initial performance...

  19. Utilization of a Microcomputer for the Study of an Iodine Oxidation and Equilibrium Reaction: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Julien, L. M.

    1984-01-01

    Describes a physical chemistry experiment which incorporates the use of a microcomputer to enhance understanding of combined kinetic and equilibrium phenomena, to increase experimental capabilities when working with large numbers of students and limited equipment, and for the student to develop a better understanding of experimental design. (JN)

  20. Three-dimensional boundary layer calculation by a characteristic method

    NASA Technical Reports Server (NTRS)

    Houdeville, R.

    1992-01-01

    A numerical method for solving the three-dimensional boundary layer equations for bodies of arbitrary shape is presented. In laminar flows, the application domain extends from incompressible to hypersonic flows with the assumption of chemical equilibrium. For turbulent boundary layers, the application domain is limited by the validity of the mixing length model used. In order to respect the hyperbolic nature of the equations reduced to first order partial derivative terms, the momentum equations are discretized along the local streamlines using of the osculator tangent plane at each node of the body fitted coordinate system. With this original approach, it is possible to overcome the use of the generalized coordinates, and therefore, it is not necessary to impose an extra hypothesis about the regularity of the mesh in which the boundary conditions are given. By doing so, it is possible to limit, and sometimes to suppress, the pre-treatment of the data coming from an inviscid calculation. Although the proposed scheme is only semi-implicit, the method remains numerically very efficient.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Yulong; Shu, Chi-wang; Noelle, Sebastian

    This note aims at demonstrating the advantage of moving-water well-balanced schemes over still-water well-balanced schemes for the shallow water equations. We concentrate on numerical examples with solutions near a moving-water equilibrium. For such examples, still-water well-balanced methods are not capable of capturing the small perturbations of the moving-water equilibrium and may generate significant spurious oscillations, unless an extremely refined mesh is used. On the other hand, moving-water well-balanced methods perform well in these tests. The numerical examples in this note clearly demonstrate the importance of utilizing moving-water well-balanced methods for solutions near a moving-water equilibrium.

  2. Effects of tunnelling and asymmetry for system-bath models of electron transfer

    NASA Astrophysics Data System (ADS)

    Mattiat, Johann; Richardson, Jeremy O.

    2018-03-01

    We apply the newly derived nonadiabatic golden-rule instanton theory to asymmetric models describing electron-transfer in solution. The models go beyond the usual spin-boson description and have anharmonic free-energy surfaces with different values for the reactant and product reorganization energies. The instanton method gives an excellent description of the behaviour of the rate constant with respect to asymmetry for the whole range studied. We derive a general formula for an asymmetric version of the Marcus theory based on the classical limit of the instanton and find that this gives significant corrections to the standard Marcus theory. A scheme is given to compute this rate based only on equilibrium simulations. We also compare the rate constants obtained by the instanton method with its classical limit to study the effect of tunnelling and other quantum nuclear effects. These quantum effects can increase the rate constant by orders of magnitude.

  3. On-the-fly transition search and applications to temperature-accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques

    2015-03-01

    Temperature-accelerated dynamics (TAD) is a powerful method to study non-equilibrium processes and has been providing surprising insights for a variety of systems. While serial TAD simulations have been limited by the roughly N3 increase in the computational cost as a function of the number of atoms N in the system, recently we have shown that by carrying out parallel TAD simulations which combine spatial decomposition with our semi-rigorous synchronous sublattice algorithm, significantly improved scaling is possible. However, in this approach the size of activated events is limited by the processor size while the dynamics is not exact. Here we discuss progress in improving the scaling of serial TAD by combining the use of on-the-fly transition searching with our previously developed localized saddle-point method. We demonstrate improved performance for the cases of Ag/Ag(100) annealing and Cu/Cu(100) growth. Supported by NSF DMR-1410840.

  4. Compressive Failure of Fiber Composites under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.

    2006-01-01

    This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle beta produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.

  5. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations.

    PubMed

    Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume

    2017-09-14

    The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.

  6. Multi-phase-field method for surface tension induced elasticity

    NASA Astrophysics Data System (ADS)

    Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah

    2018-01-01

    A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.

  7. Deuteration and selective labeling of alanine methyl groups of β2-adrenergic receptor expressed in a baculovirus-insect cell expression system.

    PubMed

    Kofuku, Yutaka; Yokomizo, Tomoki; Imai, Shunsuke; Shiraishi, Yutaro; Natsume, Mei; Itoh, Hiroaki; Inoue, Masayuki; Nakata, Kunio; Igarashi, Shunsuke; Yamaguchi, Hideyuki; Mizukoshi, Toshimi; Suzuki, Ei-Ichiro; Ueda, Takumi; Shimada, Ichio

    2018-03-08

    G protein-coupled receptors (GPCRs) exist in equilibrium between multiple conformations, and their populations and exchange rates determine their functions. However, analyses of the conformational dynamics of GPCRs in lipid bilayers are still challenging, because methods for observations of NMR signals of large proteins expressed in a baculovirus-insect cell expression system (BVES) are limited. Here, we report a method to incorporate methyl- 13 C 1 H 3 -labeled alanine with > 45% efficiency in highly deuterated proteins expressed in BVES. Application of the method to the NMR observations of β 2 -adrenergic receptor in micelles and in nanodiscs revealed the ligand-induced conformational differences throughout the transmembrane region of the GPCR.

  8. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures.

    PubMed

    Costa, Madalena D; Peng, Chung-Kang; Goldberger, Ary L

    2008-06-01

    Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and non-equilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools--multiscale entropy and multiscale time irreversibility--are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs.

  9. Equilibrium Solutions of the Logarithmic Hamiltonian Leapfrog for the N-body Problem

    NASA Astrophysics Data System (ADS)

    Minesaki, Yukitaka

    2018-04-01

    We prove that a second-order logarithmic Hamiltonian leapfrog for the classical general N-body problem (CGNBP) designed by Mikkola and Tanikawa and some higher-order logarithmic Hamiltonian methods based on symmetric multicompositions of the logarithmic algorithm exactly reproduce the orbits of elliptic relative equilibrium solutions in the original CGNBP. These methods are explicit symplectic methods. Before this proof, only some implicit discrete-time CGNBPs proposed by Minesaki had been analytically shown to trace the orbits of elliptic relative equilibrium solutions. The proof is therefore the first existence proof for explicit symplectic methods. Such logarithmic Hamiltonian methods with a variable time step can also precisely retain periodic orbits in the classical general three-body problem, which generic numerical methods with a constant time step cannot do.

  10. The real limits to marine life: a further critique of the Respiration Index

    NASA Astrophysics Data System (ADS)

    Seibel, B. A.; Childress, J. J.

    2012-11-01

    The recently proposed "Respiration Index" (RI = log[PO2]/[PCO2]) suggests that aerobic metabolism is limited by the ratio of reactants (R, oxygen) and products (P, carbon dioxide) according to the thermodynamics of cellular respiration. Here we demonstrate that, because of the large standard free energy change for organic carbon oxidation (ΔG° = -686 kcal mol-1), carbon dioxide can never reach concentrations that would limit the thermodynamics of this reaction. A PCO2 to PO2 ratio of 10503 would be required to reach equilibrium (equilibrium constant, Keq = 10503), where ΔG = 0. Thus a respiration index of -503 would be the real thermodynamic limit to aerobic life. Such a Respiration Index is never reached either in the cell or in the environment. Moreover cellular respiration and oxygen provision are kinetically controlled such that, within limits, environmental oxygen and CO2 concentrations have little to do with intracellular concentrations. The RI is fundamentally different from the aragonite saturation state, a thermodynamic index used to quantify the potential effect of CO2 on calcification rates, because of its failure to incorporate the equilibrium constant of the reaction. Not only is the RI invalid, its use leads to incorrect and dangerous predictions of the threat of changing oxygen and carbon dioxide to marine life. We provide a physiological model that identifies oxygen thresholds, and allows for synergistic effects of ocean acidification and global warming.

  11. The real limits to marine life: a further critique of the Respiration Index

    NASA Astrophysics Data System (ADS)

    Seibel, B. A.; Childress, J. J.

    2013-05-01

    The recently proposed "Respiration Index" (RI = log PO2/PCO2) suggests that aerobic metabolism is limited by the ratio of reactants (oxygen) to products (carbon dioxide) according to the thermodynamics of cellular respiration. Here, we demonstrate further that, because of the large standard free energy change for organic carbon oxidation (ΔG° = -686 kcal mol-1), carbon dioxide can never reach concentrations that would limit the thermodynamics of this reaction. A PCO2 to PO2 ratio of 10503 would be required to reach equilibrium (equilibrium constant, Keq = 10503), where ΔG = 0. Thus, a Respiration Index of -503 would be the real thermodynamic limit to aerobic life. Such a Respiration Index is never reached, either in the cell or in the environment. Moreover, cellular respiration and oxygen provision are kinetically controlled such that, within limits, environmental oxygen and CO2 concentrations have little to do with intracellular concentrations. The RI is fundamentally different from the aragonite saturation state, a thermodynamic index used to quantify the potential effect of CO2 on calcification rates, because of its failure to incorporate the equilibrium constant of the reaction. Not only is the RI invalid, but its use leads to incorrect and misleading predictions of the threat of changing oxygen and carbon dioxide to marine life. We provide a physiological framework that identifies oxygen thresholds and allows for synergistic effects of ocean acidification and global warming.

  12. Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory

    NASA Astrophysics Data System (ADS)

    Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara

    2018-05-01

    We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.

  13. A partition-limited model for the plant uptake of organic contaminants from soil and water

    USGS Publications Warehouse

    Chiou, C.T.; Sheng, G.; Manes, M.

    2001-01-01

    In dealing with the passive transport of organic contaminants from soils to plants (including crops), a partition-limited model is proposed in which (i) the maximum (equilibrium) concentration of a contaminant in any location in the plant is determined by partition equilibrium with its concentration in the soil interstitial water, which in turn is determined essentially by the concentration in the soil organic matter (SOM) and (ii) the extent of approach to partition equilibrium, as measured by the ratio of the contaminant concentrations in plant water and soil interstitial water, ??pt (??? 1), depends on the transport rate of the contaminant in soil water into the plant and the volume of soil water solution that is required for the plant contaminant level to reach equilibrium with the external soil-water phase. Through reasonable estimates of plant organic-water compositions and of contaminant partition coefficients with various plant components, the model accounts for calculated values of ??pt in several published crop-contamination studies, including near-equilibrium values (i.e., ??pt ??? 1) for relatively water-soluble contaminants and lower values for much less soluble contaminants; the differences are attributed to the much higher partition coefficients of the less soluble compounds between plant lipids and plant water, which necessitates much larger volumes of the plant water transport for achieving the equilibrium capacities. The model analysis indicates that for plants with high water contents the plant-water phase acts as the major reservoir for highly water-soluble contaminants. By contrast, the lipid in a plant, even at small amounts, is usually the major reservoir for highly water-insoluble contaminants.

  14. Wigner molecules: the strong-correlation limit of the three-electron harmonium.

    PubMed

    Cioslowski, Jerzy; Pernal, Katarzyna

    2006-08-14

    At the strong-correlation limit, electronic states of the three-electron harmonium atom are described by asymptotically exact wave functions given by products of distinct Slater determinants and a common Gaussian factor that involves interelectron distances and the center-of-mass position. The Slater determinants specify the angular dependence and the permutational symmetry of the wave functions. As the confinement strength becomes infinitesimally small, the states of different spin multiplicities become degenerate, their limiting energy reflecting harmonic vibrations of the electrons about their equilibrium positions. The corresponding electron densities are given by products of angular factors and a Gaussian function centered at the radius proportional to the interelectron distance at equilibrium. Thanks to the availability of both the energy and the electron density, the strong-correlation limit of the three-electron harmonium is well suited for testing of density functionals.

  15. The equilibrium-diffusion limit for radiation hydrodynamics

    DOE PAGES

    Ferguson, J. M.; Morel, J. E.; Lowrie, R.

    2017-07-27

    The equilibrium-diffusion approximation (EDA) is used to describe certain radiation-hydrodynamic (RH) environments. When this is done the RH equations reduce to a simplified set of equations. The EDA can be derived by asymptotically analyzing the full set of RH equations in the equilibrium-diffusion limit. Here, we derive the EDA this way and show that it and the associated set of simplified equations are both first-order accurate with transport corrections occurring at second order. Having established the EDA’s first-order accuracy we then analyze the grey nonequilibrium-diffusion approximation and the grey Eddington approximation and show that they both preserve this first-order accuracy.more » Further, these approximations preserve the EDA’s first-order accuracy when made in either the comoving-frame (CMF) or the lab-frame (LF). And while analyzing the Eddington approximation, we found that the CMF and LF radiation-source equations are equivalent when neglecting O(β 2) terms and compared in the LF. Of course, the radiation pressures are not equivalent. It is expected that simplified physical models and numerical discretizations of the RH equations that do not preserve this first-order accuracy will not retain the correct equilibrium-diffusion solutions. As a practical example, we show that nonequilibrium-diffusion radiative-shock solutions devolve to equilibrium-diffusion solutions when the asymptotic parameter is small.« less

  16. Learning dynamics in social dilemmas

    PubMed Central

    Macy, Michael W.; Flache, Andreas

    2002-01-01

    The Nash equilibrium, the main solution concept in analytical game theory, cannot make precise predictions about the outcome of repeated mixed-motive games. Nor can it tell us much about the dynamics by which a population of players moves from one equilibrium to another. These limitations, along with concerns about the cognitive demands of forward-looking rationality, have motivated efforts to explore backward-looking alternatives to analytical game theory. Most of the effort has been invested in evolutionary models of population dynamics. We shift attention to a learning-theoretic alternative. Computational experiments with adaptive agents identify a fundamental solution concept for social dilemmas–−stochastic collusion–−based on a random walk from a self-limiting noncooperative equilibrium into a self-reinforcing cooperative equilibrium. However, we show that this solution is viable only within a narrow range of aspiration levels. Below the lower threshold, agents are pulled into a deficient equilibrium that is a stronger attractor than mutual cooperation. Above the upper threshold, agents are dissatisfied with mutual cooperation. Aspirations that adapt with experience (producing habituation to stimuli) do not gravitate into the window of viability; rather, they are the worst of both worlds. Habituation destabilizes cooperation and stabilizes defection. Results from the two-person problem suggest that applications to multiplex and embedded relationships will yield unexpected insights into the global dynamics of cooperation in social dilemmas. PMID:12011402

  17. Limits on plasma anisotropy in a tail-like magnetic field

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Voigt, G.-H.

    1992-01-01

    The condition of magnetohydrostatic equilibrium implies tight constraints on the degree of anisotropy that is supportable in a magnetotail field geometry. If the plasma pressure tensor is assumed to be gyrotropic at the tail midplane (z = 0), then equilibrium requires that it also be nearly isotropic there, with P-perpendicular sub 0/P-parallel sub 0 in the range 1 +/- delta square, where delta of about 0.1 is the ratio of the normal field component at the symmetry plane to the field strength in the tail lobe. The upper and the lower limits are essentially equivalent, respectively, to the marginal mirror and firehose stability conditions evaluated at z = 0, which have been invoked previously to limit the degree of anisotropy in the plasma sheet.

  18. Groundwater flux estimation in streams: A thermal equilibrium approach

    USGS Publications Warehouse

    Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon K.

    2018-01-01

    Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash–Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.

  19. Groundwater flux estimation in streams: A thermal equilibrium approach

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon

    2018-06-01

    Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.

  20. Multigrid method for the equilibrium equations of elasticity using a compact scheme

    NASA Technical Reports Server (NTRS)

    Taasan, S.

    1986-01-01

    A compact difference scheme is derived for treating the equilibrium equations of elasticity. The scheme is inconsistent and unstable. A multigrid method which takes into account these properties is described. The solution of the discrete equations, up to the level of discretization errors, is obtained by this method in just two multigrid cycles.

  1. PARTIAL RESTRAINING FORCE INTRODUCTION METHOD FOR DESIGNING CONSTRUCTION COUNTERMESURE ON ΔB METHOD

    NASA Astrophysics Data System (ADS)

    Nishiyama, Taku; Imanishi, Hajime; Chiba, Noriyuki; Ito, Takao

    Landslide or slope failure is a three-dimensional movement phenomenon, thus a three-dimensional treatment makes it easier to understand stability. The ΔB method (simplified three-dimensional slope stability analysis method) is based on the limit equilibrium method and equals to an approximate three-dimensional slope stability analysis that extends two-dimensional cross-section stability analysis results to assess stability. This analysis can be conducted using conventional spreadsheets or two-dimensional slope stability computational software. This paper describes the concept of the partial restraining force in-troduction method for designing construction countermeasures using the distribution of the restraining force found along survey lines, which is based on the distribution of survey line safety factors derived from the above-stated analysis. This paper also presents the transverse distributive method of restraining force used for planning ground stabilizing on the basis of the example analysis.

  2. A new PIC noise reduction technique

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.

    2014-10-01

    Numerical solution of the Vlasov equation is considered in a general situation in which there is an underlying static solution (equilibrium). There are no further assumptions about dimensionality, smallenss of orbits, or disparate time scales. The semi-characteristic (SC) method for Vlasov solution is described. The usual characteristics of the equation, which are the single particle orbits, are modified in such a way that the equilibrium phase-space flow is removed. In this way, the shot noise introduced by the usual discrete particle representation of the equilibrium is static in time and can be removed completely by subtraction. An almost exact algorithm for this is based on the observation that a (infinitesimal or) discrete time step of any equilibrium MC realization is again a realization of the equilibrium, building up strings of associated simulation particles. In this way, the only added discretization error arises from the need to extrapolate backward in time the chain end points one dt using a canonical transformation. Previously developed energy-conserving time-implicit methods are applied without modification. 1D ES examples of Landau damping and velocity-space instability are given to illustrate the method.

  3. Bifurcation and Stability Analysis of the Equilibrium States in Thermodynamic Systems in a Small Vicinity of the Equilibrium Values of Parameters

    NASA Astrophysics Data System (ADS)

    Barsuk, Alexandr A.; Paladi, Florentin

    2018-04-01

    The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.

  4. Note: The performance of new density functionals for a recent blind test of non-covalent interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin

    Benchmark datasets of non-covalent interactions are essential for assessing the performance of density functionals and other quantum chemistry approaches. In a recent blind test, Taylor et al. benchmarked 14 methods on a new dataset consisting of 10 dimer potential energy curves calculated using coupled cluster with singles, doubles, and perturbative triples (CCSD(T)) at the complete basis set (CBS) limit (80 data points in total). Finally, the dataset is particularly interesting because compressed, near-equilibrium, and stretched regions of the potential energy surface are extensively sampled.

  5. Note: The performance of new density functionals for a recent blind test of non-covalent interactions

    DOE PAGES

    Mardirossian, Narbe; Head-Gordon, Martin

    2016-11-09

    Benchmark datasets of non-covalent interactions are essential for assessing the performance of density functionals and other quantum chemistry approaches. In a recent blind test, Taylor et al. benchmarked 14 methods on a new dataset consisting of 10 dimer potential energy curves calculated using coupled cluster with singles, doubles, and perturbative triples (CCSD(T)) at the complete basis set (CBS) limit (80 data points in total). Finally, the dataset is particularly interesting because compressed, near-equilibrium, and stretched regions of the potential energy surface are extensively sampled.

  6. Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1983-01-01

    A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.

  7. Computational methods for reactive transport modeling: An extended law of mass-action, xLMA, method for multiphase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg; Saar, Martin O.

    2016-10-01

    We present an extended law of mass-action (xLMA) method for multiphase equilibrium calculations and apply it in the context of reactive transport modeling. This extended LMA formulation differs from its conventional counterpart in that (i) it is directly derived from the Gibbs energy minimization (GEM) problem (i.e., the fundamental problem that describes the state of equilibrium of a chemical system under constant temperature and pressure); and (ii) it extends the conventional mass-action equations with Lagrange multipliers from the Gibbs energy minimization problem, which can be interpreted as stability indices of the chemical species. Accounting for these multipliers enables the method to determine all stable phases without presuming their types (e.g., aqueous, gaseous) or their presence in the equilibrium state. Therefore, the here proposed xLMA method inherits traits of Gibbs energy minimization algorithms that allow it to naturally detect the phases present in equilibrium, which can be single-component phases (e.g., pure solids or liquids) or non-ideal multi-component phases (e.g., aqueous, melts, gaseous, solid solutions, adsorption, or ion exchange). Moreover, our xLMA method requires no technique that tentatively adds or removes reactions based on phase stability indices (e.g., saturation indices for minerals), since the extended mass-action equations are valid even when their corresponding reactions involve unstable species. We successfully apply the proposed method to a reactive transport modeling problem in which we use PHREEQC and GEMS as alternative backends for the calculation of thermodynamic properties such as equilibrium constants of reactions, standard chemical potentials of species, and activity coefficients. Our tests show that our algorithm is efficient and robust for demanding applications, such as reactive transport modeling, where it converges within 1-3 iterations in most cases. The proposed xLMA method is implemented in Reaktoro, a unified open-source framework for modeling chemically reactive systems.

  8. Adsorption equilibrium and kinetics of monomer-dimer monoclonal antibody mixtures on a cation exchange resin.

    PubMed

    Reck, Jason M; Pabst, Timothy M; Hunter, Alan K; Wang, Xiangyang; Carta, Giorgio

    2015-07-10

    Adsorption equilibrium and kinetics are determined for a monoclonal antibody (mAb) monomer and dimer species, individually and in mixtures, on a macroporous cation exchange resin both under the dilute limit of salt gradient elution chromatography and at high protein loads and low salt based on batch adsorption equilibrium and confocal laser scanning microscopy (CLSM) experiments. In the dilute limit and weak binding conditions, the dimer/monomer selectivity in 10mM phosphate at pH 7 varies between 8.7 and 2.3 decreasing with salt concentration in the range of 170-230mM NaCl. At high protein loads and strong binding conditions (0-60mM NaCl), the selectivity in the same buffer is near unity with no NaCl added, but increases gradually with salt concentration reaching high values between 2 and 15 with 60mM added NaCl. For these conditions, the two-component adsorption kinetics is controlled by pore diffusion and is predicted approximately by a dual shrinking core model using parameters based on single component equilibrium and kinetics measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Improved modeling of two-dimensional transitions in dense phases on crystalline surfaces. Krypton–graphite system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ustinov, E. A., E-mail: eustinov@mail.wplus.net

    This paper presents a refined technique to describe two-dimensional phase transitions in dense fluids adsorbed on a crystalline surface. Prediction of parameters of 2D liquid–solid equilibrium is known to be an extremely challenging problem, which is mainly due to a small difference in thermodynamic functions of coexisting phases and lack of accuracy of numerical experiments in case of their high density. This is a serious limitation of various attempts to circumvent this problem. To improve this situation, a new methodology based on the kinetic Monte Carlo method was applied. The methodology involves analysis of equilibrium gas–liquid and gas–solid systems undergoingmore » an external potential, which allows gradual shifting parameters of the phase coexistence. The interrelation of the chemical potential and tangential pressure for each system is then treated with the Gibbs–Duhem equation to obtain the point of intersection corresponding to the liquid/solid–solid equilibrium coexistence. The methodology is demonstrated on the krypton–graphite system below and above the 2D critical temperature. Using experimental data on the liquid–solid and the commensurate–incommensurate transitions in the krypton monolayer derived from adsorption isotherms, the Kr–graphite Lennard–Jones parameters have been corrected resulting in a higher periodic potential modulation.« less

  10. Out-of-equilibrium dynamical mean-field equations for the perceptron model

    NASA Astrophysics Data System (ADS)

    Agoritsas, Elisabeth; Biroli, Giulio; Urbani, Pierfrancesco; Zamponi, Francesco

    2018-02-01

    Perceptrons are the building blocks of many theoretical approaches to a wide range of complex systems, ranging from neural networks and deep learning machines, to constraint satisfaction problems, glasses and ecosystems. Despite their applicability and importance, a detailed study of their Langevin dynamics has never been performed yet. Here we derive the mean-field dynamical equations that describe the continuous random perceptron in the thermodynamic limit, in a very general setting with arbitrary noise and friction kernels, not necessarily related by equilibrium relations. We derive the equations in two ways: via a dynamical cavity method, and via a path-integral approach in its supersymmetric formulation. The end point of both approaches is the reduction of the dynamics of the system to an effective stochastic process for a representative dynamical variable. Because the perceptron is formally very close to a system of interacting particles in a high dimensional space, the methods we develop here can be transferred to the study of liquid and glasses in high dimensions. Potentially interesting applications are thus the study of the glass transition in active matter, the study of the dynamics around the jamming transition, and the calculation of rheological properties in driven systems.

  11. Study of sorption-retarded U(VI) diffusion in Hanford silt/clay material.

    PubMed

    Bai, Jing; Liu, Chongxuan; Ball, William P

    2009-10-15

    A diffusion cell method was applied to measure the effective pore diffusion coefficient (Dp) for U(VI) under strictly controlled chemical conditions in a silt/clay sediment from the U.S. Department of Energy Hanford site, WA. "Inward-flux" diffusion studies were conducted in which [U(VI)] in both aqueous and solid phases was measured as a function of distance in the diffusion cell under conditions of constant concentration at the cell boundaries. A sequential extraction method was developed to measure sorbed contaminant U(VI) in the solid phase containing extractable background U(VI). The effect of sorption kinetics on U(VI) interparticle diffusion was evaluated by comparing sorption-retarded diffusion models with sorption described either as equilibrium or intraparticle diffusion-limited processes. Both experimental and modeling results indicated that (1) a single pore diffusion coefficient can simulate the diffusion of total aqueous U(VI), and (2) the local equilibrium assumption (LEA) is appropriate for modeling sorption-retarded diffusion under the given experimental conditions. Dp of 1.6-1.7 x 10(-6) cm2/s was estimated in aqueous solution at pH 8.0 and saturated with respect to calcite, as relevant to some subsurface regions of the Hanford site.

  12. Illuminating the Mechanistic Roles of Enzyme Conformational Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Jeffrey A.; Dunderstadt, Karl; Watkins, Lucas P.

    2007-11-13

    Many enzymes mold their structures to enclose substrates in their active sites such that conformational remodeling may be required during each catalytic cycle. In adenylate kinase (AK), this involves a large-amplitude rearrangement of the enzyme’s lid domain. Using our method of high-resolution single-molecule FRET, we directly followed AK’s domain movements on its catalytic time scale. To quantitatively measure the enzyme’s entire conformational distribution, we have applied maximum entropy-based methods to remove photon-counting noise from single-molecule data. This analysis shows unambiguously that AK is capable of dynamically sampling two distinct states, which correlate well with those observed by x-ray crystallography. Unexpectedly,more » the equilibrium favors the closed, active-site-forming configurations even in the absence of substrates. Our experiments further showed that interaction with substrates, rather than locking the enzyme into a compact state, restricts the spatial extent of conformational fluctuations and shifts the enzyme’s conformational equilibrium toward the closed form by increasing the closing rate of the lid. Integrating these microscopic dynamics into macroscopic kinetics allows us to model lid opening-coupled product release as the enzyme’s rate-limiting step.« less

  13. Low level determination of (226)Ra in water using a micro-precipitate track method for large-scale environmental monitoring.

    PubMed

    Taheri, M; Sohrabi, M; Jaleh, B; Hosseini, T; Montazer Rahmati, M M

    2009-12-01

    In the present paper a method has been developed for the determination of (226)Ra in water by the detection, using a solid-state nuclear track detector (SSNTD), of alpha particles from (226)Ra in equilibrium with (222)Rn in micro-precipitates collected on a filter. The micro-precipitates were prepared from environmental water samples by collection of radium with lead as Pb/RaSO(4). Several factors affect the (226)Ra precipitation on the filter and its recovery, in particular the filter pore size. Therefore in this experiment Whatman #42 and Millipore filters with different pore sizes were used. Using a 0.45 microm Millipore filter, the recovery efficiency was increased up to 96%, and the alpha self-absorption and scattering decreased remarkably. For efficient detection of alphas from (226)Ra/(222)Rn in equilibrium, three types of SSNTD were used-polycarbonate (PC) electrochemically etched (ECE), CR-39 and LR-115 chemically etched (CE). By preparing a standard micro-precipitate on a filter with known (226)Ra/(222)Rn characteristics, the calibration response of each detector and its minimum detection limit (MDL) were determined.

  14. Solubilizing properties of new surface-active agents, products of catalytic oxyethylation of cholic acid.

    PubMed

    Kołodziejczyk, Michał Krzysztof; Nachajski, Michal Jakub; Lukosek, Marek; Zgoda, Marian Mikołaj

    2013-01-01

    Solubilizing properties of aqueous solutions of a series of surface-active agents, products of oxyethylation of cholic acid, were examined in the present study. The content of oxyethylated segments determined by means of the 1H NMR method enabled the verification of the molecular mass of surfactants along with the calculation of the structural hydrophilic-lipophilic balance (HLB), the solubility parameter delta1/2, and the required solubility level of balance HLB(R). Viscosimetric measurements enabled the calculation of the limiting viscosity number, the content-average molecular mass, the effective volume, the hydrodynamic radius of the surfactant micelle and their equilibrium adducts with rutin, diclofenac and loratadine (BCS Class II and III). By means of the spectrophotometric method (UV) the amount of the solubilized diclofenac, loratadine and rutin (rutoside) was determined in the equilibrium system (saturated solution) in the environment of aqueous solutions of cholic acid derivatives of n(TE) = 20-70. The obtained results serve as a basis for determining the solubilization mechanism of lipophilic therapeutic products and indirectly for estimating the influence of the above process on pharmaceutical as well as biological availability of a micellar adduct from model drug forms (Lindbladt lithogenolitic index).

  15. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    PubMed

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  16. Algorithm For Hypersonic Flow In Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.

  17. Teaching Chemical Equilibrium with the Jigsaw Technique

    NASA Astrophysics Data System (ADS)

    Doymus, Kemal

    2008-03-01

    This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students’ understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes was randomly assigned as the non-jigsaw group (control) and other as the jigsaw group (cooperative). Students participating in the jigsaw group were divided into four “home groups” since the topic chemical equilibrium is divided into four subtopics (Modules A, B, C and D). Each of these home groups contained four students. The groups were as follows: (1) Home Group A (HGA), representin g the equilibrium state and quantitative aspects of equilibrium (Module A), (2) Home Group B (HGB), representing the equilibrium constant and relationships involving equilibrium constants (Module B), (3) Home Group C (HGC), representing Altering Equilibrium Conditions: Le Chatelier’s principle (Module C), and (4) Home Group D (HGD), representing calculations with equilibrium constants (Module D). The home groups then broke apart, like pieces of a jigsaw puzzle, and the students moved into jigsaw groups consisting of members from the other home groups who were assigned the same portion of the material. The jigsaw groups were then in charge of teaching their specific subtopic to the rest of the students in their learning group. The main data collection tool was a Chemical Equilibrium Achievement Test (CEAT), which was applied to both the jigsaw and non-jigsaw groups The results indicated that the jigsaw group was more successful than the non-jigsaw group (individual learning method).

  18. Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Cave, H. M.; Tseng, K.-C.; Wu, J.-S.; Jermy, M. C.; Huang, J.-C.; Krumdieck, S. P.

    2008-06-01

    An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced, allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are compared to experimental data and simulations from the literature where there these are available. In general, it was found that 10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5-3.3 times, based on the limited number of cases in the present study.

  19. Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models

    NASA Astrophysics Data System (ADS)

    Wong, Michael H.; Atreya, Sushil K.; Kuhn, William R.; Romani, Paul N.; Mihalka, Kristen M.

    2015-01-01

    Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are useful for several reasons. These equilibrium cloud condensation models (ECCMs) calculate the wet adiabatic lapse rate, determine saturation-limited mixing ratios of condensing species, calculate the stabilizing effect of latent heat release and molecular weight stratification, and locate cloud base levels. Many ECCMs trace their heritage to Lewis (Lewis, J.S. [1969]. Icarus 10, 365-378) and Weidenschilling and Lewis (Weidenschilling, S.J., Lewis, J.S. [1973]. Icarus 20, 465-476). Calculation of atmospheric structure and gas mixing ratios are correct in these models. We resolve errors affecting the cloud density calculation in these models by first calculating a cloud density rate: the change in cloud density with updraft length scale. The updraft length scale parameterizes the strength of the cloud-forming updraft, and converts the cloud density rate from the ECCM into cloud density. The method is validated by comparison with terrestrial cloud data. Our parameterized updraft method gives a first-order prediction of cloud densities in a “fresh” cloud, where condensation is the dominant microphysical process. Older evolved clouds may be better approximated by another 1-D method, the diffusive-precipitative Ackerman and Marley (Ackerman, A.S., Marley, M.S. [2001]. Astrophys. J. 556, 872-884) model, which represents a steady-state equilibrium between precipitation and condensation of vapor delivered by turbulent diffusion. We re-evaluate observed cloud densities in the Galileo Probe entry site (Ragent, B. et al. [1998]. J. Geophys. Res. 103, 22891-22910), and show that the upper and lower observed clouds at ∼0.5 and ∼3 bars are consistent with weak (cirrus-like) updrafts under conditions of saturated ammonia and water vapor, respectively. The densest observed cloud, near 1.3 bar, requires unexpectedly strong updraft conditions, or higher cloud density rates. The cloud density rate in this layer may be augmented by a composition with non-NH4SH components (possibly including adsorbed NH3).

  20. Methods for Determining the Optimum Design of Structures Protected from Aerodynamic Heating and Application to Typical Boost-Glide or Reentry Flight Paths

    NASA Technical Reports Server (NTRS)

    Harris, Robert S., Jr.; Davidson, John R.

    1962-01-01

    General equations are developed for the design of efficient structures protected from thermal environments typical of those encountered in boost-glide or atmospheric-reentry conditions. The method is applied to insulated heat-sink stressed-skin structures and to internally cooled insulated structures. Plates loaded in compression are treated in detail. Under limited conditions of plate buckling, high loading, and short flight periods, and for aluminum structures only, the weights of both configurations are nearly equal. Load parameters are found and are similar to those derived in previous investigations for the restricted case of a constant equilibrium temperature at the outside surface of the insulation.

  1. Improved accuracy for finite element structural analysis via an integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  2. Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnell, Sondre K.; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720; Department of Chemistry, Faculty of Natural Science and Technology, Norwegian University of Science and Technology, 4791 Trondheim

    2014-10-14

    We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results obtainedmore » with the new method are in excellent agreement with those from previous methods. Especially for modeling chemical reactions, our method can be a valuable tool for determining reaction enthalpies directly from a single MD simulation.« less

  3. Distance, Dialogue and Reflection: Interpersonal Reflective Equilibrium as Method for Professional Ethics Education

    ERIC Educational Resources Information Center

    van den Hoven, Mariëtte; Kole, Jos

    2015-01-01

    The method of reflective equilibrium (RE) is well known within the domain of moral philosophy, but hardly discussed as a method in professional ethics education. We argue that an interpersonal version of RE is very promising for professional ethics education. We offer several arguments to support this claim. The first group of arguments focus on a…

  4. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  5. Student certainty answering misconception question: study of Three-Tier Multiple-Choice Diagnostic Test in Acid-Base and Solubility Equilibrium

    NASA Astrophysics Data System (ADS)

    Ardiansah; Masykuri, M.; Rahardjo, S. B.

    2018-04-01

    Students’ concept comprehension in three-tier multiple-choice diagnostic test related to student confidence level. The confidence level related to certainty and student’s self-efficacy. The purpose of this research was to find out students’ certainty in misconception test. This research was quantitative-qualitative research method counting students’ confidence level. The research participants were 484 students that were studying acid-base and equilibrium solubility subject. Data was collected using three-tier multiple-choice (3TMC) with thirty questions and students’ questionnaire. The findings showed that #6 item gives the highest misconception percentage and high student confidence about the counting of ultra-dilute solution’s pH. Other findings were that 1) the student tendency chosen the misconception answer is to increase over item number, 2) student certainty decreased in terms of answering the 3TMC, and 3) student self-efficacy and achievement were related each other in the research. The findings suggest some implications and limitations for further research.

  6. Nonlinear dynamics of attractive magnetic bearings

    NASA Technical Reports Server (NTRS)

    Hebbale, K. V.; Taylor, D. L.

    1987-01-01

    The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.

  7. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2017-12-01

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely resolved (e.g., molecular dynamics) and coarse-grained (e.g., continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 084115 (2016)], simulated using a particle-based continuum method known as smoothed dissipative particle dynamics. An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.

  8. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.

    PubMed

    Liu, Donghua; Chen, Xiaosong; Hu, Yibin; Sun, Tai; Song, Zhibo; Zheng, Yujie; Cao, Yongbin; Cai, Zhi; Cao, Min; Peng, Lan; Huang, Yuli; Du, Lei; Yang, Wuli; Chen, Gang; Wei, Dapeng; Wee, Andrew Thye Shen; Wei, Dacheng

    2018-01-15

    Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO 2 /Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10 -9  mol L -1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics.

  9. The Sima de los Huesos hominids date to beyond U/Th equilibrium (>350 kyr) and perhaps to 400-500 kyr: New radiometric dates

    USGS Publications Warehouse

    Bischoff, J.L.; Shamp, D.D.; Aramburu, Arantza; Arsuaga, J.L.; Carbonell, E.; Bermudez de Castro, Jose Maria

    2003-01-01

    The Sima de los Huesos site of the Atapuerca complex near Burgos, Spain contains the skeletal remains of at least 28 individuals in a mud breccia underlying an accumulation of the Middle Pleistocene cave bear (U. deningeri). Earlier dating estimates of 200 to 320 kyr were based on U-series and ESR methods applied to bones, made inaccurate by unquantifiable uranium cycling. We report here on a new discovery within the Sima de los Huesos of human bones stratigraphically underlying an in situ speleothem. U-series analyses of the speleothem shows the lower part to be at isotopic U/Th equilibrium, translating to a firm lower limit of 350 kyr for the SH hominids. Finite dates on the upper part suggest a speleothem growth rate of c. 1 cm/32 kyr. This rate, along with paleontological constraints, place the likely age of the hominids in the interval of 400 to 600 kyr. ?? 2002 Elsevier Science Ltd. All rights reserved.

  10. Extension of the Viscous Collision Limiting Direct Simulation Monte Carlo Technique to Multiple Species

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Burt, Jonathan M.

    2016-01-01

    There are many flows fields that span a wide range of length scales where regions of both rarefied and continuum flow exist and neither direct simulation Monte Carlo (DSMC) nor computational fluid dynamics (CFD) provide the appropriate solution everywhere. Recently, a new viscous collision limited (VCL) DSMC technique was proposed to incorporate effects of physical diffusion into collision limiter calculations to make the low Knudsen number regime normally limited to CFD more tractable for an all-particle technique. This original work had been derived for a single species gas. The current work extends the VCL-DSMC technique to gases with multiple species. Similar derivations were performed to equate numerical and physical transport coefficients. However, a more rigorous treatment of determining the mixture viscosity is applied. In the original work, consideration was given to internal energy non-equilibrium, and this is also extended in the current work to chemical non-equilibrium.

  11. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations.

    PubMed

    Yuhara, Daisuke; Brumby, Paul E; Wu, David T; Sum, Amadeu K; Yasuoka, Kenji

    2018-05-14

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  12. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuhara, Daisuke; Brumby, Paul E.; Wu, David T.; Sum, Amadeu K.; Yasuoka, Kenji

    2018-05-01

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  13. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...

  14. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...

  15. Kinetic and equilibrium characteristics of sorption of saponin of Quillaja Saponaria Molina on chitosan

    NASA Astrophysics Data System (ADS)

    Mironenko, N. V.; Smuseva, S. O.; Brezhneva, T. A.; Selemenev, V. F.

    2016-12-01

    The equilibrium and kinetic curves of the sorption of saponin of Quillaja saponaria molina on chitosan were analyzed. The inner diffusion was found to be limiting, and its coefficients were calculated. It was found that the form of the curves of the sorption isotherms of saponin is determined by the competing processes of association in solution and absorption by chitosan.

  16. Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions

    DOE PAGES

    Schlichting, S.; Venugopalan, R.; Berges, J.; ...

    2015-02-10

    Isolated quantum systems in extreme conditions can exhibit unusually large occupancies per mode. In addition, this over-population gives rise to new universality classes of many-body systems far from equilibrium. We present theoretical evidence that important aspects of non-Abelian plasmas in the ultra-relativistic limit admit a dual description in terms of a Bose condensed scalar field theory.

  17. The representation of non-equilibrium soil types in earth system models and its impact on carbon cycle projections

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Ahlström, A.; Canadell, J.; Koven, C. D.; Jackson, R. B.; Luo, Y.

    2016-12-01

    Soils hold the largest reactive pool of carbon (C) on earth. Global soil organic C stocks (0-200 cm depth plus full peatland depth) are estimated to 2200 Pg C (adapted from Hugelius et al., 2014, Köchy et al., 2015 and Batjes, 2016). Soil C stocks in Earth system models (ESMs) can be generated by running the model over a longer time period until soil C pools are in or near steady-state. Inherent in this concept is the idea that soil C stocks are in (quasi)equilibrium as determined by the balance of net ecosystem input to soil organic matter and its turnover. The rate of turnover is sometimes subdivided into several pools and the rates are affected by various environmental factors. Here we break down the empirically based estimates of global soil C pools into equilibrium-type soils which current (Coupled Model Intercomparison Project, phase 5; CMIP5) generation ESMs are set-up to represent and non-equilibrium type soils which are generally not represented in current ESMs. We define equilibrium soils as those where pedogenesis (and associated soil C formation) is not significantly limited by the environmental factors perennial soil freezing, waterlogging/anoxia or limited unconsolidated soil substrate. This is essentially all permafrost-free mineral soils that are not in a wetland or alpine setting. On the other hand, non-equlibrium soils are defined as permafrost soils, peatlands and alpine soils with a limited fine-soil matrix. Based on geospatial analyses of state-of-the-art datasets on soil C stocks, we estimate that the global soil C pool is divided roughly equally between equilibrium and non-equlibrium type soils. We discuss the ways in which this result affects C cycling in ESMs and projections of soil C sensitivity under a changing climate. ReferencesBatjes N.H. (2016) Geoderma, 269, 61-68, doi: 10.1016/j.geoderma.2016.01.034 Hugelius G. et al. (2014) Biogeosciences, 11, 6573-6593, doi:10.5194/bg-11-6573-2014 Köchy M. et al. (2015) Soil 1, 351-365. DOI: doi:10.5194/soil-1-351-2015

  18. Evaporation in equilibrium, in vacuum, and in hydrogen gas

    NASA Technical Reports Server (NTRS)

    Nagahara, Hiroko

    1993-01-01

    Evaporation experiments were conducted for SiO2 in three different conditions: in equilibrium, in vacuum, and in hydrogen gas. Evaporation rate in vacuum is about two orders of magnitude smaller than that in equilibrium, which is consistent with previous works. The rate in hydrogen gas changes depending on hydrogen pressure. The rate at 10 exp -7 bar of hydrogen pressure is as small as that of free evaporation, but at 10 exp -5 bar of hydrogen pressure it is larger than that in equilibrium. In equilibrium and in vacuum, the evaporation rate is limited by decomposition of SiO2 on the crystal surface, but it is limited by a diffusion process for evaporation in hydrogen gas. Therefore, evaporation rate of minerals in the solar nebula can be shown neither by that in equilibrium nor by that in vacuum. The maximum temperature of the solar nebula at the midplane at 2-3 AU where chondrites are believed to have originated is calculated to be as low as 150 K, 1500 K, or in between them. The temperature is, in any case, not high enough for total evaporation of the interstellar materials. Therefore, evaporation of interstellar materials is one of the most important processes for the origin and fractionation of solid materials. The fundamental process of evaporation of minerals has been intensively studied for these several years. Those experiments were carried out either in equilibrium or in vacuum; however, evaporation in the solar nebula is in hydrogen (and much smaller amount of helium) gas. In order to investigate evaporation rate and compositional (including isotopic) fractionation during evaporation, vaporization experiments for various minerals in various conditions are conducted. At first, SiO2 was adopted for a starting material, because thermochemical data and its nature of congruent vaporization are well known. Experiments were carried out in a vacuum furnace system.

  19. Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure.

    PubMed

    Campi, Gaetano; Di Gioacchino, Michael; Poccia, Nicola; Ricci, Alessandro; Burghammer, Manfred; Ciasca, Gabriele; Bianconi, Antonio

    2018-01-23

    Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.

  20. The keto-enol equilibrium in substituted acetaldehydes: focal-point analysis and ab initio limit

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.

    2011-10-01

    High-level ab initio electronic structure calculations up to the CCSD(T) theory level, including extrapolations to the complete basis set (CBS) limit, resulted in high precision energetics of the tautomeric equilibrium in 2-substituted acetaldehydes (XH2C-CHO). The CCSD(T)/CBS relative energies of the tautomers were estimated using CCSD(T)/aug-cc-pVTZ, MP3/aug-cc-pVQZ, and MP2/aug-cc-pV5Z calculations with MP2/aug-cc-pVTZ geometries. The relative enol (XHC = CHOH) stabilities (ΔE e,CCSD(T)/CBS) were found to be 5.98 ± 0.17, -1.67 ± 0.82, 7.64 ± 0.21, 8.39 ± 0.31, 2.82 ± 0.52, 10.27 ± 0.39, 9.12 ± 0.18, 5.47 ± 0.53, 7.50 ± 0.43, 10.12 ± 0.51, 8.49 ± 0.33, and 6.19 ± 0.18 kcal mol-1 for X = BeH, BH2, CH3, Cl, CN, F, H, NC, NH2, OCH3, OH, and SH, respectively. Inconsistencies between the results of complex/composite energy computations methods Gn/CBS (G2, G3, CBS-4M, and CBS-QB3) and high-level ab initio methods (CCSD(T)/CBS and MP2/CBS) were found. DFT/aug-cc-pVTZ results with B3LYP, PBE0 (PBE1PBE), TPSS, and BMK density functionals were close to the CCSD(T)/CBS levels (MAD = 1.04 kcal mol-1).

  1. Completed Beltrami-Michell Formulation in Polar Coordinates

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2005-01-01

    A set of conditions had not been formulated on the boundary of an elastic continuum since the time of Saint-Venant. This limitation prevented the formulation of a direct stress calculation method in elasticity for a continuum with a displacement boundary condition. The missed condition, referred to as the boundary compatibility condition, is now formulated in polar coordinates. The augmentation of the new condition completes the Beltrami-Michell formulation in polar coordinates. The completed formulation that includes equilibrium equations and a compatibility condition in the field as well as the traction and boundary compatibility condition is derived from the stationary condition of the variational functional of the integrated force method. The new method is illustrated by solving an example of a mixed boundary value problem for mechanical as well as thermal loads.

  2. A symmetrical method to obtain shear moduli from microrheology† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sm02499a

    PubMed Central

    Nishi, Kengo

    2018-01-01

    Passive microrheology typically deduces shear elastic loss and storage moduli from displacement time series or mean-squared displacements (MSD) of thermally fluctuating probe particles in equilibrium materials. Common data analysis methods use either Kramers–Kronig (KK) transformation or functional fitting to calculate frequency-dependent loss and storage moduli. We propose a new analysis method for passive microrheology that avoids the limitations of both of these approaches. In this method, we determine both real and imaginary components of the complex, frequency-dependent response function χ(ω) = χ′(ω) + iχ′′(ω) as direct integral transforms of the MSD of thermal particle motion. This procedure significantly improves the high-frequency fidelity of χ(ω) relative to the use of KK transformation, which has been shown to lead to artifacts in χ′(ω). We test our method on both model and experimental data. Experiments were performed on solutions of worm-like micelles and dilute collagen solutions. While the present method agrees well with established KK-based methods at low frequencies, we demonstrate significant improvement at high frequencies using our symmetric analysis method, up to almost the fundamental Nyquist limit. PMID:29611576

  3. Direct Measurement of Equilibrium Constants for High-Affinity Hemoglobins

    PubMed Central

    Kundu, Suman; Premer, Scott A.; Hoy, Julie A.; Trent, James T.; Hargrove, Mark S.

    2003-01-01

    The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (KD ≪ 1 μM) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and ∼100 μM−1 respectively, indicate that they are not capable of facilitating oxygen transport. PMID:12770899

  4. Equilibrium problems for Raney densities

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Liu, Dang-Zheng; Zinn-Justin, Paul

    2015-07-01

    The Raney numbers are a class of combinatorial numbers generalising the Fuss-Catalan numbers. They are indexed by a pair of positive real numbers (p, r) with p > 1 and 0 < r ⩽ p, and form the moments of a probability density function. For certain (p, r) the latter has the interpretation as the density of squared singular values for certain random matrix ensembles, and in this context equilibrium problems characterising the Raney densities for (p, r) = (θ + 1, 1) and (θ/2 + 1, 1/2) have recently been proposed. Using two different techniques—one based on the Wiener-Hopf method for the solution of integral equations and the other on an analysis of the algebraic equation satisfied by the Green's function—we establish the validity of the equilibrium problems for general θ > 0 and similarly use both methods to identify the equilibrium problem for (p, r) = (θ/q + 1, 1/q), θ > 0 and q \\in Z+ . The Wiener-Hopf method is used to extend the latter to parameters (p, r) = (θ/q + 1, m + 1/q) for m a non-negative integer, and also to identify the equilibrium problem for a family of densities with moments given by certain binomial coefficients.

  5. General method and thermodynamic tables for computation of equilibrium composition and temperature of chemical reactions

    NASA Technical Reports Server (NTRS)

    Huff, Vearl N; Gordon, Sanford; Morrell, Virginia E

    1951-01-01

    A rapidly convergent successive approximation process is described that simultaneously determines both composition and temperature resulting from a chemical reaction. This method is suitable for use with any set of reactants over the complete range of mixture ratios as long as the products of reaction are ideal gases. An approximate treatment of limited amounts of liquids and solids is also included. This method is particularly suited to problems having a large number of products of reaction and to problems that require determination of such properties as specific heat or velocity of sound of a dissociating mixture. The method presented is applicable to a wide variety of problems that include (1) combustion at constant pressure or volume; and (2) isentropic expansion to an assigned pressure, temperature, or Mach number. Tables of thermodynamic functions needed with this method are included for 42 substances for convenience in numerical computations.

  6. Spectacular phenomena and limits to rationality in genetic and cultural evolution.

    PubMed Central

    Enquist, Magnus; Arak, Anthony; Ghirlanda, Stefano; Wachtmeister, Carl-Adam

    2002-01-01

    In studies of both animal and human behaviour, game theory is used as a tool for understanding strategies that appear in interactions between individuals. Game theory focuses on adaptive behaviour, which can be attained only at evolutionary equilibrium. We suggest that behaviour appearing during interactions is often outside the scope of such analysis. In many types of interaction, conflicts of interest exist between players, fuelling the evolution of manipulative strategies. Such strategies evolve out of equilibrium, commonly appearing as spectacular morphology or behaviour with obscure meaning, to which other players may react in non-adaptive, irrational ways. We present a simple model to show some limitations of the game-theory approach, and outline the conditions in which evolutionary equilibria cannot be maintained. Evidence from studies of biological interactions seems to support the view that behaviour is often not at equilibrium. This also appears to be the case for many human cultural traits, which have spread rapidly despite the fact that they have a negative influence on reproduction. PMID:12495515

  7. Spectacular phenomena and limits to rationality in genetic and cultural evolution.

    PubMed

    Enquist, Magnus; Arak, Anthony; Ghirlanda, Stefano; Wachtmeister, Carl-Adam

    2002-11-29

    In studies of both animal and human behaviour, game theory is used as a tool for understanding strategies that appear in interactions between individuals. Game theory focuses on adaptive behaviour, which can be attained only at evolutionary equilibrium. We suggest that behaviour appearing during interactions is often outside the scope of such analysis. In many types of interaction, conflicts of interest exist between players, fuelling the evolution of manipulative strategies. Such strategies evolve out of equilibrium, commonly appearing as spectacular morphology or behaviour with obscure meaning, to which other players may react in non-adaptive, irrational ways. We present a simple model to show some limitations of the game-theory approach, and outline the conditions in which evolutionary equilibria cannot be maintained. Evidence from studies of biological interactions seems to support the view that behaviour is often not at equilibrium. This also appears to be the case for many human cultural traits, which have spread rapidly despite the fact that they have a negative influence on reproduction.

  8. Contour-time approach to the Bose-Hubbard model in the strong coupling regime: Studying two-point spatio-temporal correlations at the Hartree-Fock-Bogoliubov level

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Matthew R. C.; Kennett, Malcolm P.

    2018-05-01

    We develop a formalism that allows the study of correlations in space and time in both the superfluid and Mott insulating phases of the Bose-Hubbard Model. Specifically, we obtain a two particle irreducible effective action within the contour-time formalism that allows for both equilibrium and out of equilibrium phenomena. We derive equations of motion for both the superfluid order parameter and two-point correlation functions. To assess the accuracy of this formalism, we study the equilibrium solution of the equations of motion and compare our results to existing strong coupling methods as well as exact methods where possible. We discuss applications of this formalism to out of equilibrium situations.

  9. Sample selection and spatial models of housing price indexes, and, A disequilibrium analysis of the U.S. gasoline market using panel data

    NASA Astrophysics Data System (ADS)

    Hu, Haixin

    This dissertation consists of two parts. The first part studies the sample selection and spatial models of housing price index using transaction data on detached single-family houses of two California metropolitan areas from 1990 through 2008. House prices are often spatially correlated due to shared amenities, or when the properties are viewed as close substitutes in a housing submarket. There have been many studies that address spatial correlation in the context of housing markets. However, none has used spatial models to construct housing price indexes at zip code level for the entire time period analyzed in this dissertation to the best of my knowledge. In this paper, I study a first-order autoregressive spatial model with four different weighing matrix schemes. Four sets of housing price indexes are constructed accordingly. Gatzlaff and Haurin (1997, 1998) study the sample selection problem in housing index by using Heckman's two-step method. This method, however, is generally inefficient and can cause multicollinearity problem. Also, it requires data on unsold houses in order to carry out the first-step probit regression. Maximum likelihood (ML) method can be used to estimate a truncated incidental model which allows one to correct for sample selection based on transaction data only. However, convergence problem is very prevalent in practice. In this paper I adopt Lewbel's (2007) sample selection correction method which does not require one to model or estimate the selection model, except for some very general assumptions. I then extend this method to correct for spatial correlation. In the second part, I analyze the U.S. gasoline market with a disequilibrium model that allows lagged-latent variables, endogenous prices, and panel data with fixed effects. Most existing studies (see the survey of Espey, 1998, Energy Economics) of the gasoline market assume equilibrium. In practice, however, prices do not always adjust fast enough to clear the market. Equilibrium assumptions greatly simplify statistical inference, but are very restrictive and can produce conflicting estimates. For example, econometric models of markets that assume equilibrium often produce more elastic demand price elasticity than their disequilibrium counterparts (Holt and Johnson, 1989, Review of Economics and Statistics, Oczkowski, 1998, Economics Letters). The few studies that allow disequilibrium, however, have been limited to macroeconomic time-series data without lagged-latent variables. While time series data allows one to investigate national trends, it cannot be used to identify and analyze regional differences and the role of local markets. Exclusion of the lagged-latent variables is also undesirable because such variables capture adjustment costs and inter-temporal spillovers. Simulation methods offer tractable solutions to dynamic and panel data disequilibrium models (Lee, 1997, Journal of Econometrics), but assume normally distributed errors. This paper compares estimates of price/income elasticity and excess supply/demand across time periods, regions, and model specifications, using both equilibrium and disequilibrium methods. In the equilibrium model, I compare the within group estimator with Anderson and Hsiao's first-difference 2SLS estimator. In the disequilibrium model, I extend Amemiya's 2SLS by using Newey's efficient estimator with optimal instruments.

  10. Shot noise enhancement from non-equilibrium plasmons in Luttinger liquid junctions.

    PubMed

    Kim, Jaeuk U; Kinaret, Jari M; Choi, Mahn-Soo

    2005-06-29

    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunnelling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behaviour compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one because of fast plasmon relaxation processes, for example.

  11. Shot noise enhancement from non-equilibrium plasmons in Luttinger liquid junctions

    NASA Astrophysics Data System (ADS)

    Kim, Jaeuk U.; Kinaret, Jari M.; Choi, Mahn-Soo

    2005-06-01

    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunnelling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behaviour compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one because of fast plasmon relaxation processes, for example.

  12. Integrated Force Method Solution to Indeterminate Structural Mechanics Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.

    2004-01-01

    Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

  13. Quantitative determination of free/bound atazanavir via high-throughput equilibrium dialysis and LC-MS/MS, and the application in ex vivo samples.

    PubMed

    Xu, Xiaohui Sophia; Rose, Anne; Demers, Roger; Eley, Timothy; Ryan, John; Stouffer, Bruce; Cojocaru, Laura; Arnold, Mark

    2014-01-01

    The determination of drug-protein binding is important in the pharmaceutical development process because of the impact of protein binding on both the pharmacokinetics and pharmacodynamics of drugs. Equilibrium dialysis is the preferred method to measure the free drug fraction because it is considered to be more accurate. The throughput of equilibrium dialysis has recently been improved by implementing a 96-well format plate. Results/methodology: This manuscript illustrates the successful application of a 96-well rapid equilibrium dialysis (RED) device in the determination of atazanavir plasma-protein binding. This RED method of measuring free fraction was successfully validated and then applied to the analysis of clinical plasma samples taken from HIV-infected pregnant women administered atazanavir. Combined with LC-MS/MS detection, the 96-well format equilibrium dialysis device was suitable for measuring the free and bound concentration of pharmaceutical molecules in a high-throughput mode.

  14. Efficient chemical potential evaluation with kinetic Monte Carlo method and non-uniform external potential: Lennard-Jones fluid, liquid, and solid

    NASA Astrophysics Data System (ADS)

    Ustinov, E. A.

    2017-07-01

    The aim of this paper is to present a method of a direct evaluation of the chemical potential of fluid, liquid, and solid with kinetic Monte Carlo simulation. The method is illustrated with the 12-6 Lennard-Jones (LJ) system over a wide range of density and temperature. A distinctive feature of the methodology used in the present study is imposing an external potential on the elongated simulation box to split the system into two equilibrium phases, one of which is substantially diluted. This technique provides a reliable direct evaluation of the chemical potential of the whole non-uniform system (including that of the uniformly distributed dense phase in the central zone of the box), which, for example, is impossible in simulation of the uniform crystalline phase. The parameters of the vapor-liquid, liquid-solid, and fluid-solid transitions have been reliably determined. The chemical potential and the pressure are defined as thermodynamically consistent functions of density and temperature separately for the liquid and the solid (FCC) phases. It has been shown that in two-phase systems separated by a flat interface, the crystal melting always occurs at equilibrium conditions. It is also proved that in the limit of zero temperature, the specific heat capacity of an LJ crystal at constant volume is exactly 3Rg (where Rg is the gas constant) without resorting to harmonic oscillators.

  15. Bayesian soft X-ray tomography using non-stationary Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Li, Dong; Svensson, J.; Thomsen, H.; Medina, F.; Werner, A.; Wolf, R.

    2013-08-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  16. Bayesian soft X-ray tomography using non-stationary Gaussian Processes.

    PubMed

    Li, Dong; Svensson, J; Thomsen, H; Medina, F; Werner, A; Wolf, R

    2013-08-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  17. Temperature effect on behaviour, oxygen consumption, ammonia excretion and tolerance limit of the post larvae of shrimp Penaeus indicus.

    PubMed

    Krishnamoorthy, R; Mohamed, E H Syed; Rao, T Subba; Venugopalanj, V P; Hameed, P Shahul

    2008-01-01

    The present study has been carried out to know the effect of temperature on behaviour, equilibrium loss and tolerance limit of the post larvae of shrimp Penaeus indicus. The experimental temperatures were selected based on the thermal tolerance limit. The experiments were conducted at a specific temperature for duration of 48 hr. The thermal tolerance experiments were conducted in two ways: in direct exposure and in gradually increasing temperature. The upper and lower lethal temperatures for the post larvae of shrimp P. indicus were 43.5 degrees C and 8 degrees C respectively. During tolerance experiment, no mortality was observed at 33 degrees C and 35 degrees C. But at 38 degrees C with gradual increase in temperature, 30% loss of equilibrium and mortality were recorded in 24.31 hrs and 25.07 hrs, and the remaining 70% were alive. On the contrary, when the post larvae of shrimps were directly exposed to 38 degrees C, almost 80% loss of equilibrium and mortality were recorded in 30.22 hrs and 30.40 hrs, remaining 20% were alive. At 40 degrees C with gradual increase in temperature, 100% loss of equilibrium and mortality were recorded in 25.32 hrs and 25.56 hrs. On the other hand, when the post larvae of shrimps were directly exposed to 40 degrees C, 100% loss of equilibrium was observed in 0.37 hrs and mortality in 1.40 hrs. These behavioral responses include an elevated temperature of 12 degrees C, surfacing, dashing against glass wall, jumping out of the water, etc. In general, the rate of oxygen consumption and ammonia excretion was found to enhance with increasing temperature. In the present study, it was found that gradual increase in temperature favours the shellfish population to escape from the thermal exposure as compared to direct exposure.

  18. Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER

    NASA Astrophysics Data System (ADS)

    Faugeras, Blaise; Blum, Jacques; Heumann, Holger; Boulbe, Cédric

    2017-08-01

    The modelization of polarimetry Faraday rotation measurements commonly used in tokamak plasma equilibrium reconstruction codes is an approximation to the Stokes model. This approximation is not valid for the foreseen ITER scenarios where high current and electron density plasma regimes are expected. In this work a method enabling the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry is provided. Using optimal control theory we derive the optimality system for this inverse problem. A sequential quadratic programming (SQP) method is proposed for its numerical resolution. Numerical experiments with noisy synthetic measurements in the ITER tokamak configuration for two test cases, the second of which is an H-mode plasma, show that the method is efficient and that the accuracy of the identification of the unknown profile functions is improved compared to the use of classical Faraday measurements.

  19. A Newton method for the magnetohydrodynamic equilibrium equations

    NASA Astrophysics Data System (ADS)

    Oliver, Hilary James

    We have developed and implemented a (J, B) space Newton method to solve the full nonlinear three dimensional magnetohydrodynamic equilibrium equations in toroidal geometry. Various cases have been run successfully, demonstrating significant improvement over Picard iteration, including a 3D stellarator equilibrium at β = 2%. The algorithm first solves the equilibrium force balance equation for the current density J, given a guess for the magnetic field B. This step is taken from the Picard-iterative PIES 3D equilibrium code. Next, we apply Newton's method to Ampere's Law by expansion of the functional J(B), which is defined by the first step. An analytic calculation in magnetic coordinates, of how the Pfirsch-Schlüter currents vary in the plasma in response to a small change in the magnetic field, yields the Newton gradient term (analogous to ∇f . δx in Newton's method for f(x) = 0). The algorithm is computationally feasible because we do this analytically, and because the gradient term is flux surface local when expressed in terms of a vector potential in an Ar=0 gauge. The equations are discretized by a hybrid spectral/offset grid finite difference technique, and leading order radial dependence is factored from Fourier coefficients to improve finite- difference accuracy near the polar-like origin. After calculating the Newton gradient term we transfer the equation from the magnetic grid to a fixed background grid, which greatly improves the code's performance.

  20. Extension of CE/SE method to non-equilibrium dissociating flows

    NASA Astrophysics Data System (ADS)

    Wen, C. Y.; Saldivar Massimi, H.; Shen, H.

    2018-03-01

    In this study, the hypersonic non-equilibrium flows over rounded nose geometries are numerically investigated by a robust conservation element and solution element (CE/SE) code, which is based on hybrid meshes consisting of triangular and quadrilateral elements. The dissociating and recombination chemical reactions as well as the vibrational energy relaxation are taken into account. The stiff source terms are solved by an implicit trapezoidal method of integration. Comparison with laboratory and numerical cases are provided to demonstrate the accuracy and reliability of the present CE/SE code in simulating hypersonic non-equilibrium flows.

  1. On-Line Safe Flight Envelope Determination for Impaired Aircraft

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John

    2015-01-01

    The design and simulation of an on-line algorithm which estimates the safe maneuvering envelope of aircraft is discussed in this paper. The trim envelope is estimated using probabilistic methods and efficient high-fidelity model based computations of attainable equilibrium sets. From this trim envelope, a robust reachability analysis provides the maneuverability limitations of the aircraft through an optimal control formulation. Both envelope limits are presented to the flight crew on the primary flight display. In the results section, scenarios are considered where this adaptive algorithm is capable of computing online changes to the maneuvering envelope due to impairment. Furthermore, corresponding updates to display features on the primary flight display are provided to potentially inform the flight crew of safety critical envelope alterations caused by the impairment.

  2. The Speed Reading Is in Disrepute: Advantages of Slow Reading for the Information Equilibrium

    ERIC Educational Resources Information Center

    Tsvetkova, Milena I.

    2017-01-01

    The study is dedicated to the impact of the speed and the acceleration on the preservation of the information equilibrium and the ability for critical thinking in the active person. The methods about the fast reading training are subjected to a critical analysis. On the grounds of the theory for the information equilibrium and the philosophy of…

  3. Theoretical limitations of quantification for noncompetitive sandwich immunoassays.

    PubMed

    Woolley, Christine F; Hayes, Mark A; Mahanti, Prasun; Douglass Gilman, S; Taylor, Tom

    2015-11-01

    Immunoassays exploit the highly selective interaction between antibodies and antigens to provide a vital method for biomolecule detection at low concentrations. Developers and practitioners of immunoassays have long known that non-specific binding often restricts immunoassay limits of quantification (LOQs). Aside from non-specific binding, most efforts by analytical chemists to reduce the LOQ for these techniques have focused on improving the signal amplification methods and minimizing the limitations of the detection system. However, with detection technology now capable of sensing single-fluorescence molecules, this approach is unlikely to lead to dramatic improvements in the future. Here, fundamental interactions based on the law of mass action are analytically connected to signal generation, replacing the four- and five-parameter fittings commercially used to approximate sigmoidal immunoassay curves and allowing quantitative consideration of non-specific binding and statistical limitations in order to understand the ultimate detection capabilities of immunoassays. The restrictions imposed on limits of quantification by instrumental noise, non-specific binding, and counting statistics are discussed based on equilibrium relations for a sandwich immunoassay. Understanding the maximal capabilities of immunoassays for each of these regimes can greatly assist in the development and evaluation of immunoassay platforms. While many studies suggest that single molecule detection is possible through immunoassay techniques, here, it is demonstrated that the fundamental limit of quantification (precision of 10 % or better) for an immunoassay is approximately 131 molecules and this limit is based on fundamental and unavoidable statistical limitations.

  4. Local thermodynamic equilibrium for globally disequilibrium open systems under stress

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury

    2016-04-01

    Predictive modeling of far and near equilibrium processes is essential for understanding of patterns formation and for quantifying of natural processes that are never in global equilibrium. Methods of both equilibrium and non-equilibrium thermodynamics are needed and have to be combined. For example, predicting temperature evolution due to heat conduction requires simultaneous use of equilibrium relationship between internal energy and temperature via heat capacity (the caloric equation of state) and disequilibrium relationship between heat flux and temperature gradient. Similarly, modeling of rocks deforming under stress, reactions in system open for the porous fluid flow, or kinetic overstepping of the equilibrium reaction boundary necessarily needs both equilibrium and disequilibrium material properties measured under fundamentally different laboratory conditions. Classical irreversible thermodynamics (CIT) is the well-developed discipline providing the working recipes for the combined application of mutually exclusive experimental data such as density and chemical potential at rest under constant pressure and temperature and viscosity of the flow under stress. Several examples will be presented.

  5. A New Multimedia Application for Teaching and Learning Chemical Equilibrium

    ERIC Educational Resources Information Center

    Ollino, Mario; Aldoney, Jenny; Domínguez, Ana M.; Merino, Cristian

    2018-01-01

    This study presents a method for teaching the subject of chemical equilibrium in which students engage in self-learning mediated by the use of a new multimedia animation (SEQ-alfa©). This method is presented together with evidence supporting its advantages. At a microscopic level, the simulator shows the mutual transformation of A molecules into B…

  6. Direct Determination of the Equilibrium Unbinding Potential Profile for a Short DNA Duplex from Force Spectroscopy Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noy, A

    2004-05-04

    Modern force microscopy techniques allow researchers to use mechanical forces to probe interactions between biomolecules. However, such measurements often happen in non-equilibrium regime, which precludes straightforward extraction of the equilibrium energy information. Here we use the work averaging method based on Jarzynski equality to reconstruct the equilibrium interaction potential from the unbinding of a complementary 14-mer DNA duplex from the results of non-equilibrium single-molecule measurements. The reconstructed potential reproduces most of the features of the DNA stretching transition, previously observed only in equilibrium stretching of long DNA sequences. We also compare the reconstructed potential with the thermodynamic parameters of DNAmore » duplex unbinding and show that the reconstruction accurately predicts duplex melting enthalpy.« less

  7. Stability analysis of the Euler discretization for SIR epidemic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanto, Agus

    2014-06-19

    In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaosmore » phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.« less

  8. Evaluating non-equilibrium solute transport in small soil columns

    NASA Astrophysics Data System (ADS)

    Kamra, S. K.; Lennartz, B.; Van Genuchten, M. Th; Widmoser, P.

    2001-04-01

    Displacement studies on leaching of bromide and two pesticides (atrazine and isoproturon) were conducted under unsaturated steady state flow conditions in 24 small undisturbed soil columns (5.7 cm in diameter and 10 cm long) each collected from two sites differing in soil structure and organic carbon content in North Germany. There were large and irregular variabilities in the characteristics of both soils, as well as in the shapes of breakthrough curves (BTCs) of different columns, including some with early breakthrough and increased tailing, qualitatively indicating the presence of preferential flow. It was estimated that one preferential flow column (PFC) at site A, and four at site B, contributed, respectively to 11% and 58% of the accumulated leached fraction and to more than 80% of the maximum observed standard deviation (SD) in the field-scale concentration and mass flux of pesticides at two sites. The bromide BTCs of two sites were analyzed with the equilibrium convection-dispersion equation (CDE) and a non-equilibrium two-region/mobile-immobile model. Transport parameters of these models for individual BTCs were determined using a curve fitting program, CXTFIT, and by the time moment method. For the CDE based equilibrium model, the mean values of retardation factor, R, considered separately for all columns, PFCs or non-preferential flow columns (NPFCs) were comparable for the two methods; significant differences were observed in the values of dispersion coefficients of two sites using the two estimation methods. It was inferred from the estimated parameters of non-equilibrium model that 5-12% of water at site A, and 12% at site B, was immobile during displacement in NPFCs. The corresponding values for PFCs of two sites were much larger, ranging from 25% to 51% by CXTFIT and from 24% to 72% by the moment method, suggesting the role of certain mechanisms other than immobile water in higher degrees of non-equilibrium in these columns. Peclet numbers in PFCs of both sites were consistently smaller than five, indicating the inadequacy of the non-equilibrium model to incorporate the effect of all forms of non-equilibrium in PFCs. Overall, the BTCs of individual NPFCs, PFCs and of field average concentration at the two sites were better reproduced with parameters obtained from CXTFIT than by the moment method. The moment method failed to capture the peak concentrations in PFCs, but tended to describe the desorption and tail branches of BTCs better than the curve fitting approach.

  9. Applicability of Quantum Thermal Baths to Complex Many-Body Systems with Various Degrees of Anharmonicity.

    PubMed

    Hernández-Rojas, Javier; Calvo, Florent; Noya, Eva Gonzalez

    2015-03-10

    The semiclassical method of quantum thermal baths by colored noise thermostats has been used to simulate various atomic systems in the molecular and bulk limits, at finite temperature and in moderately to strongly anharmonic regimes. In all cases, the method performs relatively well against alternative approaches in predicting correct energetic properties, including in the presence of phase changes, provided that vibrational delocalization is not too strong-neon appearing already as an upper limiting case. In contrast, the dynamical behavior inferred from global indicators such as the root-mean-square bond length fluctuation index or the vibrational spectrum reveals more marked differences caused by zero-point energy leakage, except in the case of isolated molecules with well separated vibrational modes. To correct for such deficiencies and reduce the undesired transfer among modes, empirical modifications of the noise power spectral density were attempted to better describe thermal equilibrium but still failed when used as semiclassical preparation for microcanonical trajectories.

  10. Method for enhancing the resolving power of ion mobility separations over a limited mobility range

    DOEpatents

    Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D

    2014-09-23

    A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.

  11. Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hao; Mey, Antonia S. J. S.; Noé, Frank

    2014-12-07

    We propose a discrete transition-based reweighting analysis method (dTRAM) for analyzing configuration-space-discretized simulation trajectories produced at different thermodynamic states (temperatures, Hamiltonians, etc.) dTRAM provides maximum-likelihood estimates of stationary quantities (probabilities, free energies, expectation values) at any thermodynamic state. In contrast to the weighted histogram analysis method (WHAM), dTRAM does not require data to be sampled from global equilibrium, and can thus produce superior estimates for enhanced sampling data such as parallel/simulated tempering, replica exchange, umbrella sampling, or metadynamics. In addition, dTRAM provides optimal estimates of Markov state models (MSMs) from the discretized state-space trajectories at all thermodynamic states. Under suitablemore » conditions, these MSMs can be used to calculate kinetic quantities (e.g., rates, timescales). In the limit of a single thermodynamic state, dTRAM estimates a maximum likelihood reversible MSM, while in the limit of uncorrelated sampling data, dTRAM is identical to WHAM. dTRAM is thus a generalization to both estimators.« less

  12. Tackling sampling challenges in biomolecular simulations.

    PubMed

    Barducci, Alessandro; Pfaendtner, Jim; Bonomi, Massimiliano

    2015-01-01

    Molecular dynamics (MD) simulations are a powerful tool to give an atomistic insight into the structure and dynamics of proteins. However, the time scales accessible in standard simulations, which often do not match those in which interesting biological processes occur, limit their predictive capabilities. Many advanced sampling techniques have been proposed over the years to overcome this limitation. This chapter focuses on metadynamics, a method based on the introduction of a time-dependent bias potential to accelerate sampling and recover equilibrium properties of a few descriptors that are able to capture the complexity of a process at a coarse-grained level. The theory of metadynamics and its combination with other popular sampling techniques such as the replica exchange method is briefly presented. Practical applications of these techniques to the study of the Trp-Cage miniprotein folding are also illustrated. The examples contain a guide for performing these calculations with PLUMED, a plugin to perform enhanced sampling simulations in combination with many popular MD codes.

  13. Eigenvector method for umbrella sampling enables error analysis

    PubMed Central

    Thiede, Erik H.; Van Koten, Brian; Weare, Jonathan; Dinner, Aaron R.

    2016-01-01

    Umbrella sampling efficiently yields equilibrium averages that depend on exploring rare states of a model by biasing simulations to windows of coordinate values and then combining the resulting data with physical weighting. Here, we introduce a mathematical framework that casts the step of combining the data as an eigenproblem. The advantage to this approach is that it facilitates error analysis. We discuss how the error scales with the number of windows. Then, we derive a central limit theorem for averages that are obtained from umbrella sampling. The central limit theorem suggests an estimator of the error contributions from individual windows, and we develop a simple and computationally inexpensive procedure for implementing it. We demonstrate this estimator for simulations of the alanine dipeptide and show that it emphasizes low free energy pathways between stable states in comparison to existing approaches for assessing error contributions. Our work suggests the possibility of using the estimator and, more generally, the eigenvector method for umbrella sampling to guide adaptation of the simulation parameters to accelerate convergence. PMID:27586912

  14. Table and Charts of Equilibrium Normal-shock Properties for Pure Hydrogen with Velocities to 70 km/sec. Revised.

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1976-01-01

    Errors found in the original edition are corrected. Refinement was made in procedures for solving the conservation relations for an incident (moving), standing, and reflected normal shock, as well as in computational methods for determining thermochemical-equilibrium hydrogen properties. A six-species hydrogen model replaces the original four-species model, and the heat of formation and spectroscopic constants used in this six-species model are listed in appendix A. In appendix B, comparisons are made between a number of methods for determining equilibrium thermodynamic properties for hydrogen for several values of pressure and temperatures to 50000 K. A comparison is also performed between the present method and a second method for determining thermodynamic properties and flow velocity behind an incident shock into pure hydrogen and behind a reflected shock.

  15. Molecular simulations of Crussard curves of detonation product mixtures at chemical equilibrium: Microscopic calculation of the Chapman-Jouguet state

    NASA Astrophysics Data System (ADS)

    Bourasseau, Emeric; Dubois, Vincent; Desbiens, Nicolas; Maillet, Jean-Bernard

    2007-06-01

    The simultaneous use of the Reaction Ensemble Monte Carlo (ReMC) method and the Adaptative Erpenbeck EOS (AE-EOS) method allows us to calculate direclty the thermodynamical and chemical equilibrium of a mixture on the hugoniot curve. The ReMC method allow to reach chemical equilibrium of detonation products and the AE-EOS method constraints ths system to satisfy the Hugoniot relation. Once the Crussard curve of detonation products has been established, CJ state properties may be calculated. An additional NPT simulation is performed at CJ conditions in order to compute derivative thermodynamic quantities like Cp, Cv, Gruneisen gama, sound velocity, and compressibility factor. Several explosives has been studied, of which PETN, nitromethane, tetranitromethane, and hexanitroethane. In these first simulations, solid carbon is eventually treated using an EOS.

  16. Theoretical and Experimental Methods in Hypersonic Flows (Les Methodes Theoriques et Experimentales pour l’Etude Des Ecoulements Hypersoniques)

    DTIC Science & Technology

    1993-04-01

    PROCEEDINGS 514 OELECTE f Theoretical and A U Experimental Methods in A Hypersonic Flows (Les Methodes Th6oriques et Experimentales pour 1’Etude des...nitrogen ent for both equilibrium and non -equilibrium chemistry between the two groups . Both groups state that the boundary makes this mode even more...flowfield on control is also m?,ndatory unstable due to the necessary oblate shape of Hermes. when the experimental rebuilding is clearly poor and

  17. Concept analysis of family homeostasis.

    PubMed

    Kim, Heejung; Rose, Karen M

    2014-11-01

    To report a concept analysis of family homeostasis. As family members are a majority of informal caregivers, negative consequences from caregiving duty create a vicious cycle in the family unit resulting in ongoing health crises and care challenges. Concept analysis. Forty empirical studies published from 1956-2012 were selected by searching five electronic bibliographical databases and by a manual search conducted from 2012-2013. Search terms included 'family homeostasis', 'homeostasis in family', 'homeostatic care' and 'family equilibrium'. Clinical experiences in nursing practice were used for constructing cases and clinical implications. Walker and Avant's method guided this analysis. Family homeostasis is defined as the capacity and mechanisms by which equilibrium is re-established in the family after a change occurs. Five critical attributes are identified: (1) predetermined setpoint; (2) self-appraised antecedents; (3) interdependence; (4) tendency to stability; and (5) feedback mechanisms. Antecedents include any type of causative change beyond the tolerable limit, while consequences encompass intermediate and long-term outcomes as well as equilibrium itself. Family homeostasis provides a conceptual rationale of family caregiving. While care recipients remain the primary beneficiaries of healthcare provision, homeostatic mechanisms are required to support the family caregiver's valuable contribution in the caring process to enhance family well-being. Further study should expand the definition and settings of family to reflect healthcare needs of diverse types of families and from the perspectives of different healthcare providers. © 2014 John Wiley & Sons Ltd.

  18. How do video-based demonstration assessment tasks affect problem-solving process, test anxiety, chemistry anxiety and achievement in general chemistry students?

    NASA Astrophysics Data System (ADS)

    Terrell, Rosalind Stephanie

    2001-12-01

    Because paper-and-pencil testing provides limited knowledge about what students know about chemical phenomena, we have developed video-based demonstrations to broaden measurement of student learning. For example, students might be shown a video demonstrating equilibrium shifts. Two methods for viewing equilibrium shifts are changing the concentration of the reactants and changing the temperature of the system. The students are required to combine the data collected from the video and their knowledge of chemistry to determine which way the equilibrium shifts. Video-based demonstrations are important techniques for measuring student learning because they require students to apply conceptual knowledge learned in class to a specific chemical problem. This study explores how video-based demonstration assessment tasks affect problem-solving processes, test anxiety, chemistry anxiety and achievement in general chemistry students. Several instruments were used to determine students' knowledge about chemistry, students' test and chemistry anxiety before and after treatment. Think-aloud interviews were conducted to determine students' problem-solving processes after treatment. The treatment group was compared to a control group and a group watching video demonstrations. After treatment students' anxiety increased and achievement decreased. There were also no significant differences found in students' problem-solving processes following treatment. These negative findings may be attributed to several factors that will be explored in this study.

  19. 40 CFR 63.1574 - What notifications must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analytical methods you will use to determine the equilibrium catalyst Ni concentration, the equilibrium catalyst Ni concentration monthly rolling average, and the hourly or hourly average Ni operating value. (v...

  20. Efficient reactive Brownian dynamics

    DOE PAGES

    Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho

    2018-01-21

    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently processmore » reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.« less

  1. Efficient reactive Brownian dynamics

    NASA Astrophysics Data System (ADS)

    Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho

    2018-01-01

    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently process reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.

  2. Efficient reactive Brownian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho

    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently processmore » reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.« less

  3. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Wang, Yue; Xu, Shijie

    2018-04-01

    The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.

  4. New phenomena in non-equilibrium quantum physics

    NASA Astrophysics Data System (ADS)

    Kitagawa, Takuya

    From its beginning in the early 20th century, quantum theory has become progressively more important especially due to its contributions to the development of technologies. Quantum mechanics is crucial for current technology such as semiconductors, and also holds promise for future technologies such as superconductors and quantum computing. Despite of the success of quantum theory, its applications have been mostly limited to equilibrium or static systems due to 1. lack of experimental controllability of non-equilibrium quantum systems 2. lack of theoretical frameworks to understand non-equilibrium dynamics. Consequently, physicists have not yet discovered too many interesting phenomena in non-equilibrium quantum systems from both theoretical and experimental point of view and thus, non-equilibrium quantum physics did not attract too much attentions. The situation has recently changed due to the rapid development of experimental techniques in condensed matter as well as cold atom systems, which now enables a better control of non-equilibrium quantum systems. Motivated by this experimental progress, we constructed theoretical frameworks to study three different non-equilibrium regimes of transient dynamics, steady states and periodically drives. These frameworks provide new perspectives for dynamical quantum process, and help to discover new phenomena in these systems. In this thesis, we describe these frameworks through explicit examples and demonstrate their versatility. Some of these theoretical proposals have been realized in experiments, confirming the applicability of the theories to realistic experimental situations. These studies have led to not only the improved fundamental understanding of non-equilibrium processes in quantum systems, but also suggested entirely different venues for developing quantum technologies.

  5. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.

    PubMed

    Vetterick, Gregory A; Gruber, Jacob; Suri, Pranav K; Baldwin, Jon K; Kirk, Marquis A; Baldo, Pete; Wang, Yong Q; Misra, Amit; Tucker, Garritt J; Taheri, Mitra L

    2017-09-25

    Many methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation. These results were coupled with atomistic simulations to better reveal the underlying processes occurring on timescales too short to capture using in situ TEM. After irradiation, NC iron with non-equilibrium GBs contains both a smaller number density of defect clusters and a smaller average defect cluster size. Simulations showed that excess free volume contribute to a decreased survival rate of point defects in cascades occurring adjacent to the GB and that these boundaries undergo less dramatic changes in structure upon irradiation. These results suggest that non-equilibrium GBs act as more efficient sinks for defects and could be utilized to create more radiation tolerant materials in future.

  6. Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis.

    PubMed

    Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert

    2016-10-04

    The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.

  7. Equilibrium Noise in Ion Selective Field Effect Transistors.

    DTIC Science & Technology

    1982-07-21

    face. These parameters have been evaluated for several ion-selective membranes. DD I JAN ") 1473 EDITION or I Mov 09SIS OSSOLETE ONi 0102-LF-0146601...the "integrated circuit" noise on the processing parameters which were different for the two laboratories. This variability in the "integrated circuit...systems and is useful in the identification of the parameters limiting the performance of -11- these systems. In thermodynamic equilibrium, every

  8. Viscosity Difference Measurements for Normal and Para Liquid Hydrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Webeler, R.; Bedard, F.

    1961-01-01

    The absence of experimental data in the literature concerning a viscosity difference for normal and equilibrium liquid hydrogen may be attributed to the limited reproducibility of "oscillating disk" measurements in a liquid-hydrogen environment. Indeed, there is disagreement over the viscosity values for equilibrium liquid hydrogen even without proton spin considerations. Measurements presented here represent the first application of the piezoelectric alpha quartz torsional oscillator technique to liquid-hydrogen viscosity measurements.

  9. Phases, periphases, and interphases equilibrium by molecular modeling. I. Mass equilibrium by the semianalytical stochastic perturbations method and application to a solution between (120) gypsum faces

    NASA Astrophysics Data System (ADS)

    Pedesseau, Laurent; Jouanna, Paul

    2004-12-01

    The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime importance for all coupled chemical-mechanical problems dealing with interfaces, and more generally for a wide variety of applications such as phase changes, osmotic equilibrium, surface energy, etc., in complex chemical-physics situations.

  10. Research and application of method of oxygen isotope of inorganic phosphate in Beijing agricultural soils.

    PubMed

    Tian, Liyan; Guo, Qingjun; Zhu, Yongguan; He, Huijun; Lang, Yunchao; Hu, Jian; Zhang, Han; Wei, Rongfei; Han, Xiaokun; Peters, Marc; Yang, Junxing

    2016-12-01

    Phosphorus (P) in agricultural ecosystems is an essential and limited element for plants and microorganisms. However, environmental problems caused by P accumulation as well as by P loss have become more and more serious. Oxygen isotopes of phosphate can trace the sources, migration, and transformation of P in agricultural soils. In order to use the isotopes of phosphate oxygen, appropriate extraction and purification methods for inorganic phosphate from soils are necessary. Here, we combined two different methods to analyze the oxygen isotopic composition of inorganic phosphate (δ 18 O P ) from chemical fertilizers and different fractions (Milli-Q water, 0.5 mol L -1 NaHCO 3 (pH = 8.5), 0.1 mol L -1 NaOH and 1 mol L -1 HCl) of agricultural soils from the Beijing area. The δ 18 O P results of the water extracts and NaHCO 3 extracts in most samples were close to the calculated equilibrium value. These phenomena can be explained by rapid P cycling in soils and the influence of chemical fertilizers. The δ 18 O P value of the water extracts and NaHCO 3 extracts in some soil samples below the equilibrium value may be caused by the hydrolysis of organic P fractions mediated by extracellular enzymes. The δ 18 O P values of the NaOH extracts were above the calculated equilibrium value reflecting the balance state between microbial uptake of phosphate and the release of intracellular phosphate back to the soil. The HCl extracts with the lowest δ 18 O P values and highest phosphate concentrations indicated that the HCl fraction was affected by microbial activity. Hence, these δ 18 O p values likely reflected the oxygen isotopic values of the parent materials. The results suggested that phosphate oxygen isotope analyses could be an effective tool in order to trace phosphate sources, transformation processes, and its utilization by microorganisms in agricultural soils.

  11. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    PubMed

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  12. Equilibrium gas-oil ratio measurements using a microfluidic technique.

    PubMed

    Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid

    2013-07-07

    A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.

  13. The V122I cardiomyopathy variant of transthyretin increases the velocity of rate-limiting tetramer dissociation, resulting in accelerated amyloidosis

    PubMed Central

    Jiang, Xin; Buxbaum, Joel N.; Kelly, Jeffery W.

    2001-01-01

    The transthyretin (TTR) amyloid diseases are of keen interest, because there are >80 mutations that cause, and a few mutations that suppress, disease. The V122I variant is the most common amyloidogenic mutation worldwide, producing familial amyloidotic cardiomyopathy primarily in individuals of African descent. The substitution shifts the tetramer-folded monomer equilibrium toward monomer (lowers tetramer stability) and lowers the kinetic barrier associated with rate-limiting tetramer dissociation (pH 7; relative to wild-type TTR) required for amyloid fibril formation. Fibril formation is also accelerated because the folded monomer resulting from the tetramer-folded monomer equilibrium rapidly undergoes partial denaturation and self-assembles into amyloid (in vitro) when subjected to a mild denaturation stress (e.g., pH 4.8). Incorporation of the V122I mutation into a folded monomeric variant of transthyretin reveals that this mutation does not destabilize the tertiary structure or alter the rate of amyloidogenesis relative to the wild-type monomer. The increase in the velocity of rate-limiting tetramer dissociation coupled with the lowered tetramer stability (increasing the mol fraction of folded monomer present at equilibrium) may explain why V122I confers an apparent absolute anatomic risk for cardiac amyloid deposition. PMID:11752443

  14. Calculation of individual isotope equilibrium constants for implementation in geochemical models

    USGS Publications Warehouse

    Thorstenson, Donald C.; Parkhurst, David L.

    2002-01-01

    Theory is derived from the work of Urey to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by , where is n the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example and , and to include the effects of nonideality. The equilibrium constants of the isotope exchange reactions provide a basis for calculating the individual isotope equilibrium constants for the geochemical modeling reactions. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. Equilibrium constants are calculated for all species that can be formed from and selected species containing , in the molecules and the ion pairs with where the subscripts g, aq, l, and s refer to gas, aqueous, liquid, and solid, respectively. These equilibrium constants are used in the geochemical model PHREEQC to produce an equilibrium and reaction-transport model that includes these isotopic species. Methods are presented for calculation of the individual isotope equilibrium constants for the asymmetric bicarbonate ion. An example calculates the equilibrium of multiple isotopes among multiple species and phases.

  15. Non-equilibrium freezing behaviour of aqueous systems.

    PubMed

    MacKenzie, A P

    1977-03-29

    The tendencies to non-equilibrium freezing behaviour commonly noted in representative aqueous systems derive from bulk and surface properties according to the circumstances. Supercooling and supersaturation are limited by heterogeneous nucleation in the presence of solid impurities. Homogeneous nucleation has been observed in aqueous systems freed from interfering solids. Once initiated, crystal growth is ofter slowed and, very frequently, terminated with increasing viscosity. Nor does ice first formed always succeed in assuming its most stable crystalline form. Many of the more significant measurements on a given systeatter permitting the simultaneous representation of thermodynamic and non-equilibrium properties. The diagram incorporated equilibrium melting points, heterogeneous nucleation temperatures, homogeneous nucleation temperatures, glass transition and devitrification temperatures, recrystallization temperatures, and, where appropriate, solute solubilities and eutectic temperatures. Taken together, the findings on modle systems aid the identification of the kinetic and thermodynamic factors responsible for the freezing-thawing survival of living cells.

  16. Evaporation in Capillary Porous Media at the Perfect Piston-Like Invasion Limit: Evidence of Nonlocal Equilibrium Effects

    NASA Astrophysics Data System (ADS)

    Attari Moghaddam, Alireza; Prat, Marc; Tsotsas, Evangelos; Kharaghani, Abdolreza

    2017-12-01

    The classical continuum modeling of evaporation in capillary porous media is revisited from pore network simulations of the evaporation process. The computed moisture diffusivity is characterized by a minimum corresponding to the transition between liquid and vapor transport mechanisms confirming previous interpretations. Also the study suggests an explanation for the scattering generally observed in the moisture diffusivity obtained from experimental data. The pore network simulations indicate a noticeable nonlocal equilibrium effect leading to a new interpretation of the vapor pressure-saturation relationship classically introduced to obtain the one-equation continuum model of evaporation. The latter should not be understood as a desorption isotherm as classically considered but rather as a signature of a nonlocal equilibrium effect. The main outcome of this study is therefore that nonlocal equilibrium two-equation model must be considered for improving the continuum modeling of evaporation.

  17. Temperature-Dependent Estimation of Gibbs Energies Using an Updated Group-Contribution Method.

    PubMed

    Du, Bin; Zhang, Zhen; Grubner, Sharon; Yurkovich, James T; Palsson, Bernhard O; Zielinski, Daniel C

    2018-06-05

    Reaction-equilibrium constants determine the metabolite concentrations necessary to drive flux through metabolic pathways. Group-contribution methods offer a way to estimate reaction-equilibrium constants at wide coverage across the metabolic network. Here, we present an updated group-contribution method with 1) additional curated thermodynamic data used in fitting and 2) capabilities to calculate equilibrium constants as a function of temperature. We first collected and curated aqueous thermodynamic data, including reaction-equilibrium constants, enthalpies of reaction, Gibbs free energies of formation, enthalpies of formation, entropy changes of formation of compounds, and proton- and metal-ion-binding constants. Next, we formulated the calculation of equilibrium constants as a function of temperature and calculated the standard entropy change of formation (Δ f S ∘ ) using a model based on molecular properties. The median absolute error in estimating Δ f S ∘ was 0.013 kJ/K/mol. We also estimated magnesium binding constants for 618 compounds using a linear regression model validated against measured data. We demonstrate the improved performance of the current method (8.17 kJ/mol in median absolute residual) over the current state-of-the-art method (11.47 kJ/mol) in estimating the 185 new reactions added in this work. The efforts here fill in gaps for thermodynamic calculations under various conditions, specifically different temperatures and metal-ion concentrations. These, to our knowledge, new capabilities empower the study of thermodynamic driving forces underlying the metabolic function of organisms living under diverse conditions. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Small Systems and Limitations on the Use of Chemical Thermodynamics

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-01-01

    Limitations on using chemical thermodynamics to describe small systems are formulated. These limitations follow from statistical mechanics for equilibrium and nonequilibrium processes and reflect (1) differences between characteristic relaxation times in momentum, energy, and mass transfer in different aggregate states of investigated systems; (2) achievements of statistical mechanics that allow us to determine criteria for the size of smallest region in which thermodynamics can be applied and the scale of the emergence of a new phase, along with criteria for the conditions of violating a local equilibrium. Based on this analysis, the main thermodynamic results are clarified: the phase rule for distorted interfaces, the sense and area of applicability of Gibbs's concept of passive forces, and the artificiality of Kelvin's equation as a result of limitations on the thermodynamic approach to considering small bodies. The wrongness of introducing molecular parameters into thermodynamic derivations, and the activity coefficient for an activated complex into the expression for a reaction rate constant, is demonstrated.

  19. The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Gorobets, A. Y.; Berdyugina, S. V.; Riethmüller, T. L.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-11-01

    The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field’s evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite.

  20. Aeroheating Predictions for X-34 Using an Inviscid-Boundary Layer Method

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Kleb, William L.; Alter, Steven J.

    1998-01-01

    Radiative equilibrium surface temperatures and surface heating rates from a combined inviscid-boundary layer method are presented for the X-34 Reusable Launch Vehicle for several points along the hypersonic descent portion of its trajectory. Inviscid, perfect-gas solutions are generated with the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and the Data-Parallel Lower-Upper Relaxation (DPLUR) code. Surface temperatures and heating rates are then computed using the Langley Approximate Three-Dimensional Convective Heating (LATCH) engineering code employing both laminar and turbulent flow models. The combined inviscid-boundary layer method provides accurate predictions of surface temperatures over most of the vehicle and requires much less computational effort than a Navier-Stokes code. This enables the generation of a more thorough aerothermal database which is necessary to design the thermal protection system and specify the vehicle's flight limits.

  1. General Retarded Contact Self-energies in and beyond the Non-equilibrium Green's Functions Method

    NASA Astrophysics Data System (ADS)

    Kubis, Tillmann; He, Yu; Andrawis, Robert; Klimeck, Gerhard

    2016-03-01

    Retarded contact self-energies in the framework of nonequilibrium Green's functions allow to model the impact of lead structures on the device without explicitly including the leads in the actual device calculation. Most of the contact self-energy algorithms are limited to homogeneous or periodic, semi-infinite lead structures. In this work, the complex absorbing potential method is extended to solve retarded contact self-energies for arbitrary lead structures, including irregular and randomly disordered leads. This method is verified for regular leads against common approaches and on physically equivalent, but numerically different irregular leads. Transmission results on randomly alloyed In0.5Ga0.5As structures show the importance of disorder in the leads. The concept of retarded contact self-energies is expanded to model passivation of atomically resolved surfaces without explicitly increasing the device's Hamiltonian.

  2. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth.

    PubMed

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  3. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    NASA Astrophysics Data System (ADS)

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  4. Quasi-equilibria in reduced Liouville spaces.

    PubMed

    Halse, Meghan E; Dumez, Jean-Nicolas; Emsley, Lyndon

    2012-06-14

    The quasi-equilibrium behaviour of isolated nuclear spin systems in full and reduced Liouville spaces is discussed. We focus in particular on the reduced Liouville spaces used in the low-order correlations in Liouville space (LCL) simulation method, a restricted-spin-space approach to efficiently modelling the dynamics of large networks of strongly coupled spins. General numerical methods for the calculation of quasi-equilibrium expectation values of observables in Liouville space are presented. In particular, we treat the cases of a time-independent Hamiltonian, a time-periodic Hamiltonian (with and without stroboscopic sampling) and powder averaging. These quasi-equilibrium calculation methods are applied to the example case of spin diffusion in solid-state nuclear magnetic resonance. We show that there are marked differences between the quasi-equilibrium behaviour of spin systems in the full and reduced spaces. These differences are particularly interesting in the time-periodic-Hamiltonian case, where simulations carried out in the reduced space demonstrate ergodic behaviour even for small spins systems (as few as five homonuclei). The implications of this ergodic property on the success of the LCL method in modelling the dynamics of spin diffusion in magic-angle spinning experiments of powders is discussed.

  5. Equilibrium charge distribution on a finite straight one-dimensional wire

    NASA Astrophysics Data System (ADS)

    Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Alkhambashi, Majid; Farouk, Ahmed

    2017-09-01

    The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges.

  6. A Computational Method for Determining the Equilibrium Composition and Product Temperature in a LH2/LOX Combustor

    NASA Technical Reports Server (NTRS)

    Sozen, Mehmet

    2003-01-01

    In what follows, the model used for combustion of liquid hydrogen (LH2) with liquid oxygen (LOX) using chemical equilibrium assumption, and the novel computational method developed for determining the equilibrium composition and temperature of the combustion products by application of the first and second laws of thermodynamics will be described. The modular FORTRAN code developed as a subroutine that can be incorporated into any flow network code with little effort has been successfully implemented in GFSSP as the preliminary runs indicate. The code provides capability of modeling the heat transfer rate to the coolants for parametric analysis in system design.

  7. Meshless method for solving fixed boundary problem of plasma equilibrium

    NASA Astrophysics Data System (ADS)

    Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi

    2015-07-01

    This study solves the Grad-Shafranov equation with a fixed plasma boundary by utilizing a meshless method for the first time. Previous studies have utilized a finite element method (FEM) to solve an equilibrium inside the fixed separatrix. In order to avoid difficulties of FEM (such as mesh problem, difficulty of coding, expensive calculation cost), this study focuses on the meshless methods, especially RBF-MFS and KANSA's method to solve the fixed boundary problem. The results showed that CPU time of the meshless methods was ten to one hundred times shorter than that of FEM to obtain the same accuracy.

  8. Improved accuracy for finite element structural analysis via a new integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  9. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry

    PubMed Central

    Sanchez-Ruiz, Jose M.

    1992-01-01

    A theoretical analysis of several protein denaturation models (Lumry-Eyring models) that include a rate-limited step leading to an irreversibly denatured state of the protein (the final state) has been carried out. The differential scanning calorimetry transitions predicted for these models can be broadly classified into four groups: situations A, B, C, and C′. (A) The transition is calorimetrically irreversible but the rate-limited, irreversible step takes place with significant rate only at temperatures slightly above those corresponding to the transition. Equilibrium thermodynamics analysis is permissible. (B) The transition is distorted by the occurrence of the rate-limited step; nevertheless, it contains thermodynamic information about the reversible unfolding of the protein, which could be obtained upon the appropriate data treatment. (C) The heat absorption is entirely determined by the kinetics of formation of the final state and no thermodynamic information can be extracted from the calorimetric transition; the rate-determining step is the irreversible process itself. (C′) same as C, but, in this case, the rate-determining step is a previous step in the unfolding pathway. It is shown that ligand and protein concentration effects on transitions corresponding to situation C (strongly rate-limited transitions) are similar to those predicted by equilibrium thermodynamics for simple reversible unfolding models. It has been widely held in recent literature that experimentally observed ligand and protein concentration effects support the applicability of equilibrium thermodynamics to irreversible protein denaturation. The theoretical analysis reported here disfavors this claim. PMID:19431826

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation hasmore » been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.« less

  11. The period and Q of the Chandler wobble

    NASA Technical Reports Server (NTRS)

    Smith, M. L.; Dahlen, F. A.

    1981-01-01

    The calculation of the theoretical period of the Chandler wobble is extended to account for the non-hydrostatic portion of the earth's equatorial bulge and the effect of the fluid core upon the lengthening of the period due to the pole tide. The theoretical period of a realistic perfectly elastic earth with an equilibrium pole tide is found to be 426.7 sidereal days, which is 8.5 days shorter than the observed period of 435.2 days. Using Rayleigh's principle for a rotating earth, this discrepancy is exploited together with the observed Chandler Q to place constraints on the frequency dependence of mantle anelasticity. In all cases these limits arise from exceeding the 68 percent confidence limits of + or - 2.6 days in the observed period. Since slight departures from an equilibrium pole tide affect the Q much more strongly than the period, these limits are believed to be robust.

  12. Measuring the Thermodynamics of the Alloy/Scale Interface

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    A method is proposed for the direct measurement of the thermodynamic properties of the alloy and oxide compound at the alloy/scale interface observed during steady-state oxidation. The thermodynamic properties of the alloy/scale interface define the driving force for solid-state transport in the alloy and oxide compound. Accurate knowledge of thermodynamic properties of the interface will advance our understanding of oxidation behavior. The method is based on the concept of local equilibrium and assumes that an alloy+scale equilibrium very closely approximates the alloy/scale interface observed during steady-state oxidation. The thermodynamics activities of this alloy+scale equilibrium are measured directly by Knudsen effusion-cell mass spectrometer (KEMS) using the vapor pressure technique. The theory and some practical considerations of this method are discussed in terms of beta-NiAl oxidation.

  13. Electrochemical Transfer of S Between Molten Steel and Molten Slag

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hyun; Kim, Wook; Kang, Youn-Bae

    2018-06-01

    S transfer between molten steel and molten slag was investigated in view of the electrochemical character of S transfer. C-saturated molten steel containing S was allowed to react with CaO-SiO2-Al2O3-MgO slag at 1673 K (1400 °C) until the two phases arrive at a chemical equilibrium. The application of an electric field of constant current through graphite electrodes lowered the S content in the molten steel below its chemical equilibrium level, and the system arrived at a new equilibrium level (electrochemical equilibrium). However, subsequent shutting off of the electric field did not lead to the system reverting to the original chemical equilibrium: reversion of S was observed but to a limited extent. The application of an electric field of opposite direction or flowing of CO gas allowed significant reversion of S. Side reactions (decomposition of oxide components) were observed, and these were considered to be coupled to the transfer of S. An electrochemical reaction mechanism was proposed based on the experimental observations found in the present study.

  14. Modeling a distribution of point defects as misfitting inclusions in stressed solids

    NASA Astrophysics Data System (ADS)

    Cai, W.; Sills, R. B.; Barnett, D. M.; Nix, W. D.

    2014-05-01

    The chemical equilibrium distribution of point defects modeled as non-overlapping, spherical inclusions with purely positive dilatational eigenstrain in an isotropically elastic solid is derived. The compressive self-stress inside existing inclusions must be excluded from the stress dependence of the equilibrium concentration of the point defects, because it does no work when a new inclusion is introduced. On the other hand, a tensile image stress field must be included to satisfy the boundary conditions in a finite solid. Through the image stress, existing inclusions promote the introduction of additional inclusions. This is contrary to the prevailing approach in the literature in which the equilibrium point defect concentration depends on a homogenized stress field that includes the compressive self-stress. The shear stress field generated by the equilibrium distribution of such inclusions is proved to be proportional to the pre-existing stress field in the solid, provided that the magnitude of the latter is small, so that a solid containing an equilibrium concentration of point defects can be described by a set of effective elastic constants in the small-stress limit.

  15. A mass balance approach for calculation of recovery and binding enables the use of ultrafiltration as a rapid method for measurement of plasma protein binding for even highly lipophilic compounds.

    PubMed

    Wang, Changguang; Williams, Noelle S

    2013-03-05

    The aim of this study is to further validate the use of ultrafiltration (UF) as a method for determining plasma protein binding (PPB) by demonstrating that non-specific binding (NSB) is not a limitation, even for highly lipophilic compounds, because NSB sites on the apparatus are passivated in the presence of plasma. Mass balance theory was used to calculate recovery of 20 commercial and seven investigational compounds during ultrafiltration in the presence and absence of plasma. PPB was also measured using this mass balance approach for comparison to PPB determined by rapid equilibrium dialysis (RED) and as found in the literature. Compound recovery during UF was dramatically different in the presence and absence of plasma for compounds with high NSB in PBS only. A comparison of PPB calculated by ultrafiltration with literature values or calculated by RED gave concordant results. Discrepancies could be explained by changes in pH, insufficient time to equilibrium, or compound instability during RED, problems which were circumvented by ultrafiltration. Therefore, NSB, as measured by the traditional incubation of compound in PBS, need not be an issue when choosing UF as a PPB assay method. It is more appropriate to calculate compound recovery from the device in plasma as measured by mass balance to determine the suitability of the method for an individual compound. The speed with which UF can be conducted additionally avoids changes in pH or compound loss that can occur with other methods. The mass balance approach to UF is thus a preferred method for rapid determination of PPB. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 1. Transport of triton X-100

    USGS Publications Warehouse

    Smith, J.A.; Sahoo, D.; Mclellan, H.M.; Imbrigiotta, T.E.

    1997-01-01

    Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer at Picatinny Arsenal, NJ, has been studied through a series of laboratory and field experiments. In the laboratory, batch and column experiments were conducted to quantify the rate and amount of Triton X-100 sorption to the aquifer sediments. In the field, a 400 mg/L aqueous Triton X-100 solution was injected into the aquifer at a rate of 26.5 L/min for a 35-d period. The transport of Triton X-100 was monitored by sampling and analysis of groundwater at six locations surrounding the injection well. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two- dimensional (respectively) transient solute transport models with either equilibrium or rate-limited sorption. These analyses reveal that Triton X- 100 sorption to the aquifer solids is slow relative to advective and dispersive transport and that an equilibrium sorption model cannot simulate accurately the observed soil column and field data. Comparison of kinetic sorption parameters from batch, column, and field transport data indicate that both physical heterogeneities and Triton X-100 mass transfer between water and soil contribute to the kinetic transport effects.Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer was studied. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two-dimensional transient solute transport models with either equilibrium or rate-limited sorption. These analyses revealed that Triton X-100 sorption to the aquifer solids was slow relative to advective and dispersive transport.

  17. Sitnikov cyclic configuration of N+1-body problem

    NASA Astrophysics Data System (ADS)

    Shahbaz Ullah, M.; Hassan, M. R.

    2014-12-01

    This manuscript deals with the generalisation of all previous works on series solutions and linear stability of equilibrium points of the Sitnikov problem. Following Giacaglia (1967), in Sect. 2 we have derived the equation of motion of the infinitesimal mass moving along the z-axis about which the plane of motion is rotating with unit angular velocity. In Sects. 3, 4 and 5 the series solutions of the Sitnikov problem have been developed by the method of MacMillan, Lindstedt-Poincaré and iteration of Green's function respectively. In Sect. 6 the three series solutions have been compared graphically by putting N=2, 3, 4. In Sect. 7 the coordinates of equilibrium points have been calculated. In Sect. 8 the linear stability of equilibrium points has been examined by the method of Murray and Dermott (Solar System Dynamics, Cambridge University Press, Cambridge, 1999) and it was found that the equilibrium points are stable in Sitnikov problem.

  18. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    PubMed

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  19. N-Methyl Inversion and Accurate Equilibrium Structures in Alkaloids: Pseudopelletierine.

    PubMed

    Vallejo-López, Montserrat; Écija, Patricia; Vogt, Natalja; Demaison, Jean; Lesarri, Alberto; Basterretxea, Francisco J; Cocinero, Emilio J

    2017-11-21

    A rotational spectroscopy investigation has resolved the conformational equilibrium and structural properties of the alkaloid pseudopelletierine. Two different conformers, which originate from inversion of the N-methyl group from an axial to an equatorial position, have been unambiguously identified in the gas phase, and nine independent isotopologues have been recorded by Fourier-transform microwave spectroscopy in a jet expansion. Both conformers share a chair-chair configuration of the two bridged six-membered rings. The conformational equilibrium is displaced towards the axial form, with a relative population in the supersonic jet of N axial /N equatorial ≈2/1. An accurate equilibrium structure has been determined by using the semiexperimental mixed-estimation method and alternatively computed by quantum-chemical methods up to the coupled-cluster level of theory. A comparison with the N-methyl inversion equilibria in related tropanes is also presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. METHOD FOR PUMPING GASES AT LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-01

    A method is given for pumping overpressure "pulses" or "bursts" of gases without a significant rise in base pressure within a "gettering-type" vacuum pump having surfaces within the pumping cavity coated with or comprising clean gettering metal, e.g., Mo or Ta. The cavity is first pumped down by any convenient means to an equilibrium base pressure in the range desired, generally below 10/sup -6/ mm Hg. At this pressure, the metal immediately adsorbs overpressures or "bursts" of gases striking same with thermal motion without raising the base pressure significantiy. Desorption takes place at an equilibrium rate which, of course, is dependent upon the equilibrium pressure, and such desorbed gases are continuously removed by diffuaion pump or other pumping, whereby said overpressures or "bursts" of gases are removed without a rise in the equilibrium pressure and/or back diffusion of the gaseous pulse from the pumping cavity. (AEC)

  1. Dynamics of a gravity-gradient stabilized flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Juang, J. N.

    1974-01-01

    The dynamics of gravity-gradient stabilized flexible satellite in the neighborhood of a deformed equilibrium configuration are discussed. First the equilibrium configuration was determined by solving a set of nonlinear differential equations. Then stability of motion about the deformed equilibrium was tested by means of the Liapunov direct method. The natural frequencies of oscillation of the complete structure were calculated. The analysis is applicable to the RAE/B satellite.

  2. Edge equilibrium code for tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xujing; Zakharov, Leonid E.; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  3. Effect of Temperature on Acidity and Hydration Equilibrium Constants of Delphinidin-3-O- and Cyanidin-3-O-sambubioside Calculated from Uni- and Multiwavelength Spectroscopic Data.

    PubMed

    Vidot, Kévin; Achir, Nawel; Mertz, Christian; Sinela, André; Rawat, Nadirah; Prades, Alexia; Dangles, Olivier; Fulcrand, Hélène; Dornier, Manuel

    2016-05-25

    Delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside are the main anthocyanins of Hibiscus sabdariffa calyces, traditionally used to make a bright red beverage by decoction in water. At natural pH, these anthocyanins are mainly in their flavylium form (red) in equilibrium with the quinonoid base (purple) and the hemiketal (colorless). For the first time, their acidity and hydration equilibrium constants were obtained from a pH-jump method followed by UV-vis spectroscopy as a function of temperature from 4 to 37 °C. Equilibrium constant determination was also performed by multivariate curve resolution (MCR). Acidity and hydration constants of cyanidin-3-O-sambubioside at 25 °C were 4.12 × 10(-5) and 7.74 × 10(-4), respectively, and were significantly higher for delphinidin-3-O-sambubioside (4.95 × 10(-5) and 1.21 × 10(-3), respectively). MCR enabled the obtaining of concentration and spectrum of each form but led to overestimated values for the equilibrium constants. However, both methods showed that formations of the quinonoid base and hemiketal were endothermic reactions. Equilibrium constants of anthocyanins in the hibiscus extract showed comparable values as for the isolated anthocyanins.

  4. Economic planning and equilibrium growth of human resources and capital in health-care sector: Case study of Iran

    PubMed Central

    Mahboobi-Ardakan, Payman; Kazemian, Mahmood; Mehraban, Sattar

    2017-01-01

    CONTEXT: During different planning periods, human resources factor has been considerably increased in the health-care sector. AIMS: The main goal is to determine economic planning conditions and equilibrium growth for services level and specialized workforce resources in health-care sector and also to determine the gap between levels of health-care services and specialized workforce resources in the equilibrium growth conditions and their available levels during the periods of the first to fourth development plansin Iran. MATERIALS AND METHODS: In the study after data collection, econometric methods and EViews version 8.0 were used for data processing. The used model was based on neoclassical economic growth model. RESULTS: The results indicated that during the former planning periods, although specialized workforce has been increased significantly in health-care sector, lack of attention to equilibrium growth conditions caused imbalance conditions for product level and specialized workforce in health-care sector. CONCLUSIONS: In the past development plans for health services, equilibrium conditions based on the full employment in the capital stock, and specialized labor are not considered. The government could act by choosing policies determined by the growth model to achieve equilibrium level in the field of human resources and services during the next planning periods. PMID:28616419

  5. Stability of Poisson Equilibria and Hamiltonian Relative Equilibria by Energy Methods

    NASA Astrophysics Data System (ADS)

    Patrick, George W.; Roberts, Mark; Wulff, Claudia

    2004-12-01

    We develop a general stability theory for equilibrium points of Poisson dynamical systems and relative equilibria of Hamiltonian systems with symmetries, including several generalisations of the Energy-Casimir and Energy-Momentum Methods. Using a topological generalisation of Lyapunov’s result that an extremal critical point of a conserved quantity is stable, we show that a Poisson equilibrium is stable if it is an isolated point in the intersection of a level set of a conserved function with a subset of the phase space that is related to the topology of the symplectic leaf space at that point. This criterion is applied to generalise the energy-momentum method to Hamiltonian systems which are invariant under non-compact symmetry groups for which the coadjoint orbit space is not Hausdorff. We also show that a G-stable relative equilibrium satisfies the stronger condition of being A-stable, where A is a specific group-theoretically defined subset of G which contains the momentum isotropy subgroup of the relative equilibrium. The results are illustrated by an application to the stability of a rigid body in an ideal irrotational fluid.

  6. The Markov process admits a consistent steady-state thermodynamic formalism

    NASA Astrophysics Data System (ADS)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  7. Non-equilibrium character of resistive switching and negative differential resistance in Ga-doped Cr2O3 system

    NASA Astrophysics Data System (ADS)

    Bhowmik, R. N.; Siva, K. Venkata

    2018-07-01

    The samples of Ga-doped Cr2O3 system in rhombohedral crystal structure with space group R 3 bar C were prepared by chemical co-precipitation route and annealing at 800 °C. The current-voltage (I-V) curves exhibited many unique non-linear properties, e.g., hysteresis loop, resistive switching, and negative differential resistance (NDR). In this work, we report non-equilibrium properties of resistive switching and NDR phenomena. The non-equilibrium I-V characteristics were confirmed by repetiting measurement and time relaxation of current. The charge conduction process was understood by analysing the I-V curves using electrode-limited and bulk-limited charge conduction mechanisms, which were proposed for metal electrode/metal oxide/metal electrode structure. The I-V curves in the NDR regime and at higher bias voltage regime in our samples did not obey Fowler-Nordheim equation, which was proposed for charge tunneling mechanism in many thin film junctions. The non-equilibrium I-V phenomena were explained by considering the competitions between the injection of charge carriers from metal electrode to metal oxide, the charge flow through bulk material mediated by trapping/de-trapping and recombination of charge carriers at the defect sites of ions, the space charge effects at the junctions of electrodes and metal oxides, and finally, the out flow of electrons from metal oxide to metal electrode.

  8. Composite and shaped pulses for efficient and robust pumping of disconnected eigenstates in magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theis, T.; Feng, Y.; Wu, T.

    2014-01-07

    Hyperpolarization methods, which can enhance nuclear spin signals by orders of magnitude, open up important new opportunities in magnetic resonance. However, many of these applications are limited by spin lattice relaxation, which typically destroys the hyperpolarization in seconds. Significant lifetime enhancements have been found with “disconnected eigenstates” such as the singlet state between a pair of nearly equivalent spins, or the “singlet-singlet” state involving two pairs of chemically equivalent spins; the challenge is to populate these states (for example, from thermal equilibrium magnetization or hyperpolarization) and to later recall the population into observable signal. Existing methods for populating these statesmore » are limited by either excess energy dissipation or high sensitivity to inhomogeneities. Here we overcome the limitations by extending recent work using continuous-wave irradiation to include composite and adiabatic pulse excitations. Traditional composite and adiabatic pulses fail completely in this problem because the interactions driving the transitions are fundamentally different, but the new shapes we introduce can move population between accessible and disconnected eigenstates over a wide range of radio-frequency (RF) amplitudes and offsets while depositing insignificant amounts of power.« less

  9. How fast does water flow in carbon nanotubes?

    PubMed

    Kannam, Sridhar Kumar; Todd, B D; Hansen, J S; Daivis, Peter J

    2013-03-07

    The purpose of this paper is threefold. First, we review the existing literature on flow rates of water in carbon nanotubes. Data for the slip length which characterizes the flow rate are scattered over 5 orders of magnitude for nanotubes of diameter 0.81-10 nm. Second, we precisely compute the slip length using equilibrium molecular dynamics (EMD) simulations, from which the interfacial friction between water and carbon nanotubes can be found, and also via external field driven non-equilibrium molecular dynamics simulations (NEMD). We discuss some of the issues in simulation studies which may be reasons for the large disagreements reported. By using the EMD method friction coefficient to determine the slip length, we overcome the limitations of NEMD simulations. In NEMD simulations, for each tube we apply a range of external fields to check the linear response of the fluid to the field and reliably extrapolate the results for the slip length to values of the field corresponding to experimentally accessible pressure gradients. Finally, we comment on several issues concerning water flow rates in carbon nanotubes which may lead to some future research directions in this area.

  10. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    DOE PAGES

    Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott

    2017-12-21

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less

  11. The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakhmanov, E A; Suetin, S P

    2013-09-30

    The distribution of the zeros of the Hermite-Padé polynomials of the first kind for a pair of functions with an arbitrary even number of common branch points lying on the real axis is investigated under the assumption that this pair of functions forms a generalized complex Nikishin system. It is proved (Theorem 1) that the zeros have a limiting distribution, which coincides with the equilibrium measure of a certain compact set having the S-property in a harmonic external field. The existence problem for S-compact sets is solved in Theorem 2. The main idea of the proof of Theorem 1 consists in replacing a vector equilibrium problem in potentialmore » theory by a scalar problem with an external field and then using the general Gonchar-Rakhmanov method, which was worked out in the solution of the '1/9'-conjecture. The relation of the result obtained here to some results and conjectures due to Nuttall is discussed. Bibliography: 51 titles.« less

  12. Experimental apparatus for overlapping a ground-state cooled ion with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-shlomi, Ruti; Akerman, Nitzan; Pinkas, Meirav; Dallal, Yehonatan; Ozeri, Roee

    2018-03-01

    Experimental realizations of charged ions and neutral atoms in overlapping traps are gaining increasing interest due to their wide research application ranging from chemistry at the quantum level to quantum simulations of solid state systems. In this paper, we describe our experimental system in which we overlap a single ground-state cooled ion trapped in a linear Paul trap with a cloud of ultracold atoms such that both constituents are in the ?K regime. Excess micromotion (EMM) currently limits atom-ion interaction energy to the mK energy scale and above. We demonstrate spectroscopy methods and compensation techniques which characterize and reduce the ion's parasitic EMM energy to the ?K regime even for ion crystals of several ions. We further give a substantial review on the non-equilibrium dynamics which governs atom-ion systems. The non-equilibrium dynamics is manifested by a power law distribution of the ion's energy. We also give an overview on the coherent and non-coherent thermometry tools which can be used to characterize the ion's energy distribution after single to many atom-ion collisions.

  13. Development of a multi-space constrained density functional theory approach and its application to graphene-based vertical transistors

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    We have been developing a multi-space-constrained density functional theory approach for the first-principles calculations of nano-scale junctions subjected to non-equilibrium conditions and charge transport through them. In this presentation, we apply the method to vertically-stacked graphene/hexagonal boron nitride (hBN)/graphene Van der Waals heterostructures in the context of tunneling transistor applications. Bias-dependent changes in energy level alignment, wavefunction hybridization, and current are extracted. In particular, we compare quantum transport properties of single-layer (graphene) and infinite (graphite) electrode limits on the same ground, which is not possible within the traditional non-equilibrium Green function formalism. The effects of point defects within hBN on the current-voltage characteristics will be also discussed. Global Frontier Program (2013M3A6B1078881), Nano-Material Technology Development Programs (2016M3A7B4024133, 2016M3A7B4909944, and 2012M3A7B4049888), and Pioneer Program (2016M3C1A3906149) of the National Research Foundation.

  14. Metal ion reactive thin films using spray electrostatic LbL assembly.

    PubMed

    Krogman, Kevin C; Lyon, Katharine F; Hammond, Paula T

    2008-11-20

    By using the spray-layer-by-layer (Spray-LbL) technique, the number of metal counterions trapped within LbL coatings is significantly increased by kinetically freezing the film short of equilibrium, potentially limiting interchain penetration and forcing chains to remain extrinsically compensated to a much greater degree than observed in the traditional dipped LbL technique. The basis for the enhanced entrapment of metal ions such as Cu2+, Fe2+, and Ag+ is addressed, including the equilibrium driving force for extrinsic compensation by soft versus hard metal ions and the impact of Spray-LbL on the kinetics of polymer-ion complexation. These polymer-bound metal-ion coatings are also demonstrated to be effective treatments for air filtration, functionalizing existing filters with the ability to strongly bind toxic industrial compounds such as ammonia or cyanide gases, as well as chemical warfare agent simulants such as chloroethyl ethyl sulfide. On the basis of results reported here, future work could extend this method to include other toxic soft-base ligands such as carbon monoxide, benzene, or organophosphate nerve agents.

  15. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less

  16. Direct and precise determination of environmental radionuclides in solid materials using a modified Marinelli beaker and a HPGe detector.

    PubMed

    Seo, B K; Lee, K Y; Yoon, Y Y; Lee, D W

    2001-06-01

    A simple but precise detection method was studied for the determination of natural radionuclides using a conventional HPGe detector. A new aluminium beaker instead of a plastic Marinelli beaker was constructed and examined to reach radioactive equilibrium conditions between radon and its daughter elements without the escape of gaseous radon. Using this beaker fifteen natural radionuclides from three natural decay series could be determined by direct gamma-ray measurement and sixteen radionuclides could be determined indirectly after radioactive equilibrium had been reached. Analytical results from ground water were compared with those from conventional alpha spectroscopy and the results agreed well within 12% difference. Nitrogen gas purge was used to replace the surrounding air of the detector to obtain a stable background and reducing the interference of radon daughter nuclides in the atmosphere. The use of nitrogen purging and the aluminium Marinelli beaker results in an approximately tenfold increase of sensitivity and a decrease of the detection limit of 226Ra to about 0.74 Bq kg(-1) in soil samples.

  17. An instrument for measuring equilibrium-equivalent 222Rn and 220Rn concentrations with etched track detectors.

    PubMed

    Zhuo, W; Iida, T

    1999-11-01

    To simultaneously measure both 222Rn and 220Rn progeny concentrations, a new type of portable integrating monitor with allyl diglycol carbonate (CR-39) plastic detectors was developed. The monitor gives the average equilibrium-equivalent 222Rn and 220Rn concentrations (EEC(RN) and EEC(Tn)) during sampling intervals. The detection efficiencies of the alpha particles were calculated by Monte Carlo method. The lower limits of detection for EEC(Rn) and EEC(Tn) are estimated to be 0.57 Bq m(-3) and 0.07 Bq m(-3) for 24 h continuously sampling at a flow rate of 0.8 L min(-1). The measuring results with the new type monitors were confirmed through intercomparison experiments. In a small survey, a rather high 220Rn progeny concentration with an average of 1.73 Bq m(-3) was observed in traditional Japanese dwellings with soil/mud plastered walls. On the other hand, a very high 232Th concentration in soil was reported in China. They suggested that there is a possibility of high 220Rn progeny concentration in both Japan and China.

  18. Advanced ECCD based NTM control in closed-loop operation at ASDEX Upgrade (AUG)

    NASA Astrophysics Data System (ADS)

    Reich, Matthias; Barrera-Orte, Laura; Behler, Karl; Bock, Alexander; Giannone, Louis; Maraschek, Marc; Poli, Emanuele; Rapson, Chris; Stober, Jörg; Treutterer, Wolfgang

    2012-10-01

    In high performance plasmas, Neoclassical Tearing Modes (NTMs) are regularly observed at reactor-grade beta-values. They limit the achievable normalized beta, which is undesirable because fusion performance scales as beta squared. The method of choice for controlling and avoiding NTMs at AUG is the deposition of ECCD inside the magnetic island for stabilization in real-time (rt). Our approach to tackling such complex control problems using real-time diagnostics allows rigorous optimization of all subsystems. Recent progress in rt-equilibrium reconstruction (< 3.5 ms), rt-localization of NTMs (< 8 ms) and rt beam tracing (< 25 ms) allows closed-loop feedback operation using multiple movable mirrors as the ECCD deposition actuator. The rt-equilibrium uses function parametrization or a fast Grad-Shafranov solver with an option to include rt-MSE measurements. The island localization is based on a correlation of ECE and filtered Mirnov signals. The rt beam-tracing module provides deposition locations and their derivative versus actuator position of multiple gyrotrons. The ``MHD controller'' finally drives the actuators. Results utilizing closed-loop operation with multiple gyrotrons and their effect on NTMs are shown.

  19. Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susmikanti, Mike, E-mail: mike@batan.go.id; Sulistyo, Jos, E-mail: soj@batan.go.id

    2014-09-30

    Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to developmore » code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.« less

  20. Rapid computation of chemical equilibrium composition - An application to hydrocarbon combustion

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Prabhu, R. K.

    1986-01-01

    A scheme for rapidly computing the chemical equilibrium composition of hydrocarbon combustion products is derived. A set of ten governing equations is reduced to a single equation that is solved by the Newton iteration method. Computation speeds are approximately 80 times faster than the often used free-energy minimization method. The general approach also has application to many other chemical systems.

  1. Quantum dynamics of thermalizing systems

    NASA Astrophysics Data System (ADS)

    White, Christopher David; Zaletel, Michael; Mong, Roger S. K.; Refael, Gil

    2018-01-01

    We introduce a method "DMT" for approximating density operators of 1D systems that, when combined with a standard framework for time evolution (TEBD), makes possible simulation of the dynamics of strongly thermalizing systems to arbitrary times. We demonstrate that the method performs well for both near-equilibrium initial states (Gibbs states with spatially varying temperatures) and far-from-equilibrium initial states, including quenches across phase transitions and pure states.

  2. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Phifer, Jeremy R.; Cox, Courtney E.; da Silva, Larissa Ferreira; Nogueira, Gabriel Gonçalves; Barbosa, Ana Karolyne Pereira; Ley, Ryan T.; Bozada, Samantha M.; O'Loughlin, Elizabeth J.; Paluch, Andrew S.

    2017-06-01

    Methods to predict the equilibrium solubility of non-electrolyte solids are important for the design of novel separation processes. Here we demonstrate how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here SMD or SM8, can be used to predict parameters for the MOdified Separation of Cohesive Energy Density (MOSCED) method. The method is applied to the solutes naphthalene, anthracene, phenanthrene, pyrene and dibenzothiophene, compounds of interested to the petroleum industry and for environmental remediation. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. Comparing to a total of 422 non-aqueous and 193 aqueous experimental solubilities, we find the proposed method is able to well correlate the data. The use of MOSCED is additionally advantageous as it is a solubility parameter-based method useful for intuitive solvent selection and formulation.

  3. Understanding how biodiversity unfolds through time under neutral theory.

    PubMed

    Missa, Olivier; Dytham, Calvin; Morlon, Hélène

    2016-04-05

    Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. © 2016 The Author(s).

  4. Understanding how biodiversity unfolds through time under neutral theory

    PubMed Central

    2016-01-01

    Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. PMID:26977066

  5. 14 CFR 29.471 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... equilibrium. For limit ground loads— (1) The limit ground loads obtained in the landing conditions in this part must be considered to be external loads that would occur in the rotorcraft structure if it were acting as a rigid body; and (2) In each specified landing condition, the external loads must be placed in...

  6. On equilibrium positions and stabilization of electrodynamic tether system in the orbital frame

    NASA Astrophysics Data System (ADS)

    Tikhonov, A. A.; Shcherbakova, L. F.

    2018-05-01

    An electrodynamic tether system (EDTS) in a near-Earth circular orbit is considered. EDTS contains conductive tether with lumped masses attached to it at the ends. Possible equilibrium positions of the stretched tether under the influence of gravity gradient, Ampere and Lorentz forces in orbital frame are investigated. It is shown that in addition to the vertical equilibrium position, the "inclined" equilibrium positions of the tensioned tether are also possible. Conditions are obtained for the EDTS parameters, under which there is only one vertical position of the tether equilibrium. On the basis of nonlinear differential equations of motion, using the Lyapunov functions method, sufficient conditions for the stability of the vertical position of the tether equi-librium are obtained. It is shown that stabilization of the tether in this position is possible in the presence of damping in the EDTS system. The results of numerical simulation are presented.

  7. Edge Equilibrium Code (EEC) For Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xujling

    2014-02-24

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids

  8. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric

    2016-10-17

    Here, atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell inline images equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing themore » Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.« less

  9. Na(+) transport, and the E(1)P-E(2)P conformational transition of the Na(+)/K(+)-ATPase.

    PubMed Central

    Babes, A; Fendler, K

    2000-01-01

    We have used admittance analysis together with the black lipid membrane technique to analyze electrogenic reactions within the Na(+) branch of the reaction cycle of the Na(+)/K(+)-ATPase. ATP release by flash photolysis of caged ATP induced changes in the admittance of the compound membrane system that are associated with partial reactions of the Na(+)/K(+)-ATPase. Frequency spectra and the Na(+) dependence of the capacitive signal are consistent with an electrogenic or electroneutral E(1)P <--> E(2)P conformational transition which is rate limiting for a faster electrogenic Na(+) dissociation reaction. We determine the relaxation rate of the rate-limiting reaction and the equilibrium constants for both reactions at pH 6.2-8.5. The relaxation rate has a maximum value at pH 7.4 (approximately 320 s(-1)), which drops to acidic (approximately 190 s(-1)) and basic (approximately 110 s(-1)) pH. The E(1)P <--> E(2)P equilibrium is approximately at a midpoint position at pH 6.2 (equilibrium constant approximately 0.8) but moves more to the E(1)P side at basic pH 8.5 (equilibrium constant approximately 0.4). The Na(+) affinity at the extracellular binding site decreases from approximately 900 mM at pH 6.2 to approximately 200 mM at pH 8.5. The results suggest that during Na(+) transport the free energy supplied by the hydrolysis of ATP is mainly used for the generation of a low-affinity extracellular Na(+) discharge site. Ionic strength and lyotropic anions both decrease the relaxation rate. However, while ionic strength does not change the position of the conformational equilibrium E(1)P <--> E(2)P, lyotropic anions shift it to E(1)P. PMID:11053130

  10. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric; Ji, Wei

    2016-10-01

    Atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell's equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing the Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.

  11. Ion exchange membranes as novel passive sampling material for organic ions: application for the determination of freely dissolved concentrations.

    PubMed

    Oemisch, Luise; Goss, Kai-Uwe; Endo, Satoshi

    2014-11-28

    Many studies in pharmacology, toxicology and environmental science require a method for determining the freely dissolved concentration of a target substance. A recently developed tool for this purpose is equilibrium passive sampling with polymeric materials. However, this method has rarely been applied to ionic organic substances, primarily due to limited availability of convenient sorption materials. This study introduces ion exchange membranes (IEMs) as a novel passive sampling material for organic ions. The partitioning of 4-ethylbenzene-1-sulfonate, 2,4-dichlorophenoxyacetic acid and pentachlorophenol to one anion exchange membrane (FAS) and of difenzoquat, nicotine and verapamil to one cation exchange membrane (FKS) was investigated. All test substances exhibited a sufficiently high affinity for the respective IEM with logarithmic IEM-water partition coefficients >2.3. Sorption equilibrium was established quickly, within several hours for the FAS membrane and within 1-3 days for the FKS membrane. For permanently charged substances the partitioning to the IEMs was independent of pH, but was influenced by the salt composition of the test solution. For all test substances sorption to IEM was dependent on the substance concentration. Bovine serum albumin-water partition coefficients determined by passive sampling with IEMs agree well with those determined by the conventional dialysis method. The results of this study indicate that IEMs exhibit the potential to measure freely dissolved concentrations of organic ions in a simple and time-saving manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD).

    PubMed

    Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W

    2016-01-01

    Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial perception of their postural limitation boundary towards target directions and reduced time to correct this error during dynamic postural sways but not during static stance. Regarding postural equilibrium, they showed a compromised ability to decouple ankle dorsi-/plantar-flexion and hip abduction/adduction processes during dynamic stances. These results suggest that deficits in both postural orientation and equilibrium processes contribute to reduced postural stability in ASD. Specifically, increased postural sway in ASD appears to reflect patients' impaired perception of their body movement relative to their own postural limitation boundary as well as a reduced ability to decouple distinct ankle and hip movements to align their body during standing. Our findings that deficits in postural orientation and equilibrium are more pronounced during dynamic compared to static stances suggests that the increased demands of everyday activities in which children must dynamically shift their COP involve more severe postural control deficits in ASD relative to static stance conditions that often are studied. Systematic assessment of dynamic postural control processes in ASD may provide important insights into new treatment targets and neurodevelopmental mechanisms.

  13. Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition.

    PubMed

    Vistica, Jennifer; Dam, Julie; Balbo, Andrea; Yikilmaz, Emine; Mariuzza, Roy A; Rouault, Tracey A; Schuck, Peter

    2004-03-15

    Sedimentation equilibrium is a powerful tool for the characterization of protein self-association and heterogeneous protein interactions. Frequently, it is applied in a configuration with relatively long solution columns and with equilibrium profiles being acquired sequentially at several rotor speeds. The present study proposes computational tools, implemented in the software SEDPHAT, for the global analysis of equilibrium data at multiple rotor speeds with multiple concentrations and multiple optical detection methods. The detailed global modeling of such equilibrium data can be a nontrivial computational problem. It was shown previously that mass conservation constraints can significantly improve and extend the analysis of heterogeneous protein interactions. Here, a method for using conservation of mass constraints for the macromolecular redistribution is proposed in which the effective loading concentrations are calculated from the sedimentation equilibrium profiles. The approach is similar to that described by Roark (Biophys. Chem. 5 (1976) 185-196), but its utility is extended by determining the bottom position of the solution columns from the macromolecular redistribution. For analyzing heterogeneous associations at multiple protein concentrations, additional constraints that relate the effective loading concentrations of the different components or their molar ratio in the global analysis are introduced. Equilibrium profiles at multiple rotor speeds also permit the algebraic determination of radial-dependent baseline profiles, which can govern interference optical ultracentrifugation data, but usually also occur, to a smaller extent, in absorbance optical data. Finally, the global analysis of equilibrium profiles at multiple rotor speeds with implicit mass conservation and computation of the bottom of the solution column provides an unbiased scale for determining molar mass distributions of noninteracting species. The properties of these tools are studied with theoretical and experimental data sets.

  14. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu; Lani, A.

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) Amore » Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.« less

  15. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Lani, A.; Panesi, M.

    2016-07-01

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  16. Counting relative equilibrium configurations of the full two-body problem

    NASA Astrophysics Data System (ADS)

    Moeckel, Richard

    2018-02-01

    Consider a system of two rigid, massive bodies interacting according to their mutual gravitational attraction. In a relative equilibrium motion, the bodies rotate rigidly and uniformly about a fixed axis in R^3. This is possible only for special positions and orientations of the bodies. After fixing the angular momentum, these relative equilibrium configurations can be characterized as critical points of a smooth function on configuration space. The goal of this paper is to use Morse theory and Lusternik-Schnirelmann category theory to give lower bounds for the number of critical points when the angular momentum is sufficiently large. In addition, the exact number of critical points and their Morse indices are found in the limit as the angular momentum tends to infinity.

  17. Comparison of two gas chromatograph models and analysis of binary data

    NASA Technical Reports Server (NTRS)

    Keba, P. S.; Woodrow, P. T.

    1972-01-01

    The overall objective of the gas chromatograph system studies is to generate fundamental design criteria and techniques to be used in the optimum design of the system. The particular tasks currently being undertaken are the comparison of two mathematical models of the chromatograph and the analysis of binary system data. The predictions of two mathematical models, an equilibrium absorption model and a non-equilibrium absorption model exhibit the same weaknesses in their inability to predict chromatogram spreading for certain systems. The analysis of binary data using the equilibrium absorption model confirms that, for the systems considered, superposition of predicted single component behaviors is a first order representation of actual binary data. Composition effects produce non-idealities which limit the rigorous validity of superposition.

  18. Estimation of effective hydrologic properties of soils from observations of vegetation density

    NASA Technical Reports Server (NTRS)

    Tellers, T. E.; Eagleson, P. S.

    1980-01-01

    A one-dimensional model of the annual water balance is reviewed. Improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate soil system, is verified through comparisons with observed data. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides verification of the soil-selection procedure. This method of parameterization of the land surface is useful with global circulation models, enabling them to account for both the nonlinearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.

  19. The Osher scheme for non-equilibrium reacting flows

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady; Liou, Meng-Sing

    1992-01-01

    An extension of the Osher upwind scheme to nonequilibrium reacting flows is presented. Owing to the presence of source terms, the Riemann problem is no longer self-similar and therefore its approximate solution becomes tedious. With simplicity in mind, a linearized approach which avoids an iterative solution is used to define the intermediate states and sonic points. The source terms are treated explicitly. Numerical computations are presented to demonstrate the feasibility, efficiency and accuracy of the proposed method. The test problems include a ZND (Zeldovich-Neumann-Doring) detonation problem for which spurious numerical solutions which propagate at mesh speed have been observed on coarse grids. With the present method, a change of limiter causes the solution to change from the physically correct CJ detonation solution to the spurious weak detonation solution.

  20. Comparison of Coarse-Grained Approaches in Predicting Polymer Nanocomposite Phase Behavior

    DOE PAGES

    Koski, Jason P.; Ferrier, Robert C.; Krook, Nadia M.; ...

    2017-11-02

    Because of the considerable parameter space, efficient theoretical and simulation methods are required to predict the morphology and guide experiments in polymer nanocomposites (PNCs). Unfortunately, theoretical and simulation methods are restricted in their ability to accurately map to experiments based on necessary approximations and numerical limitations. In this study, we provide direct comparisons of two recently developed coarse-grained approaches for modeling polymer nanocomposites (PNCs): polymer nanocomposite field theory (PNC-FT) and dynamic mean-field theory (DMFT). These methods are uniquely suited to efficiently capture mesoscale phase behavior of PNCs in comparison to other theoretical and simulation frameworks. We demonstrate the ability ofmore » both methods to capture macrophase separation and describe the thermodynamics of PNCs. We systematically test how the nanoparticle morphology in PNCs is affected by a uniform probability distribution of grafting sites, common in field-based methods, versus random discrete grafting sites on the nanoparticle surface. We also analyze the accuracy of the mean-field approximation in capturing the phase behavior of PNCs. Moreover, the DMFT method introduces the ability to describe nonequilibrium phase behavior while the PNC-FT method is strictly an equilibrium method. With the DMFT method we are able to show the evolution of nonequilibrium states toward their equilibrium state and a qualitative assessment of the dynamics in these systems. These simulations are compared to experiments consisting of polystyrene grafted gold nanorods in a poly(methyl methacrylate) matrix to ensure the model gives results that qualitatively agree with the experiments. This study reveals that nanoparticles in a relatively high matrix molecular weight are trapped in a nonequilibrium state and demonstrates the utility of the DMFT framework in capturing nonequilibrium phase behavior of PNCs. In conclusion, both the PNC-FT and DMFT framework are promising methods to describe the thermodynamic and nonequilibrium phase behavior of PNCs.« less

  1. Comparison of Coarse-Grained Approaches in Predicting Polymer Nanocomposite Phase Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koski, Jason P.; Ferrier, Robert C.; Krook, Nadia M.

    Because of the considerable parameter space, efficient theoretical and simulation methods are required to predict the morphology and guide experiments in polymer nanocomposites (PNCs). Unfortunately, theoretical and simulation methods are restricted in their ability to accurately map to experiments based on necessary approximations and numerical limitations. In this study, we provide direct comparisons of two recently developed coarse-grained approaches for modeling polymer nanocomposites (PNCs): polymer nanocomposite field theory (PNC-FT) and dynamic mean-field theory (DMFT). These methods are uniquely suited to efficiently capture mesoscale phase behavior of PNCs in comparison to other theoretical and simulation frameworks. We demonstrate the ability ofmore » both methods to capture macrophase separation and describe the thermodynamics of PNCs. We systematically test how the nanoparticle morphology in PNCs is affected by a uniform probability distribution of grafting sites, common in field-based methods, versus random discrete grafting sites on the nanoparticle surface. We also analyze the accuracy of the mean-field approximation in capturing the phase behavior of PNCs. Moreover, the DMFT method introduces the ability to describe nonequilibrium phase behavior while the PNC-FT method is strictly an equilibrium method. With the DMFT method we are able to show the evolution of nonequilibrium states toward their equilibrium state and a qualitative assessment of the dynamics in these systems. These simulations are compared to experiments consisting of polystyrene grafted gold nanorods in a poly(methyl methacrylate) matrix to ensure the model gives results that qualitatively agree with the experiments. This study reveals that nanoparticles in a relatively high matrix molecular weight are trapped in a nonequilibrium state and demonstrates the utility of the DMFT framework in capturing nonequilibrium phase behavior of PNCs. In conclusion, both the PNC-FT and DMFT framework are promising methods to describe the thermodynamic and nonequilibrium phase behavior of PNCs.« less

  2. Equilibrium properties of dense hydrogen isotope gases based on the theory of simple fluids.

    PubMed

    Kowalczyk, Piotr; MacElroy, J M D

    2006-08-03

    We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and pressures. The present approach should find applications in the nonlocal density functional theory of inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage and to the separation of quantum isotopes by novel nanomaterials.

  3. Andriy Zakutayev | NREL

    Science.gov Websites

    technologies using materials-by-design methods. The basic direction involves research on non-equilibrium doping in semiconductors Materials by Design and Materials Genome Non-equilibrium and metastable . 5, 1117 (2014) "Theoretical Prediction and Experimental Realization of New Stable Inorganic

  4. Investigating Strategies to Increase Persistence and Success Rates among Anatomy & Physiology Students: A Case Study at Austin Community College District

    NASA Astrophysics Data System (ADS)

    Vedartham, Padmaja B.

    Snap-through buckling provides an intricate force-displacement relationship for study. With the possibility for multiple limit points and pitchfork bifurcations and large regions of instability, experimental validation of numerical analysis can become difficult. This requires stabilization of unstable static equilibria, for which limited prior research exists. For all but the simplest cases, more than one actuator is needed, increasing the complexity of the experiment to the point of intractability without a control system. In this thesis, the necessary conditions for stabilization of a buckled beam with pinned boundaries under transverse loading were determined. By combining various nonlinear solution methods, a control system was created that could stabilize any branch of the force-displacement response. Experimental traversal of an unstable branch are presented along with other unstable static equilibrium configurations. The control system had numerical limitations, losing convergence near singular points. The groundwork for experimental stabilization was validated and demonstrated.

  5. Multi-period equilibrium/near-equilibrium in electricity markets based on locational marginal prices

    NASA Astrophysics Data System (ADS)

    Garcia Bertrand, Raquel

    In this dissertation we propose an equilibrium procedure that coordinates the point of view of every market agent resulting in an equilibrium that simultaneously maximizes the independent objective of every market agent and satisfies network constraints. Therefore, the activities of the generating companies, consumers and an independent system operator are modeled: (1) The generating companies seek to maximize profits by specifying hourly step functions of productions and minimum selling prices, and bounds on productions. (2) The goals of the consumers are to maximize their economic utilities by specifying hourly step functions of demands and maximum buying prices, and bounds on demands. (3) The independent system operator then clears the market taking into account consistency conditions as well as capacity and line losses so as to achieve maximum social welfare. Then, we approach this equilibrium problem using complementarity theory in order to have the capability of imposing constraints on dual variables, i.e., on prices, such as minimum profit conditions for the generating units or maximum cost conditions for the consumers. In this way, given the form of the individual optimization problems, the Karush-Kuhn-Tucker conditions for the generating companies, the consumers and the independent system operator are both necessary and sufficient. The simultaneous solution to all these conditions constitutes a mixed linear complementarity problem. We include minimum profit constraints imposed by the units in the market equilibrium model. These constraints are added as additional constraints to the equivalent quadratic programming problem of the mixed linear complementarity problem previously described. For the sake of clarity, the proposed equilibrium or near-equilibrium is first developed for the particular case considering only one time period. Afterwards, we consider an equilibrium or near-equilibrium applied to a multi-period framework. This model embodies binary decisions, i.e., on/off status for the units, and therefore optimality conditions cannot be directly applied. To avoid limitations provoked by binary variables, while retaining the advantages of using optimality conditions, we define the multi-period market equilibrium using Benders decomposition, which allows computing binary variables through the master problem and continuous variables through the subproblem. Finally, we illustrate these market equilibrium concepts through several case studies.

  6. Some properties of correlations of quantum lattice systems in thermal equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröhlich, Jürg, E-mail: juerg@phys.ethz.ch; Ueltschi, Daniel, E-mail: daniel@ueltschi.org

    Simple proofs of uniqueness of the thermodynamic limit of KMS states and of the decay of equilibrium correlations are presented for a large class of quantum lattice systems at high temperatures. New quantum correlation inequalities for general Heisenberg models are described. Finally, a simplified derivation of a general result on power-law decay of correlations in 2D quantum lattice systems with continuous symmetries is given, extending results of McBryan and Spencer for the 2D classical XY model.

  7. Relativistic electrons and whistlers in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.

    1976-01-01

    The paper examines some of the consequences of relativistic electrons in stably trapped equilibrium with parallel propagating whistlers in the inner magnetosphere of Jupiter. Approximate scaling laws for the stably trapped electron flux and equilibrium wave intensity are derived, and the equatorial growth rate for whistlers is determined. It is shown that fluxes are near the stably trapped limit, which suggests that whistler intensities may be high enough to cause significant diffusion of electrons, accounting for the observed reduction of phase space densities.

  8. Purification and switching protocols for dissipatively stabilized entangled qubit states

    NASA Astrophysics Data System (ADS)

    Hein, Sven M.; Aron, Camille; Türeci, Hakan E.

    2016-06-01

    Pure dephasing processes limit the fidelities achievable in driven-dissipative schemes for stabilization of entangled states of qubits. We propose a scheme which, combined with already existing entangling methods, purifies the desired entangled state by driving out of equilibrium auxiliary dissipative cavity modes coupled to the qubits. We lay out the specifics of our scheme and compute its efficiency in the particular context of two superconducting qubits in a cavity-QED architecture, where the strongly coupled auxiliary modes provided by collective cavity excitations can drive and sustain the qubits in maximally entangled Bell states with fidelities reaching 90% for experimentally accessible parameters.

  9. Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes

    NASA Technical Reports Server (NTRS)

    Marx, Yves P.

    1990-01-01

    An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.

  10. Direct total and free testosterone measurement by liquid chromatography tandem mass spectrometry across two different platforms.

    PubMed

    Rhea, Jeanne M; French, Deborah; Molinaro, Ross J

    2013-05-01

    To develop and validate liquid chromatography tandem mass spectrometry (LC-MS/MS) methods for the direct measurement of total and free testosterone in patient samples on two different analytical systems. An API 4000 and 5000 triple quadropoles were used and compared; the former is reported to be 3-5 times less sensitive, as was used to set the quantitation limits. Free testosterone was separated from the protein-bound fraction by equilibrium dialysis followed by derivatization. Either free or total testosterone, and a deuterated internal standard (d3-testosterone) were extracted by liquid-liquid extraction. The validation results were compared to two different clinical laboratories. The use of d2-testosterone was found to be unacceptable for our method. The total testosterone LC-MS/MS methods on both systems were linear over a wide concentration range of 1.5-2000ng/dL. Free testosterone was measured directly using equilibrium dialysis coupled LC-MS/MS and linear over the concentration range of 2.5-2500pg/mL. Good correlation (total testosterone, R(2)=0.96; free testosterone, R(2)=0.98) was observed between our LC-MS/MS systems and comparator laboratory. However, differences in absolute values for both free and total testosterone measurements were observed while a comparison to a second published LC-MS/MS method showed excellent correlation. Free and total testosterone measurements correlated well with clinical observations. To our knowledge, this is the first published validation of free and total testosterone methods across two analytical systems of different analytical sensitivities. A less sensitive system does not sacrifice analytical or clinical sensitivity to directly measure free and total testosterone in patient samples. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  11. First-principles investigations of equilibrium Ca, Mg, Si and O isotope fractionations between silicate melts and minerals

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Liu, X.; Kang, J.; He, L.

    2017-12-01

    Equilibrium isotope fractionation factors are essential for using stable isotope data to study many geosciences processes such as planetary differentiation and mantle evolution. The mass-dependent equilibrium isotope fractionation is primarily controlled by the difference in bond energies triggered by the isotope substitution. With the recent advances in computational capabilities, first-principles calculation has become a reliable tool to investigate equilibrium isotopic fractionations, greatly improving our understanding of the factors controlling isotope fractionations. It is important to understand the isotope fractionation between melts and minerals because magmatism is critical for creating and shaping the Earth. However, because isotope fractionation between melts and minerals is small at high temperature, it is difficult to experimentally calibrate such small signature. Due to the disordered and dynamic character of melts, calculations of equilibrium isotope fractionation of melts are more challenging than that for gaseous molecules or minerals. Here, we apply first-principles molecular dynamics method to calculate equilibrium Ca, Mg, Si, and O isotope fractionations between silicate melts and minerals. Our results show that equilibrium Mg, Si, and O isotope fractionations between olivine and pure Mg2SiO4 melt are close to zero at high temperature (e.g. δ26Mgmelt-ol = 0.03 ± 0.04‰, δ30Simelt-ol = -0.06 ± 0.07‰, δ18Omelt-ol = 0.07‰ ± 0.08 at 1500 K). Equilibrium Ca, Mg, Si, and O isotope fractionations between diopside and basalt melt (67% CaMgSi2O6 + 33% CaAl2Si2O8) are also negligible at high temperature (e.g. δ44/40Camelt-cpx = -0.01 ± 0.02‰, δ26Mgmelt-cpx = -0.05 ± 0.14‰, δ30Simelt-cpx = 0.04 ± 0.04‰, δ18Omelt-cpx = 0.03 ± 0.07‰ at 1500 K). These results are consistent with the observations in natural samples that there is no significant Ca, Mg, Si, and O isotope fractionation during mantle partial melting, demonstrating the reliability of our methods. Thus, our results can be used to understand stable isotope fractionation during partial melting of mantle peridotite or fractional crystallization during magmatic differentiation. The first-principles molecular dynamics method is a promising tool to obtain equilibrium fractionation of more isotope systems for complicate liquids.

  12. Analysis of A Virus Dynamics Model

    NASA Astrophysics Data System (ADS)

    Zhang, Baolin; Li, Jianquan; Li, Jia; Zhao, Xin

    2018-03-01

    In order to more accurately characterize the virus infection in the host, a virus dynamics model with latency and virulence is established and analyzed in this paper. The positivity and boundedness of the solution are proved. After obtaining the basic reproduction number and the existence of infected equilibrium, the Lyapunov method and the LaSalle invariance principle are used to determine the stability of the uninfected equilibrium and infected equilibrium by constructing appropriate Lyapunov functions. We prove that, when the basic reproduction number does not exceed 1, the uninfected equilibrium is globally stable, the virus can be cleared eventually; when the basic reproduction number is more than 1, the infected equilibrium is globally stable, the virus will persist in the host at a certain level. The effect of virulence and latency on infection is also discussed.

  13. Run-Reversal Equilibrium for Clinical Trial Randomization

    PubMed Central

    Grant, William C.

    2015-01-01

    In this paper, we describe a new restricted randomization method called run-reversal equilibrium (RRE), which is a Nash equilibrium of a game where (1) the clinical trial statistician chooses a sequence of medical treatments, and (2) clinical investigators make treatment predictions. RRE randomization counteracts how each investigator could observe treatment histories in order to forecast upcoming treatments. Computation of a run-reversal equilibrium reflects how the treatment history at a particular site is imperfectly correlated with the treatment imbalance for the overall trial. An attractive feature of RRE randomization is that treatment imbalance follows a random walk at each site, while treatment balance is tightly constrained and regularly restored for the overall trial. Less predictable and therefore more scientifically valid experiments can be facilitated by run-reversal equilibrium for multi-site clinical trials. PMID:26079608

  14. One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet.

    PubMed

    Harrison, Michael G; Neukirch, Thomas

    2009-04-03

    In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet.

  15. Intermittent many-body dynamics at equilibrium

    NASA Astrophysics Data System (ADS)

    Danieli, C.; Campbell, D. K.; Flach, S.

    2017-06-01

    The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q -breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.

  16. Evaluation of diffusivity in the anterior lobe of the pituitary gland: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    PubMed

    Hiwatashi, A; Yoshiura, T; Togao, O; Yamashita, K; Kikuchi, K; Kobayashi, K; Ohga, M; Sonoda, S; Honda, H; Obara, M

    2014-01-01

    3D turbo field echo with diffusion-sensitized driven-equilibrium preparation is a non-echo-planar technique for DWI, which enables high-resolution DWI without field inhomogeneity-related image distortion. The purpose of this study was to evaluate the feasibility of diffusion-sensitized driven-equilibrium turbo field echo in evaluating diffusivity in the normal pituitary gland. First, validation of diffusion-sensitized driven-equilibrium turbo field echo was attempted by comparing it with echo-planar DWI. Five healthy volunteers were imaged by using diffusion-sensitized driven-equilibrium turbo field echo and echo-planar DWI. The imaging voxel size was 1.5 × 1.5 × 1.5 mm(3) for diffusion-sensitized driven-equilibrium turbo field echo and 1.5 × 1.9 × 3.0 mm(3) for echo-planar DWI. ADCs measured by the 2 methods in 15 regions of interests (6 in gray matter and 9 in white matter) were compared by using the Pearson correlation coefficient. The ADC in the pituitary anterior lobe was then measured in 10 volunteers by using diffusion-sensitized driven-equilibrium turbo field echo, and the results were compared with those in the pons and vermis by using a paired t test. The ADCs from the 2 methods showed a strong correlation (r = 0.79; P < .0001), confirming the accuracy of the ADC measurement with the diffusion-sensitized driven-equilibrium sequence. The ADCs in the normal pituitary gland were 1.37 ± 0.13 × 10(-3) mm(2)/s, which were significantly higher than those in the pons (1.01 ± 0.24 × 10(-3) mm(2)/s) and the vermis (0.89 ± 0.25 × 10(-3) mm(2)/s, P < .01). We demonstrated that diffusion-sensitized driven-equilibrium turbo field echo is feasible in assessing ADC in the pituitary gland.

  17. High-Precision Simulation of the Gravity Field of Rapidly-Rotating Barotropes in Hydrostatic Equilibrium

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.

    2013-12-01

    The so-called theory of figures (TOF) uses potential theory to solve for the structure of highly distorted rotating liquid planets in hydrostatic equilibrium. TOF is noteworthy both for its antiquity (Maclaurin 1742) and its mathematical complexity. Planned high-precision gravity measurements near the surfaces of Jupiter and Saturn (possibly detecting signals ~ microgal) will place unprecedented requirements on TOF, not because one expects hydrostatic equilibrium to that level, but because nonhydrostatic components in the surface gravity, at expected levels ~ 1 milligal, must be referenced to precise hydrostatic-equilibrium models. The Maclaurin spheroid is both a useful test of numerical TOF codes (Hubbard 2012, ApJ Lett 756:L15), and an approach to an efficient TOF code for arbitrary barotropes of variable density (Hubbard 2013, ApJ 768:43). For the latter, one trades off vertical resolution by replacing a continuous barotropic pressure-density relation with a stairstep relation, corresponding to N concentric Maclaurin spheroids (CMS), each of constant density. The benefit of this trade-off is that two-dimensional integrals over the mass distributions at each interface are reduced to one-dimensional integrals, quickly and accurately evaluated by Gaussian quadrature. The shapes of the spheroids comprise N level surfaces within the planet and at its surface, are gravitationally coupled to each other, and are found by self-consistent iteration, relaxing to a final configuration to within the computer's precision limits. The angular and radial variation of external gravity (using the usual geophysical expansion in multipole moments) can be found to the limit of typical floating point precision (~ 1.e-14), much better than the expected noise/signal for either the Juno or Cassini gravity experiments. The stairstep barotrope can be adjusted to fit a prescribed continuous or discontinuous interior barotrope, and can be made to approximate it to any required precision by increasing N. One can insert a higher density of CMSs toward the surface of an interior model in order to more accurately model high-order gravitational moments. The magnitude of high-order moments predicted by TOF declines geometrically with order number, and falls below the magnitude of expected non-hydrostatic terms produced by interior dynamics at ~ order 10 and above. Juno's sensitivity is enough to detect tidal gravity signals from Galilean satellites. The CMS method can be generalized to predict tidal zonal and tesseral terms consistent with an interior model fitted to measured zonal harmonics. For this purpose, two-dimensional Gaussian quadrature is necessary at each CMS interface. However, once the model is relaxed to equilibrium, one need not refit the model to the average zonal harmonics because of the smallness of the tidal terms. I will describe how the CMS method has been validated through comparisons with standard TOF models for which fully or partially analytic solutions exist, as well as through consistency checks. At this stage in software development in preparation for Jupiter orbit, we are focused on increasing the speed of the code in order to more efficiently search the parameter space of acceptable Jupiter interior models, as well as to interface it with advanced hydrogen-helium equations of state.

  18. 13C 18O clumping in speleothems: Observations from natural caves and precipitation experiments

    NASA Astrophysics Data System (ADS)

    Daëron, M.; Guo, W.; Eiler, J.; Genty, D.; Blamart, D.; Boch, R.; Drysdale, R.; Maire, R.; Wainer, K.; Zanchetta, G.

    2011-06-01

    The oxygen isotope composition of speleothems is an important proxy of continental paleoenvironments, because of its sensitivity to variations in cave temperature and drip water δ 18O. Interpreting speleothem δ 18O records in terms of absolute paleotemperatures and δ 18O values of paleo-precipitation requires quantitative separation of the effects of these two parameters, and correcting for possible kinetic isotope fractionation associated with precipitation of calcite out of thermodynamic equilibrium. Carbonate clumped-isotope thermometry, based on measurements of Δ47 (a geochemical variable reflecting the statistical overabundance of 13C 18O bonds in CO 2 evolved from phosphoric acid digestion of carbonate minerals), potentially provides a method for absolute speleothem paleotemperature reconstructions independent of drip water composition. Application of this new technique to karst records is currently limited by the scarcity of published clumped-isotope studies of modern speleothems. The only modern stalagmite reported so far in the literature yielded a lower Δ47 value than expected for equilibrium precipitation, possibly due to kinetic isotope fractionation. Here we report Δ47 values measured in natural speleothems from various cave settings, in carbonate produced by cave precipitation experiments, and in synthetic stalagmite analogs precipitated in controlled laboratory conditions designed to mimic natural cave processes. All samples yield lower Δ47 and heavier δ 18O values than predicted by experimental calibrations of thermodynamic equilibrium in inorganic calcite. The amplitudes of these isotopic disequilibria vary between samples, but there is clear correlation between the amount of Δ47 disequilibrium and that of δ 18O. Even pool carbonates believed to offer excellent conditions for equilibrium precipitation of calcite display out-of-equilibrium δ 18O and Δ47 values, probably inherited from prior degassing within the cave system. In addition to these modern observations, clumped-isotope analyses of a flowstone from Villars cave (France) offer evidence that the amount of disequilibrium affecting Δ47 in a single speleothem can experience large variations at time scales of 10 kyr. Application of clumped-isotope thermometry to speleothem records calls for an improved physical understanding of DIC fractionation processes in karst waters, and for the resolution of important issues regarding equilibrium calibration of Δ47 in inorganic carbonates.

  19. Chemical equilibrium of ablation materials including condensed species

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.; Brinkley, K. L.

    1975-01-01

    Equilibrium is determined by finding chemical composition with minimum free energy. Method of steepest descent is applied to quadratic representation of free-energy surface. Solution is initiated by selecting arbitrary set of mole fractions, from which point on free-energy surface is computed.

  20. Synthesis of Silane and Silicon in a Non-equilibrium Plasma Jet

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1978-01-01

    The original objective of this program was to determine the feasibility of high volume, low-cost production of high purity silane or solar cell grade silicon using a non equilibrium plasma jet. The emphasis was changed near the end of the program to determine the feasibility of preparing photovoltaic amorphous silicon films directly using this method. The non equilibrium plasma jet should be further evaluated as a technique for producing high efficiency photovoltaic amorphous silicon films.

  1. A simple approximation of moments of the quasi-equilibrium distribution of an extended stochastic theta-logistic model with non-integer powers.

    PubMed

    Bhowmick, Amiya Ranjan; Bandyopadhyay, Subhadip; Rana, Sourav; Bhattacharya, Sabyasachi

    2016-01-01

    The stochastic versions of the logistic and extended logistic growth models are applied successfully to explain many real-life population dynamics and share a central body of literature in stochastic modeling of ecological systems. To understand the randomness in the population dynamics of the underlying processes completely, it is important to have a clear idea about the quasi-equilibrium distribution and its moments. Bartlett et al. (1960) took a pioneering attempt for estimating the moments of the quasi-equilibrium distribution of the stochastic logistic model. Matis and Kiffe (1996) obtain a set of more accurate and elegant approximations for the mean, variance and skewness of the quasi-equilibrium distribution of the same model using cumulant truncation method. The method is extended for stochastic power law logistic family by the same and several other authors (Nasell, 2003; Singh and Hespanha, 2007). Cumulant truncation and some alternative methods e.g. saddle point approximation, derivative matching approach can be applied if the powers involved in the extended logistic set up are integers, although plenty of evidence is available for non-integer powers in many practical situations (Sibly et al., 2005). In this paper, we develop a set of new approximations for mean, variance and skewness of the quasi-equilibrium distribution under more general family of growth curves, which is applicable for both integer and non-integer powers. The deterministic counterpart of this family of models captures both monotonic and non-monotonic behavior of the per capita growth rate, of which theta-logistic is a special case. The approximations accurately estimate the first three order moments of the quasi-equilibrium distribution. The proposed method is illustrated with simulated data and real data from global population dynamics database. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Nonlinear vibration of a traveling belt with non-homogeneous boundaries

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Lim, C. W.; Chen, Li-Qun

    2018-06-01

    Free and forced nonlinear vibrations of a traveling belt with non-homogeneous boundary conditions are studied. The axially moving materials in operation are always externally excited and produce strong vibrations. The moving materials with the homogeneous boundary condition are usually considered. In this paper, the non-homogeneous boundaries are introduced by the support wheels. Equilibrium deformation of the belt is produced by the non-homogeneous boundaries. In order to solve the equilibrium deformation, the differential and integral quadrature methods (DIQMs) are utilized to develop an iterative scheme. The influence of the equilibrium deformation on free and forced nonlinear vibrations of the belt is explored. The DIQMs are applied to solve the natural frequencies and forced resonance responses of transverse vibration around the equilibrium deformation. The Galerkin truncation method (GTM) is utilized to confirm the DIQMs' results. The numerical results demonstrate that the non-homogeneous boundary conditions cause the transverse vibration to deviate from the straight equilibrium, increase the natural frequencies, and lead to coexistence of square nonlinear terms and cubic nonlinear terms. Moreover, the influence of non-homogeneous boundaries can be exacerbated by the axial speed. Therefore, non-homogeneous boundary conditions of axially moving materials especially should be taken into account.

  3. Broken detailed balance and non-equilibrium dynamics in living systems: a review

    NASA Astrophysics Data System (ADS)

    Gnesotto, F. S.; Mura, F.; Gladrow, J.; Broedersz, C. P.

    2018-06-01

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  4. Broken detailed balance and non-equilibrium dynamics in living systems: a review.

    PubMed

    Gnesotto, F S; Mura, F; Gladrow, J; Broedersz, C P

    2018-06-01

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  5. The equilibrium of rubble-pile satellites: The Darwin and Roche ellipsoids for gravitationally held granular aggregates

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2009-04-01

    Many new small moons of the giant planets have been discovered recently. In parallel, satellites of several asteroids, e.g., Ida, have been found. Strikingly, a majority of these new-found planetary moons are estimated to have very low densities, which, along with their hypothesized accretionary origins, suggests a rubble internal structure. This, coupled to the fact that many asteroids are also thought to be particle aggregates held together principally by self-gravity, motivates the present investigation into the possible ellipsoidal shapes that a rubble-pile satellite may achieve as it orbits an aspherical primary. Conversely, knowledge of the shape will constrain the granular aggregate's orbit—the closer it gets to a primary, both primary's tidal effect and the satellite's spin are greater. We will assume that the primary body is sufficiently massive so as not to be influenced by the satellite. However, we will incorporate the primary's possible ellipsoidal shape, e.g., flattening at its poles in the case of a planet, and the proloidal shape of asteroids. In this, the present investigation is an extension of the first classical Darwin problem to granular aggregates. General equations defining an ellipsoidal rubble pile's equilibrium about an ellipsoidal primary are developed. They are then utilized to scrutinize the possible granular nature of small inner moons of the giant planets. It is found that most satellites satisfy constraints necessary to exist as equilibrated granular aggregates. Objects like Naiad, Metis and Adrastea appear to violate these limits, but in doing so, provide clues to their internal density and/or structure. We also recover the Roche limit for a granular satellite of a spherical primary, and employ it to study the martian satellites, Phobos and Deimos, as well as to make contact with earlier work of Davidsson [Davidsson, B., 2001. Icarus 149, 375-383]. The satellite's interior will be modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield criterion. This rheology is a reasonable first model for rubble piles. We will employ an approximate volume-averaging procedure that is based on the classical method of moments, and is an extension of the virial method [Chandrasekhar, S., 1969. Ellipsoidal Figures of Equilibrium. Yale Univ. Press, New Haven] to granular solid bodies.

  6. Nonlinear ballooning modes in tokamaks: stability and saturation

    NASA Astrophysics Data System (ADS)

    Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.

    2018-07-01

    The nonlinear dynamics of magneto-hydrodynamic ballooning mode perturbations is conjectured to be characterised by the motion of isolated elliptical flux tubes. The theory of stability, dynamics and saturation of such tubes in tokamaks is developed using a generalised Archimedes’ principle. The equation of motion for a tube moving against a drag force in a general axisymmetric equilibrium is derived and then applied to a simplified ‘s–α’ equilibrium. The perturbed nonlinear tube equilibrium (saturated) states are investigated in an ‘s–α’ equilibrium with specific pressure and magnetic shear profiles. The energy of these nonlinear (ballooning) saturated states is calculated. In some cases, particularly at low magnetic shear, these finitely displaced states can have a lower energy than the equilibrium state even if the profile is linearly stable to ballooning modes (infinitesimal tube displacements) at all radii. Thus nonlinear ballooning modes can be metastable. The amplitude of the saturated tube displacement in such cases can be as large as the pressure gradient scale length. We conjecture that triggering a transition into these filamentary states can lead to hard instability limits. A short survey of different pressure profiles is presented to illustrate the variety of behaviour of perturbed elliptical flux tubes.

  7. Mechanical approach to chemical transport

    PubMed Central

    Kocherginsky, Nikolai; Gruebele, Martin

    2016-01-01

    Nonequilibrium thermodynamics describes the rates of transport phenomena with the aid of various thermodynamic forces, but often the phenomenological transport coefficients are not known, and the description is not easily connected with equilibrium relations. We present a simple and intuitive model to address these issues. Our model is based on Lagrangian dynamics for chemical systems with dissipation, so one may think of the model as physicochemical mechanics. Using one main equation, the model allows a systematic derivation of all transport and equilibrium equations, subject to the limitation that heat generated or absorbed in the system must be small for the model to be valid. A table with all major examples of transport and equilibrium processes described using physicochemical mechanics is given. In equilibrium, physicochemical mechanics reduces to standard thermodynamics and the Gibbs–Duhem relation, and we show that the First and Second Laws of thermodynamics are satisfied for our system plus bath model. Out of equilibrium, our model provides relationships between transport coefficients and describes system evolution in the presence of several simultaneous external fields. The model also leads to an extension of the Onsager–Casimir reciprocal relations for properties simultaneously transported by many components. PMID:27647899

  8. Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions

    PubMed Central

    Crema, Enrico R.; Kandler, Anne; Shennan, Stephen

    2016-01-01

    A long tradition of cultural evolutionary studies has developed a rich repertoire of mathematical models of social learning. Early studies have laid the foundation of more recent endeavours to infer patterns of cultural transmission from observed frequencies of a variety of cultural data, from decorative motifs on potsherds to baby names and musical preferences. While this wide range of applications provides an opportunity for the development of generalisable analytical workflows, archaeological data present new questions and challenges that require further methodological and theoretical discussion. Here we examine the decorative motifs of Neolithic pottery from an archaeological assemblage in Western Germany, and argue that the widely used (and relatively undiscussed) assumption that observed frequencies are the result of a system in equilibrium conditions is unwarranted, and can lead to incorrect conclusions. We analyse our data with a simulation-based inferential framework that can overcome some of the intrinsic limitations in archaeological data, as well as handle both equilibrium conditions and instances where the mode of cultural transmission is time-variant. Results suggest that none of the models examined can produce the observed pattern under equilibrium conditions, and suggest. instead temporal shifts in the patterns of cultural transmission. PMID:27974814

  9. Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions

    NASA Astrophysics Data System (ADS)

    Crema, Enrico R.; Kandler, Anne; Shennan, Stephen

    2016-12-01

    A long tradition of cultural evolutionary studies has developed a rich repertoire of mathematical models of social learning. Early studies have laid the foundation of more recent endeavours to infer patterns of cultural transmission from observed frequencies of a variety of cultural data, from decorative motifs on potsherds to baby names and musical preferences. While this wide range of applications provides an opportunity for the development of generalisable analytical workflows, archaeological data present new questions and challenges that require further methodological and theoretical discussion. Here we examine the decorative motifs of Neolithic pottery from an archaeological assemblage in Western Germany, and argue that the widely used (and relatively undiscussed) assumption that observed frequencies are the result of a system in equilibrium conditions is unwarranted, and can lead to incorrect conclusions. We analyse our data with a simulation-based inferential framework that can overcome some of the intrinsic limitations in archaeological data, as well as handle both equilibrium conditions and instances where the mode of cultural transmission is time-variant. Results suggest that none of the models examined can produce the observed pattern under equilibrium conditions, and suggest. instead temporal shifts in the patterns of cultural transmission.

  10. Teaching at the edge of knowledge: Non-equilibrium statistical physics

    NASA Astrophysics Data System (ADS)

    Schmittmann, Beate

    2007-03-01

    As physicists become increasingly interested in biological problems, we frequently find ourselves confronted with complex open systems, involving many interacting constituents and characterized by non-vanishing fluxes of mass or energy. Faced with the task of predicting macroscopic behaviors from microscopic information for these non-equilibrium systems, the familiar Gibbs-Boltzmann framework fails. The development of a comprehensive theoretical characterization of non-equilibrium behavior is one of the key challenges of modern condensed matter physics. In its absence, several approaches have been developed, from master equations to thermostatted molecular dynamics, which provide key insights into the rich and often surprising phenomenology of systems far from equilibrium. In my talk, I will address some of these methods, selecting those that are most relevant for a broad range of interdisciplinary problems from biology to traffic, finance, and sociology. The ``portability'' of these methods makes them valuable for graduate students from a variety of disciplines. To illustrate how different methods can complement each other when probing a problem from, e.g., the life sciences, I will discuss some recent attempts at modeling translation, i.e., the process by which the genetic information encoded on an mRNA is translated into the corresponding protein.

  11. Accounting for pore water pressure and confined aquifers in assessing the stability of slopes: a Limit Equilibrium analysis carried out through the Minimum Lithostatic Deviation method

    NASA Astrophysics Data System (ADS)

    Ausilia Paparo, Maria; Tinti, Stefano

    2015-04-01

    The model we introduce is an implementation of the Minimum Lithostatic Deviation (MLD) method, developed by Tinti and Manucci (Tinti and Manucci 2006; 2008), that makes use of the limit equilibrium (LE) theory to estimate the stability of a slope. The main purpose here is to analyse the role of a confined aquifer on the value of the Safety Factor (F), the parameter that in the LE is used to determine if a slope is stable or unstable. The classical LE methods treat unconfined aquifers by including the water pore pressure in the Mohr-Coulomb failure formula: since the water decreases the friction shear strength, the soil above the sliding surface turns out to be more prone to instability. In case of a confined aquifer, however, due to a presence of impermeable layers, the water is not free to flow into the matrix of the overlying soil. We consider here the assumption of a permeable soil sliding over an impermeable layer, which is an occurrence that is found in several known landslide cases (e.g. Person, 2008; Strout and Tjeltja, 2008; Morgan et al., 2010 for offshore slides; and Palladino and Peck, 1972; Miller and Sias, 1998; Jiao et al. 2005; Paparo et al., 2013 for slopes in proximity of artificial or natural water basins) where clay beds form the potential sliding surface: the water, confined below, pushes along these layers and acts on the sliding body as an external bottom load. We modify the MLD method equations in order to take into account the load due to a confined aquifer and apply the new model to the Vajont case, where many have hypothesised the contribution of a confined aquifer to the failure. Our calculations show that the rain load i) infiltrating directly into the soil body and ii) penetrating into the confined aquifer below the clay layers, in addition with the lowering of the reservoir level, were key factors of destabilization of the Mt Toc flank and caused the disastrous landslide.

  12. How important is thermodynamics for identifying elementary flux modes?

    PubMed Central

    Peres, Sabine; Jolicœur, Mario; Moulin, Cécile

    2017-01-01

    We present a method for computing thermodynamically feasible elementary flux modes (tEFMs) using equilibrium constants without need of internal metabolite concentrations. The method is compared with the method based on a binary distinction between reversible and irreversible reactions. When all reactions are reversible, adding the constraints based on equilibrium constants reduces the number of elementary flux modes (EFMs) by a factor of two. Declaring in advance some reactions as irreversible, based on reliable biochemical expertise, can in general reduce the number of EFMs by a greater factor. But, even in this case, computing tEFMs can rule out some EFMs which are biochemically irrelevant. We applied our method to two published models described with binary distinction: the monosaccharide metabolism and the central carbon metabolism of Chinese hamster ovary cells. The results show that the binary distinction is in good agreement with biochemical observations. Moreover, the suppression of the EFMs that are not consistent with the equilibrium constants appears to be biologically relevant. PMID:28222104

  13. Determination of the equilibrium constant of C60 fullerene binding with drug molecules.

    PubMed

    Mosunov, Andrei A; Pashkova, Irina S; Sidorova, Maria; Pronozin, Artem; Lantushenko, Anastasia O; Prylutskyy, Yuriy I; Parkinson, John A; Evstigneev, Maxim P

    2017-03-01

    We report a new analytical method that allows the determination of the magnitude of the equilibrium constant of complexation, K h , of small molecules to C 60 fullerene in aqueous solution. The developed method is based on the up-scaled model of C 60 fullerene-ligand complexation and contains the full set of equations needed to fit titration datasets arising from different experimental methods (UV-Vis spectroscopy, 1 H NMR spectroscopy, diffusion ordered NMR spectroscopy, DLS). The up-scaled model takes into consideration the specificity of C 60 fullerene aggregation in aqueous solution and allows the highly dispersed nature of C 60 fullerene cluster distribution to be accounted for. It also takes into consideration the complexity of fullerene-ligand dynamic equilibrium in solution, formed by various types of self- and hetero-complexes. These features make the suggested method superior to standard Langmuir-type analysis, the approach used to date for obtaining quantitative information on ligand binding with different nanoparticles.

  14. Treatment of Chemical Equilibrium without Using Thermodynamics or Statistical Mechanics.

    ERIC Educational Resources Information Center

    Nelson, P. G.

    1986-01-01

    Discusses the conventional approaches to teaching about chemical equilibrium in advanced physical chemistry courses. Presents an alternative approach to the treatment of this concept by using Boltzmann's distribution law. Lists five advantages to using this method as compared with the other approaches. (TW)

  15. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    DOEpatents

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  16. Coupling microscopic and mesoscopic scales to simulate chemical equilibrium between a nanometric carbon cluster and detonation products fluid.

    PubMed

    Bourasseau, Emeric; Maillet, Jean-Bernard

    2011-04-21

    This paper presents a new method to obtain chemical equilibrium properties of detonation products mixtures including a solid carbon phase. In this work, the solid phase is modelled through a mesoparticle immersed in the fluid, such that the heterogeneous character of the mixture is explicitly taken into account. Inner properties of the clusters are taken from an equation of state obtained in a previous work, and interaction potential between the nanocluster and the fluid particles is derived from all-atoms simulations using the LCBOPII potential (Long range Carbon Bond Order Potential II). It appears that differences in chemical equilibrium results obtained with this method and the "composite ensemble method" (A. Hervouet et al., J. Phys. Chem. B, 2008, 112.), where fluid and solid phases are considered as non-interacting, are not significant, underlining the fact that considering the inhomogeneity of such system is crucial.

  17. Spontaneous collective synchronization in the Kuramoto model with additional non-local interactions

    NASA Astrophysics Data System (ADS)

    Gupta, Shamik

    2017-10-01

    In the context of the celebrated Kuramoto model of globally-coupled phase oscillators of distributed natural frequencies, which serves as a paradigm to investigate spontaneous collective synchronization in many-body interacting systems, we report on a very rich phase diagram in presence of thermal noise and an additional non-local interaction on a one-dimensional periodic lattice. Remarkably, the phase diagram involves both equilibrium and non-equilibrium phase transitions. In two contrasting limits of the dynamics, we obtain exact analytical results for the phase transitions. These two limits correspond to (i) the absence of thermal noise, when the dynamics reduces to that of a non-linear dynamical system, and (ii) the oscillators having the same natural frequency, when the dynamics becomes that of a statistical system in contact with a heat bath and relaxing to a statistical equilibrium state. In the former case, our exact analysis is based on the use of the so-called Ott-Antonsen ansatz to derive a reduced set of nonlinear partial differential equations for the macroscopic evolution of the system. Our results for the case of statistical equilibrium are on the other hand obtained by extending the well-known transfer matrix approach for nearest-neighbor Ising model to consider non-local interactions. The work offers a case study of exact analysis in many-body interacting systems. The results obtained underline the crucial role of additional non-local interactions in either destroying or enhancing the possibility of observing synchrony in mean-field systems exhibiting spontaneous synchronization.

  18. pH feedback and phenotypic diversity within bacterial functional groups of the human gut.

    PubMed

    Kettle, Helen; Donnelly, Ruairi; Flint, Harry J; Marion, Glenn

    2014-02-07

    Microbial diversity in the human colon is very high with apparently large functional redundancy such that within each bacterial functional group there are many coexisting strains. Modelling this mathematically is problematic since strains within a functional group are often competing for the same limited number of resources and therefore competitive exclusion theory predicts a loss of diversity over time. Here we investigate, through computer simulation, a fluctuation dependent mechanism for the promotion of diversity. A variable pH environment caused by acidic by-products of bacterial growth on a fluctuating substrate coupled with small differences in acid tolerance between strains promotes diversity under both equilibrium and far-from-equilibrium conditions. Under equilibrium conditions pH fluctuations and relative nonlinearity in pH limitation among strains combine to prevent complete competitive exclusion. Under far-from-equilibrium conditions, loss of diversity through extinctions is made more difficult because pH cycling leads to fluctuations in the competitive ranking of strains, thereby helping to equalise fitness. We assume a trade-off between acid tolerance and maximum growth rate so that our microbial system consists of strains ranging from specialists to generalists. By altering the magnitude of the effect of the system on its pH environment (e.g. the buffering capacity of the colon) and the pattern of incoming resource we explore the conditions that promote diversity. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Maintenance of supersaturation I: indomethacin crystal growth kinetic modeling using an online second-derivative ultraviolet spectroscopic method.

    PubMed

    Patel, Dhaval D; Joguparthi, Vijay; Wang, Zeren; Anderson, Bradley D

    2011-07-01

    Formulations that produce supersaturated solutions after their oral administration have received increased attention as a means to improve bioavailability of poorly water-soluble drugs. Although it is widely recognized that excipients can prolong supersaturation, the mechanisms by which these beneficial effects are realized are generally unknown. Difficulties in separately measuring the kinetics of nucleation and crystal growth have limited progress in understanding the mechanisms by which excipients contribute to the supersaturation maintenance. This paper describes the crystal growth kinetic modeling of indomethacin, a poorly water-soluble drug, from supersaturated aqueous suspensions using a newly developed, online second-derivative ultraviolet spectroscopic method. The apparent indomethacin equilibrium solubility after crystal growth at a high degree of supersaturation (S=6) was approximately 55% higher than the indomethacin equilibrium solubility determined prior to growth, which was attributed to the deposition of a higher energy indomethacin form on the seed crystals. The indomethacin crystal growth kinetics (S=6) was of first order. By comparing the mass transfer coefficients from indomethacin dissolution and crystal growth, it was shown that the indomethacin crystal growth kinetics at S=6 was bulk diffusion controlled. The change in indomethacin seed crystal size distribution before and after crystal growth was determined and modeled using a mass-balance relationship. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  20. High-throughput analysis using non-depletive SPME: challenges and applications to the determination of free and total concentrations in small sample volumes.

    PubMed

    Boyacı, Ezel; Bojko, Barbara; Reyes-Garcés, Nathaly; Poole, Justen J; Gómez-Ríos, Germán Augusto; Teixeira, Alexandre; Nicol, Beate; Pawliszyn, Janusz

    2018-01-18

    In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.

  1. Occurrence of pharmaceutical contaminants and screening of treatment alternatives for southeastern Louisiana.

    PubMed

    Boyd, G R; Grimm, D A

    2001-12-01

    Recent studies conducted in Germany, Switzerland, Denmark, Brazil, Canada, the United States, and elsewhere indicate that low-level concentrations of pharmaceuticals and personal-care products (PPCPs) and their metabolites may be widespread contaminants in our aquatic environment. The persistence of pharmaceutical contaminants has been attributed to (1) human consumption of drugs and subsequent discharges from sewage treatment plants, and (2) veterinary use of drugs and nonpoint discharges from agricultural runoff. Contamination of water resources by these compounds, particularly endocrine disrupting chemicals (EDCs), is emerging as an international environmental concern. The long-term effects of continuous, low-level exposure to PPCPs is not well understood. Preliminary data for raw water samples collected from the Mississippi River and Lake Pontchartrain, Louisiana, are summarized. Three PPCP compounds (clofibric acid, naproxen, and estrone) were analyzed using solid-phase extraction, derivatization, and GC/MS. Batch experiments also were conducted to determine equilibrium capacity of activated carbon for clofibric acid. Preliminary results indicate the occurrence of the selected PPCP contaminants in raw water samples at or near method-detection limits. For batch equilibrium experiments, preliminary results indicate that activated carbon potentially can be used to remove clofibric acid from water. More research is needed to develop rapid and reliable methods for PPCP analysis and to determine the effectiveness of treatment processes for removal of PPCP contaminants in water.

  2. Equilibrium, stability, and orbital evolution of close binary systems

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.

    1994-01-01

    We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.

  3. Geometrically Nonlinear Static Analysis of 3D Trusses Using the Arc-Length Method

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2006-01-01

    Rigorous analysis of geometrically nonlinear structures demands creating mathematical models that accurately include loading and support conditions and, more importantly, model the stiffness and response of the structure. Nonlinear geometric structures often contain critical points with snap-through behavior during the response to large loads. Studying the post buckling behavior during a portion of a structure's unstable load history may be necessary. Primary structures made from ductile materials will stretch enough prior to failure for loads to redistribute producing sudden and often catastrophic collapses that are difficult to predict. The responses and redistribution of the internal loads during collapses and possible sharp snap-back of structures have frequently caused numerical difficulties in analysis procedures. The presence of critical stability points and unstable equilibrium paths are major difficulties that numerical solutions must pass to fully capture the nonlinear response. Some hurdles still exist in finding nonlinear responses of structures under large geometric changes. Predicting snap-through and snap-back of certain structures has been difficult and time consuming. Also difficult is finding how much load a structure may still carry safely. Highly geometrically nonlinear responses of structures exhibiting complex snap-back behavior are presented and analyzed with a finite element approach. The arc-length method will be reviewed and shown to predict the proper response and follow the nonlinear equilibrium path through limit points.

  4. Computing diffusivities from particle models out of equilibrium

    NASA Astrophysics Data System (ADS)

    Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia

    2018-04-01

    A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.

  5. Iterative algorithms for computing the feedback Nash equilibrium point for positive systems

    NASA Astrophysics Data System (ADS)

    Ivanov, I.; Imsland, Lars; Bogdanova, B.

    2017-03-01

    The paper studies N-player linear quadratic differential games on an infinite time horizon with deterministic feedback information structure. It introduces two iterative methods (the Newton method as well as its accelerated modification) in order to compute the stabilising solution of a set of generalised algebraic Riccati equations. The latter is related to the Nash equilibrium point of the considered game model. Moreover, we derive the sufficient conditions for convergence of the proposed methods. Finally, we discuss two numerical examples so as to illustrate the performance of both of the algorithms.

  6. Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.

    The production of a hydrogen-rich fuel-cell feed by dimethyl ether (DME) steam reforming was investigated using calculations of thermodynamic equilibrium as a function of steam-to-carbon ratio (0.00-4.00), temperature (100-600 °C), pressure (1-5 atm), and product species. Species considered were acetone, acetylene, carbon dioxide, carbon monoxide, dimethyl ether, ethane, ethanol, ethylene, formaldehyde, formic acid, hydrogen, isopropanol, methane, methanol, methyl-ethyl ether, n-propanol and water. Thermodynamic equilibrium calculations of DME steam reforming indicate complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide at temperatures greater than 200 °C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure ( P = 1 atm). Increasing the operating pressure shifts the equilibrium toward the reactants; increasing the pressure from 1 to 5 atm decreases the conversion of dimethyl ether from 99.5 to 76.2%. The trend of thermodynamically stable products in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol-formaldehyde, formic acid, and acetylene were not observed. Based on the equilibrium calculations, the optimal processing conditions for dimethyl ether steam reforming occur at a steam-to-carbon ratio of 1.50, a pressure of 1 atm, and a temperature of 200 °C. These thermodynamic equilibrium calculations show dimethyl ether processed with steam will produce hydrogen-rich fuel-cell feeds—with hydrogen concentrations exceeding 70%. The conversion of dimethyl ether via hydrolysis (considering methanol as the only product) is limited by thermodynamic equilibrium. Equilibrium conversion increases with temperature and steam-to-carbon ratio. A maximum dimethyl ether conversion of 62% is achieved at a steam-to-carbon ratio of 5.00 and a processing temperature of 600 °C.

  7. Equivalences between refractive index and equilibrium water content of conventional and silicone hydrogel soft contact lenses from automated and manual refractometry.

    PubMed

    González-Méijome, José M; López-Alemany, Antonio; Lira, Madalena; Almeida, José B; Oliveira, M Elisabete C D Real; Parafita, Manuel A

    2007-01-01

    The purpose of the present study was to develop mathematical relationships that allow obtaining equilibrium water content and refractive index of conventional and silicone hydrogel soft contact lenses from refractive index measures obtained with automated refractometry or equilibrium water content measures derived from manual refractometry, respectively. Twelve HEMA-based hydrogels of different hydration and four siloxane-based polymers were assayed. A manual refractometer and a digital refractometer were used. Polynomial models obtained from the sucrose curves of equilibrium water content against refractive index and vice-versa were used either considering the whole range of sucrose concentrations (16-100% equilibrium water content) or a range confined to the equilibrium water content of current soft contact lenses (approximately 20-80% equilibrium water content). Values of equilibrium water content measured with the Atago N-2E and those derived from the refractive index measurement with CLR 12-70 by the applications of sucrose-based models displayed a strong linear correlation (r2 = 0.978). The same correlations were obtained when the models are applied to obtain refractive index values from the Atago N-2E and compared with those (values) given by the CLR 12-70 (r2 = 0.978). No significantly different results are obtained between models derived from the whole range of the sucrose solution or the model limited to the normal range of soft contact lens hydration. Present results will have implications for future experimental and clinical research regarding normal hydration and dehydration experiments with hydrogel polymers, and particularly in the field of contact lenses. 2006 Wiley Periodicals, Inc.

  8. Advanced methods for preparation and characterization of infrared detector materials. [mercury cadmium telluride alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1981-01-01

    Differential thermal analysis data were obtained on mercury cadmium telluride alloys in order to establish the liquidus temperatures for the various alloy compositions. Preliminary theoretical analyses was performed to establish the ternary phase equilibrium parameters for the metal rich region of the phase diagram. Liquid-solid equilibrium parameters were determined for the pseudobinary alloy system. Phase equilibrium was calculated and Hg(l-x) Cd(x) Te alloys were directionally solidified from pseudobinary melts. Electrical resistivity and Hall coefficient measurements were obtained.

  9. Reactive Gas transport in soil: Kinetics versus Local Equilibrium Approach

    NASA Astrophysics Data System (ADS)

    Geistlinger, Helmut; Jia, Ruijan

    2010-05-01

    Gas transport through the unsaturated soil zone was studied using an analytical solution of the gas transport model that is mathematically equivalent to the Two-Region model. The gas transport model includes diffusive and convective gas fluxes, interphase mass transfer between the gas and water phase, and biodegradation. The influence of non-equilibrium phenomena, spatially variable initial conditions, and transient boundary conditions are studied. The objective of this paper is to compare the kinetic approach for interphase mass transfer with the standard local equilibrium approach and to find conditions and time-scales under which the local equilibrium approach is justified. The time-scale of investigation was limited to the day-scale, because this is the relevant scale for understanding gas emission from the soil zone with transient water saturation. For the first time a generalized mass transfer coefficient is proposed that justifies the often used steady-state Thin-Film mass transfer coefficient for small and medium water-saturated aggregates of about 10 mm. The main conclusion from this study is that non-equilibrium mass transfer depends strongly on the temporal and small-scale spatial distribution of water within the unsaturated soil zone. For regions with low water saturation and small water-saturated aggregates (radius about 1 mm) the local equilibrium approach can be used as a first approximation for diffusive gas transport. For higher water saturation and medium radii of water-saturated aggregates (radius about 10 mm) and for convective gas transport, the non-equilibrium effect becomes more and more important if the hydraulic residence time and the Damköhler number decrease. Relative errors can range up to 100% and more. While for medium radii the local equilibrium approach describes the main features both of the spatial concentration profile and the time-dependence of the emission rate, it fails completely for larger aggregates (radius about 100 mm). From the comparative study of relevant scenarios with and without biodegradation it can be concluded that, under realistic field conditions, biodegradation within the immobile water phase is often mass-transfer limited and the local equilibrium approach assuming instantaneous mass transfer becomes rather questionable. References Geistlinger, H., Ruiyan Jia, D. Eisermann, and C.-F. Stange (2008): Spatial and temporal variability of dissolved nitrous oxide in near-surface groundwater and bubble-mediated mass transfer to the unsaturated zone, J. Plant Nutrition and Soil Science, in press. Geistlinger, H. (2009) Vapor transport in soil: concepts and mathematical description. In: Eds.: S. Saponari, E. Sezenna, and L. Bonoma, Vapor emission to outdoor air and enclosed spaces for human health risk assessment: Site characterization, monitoring, and modeling. Nova Science Publisher. Milano. Accepted for publication.

  10. Effects of Network Characteristics on Reaching the Payoff-Dominant Equilibrium in Coordination Games: A Simulation study.

    PubMed

    Buskens, Vincent; Snijders, Chris

    2016-01-01

    We study how payoffs and network structure affect reaching the payoff-dominant equilibrium in a [Formula: see text] coordination game that actors play with their neighbors in a network. Using an extensive simulation analysis of over 100,000 networks with 2-25 actors, we show that the importance of network characteristics is restricted to a limited part of the payoff space. In this part, we conclude that the payoff-dominant equilibrium is chosen more often if network density is larger, the network is more centralized, and segmentation of the network is smaller. Moreover, it is more likely that heterogeneity in behavior persists if the network is more segmented and less centralized. Persistence of heterogeneous behavior is not related to network density.

  11. Abnormal computerized dynamic posturography findings in dizzy patients with normal ENG results.

    PubMed

    Sataloff, Robert T; Hawkshaw, Mary J; Mandel, Heidi; Zwislewski, Amy B; Armour, Jonathan; Mandel, Steven

    2005-04-01

    The complexities of the balance system create difficulties for professionals interested in testing equilibrium function objectively. Traditionally, electronystagmography (ENG) has been used for this purpose, but it provides information on only a limited portion of the equilibrium system. Computerized dynamic posturography (CDP) is less specific than ENG, but it provides more global insight into a patient's ability to maintain equilibrium under more challenging environmental circumstances. CD Palso appears to be valuable in obtaining objective confirmation of an abnormality in some dizzy patients whose ENG findings are normal. Our review of 33 patients with normal ENG results and abnormal CDP findings suggests that posturography is useful for confirming or quantifying a balance abnormality in some patients whose complaints cannot be confirmed by other tests frequently used by otologists.

  12. Microfluidic inertial focusing fundamentals, limitations and applications for biomedical sample processing

    NASA Astrophysics Data System (ADS)

    Reece, Amy E.

    The microfabrication of microfluidic control systems and advances in molecular amplification tools has enabled the miniaturization of single cell analytical platforms for the efficient, highly selective enumeration and molecular characterization of rare and diseased cells from clinical samples. In many cases, the high-throughput nature of microfluidic inertial focusing has enabled the popularization of this new class of Lab-on-a-Chip devices that exhibit numerous advantages over conventional methods as prognostic and diagnostic tools. Inertial focusing is the passive, sheathless alignment of particles and cells to precise spatiotemporal equilibrium positions that arise from a force balance between opposing inertial lift forces and hydrodynamic repulsions. The applicability of inertial focusing to a spectrum of filtration, separation and encapsulation challenges places heavy emphasis upon the accurate description of the hydrodynamic forces responsible for predictable inertial focusing behavior. These inertial focusing fundamentals, limitations and their applications are studied extensively throughout this work.

  13. Chapter A6. Section 6.5. Reduction-Oxidation Potential (Electrode Method)

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Wilde, Franceska D.

    2005-01-01

    Reduction-oxidation (redox) potential--also referred to as Eh--is a measure of the equilibrium potential, relative to the standard hydrogen electrode, developed at the interface between a noble metal electrode and an aqueous solution containing electroactive chemical species. Measurements of Eh are used to evaluate geochemical speciation models, and Eh data can provide insights on the evolution and status of water chemistry in an aqueous system. Nevertheless, the measurement is fraught with inherent interferences and limitations that must be understood and considered to determine applicability to the aqueous system being studied. For this reason, Eh determination is not one of the field parameters routinely measured by the U.S. Geological Survey (USGS). This section of the National Field Manual (NFM) describes the equipment and procedures needed to measure Eh in water using a platinum electrode. Guidance as to the limitations and interpretation of Eh measurement also is included.

  14. The Nash Equilibrium Revisited: Chaos and Complexity Hidden in Simplicity

    NASA Astrophysics Data System (ADS)

    Fellman, Philip V.

    The Nash Equilibrium is a much discussed, deceptively complex, method for the analysis of non-cooperative games (McLennan and Berg, 2005). If one reads many of the commonly available definitions the description of the Nash Equilibrium is deceptively simple in appearance. Modern research has discovered a number of new and important complex properties of the Nash Equilibrium, some of which remain as contemporary conundrums of extraordinary difficulty and complexity (Quint and Shubik, 1997). Among the recently discovered features which the Nash Equilibrium exhibits under various conditions are heteroclinic Hamiltonian dynamics, a very complex asymptotic structure in the context of two-player bi-matrix games and a number of computationally complex or computationally intractable features in other settings (Sato, Akiyama and Farmer, 2002). This paper reviews those findings and then suggests how they may inform various market prediction strategies.

  15. Investigation of the hydrochlorination of SiCl4

    NASA Technical Reports Server (NTRS)

    Mui, J. Y. P.

    1983-01-01

    A basic, experimental study on the hydrochlorination of silicon tetrachloride and metallurgical grade silicon with hydrogen gas to form trichlorosilane was carried out to greatly expand the range of reaction conditions. The equilibrium constant, K sub p, for the hydrochlorination reaction was measured as a function of temperature, pressure and concentration. The variation of the equilibrium constant as a function of temperature provided the measurement on the heat of reaction, delta H, by the Second Law Method. The value of delta H was measured to give 10.6 Kcal/mole. The equilibrium constant was also studied as a function of concentration. In agreement with the theory, the equilibrium constant remained constant with respect to the varying H2/SiCl4 feed ratios. On the other hand, the effect of pressure on the equilibrium constant was found to be more complex.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.

    Here, as part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistentmore » implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.« less

  17. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  18. [Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC].

    PubMed

    Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin

    2014-05-01

    To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.

  19. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.

    PubMed

    Ballard, Christopher C; Esty, C Clark; Egolf, David A

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  20. Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.

    PubMed

    Bose, Amartya; Makri, Nancy

    2017-10-21

    The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.

  1. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated as non-equilibrium processes under local constraint of mass and heat fluxes. In this work, we have extended RCB by adding another route for dissociation or reformation of CH4-hydrate towards CH4 into the aqueous phase and water. CH4-hydrate formation and dissociation is resolved by looking at supersaturation and undersaturation with respect to thermodynamics variables. Hydrate instability due to undersaturation of CH4 in the contacting water phase is also considered. A complete non-equilibrium thermodynamic package, developed in-house, was combined with RCB to account for competing phase transitions by considering the minimization of Gibb's free energy. The energy differences were calculated from variations in chemical potentials of hydrate and hydrate formers. Mass transport, heat transport and non-equilibrium thermodynamic effects were implemented through classical nucleation theory to model the kinetic rate of hydrate phase transitions. To illustrate our implementations we ran simulations covering time-spans in the order of hundred years. CH4 production was modelled using the depressurization method, where we employed the Messoyakha field data. We discuss our implementations, as well as results obtained from simulations utilizing our modifications.

  2. A Multi-Scale Distribution Model for Non-Equilibrium Populations Suggests Resource Limitation in an Endangered Rodent

    PubMed Central

    Bean, William T.; Stafford, Robert; Butterfield, H. Scott; Brashares, Justin S.

    2014-01-01

    Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define “available” habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining “available” habitat in habitat selection studies, and suggests a way to create distribution models at spatial and temporal scales relevant to theoretical and applied ecologists. PMID:25237807

  3. Ecological optimality in water-limited natural soil-vegetation systems. I - Theory and hypothesis

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1982-01-01

    The solution space of an approximate statistical-dynamic model of the average annual water balance is explored with respect to the hydrologic parameters of both soil and vegetation. Within the accuracy of this model it is shown that water-limited natural vegetation systems are in stable equilibrium with their climatic and pedologic environments when the canopy density and species act to minimize average water demand stress. Theory shows a climatic limit to this equilibrium above which it is hypothesized that ecological pressure is toward maximization of biomass productivity. It is further hypothesized that natural soil-vegetation systems will develop gradually and synergistically, through vegetation-induced changes in soil structure, toward a set of hydraulic soil properties for which the minimum stress canopy density of a given species is maximum in a given climate. Using these hypotheses, only the soil effective porosity need be known to determine the optimum soil and vegetation parameters in a given climate.

  4. Electro-convective versus electroosmotic instability in concentration polarization.

    PubMed

    Rubinstein, Isaak; Zaltzman, Boris

    2007-10-31

    Electro-convection is reviewed as a mechanism of mixing in the diffusion layer of a strong electrolyte adjacent to a charge-selective solid, such as an ion exchange (electrodialysis) membrane or an electrode. Two types of electro-convection in strong electrolytes may be distinguished: bulk electro-convection, due to the action of the electric field upon the residual space charge of a quasi-electro-neutral bulk solution, and convection induced by electroosmotic slip, due to electric forces acting in the thin electric double layer of either quasi-equilibrium or non-equilibrium type near the solid/liquid interface. According to recent studies, the latter appears to be the likely source of mixing in the diffusion layer, leading to 'over-limiting' conductance in electrodialysis. Electro-convection near a planar uniform charge selective solid/liquid interface sets on as a result of hydrodynamic instability of one-dimensional steady state electric conduction through such an interface. We compare the results of linear stability analysis obtained for instabilities of this kind appearing in the full electro-convective and limiting non-equilibrium electroosmotic formulations. The short- and long-wave aspects of these instabilities are discussed along with the wave number selection principles.

  5. A finite element approach to self-consistent field theory calculations of multiblock polymers

    NASA Astrophysics Data System (ADS)

    Ackerman, David M.; Delaney, Kris; Fredrickson, Glenn H.; Ganapathysubramanian, Baskar

    2017-02-01

    Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.

  6. Path-space variational inference for non-equilibrium coarse-grained systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmandaris, Vagelis, E-mail: harman@uoc.gr; Institute of Applied and Computational Mathematics; Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirelymore » data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.« less

  7. Rock mass characterisation and stability analyses of excavated slopes

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian; Lechner, Heidrun

    2016-04-01

    Excavated slopes in fractured rock masses are frequently designed for open pit mining, quarries, buildings, highways, railway lines, and canals. These slopes can reach heights of several hundreds of metres and in cases concerning open pit mines slopes larger than 1000 m are not uncommon. Given that deep-seated slope failures can cause large damage or even loss of life, the slope design needs to incorporate sufficient stability. Thus, slope design methods based on comprehensive approaches need to be applied. Excavation changes slope angle, groundwater flow, and blasting increases the degree of rock mass fracturing as well as rock mass disturbance. As such, excavation leads to considerable stress changes in the slopes. Generally, slope design rely on the concept of factor of safety (FOS), often a requirement by international or national standards. A limitation of the factor of safety is that time dependent failure processes, stress-strain relationships, and the impact of rock mass strain and displacement are not considered. Usually, there is a difficulty to estimate the strength of the rock mass, which in turn is controlled by an interaction of intact rock and discontinuity strength. In addition, knowledge about in-situ stresses for the failure criterion is essential. Thus, the estimation of the state of stress of the slope and the strength parameters of the rock mass is still challenging. Given that, large-scale in-situ testing is difficult and costly, back-calculations of case studies in similar rock types or rock mass classification systems are usually the methods of choice. Concerning back-calculations, often a detailed and standardised documentation is missing, and a direct applicability to new projects is not always given. Concerning rock mass classification systems, it is difficult to consider rock mass anisotropy and thus the empirical estimation of the strength properties possesses high uncertainty. In the framework of this study an approach based on numerical discrete element modelling (DEM) in combination with limit-equilibrium (LE) methods are presented. The advantage of DEM methods is that failure and displacement of discontinuities and the intact rock for the investigation of failure mechanisms and slope deformations are considered. Furthermore, DEM methods have its strength when rock masses are highly anisotropic and slope failure is structurally controlled. Herein DEM methods are applied to model potential failure geometries, which in turn serve as basis for further investigations by limit-equilibrium methods. LE-methods are used to determine the factor of safety for the pre-defined failure geometries where a sliding mechanism with a discrete and pre-defined basal shear zone is the most likely kinematical failure mode. In this study a parameter variation was performed to find the most reliable FOS based on field estimated strength parameters and the critical strength parameter where a FOS is equal to one (i.e. the lower limit for the parameters). Furthermore, the sensitivity of the shear strength parameters is studied, which enables plausibility checks with field measurements and back-calculated values. The combined approach can help to gain a better insight into failure processes and deformation mechanisms and facilitate to perform a parameter-variation study at a reasonable time frame.

  8. Teaching Chemical Equilibrium with the Jigsaw Technique

    ERIC Educational Resources Information Center

    Doymus, Kemal

    2008-01-01

    This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students' understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes…

  9. Using Performance Reference Compounds (PRCs) to measure dissolved water concentrations (Cfree) in the water column: Assessing equilibrium models

    EPA Science Inventory

    Equilibrium-based passive sampling methods are often used in aquatic environmental monitoring to measure hydrophobic organic contaminants (HOCs) and in the subsequent evaluation of their effects on ecological and human health. HOCs freely dissolved in water (Cfree) will partition...

  10. DEVELOPMENT AND APPLICATION OF EQUILIBRIUM PARTITIONING SEDIMENT GUIDELINES IN THE ASSESSMENT OF SEDIMENT PAH CONTAMINATION

    EPA Science Inventory

    The U.S. Environmental Protection Agency used insights and methods from its water quality criteria program to develop ESGs. The discovery that freely-dissolved contaminants were the toxic form led to equilibrium partitioning being chosen to model the distribution of contaminants...

  11. Computer program determines chemical composition of physical system at equilibrium

    NASA Technical Reports Server (NTRS)

    Kwong, S. S.

    1966-01-01

    FORTRAN 4 digital computer program calculates equilibrium composition of complex, multiphase chemical systems. This is a free energy minimization method with solution of the problem reduced to mathematical operations, without concern for the chemistry involved. Also certain thermodynamic properties are determined as byproducts of the main calculations.

  12. Strategies Reported Used by Instructors to Address Student Alternate Conceptions in Chemical Equilibrium

    ERIC Educational Resources Information Center

    Piquette, Jeff S.; Heikkinen, Henry W.

    2005-01-01

    This study explores general-chemistry instructors' awareness of and ability to identify and address common student learning obstacles in chemical equilibrium. Reported instructor strategies directed at remediating student alternate conceptions were investigated and compared with successful, literature-based conceptual change methods. Fifty-two…

  13. Teaching the Concept of Gibbs Energy Minimization through Its Application to Phase-Equilibrium Calculation

    ERIC Educational Resources Information Center

    Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie

    2016-01-01

    Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…

  14. Toward a methodology for moral decision making in medicine.

    PubMed

    Kushner, T; Belliotti, R A; Buckner, D

    1991-12-01

    The failure of medical codes to provide adequate guidance for physicians' moral dilemmas points to the fact that some rules of analysis, informed by moral theory, are needed to assist in resolving perplexing ethical problems occurring with increasing frequency as medical technology advances. Initially, deontological and teleological theories appear more helpful, but criticisms can be lodged against both, and neither proves to be sufficient in itself. This paper suggests that to elude the limitations of previous approaches, a method of moral decision making must be developed incorporating both coherence methodology and some independently supported theoretical foundations. Wide Reflective Equilibrium is offered, and its process described along with a theory of the person which is used to animate the process. Steps are outlined to be used in the process, leading to the application of the method to an actual case.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intravaia, F.; Behunin, R. O.; Henkel, C.

    Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.

  16. Exact solutions for the selection-mutation equilibrium in the Crow-Kimura evolutionary model.

    PubMed

    Semenov, Yuri S; Novozhilov, Artem S

    2015-08-01

    We reformulate the eigenvalue problem for the selection-mutation equilibrium distribution in the case of a haploid asexually reproduced population in the form of an equation for an unknown probability generating function of this distribution. The special form of this equation in the infinite sequence limit allows us to obtain analytically the steady state distributions for a number of particular cases of the fitness landscape. The general approach is illustrated by examples; theoretical findings are compared with numerical calculations. Copyright © 2015. Published by Elsevier Inc.

  17. Problem of photochemical equilibrium of ozone in planetary atmospheres: Ozone distribution in the lower atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Grams, G. W.; SHARDANAND

    1972-01-01

    The inherent errors of applying terrestrial atmospheric ozone distribution studies to the atmosphere of other planets are discussed. Limitations associated with some of the earlier treatments of photochemical equilibrium distributions of ozone in planetary atmospheres are described. A technique having more universal application is presented. Ozone concentration profiles for the Martian atmosphere based on the results of the Mariner 4 radio occultation experiment and the more recent results with Mariner 6 and Mariner 7 have been calculated using this approach.

  18. Non-equilibrium supramolecular polymerization.

    PubMed

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  19. Non-equilibrium supramolecular polymerization

    PubMed Central

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J.

    2017-01-01

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term “non-equilibrium self-assembly” by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization. PMID:28349143

  20. Raining a magma ocean: Thermodynamics of rocky planets after a giant impact

    NASA Astrophysics Data System (ADS)

    Stewart, S. T.; Lock, S. J.; Caracas, R.

    2017-12-01

    Rocky planets in exoplanetary systems have equilibrium temperatures up to a few 1000 K. The thermal evolution after a giant impact is sensitive to the equilibrium temperature. Post-impact rocky bodies are thermally stratified, with cooler, lower-entropy silicate overlain by vaporized, higher-entropy silicate. The radii of impact-vaporized rocky planets are much larger than the radii of equivalent condensed bodies. Furthermore, after some high-energy, high-angular momentum collisions, the post-impact body exceeds the corotation limit for a rocky planet and forms a synestia. Initially, volatiles and silicates are miscible at the high temperatures of the outer layer. If the equilibrium temperature with the star is lower than the silicate condensation temperature ( 2000 K), silicate droplets form at the photosphere and fall while volatile components remain in the vapor. Radiation and turbulent convection cool the vapor outer layer to the silicate vapor curve. A distinct magma ocean forms as the thermal profile crosses the silicate vapor curve and the critical curves for the volatiles. Near the temperatures and pressures of the critical curves, volatiles and silicates are partially soluble in each other. As the system continues cooling, the volatile vapor and silicate liquid separate toward the end member compositions, which are determined by the equilibrium temperature and the total vapor pressure of volatiles. If the equilibrium temperature with the star is near or above the condensation temperature for silicates, there would be limited condensation at the photosphere. Initially, the cooler lower mantle would slowly, diffusively equilibrate with the hotter upper mantle. In some cases, the thermal profile may cross the silicate vapor curve in the middle of the silicate layer, producing a silicate rain layer within the body. With continued evolution toward an adiabatic thermal profile, the body would separate into a silicate liquid layer underlying a silicate-volatile vapor layer. As the hottest rocky planets become tidally locked to their star, cooling progresses asymmetrically. The timing and degree of differentiation of rocky planets into silicate mantles and volatile atmospheres depends on the thermal evolution of vaporized rocky planets and may vary widely with equilibrium temperature.

  1. Numerical modeling of an alloy droplet deposition with non-equilibrium solidification

    NASA Astrophysics Data System (ADS)

    Ramanuj, Vimal

    Droplet deposition is a process of extensive relevance to the microfabrication industry. Various bonding and film deposition methods utilize single or multiple droplet impingements on a substrate with subsequent splat formation through simultaneous spreading and solidification. Splat morphology and solidification characteristics play vital roles in determining the final outcome. Experimental methods have limited reach in studying such phenomena owing to the extremely small time and length scales involved. Fundamental understanding of the governing principles of fluid flow, heat transfer and phase change provide effective means of studying such processes through computational techniques. The present study aims at numerically modeling and analyzing the phenomenon of splat formation and phase change in an alloy droplet deposition process. Phase change in alloys occurs non-isothermally and its formulation poses mathematical challenges. A highly non-linear flow field in conjunction with multiple interfaces and convection-diffusion governed phase transition are some of the highlighting features involved in the numerical formulation. Moreover, the non-equilibrium solidification behavior in eutectic systems is of prime concern. The peculiar phenomenon requires special treatments in terms of modeling solid phase species diffusion, liquid phase enrichment during solute partitioning and isothermal eutectic transformation. The flow field is solved using a two-step projection algorithm coupled with enhanced interface modeling schemes. The free surface tracking and reconstruction is achieved through two approaches: VOF-PLIC and CLSVOF to achieve optimum interface accuracy with minimal computational resources. The energy equation is written in terms of enthalpy with an additional source term to account for the phase change. The solidification phenomenon is modeled using a coupled temperature-solute scheme that reflects the microscopic effects arising due to dendritic growth taking place in rapidly solidifying domains. Solid phase diffusion theories proposed in the literature are incorporated in the solute conservation equation through a back diffusion parameter till the eutectic composition; beyond which a special treatment is proposed. A simplified homogeneous mushy region model has also been outline. Both models are employed to reproduce analytical results under limiting conditions and also experimentally verified. The primary objective of the present work is to examine the splat morphology, solidification behavior and microstructural characteristics under varying operational parameters. A simplified homogeneous mushy region model is first applied to study the role of convection in an SS304 droplet deposition with substrate remelting. The results are compared with experimental findings reported in the literature and a good agreement is observed. Furthermore, a hypoeutectic Sn-Pb alloy droplet deposition is studied using a comprehensive coupled temperature solute model that accounts for the non-equilibrium solidification occurring in eutectic type of alloys. Particular focus is laid on the limitations of a homogeneous mushy region assumption, role of species composition in governing solidification, estimation of the microstructural properties and eutectic formation.

  2. Electrochemical and Phase Stability Studies of Cathode Materials for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Duffy, Patrick K.

    Growing energy and climate concerns in the United States and across the world demand improvements in energy efficiency, conservation, and renewability. Solid oxide fuel cells (SOFCs) are highly efficient devices that electrochemically convert the chemical energy of a fuel to electricity. These devices can operate on natural gas as a fuel, enabling the use of existing infrastructure with significantly higher efficiency compared to conventional natural gas power plants. However, expensive system components and durability issues prevent SOFCs from being cost-competitive with current power plants. This work focused on the search for new SOFC materials that provide increased performance at reduced operating temperatures. Both electrochemical performance and thermodynamic stability between various layers are important factors for creating SOFCs with good long-term performance, and both were investigated in this work, making extensive use of AC impedance spectroscopy and X-ray diffraction. A novel method used to rapidly characterize the electrochemical performance of electrode materials was developed. A hemispherical electrolyte probe pressed into the flat surface of a dense electrode pellet created a circular interface. Impedance spectroscopy measured the polarization resistance associated with the electrode reaction at the interface, along with the resistance of the electrolyte probe, from which the size of the contact was determined. The polarization resistance was normalized by the triple phase boundary (TPB) length to calculate the TPB linear-specific resistance of electronic conductor electrodes. For mixed ionic-electronic conductor (MIEC) electrodes, the polarization resistance was normalized by the contact area to estimate the area-specific surface resistance. Both normalized resistances were found to underestimate literature values by a consistent factor of 3. The method is shown to have good potential for the rapid screening and ranking of potential SOFC electrode materials. Details of thermodynamic equilibrium were also refined in the LaO1.5-Ga1.5-NiO quasi-ternary phase diagram. Solubility limits of the Lan+1NinO3n+1 Ruddlesden-Popper series of phases and LaGaO3 were determined using conventional phase analysis and the disappearing phase method. For the first time, La 3Ni2O7 was found to be stabilized over a small compositional range by the substitution of gallium for nickel. The compositional details of phase relationships involving LaGaO3 were also determined using the disappearing phase method by locating the vertex location of triphasic regions. Equilibrium between LaGaO3 and La4Ni3 O10 was confirmed, albeit at substantial levels of nickel in LaGaO3 and gallium in La4Ni3O10, both of which are detrimental to device performance. No equilibrium was observed between LaGaO3 and the other Lan+1NinO 3n+1 phases. Equilibrium between LaGaO3 and NiO was also confirmed. Additionally, saturating NiO with gallium was found to minimize the amount of nickel in LaGaO3, with an equilibrium concentration of only 7% of the gallium replaced by nickel in the latter.

  3. Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method

    NASA Astrophysics Data System (ADS)

    Macdonald, R. L.; Grover, M. S.; Schwartzentruber, T. E.; Panesi, M.

    2018-02-01

    This work presents the analysis of non-equilibrium energy transfer and dissociation of nitrogen molecules (N2(g+1Σ) ) using two different approaches: the direct molecular simulation (DMS) method and the coarse-grain quasi-classical trajectory (CG-QCT) method. The two methods are used to study thermochemical relaxation in a zero-dimensional isochoric and isothermal reactor in which the nitrogen molecules are heated to several thousand degrees Kelvin, forcing the system into strong non-equilibrium. The analysis considers thermochemical relaxation for temperatures ranging from 10 000 to 25 000 K. Both methods make use of the same potential energy surface for the N2(g+1Σ ) -N2(g+1Σ ) system taken from the NASA Ames quantum chemistry database. Within the CG-QCT method, the rovibrational energy levels of the electronic ground state of the nitrogen molecule are lumped into a reduced number of bins. Two different grouping strategies are used: the more conventional vibrational-based grouping, widely used in the literature, and energy-based grouping. The analysis of both the internal state populations and concentration profiles show excellent agreement between the energy-based grouping and the DMS solutions. During the energy transfer process, discrepancies arise between the energy-based grouping and DMS solution due to the increased importance of mode separation for low energy states. By contrast, the vibrational grouping, traditionally considered state-of-the-art, captures well the behavior of the energy relaxation but fails to consistently predict the dissociation process. The deficiency of the vibrational grouping model is due to the assumption of strict mode separation and equilibrium of rotational energy states. These assumptions result in errors predicting the energy contribution to dissociation from the rotational and vibrational modes, with rotational energy actually contributing 30%-40% of the energy required to dissociate a molecule. This work confirms the findings discussed in Paper I [R. L. Macdonald et al., J. Chem. Phys. 148, 054309 (2018)], which underlines the importance of rotational energy to the dissociation process, and demonstrates that an accurate non-equilibrium chemistry model must accurately predict the deviation of rovibrational distribution from equilibrium.

  4. Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method.

    PubMed

    Macdonald, R L; Grover, M S; Schwartzentruber, T E; Panesi, M

    2018-02-07

    This work presents the analysis of non-equilibrium energy transfer and dissociation of nitrogen molecules (N 2 (Σg+1)) using two different approaches: the direct molecular simulation (DMS) method and the coarse-grain quasi-classical trajectory (CG-QCT) method. The two methods are used to study thermochemical relaxation in a zero-dimensional isochoric and isothermal reactor in which the nitrogen molecules are heated to several thousand degrees Kelvin, forcing the system into strong non-equilibrium. The analysis considers thermochemical relaxation for temperatures ranging from 10 000 to 25 000 K. Both methods make use of the same potential energy surface for the N 2 (Σg+1)-N 2 (Σg+1) system taken from the NASA Ames quantum chemistry database. Within the CG-QCT method, the rovibrational energy levels of the electronic ground state of the nitrogen molecule are lumped into a reduced number of bins. Two different grouping strategies are used: the more conventional vibrational-based grouping, widely used in the literature, and energy-based grouping. The analysis of both the internal state populations and concentration profiles show excellent agreement between the energy-based grouping and the DMS solutions. During the energy transfer process, discrepancies arise between the energy-based grouping and DMS solution due to the increased importance of mode separation for low energy states. By contrast, the vibrational grouping, traditionally considered state-of-the-art, captures well the behavior of the energy relaxation but fails to consistently predict the dissociation process. The deficiency of the vibrational grouping model is due to the assumption of strict mode separation and equilibrium of rotational energy states. These assumptions result in errors predicting the energy contribution to dissociation from the rotational and vibrational modes, with rotational energy actually contributing 30%-40% of the energy required to dissociate a molecule. This work confirms the findings discussed in Paper I [R. L. Macdonald et al., J. Chem. Phys. 148, 054309 (2018)], which underlines the importance of rotational energy to the dissociation process, and demonstrates that an accurate non-equilibrium chemistry model must accurately predict the deviation of rovibrational distribution from equilibrium.

  5. Shelf-life of minimally processed cabbage treated with neutral electrolysed oxidising water and stored under equilibrium modified atmosphere.

    PubMed

    Gómez-López, Vicente M; Ragaert, Peter; Ryckeboer, Jaak; Jeyachchandran, Visvalingam; Debevere, Johan; Devlieghere, Frank

    2007-06-10

    Minimally processed vegetables (MPV) have a short shelf-life. Neutral electrolysed oxidising water (NEW) is a novel decontamination method. The objective of this study was to test the potential of NEW to extend the shelf-life of a MPV, namely shredded cabbage. Samples of shredded cabbage were immersed in NEW containing 40 mg/L of free chlorine or tap water (control) up to 5 min, and then stored under equilibrium modified atmosphere at 4 degrees C and 7 degrees C. Proliferation of aerobic mesophilic bacteria, psychrotrophic bacteria, lactic acid bacteria and yeasts were studied during the shelf-life. Also pH and sensorial quality of the samples as well as O(2) and CO(2) composition of the headspace of the bags was evaluated. From the microbial groups, only psychrotrophic counts decreased significantly (P<0.05) due to the effect of NEW, but the counts in treated samples and controls were similar after 3 days of storage at 4 degrees C and 7 degrees C. Packaging configurations kept O(2) concentration around 5% and prevented CO(2) accumulation. pH increased from 6.1-6.2 to 6.4 during the shelf-life. No microbial parameter reached unacceptable counts after 14 days at 4 degrees C and 8 days of storage at 7 degrees C. The shelf-life of controls stored at 4 degrees C was limited to 9 days by overall visual quality (OVQ), while samples treated with NEW remained acceptable during the 14 days of the experiment. The shelf-life of controls stored at 7 degrees C was limited to 6 days by OVQ and browning, while that of samples treated with NEW were limited to 9 days by OVQ, browning and dryness. According to these results, a shelf-life extension of at least 5 days and 3 days in samples stored respectively at 4 degrees C and 7 degrees C can be achieved by treating shredded cabbage with NEW. NEW seems to be a promising method to prolong the shelf-life of MPV.

  6. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be; Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse; Magin, Thierry E.

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as wellmore » as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.« less

  7. Mixed-strategy Nash equilibrium for a discontinuous symmetric N-player game

    NASA Astrophysics Data System (ADS)

    Hilhorst, H. J.; Appert-Rolland, C.

    2018-03-01

    We consider a game in which each player must find a compromise between more daring strategies that carry a high risk for him to be eliminated, and more cautious ones that, however, reduce his final score. For two symmetric players this game was originally formulated in 1961 by Dresher, who modeled a duel between two opponents. The game has also been of interest in the description of athletic competitions. We extend here the two-player game to an arbitrary number N of symmetric players. We show that there is a mixed-strategy Nash equilibrium and find its exact analytic expression, which we analyze in particular in the limit of large N, where mean-field behavior occurs. The original game with N  =  2 arises as a singular limit of the general case.

  8. Equilibrium dynamical correlations in the Toda chain and other integrable models

    NASA Astrophysics Data System (ADS)

    Kundu, Aritra; Dhar, Abhishek

    2016-12-01

    We investigate the form of equilibrium spatiotemporal correlation functions of conserved quantities in the Toda lattice and in other integrable models. From numerical simulations we find that the correlations satisfy ballistic scaling with a remarkable collapse of data from different times. We examine special limiting choices of parameter values, for which the Toda lattice tends to either the harmonic chain or the equal mass hard-particle gas. In both these limiting cases, one can obtain the correlations exactly and we find excellent agreement with the direct Toda simulation results. We also discuss a transformation to "normal mode" variables, as commonly done in hydrodynamic theory of nonintegrable systems, and find that this is useful, to some extent, even for the integrable system. The striking differences between the Toda chain and a truncated version, expected to be nonintegrable, are pointed out.

  9. Equilibrium dynamical correlations in the Toda chain and other integrable models.

    PubMed

    Kundu, Aritra; Dhar, Abhishek

    2016-12-01

    We investigate the form of equilibrium spatiotemporal correlation functions of conserved quantities in the Toda lattice and in other integrable models. From numerical simulations we find that the correlations satisfy ballistic scaling with a remarkable collapse of data from different times. We examine special limiting choices of parameter values, for which the Toda lattice tends to either the harmonic chain or the equal mass hard-particle gas. In both these limiting cases, one can obtain the correlations exactly and we find excellent agreement with the direct Toda simulation results. We also discuss a transformation to "normal mode" variables, as commonly done in hydrodynamic theory of nonintegrable systems, and find that this is useful, to some extent, even for the integrable system. The striking differences between the Toda chain and a truncated version, expected to be nonintegrable, are pointed out.

  10. Stellar equilibrium configurations of compact stars in f ( R , T ) theory of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moraes, P.H.R.S.; Arbañil, José D.V.; Malheiro, M., E-mail: moraes.phrs@gmail.com, E-mail: arbanil@ita.br, E-mail: malheiro@ita.br

    In this article we study the hydrostatic equilibrium configuration of neutron stars and strange stars, whose fluid pressure is computed from the equations of state p =ωρ{sup 5/3} and p =0.28(ρ−4B), respectively, with ω and B being constants and ρ the energy density of the fluid. We start by deriving the hydrostatic equilibrium equation for the f ( R , T ) theory of gravity, with R and T standing for the Ricci scalar and trace of the energy-momentum tensor, respectively. Such an equation is a generalization of the one obtained from general relativity, and the latter can be retrievedmore » for a certain limit of the theory. For the f ( R , T )= R +2λ T functional form, with λ being a constant, we find that some physical properties of the stars, such as pressure, energy density, mass and radius, are affected when λ is changed. We show that for a fixed central star energy density, the mass of neutron and strange stars can increase with λ. Concerning the star radius, it increases for neutron stars and it decreases for strange stars with the increment of λ. Thus, in f ( R , T ) theory of gravity we can push the maximum mass above the observational limits. This implies that the equation of state cannot be eliminated if the maximum mass within General Relativity lies below the limit given by observed pulsars.« less

  11. Stellar equilibrium configurations of compact stars in f(R,T) theory of gravity

    NASA Astrophysics Data System (ADS)

    Moraes, P. H. R. S.; Arbañil, José D. V.; Malheiro, M.

    2016-06-01

    In this article we study the hydrostatic equilibrium configuration of neutron stars and strange stars, whose fluid pressure is computed from the equations of state p=ωρ5/3 and p=0.28(ρ-4Script B), respectively, with ω and Script B being constants and ρ the energy density of the fluid. We start by deriving the hydrostatic equilibrium equation for the f(R,T) theory of gravity, with R and T standing for the Ricci scalar and trace of the energy-momentum tensor, respectively. Such an equation is a generalization of the one obtained from general relativity, and the latter can be retrieved for a certain limit of the theory. For the f(R,T)=R+2λ T functional form, with λ being a constant, we find that some physical properties of the stars, such as pressure, energy density, mass and radius, are affected when λ is changed. We show that for a fixed central star energy density, the mass of neutron and strange stars can increase with λ. Concerning the star radius, it increases for neutron stars and it decreases for strange stars with the increment of λ. Thus, in f(R,T) theory of gravity we can push the maximum mass above the observational limits. This implies that the equation of state cannot be eliminated if the maximum mass within General Relativity lies below the limit given by observed pulsars.

  12. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    NASA Astrophysics Data System (ADS)

    Martinez, J. E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-11-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values.

  13. Novel liquid equilibrium valving on centrifugal microfluidic CD platform.

    PubMed

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Arof, Hamzah; Madou, Marc

    2013-01-01

    One of the main challenges faced by researchers in the field of microfluidic compact disc (CD) platforms is the control of liquid movement and sequencing during spinning. This paper presents a novel microfluidic valve based on the principle of liquid equilibrium on a rotating CD. The proposed liquid equilibrium valve operates by balancing the pressure produced by the liquids in a source and a venting chamber during spinning. The valve does not require external forces or triggers, and is able to regulate burst frequencies with high accuracy. In this work, we demonstrate that the burst frequency can be significantly raised by making just a small adjustment of the liquid height in the vent chamber. Finally, the proposed valve ng method can be used separately or combined with other valving methods in advance microfluidic processes.

  14. Intermittent Fermi-Pasta-Ulam Dynamics at Equilibrium

    NASA Astrophysics Data System (ADS)

    Campbell, David; Danieli, Carlo; Flach, Sergej

    The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body syste. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. We show that previously obtained scaling laws for equipartition times are modified at low energy density due to an unexpected slowing down of the relaxation. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. The long excursions arise from sticky dynamics close to regular orbits in the phase space. Our method is generalizable to large classes of many-body systems. The authors acknowledge financial support from IBS (Project Code IBS-R024-D1).

  15. Determination of 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene and related compounds in marine pore water by automated thermal desorption-gas chromatography/mass spectrometry using disposable optical fiber

    USGS Publications Warehouse

    Eganhouse, Robert P.; DiFilippo, Erica L

    2015-01-01

    A method is described for determination of ten DDT-related compounds in marine pore water based on equilibrium solid-phase microextraction (SPME) using commercial polydimethylsiloxane-coated optical fiber with analysis by automated thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Thermally cleaned fiber was directly exposed to sediments and allowed to reach equilibrium under static conditions at the in situ field temperature. Following removal, fibers were rinsed, dried and cut into appropriate lengths for storage in leak-tight containers at -20°C. Analysis by TD-GC/MS under full scan (FS) and selected ion monitoring (SIM) modes was then performed. Pore-water method detection limits in FS and SIM modes were estimated at 0.05-2.4ng/L and 0.7-16pg/L, respectively. Precision of the method, including contributions from fiber handling, was less than 10%. Analysis of independently prepared solutions containing eight DDT compounds yielded concentrations that were within 6.9±5.5% and 0.1±14% of the actual concentrations in FS and SIM modes, respectively. The use of optical fiber with automated analysis allows for studies at high temporal and/or spatial resolution as well as for monitoring programs over large spatial and/or long temporal scales with adequate sample replication. This greatly enhances the flexibility of the technique and improves the ability to meet quality control objectives at significantly lower cost.

  16. Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit. III. Theory for the multilevel atom

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2016-06-01

    Context. We discuss the case of lines formed by scattering, which comprises both coherent and incoherent scattering. Both processes contribute to form the line profiles in the so-called second solar spectrum, which is the spectrum of the linear polarization of such lines observed close to the solar limb. However, most of the lines cannot be simply modeled with a two-level or two-term atom model, and we present a generalized formalism for this purpose. Aims: The aim is to obtain a formalism that is able to describe scattering in line centers (resonant scattering or incoherent scattering) and in far wings (Rayleigh/Raman scattering or coherent scattering) for a multilevel and multiline atom. Methods: The method is designed to overcome the Markov approximation, which is often performed in the atom-photon interaction description. The method was already presented in the two first papers of this series, but the final equations of those papers were for a two-level atom. Results: We present here the final equations generalized for the multilevel and multiline atom. We describe the main steps of the theoretical development, and, in particular, how we performed the series development to overcome the Markov approximation. Conclusions: The statistical equilibrium equations for the atomic density matrix and the radiative transfer equation coefficients are obtained with line profiles. The Doppler redistribution is also taken into account because we show that the statistical equilibrium equations must be solved for each atomic velocity class.

  17. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water

    PubMed Central

    Wu, Xiongwu; Brooks, Bernard R.

    2015-01-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66’s pKa. PMID:26506245

  18. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water.

    PubMed

    Wu, Xiongwu; Brooks, Bernard R

    2015-10-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.

  19. Profiles of equilibrium constants for self-association of aromatic molecules

    NASA Astrophysics Data System (ADS)

    Beshnova, Daria A.; Lantushenko, Anastasia O.; Davies, David B.; Evstigneev, Maxim P.

    2009-04-01

    Analysis of the noncovalent, noncooperative self-association of identical aromatic molecules assumes that the equilibrium self-association constants are either independent of the number of molecules (the EK-model) or change progressively with increasing aggregation (the AK-model). The dependence of the self-association constant on the number of molecules in the aggregate (i.e., the profile of the equilibrium constant) was empirically derived in the AK-model but, in order to provide some physical understanding of the profile, it is proposed that the sources for attenuation of the equilibrium constant are the loss of translational and rotational degrees of freedom, the ordering of molecules in the aggregates and the electrostatic contribution (for charged units). Expressions are derived for the profiles of the equilibrium constants for both neutral and charged molecules. Although the EK-model has been widely used in the analysis of experimental data, it is shown in this work that the derived equilibrium constant, KEK, depends on the concentration range used and hence, on the experimental method employed. The relationship has also been demonstrated between the equilibrium constant KEK and the real dimerization constant, KD, which shows that the value of KEK is always lower than KD.

  20. Synthesis, structure, and reactivity of N-benzoyl iminophosphoranes ortho lithiated at the benzoyl group.

    PubMed

    Aguilar, David; Fernández, Ignacio; Cuesta, Luciano; Yañez-Rodríguez, Víctor; Soler, Tatiana; Navarro, Rafael; Urriolabeitia, Esteban P; López Ortiz, Fernando

    2010-10-01

    Ortho lithiation of N-benzamido-P,P,P-triaryliminophosphoranes through deprotonation with alkyllithium bases was achieved with ortho-C═O and ortho-P═N chemoselectivity. However, the synthetic scope of these processes was rather limited. Ortho-lithiated N-benzamido-P,P,P-triphenyliminophosphorane 8 was efficiently prepared via lithium/halogen exchange of the corresponding ortho-brominated precursor with s-BuLi in THF at -90 °C. The reaction of 8 with a variety of electrophiles provides an easy and mild method for the regioselective synthesis of ortho-modified iminophosphoranes via C-C (alkylation and hydroxyalkylation) and C-X (X = I, Si, P, Sn, and Hg) bond-forming reactions. NMR characterization of 8 in THF solution showed that 8 exists as an equilibrium mixture of one monomer and two dimers. The Li atoms of these species become members of five-membered rings through chelation by the ortho-metalated carbon and the carbonyl oxygen. The dimers differ in the relative orientation of the two chelates with respect to the plane defined by the C(2)Li(2) core. The equilibrium between all species is established by splitting the dimers into monomers and subsequent recombination with formation of a different dimer.

Top